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ABSTRACT

The representation of uncertain information and inference with such information 

are some of the fundam ental issues in uncertainty management. Conventional m eth

ods for uncertainty management usually use a  single value with the exception of 

interval-based approaches. In interval-based approaches, an interval is used to repre

sent the uncertain information. It is assumed that the true, possibly unknown, value 

lies in an interval. However, in order to use interval-based methods, there must exist 

an order relation on the set of data values.

The main objective of this thesis is to extend single-valued and interval-valued 

methods by introducing a framework of set-valued computations. In this model, 

uncertain information is described by a set without any further restrictions. Basic 

issues of set-bcised computations are investigated. Operations on set values are defined 

based on the corresponding point-based (i.e., single-value-based) operations on their 

members. The properties of set-based computations are examined in connection to 

the corresponding properties of the point-based computations. W ithin the proposed 

framework, a critical analysis of a number of existing set-based computation methods 

is presented. This provides further evidence supporting the proposed model. To a  

large extent, the present study may be regarded as a more explicit re-examination of 

methods that have been implicitly used in many studies, using a unified notion. The 

results of such an investigation will be useful in establishing a framework for more 

systematic study of set-based computations.

VI
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The set-based methods caji be applied in a num ber of areas, such as interval- 

number algebra, interval-set algebra, interval-valued logic, interval-valued probabilis

tic reasoning, and set-based information systems. These applications are studied in 

this thesis.

vu
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C hapter 1

INTRODUCTION

One of the  fundam ental issues in information science is management of uncertain 

information. There are two basic problems involved: representation of uncertain 

information and reasoning using uncertain information.

Traditionally, probability theory is considered to be the only tool for uncertainty 

management. It can be applied in situations where the source of uncertainty is due to 

the presence of random  variables. However, this is not the only source of uncertainty. 

There are situations where uncertainty stems from not clearly defined notions rather 

than randomness (Zadeh, 1965). In order to better manage uncertainty, different 

proposals have been made. In general, there are two different approaches to represent 

uncertain inform ation, one is the use of a  numeric structure, the other is the use 

of a non-numeric structure (Bhatnagar and Kanal, 1986). Among methods of the 

first approach (quantitative approach), the best known is Bayesian approach using 

probability functions (Neapolitean, 1990; Pearl, 1988; Shafer, 1976). The second 

approach (qualitative approach) is particularly useful for modeling uncertainty when 

numeric values are not readily available (Bhatnagar and Kanal, 1986; Fine, 1973; 

Luzeaux, 1991; Satoh, 1989). Examples of such approaches are fuzzy set theory 

(Zadeh, 1965), rough set theory (Pawlak, 1982), incidence calculus (Bundy, 1985), 

and interval-set algebra (Yao, 1993).

1
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The notion of intervals is used in both two approaches. For example, in quanti

tative approach, to describe uncertainty one can construct an interval using a  pair 

of belief and plausibility functions in which lies the true probability (Dubois and 

Prade, 1986; Halpem and Fagin, 1992; Shafer, 1976; Smets, 1988). For the second 

approach, the notion of intervals is an underlying concept. For instance, rough set 

theory, incidence calculus, and interval-set algebra all use intervals of poset (i.e., par

tially ordered set). It is obvious th a t these interval-based structures are based upon 

an order relation implicitly defined over their universes. The requirement of such 

an order relation restricts applications of these models. In this thesis, single-valued 

and interval-valued methods are extended by introducing a framework of set-valued 

computations.

Set-béised computations can be motivated from two different point of views. One 

is the need for the representation of uncertain information when there is no order 

relation defined on the universe. The other is the need of a unified framework for the 

com putations involved in inference processes using set-valued param eter or functions 

instead of single-valued ones. In many practical situations, it may be impossible to 

specify the exact values of certain parameters under consideration. For example, it 

may be diflBcult to measure the precise value of the tem perature a t the moment. One 

can therefore give only a lower bound and an upper bound to indicate its range, i.e., 

using interval for representing this information. There may also be situations where it 

is impossible to represent available information by an interval. For example, suppose 

a given person may speak English or French, which cannot be represented by an 

interval. It may be more reasonable to represent such information by a  set. Intervals 

can be considered as sets of elements. The framework of set-based com putations is 

therefore a  natural generalization of interval-based computations.

The main objective of this thesis is to investigate some basic issues of set-based 

com putations. The underlying assumptions of interval based models will be examined.
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Possible extensions of computations in point-valued systems to set-valued ones will 

be studied. Operations and relations on set-valued parameters are defined based on 

the corresponding operations and relations available from single-valued param eters. 

These operations and relations are set-wise extensions of the original ones. Extended 

operations and relations are analyzed and their properties are given. It wiU be shown 

that the paradigm  of set-based computations has been used implicitly in many studies.

The rest of this thesis is organized as follows. In Chapter 2, a  brief review of basic 

notations and previous related works is provided. In Chapter 3, a  framework of set- 

based com putations is introduced and discussed. Extended operations and relations 

are defined and their properties are investigated. Set-based extension of a  relational 

system is defined. Set-based extension of some basic structures in uncertainty m an

agement is investigated. In C hapter 4, interval-based computations, a special case 

of set-based computations, is discussed. In Chapter 5, set-based information sys

tems and multi-valued logic are discussed as applications of set-beised computations. 

Finally, C hapter 6 summaries the results of this study.
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C hapter 2

PRELIM INARIES

This chapter presents a  brief review of m athem atical structures pertinent to the 

subsequent discussion.

2.1 P artia lly  O rdered S et, L attice and B oo lean  A lg eb ra

Let P  be a set and X a binary relation on P.  The relation is called a partial 

order (partial ordering) if and only if :< is reflexive, antisymmetric and transitive 

(Trembley and Manohar, 1975). Let X be a partial order on P, the pair (P, :^) is 

called a partially ordered set or simply ■poset. By definition, not every pair of elements 

of P  is related under a partial order. If relation ■< is defined for any two elements 

of P , the relation will be called a total order and a set with such a relation is called 

totall'y ordered set.

Let (P, ■<) be a poset and let ,4 Ç P . An element x in P  is called an upper bound 

of A  if for all a €  A, a x. Similarly, an element x €  P  is called a loioer bound of A 

if for all a G A, X a. An element x € P  is called the least upper bound (LUB)  of 

A, if X  is an upper bound of A, and for any upper bound y  o i A., x < y  ■ Likewise, x 

is called the greatest lower bound (GLB)  of A if x is a  lower bound of A, and for any 

lower bound j/ of A, y x. An element 6 6  P  is said to cover another elem ent a G P
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if a 6 and there does not exist any element c € P such th a t a :< c and that is

b cover a {a :< b {a ■< c ■< b a = c V  c = b)). (2.1)

From the above discussion, it is obvious that for any given two elements a and b in

P , if an element c covers both a and 6 then c =  LUB{a, b). Similarly, c =  GLB{a, b)

if both a and b cover c.

A lattice is a  partially ordered set {L, :<) in which every pair of elements a, 6 G P 

has a G L B  and a L U B  (Trembley and Manohax, 1975). G L B  and L U B  of (a, 6} are 

denoted by a (8> 6 and a 0  6, i.e.,

GLB{a, b) =  a ® 6,

LUB{a,b)  =  a ©6. (2.2)

The operation 0  is called meet or product and the operation 0  is called join or sum. 

Using these symbols, a lattice is denoted by (P, 0 , 0 ) .

The order relation ;< can be defined by operations 0  or ©. For example, the order 

relation can be defined by operation © as a relation satisfying condition:

a X 6 Û 0  6 =  6.

or equivalently, it can be defined using operation 0 :

a ^  b 4=#- 0 0  6 =  0.

A lattice can also be defined axiomatically as a set L with two operations 0  and 

© satisfying the following axioms which axe called axioms of lattice (Birkhoff, 1967; 

Trembley and Manohar, 1975):
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for 0, 6, c G L,

Idempotent : o © o  =  o, o ® o =  o;

Commutativity : o © 6  =  6©o ,  o 0  6 =  6 0  o;

Associativity : o © (6 © c) =  (o © 6) © c, o 0  (6 0  c) =  (o 0  6) 0  c;

Absorption ; o 0  (o © 6) =  o, o © (o 0  6) =  o.

A subset U  of L  which is closed under these operations is a  lattice itself. The lattice 

{U,  0 ,  ©) is called a sublattice. A lattice is complete if every non-empty subset has 

a G L B  and LU B.  Every finite lattice is complete. For a  complete lattice, G LB  and 

L U B  of the entire set are denoted by 0 and 1. For an element o in lattice L, if there 

exists an element b £  L such that:

0 0 6  =  0, o ® 6 = L ,

6 is called a complement of o. If every element of L haa a complement, L is a 

complemented lattice. A lattice is distributive if operations 0  and © distribute over 

each other, namely,

Distributivity : o 0  (6 © c) =  (o 0  6) © (o 0  c), o © (6 0  c) =  (o © 6) 0  (o ® c).

As will be seen in Chapter 4, the notion of lattice will be used as a basis of interval-

based computation models.

A complemented distributive lattice is called a Boolean algebra (Trembley and 

Manohar, 1975). A Boolean algebra is denoted by (5 , ©, ®, ~ ,  I, 0), where the 

symbol ~  denotes the complement operation, i.e., the complement of a is written 

as ~  Û. A Boolean algebra can be defined axiomatically based on properties of its 

operations. For instance, it is possible to define a  Boolean algebra as a set B  with 

operations 0  and ~  and a set of independent axioms about these operations. A
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partial order ■< on B  can be defined as follows:

a -< b 4* a ® b = a

a(S b = b

o 0  ~  6 =  0

•O ~  6 a,

~  a  ©  6 =  1.

If 5" Ç R  and S  contains elements 0 and 1, and closed under operations 0 ,  © and 

{S, 0 ,  ©, 1,0) is called a sub-Boolean algebra.

Suppose S' is a non-empty set. The pair (2^, Ç) is a poset, where 2^ is the power 

set of S.  The system (2‘̂ ,n ,U ) is a lattice, in which the join and meet operations are 

U and n , respectively. Moreover, the system (2‘̂ , n , U , 1,0) is a Boolean algebra, 

where the complement operation is

2.2 Fuzzy S ets

The notion of fuzzy sets was introduced by Zadeh (1965). Let 17 be a set called the 

universe. A fuzzy set A in 17 is defined by a membership function p a  : U — •• [0.1]. 

The function associates each element of U with a real number in the  interval [0, 1], 

The value represents the grade of membership of x  in A. The concept of fuzzy 

sets is a generalization of ordinary set. If A is an ordinary (crisp) set, its membership 

function, pA, can take either 0 or 1. For example, the universe and the em pty set can 

be represented by their membership functions as:

P-u{x) =  1, /^0(z) = 0.

Given two fuzzy sets A and B  with membership functions pA and pB,  their inter

section A n  B, union A U R, and complement ->A can be defined component-wise as
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follows:

Pao b{x ) =

P a o b {x ) =  m a x ( /Z A ( x ) , / z s ( i ) ) ,

P^a {x ) =  1 -  p a{x )- (2.3)

Fuzzy sets inclusion is defined by:

AC .  B  4 = ^  Vx €  U,p a {x ) :< p b {x ). (2.4)

For fuzzy sets A, B,  the following properties hold:

Double negation : "’(“’A) =  A,

De Morgan's law : -’(.4 \J B) — (-<A) H (~'R),

-■(A f\ B) = (~>A) U {~'B).

These properties are the sam e as those of ordinary sets. However, in general the 

following inequalities hold for fuzzy sets:

A U - 'A  7̂  AT, A n  - 'A  7̂  0.

Many different proposals have also been proposed for the definition of fuzzy set op

erations. For example, the probabilistic-like definition is given by:

Paob^x ) =  p a {x ).p b {x ),

P a u b { x ) — p a {x ) +  p b {x ) )  -  P a {x ) . p b { x ),

P ^ a { x ) =  I -  P a { x ) .  (2.5)

Using th e  min-max definition, it follows

P a d ^ a  =  m i n ( p A ( x ) ,  I  -  /^ .4(x))  7^ P e ( x ) ,  P a ( x )  7̂  0. ( 2 .6 )
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That is, in general An->A is not necessarily equal to 0. By probabilistic-like definition,

Paoa{x ) =  p a {x ).p a {x ) ^  Pa {x ), Pa {x ) #  0,1. (2.7)

It implies th a t idempotent does not hold unless p a {x ) =  0 or Pa {x ) =  1- Therefore, 

the above two definitions build up two different structures for fuzzy set systems. The 

min-max structu re  induces a lattice but not a  Boolean algebra, while the probabilistic- 

like definition does not induce even a  lattice.

In order to describe qualitatively a fuzzy set A, the concept of core and support 

are used. T he core of a fuzzy set is defined by:

Ac =  { x  €  X  I / za(z ) =  1}, (2.8)

which consists of all those elements with membership 1. The support of a fuzzy set 

is denoted by:

As = {x  e  X  \ p a {x ) > 0}, (2.9)

which consists of all those elements with non-zero membership. For both max-min 

and probabilistic-like definitions, the following properties hold for Ac and A,:

i).  A, Ç  A„

ii). (A D B)c = Ac C\ Bci {A\J B)c = AcU B ^

iii). (A n  B ), =  A, n  5 , ,  {AU B)s = AsD Bs-

2.3 R o u g h  Sets

The notion of rough sets was introduced by Pawlak (1982). Let i f  he a. set called 

the universe, and let R  be an equivalence relation on U. The pair Apr = iU,R)  is 

called an approximation space. If x, y G 17 and (x,y) G A, x and y are indiscernible. 

The em pty set 0 and the equivalence classes of relation R  is called elementary sets
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(atoms) in Apr.  Every finite union of elementary sets is called a composed set in A, 

or a composed set for short. The family of all composed sets, denoted by Com(A),  is 

closed under intersection, union and complement of sets. Thus, Com[.A) is a Boolean 

algebra.

Let A be a subset of U. The least composed set containing A is called the best

upper approximation of A, written as Apr(A). The greatest composed set contained 

in A is called the best lower approximation of A, w ritten as Apr(A). The pair

A p r (X )  =  (Apr (A), Apr (A)) is called a rough set of A in Apr. For any two subsets 

A,  B  Q U, the following properties hold:

(RO) A ^ { A )  Ç Apr{A),

(Rl)  A pr{An  B) = A p r ( A ) n  A ^ { B ) ,

Apr(A n  B) Ç Apr(A) fl Apr{B),  

(R2) A p i f A \ j B ) D A £ r { A ) U A p i ^ { B ) ,

Apr (A U B)  = Apr(A) U Apr{B),

(R3) AprfA — B) = ApHA) — Apr[B),

Apr (A — B) Ç  Apr(A) — A p r{B),  

(R4) A Ç B =>■ Apr (A) Ç Apr (jB),

AC. B  =7- Apr (A) Ç Apr(B).

It is interesting to note that they are different from some of properties of fuzzy sets.

10
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C hapter 3

A  MODEL OF SET-BASED  

COMPUTATIONS

This chapter presents a basic model of set-based computations using the notion 

of relational systems. A number of fundamental issues of set-based computations 

are addressed. Set-based operations and relations are defined by extending single

valued operations and relations. Properties of set-based operations and relations are 

examined.

3.1 R ela tio n a l S ystem s

Different m athem atical systems have their own special computation methods. For 

example, in numerical computations, on uses the system (3Î, +, —, x , / ,  > , = ), where 

% is the set of real numbers, 4-, —, x and /  are axithmetic operations, and >  and =  

are binary relations on 3?. In logical inference, one uses the system [V, A ,  V ,  ->), where 

K is a set of well formed formulas, and A, V and axe operations on V. Abstracting 

from these examples, the concept of relational systems from measurement theory is 

adopted to describe various computational models (Roberts, 1979).

11
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D efin itio n  3 .1  A relational system is an ordered {p A- q +  \)-tuple,

R S  = { ( / ,O i,. . . ,O p ,R i,.. . ,R g ) ,  (3.1)

where U is a nonempty set, O i,. . . ,  Op are operations on U , and R i , . . . ,  R^ are rela

tions (not necessarily binary) on U .

Although the  definition of relational systems is very general, practical problems axe 

usually involved with a small number of operations and relations. In this thesis, only 

unaxy, binary operations, and binary relations will be considered.

In a  relational system, ail operations and relations axe defined on elements of U. 

In practice, it may not always be possible to represent a  physical quantity using a 

single element of U. For example, it may be difficult to  describe the tem perature 

a t the moment precisely using a single number. It may be more reasonable to say, 

for instance, th a t the tem perature is between 19.5°C and 20.5°C. In these situations, 

it may be m ore appropriate to use subsets of U. To accommodate this set-based 

representation scheme, one may extend operations and relations on elements of U 

into operations and relations on subsets of U. This leads to extended relational 

systems. The former is referred to aa point-based (single-valued) computations, and 

the latter as set-based (set-valued) computations.

3.2 E x ten d ed  R ela tion a l S ystem s

Extended relational systems are obtained by extending operations and relations 

on U to subsets of U. It seems to be reasonable to require that extended relational 

systems should preserve as many characteristics as that of the original systems. In 

particular, when only singleton subsets of U are used, set-based computations must 

reduce to point-based computations.
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3.2.1 E xtended  op eration s

An operation o on U can be extended into an operation o' on 2^ by applying 

it to members of subsets of U. For a unary operation, given a  subset A  Ç U, vre 

can construct another subset A ' =  {on | a € A}. For a binary operation, given two 

subsets A, B  £  2^, one can derive another subset C G 2^ by collecting all elements 

a o 6, where a £ A  and b £  B . For claxity and simplicity, the em pty set will not be 

considered.

Definition 3.2 Suppose o is a unary operation on U, and A  ^ is an element of 

2P An extended unary operation o' on 2^ — {0} is defined by:

o' A — (oa I a £ A }. (3.2)

Definition 3.3 Suppose o is a binary operation on U, and A, R 7  ̂ 0 are two elements 

o f 2^. An extended binary operation o' on 2^' — {0} is defined by:

A  o' B  = {ao b \ a £ A ,b  £  B j .  (3.3)

If only singleton subsets of U are used, operation o' reduces to o. Many properties 

of operations in the original system can be carried over by extended operations. The 

theorem given below shows that commutativity and associativity are preserved.

Theorem  3.1 Suppose o is a binary operation on U , and o' on 2^' — {0} is the 

extended binary operation defined by equation (3.3). Then,

(a). if o is commutative, o' is commutative,

(b). if o is associative, 0' is associative.

Exam ple 3.1 Consider the problem of constructing languages using strings out of 

a  set of alphabets (Aho, Sethi and Ullman, 1988) . An alphabet or a character class

13
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denotes any finite set of symbols. A string over some alphabet is a finite sequence 

of symbols drawn from that alphabet. The empty string, a string with no character, 

is included in this definition and is denoted by e. A language is any set of strings 

over some fixed alphabet. An operation used to build string is concatenation. This 

concatenation operation also can be extended to languages. If L and M  are two 

languages, the concatenation of L  and M  is denoted by L M  which is also a language. 

In fact, L M  =  {si | s E T, i E M }.  The operation of concatenating characters to 

make strings is extended to the concatenation operation in languages to concatenate 

any two languages. Since the concatenation of strings is associative, the concatenation 

of language is also associative.

3.2 .2  E xten d ed  rela tion s

The extension of a binary relation R  can be done in a similar m anner as that of 

operations. However, this process is more complicated. For any two arbitrary sets 

A ,B Ç U ,  relation may hold for all elements in A, B  (i.e.. A x  B  Ç /?), or it may hold

only for few elements (i.e., A x  B  ^  R, (A x  B) C\ R  0), or it does not hold for any

element (i.e., (A  x  B) <1 R  = 0). Accordingly, four distinct classes can be identified.

D efin itio n  3.4 Suppose R  is a binary relation on U . Four types o f set-wise exten

sions o f R  are defined by: for  A, 5  E 2^ — {0},

I. A R ' B  <=>- (3a E A)(36 E B) a R  b,

II. A J L B < ^  (Va E A)(V6 e  B) a R  b,

III. A J T B ^ i V a e  A)(36 e B )  a R b ,

IV. A 7L B  4=> (3a E A)(V6 e  B) a R b.

14
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It is easy to verify that for any A, B  €  2^:

A J L  B  =>- A R T  B, 

A  J i ,  B  =*- A Ji~ B,

A J i ,  B  ==*- A "R, B,

A J T  B  ==> A 7?* B,

A 7L B  A R T  B .

T hat is,

J L Q  Mr Q R \  M .Q  R . Ç  R '  (3.4)

Using these extended relations, two additional relations can be defined:

V. Ru = Mr U R .

VI. Rn  =  M ' n  R ,

Relation Ç (on the set of extended relations {"R", M., M“, Rm, Ru, Rn}) is a partia l 

order relation. Equation (3.4) can be extended to:

M .Q R n Q  M 'C R ^ jC  R ',

M . Q R n Ç  K. Ç Ru Ç R ’. (3.5)

In general, the above six extended relations are different. They form a lattice as 

shown in Figure 3.1. This lattice is denoted by L{R).

Extended relations in L{R) carry many properties of of R. Properties that cannot 

be carried over by R '  cannot be carried over by other extended relations. The fol

lowing theorem shows properties of R  th a t can be carried over by extended relations.

15
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« "

Ru

Mr "R.

Rn

M.

Figure 3.1: Hasse Diagram of Extended Relations
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T h e o re m  3.2 Suppose R  is a binary relation on U, and L{R) is a lattice o f extended 

relations on 2^ — {0}. Then,

(a). if R  is reflexive, 7?*, J i ‘ , and Ru are reflexive,

(b). if 72 is symmetric, J i .  and "R“ are symmetric,

(c). if R  is antisymmetric, only J i .  is antisymmetric,

(d). if R  is transitive, J i . ,  Ji* , “R .,  and Rn are transitive.

The proof is given in Section 3.3.

In real applications, it may be useful to define other kinds of extended relations. 

Nevertheless, extended relations defined above provide some general guidelines. For 

example, it is reasonable to assume that any extended relation should be bounded by 

the two extrem e points of L{R). In general, one may use two points in L{R) as the 

bounds of an extended relation, namely, an interval [72,72'] such th a t 72,72' 6 7,(72) 

cind 72 Ç 72'.

3.2 .3  E x ten d ed  system s

Based on extended operations and relations, one caji build an extended relational 

system from the original one.

D efin itio n  3.5 Let R S  =  (7/, o j , . . . ,  Op, 72i,. . . ,  72,) be a relational system, and let 

L{Ri) be the lattice o f  extended relations fo r  R{. The corresponding set-wise extended 

relational system, called set-based system, is:

R S ' =  ( [ ( 2"), o 'l , . . . ,  o'p, L(72i),. . .  T(72,)), (3.6)

where F(2^) Ç 2^ is closed under extended operations o '.
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Although each extended operation o' is defined on 2̂ , it is not necessary to use the 

entire set 2^ to construct a system for set-based computations. In many situations, 

one may find th a t it is more meaningful to use a  subset of 2^. For example, if U is an 

ordered set, one may consider the set of all closed intervals, which is only a  subset of 

2^ . Next chapter examines such systems and shows that other properties of o may be 

carried over by o'. It should be noted that there axe no constraints on the elements 

of U. Elements of U may in fact be sets themselves. Thus, the proposed framework 

provides a  simple, yet powerful enough, model of set-based computations.

Extended relations 72* and JR. represent two extreme point of views. Informally 

speaking, they are the upper and lower limits for any plausible definition of extended 

relations. These two views play a very im portant role in many systems for uncertainty 

management. The notion of possibility and necessity in possibility theory, upper ap

proximation and lower approximation in rough set theory, are related to such notions.

3.2 .4  A n  exam p le

To illustrate the bcisic concepts of set-based computations, a simple exam ple is 

given below. Consider the following relational system,

R S  =  {U, o, 72), 

where U =  { a ,6, c}, a binary operation o is given by:

o a b c

a a a a

b a b a

c a a b

and a binary relation 72 is defined by:

18
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R a b c

a 1 0 I

b 0 I 0

c 1 0 I

An entry with, value 1 in the relation table indicates th a t the relation holds between 

the elements in the corresponding row and colum n- For example, a is related to  a and 

c, but not related to 6. Obviously, operation o is com m utative and associative, and 

relation R  is reflexive, symm etric and transitive, i.e., ^  is an equivalence relation.

From equation (3.3), extended operation o' is given by:

o' a b c ab ac be abe

a a a a a a a a

b a b a ab a ab ab

c a a b a ab ab ab

ab a ab a ab a ab ab

ac a a ab a ab ab ab

be a ab ab ab ab ab ab

abc a ab ab ab ab ab ab

In the above table, a subset is represented by its members. For instance, ah stands 

for the subset {a, 6}. It can be checked that extended operation o' is also com m u

tative and associative. According to Definition 3.4, four extended relations can be 

represented as follow:
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J L a b c ab ac be abc

a I 0 I 0 1 0 0

b 0 1 0 0 0 0 0

c I 0 1 0 1 0 0

ab 0 0 0 0 0 0 0

ac 1 0 1 0 1 0 0

be 0 0 0 0 0 0 0

abc 0 0 0 0 0 0 0

JL a b c ab ac be abc

a 1 0 1 1 1 1

b 0 1 0 0 1 1

c 1 0 1 1 1 1

ab 1 1 1 1 1 1

ac 1 0 1 1 1 1

be 1 1 I 1 1 1

abc 1 1 1 1 1 1

J L a b c ab ac be abc

a 1 0 1 1 1 I

b 0 I 0 0 1 1

c I 0 I I 1 1

ab 0 0 0 0 1 1

ac 1 0 I 1 1 1

be 0 0 0 0 1 I

abc 0 0 0 0 1 1
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R . a b c ab ac be abc

a 1 0 1 0 1 0 0

b 0 1 0 0 0 0 0

c 1 0 1 0 1 0 0

ab 1 1 1 1 1 1 1

ac I 0 1 0 I 0 0

be 1 1 1 1 1 I 1

abc 1 1 1 1 1 1 1

The tables for the other two relations in L{R), i.e., Î?, (J J f  and "R. fl -R* can be 

obtained easily.

From this example, it is clear that if extended operation and relations are restricted 

to singleton subsets of C/, the original operation and relation axe obtained. Moreover, 

extended operation and relations caxry over some properties of the original operation 

and relation as stated in Theorems 3.1 and 3.2.

3.3 P ro o f

P ro o f  of T h e o re m  3.2: Suppose R is a relation on the universe U. The theorem is 

proved in four parts:

(a) If R  is reflexive,

I) R “ is reflexive:

It is obvious that if A ^  0, there exists an element a 6 A. By the reflexivity of R, 

it follows a R  a. Thus, A "R" A.

II) JR." is reflexive:

Since every element a of .4 is related to itself {R  is reflexive), it implies A Ji" A.

III) Ru is reflexive:

This follows from the fact th a t J i ’ is reflexive.
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(b ) If R  is symmetric,

I) R" is symmetric:

A  R “ B  <=> 3û € A, 36 € R, a R 6 

<=> 36 €  R , 3 a  €  A, 6 R a  

B  R* A.

II) J i .  is symmetric:

A J i .  B  <==> Va E A, V6 E R, o R  6 

V6 E B ,V a  Ç A ,b  R  a 

B J i .  A.

(c) If R is antisymmetric, J L  is antisymmetric:

Suppose J L  is not antisymmetric. Then there are two nonempty sets A, R  E 2^  

such tha t A J L  R, R J L  A, and A ^  B . Since A ^  B  there are elements a E A, 6 E 

R such that a ^  b. By A J i .  B  it can be inferred that a R 6, and by R  J t .  A  it

can be inferred that b R  a. The last two inferences and a ^  b indicates tha t R is not

antisymmetric. This is a contradiction. Therefore, J i .  must be antisym m etric.

(d ) If R is transitive,

I) JL  is transitive:

Suppose there are A, R , C  E 2^ such that, A J i .  B  and R J i .  C. By definition, 

A J i .  B  = >  'ia E A ,'ib  E B , a R  6,

R J i .  C  \/b E B ,V c  E C, 6 R  c.
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From the above equations, it can be inferred th a t for every a €  A, c €  C, a /? c. In 

other words, A  M . C .

II) R" is transitive:

Suppose there  are A ,B ,C  G 2^  such that, A J i '  B  and B J t '  C. By definition,

A JC  B  = >  Va € A, 36 E 5 , a R  b, 

B J i ' C  = >  V 6 e R ,3 c E C ,  b R c .

From the above equations, it can be inferred. Va E A, 3c E C such that a R  c which 

means A J i .  C .

III) R .  is transitive:

Similar to  th e  above.

IV) Rn is transitive:

It follows from the fact that both R “ and R . are transitive.
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C hapter 4

INTERVAL-BASED COMPUTATIONS

Suppose (R, X) is a  poset, where is a  reflexive and antisymmetric relation. In 

this system , there is only one binary relation. By the results of Chapter 3, the set-wise 

extension of {U, ■<) is (2^, L (d))- However, none of the relations . ■<., .  ■<“,

:du, and :<n is a partial order relation. This immediately follows from Theorem 3.2. 

That is, extension of poset is no longer a poset. Similar results can be obtained for 

lattice and Boolean algebra.

The set-based com putations model does not produce interesting results when ap

plied to poset, lattice and Boolean algebra. However, in many situations, it may be 

sufficient to consider only special kinds of subsets of the universe. It may be more 

natural to examine set-based computations when only intervals of ordered set are 

used. In fact, many well known systems, such as interval-number algebra, interval- 

set algebra, interval-valued logic, are special cases of set-based computations. W ithin 

the framework of set-based computations, this chapter examines a number of interval- 

based com putation models.

All theorems developed in this chapter follow from definitions. Their proofs are 

therefore not included.
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4.1 Interval-num ber A lgebra

The interval-aumber algebra is a set-based extension of real number algebra (Moore. 

1966). Let the real numbers algebra be represented by:

( 3 ® , ,  X ,/ , < ,  = ). (4.1)

An intervoJ over real numbers is defined by a  subset of real numbers between two real 

numbers called the lower bound and the upper bound. If ci, o; E % and a\ < 02,

[01, 02] is called a closed interval with 0% as the lower bound and 03 as the upper 

bound, namely,

[01, 02] =  (x E 3? I oi <  X <  02}.

If an interval does not include the lower bound, i.e., (01, 02] =  (x E % | o% <  x < 02}, 

the upper bound, i.e., [01, 02), or both, i.e., (01, 02), it is called an open interval. In 

this chapter, the word interval will refer to closed interval unless specified otherwise. 

The set of all intervals in % is denoted by /(§?). The notion of intervals is particularly 

useful for representing a value when only its range is known. For example, it has used 

extensively for error computations in numerical analysis.

An interval is a  special subset of 3%. For cases where the lower and upper bounds 

are equal, i.e., degenerate interval [o,a], singleton sets of % are obtained. They are 

equivalent to the corresponding real numbers. Operations and relations defined for 

real numbers in ordinary algebra can be extended to intervals according to equa

tions (3.2), (3.3), and (3.4). Let 4- ,—, x and /  be arithm etic operations in %. If 0 

represents any of these operations, set-wise extension of o is defined as:

I  o ' J  =  { x  o y \ X E I , y  ^  J ) ,  / , J e / ( 3 ? ) .  ( 4 . 2 )

If r  o s is not defined for some r E I ,s  E J ,  f  o J  is undefined. Particularly, the
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following formula for each operation can be defined:

[ o i ,  0 2 ] [ 6 1 , 6 2 ]  =  { o  +  6  I a  E  [ o i ,  0 2 ] ,  6  €  [ 6 1 , 6 2 ] }

=  [01 +  61,02 +  62],

[oi, 02] —' [61, 62] =  {o — 6 I o E [oi, 02], 6 E [61, 62]}

=  [ o i  —  6 2 ,  0 2  —  6 1 ] ,

[ 0 1 , 0 2 ]  x ' [ 6 1 , 6 2 ]  =  { o 6 | o E  [o i , 0 2 ] , 6  E  [ 6 1 , 6 2 ] }

=  [ m z n ( o i 6 i ,  0 1 6 2 , 0 2 6 1 , 0 2 6 2 ) ,  m o x ( o i 6 i ,  0 1 6 2 , 0 2 6 1 , 0 2 6 2 ) ] ,

[o i,02]/'[6x,62] =  {0/6 I o E [01, 02], 6 E [61, 62]}

r . , O l  O i  0 2  0 2  , O i  O i  O 2  O 2 . ,  n  xV r t  t  1

-  v î t ’’’ ''^ 1 -
If 0 E [61, 62], then [oi, 02]/[6i, 62] is not defined.

In some applications of interval-number algebra, only intervals with positive bounds 

are used, i.e., intervals [01, 02] w ith 0 <  oi < 02. In this case, the above mentioned 

formulas for operations x ' and j '  can be simplified. For any two interval numbers

[01, 02], [61, 62] such that 0 <  Oi <  02 and 0 <  61 <  62:

[01, 02] x ' [61, 62] =  [0161, 0262],

[Oi,02] /'[6i , 62] =  [■^7^]-
O2 Ol

For these extended operations, properties such as com m utativity and associativity 

hold (IS stated in Theorem 3.1. For the unary operation — in real numbers, a unary 

operation in /(% ) can be defined according to Definition 3.2.

The identity element for + ' is [0,0], that is,

VA E /(% ), [0 ,0 ]+ 'A  =  A + '[0 ,0 ] =  A.
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The identity element of x is [1,1]. In %, for each element a, there are complement 

elements of a with respect to operations +  and x . Let —a and a~^ denote the 

complements of a with respect to +  and x . The following conditions m ust hold:

a +  (—a) =  (—a) +  a =  0,

a X a~^ =  a~^ x a =  a, if a 7̂  0.

Even though unary operation — can be extended to —' by — A  =  {—a | a €  A} =  

—[01, 02] =  [—02, —Oi], it is not a  complement elem ent of the interval [01, 02] regard

ing operation The same can be said about operation x . That is, there is no 

complement for A =  [01, 02] regarding operations +  and x unless oi =  o%.

For relations <  and = , a  set of extended relations can be defined using Defini

tion 3.4. For /  =  [oi, 02], J  =  [61, 62] €  /(%) and relation < , the four extended 

relations are given by:

I  .< . J  (Vx € /)(Vy E. J )  X < y,

I  .<* J  4=> (Vx e  /)(3 y  E J )  X < y ,

I  '< .  J  (3x €  /)(Vy E  J )  X < y ,

I  *<’ J  <=» (Hx 6 /)(3 j/ E  J )  X < y .

The other two possible extensions, <n and <u, can be obtained easily by a  combina

tion of .<* and *<.. It is easy to verify that the above relations can be simplified as 

follows:

1 J  >—^ 02 ^  61,

I  J  02 <  62,

/  • < .  J  <=> Ol < 61,

J <=>01 <  62.
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The extended relation for =  can be defined in a  similar manner. According to Theo

rem 3.2, some properties of <  and =  can be carried over to extended relation. More

over, additional properties may also be carried over because of the special properties 

of real intervals. Table 4.1 summarizes properties of extended relations in compari

son with that of the original relations. The symbol x in the table indicates that the 

relation has the property, and the symbol - indicates that the relation does not have 

the property. The appropriateness of each extended relation depends on particular 

applications. For example, the interval equality cam be defined using .= * , i.e.,

[01 ,02 ] =  [61,62] 4= ^  ([0 1 ,0 2 ] =  [61 ,62 ]) A ([61,62] .  =  '  [ 0 1 ,0 2 ] ) .

reflexive symmetric antisymmetric transitive
< X X X

- X X

.<■ X - X

•< . X - X

X X X

< u X - -
X - -

= X X X X

X X X
_« X X X

■_ - X X

— n - X X

—u X - -

X X - -

Table 4.1: Properties of Extended Relations on Closed Real Intervals
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4.2 In terval-set A lgebra

Interval-set algebra is a special case of set-based computations (Yax), 1993). Let 

17 be a finite nonempty set called the universe, and let 2^ be its power set. Suppose 

Ai, Ag E 2^ and Ai Ç A^, a closed interval set is defined by the set of all elements of 

2^ which are supersets of Ai, and subsets of A2, and represented by [Ai, A2], i.e.,

A  =  [Ai, A2] =  {A E 2^ I A i Ç a  Ç A2}. (4.3)

The set Ai is called the lower bound, and A2 the upper bound, of the interval set. 

An interval set is a  subset of 2^ bounded by two elements of 2^. Let 7(2^) denote 

th e  set of all closed interval sets. According to Definitions 3.2 and 3.3, these binary 

operations may be extended to interval sets. If A  =  [Ai, A2] and B =  [R%, R2] are 

two arbitrary interval sets from 7(2^), these extended operations are defined by:

A n B  =  { X r \ Y  \ X  e A , Y  e B) ,

A U B  =  { X U Y  \ X  e A Y  e B},

A \ B  =  { X  - Y  \ X  e A , Y  e B) .  (4.4)

The above operations are closed on 7(2^), i.e., A flR , AU B  and A \ B  are interval sets. 

As in interval-number algebra, the result of the above operations can be computed 

directly using:

A n B  =  [Ai n  R i, A2n  R2],

A\-\ B =  [Ai U B \ , A2 U R2],

A  \  B =  [Ai — B 2 , A2 — B\\. (4.5)

In 2^, the complement of an element A is denoted by A^. Using Definition 3.2, a 

psudo-complement of [At, A2], denoted by “■[Ai, A2], is defined by

-[A i,A 2] =  {AM At Ç A Ç A2} =  [U, R]\[Ai, A2]
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=  \U — A2, u  — Al] — [A2‘̂ , Ai' ]̂

Degenerated interval set [A, A] is equivalent to A itself. The proposed operations 

n , U, \ ,  and -I for degenerated intervals reduce to the usual set-theoretic operations. 

According to Theorem 3.1, com m utativity and associativity hold for interval-set union 

(U) and intersection (PI). Idem potent, absorption and Demorgan’s law hold as well. 

The double negation law holds for interval-set psudo-complement.

According to  Definition 3.4, relation Ç on 2^ can be extended to relations on 

interval sets. For any two interval sets A  =  [Ai, A2] and  A  =  [Ri, R2], the following 

extensions for the  inclusion relation between interval sets can be defined:

(VA € A)(VR G R) A Ç R «  A2 Ç R i,

( V A € A ) ( 3 R e S )  A Ç R  4= ^ A2 Ç R2,

(3A €  A)(VR €  R) A Ç R Q B u

(3A 6 A )(R  €  R) A Ç R 4= ^ Ai Ç R2,

(A -Ç . R) V (A .Ç - R) (Ai Ç R i) V (A2 Ç R2),

( A - Ç . R )  A ( A . C - R )  4=> (Ai Ç R i) A (A2 Ç R2).

hat according to Theorem 3.2 relation .Ç  ,  is antisym m etric and

transitive but not reflexive and not symmetric. In fact, properties of these extended

relations are sim ilar to those in Table 4.1.

The set 7(2^) is closed under operations U and (1 and according to properties of 

these operations, the following theorem can be asserted.

T h e o re m  4 .1  Suppose U and FI are interval-set intersection and union. Then, (2^, FI, U) 

is a complete distributive lattice.

Like the inclusion relation Ç for ordinary sets, the inclusion relation on 7(2^) can be 

defined as follow:

D efin itio n  4 .1  For any two interval set A  =  [Ai, A2], R =  [Ri, R2], A  Ç R 

( A i Ç R i ) A ( A 2 Ç R 2)
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A . Ç . R 4=4'

A . Ç -  R 4=>

A ' C .  R 4=4'

A ' C "  R 4=>

A  Ç u R 4=4'

A  Q n B 4=4'

It can be verified
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Based on this definition, for two interval sets A  and R, A  =  R if and only if (A  Ç 

g )  A (R Ç  A ).

The following theorem shows that Ç is exactly the relation Çn in extended rela

tional systems.

T h e o re m  4 .2  The inclusion o f interval sets, i.e., Ç, is equivalent to Çn.

The relation Ç is a partia l ordering and the lattice (1(2^), Ç) is the sam e lattice 

as ( /(2 ^ ) ,n ,  U). It should be noted that the lattice (/(2^),LI, fl) is complete but not 

complemented. That is, [U, U] aind [0,0] are the upper and the lower bound for the 

lattice, but for a given interval set such éis A, A n  ->A is not necessarily equal to [0,0], 

A U  ->A is not necessarily equal to [U, U\, and A  \  A  is not necessarily equal to [0,0].

4.3  Interval L a ttice

Let L be a  lattice with operations ® and 0 . If L is a  Boolean lattice, the symbol ~  

denotes the complement operation. Given two elements a i , û2 G L with a\ < a^, an 

interval [01, 02] is defined by the set:

[01, 02] =  {r € L I Ol :< r  d  02}. (4.6)

T hat is, [01, 02] consists of these elements of L th a t are bounded by oi and 02. It 

is a  sublattice of L. An elem ent a E L may be represented as a degenerate interval 

of the form [0, 0]. Let I {L)  denote the set of all intervals formed from L.  Using

Definitions 3.3, 3.2, operations 0  and ~  can be extended to the elements of I{L)

as follows:

[ 0 1 .0 2 ]  0 '  [ 6 1 ,6 2 ]  =  { r  I O l :<  z  :<  0 2 ,  61 d  y  d  6 2 } ,

[ 0 1 . 0 2 ]  © ' [ 6 1 , 6 2 ]  =  { x  ©  ÿ  I O l  : <  X  : <  0 2 ,  61 d  y  d  6 2 } ,

[oi, 02] =  X I Ol d  X d  02}. (4.7)
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Suppose Z/ is a Boolean lattice, then extended operations on I{L)  are closed and can 

be computed by:

[ 0 1 . 0 2 ]  [ 6 1 , 6 2 ]  =  [ o i  ®  6 i , 0 2  ®  6 2 ] ,

[ 0 1 . 0 2 ]  © ' [ 6 1 , 6 2 ]  =  [ o i  ©  6 1 , 0 2  ©  6 2 ] ,

[01, 02] =  [ ~ 0 2 ,~ 0 i] .  (4.8)

The set I{L)  with the above operations forms a  lattice. To differentiate it from the 

original lattice, I {L)  is referred to as an interval lattice. Many properties of ®, © and 

~  on L axe carried over by their corresponding operations on the interval lattice. For 

example, if £  is a  complete distributive lattice, then I{L)  is a complete distributive 

lattice. However, if L is a Boolean lattice, I{L)  is not a Boolean lattice but a  complete 

distributive lattice. The relation dn  can be considered cis the partial ordering in the 

lattice 1 {L).
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C hapter 5

APPLICATIONS

To dem onstrate the usefulness of the proposed framework, this chapter presents 

a number of its applications.

5.1 Set-b ased  In form ation  S ystem s

The study of information systems is one of the most desired area for set-based 

computations. Following Lipski (1981), Orlowska and Pawlak (1984), Pawiak (1981), 

and Vakarelov (1991), A set-based information system is defined to be a quadruple.

where

S =  (O, A, { K J  a €  A}, {/a I a E A}), (5.1)

O is a nonempty set of objects,

A is a nonempty set of attributes,

K  is a nonempty set of values of a E A,

f a ’- O X A  — > 2^“ is an information function.

If all information functions map an object only to singleton sets of a ttribu te  values, 

we obtain a degenerate set-based information system commonly used in the rough-set
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model (Pawlak, 1982). The notion of information systems provides a convenient tool 

for the representation of objects in term s of their a ttribu te  values. By definition, a 

database system  is an information system. More examples can be found in (Pawlak 

1981).

Set-based com putations introduced in Chapter 3 can be easily applied in set-based 

information systems. The following information system is used to dem onstrate the 

m ain idea.

AGE HEIGHT LANGUAGE

<h {35} {tall} {English, French}

0 2 [30, 35] {medium} {French}

0 3 {20} [medium, tall] {English}

04 [60, 61] - {short} {English, French}

0 5 {54} [short, tall] {English}

The set-béised representation in this example may arise in several ways. The available 

information m ay be insufficient to determ ine the exact value of an attribute. For in

stance, based on the given information, one may only infer th a t the age of 0 2  is between 

30 and 35. In the worst case, if one is totally ignorant of the value of an a ttrib u te  a, 

the entire set Va may be used to represent such an unknown value (GrzymaJa-Busse 

1991). Any possible attribute value may in fact be the actual value of the a ttribu te . 

The assignment of [short, taU] to the a ttribu te  HEIGHT of 0 5  reflects such a s itua

tion. It is possible that an attribute talces a subset of K  its value. For example, Oi 

speaks both English and French. An expert may feel that the prefixed grades in the 

system is not fine enough, and would rather use an interval formed by two adjacent 

values, say [medium, tall], as an additional value. From above discussion, it is obvious 

that the flexibility of set-based representation leads to a richer and more com plicated 

semantics of set-based information systems. Applications of set-based com putations
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depend on a well defined semantics of an information system .

Suppose all attributes take a  single value and a set-based information system is 

used to represent uncertainty in specifying the actual value. One can immediately 

apply extended relations introduced in Chapter 3 to carry out the retrieval process, 

one of the basic operations in information system. Since a ttrib u te  values for an object 

regarding a certain a ttrib u te  is represented by a set, in general there are six different 

ways of evaluating a  query with respect to an object. In th is thesis, uncertainty in the 

query itself is not considered. It is assumed that the query is a  single value (a singleton 

set), therefore, only two of those possible equality relations are meaningful. In this 

case, there are two possible retrieved sets, i.e., the sets J ie t .  and R e t'.  Consider a 

query

qi : LANGUAGE =  English.

It produces the following two sets:

Jie t.(q i) = {03, 05},

Ret'{q2) =  {01, 03, 04 , 05}.

Elements of J te t .  definitely satisfy the query, whereas elements of R e t' —,R e t .  may 

satisfy the query. The pair { J ie t .fR e t ')  defines an interval set [M et.,'Ret'], indicating 

the range of the set of objects that actually satisfies the  query. They may also be 

interpreted as lower and upper approximations in the context rough-set model. For 

an ordered set of attribute values, in addition to comparison of equality, comparisons 

can also be made using an order relation. For a given ordered relation X defined on 

Va, it induces two extended relation .  X . and . Accordingly, two sets M et. and 

R e t '  will be produced. For example, for the query,

Ç2 - AGE > 34,
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we have:

M et.{q2 ) =  {01, 04, 05},

R e t‘{q2 ) =  {01, 02, 04, 05}.

They are a pair of lower and upper approximations.

By combining queries <71 and Ç2, two composite queries axe obtained:

93 : 9i and 92

(LANGUAGE =  English) and (AGE >  34),

94 : 9i or 92

(LANGUAGE =  English) or (AGE >  34).

Using these queries, one can derive the following two pairs of retrieved sets:

J ie t.iq i and 92) =  {05},

"Ret’iqi and 92) =  {01, 04, 05};

R e t . (91 or 92) =  {01, 03, 04, 05},

R e f ( 9i or 92) =  {oi, 02, 03, 04, 05}.

Obviously, the following properties hold:

R e t .(91 and 92) =  R e t . (91) F l.R et.(91),

R et‘(9i and 92) =  R et'{q \) rCRet~{qi),

R e t . (91 or 92) =  R e t . (9i) U .R et.(9i),

72et*(9i or 92) =  Ret'{qi)K J'Ret'{qi). (.5.2)
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They correspond to operations of the interval-set algebra. These rules may be con

sidered as a  generalization of the rules used in databéise systems. They may be used 

in a retrieval process of a set-based information system. However, it should be noted 

that these rules may not generat the tightest bounds.

The proposed two operations in a set-based information system  are essentially 

the same as the modal operators proposed by Lipski in the study of incomplete 

databases (Lipski, 1981). If a  different sem antic interpretation of a set-based infor

m ation system is used, one may introduce other types extended operations (Beaubouef 

and Petry, 1994; Lipski, 1981). For example, VaJcaxelov (1991) used set equality to 

define an indiscemibility relation, and *=“ to define a similarity relation. Our analysis 

may be extended to the case where a query itself uses a nonsingleton set.

5.2 M ulti-valued  Logic

Multi-valued logic is a generalization of two-valued logic in which the tru th  values 

may be taken from a lattice L (Edmonds, 1980). It is assumed th a t well formed 

formulas axe defined to be exactly the same as those in two-valued prepositional logic 

except elements of L are used. Let v{(f>) €  L  denote the tru th  value of a  proposition 

or formula <j>. A  possible way for evaluation of logical conjunction, disjunction, and 

negation is to use the greatest lower bound (0 ), the least upper bound (©), and the
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complement (~ ) . In other words, they m ay be evaluated using the following rules: 

v{4>/\J}) =  v{(f>)®v{jjj),

u(çiV0)  =  u(0) © u(V»),

v { -‘<f>) =  ~  u(<^),

v{(f> —»■ 0 ) =  ~  v{<j>) © n(V»),

v{d> =  (~  u(< )̂ 0  u(V»)) ® (n(<^)© ~  n (^ ))). (5.3)

W here the negation is defined only if L is a  complemented lattice. The adoption of a 

lattice for the definition of a many-valued logic implies that logical connectives A, V, 

and m ust have the same properties as th a t of ®, ®, and ~ . For example, if a  lattice 

L is a distributive lattice, logical connectives must be distributive. Conversely, if 

logical connectives are distributive, one m ust choose a distributive lattice to represent 

the tru th  values.

In the following discussion, L is assumed to be a Boolean algebra. In an interval- 

based logic system, we assume that an interval [n.(<^),n*(^)] may be assigned to each 

proposition to indicate the range within which lies the tru th  value. Any element 

between v.((p) and may be the actual tru th  value. W ithin the framework of

set-based com putations introduced in C hapter 3, the following rules can be used for 

logical conjunction, disjunction, negation, im plication and equivalence:

[v.[(i> A i/>), v ’{4> A ^ ) | =  [v.{(f>) ® U.(0), v ‘[<f>) ® u‘(0)],

V i/>), v ‘{4> V V’)] =  b-(?^) © u .(^ ) , © v'(i/»)],

[v.{ 4̂>), u '( - ’<?i)] =  [~  u*((^), ~  u.(<^)],

[v.{<f> -» ^ ) ,  v~[<i> —► V»)] =  [~ v ’ {4>) © v.{(f>), ~  v.{4>) ©

(6), v"{(f> 0 )] =  [(~  v"{(f>) © v.{ip)) ® (u.((^)© ~  n'(V>)),
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(~  © v ’{t!;)) (g) (u“(^)® ~  u-(^))]. (5.4)

These rules are extensions of rules defined by equation (5.3) that uses a single element 

of L as the  tru th  value of a  proposition. The assignment of interval tru th  values 

suggests th a t the interval lattice /(T ), or a sublattice of I{L), should be used. To 

reflect this property, such a logic is referred to as an interval-valued logic.

The interval-valued system examined above is related to a number of systems. If 

the lattice ([0, 1], max, min) is used, the interval-valued fuzzy logic system investigated 

by Kenevan and Neapolitan (1992) is obtained. All their inference rules have a 

counterpart in our framework. If three truth values T  (true), F  (false) and /  (unknown 

or undeterm ined) éire used (Rescher, 1969), one can draw the corresponding between 

such a three-valued logic and interval-valued logic (Yao and Li, 1993). This can be 

simply done by interpreting the tru th  value I  as either an interval [F, T\ or as its 

equivalent set representation {F ,T}, where it is assumed that T  F . Consider a 

three valued logic where f(L) =  {{F}, {F,T}, {T}}. The sets {F} and {T} indicate 

that the proposition is false and true, respectively. The set {F ,T }  indicates that the 

proposition is undetermined due to a lack of sufficient information or other uncertainty 

involved. Such a three valued logic is characterized by the following tru th  tables;

4> ~'<f>

m i n

i n {T }

{ F , T } { F T }
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0

{T}

(f) A 0

{ F T } { n

0  V  0  

{T} { F T } {F}

{T} {T} { F T } {T} {T} {T} {T}

{ F T } { F T } { F T } i n {T} { F T } { F T }

{F} i n {F} {T} { F T } {F}

4>

0 {T}

0 —+ 0 

{ F T } {F}

0 0 

{T} { F T } {F}

{T} {T} { F T } {F} {T} { F T } {F}

{F ,T} {T} { F T } { F T } { F T } { F T } { F T }

{F} {T} {T} {T} {F} { F T } {T}

They coincide with that of Kleene’s three valued logic (Kleene, 1952).

5.3 Interval-valued P robab ilistic  R easoning

In interval-valued probabilistic reasoning, the probability of a proposition is pre

sented by an interval instead of a single value. In situations where it is difficult or 

impractical, if not impossible, to assign a single value for the probability of certain 

propositions, intervals may be used to indicate the true probability. Uncertainty of 

propositions is characterized by a family of probability functions bounded by such 

probability intervals. In general, there are two complementary interval-valued prob

abilistic reasoning approaches (Yao, 1993). One is a non-numeric approach proposed
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by Bundy (1985, 1986) and the other is a numeric approach introduced by Quin

lan (1983). The results obtained in set-based computation can be applied in both 

approaches. Both m ethods can be studied using the unified notion of set-béised com

putations introduced in this study. The following two subsections, drawn extensively 

from Yao (1994), illustrate this conclusion.

5.3.1 In c id en ce  calcu lus

Incidence calculus provides a possible world semantics of two-valued prepositional 

logic. Let $  be a finite amd non-empty set of propositions of interest. A prepositional 

language formed from 0  is denoted by L ($). It is the smallest set containing the tru th  

values, and closed under logic connectives (conjunction A , disjunction V , negation 

and implication —«-). Let M/ be a  non-empty set of possible worlds. It represents 

the states or situations of the system being modeled. Each possible world can be 

considered as a  partia l interpretation of some logical formulas in the prepositional 

language F ($ ) . W ith  respect to a possible world w € W,  a proposition is either true  

or fa lse .

In incidence calculus, instead of using a numeric value, a subset f(0) Ç W is 

assigned to a given proposition 0 6 L ($) to indicate that 0 is true for all w 6 i (0 ), 

and 0 is false for all w  0  z(0). The set z(0) is referred to as the incidence set of 0.

In practice, it m ay be difficult to specify precisely the incidence set of a proposition. 

One may be able to provide only lower and upper bounds of the incidence sets of 

certain propositions. Depending on the available information about a proposition, 

one may choose a pair of lower and upper bounds for the incidence set of 0 such £is 

z.(0) and î*(0). They specify an interval set [i-(0), i '(0 ) | within which lies the true 

incidence set of the proposition (Yao, 1993). Obviously these two bounds can be
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described as the range of two mappings:

i. : L{<è) —  ̂2 ^  and T : 2 ^ .

In the absence of any information about the proposition the obvious lower and upper 

bounds for the incidence set will be 0 and W , respectively. A set of lower and upper 

bounds is said to be consistent if there exists an incidence structure i such that for 

all 0 €  L($),

%.(0) G ,(0) Ç z-(0). (5.5)

Accordingly, if an incidence structure i satisfies the above equation, we say tha t i is 

bounded by the pair (z.,z") (Wong, Wang ajid Yao, 1992). Incidence bounds can be 

sharpened using properties of rough sets. In practice, the following rules can be used:

f . (0 )u(w -r ( -0 ) ) .(11) z.(0 ) t—

(12) F (0 ) —

(13) z.(0 A 0 )

(14) Z*(0 A 0 )

(15) z.(0) ^

(136 F (0) ^

Probabilistic reasoning with incidence calculus is carried out using a probability 

function on W . Let denote a  probability function defined on W . The probability 

of a proposition 0 is defined using its incidence set by:

F (0 ) =  Pw{i{<f>)). (5.6)

If only lower and upper bounds of the incidence sets are given, the corresponding 

lower and upper probabilities of a propositions are defined by:

F.(0) = Pw(L(0)),
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F - ( 0 )  =  Pw{i'{4>))-

Wong, Wang and Yao (1992) have shown th a t the lower and upper probabilities define 

a pair of belief and plausibility functions (Shafer, 1990). Thus, interval-valued proba

bilistic reasoning using incidence calculus is similar to evidential reasoning using belief 

functions (Correa da Silva and Bundy, 1990; Wong, Wang and Yao, 1992). However, 

it is also im portant to point out th a t the interval-valued probabilistic interpretation 

of belief and plausibility functions is only one of several views.

5.3 .2  N u m eric p robabilistic  reasoning

Suppose a pair of lower and upper probabilities P ‘{(f>) and P .(0) is associated 

with a proposition 0 to indicate its bounds, i.e., P (0 ) € [F.(0), P*(0)]. The pair 

[P .(0), F ’ (0)] is referred to as interval-valued probability of 0 and F (0) as point

valued probability of 0. If one is totally ignorant of the probability of a proposition, 

the trivial bounds [0,1] can be used. The lower and upper bounds can be described 

by two mappings:

P. : T (0) — I- [0,1] and P ’ : T ($) — > [0, Ij.

A pair of probability bounds {P., P*) is said to be consistent if there exist a probability 

function P  such that for all 0 E L ($),.

P .(0) <  ^(4^) <  (5.7)

A consistent pair of lower and upper bounds (P ., P ’) can be interpreted as constraints 

on probability functions. They characterize the maximal family of probability func

tions:

■P =  {P j P .(0 ) <  P (0) <  P*(0) for every 0 6 L($)}.
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This set can be equivalently defined by the pair of tightest bounds:

Po.(0) =  in fpg^P (0),

P o ‘ ( 0 )  =  S U p p g p P ( 0 ) .

From the definition of probability function, for any two propositions 0 and 0 , we 

have the following equation:

P(0 A 0) =  P (0 ) +  P (0 ) -  P (0  V 0 ) (5 .8 )

If interval-valued probabilities axe given for propositions 0 and 0 , we can find the 

bounds for P (0  A 0 )  by extending the above formula. The right hand side of equa

tion (5.8) can be expressed as:

[/>.(«>), P 'W \  +  [ /> .« .) ,  P - m  +  [/>.(«! V ÿ ) ,  P - ( ÿ  V  ^ ) | .  (5 .9 )

Operations -f and — in the above equation are interpreted as interval-number a rith 

metic operations introduced by Moore (1966). The value of equation (5.9) can be 

simplified into:

[P .(0) +  P .(0 ) -  P '(0  V 0 ), P '( 0) -h P "(0 ) -  P .(0  V U>)] (5.10)

Which gives the bounds of the probability P (0  A 0).

Quinlan (1983) has proposed a set of inference axioms. Yao (1994) refined these 

inference rules using the results from interval-number algebra, as discussed above. A 

subset of inference axioms related to the primitive connectives -> and A is summarized 

as follow :

(P I)  P .(0) e—  m ax{P .(0 ), 1 -  P '( - 0 )} ;

(P 2) P '(0 )  ^  m in{P*(0 ), 1 -  P .( -0 )} ;

(P3) p .(0  A 0 )  « m ax{P.(0 A 0), P .(0 ) +  P .(0 ) -  P ‘ (0 V 0 ) } ;

(P4) P"(0  A 0 ) ^  min{P"($ A 0 ), P ‘(0), /"‘ (0), P ‘(0) +  P "(0 ) -  P .(0  V  0)};

(P5) P.(0) ^  m ax{P .(0), P .(0  A 0 ) , P .(0  A 0 ) +  P .(0  V 0 ) -  P -(0 )} ;

(P 6) P*(0) m in{P ‘(0), P"(0 A 0 )4 -  P*(0 V 0 ) -  P .(0 )} .
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The application of inference rules (P1)-(P6) will increase lower bounds and decrease 

upper bounds.

5 .4  Interval-valued  Fuzzy R eason in g

Fuzzy logic is based on the definition of fuzzy sets. T he basic assumption is that 

for a  given proposition the tru th  value can fall in the interval [0, 1], unlike the classic 

logic in which the only two possible tru th  values axe true  and fa lse .  In fuzzy logic, 

the tru th  value 0 and I can be regaxded as absolute false or absolute true, respectively. 

Based on fuzzy set operations, logic connectives. A, V and ~  can be defined. Suppose 

the fuzzy tru th  value of propositions <f> and 0  axe represented by f{4>) and / ( 0 ). Using 

equation (2.3), fuzzy logic connectives may be defined as:

/ ( 0 A 0 ) =  m in (/(0 ) , / ( 0 )),

/ ( 0 V 0 ) =  m a.x(/(0) , / ( 0 )),

/ ( ~  0 )  =  1 - / ( 0 ) .  ( 5 . 1 1 )

Alternatively, according to equation (2.5), it m ay also be defined as:

/(0A0) = /(0)./(0)),

/ ( 0 V 0 )  =  / ( 0 )  +  / ( 0 ) ) - / ( 0 ) . / ( 0 ) ,

/ ( ~  0 )  =  1 - / ( 0 ) .  ( 5 . 1 2 )

These definitions can be extended to interval-based framework.

In situations where it is impossible to have precise value for the tru th  value of a 

given proposition, it might be possible to have a set of plausible tru th  values, or, as a 

special case, an interval for the tru th  value of the proposition. The idea of extending a 

single-valued fuzzy logic to an interval-valued fuzzy logic is specially useful to establish
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a proof theory (Kenevan and Neapolitan, 1992). Suppose that for propositions 0  and 

0  the fuzzy interval-valued tru th  values are represented by:

/ (0 )  =  [00, 0l], 0 < 00 <  01 < 1,

/(0 )  = [00, 0i], 0 < 00 < 01 < 1.

The definition for the first two extended fuzzy logic connectives based on the equa

tion (5.11) will be:

/ ( 0 A 0 ) =  min([0o, 0i | , [ 0o, 0 i]),

/ ( 0 V 0 )  =  m a x ( [ 0 o ,  0 i ] , [ 0 o ,  0 i ] ) .  ( 5 . 1 3 )

According to definition for interval-extended operations in interval-number algebra 

(Moore, 1966), it follows:

m i n ( [ 0 o ,  01 ] ,  [00 , 0 i ] )  =  { m i n ( x , y )  | x  €  [ 0 o ,  0 i ] ,  y  6  [ 0 o ,  0 i ] }

=  [ m i n ( 0 o , 0 o ) , m i n ( 0 i , 0 i ) ] ,

m a x ( [ 0 o ,  0 i ] , [ 0 o ,  0 i ] )  =  { m a x ( x , y )  | x  €  [ 0 o ,  0 i ] ,  y 6  [ 0 o ,  0 i ] }

=  [ m a x ( 0 o , 0 o ) ,  m a x ( 0 i , 0 i ) ] .

Therefore,

/ ( 0  A 0 )  =  [ m i n ( 0 o ,  0 o ) ,  m i n ( 0 i ,  0 i ) ] ,

/ ( 0 V  0 )  =  [ m a x ( 0 o , 0 o ) ,  m a x ( 0 i , 0 i ) ] .

The definition for the negation would be:

/ ( ~  0 )  =  [ 1 , 1 ]  -  / ( 0 )  =  [ 1  -  0 x ,  1  -  0 o ]
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Now suppose equation (5.12) is used, then:

/ ( 0  A  0 )  =  [ x . y  I X e  [00 , 0 i | ,  y  €  [00 ,  0 i ] } ,  

/ ( 0 V 0 )  =  {x +  y - x . y  I X 6 [00, 0x1, y e  [00, 0i]}- 

Since 00, 01, 00,01 €  [0,1], then:

{ x . y  I X  6  [00 , 0 i ] ,  y  €  [00 , 0 l ] }  =  [00-00 ,  01-0 l ] ,

( x  +  y — x.y I X  €  [ 0 o ,  0 i ] ,  y  €  [ 0 o ,  0 i j }  =  [ 0 o  +  0 o  —  0 o - 0 o ,  0 i  4- 0 i  — 01. 01]

Therefore, in this case, the definition for the above operations will be:

/ (0A0)  = [00.00, 01-0l],

/ ( 0 A 0 )  =  [ 0 0  4- 00 — 0 0 - 0 0 ,  0 1  4- 01 — 01-01]

A more complete study of interval fuzzy reasoning using t-norms and conorms can 

be found in Wang and Yao (1995). The max-min and probabilistic-like definitions 

are two special cases.
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C hapter 6

CONCLUSION

In this thesis, a framework of set-based computations is developed as a more 

flexible model for representing and inference in situations with vague or incomplete 

information. This model is particularly useful when it is difficult to obtain a  precise 

value of certain param eter, or where set-valued attributes play an im portant role.

Conventionally, m athem atical systems for computations, consist of a set of ele

ments called the universe, and some operations and relations defined on the elements 

of the universe. These systems can be formally defined in terms of relational systems. 

The m ajor issue discussed in this thesis is the extension of such relational systems. A 

relational system with the universe U is extended to another relational system  with 

the universe 2^. The operations and relations axe extended so that they preserve most 

of the characteristics of the originaf ones. In fact, they are defined component-wise 

based on the corresponding operations or relation in the original system.

The process of extending operations is rather simple and straightforward. The 

extension of relations is more complicated. Given two subsets of the universe, there 

may be different number of pairs related to  each other. A number of different grades 

of the relationship axe considered. AU the possible grades of relations between the two 

subsets are classified in six different cases. Properties that axe transferable from the 

original operations and relations to the extended ones are considered and analyzed.
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T he internal structures of the extended relations and their relations to each other are 

discussed.

Interval computations may be considered as a  special case of set-based computa

tions. From this aspect, some of the intervai-based models such as interval-number 

algebra, interval-set algebra, and interval lattice axe re-examined. It should be pointed 

out that there must exist an order relation in order to carry out interval-beised compu

tations. In contrast, the set-based com putations model does not have this restriction.

To show the applicability of the  proposed set-based framework, set-based com

putations techniques are used for solving problems in set-based information systems, 

multi-valued logic, interval-valued probabilistic reasoning and interval-valued fuzzy 

reasoning. In these applications, some boundaries are given for the inference rules 

when the set-based parameters are involved.
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