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Abstract 

The work in this thesis makes connections between statistical mechanics and 

genotype frequencies in population sizes, and how mutation of the bacteria E. coli helps 

to increase its resistance to the antibiotic ciprofloxacin.  The objective of this thesis is to 

use existing models in statistical mechanics as a basis in order to create a new program to 

simulate how an antibiotic gradient affects the rate of mutation of a bacterial population, 

and what influence the shape of the gradient has on the evolutionary rate.  In addition, 

several other factors affecting the evolutionary rate are identified as well.  Overall, a 

steeper antibiotic gradient will result in accelerated evolution as long as the initial growth 

of bacteria is not in the presence of antibiotic.  It was observed that by allowing for initial 

bacterial growth in the absence of antibiotic, followed by migration towards an increasing 

gradient of antibiotic results in accelerated mutation.



Acknowledgments 

To mom and dad with acknowledgment to Dr. Linhananta as well.



Table of Content 

Acknowledgments.............................................................................................................. iii 

List of Tables  ................................................................................................................... vii 

List of Figures  ................................................................................................................. viii 

List of Abbreviations ...........................................................................................................x 

Chapter 1 Introduction....................................................................................................11 

1.1    Introduction and Theory ............................................................................11 

1.2    Objective ......................................................................................................12 

Chapter 2 Background ....................................................................................................13 

2.1    Statistical Mechanics and the Boltzmann Distribution ...........................13 

2.2    Markov Chain .............................................................................................14 

2.3    The Master Equation for Three States .....................................................15 

2.4    Ergodicity.....................................................................................................17 

2.5    Detailed Balance ..........................................................................................17 

2.6    Metropolis Algorithm .................................................................................19 

2.7    Equilibrium .................................................................................................20 

2.8    Connecting Statistical Mechanics and Evolutionary Dynamics .............20 

2.9    Genetic Epistasis .........................................................................................22 

2.10    S. G. Wright’s Fitness Landscape ...........................................................23 

2.11    Zhang et al’s Experiment and the Microfluidic Array ..........................27 

2.12    Accelerated Fixation .................................................................................29 



2.13    The Goldilocks Point ................................................................................29 

2.14    The Four Single-Nucleotide Polymorphisms Measured ........................31 

2.15    The SOS Response and Adaptive Mutation ...........................................32 

2.16    Reversibility of Antibiotic Resistance .....................................................33 

2.17    Mathematics of Chemotaxis and Diffusion ............................................34 

2.18    Stochastic Simulation Algorithms (SSA) ................................................38 

2.19    Goldilocks Point Modeling .......................................................................39 

2.20    The Ising Model.........................................................................................41 

2.21    The Markov Chain Monte Carlo Technique ..........................................43 

2.22    Shannon Entropy ......................................................................................44 

Chapter 3 Ising Type Bacterial Evolution Goldilocks Model and Results .................45 

3.1    The Hamiltonian and Program..................................................................45 

3.2    The Ising Term: Wild-Type/Mutant Produces Wild-Type/Mutant .......49 

3.4    The Food Term ............................................................................................52 

3.5    Food and Ising Term Relation ...................................................................53 

3.6    Food Exchange Value Gradient .................................................................54 

3.7    The Antibiotic Term ...................................................................................55 

3.8    The Antibiotic Gradient .............................................................................57 

3.9    Bacterial Migration .....................................................................................58 

3.10    Mutant Growth .........................................................................................60 

3.11    The Food Affinity Term ...........................................................................62 

3.12    Results ........................................................................................................65 

3.12.1    Bacterial Rate of Growth ..........................................................66 



3.12.2    Antibiotic Gradients ..................................................................68 

3.12.3    Total Energy and Shannon Entropy ........................................75 

3.12.4    Fitness Parameters Landscape for Food and Antibiotic 

Values ........................................................................................................78 

Chapter 4 The SSA Accelerated Fixation Goldilocks Point Model .............................82 

4.1    Model ............................................................................................................82 

4.2    Results ..........................................................................................................91 

4.2.1    Diffusion and Population Density ...............................................91 

4.2.2    Wave Speed of Bacteria and Accelerated Fixation ...................93 

4.2.3    Discussion....................................................................................100 

Chapter 5 Conclusion ....................................................................................................105 

References .......................................................................................................................107 

Appendix .........................................................................................................................113 

A Ising Type Bacterial Evolution Model .....................................................................113 

B The SSA Model for Mutant Fixation at Goldilocks Point ......................................130 



List of Tables 

Table 1. Stochastic Matrix of a Three State System. .........................................................16 

Table 2. State variable, Additive Fitness and Energy, Population Size and Temperature, 

and the Boltzmann Factor ..................................................................................................21 

Table 3. The magnitude of the slope of the gradients with the range of magnitude for 

gradient 3 with the mean, median, and standard deviation for time to mutation in 

iterations recorded ..............................................................................................................73 

Table 4. Time for population of mutant bacteria 3 to fix and reach.  The average time, 

standard deviation, and median is calculated for 50 trials ...............................................102 

 

 

 



List of Figures 

Figure 1. The Boltzmann Probability Distribution for various temperatures. .....................4 

Figure 2. Evolutionary outcomes of cancer mutation of a fitness landscape .....................24 

Figure 3. A fitness landscape (left), with an empirical fitness landscape, (right)..............26 

Figure 4. An image of the microfluidic array used in the experiment by Robert Austin ..28 

Figure 5. Population density of mutant bacteria snapshot taken over a 30h timespan ......30 

Figure 6. A 1D model of mutant bacteria progressing into an antibiotic region ...............40 

Figure 7: Different spin microstates with their associated Hamiltonian Eigenvalues. ......42 

Figure 8: Circshift used to move the neighbouring spins ..................................................48 

Figure 9: Shift in Ising energy from flipping the selected spin from -1 to +1. ..................50 

Figure 10: Shift in death term energy of a deme shifting from occupied to vacant. .........51 

Figure 11: The food and Ising terms work or compete with one another depending on the 

sign of the majority of neighbouring demes.. ....................................................................53 

Figure 12: The food gradient of the array and the device used by Zhang et al. ................54 

Figure 13: The shift in energy of the antibiotic term .........................................................56 

Figure 14: The antibiotic gradient of the array and the antibiotic gradient in the device 

used by Zhang et al ............................................................................................................57 

Figure 15: Stages of bacterial migration during the simulation .........................................59 

Figure 16: The terms used to determine whether or not bacterial mutation takes place ...60 

Figure 17: Two Goldilocks Point mutations taking place in the corners of the model .....61 

Figure 18: Part of term to check to see if neighbouring demes are occupied ....................63 



Figure 19: Food affinity migration of the mutant bacteria ................................................64 

Figure 20: Bacteria growth phases of the model ...............................................................67 

Figure 21: Overhead view of antibiotic gradient model 2 .................................................70 

Figure 22: The four gradients tested ..................................................................................72 

Figure 23: Energy Histogram and Total Energy vs. Iterations ..........................................76 

Figure 24: Total Shannon entropy per 10000 iterations of the model ...............................76 

Figure 25: Total Energy and Entropy vs. Iterations of the Goldilocks point .....................77 

Figure 26: Contour and Individual value plot of energy for the Goldilocks point ............78 

Figure 27: Contour and Individual value plot of Shannon entropy for Goldilocks point ..79 

Figure 28: The food and antibiotic gradients used in the model........................................84 

Figure 29: Initial growth of wild type bacteria ..................................................................92 

Figure 30: Mutant 1 accelerated fixation from time 100 to 200 ........................................93 

Figure 31: Progression of mutant 1 bacteria wave from time 375 to 465..........................94 

Figure 32: Progression of mutant 1 bacteria wave from time 465 to 515..........................95 

Figure 33: The distance travelled by mutant 1 bacteria compared to wild type bacteria ..96 

Figure 34: The accelerated fixation of mutant 2 bacteria ..................................................97 

Figure 35: The accelerated fixation of mutant 3 bacteria ..................................................98 

Figure 36: Mutant bacteria 3 fixes on the right hand side of the model ............................99 

  



List of Abbreviations 

AMR: Antimicrobial Resistance ........................................................................................11 

Cipro: The Antibiotic Ciprofloxacin ..................................................................................11 

CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats ............................32 

DNA: Deoxyribonucleic Acid ...........................................................................................21 

E. coli: Escherichia coli .....................................................................................................11 

F-Theorem: Fischer’s Fundamental Theorem of Natural Selection ..................................26 

FGTA: Fast Growth Targeting Antibiotic .........................................................................86 

gyrA: DNA gyrase subunit A Gene ...................................................................................31 

HGT: Horizontal Gene Transfer ........................................................................................33 

IAT: Inheritance of Acquired Traits ..................................................................................32 

LB: Liquid Food Broth used in the experiment by Zhang et al .........................................28 

marR: Multiple Antibiotic Resistant R Gene .....................................................................31 

MCh/MCa: Markov Chain/Monte Carlo ..................................................................... 14/43 

MCMC: Markov Chain Monte Carlo Technique...............................................................43 

MIC: Minimum Inhibitory Concentration .........................................................................41 

rbsA: Ribosomal Building Site A Gene .............................................................................31 

SNP: Single-nucleotide Polymorphism .............................................................................21 

SSA: Stochastic Simulation Algorithm .............................................................................33 

 



 

 

Chapter 1 

Introduction 

1.1    Introduction and Theory 

The use of antibiotics in combating infections has transformed medical sciences, 

and while there existed a golden era of antibiotic development in the 1930s to 1960s, has 

been followed by a comparative failure to develop and discover new antibiotics to 

combat the emergence of antibiotic resistant bacteria [1].  While the emergence of 

antimicrobial resistance (AMR) is a problem [1, 2], genetic analysis of bacterial mutation 

usually fails to expand on physical evolutionary dynamics due to the environment which 

can enhance the rate of drug resistance of a bacterial population [2].   

There are two basic concepts that drive evolution: All living organisms reproduce 

themselves, and living organisms reproduce themselves with imperfections in their 

genome.  The imperfections are changes in nucleotides which produce mutations in the 

genome.  A mutant’s genetic variation creates selective differences and it’s possible that 

it may have a different reproduction rate than their parents.  These original (wild type) 

and mutated offspring compete with each other via natural selection which in turn 

changes gene frequencies in a population [3, 4].  The thesis observes previous studies of 

wild type E. coli, and how they form mutant E. coli to resist the effects of the antibiotic 

Ciprofloxacin in order to create two simulations modeling these studies [2, 5].  While 

there is no obvious analogy to connect to physical systems, there have been several 
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attempts to connect statistical mechanics to evolutionary biology using qualitative 

analogies [3, 5-9]. 

Statistical Mechanics is useful for predicting global properties of a system by 

accounting for all possible configurations and progressions of the microscopic 

components inside [10].  It uses statistical tools in order to average all possible 

configurations so that the most probable result can be obtained; the microscopic 

dynamics help to come up with deterministic macroscopic laws.  Traditionally, this 

methodology is usually applied to systems in equilibrium, however for reasons which 

will soon be discussed; evolutionary dynamics may be classified as a non-equilibrium 

process [7, 10].   

1.2    Objective 

The objective of this thesis is to create two computational models using existing 

models in statistical mechanics and reaction-diffusion as a basis in order to simulate 

certain dynamics of antimicrobial resistance to antibiotics.  What is of particular interest 

is how environmental and other evolutionary conditions can enhance the rate of mutation 

then subsequent fixation, and how this can be simulated.  Fixation means that all of the 

individuals in a population have a particular mutation or genotype [5].  The main 

environmental factor of interest is how an antibiotic gradient affects the fixation of a 

mutation in a bacterial population, and what influence the shape of the gradient has on 

evolutionary rate. 



 

 

Chapter 2 

Background 

2.1    Statistical Mechanics and the Boltzmann Distribution 

In statistical mechanics the Boltzmann distribution is a probability distribution 

that gives the probability of selecting a state as a function of that state’s energy (or in this 

case fitness function).  If the temperature   is well defined, the probability that a certain 

energy at level i, (  ), is occupied is known as the Boltzmann factor (    
    ), where 

      
⁄  and    is the Boltzmann constant.  A Hamiltonian is an energy function 

which accounts for the energy of a particular state ( ( )    ), where    is the energy of 

the state ( ).  A summation over all the possible energy levels is known as the partition 

function ( ), and each state is represented in   by its Boltzmann factor   ∑         

[10-12].  The probability that an i
th

 energy level is occupied is    
     

 
. The area under 

the Boltzmann distribution curve is the total number of states and certain energies which 

are given by their Boltzmann factor are more probable because there are a greater number 

of states for that particular energy level, (increasing the probability of being in that 

energy state).  This can be seen in Figure 1. 
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Figure 1: The Boltzmann Probability Distribution for various temperatures. The larger the 

temperature the wider the distribution. The area under the curve is the percentage 

distribution for each energy level [11]. 

2.2    Markov Chain 

A Markov Chain (MCh) is a model of a collection of random variables describing 

a sequence of possible states in which the probability of the next configuration depends 

on the current state of the system and not the previous history [10, 12].  Using a MCh, 

one can obtain a sample of the desired distribution by observing the chain after a number 

of steps. The more steps there are, the more closely the distribution of the sample 

matches the actual desired distribution.  Further information will be discussed in the 

following sections 2.6 and 2.7, but the desired distribution is for the system to converge 

to equilibrium.  If “i” and “j” are two discreet states of the system, the transitions (from i 

to j) are stochastic (i.e. the transitions are random and controlled by transition 

probabilities): 

  (   )       (1) 

An N x N matrix ( ) is called stochastic if all of its elements are non-negative 

(     ), and the sums of all its columns are equal to 1 (the normalization condition): 
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∑     

 

   

 (2) 

A stochastic matrix is not symmetric, where         in the matrix  .  An 

Eigenvector which describes a stationary state of the system is associated with an 

Eigenvalue of 1 for a stochastic matrix [12].  This means that the probability of finding 

the system in a possible configuration does not evolve with time ( ): 

  (    )     ( )     ( )   ( ) (3) 

here  ( ) is the Eigenvector at a particular time  , and   is the probability matrix of 

equation 2.  In the case of a system in thermodynamic equilibrium, the probability for 

finding a system in energy state “ ” is then proportional to the Boltzmann distribution: 

 
   

     

 
 (4) 

2.3    The Master Equation for Three States 

The master equation is a differential equation which measures the change in 

probability of being in a particular microstate [10, 12].  In certain systems like the Ising 

model each site or location can be in a certain state, (up or down), but since different 

eigenvalues for that site depend on the states of neighbouring sites, that site’s 

Hamiltonian is a function of several different microstates [36,37].  The microstates in the 

Ising model are a configuration of the selected state with the states of its nearest 

neighbours[36, 37].  This will be discussed further in section 2.20. 
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A system, (like a finite Ising model) can be composed of a large number of 

microstates, however for this example let us assume there is a system with three discreet 

states (i, j, k).  The stochastic probability matrix of this system can be seen in Table 1.   

Table 1: Stochastic Matrix of a Three State System. The matrix is shaded in grey [10,12]. 

  ( )    ( )    ( )   

 ( )     (   )  (   )  (   ) 

 ( )     (   )  (   )  (   ) 

 ( )    (   )  (   )  (   ) 

Sum of Columns 1 1 1 

 

The probability of being at state   at time   is represented by a vector  (   ).  

(For this example the eigenvector  (   ) will not be used).  The probability of staying at 

  until time    is also dependent on the probability of being at a different state (either   or 

 ) and making the transition to   during time      [10, 12]: 

  (      )   (   ) (   )   (   ) (   )   (   ) (   ) (5.1) 

For this equation, the transition probabilities can be written as  (   )        where 

   is the transition rate per unit time.   

Using Table 1 the transition  (   )    ( (   )   (   )).  Also the 

limit      can be taken and the equation can be rewritten as: 

 
   
    

 (      )   (   ) .  ( (   )   (   ))/

                                      (   ) (   )   (   ) (   )
 (5.2) 
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Rearranging and adding the new transition probabilities: 

   
    

 (      )   (   )    (   )(       )  

                                                    (   )       (   )     
 

   (5.3) 

By rearranging and taking the limit     , equation 5.3 becomes: 

  (   )

  
  (   )     (   )     (   )(       )

 
 

      (5.4) 

The differential equation 5.4 is the master equation for three discreet states which 

measures the change in probability of being at state  . 

2.4    Ergodicity 

If a system is ergodic, then this means that any state of a system is reachable from 

any other state.  Even if the transition rates between two states are zero, a Markov chain 

is ergodic if any state can be reached from any other state through a path of transition 

with non-zero rates connecting the steps [12]. 

2.5    Detailed Balance 

Detailed balance states that for a system to change from i to j, the probability of 

selecting a state in  , (  ), and moving towards a state  , ( (   )), is the same as the 

probability to select a state in   and to change from j to i.  Detailed balance states that the 

transition probabilities between the two microstates are symmetric, in equilibrium each 

elementary process is equilibrated by its reverse process and requires reversibility of all 

elementary processes [12].  The master equation 5.4 is a global equation where steady 

state is reached for three states, but as discussed in section 2.3, a system can be composed 
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of several different localized microstates.  Given that the master equation is global, when 

applied to a single microstate, certain transition probabilities may not be possible.   

If a certain microstate in a   state has a probability of transferring to a   state then 

the master equation 5.4 can look like: 

   (   )

  
  (   )     (   )     (   )(       ) (6.1) 

 but in particular cases for multiple reasons the transition between two states can be zero.  

If this is the case, the transition between   and   is zero and there is no probability of 

selecting a microstate  , so          (   )   .  Now the master equation looks 

like: 

   (   )

  
  (   )     (   )    (6.2) 

If this microstate obeys detailed balance then  
  (   )

  
  , so for every couple of states 

that are selected [10, 12]: 

             (6.3) 

The Boltzmann distribution is used for when a model is closer to equilibrium 

where detailed balance can apply [38].  Using the Boltzmann distribution eigenvectors of 

the selected states from equation 4, and the transition probabilities of equation 1, this can 

be expressed as a Boltzmann factor: 

  (   )

 (   )
    (     ) (7) 
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2.6    Metropolis Algorithm 

Detailed balance is an important factor that a Markov chain has to fulfill for it to 

move towards equilibrium.  The larger the probability ratio in equation 7, the faster the 

system can converge to equilibrium.  As shown in Table 1, these rates must also satisfy 

the normalization condition.  In this case the Metropolis Algorithm can be used to satisfy 

these conditions [12].  Assume that the energy of state   is greater than the energy of state 

 , (                ), then the system will spontaneously transit from a higher 

energy level to a lower one,  (   )   .  Therefore equation 7 becomes  (   )  

     .  The Metropolis Algorithm can be derived from the detailed balance equation in 

equation 7.  The probability rates can be split as follows: 

  (   )   (   ) (   ) (8) 

Where  (   ) is the selection probability (or proposal distribution) and  (   ) is the 

acceptance ratio.  The Metropolis algorithm starts by selecting a “candidate” sample 

while the selection probability describes which states can be generated from the selected 

initial state.  A symmetric selection probability satisfies detailed balance [12, 13].   

The acceptance ratio is the conditions required for the actual transition to take 

place and is shown below:  

 
 (   )  {

                       (     )   

   (     )     (     )   
 

(9) 

If the transition leads to a lowering of energy then it is always accepted, otherwise there 

is a probability of    (     ) of the transition being accepted [12].  This algorithm is used 

in the computational model further discussed in chapter 3. 
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2.7    Equilibrium 

For a system as a whole, Ergodicity and Detailed Balance are useful factors to 

help the system move towards equilibrium [10, 12]. However, evolutionary dynamics 

may be classified as a non-equilibrium process in that the genetics in populations do not 

settle down to a stable point but are continuously changing [7].  When a system is far 

from equilibrium the actual statistical distribution will vary and may be different from the 

Boltzmann distribution.  While biological processes may not be in equilibrium, attempts 

can be made to analyze population evolutionary dynamics using statistical mechanics 

[3,5-9]. This will be discussed further in section 2.8.  Part of this involves isolated 

systems which allow gene frequencies to settle towards an equilibrium point so long as 

there is a reference point to compare them to.  This will be discussed in more detail with 

S. G. Wright’s Fitness Landscape in section 2.10. 

2.8    Connecting Statistical Mechanics and Evolutionary Dynamics 

One of the examples used to connect the evolutionary dynamics of a population 

and statistical mechanics can be seen in Table 2. 
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Table 2: State variable, Additive Fitness and Energy, Population Size and Temperature, 

and the Boltzmann Factor [8]. 

Object Evolutionary Dynamics Statistical Mechanics 

State Variable  ⃗

 *(          )   (   )+ 

 ⃗  *( ⃗  ⃗)+ 

Additive Fitness and 

Energy 

      ( ( ⃗))     ( ⃗) 

Population Size and 

Temperature 

           

   
   (   ) 

   
       

      
⁄  

Boltzmann Factor     
        

     

 

For this analogy the genotype can be regarded as a state analogous to the degrees 

of freedom in statistical physics ( ⃗), that is, the single-nucleotide polymorphism (SNP) 

sites in a gene can be in one of four states (Adenine, Guanine, Cytosine, or Thymine).  

SNPs are the building blocks on DNA and configurations of these sites on the gene 

represent the state [8].  While  ⃗ is the state variable,  ( ⃗) describes the fitness of that 

genotype.  Fitness is how well the bacteria can survive and reproduce, so the function 

describes the likelihood of finding a particular genotype in a bacterial population [5, 9].  

In this analogy fitness takes the opposite sign of energy in statistical mechanics, so the 

gene frequencies of a population will want to move towards a higher fitness peak as 

opposed to how a system will want to move towards a lower energy level in statistical 

mechanics.  Here the population size (           
     

 ), vary depending on the type of 
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cell being analyzed.  The important point of the variables just described is that there are 

different birth-death processes various cell types which affect the population size [8].  

This is analogous to the inverse of the temperature ( ) in statistical mechanics which was 

previously discussed, with    being the Boltzmann constant and       
⁄ .  In this case 

the temperature remaining constant will be similar to a constant population.  As 

mentioned in section 2.7, there may be problems applying the statistical distribution 

equilibrium method to non-equilibrium biological systems due to the genetics in 

populations not settling to a stable point but continuously changing [7].  However when 

compared to a reference point, population genetics of an isolated system can settle down 

to a stable point.  This will be discussed in section 2.10. 

2.9    Genetic Epistasis 

In the previous statistical mechanics example, the model proposed an additive 

view of genetic (or phenotypic) fitness, whereas the vast majority of real genetic systems 

are more complex due to pervasive epistasis [9].  Epistasis generally means the 

interaction between different genes, and can be further defined as a situation whereby the 

allele of one locus is affected by the presence or absence of another (a genetic 

background whereby one form of a gene can affect another); this can be further 

complicated by the complex pathways of several interacting loci [14].  There are several 

problems with this general definition, particularly when applied to binary phenotypic 

traits, (a gene being expressed or not), as well further definitions about the “effect” of a 

locus need to be defined [14].  In this case epistasis refers to any type of genetic 

interaction which leads to a dependence of mutational effects on the modifier genes, (i.e. 
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the genetic background) [9].  In addition, epistasis for this thesis is investigated by 

looking at the genotypic frequencies for a particular phenotypic trait in a population (e.g. 

E. coli resistance to the antibiotic ciprofloxacin) [14].   

2.10    S. G. Wright’s Fitness Landscape 

There have been models other than the one in section 2.8 made to identify genetic 

fitness.  Notable geneticist S. G. Wright proposed a three phase process in which 

evolution can occur [7].  He first proposed that large populations can be split up into 

semi-isolated subpopulations called demes [7].  Within each deme there is a genotypic 

fitness landscape describing multiple gene combinations each with their own fitness peak.  

The fitness peaks have varying levels on the complex landscape and are separated by 

“valleys” of low-fitness genotypes whereby gene frequencies tend to move toward local 

peaks [7, 9].  Another name for the bacterial fitness is the Wright evolutionary potential.  

This approach is contrasted by Wright’s colleague Ronald Fischer, who assumed that 

there is a single optimal genotype in a constant environment and that subsequent 

mutations are additive [4].  However, epistasis and complex fitness landscapes have 

shown more experimental evidence towards Wright’s model [3, 7, 9, 14]. 
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Figure 2: Evolutionary outcomes of cancer mutation of a fitness landscape with multiple 

peaks on the z axis. The x-y plane represents multiple genotypic combinations [15]. 

It has been argued that there is no perceived potential function underlying 

evolution and this is demonstrated by how gene frequencies in a population do not settle 

down to a stable point but are changing forever (though this could be due to a 

continuously changing environment) [7].  Wright’s evolutionary potential is a relative 

concept, in so far as the fitness of a bacterial genotype is compared to the fitness of 

another genotype or even another species; research has not been able to produce a 

meaningful potential landscape that describes the fitness of a specific genotypic in a 

population [7].  It is seen in thermodynamics that entropy changes lead to a progressive 

disorganization of the physical world, while evolutionary changes are seen as producing a 

higher organization of the organic world.  Evolutionary dynamics may be classified as a 

non-equilibrium process and the flow of energy and matter may be used to build and 

maintain order [7].  The Wright evolutionary potential is also a local and individual 

concept, as opposed to entropy which has an absolute value and is global in nature.  The 

Wright evolutionary potential for a genotype of bacteria needs a reference point for each 

fitness surface (or deme) relative to the fitness of another genotype.  Therefore, correct 
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interpretations of evolution should be dynamical in nature, not thermodynamic, because 

biological systems at nearly every level are heterogeneous [3]. 

The probability that a population will have a particular genotype on the fitness 

landscape (independent of time) leads to the Boltzmann-Gibbs probability distribution: 

 
 ( ⃗    )  

 

 
   (

 ( ⃗)

 
) (10) 

where   is the partition function [8].  For this model  ( ⃗) is the Wright evolutionary 

potential (which would be equivalent to the Epistatic fitness as opposed to the Additive 

fitness).  As described before, this is a nonlinear function for a particular genotypic state 

 ⃗.  The role of   is similar to potential energy but with opposite sign, while   is 

analogous to temperature in statistical physics [7].  Here   is a parameter associated with 

the stochastic drive of shifting gene frequencies and can be proportional to the inverse of 

the total population size [7, 8].  The mean squared displacement of the stochastic drive is 

proportional to  , so therefore a larger value will mean that it is more likely for genotype 

frequencies to vary on a fitness landscape.  Therefore, the larger the value of  , the wider 

the equilibrium distribution will be because of the greater genetic variation, or in other 

words, a larger value of   will reduce the probability of a population having a particular 

genotype which may increase the probability of other genotype frequencies.  In terms of 

population density, a larger population will most likely have a lower stochastic drive 

(    ⁄ ), making it more difficult for a genotype frequency to move away from certain 

fitness peaks due to it being harder for a new genotype to fix in that population.  As 

previously mentioned in the introduction, fixation means that all of the individuals in a 

population have a particular mutation or genotype [5].  Because a larger population is 
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proportional to a smaller value of  , the population will have less genetic variation and 

consequently a narrower probability distribution.  Accompanying Wright’s theorem is 

Ronald Fischer’s fundamental theorem of Natural Selection, (or F-Theorem), which 

states that the rate of increase in fitness of any organism at any time is equal to its genetic 

variance in fitness [7].   

New developments in fitness landscapes introduced functional intermediates in 

evolutionary experiments which differ by single gene changes (epistatic gene 

combinations with their own fitness values on the landscape).  As gene frequencies shift 

toward local peaks through singular gene changes, all intermediate epistatic states must 

be functional for the pathway to be accessible on the landscape [9].   

 

Figure 3: A fitness landscape, (left), with the genotype on the x-y plane while the fitness 

is on the z axis.  An example of an empirical fitness landscape, (right), based on the 3D 

fitness landscape. This involves four mutations while the relative resistance (fitness 

against antibiotic) is measured for each genotype.  Functional pathway arrows are shown 

between genotypes [9]. 

The distance between travelling from one genotype to another is measured by the 

number of genotypic substitutions needed (the Hamming distance), or in the case of this 

thesis, the number of mutations.  Random drift from the stochastic drive can help move 
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gene frequencies across landscapes to a possibly higher fitness peak [7, 9].  The model 

shows that a smaller population size in a deme enhances a shift in genotype frequencies 

because a fluctuation in frequency will have a larger impact on the smaller population.  

This property greatly increases the chances of fixing rare outliers; as well more fit 

genomes also have a greater probability of fixing in a smaller population [3, 7].  The 

thesis constructs a computational model whereby the energy is analogous to the bacterial 

fitness described in this section.  The bacterial fitness discussed in 2.8 and 2.10 can be 

used by the metropolis algorithm in section 2.6 to determine the probability of moving to 

a more fit genotype.  More information about the model is described in chapter 3. 

2.11    Zhang et al’s Experiment and the Microfluidic Array 

While fitness landscapes help to understand how resistance spreads within a 

deme, more work can be done to understand how spatially heterogeneous environments 

affect the spread of antibiotic resistant mutants within populations of bacteria.  Starting in 

2006 Zhang et al, including noted biophysicist Robert H. Austin, performed several 

ingenious experiments which induced accelerated antibiotic resistance in bacteria using a 

microfluidic array device [2, 3, 5].   

 



 

28 

 

Figure 4: An image of the microfluidic array used in the experiment by Zhang et al.  

Food broth forms a gradient on the upper half of the device, while Food + Cipro form a 

gradient on the lower half [5]. 

The experiment had an E. coli culture inoculated into the center of the 2D 

microfluidic array.  The device was 2 cm in diameter and housed 1200 hexagonal 

microhabitats each with a 200 μm diameter.  The microhabitats are interconnected by 10 

μm wide channels which allow for the motion of bacteria between different 

microhabitats.  In order to simulate a non-homogenous environment, a food broth (LB) 

circulates around the upper half of the device, while LB + Ciprofloxacin circulate around 

the other half.  The continuous flow of broth or antibiotic around the perimeter generates 

gradients of food and antibiotic within the array of microhabitats with channels 

connecting them as they flow towards the center of the device [2, 5].  For this array, the 

microhabitats resemble demes while the channels help the transfer the frequency of 

genotypes from one population’s fitness landscape to another’s.   
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2.12    Accelerated Fixation 

The experiments suggest this non-uniform distribution of antibiotic and food can 

greatly accelerate the evolution of antibiotic resistant bacterial populations [2, 5].  In a 

spatially non-uniform environment an enhanced rate of mutation may occur for two 

reasons: first, if a bacterium mutates to resist local stress the relative fitness of the mutant 

is increased if it moves to join a population with lesser resistance exposed to even higher 

stress [2, 5, 6]. The second is because fitness landscape models have shown that 

fluctuations in fitness are enhanced in smaller population sizes (demes) [3, 7]; a region 

with higher stress will reduce the population of bacteria with lesser resistance.  A rare 

mutation that gives resistance to a bacterium may not be fixable if the native wild type 

population is very high, so if a mutation occurs which increases the fitness, it can be fixed 

more rapidly if it moves into regions of lower population density [2, 5, 6, 16].  The 

hypothesis is that “This stepwise movement of motile mutant bacteria via successive 

mutations into regions of higher stress is accelerated if the mutation rate is very high and 

the population density gradient … is very steep” [5]. 

2.13    The Goldilocks Point 

Chemotaxis is the movement of bacteria along a concentration gradient for a 

particular substance due to stimulus, (in this case the food gradient).  The experiments by 

Robert Austin with Zhang et al have shown that Chemotaxis due to the consumption of 

nutrients drives bacteria along the gradient to where it reaches a maximum (the perimeter 

of the device) [5].   

The emergence of resistant mutant bacterial populations occur at locations where 

the combined stress gradient (antibiotic gradient) and food gradient is at a maximum. The 
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non-homogenous environment caused by the nutrient and antibiotic gradients generate a 

steeper population density gradient where fixation is most likely to occur, thereby 

accelerating evolution in lower population densities, so long as the organisms are motile 

[2, 5].  This region is called the “Goldilocks point” [2, 3], and can be seen in Figure 5.  

The figure shows mutant bacteria fixing at two points (green points with white arrows 

pointing to them in Figure 5 part A).  In parts B to D the mutant bacteria are shown to 

spread out from the Goldilocks points and even invade back towards the center of the 

device where the bacteria were inoculated.  The reason given for the invasion is because 

of the fitness advantage the mutant E. coli have in an environment with a food reservoir 

and where no other sensitive competitors can live [5]. 

 

Figure 5: Snapshots of mutant bacteria population densities of the device taken over a 

30h timespan.  The white arrows point to where the Goldilocks points are.  After initial 

mutation, the mutant type bacteria spread around the perimeter and invade back towards 

the higher concentration of bacteria in the center [5]. 
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The term “point” may be a slight misnomer because accelerated evolution takes 

place in a small region inside one of the device’s demes at the perimeter where the 

gradients are steepest.  The name works because from a distance, a mutant population 

which fixes in that region will first look like a point on the device. 

2.14    The Four Single-Nucleotide Polymorphisms Measured 

After mutant fixation took place in the experiment, Zhang et al examined the 

genome sequences to understand where mutation took place in the DNA of E. coli [2].  

The mutated DNA was compared to a baseline sequence of the wild type E. coli.  Four 

single-nucleotide polymorphisms (SNPs) mutations in the DNA of E. coli were counted 

in the experiments.  The SNPs were likely to be functional and fixed in the population 

within 10 hours of exposure to ciprofloxacin.  A Thymine to Cytosine SNP mutation 

occurred at the genome DNA gyrase subunit A (gyrA), where ciprofloxacin inhibits the 

gene function [17].  Another mutation was an Adenine to Thymine mutation for the rbsA 

gene.  This is a component of the ribose ABC transporter complex, and has been reported 

to export other antibiotics [2].  The third and fourth were Cytosine to Guanine and 

Adenine to Cytosine at a neighbouring nucleotide sequence in the multiple antibiotic 

resistant (mar) gene, (marR).  The function of marR is to repress the mar operon, and can 

confer multiple drug resistance by modulating efflux pumps in bacteria (transport 

proteins involved in removing toxic substances) [2,18].  While the exact order with which 

the mutation took place is unknown, it is unlikely that the mutations occurred 

simultaneously [2, 17, 19].  However due to experiments by W. Schröder et al, it is 

possible that gyrA mutation occurred first, followed by rbsA [17]; and then work by H.H. 

Lee et al shows that it is possible that the two marR mutations occurred after that [19].  
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The program in Chapter 4 makes use of this data to include a series of increasingly fit 

mutations in the computer model.  More information on the mutation rate used in the 

computer model is described in section 2.17 and chapter 4. The information described 

here is also used in the following section 2.15. 

2.15    The SOS Response and Adaptive Mutation 

The Bacterial SOS response is a global response to DNA damage, whereby the 

cell cycle is stopped and DNA repair and mutagenesis are induced [20].  Ciprofloxacin 

interferes with the gyrA subunit and induces double-stranded breaks in DNA, which in 

turn activates the SOS response [17], which could explain why this may be the first 

mutation to occur, as previously mentioned.  Adaptive mutation is a collection of 

phenomena which allows mutations to form in bacteria or cells due to stress and some of 

these mutations allow for growth to continue to occur [17].  Like the SOS mutagenesis, 

this implies that evolution can be hastened when the need arises.  The effective 

mutagenic rate of E. coli due to the SOS response of Ciprofloxacin is 10000 times greater 

than the base rate [5].   

Recently, the inheritance of acquired traits (IAT) was shown to exist in some 

species due to the study of epigenetics [21].  A defense mechanism termed Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPR) was discovered, which 

genomes use to protect themselves from phages and other foreign DNA, and that a 

mutation acquired from CRISPR during a cell’s lifetime is non-random and inherited due 

to IAT [21].  In this sense the mutation is adaptive.  However, mutations will cause 

antibiotic resistance for an individual bacteria, the main mechanism used for acquiring 
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antibiotic resistance is horizontal gene transfer (HGT) [21,22], whereby genetic 

information is shared between cellular organisms. In this sense the difference between 

IAT and random mutation can be difficult to distinguish in the bacterial world.  It should 

also be noted that while CRISPR can have an epigenetic effect on the cell during a stress 

response, and the CRISPR system as a whole can increase the fitness of the host bacteria, 

CRISPR has been identified in less than half of prokaryotic, (bacteria lacking membrane 

bound organelles), genomes studied so far [21].  The cellular process to determine 

whether or not CRISPR will help increase the fitness of a cell through adaptive mutation 

can be random.  An argument can be put in place that while adaptive mutation is an acute 

response, the effectiveness and actions of CRISPR as a whole in how it increases fitness 

for the bacteria can be random and subject to Darwinian Natural Selection. 

2.16    Reversibility of Antibiotic Resistance 

There are several factors which affect the fitness of resistance of a bacterium: 

growth rate, transmission capacity, transmission dynamics in relation to selection, 

persistence despite lack of stress factors, adherence factors to the environment, etc. [22].  

It is important to note that an acquired mutation in response to antibiotics may impose a 

fitness cost on a bacterium (measured by a decreased growth rate).  This cost can be 

deleterious to the bacterial strain unless it continues to be exposed to an environment with 

antibiotic, as resistance to one antibiotic is inclined to be resistant to one or more other 

antibiotics (called associated resistance) [22].  The fitness cost can also be mitigated by a 

rapid development of compensatory mutations which can compensate for a decrease in 

fitness [22].  The nationwide restriction of ciprofloxacin in Israel showed a major 

decrease in resistant E. coli from 12% to 9% in the population in a 6-month time period 
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[23].  However, the reduction in population may be unlikely due to recent data indicating 

the fitness cost may be rapidly compensated for due to compensatory mutations thereby 

increasing the survivability of resistant E. coli [24].   

2.17    Mathematics of Chemotaxis and Diffusion 

A model is made as part of this thesis in order to simulate the expansion of 

bacteria at the Goldilocks point.  The model uses the following equations discussed in 

order to simulate the bacterial dynamics through computation.  Further details of the 

model are described in sections 2.18 and 4.1.   

Diffusion is the random migration of particles (or in this case bacteria) due to 

thermal energy [28,30].  The flux of migration can be expressed using Fick’s first law of 

diffusion [30]: 

  ⃑     ⃑⃑⃑   (11) 

where  ⃑  is the flux vector to describe the direction bacteria travel, D is the diffusion 

constant, and     is the population gradient for the number of bacteria.  Fick’s law states 

that the flux of particles crossing an area per unit time in a given direction is proportional 

to the gradient of concentration in that direction [28]: 

    
  

   ⃑⃑⃑   ⃑        
(12) 

here    is the number of bacteria of type  , which will be explained below under equation 

14.  An algorithm can be applied to Fick’s law to measure a random walk of a particle 

starting at an origin and travelling in one dimension along an x-axis, and then can be 

extended to a population whereby it applies to each cell. 
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In the one dimensional system along an x-axis, for each time step,   , each 

particle will move in a direction     or     in equal probability.  The distance 

migrated is proportional to the square root of the diffusion constant,  , which depends on 

the bacteria in question.  The distance the bacteria or particle travels in one dimension is 

what varies and is given by the value,    √      , where λ is a random number 

generated between 0 and 1, and    is the constant time step.  There is a 50/50 probability 

of the particle, (bacteria), moving to a neighbouring section or staying in place and the 

value of λ determines what action occurs. After several time steps (a total time of “ ”) the 

population of cells along x approaches a Gaussian distribution with a zero mean and a 

standard deviation of   √   , which also has a mean square [28]: 

 〈(     )
 〉           (13) 

Here      due to the zero mean.  This equation shows that the diffusion satisfies,  

        ⁄ .   

In addition to diffusion, cells for the simulation in chapter 4 representing bacteria 

can reproduce and even die.  The Fisher-Kolmogorov equation in one dimension is a 

reaction-diffusion equation which combines the diffusion term with a non-linear 

population growth factor: 

    
  

   
    
   

     (  
  
 
)      

(14) 

where D is again the diffusion constant, with    being the reproduction rate,   is the 

death rate, and K is the carrying capacity of each position the bacteria are located on 

[6,31,32].  The variable    is the number of i
th

 type E. coli at the x position.  Here, the 
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subscript   describes the type of bacteria (either wild type or mutant), where i = 0 is the 

wild-type, i = 1, 2, 3, … are the first, second, third, etc. mutant types.  During replication, 

there is a probability   that the offspring of the bacteria will be mutated derived from the 

work of Allen and coworkers [6].  The part with .  
  

 
/ describes how the carrying 

capacity, ( ), restricts the reproduction of bacteria so that the population does not 

overpopulate the position  .  The equation describes the reaction-diffusion process for 

each mutant and wild type bacteria. 

Equation 14 predicts the expansion of a population of bacteria with a travelling 

wave solution with a speed [6,31]:   

     √ (   ) (15) 

which shows that the wave speed   is dependent on the diffusion constant, reproduction 

rate, and the death rate. 

The mobility of bacteria is also influenced by an attractant.  As mentioned in 

section 2.13, chemotaxis can chemically direct the movement of bacteria along a 

concentration gradient of an attractant [5,32].  In the case of the experiment by Zhang et 

al the attractant is a food gradient [5].  An attractant gradient can increase the flux of cells 

entering a region [32]: 

 

  ⃗       ⃑⃑⃑  (16) 
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where  ⃗  is the flux vector of bacteria entering due to chemotaxis and    is the coefficient 

describing the effect the gradient of the concentration for attractant,  , has on bacterial 

migration.  The flux is now a combination of chemotaxis and diffusion,  ⃗   ⃑   ⃗ .   

After combining equations 11 and 16 to give the new flux term, it is then inserted 

into the Fisher-Kolmogorov equation 14: 

    
  

  ⃑⃑⃑   ⃗     (  
  
 
)      

          ⃑⃑⃑  (   ⃑⃑⃑ )     (  
  
 
)      

 

(17) 

this equation is called the Keller-Segel-Fisher equation [32,33,34]. 

Equation 17 can be rewritten into a one-dimensional form given below [34]: 
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(18) 

where  ( )  
   

 
       ( ), and   is a chemotactic response variable describing how 

effective the concentration of attractant, a, is at displacing the bacteria.   

The attractant is a chemical and diffuses; it can also be produced by the bacteria: 

    

  
    

    (   ) (19) 
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which is Fick’s law for the diffusion of attractant [32].  Here    is the diffusion 

coefficient of the attractant, and  (   ) is the kinetics/source term which describes the 

rate attractant is produced by bacteria or naturally decays over time. 

The wave speed of bacteria due to the Fisher wave speed combined with the 

chemotaxis equation of an attractant gradient is then: 

 
    √ (   )  

   
 
       (

 

 √  
) (20) 

As previously mentioned, the chemotactic response is a measure of how effective the 

attractant is at displacing the bacteria, so if the chemotactic response becomes negligible, 

then     and the effect the attractant has at stimulating bacteria to travel goes to zero; 

the propagation speed reverts back to the speed in equation 15.  However if     the 

chemotactic response is non-negligible and equation 20 better represents the wave speed. 

2.18    Stochastic Simulation Algorithms (SSA) 

Some other ways to simulate bacterial population dynamics is through the use of 

Gillespie algorithms as well as Stochastic Simulation Algorithms (SSA) [25].  A lower 

abundance of bacteria allows for the simulation to track all of them as individual 

particles, while a high abundance would require the Gillespie algorithm [25-27].  The 

Gillespie algorithm was originally designed to simulate coupled (bio)chemical reactions 

within a thermal bath in a well-mixed environment [27].  Stochastic models (including 

the Gillespie algorithm) provide a more detailed understanding of reaction-diffusion 

processes compared to more deterministic models, and are necessary when biological 

phenomena depend on stochastic fluctuations [28].  The Gillespie Algorithm generates a 
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time step based on a continuous distribution  ( )         , where   is the total 

number of particles, and   is the population mean rate of the set of processes.  A 

computer program goes through cycles called iterations whereby it uses an algorithm to 

determine the behavior of the particle selected during that iteration.  For the Gillespie 

algorithm a particular event can modify the number of events that can occur for the next 

iteration [26,27].  A SSA model was made as part of this thesis in order to simulate the 

expansion of bacteria at the Goldilocks point using equation 14 described in the previous 

section, (section 2.17).  There are additional relations added to the growth rate derived 

from the work of Allen and coworkers which will be further discussed in the following 

section, (section 2.19) [6,29].  Models based on a low abundance of bacteria are 

computationally less demanding and an existing SSA used for measuring the 

Brownian/Smoluchowski dynamics can be used [25, 28].   

The model made for the thesis has a lower abundance of bacteria and so is 

computationally less demanding. Thus, a SSA used for measuring the 

Brownian/Smoluchowski dynamics is used instead of a Gillespie algorithm.  A more 

detailed description on how the model’s algorithm functions is discussed in the later part 

of section 4.1. 

2.19    Goldilocks Point Modeling 

Recent modeling by Allen and coworkers has shown that in the presence of drug 

gradients waves of increasingly fit mutants advance and colonize towards regions with 

higher drug concentrations in a stepwise manner, as seen in Figure 6 [6].  Fixation can be 
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accelerated if the mutation rate is high enough, the organisms are more motile, and the 

population density gradient is steep (i.e. a steeper antibiotic gradient) [5, 6].   

 

Figure 6: A 1D model of mutant bacteria progressing into an antibiotic region.  The Blue 

line shows the concentration of antibiotic.  The different colours represent the waves of 

increasingly fit mutants colonizing toward regions with higher drug concentration [6]. 

 

While the model didn’t have a food gradient, the reproduction rate of bacteria was 

proportional to the concentration of antibiotic, and motility was kept to a constant rate.  

The function used to model how the population of bacteria travels is the Fisher wave in 

equation 15.  There is a constant mutation rate represented by the symbol  , which 

describes the probability of mutation every time a bacteria replicates.  The expansion of 

waves of mutants are described by the Fisher-Kolmogorov equation 14 except some of 

the variables are specific to that mutation, (     ), as described in section 2.17.  The 

model shows that the antibiotic spatial gradient generates local “niches” where there is 

lower drug concentration to allow less resistant bacteria to survive.  This allows waves of 

increasingly fit mutant to colonize regions of higher drug concentration; however, the 

model does not analyze what impact a food gradient has on fixation and motility.   



 

41 

The calculations by Allen and coworkers showed that using a sequence of 

increasingly fit mutants is one factor involved in accelerated fixation, but these results 

were contrasted with a fitness valley, as previously described in S. G. Wright’s fitness 

landscape [6, 9].  Instead of a sequence of increasingly fit mutants, one of the 

intermediate genotypes had a lower minimum inhibitory concentration (MIC) than its 

neighbouring genotype, (the concentration of antibiotic needed to inhibit growth of the 

bacteria) [6].  The model showed that a non-uniform drug distribution does not speed up 

resistance, and may even slow down the emergence of resistant bacterial fixation if one 

of the mutants had a lower fitness value than the previous mutant it evolved from.  This 

may better represent the fitness landscape of streptomycin, which has a fitness valley, and 

so an antibiotic gradient may actually slow down resistance [35].  The computer model 

discussed in chapter 4 is derived from this work by Allen and coworkers [6]. 

2.20    The Ising Model 

As part of this thesis, a model was constructed to simulate the microfluidic array.  

The model discussed in Chapter 3 and uses the Ising model.  The Ising model consists of 

a lattice of identical particles which exchange electron spins between individual sites and 

particles neighbouring themselves.  This is a square model so there are four neighbours 

arranged horizontal and vertical to a center element.  Different configurations of the 

selected element and its neighbours make up different microstates.  The original purpose 

of this model was to study ferro- and paramagnetic phenomena.  The electron spins can 

have either a spin up value (    ) or a spin down value (    ) [36, 37]. 
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Figure 7: Different spin microstates with their associated Hamiltonian Eigenvalues.  The 

example is meant to show how different combinations of spins on the lattice can form 

different microstates.  The example does not show four neighbours arranged horizontal 

and vertical to a central atom, as is the case of the Ising model.   

 

Different configurations of nearest neighbour pairs (with values   ) make up 

different microstates, denoted with the symbol ⟨  ⟩.  The Hamiltonian of different 

microstate configurations have their associated Eigenvalues ( (⟨  ⟩)   ⟨  ⟩), which 

denote the energy for that microstate.  For a selected spin state (  ) the Eigenvalue of the 

Ising model is a product from the spin and its nearest four neighbours, which is given by 

the Hamiltonian function [36, 37]: 

 (  )   
 

 
∑    
⟨  ⟩

    
(21) 

where   is the exchange constant which describes the energy of interaction between the 

two elements.  If   is positive then the exchange energy favours parallel spins because a 
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lower energy state is more favourable, and so     .  This type of exchange interaction 

when the spin moments are aligned is called ferromagnetic [36].   

2.21    The Markov Chain Monte Carlo Technique 

This simulation of the Ising model uses the Monte Carlo (MCa) method to 

generate pseudorandom numbers to directly simulate representative probability 

distributions of the system. The MCa method generates states of a finite system with a 

weight proportional to the probability density of the Hamiltonian, (    
    ) [37, 38].  

There are no dynamics; instead the program goes through cycles called iterations 

whereby it uses an algorithm to generate a new configuration for the next iteration.   

In this case a Markov Chain Monte Carlo (MCMC) technique uses the Metropolis 

algorithm discussed in section 2.6 to randomly select a spin on the array [12].   It then 

calculates the change in energy of shifting from a trial state compared to the initial state 

selected.  The Metropolis algorithm follows the acceptance ratio shown in equation 9, so 

if      the spin automatically shifts to a new state, otherwise there is a probability of 

        of the spin shifting anyway.  The Metropolis does this for every iteration and 

calculates the acceptance ratio with the trial states available in order to shift towards the 

most probable state [37, 38].  Using the MCMC technique one can obtain a sample of the 

desired distribution by observing the chain after a number of steps. The more steps there 

are, the more closely the distribution of the sample should match the actual desired 

distribution.  As was mentioned in section 2.2, the desired distribution is for the system to 

converge to equilibrium.  In this case of the Ising model, a shift in energy is associated 

with a spin flip: 
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Here    is associated with the shifting of energy from one spin configuration (either +1 

or -1) to the opposite, and q is the number of neighbours.  Since     it is more 

energetically favourable to select parallel spins, (because     ).  The computer 

simulation in chapter 3 uses the MCMC with the Ising model. 

2.22    Shannon Entropy 

Shannon entropy is a measure of the uncertainty of the final message (or outcome 

of a process in general).  A larger Shannon entropy value means that a process has more 

uncertainty.  The expression of the Shannon entropy is connected to the thermodynamic 

entropy, and has its same expression in the context of statistical mechanics: 

     ∑ ( )   ( )

 

 (23) 

Here the probability of being at a particular energy state is given by  ( ).  Shannon 

entropy reaches a maximum when the uncertainty is maximum (in this case a greater shift 

in energies).  The larger the Shannon entropy, the more equiprobable the possible 

outcomes in an experiment and the greater the spread of the probability distribution.  For 

an energy probability distribution Shannon entropy has its largest value when the energy 

values are equally probable and there are a greater number of energy states with 

appreciable probability.  Shannon entropy can allow for the most appropriate probability 

distribution for certain information to be calculated [10, 43].  Some of the results 

discussed in chapter 3 use Shannon entropy of equation 23.  
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Chapter 3 

Ising Type Bacterial Evolution Goldilocks Model and Results 

3.1    The Hamiltonian and Program 

To simulate the experiment performed by Zhang et al [2,5] the Ising model 

system described in section 2.20 is used.  Unlike the Hamiltonian function in equation 21, 

a modified Hamiltonian function is used to describe the energy (or possible fitness) of the 

bacteria.  One thing of importance to note is that the sign of the energy used is the same 

used in statistical physics to describe energy.  Therefore the sign of a more favourable 

energy level will be negative, (which may mean a higher fitness peak in certain 

microstates).   

The lattice model is not infinite, but took the form of a finite 100 x 100 square 

grid array.  Unlike the hexagonal device used by Zhang et al [2,5], the computational 

model uses a square grid based off of the Ising model.  Like the Ising model described in 

section 2.20, a selected spin on the array has four neighbours with two neighbours 

arranged horizontally and two neighbours arranged vertically.  The combinations 

between the central spin and its neighbours make up different microstates.  The 

Hamiltonian equation of the model contained spins represented by the sigma symbol  .  

The modified Hamiltonian function contained the Ising term in equation 21 as well as 

four others terms to describe the energy of a particular microstate: 
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(24) 

where the Eigenvalues between the central spin,   , and its nearest neighbours,   , 

describe the energy for that particular microstate.  The equation contains the Ising term, a 

death term, a term describing growth from food, an antibiotic term, and a mutant food 

affinity term.  The terms will be described more in detail in the following sections.  In 

this equation  ,  ,and    are constants, while    and    are variables, whose meanings will 

be given later when describing the physical meaning of each of the various terms of the 

equation in subsequent subsections.  For this model the Hamiltonian and spin microstates 

selected represent the state of a central deme and the influence by its neighbouring 

demes, whereby the relationship between demes is what influences the energy values of 

the Hamiltonian.   

Unlike the classic Ising model, the spin values (or demes) for this system can 

have three different values.  When      this represents a deme which is fixed with a 

population of wild type E. coli.  If     this represents a system which is absent of 

bacteria.  A final value of      represents a system which has been fixed by mutant 

bacteria.  These integer values don’t take into account population, but taking into account 

the association between statistical mechanics and evolutionary biology, the value of the 

Boltzmann constant and temperature would be equivalent to the stochastic drive of the 

system.  This relation is described in sections 2.8 and 2.10, with the value of the 
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stochastic drive having the value         .  As well, the value can be proportional to 

the inverse of the deme’s population size, proportional to 5 bacteria. 

The program was written using MATLAB and the model is a Markov Chain 

Monte Carlo (MCMC) simulation using a Metropolis algorithm described in sections 2.6 

and 2.21.  The program containes a 100 x 100 array.  Initially all the spins are zero except 

for four neighbouring +1 spins at the center of the model, to represent wild type bacteria 

inoculated into the center of the device.  For each iteration one spin is selected at random 

on the array.  The acceptance ratio of equation 9 calculates the change in energy of the 

Hamiltonian of equation 24 by flipping the central spin state to another value, where 

    (  
     

)   (  
       ).  If      the spin automatically shifts to a new state; 

otherwise, there is a probability of         of the spin shifting anyway.  The terms in 

equation 24 control whether a selected element, (deme), on the array behaves.  An empty 

element can switch to wild type or mutant, or just stay the same.  An element with a wild 

type/mutant can flip to a mutant/wild type, or also stay the same.  How the terms of the 

Hamiltonian in equation 24 dictates the behavior of an element using the Metropolis 

algorithm is described in the following sections.  When selecting a spin on the array, the 

row and column are recorded for simplifying calculations.  A function called “circshift” 

is used to shift the neighbouring spins towards the same location as the central spin but 

on a separate array.  This can be seen in Figure 8 below. 
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Figure 8: Circshift used to move the neighbouring spins.  Here “neighbours” is a 

summation of the four neighbours used in the Ising term described in section 3.2.  As 

well, “neighbours_sqrd” is a summation of the neighbours squared, used by the food term 

discussed in section 3.4.  The last term “OneMinusNeighbour” is used by the food 

affinity term discussed in section 3.11. 

 

A product of the neighbouring spins is calculated for use in the energy shift 

calculation on a separate array,   .  The positions of the central spin on the main array 

and the product of neighbouring spins on the separate array are the same using the 

recorded row and column.  The shift in energy,   , is calculated using the spin selected 

on the main array and the product calculated on the other array.  For the death and 

antibiotic terms discussed in subsequent sections, only the shift in spin is needed.  

Because the row and column were recorded initially, the shift in energy of only that 

location is calculated thereby reducing the time.  There are a large number of energies for 

the microstates due to the different combinations between the selected spin and its 

neighbours.  Therefore, identical microstates may not have the same energy depending on 

where the states are located on the array.  The food, (  ), and antibiotic, (  ), symbols are 

variables which also change depending on the position on the array.  More will be 

discussed about    and    in sections 3.6 and 3.8.   
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The purpose of this simulation is to bring an initial system to an equilibrium state 

using the Hamiltonian of equation 24.  The Hamiltonian is designed so that in the process 

of shifting the system to the desired state, the simulation resembles what was observed in 

the experiment by Zhang et al which showed a shift in the genetics of the population by 

accelerated mutation at the Goldilocks point [2,5].  Therefore, the values of  ,  ,   ,   , 

  , and kT which are discussed in subsequent sections are selected to resemble the 

experiment as the program uses the Metropolis algorithm to bring the system to 

equilibrium.  More information of the parameters are discussed in the conclusion of 

section 3.12.4. 

3.2    The Ising Term: Wild-Type/Mutant Produces Wild-Type/Mutant 

The first term discussed is the Ising term, as previously seen in equation 21.  The 

exchange value for a selected element is constant and the term can be rearranged: 

 
        

 

 
∑    
  

     ∑  
   

 (25) 

Here,   , represents a sum over nearest neighbour pairs, and if the selected elements have 

the same interaction strength the Hamiltonian is symmetric.  This symmetry is what 

allows the spin of the central element,   , to be taken out of the summation along with the 

½ factor which is meant to prevent double counting.  The exchange constant,  , is 

positive and has a value of 1.86, in order for the simulation to resemble what was 

observed in the experiment by Zhang et al, as discussed at the end of section 3.1 [2,5].  

The purpose of the term is to support “like equals like” by shifting the energy to be 

positive or negative depending on the neighbours present.  If a majority of the neighbours 
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have the same sign, then a flip in the spin of the central element will lead to a positive 

energy value and so this shift will not be as favourable.  The selected spin (or deme) is 

more likely to flip if it is surrounded by demes with the opposite sign, with     .  This 

can be seen in Figure 9. 

 

Figure 9: Shift in energy from flipping the selected spin from -1 to +1.  The change in 

energy between microstates is negative so the shift is favourable and likely to occur. 

 

 In the case of no neighbours or an empty element selected then the product 

will be zero, (      ).  The purpose of “like equals like” is to simulate bacterial 

competition.  A wild type population will try to fight off a neighbouring mutant 

population and vice versa to try and flip the opposing deme. 

3.3    The Bacterial Death Term 

The second term in equation 24 is the death term.  This term deals with the 

selected central element and neighbours individually and is not a product between the 

two: 

            ∑  
 

   

 (26) 
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where    is the death constant.  The constant is positive and has a value of 5.95 which is 

larger than the other constants and variables in equation 24.  The value is set to help 

resemble the experiment by Zhang et al [2,5], and to help the death term counteract other 

terms in the equation which are designed to help with replication or to keep bacteria 

alive.  Because the term does not change in relation to the neighbours present, it gives 

each deme selected a constant value of    .  The spin selected is squared so that the sign is 

always positive to increase the energy and make death more favourable for both types of 

spins, as can been seen in Figure 10. 

 
Figure 10: The shift in energy from the cell death term of a deme shifting from occupied 

to vacant.  The change in energy is negative making the shift more favourable.  Because 

the neighbours are unchanging, their energy values cancel out when the central element 

shifts in energy.  The shift in energy affects both type of spins equally. 

 

The shift in energy from an occupied deme to a vacant one is negative so that the 

element will flip to zero.  Making the shift more energetically favourable makes death 

more probable, so if there are no like neighbours or food present the occupied element 

will flip to zero. 
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3.4    The Food Term 

The third term in equation 24 is the food term which helps increase the probability 

that bacteria will grow and a deme remain occupied.  The term functions similar to the 

Ising term except that the central element and its neighbours are squared:   

 
       ∑

  

 
   

   
 

  

      
 ∑  

 

 

 (27) 

where    represents the concentration of food and varies depending on the location on the 

array.  The equation is symmetric and can be rearranged like in equation 25.  More 

information will be discussed about the food exchange variable in section 3.6.  The 

section will also explain why the exchange variable may be moved out of the summation 

in equation 27.   

The spins of the food term are squared.  This is so that bacterial growth is 

supported for both types of bacteria regardless which type of bacterial population is fixed 

in a neighbouring deme.  In a neighbouring deme there should still be identical bacteria 

present even if they have not fixed in that deme’s population.  The food term works 

against the death term so long as there are neighbours present.  Because there is a 

continuous supply of food provided, the term is larger when there are more neighbours 

present due to a larger supply of bacteria to colonize the selected deme because of 

migration from neighbouring sites.  If the system is closed and there is a limited food 

supply then the rate of growth would eventually decrease with an increasing bacteria 

population consuming the limited food supply. This would make any neighbours present 

decrease the probability of growth.  The dependency of neighbours also helps to prevent 

spontaneous growth, because there needs to be a supply of bacteria from a neighbouring 
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deme for the food term to work.  If there are no neighbours then the selected deme 

remains zero or uncolonized.   

3.5    Food and Ising Term Relation 

The food and Ising terms are made so that they can either work with or compete 

against one another.  This depends on the sign of the neighbouring demes present as can 

be seen in Figure 11.  If it is the case that half of the neighbours are like and half are 

unlike, then the Ising term will go to zero. 

 
Figure 11: The food and Ising terms can work with or compete with one another 

depending on the sign of the majority of neighbouring demes.  The left side shows the 

Ising term as negative because the neighbours are the same, and the Ising term on the 

right side is positive because neighbours are opposite. 

 

If there are like neighbours present the Ising term works with food, but if there are 

unlike neighbours present the Ising term now counteracts the food term.  This is because 

neighbouring demes with unlike bacteria present will provide the central selected deme 

with opposite bacteria, thereby making it more likely to shift the energy upwards due to 

bacteria competition.  So the food term is less likely to counteract the death term.   
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3.6    Food Exchange Value Gradient 

The food term contains an exchange value in front which increases linearly from 

the center towards the perimeter of the model.  As mentioned before,    represents the 

food concentration of the device by Zhang et al [2,5], and so the linear increase 

represents the food gradient.   

Figure 12: The image on the left shows the food gradient using the value of    on the 

array.  The food exchange value is lowest in the center and linearly increases toward the 

perimeter where it reaches a maximum.  The figure to the right is an image of the device 

used by Zhang et al [3].  A food broth is circled around the perimeter of the device 

whereby it flows towards the center to form a gradient of food concentration.  The 

simulation on the left is a square grid model in order to represent the hexagonal array on 

the right. 

 

As can be seen in Figure 12, the value of the food exchange symbol varies 

(          ).  The value is chosen for the same reason mentioned in section 3.1, 

whereby    is selected to resemble the experiment by Zhang et al as the program uses the 

Metropolis algorithm to bring the system to equilibrium [2,5].  The parameter is chosen 

also to allow growth for the bacteria inoculated in the center and then so the food gradient 

will encourage more rapid growth towards the perimeters of the device.  The experiment 

by Zhang et al states that chemotaxis due to the consumption of nutrients at low flow 
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rates encourages bacteria to migrate toward the perimeter of the device [5].  This is 

simulated in the model with the increasing food gradient.  Near the center, bacterial 

growth is slower due to a lower    value; however, as the bacteria begin to grow and 

migrate, the food gradient increases the rate at which bacteria move toward the perimeter 

of the device. 

One thing important to note in equation 27 is that even though the food exchange 

value is a variable and depends on where in the array it is located, it can still be moved 

out of the summation.  This is true even when the value of    changes between the central 

spin and its nearest neighbour due to the food value being negligibly small or there is no 

change at all (    ⁄  |    
     

|  ⁄        ).  In the case when there is a shift in the 

food exchange value along an increasing gradient, because opposing neighbours are 

arranged parallel to one another, the shift in food terms balance each other out and equal 

   of the central deme selected.  In the rare case at the boundary when there is no 

opposing neighbour, then the total shift in    for the system can be 0.02, where 

∑
  

 
  
   

 
        

 ∑   
 

 .  In the vast majority of cases on the array, equation 27 holds 

true.  In the case of a model with an exponentially increasing gradient this may not hold 

true depending on how steep the gradient is. 

3.7    The Antibiotic Term 

The fourth term is the antibiotic term.  It is similar to how the death term 

functions in equation 26, but unlike the death term the energy depends on the type of 

bacteria present: 
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            ∑  
   

 (28) 

where    is the antibiotic term’s variable to describe the concentration of antibiotic.  The 

energy changes in relation to the type of bacteria present (sign of the spin) to describe the 

effect the antibiotic has in the selected bacteria’s fitness.   

 

Figure 13: The shift in energy of the antibiotic term.  The energy of the selected deme 

depends on the sign of the spin.  When spin = 1, the probability for wild type bacteria to 

die is encouraged and growth is discouraged.  For mutant bacteria with spin = -1, growth 

is encouraged and death is discouraged. 

 

If the wild type bacteria has fixed in the selected deme’s population, (if the spin of 

the element is 1), then the antibiotic term is positive.  The positive term increases the 

energy thereby making it more likely for the bacteria to die and shift the element to zero.  

The increase in energy also makes it less likely that the bacteria will grow in that region 

with antibiotic.  If mutant bacteria have fixed in the deme’s population, the term will be 

negative and the shift to lower energy will discourage the bacteria from dying.  This 

would also encourage the mutant bacteria to grow in the selected deme.  Like the food 

exchange value, the antibiotic value, (  ), is a variable and the concentration of antibiotic 

depends on the location on the array. 
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3.8    The Antibiotic Gradient 

 The antibiotic value represents the concentration of antibiotic in the device.  The 

value increases linearly from the center towards the perimeter of the model, just like the 

food exchange value.  Unlike the food variable however, the antibiotic variable is only 

present on the lower right diagonal half of the model. 

Figure 14: The antibiotic concentration of Ciprofloxacin in the model is shown on the 

left.  The gradient increases linearly from the center to the bottom and right perimeters 

but the antibiotic value is not located on the upper left diagonal.  The blue colour 

represents a share discontinuity where the concentration goes to zero, and the black 

region is top left diagonal where the concentration is zero.  The antibiotic gradient in the 

device used by Zhang et al [3] is on the left.  The gradient is only on one half of the 

device, just like the Ising type model.  In this case the concentration of antibiotic is on the 

bottom half of the hexagonal array, like it is on the bottom right diagonal on the square 

model. 

 

 The antibiotic value increases linearly as can be seen in the figure and is given by 

the range:           .  This is for the same reason mentioned in section 3.1, 

whereby    is selected to resemble the experiment by Zhang et al as the program uses the 

Metropolis algorithm to bring the system to equilibrium [2,5].  Due to the antibiotic term 

in equation 28, the concentration of antibiotic near the center of the device is not enough 

to kill off the wild type bacteria, but it does help to prevent the wild type bacteria from 
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migrating closer to the bottom and right perimeters where the antibiotic concentration 

becomes greater.  There is a sharp discontinuity of antibiotic along the diagonal.  While 

this is not realistic, the gradient of antibiotic used in the device by Zhang et al showed a 

rapid drop shift in antibiotic around the center half of the device [3]. 

3.9    Bacterial Migration 

The food term helps drive bacteria towards the perimeter of the device, although 

this model has indirect migration.  The model is binary in so far as each deme can either 

be occupied or unoccupied and does not indicate the population size for each element on 

the array.  As a result, the diffusion of bacteria into a neighbouring deme is an indirect 

result of the Hamiltonian flipping a spin to occupied.  Whether or not an empty deme is 

populated depends on if a neighbouring deme is populated by bacteria.  If during an 

iteration an empty spin is selected then the terms of the Hamiltonian are constructed in a 

way to increase the probability that the deme will flip to an occupied state depending on 

whether or not there is a neighbouring occupied deme present. 
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Figure 15: Stages of bacterial migration during the simulation.  The empty regions are 

blue and the wild type occupied regions are yellow.  The top left image shows bacteria 

beginning to grow at the center of the device at around 4.40x10
6
 iterations.  The top right 

image next shows the bacteria beginning to grow and migrate at a more rapid pace as 

they move their way along the food gradient at around 4.75x10
6
.  The bottom left image 

shows that as bacteria migrate the antibiotic gradient prevents growth along the bottom 

left diagonal at around 4.90x10
6
.  The bottom right image shows bacteria moving towards 

two corners of the device at around 4.98x10
6
.        ,      ,        ,        

   ,           , and       .  The colour scheme is automatically set by 

MATLAB. 

 

 Initially the bacteria begin to grow out from the center at a slow pace.  The 

antibiotic term and gradient helps prevent the bacteria from migrating towards the bottom 

and right perimeters.  As the bacteria are drawn towards the top and left perimeters the 

concentration of food increases.  As the concentration of food increases the rate at which 

the bacteria will move and grow towards the perimeters increases.  The rapid growth 

drives bacteria to the bottom left and top right corners of the model where the antibiotic 

term is at its highest.  The lack of antibiotic in the upper left diagonal gives the wild type 
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bacteria a pathway towards the two corners, which will be the Goldilocks points of the 

model. 

3.10    Mutant Growth 

 The food term does allow for the bacteria to migrate slowly into regions of high 

antibiotic if    is high enough.  This can simulate how the presence of drug gradients 

allows the population to evolve drug resistance in a sequence of waves of increasingly 

better adapted mutants to expand into regions of antibiotic in a step by step manner [2].  

However in this case the model is binary when it comes to the type of bacteria, (+1 or -1, 

not including 0), and there is only one type of mutant.  The food and antibiotic variables 

function like an applied field in the Ising model and can influence whether or not a spin 

will flip, or in this case whether or not a wild type bacteria will evolve (spin = 1 to spin = 

-1).  While mutation is binary (spin = 1 to spin =  -1), the simulation also allows for an 

empty term to become populated with wild type bacteria (spin = 0 to spin = -1).  This is 

what is seen at the Goldilocks point, whereby neighbouring wild type demes allow for 

mutant bacteria to advance and colonize the Goldilocks point. 

Figure 16: The terms used to determine whether or not bacterial mutation takes place to 

flip the spin from 0 to -1.  At the Goldilocks point flipping the spin to a mutant deme is 

most probable so the migration of bacteria from neighbouring demes will be mutant as 

opposed to wild type, instead of wild type migrating and flipping the deme to +1 with 

subsequent mutation to -1.  The food term works with the antibiotic term to flip the spin.  
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The Ising term opposes mutation because a mutant spin is unlike the wild type.  The 

death term helps to prevent growth of any bacteria. 

 

 At the perimeter the values of    and    are at their greatest, and due to this it is 

most probable for a deme selected at a Goldilocks point to flip from 0 to -1.  As can be 

seen in Figure 16, the Ising term and death term work against bacterial mutation, however 

there are fewer opposing neighbours at the corners.  Because of this the Ising term will 

not be as large at the corner compared to a location with multiple neighbours present.  

This is what encourages mutants to fix at the Goldilocks points located at the top right 

and bottom left corners.   

Figure 17: The two Goldilocks point mutations taking place in the corners of the model.  

After the spin flip the mutant bacteria spread into regions with a higher concentration of 

antibiotic. The wild type bacteria are yellow, the empty spaces are green, and the mutant 

bacteria are blue.        ,      ,        ,           ,           , and 

      . The colour scheme is automatically set by MATLAB. 

 

 Because the antibiotic term gives a fitness advantage to the mutant bacteria, after 

mutation takes place at the Goldilocks points the mutant bacteria spread into regions with 

a higher concentration of antibiotic.   
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3.11    The Food Affinity Term 

 The experiment by Zhang et al observed that the mutant type bacteria may have a 

food fitness advantage where they state “The basic reason for … [the] invasion of 

resistance is the huge fitness advantage for mutant resistant E. coli in a microenvironment 

where the food reservoir is nearby and no other sensitive competitors can live” [5].  The 

invasion of mutant bacteria along the perimeter of the device and into wild type 

populations can be seen in Figure 5.  This may be a compensatory mutation as described 

in section 2.16.  The huge fitness advantage helps mutant E. coli to populate and spread 

along the regions on the perimeter of the device where the concentration of food is 

highest [5].  This allows the mutant bacteria to fix into regions previously with wild type 

bacteria even if it is in a region with a low concentration of antibiotic.  A final term is 

made to represent the food fitness advantage the mutant bacteria have at regions with a 

high food concentration: 

 

              *∑  
     
  

  
  
  
       (    )(    )

  

+  [∏(  
 ) 

 

] 

 

(29) 

where the constant   is given a value of     so that the food affinity of the mutant E. coli 

can allow it to compete against the Ising term of an unlike wild type E coli deme.  While 

the final part of the term is based on the Adair model for the cooperative binding of 

haemoglobin [45], the other parts of this term are made for this model. 

The exponential section of the term allows for it to become more intense the 

closer the selected deme is towards the perimeter of the model.        is the maximum 

value of the food gradient on the perimeter, while    is the food variable which is 
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dependent on its position in the model.  At the perimeter           , and so then 

          , which allows the affinity term to have an effect in the Hamiltonian.  If a 

deme is not selected at the perimeter then the exponential section will make the affinity 

term negligibly small. 

The Ising part of the term helps favour the mutant bacteria.  Like the Ising term in 

equation 25, the Ising part of the affinity term is a product of the selected deme and its 

neighbours,  ∑ (    )(    )  .  Unlike the Ising term this part will be zero if the 

bacteria are wild type, (   ).  A negative mutant, (    ), will be favoured because 

then      .  The term however favours the growth of the mutant type even when 

there are not bacteria present (   ).  This major flaw would favour spontaneous growth 

of mutant at the perimeter even without neighbouring occupied demes present.  To 

counteract this problem a final part of the term was put in to check to see if all the 

neighbouring demes have bacteria present.  This check is based off of the system used in 

the Adair model for cooperative binding of oxygen to haemoglobin [45].   

Figure 18: Part of term to check to see if neighbouring demes are occupied.  An empty 

deme makes the term go to zero. 

 

 The section goes through every combination of central spin and neighbours to 

check to see if occupied demes are present, 
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This simplification is correct if    is either 0 or 1.  If there is an empty deme the term 

goes to zero.  If this is the case then the previous four terms of the Hamiltonian will take 

precedence.  This will encourage colonizing an empty neighbouring deme instead of 

competition between wild type and mutant bacteria.  The deme sites will not flip from a 

wild type value to a mutant type (-1) until the neighbouring demes are occupied.   

 

Figure 19: Food affinity migration of mutant bacteria. The circled region is where the 

food affinity term is supporting migration of the mutant bacteria in blue along the 

perimeter of the model.  The wild type bacteria are yellow.        ,      ,    
    ,           ,           , and       . The colour scheme is 

automatically set by MATLAB and this image is taken at around 5.70x10
6
 

 

 Just like in the experiment by Zhang et al the mutant bacteria now have an added 

fitness advantage compared to the wild type bacteria and will invade regions with the 

greatest concentration of food even if no antibiotic is present.  Usually mutations impose 

a fitness cost reducing the growth rate compared to wild type bacteria unless the mutants 

develop compensatory mutations [22]. Compensatory mutations could be what gave the 

mutant E. coli a fitness advantage with a food reservoir. 
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3.12    Results   

As mentioned in section 3.1, the lattice is a 100 x 100 finite square grid array.  

Repeating what was mentioned in section 2.21, the program goes through cycles called 

iterations whereby it uses the Metropolis algorithm to generate a new configuration for 

use in the next iteration.  For each iteration the program uses the Hamiltonian of equation 

24 to move the system to equilibrium with the Metropolis algorithm.  How the 

Metropolis algorithm moves the system to equilibrium is also discussed in sections 2.6 

and 2.21.  It should be restated that the values of  ,  ,   ,   ,   , and kT are selected to 

resemble the experiment as the program brings the system to equilibrium, which is 

discussed in section 3.1.  This includes the Goldilocks point occurring at the two corners 

of the model.  The program ran through six million iterations in general to move the 

system to equilibrium.  At equilibrium the lattice sites are all mutant bacteria because that 

is the most favourable type.  While there was no consistent CPU time for a given run of 

the program, in general it took around 10 minutes to execute completely.  However, 

calculations described further in the results section, involving energy, Shannon entropy, 

and results shown in Figures 25 and 26 would take one to two days.  The program was 

performed using MATLAB and was done using a 16GB ram laptop PC. 

Various factors are measured to compare how the model related to experiments on 

bacteria in vitro.  To observe how the model measures qualitative factors such as 

bacterial fitness, subsequent measurements on the model are discussed in this section. 
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3.12.1    Bacterial Rate of Growth 

There are four phases of bacterial growth in a liquid nutrient medium; the lag 

phase, the log (exponential) phase, stationary phase, and the death phase [46].  During the 

lag phase bacterial biomass begins to increase as the bacteria begin to replicate.  Then 

during the exponential phase the biomass increases linearly with time as the population 

doubles per unit of time.  The stationary phase is when a steady state is reached between 

growth rate and death rate.  After, bacterial growth is inhibited due to the essential 

nutrients required becoming exhausted.  This is when the death phase is reached and 

populations of bacteria begin to die off.   

 The growth phases of bacteria are replicated in the model.  When bacteria started 

in the center of the model, growth is virtually absent due to a very low probability of 

replication.  This is because the population is at its smallest so the probability during an 

iteration of one empty deme being selected next to a neighbouring occupied one is 

smallest, and replication with a reduced food value also minimizes the probability.  When 

bacteria begin to replicate they enter the log phase, so the probability of selection and 

replication begins to exponentially increase.  These phases are show in Figure 20.  The 

log phase for wild type bacteria in the model begins at around iteration 2x10
6
; however, 

the mutation at the Goldilocks point prevents the wild type bacteria from entering a 

stationary phase as they become overrun by the invading mutant species.  Mutant bacteria 

begin to appear at around iteration 3.5x10
6
.   
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Figure 20: Bacteria growth phases of the model.  The wild type bacteria reach the 

exponential phase then the death phase as mutant bacteria grow and take over.  The 

stationary phase results as the mutant bacteria flip all the demes in the model.  When food 

is instantaneously removed bacterial death results. 

 

One factor to control the growth rate of bacteria during the stationary phase is the 

carrying capacity of the deme, so when the model reaches a steady state and all the finite 

demes contain the mutant bacteria, steady state is reached.  Steady state in the model is 

reached when all 10000 demes have flipped to mutant bacteria.   

The antibiotic and food gradients act as fields like in the Ising model to flip the 

spins a certain way until a steady state is reached.  In this case the applied fields represent 

the food and antibiotic.  When the food field is removed, the system is no longer in a 

steady state and the bacterial death phase results.  This is what occurred at iteration 

8x10
6
.  In experiments the death phase is reached as food eventually becomes exhausted 

[46]. However, in Figure 20 the food is instantaneously removed.  This is why cell death 

is so rapid, but the instantaneous removal is not physical.  In practice there is a gradual 

decrease in food and increase in inhibitory byproducts [46], which would result in the 
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death phase having a gradual curve instead of an instantaneous one.  Without a field the 

model reaches a new equilibrium with the death of all bacteria, (flipping all spins to 

zero).  To replicate the mutant steady state, the model requires at least four neighbouring 

wild type spins in the very center.  

3.12.2    Antibiotic Gradients 

One of the main objectives of the thesis is to further understand how an antibiotic 

gradient can affect bacterial evolution.  To test this there are four types of antibiotic 

gradients constructed which are shown in Figure 22.  The first gradient model is the 

original linear gradient used by the model previously described.  The total volume of 

antibiotic is integrated using the array size as the surface area (an array 100 units x 100 

units in area), and the value of antibiotic as height, (with           ).  The function 

  ( ) is the linear increase of the antibiotic value in the y-axis moving away from the 

center of the array to the perimeter, where   is the position from the center moving 

straight towards the perimeter: 

 
  ( )  

     

  
  (30) 

with the   value       , (half the 100 unit distance on the array).  Integrating is 

performed from the center to the perimeter for a quarter triangle section of the array (half 

the antibiotic), where a quarter triangle can be seen in Figure 21 and 22.  The cross 

sectional area has   ( ) as the height and the horizontal width is 2x: 
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 ∫     
  

 
   ∫ (  )(
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        units

3
.  Since this is half the antibiotic 

concentration the total volume of antibiotic is then 7050 units
3
.  The gradient of equation 

30 is:  

 
 ⃑⃑⃑  ( )  

     

  
, ̂- (31) 

which gives the slope of gradient 1 a magnitude of                 moving along  ̂ 

to the perimeter.  All the gradient values are measured in (concentration of 

antibiotic)/(distance from center).  Because the array represents deme microhabitats, each 

deme = (array unit)
2
.  Making the volume calculated 7050 units

3
 = 7050 (concentration of 

antibiotic)*deme. 

A second gradient model is constructed to increase the slope of the linear 

gradient.  An overhead image of the second gradient is seen in Figure 21.  The antibiotic 

gradient is shifted back 25 units from the center thereby creating an empty triangular 

space of 50 by 50 demes from the model’s diagonal.  This removes 1250 units
2
 of area on 

the array compared to what was in linear gradient 1.  To preserve the quantity of 

antibiotic used in gradient model 1, the slope of gradient 2 is calculated to be          

so that integration yields the same volume originally calculated.  However a maximum 

value of          is too large for the parameters of the model because spontaneous 

growth occurs for mutant bacteria, which will be discussed in section 3.12.4.  A new 

slope is used to give a maximum value of       .  The function used to describe the 

antibiotic concentration in the y-axis for a quarter of the model is: 

 
  ( )  

   

  
  (32) 
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but here the   value       , as shown in Figure 21.  Integrating with the new slope 

parameter for half the antibiotic volume, the cross sectional area has   ( ) from equation 

32 as the height and the horizontal width is (2x + 50):  ∫     
  

 
   ∫ (   

  

 

  )(
   

  
 )         units

3
.  This gives the antibiotic gradient model 2 a total volume of 

5208 units
3
.  The gradient of equation 31 is then:  

 
 ⃑⃑⃑  ( )  

   

  
, ̂- (33) 

which gives the slope of gradient model 2 a magnitude of              along  ̂ to the 

perimeter. 

 
Figure 21: Overhead view of antibiotic gradient model 2.  The total area removed for 

gradient 2 from the center compared to gradient 1 is 
     

 
      units

2
, or 1250 demes.  

The range of the antibiotic value is now         .  The image of the antibiotic 

gradient is the bottom right diagonal of the model but is shown in the upper right 

quadrant for the figure. 

 

 Gradient model 3 has the same volume as gradient model 1 with 7050 units
3
; 

however the function for antibiotic concentration along the y-axis is now exponential.  
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The surface area on the array covered by gradient 3 is also along the bottom left diagonal 

like in gradient model 1.  To preserve the volume of antibiotic like in the previous 

models, the function of the antibiotic along the y-axis is: 

 
  ( )   

    
  

    (34) 

where the   value is the position from the center to the perimeter of the array, (    

  ).  This gives the antibiotic value a range of          , where    increases 

exponentially.  The value of the gradient for the antibiotic equation 34 is: 

 
 ⃑⃑⃑  ( )  

    

  
 
    
  

  , ̂- (35) 

 which now gives the gradient a range depending on the value of  .  The range of the 

magnitude for gradient 3 is       |   |        .  The approximation in section 3.6 

holds true because the gradient is still not steep enough to be significant, (where the shift 

is largest at the perimeter and around 0.06 instead of 0.02). 

The fourth gradient model is similar to gradient model 1 except the maximum 

value reached by    is now 2.7 instead of          for model 1.  A value of 2.7 pushes 

the parameter of the antibiotic term to the limit which, as said before, will be discussed in 

section 3.12.4.  Using equation 31, but replacing the height of the slope to 2.7, the 

magnitude of the gradient is calculated to be             .  The volume for gradient 

model 4 is also larger than the previous models at 9000 units
3
.  An image of the four 

gradients tested can be seen in Figure 22. 
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Figure 22: The four antibiotic gradient models tested.  The top left is gradient 1, the top 

right is gradient 2, the bottom left is gradient 3, and the bottom right is gradient 4, where 

each gradient model is described in the text. 

 

 The number of iterations it took for a mutant spin to fix in the Goldilocks point is 

recorded for each gradient tested.  The various amounts of time required are recorded 50 

times and the average time required for each gradient can be seen in table 3.  

  



 

73 

Table 3: The magnitude of the slope of the gradients with the range of magnitude for 

gradient 3.  The mean time in iterations recorded for a mutation to occur at the 

Goldilocks point.  The standard deviation and median in iterations for each mean time is 

also recorded. 

 Standard 
Gradient 
Model 1 

Gradient 
Model 2 

Gradient 
Model 3 

Gradient  
Model 4 

Slope or Slope 
Range of 
Gradient 

(antibiotic/ 
deme) 

0.0423 0.1000 0.0530 - 
0.6264 

0.0540 

Mean Time 
(Iteration) 

3.14x106 2.70x106 3.01x106 3.04x106 

Median 
(Iteration) 

3.02x106 2.68x106 2.96x106 3.04x106 

Standard 
Deviation 
(Iteration) 

6.61x105 5.28x105 5.06x105 5.63x105 

Standard Error 
(Iteration) 

9.35x104 7.47x104 7.16x104 7.96x104 

 

 The average time to mutation for the standard gradient 1 is 3.14x10
6
 iterations, 

compared to that of gradient 2 with an average time of 2.70x10
6
 iterations.  Even though 

the quantity of antibiotic for gradient 2, (5208 units
3
), is less than that of gradient model 

1, (7050 units
3
), the higher magnitude of the gradient slope for model 2 decreased the 

mean time for mutation.  The time to mutation for gradient model 2 is 2.70x10
6
 iterations 

which is a reduction of 14% compared to gradient 1 with an average time of 3.14x10
6
 

iterations.  The variation for the average time is also reduced with the standard deviation 

of gradient 2 being 5.28x10
5
 iterations, 20% below the standard deviation of gradient 1 

with 6.61x10
5
 iterations. Even though the gradient became steeper in gradient model 3 

compared to gradient model 2, the average time to mutation took longer.  The average 

time for model 3 is 3.01x10
6
 iterations.   



 

74 

The lowest standard deviation is for exponential gradient model 3 which is 

5.06x10
5
.  This is also the steepest gradient, followed by gradient 2 which had the second 

lowest standard deviation.  There is less variation in the time for mutation if the gradient 

is steeper.  Gradient model 2 has a larger standard deviation than gradient 3, however the 

separation between median and mode is smaller for model 2 than for gradient model 3.  

Half the trials for model 3 are under the median 2.96x10
6
 iterations but that half would 

still be closer to the mean relative to model 2 due to the reduced standard deviation.  

While the spread between the median and mode for model 2 is less than for model 3, the 

standard deviation is greater, which could mean the deviation of half the values under the 

median of 2.68x10
6
 iterations could be relatively lower than for model 3.  Therefore 

while there is less deviation with a steeper gradient, model 2 is still most likely to have 

the lowest outliers from the mean, so more likely to have the lowest time to mutation.  

The spread between the median and mode for gradient model 1 is the greatest while also 

having the highest standard deviation of 6.61x10
5
 iterations.  Gradient model 1 is most 

likely to have outliers with the highest value of iterations shifting the mean to a higher 

value than the median.  The spread between the mean and median for gradient model 4 is 

zero with the mean and median equal to 3.04x10
6
 iterations.  The standard deviation is 

the second highest at 5.63x10
5
 iterations. A steeper gradient with a higher volume than 

model 1 had a lower mean time with a lower standard deviation. 

The average time recorded for each gradient shows that a steeper gradient can 

actually reduce the time to mutation under certain conditions.  This can be seen by 

comparing the mean values for mutation from gradient models 2 to 3 to the value for 

gradient model 1.  This is also the case when the volume of antibiotic is greater or 
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reduced, as long as the gradient is steeper.  The discrepancy is mostly seen between 

gradient models 2 and 3.  While the gradient for model 3 is greater than for model 2, 

mutation at the Goldilocks point is accelerated for model 2.  This reason for this is due to 

the presence of antibiotic near the bacteria during the initial log phase of growth.  As was 

briefly touched on in section 3.10, the food term does allow for the bacteria to migrate 

slowly into regions of antibiotic if    is high enough.  If there is more antibiotic in the 

center half, (along the diagonal), of the device where bacteria are placed then the time to 

mutation is greater.  This is because a higher concentration will reduce the initial growth 

rate thereby increasing the total time for the population to reach the exponential log phase 

and increase the time to mutation overall.  This is why gradients 1, 3, and 4 have a higher 

time to mutation compared to gradient 2.  Gradient 2 has no antibiotic at the center of the 

model thereby reducing the time to reach exponential growth.  Therefore it is found that a 

greater initial population of wild type bacteria during the initial phase of the model will 

greatly reduce the time to migration towards the Goldilocks point.  Comparing only 

models 1, 3, and 4, a lower concentration of antibiotic in the center with a steeper 

gradient near the perimeter will reduce the time to mutate at the Goldilocks point. 

3.12.3    Total Energy and Shannon Entropy 

 The energy for every deme is calculated using equation 24, and then summed in 

order to calculate the total energy of the system.  The model runs for 7x10
6
 iterations and 

a histogram is constructed to measure the distribution of total energy over the entire 

runtime of the program. 
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Figure 23: Energy histogram and total energy vs. iterations.  The histogram is on the left 

and plot of total energy vs. iterations on the right.  The runtime of the program is 7x10
6
 

iterations.  The drop in energy taking place at around 4.75x10
6
 on the right of the figure 

is due to the log phase of growth of wild type bacteria. 

 

 As figure 23 shows, the energy reaches a more stable state at equilibrium around a 

value of -10
5
.  There is a minor spike in the histogram around when the energy reaches -

3.5x10
4
 where mutation takes place. 

 
Figure 24: Total Shannon entropy per 10000 iterations of the model.  The runtime of the 

program is 7x10
6
 iterations.  The two spikes occur due to the mutant growth at the 

Goldilocks points of the model. 
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Figure 24 shows the average Shannon entropy for the total energy of the model 

per 10000 iterations using the recorded data from the energy histogram.  Shannon entropy 

was calculated using equation 23 in section 2.22.  There are two peaks in the graph.  The 

peaks occur due to the mutations occurring at the goldilocks points.  Introducing the 

mutant type bacteria into the population of wild types introduces more uncertainty to the 

system due to a rapid shift in energy.  As the mutant type begin to spread and take over 

populations of wild type the entropy begins to decrease until the second Goldilocks point 

mutation occurs.  The decrease in entropy is due to the system reaching equilibrium as it 

becomes saturated with mutant bacteria.   

 
Figure 25: Total energy and entropy vs. iterations of the Goldilocks point.  Total energy 

is on the left and total Shannon entropy is on the right.  The values are taken in a 10x10 

region in the corner of the model.  The runtime of the program is 7x10
6
 iterations. 

 

The shift between bacteria is more binary, (from +1 to -1, not including 0), so the 

energy shift is more rapid as mutation occurs.  This is seen in Figure 25, which shows the 

energy and Shannon entropy in a 10x10 corner of the model where the Goldilocks point 

takes place.  The average Shannon entropy of the Goldilocks point per 10000 iterations 
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was calculated using another histogram and equation 23.  The graph in the right of Figure 

25 also shows a spike where the rapid binary shift in energy occurs.  The entropy goes 

back to zero when the mutant bacteria take over.   

3.12.4    Fitness Parameters Landscape for Food and Antibiotic Values 

 The methods used to calculate total energy and Shannon entropy values in Figure 

25 are recorded for various values of food and antibiotic values.  The final total energy 

and average Shannon energy is recorded for 1.5x10
6
 iterations. 

 
Figure 26: Contour and individual value plot of energy for the Goldilocks point for 

various    and    parameters.  The values in this plot are,           , and        

   .  The lighter yellow colour shows a higher energy (a lower fitness) and is not as 

favourable, while a darker blue colour is lower in energy (more fit) and more favourable. 

 

 As can be seen in figure 26, there are regions where there is an energy value of 0 

(yellow colour), representing no growth of bacteria, either because the food parameter is 

too low or the antibiotic parameter is too high.  As the value of the food parameter 

increases, the probability of wild type bacterial growth increases, shown by a darker 

shade of orange.  The diagonal of wild type bacterial growth on the left hand side of the 



 

79 

plot, (the orange colour), shows that the food parameter must overcome an increasing 

antibiotic parameter for wild type growth to occur.  When the value of    is higher than 

1.9, the shift in energy from the Hamiltonian is enough to allow a deme to flip to a 

mutant bacteria, so long as    is high enough, (which is shown in the blue region of the 

figure).  This forms a sort of fitness valley separating wild type bacteria from the mutant 

bacteria (mutant being more fit due to antibiotic).   

 
Figure 27: Contour and Individual value plot of Shannon entropy for the Goldilocks point 

for various    and    parameters.  The values in this plot are,           , and 

          .  The lighter yellow colour shows higher Shannon entropy, while a blue 

colour is lower in entropy, and a dark blue shows no entropy. 

 

The Shannon entropy results of Figure 27 are calculated using the values of an 

energy histogram for the Goldilocks point just like in Figure 23 and Figure 24.  A greater 

spread of the frequency of energy values in the histogram results in a greater Shannon 

entropy.  If bacterial growth occurs, Shannon entropy is larger when no mutation occurs 

as opposed to when there is a mutation.  The energy histogram with no mutation has a 

larger spread of occupied values because the shift in energy is not as great for when there 

is mutant growth, so the growth rate is not as rapid.  With a larger shift in energy, fixation 
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and growth is more rapid and Shannon entropy will be lower for mutant bacteria due to a 

reduction in occupied energy levels.  The system shifting to increased fitness (lower 

stable energy) helps lower the average Shannon entropy with the system moving towards 

a single bacterial genotype.  The decrease in entropy as the system moves to a more 

stable energy may be better associated with a non-equilibrium system. 

One flaw in the system is the antibiotic term, where if    is too large spontaneous 

growth of mutant bacteria has a probability of occurring even if there are no neighbours 

present.  Too large a value of    stresses the model to function improperly because 

equation 28 shows the antibiotic term does not depend on neighbouring bacteria.  As 

Figures 13 and 26 shows, a shift in energy with a high enough    value will lower the 

energy enough to allow for spontaneous growth to occur.  Figure 26 gives an optimal 

value for spontaneous growth of mutant bacteria to occur at the goldilocks point when 

food and antibiotic are around            , and           .  The food parameter 

for the model had to have a minimum value of 3.0 near the center in order for both the 

food and Ising term to counteract the death term.  The death term was selected to be large 

enough to counteract spontaneous growth due to the antibiotic term.  The maximum 

values of the food and antibiotic term were 5.0 and 2.115 in order for the system to 

simulate the Goldilocks points at the two corners of the device.  A higher antibiotic term 

shifts the Goldilocks points closer towards the center and away from the corners.  As can 

be seen in Figure 24 another limitation in the model is that it only deals with two types of 

bacteria, (seen in the rapid shift in energy between two bacteria), instead of several waves 

of increasingly fit mutants.  The energy valley between the bacteria in Figure 26 could 

resemble a fitness valley such as the valley seen for the antibiotic streptomycin.  The 
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fitness landscape of various genetics of E. coli susceptibility to streptomycin show 

different adaptive peaks separated by a valley [35].  The neighbouring demes present also 

have an effect on the fitness of bacteria.  Previous fitness valleys measured fitness as a 

function of the bacterial genotype [9], whereas the fitness of this system is measured with 

the Hamiltonian of each deme. 
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Chapter 4 

The SSA Accelerated Fixation Goldilocks Point Model 

4.1    Model 

One of the goals of the thesis is to derive a new model using added parameters to 

include in a Monte Carlo simulation based on the work of Zhang et al, and Allen and 

coworkers [2,5,6,29].  To better understand accelerated fixation of a population of E. coli, 

a second computer model separate from the Ising computer simulation is constructed.  

Unlike the Ising model in chapter 3, the model described in this chapter is meant to 

simulate one of the Goldilocks points in the experiments by Zhang et al [2,5].  As 

mentioned before, a lower abundance of bacteria allows for the simulation to track all of 

them as individual particles, while a high abundance would require the Gillespie 

algorithm [25-27].  With this method the bacteria are allowed to overlap into the same 

position due to the low abundance.  As the program selects each position in sequence, the 

motion of every individual particle can be calculated.  As mentioned in section 2.18, a 

more crowded model with non-overlapping particles is computationally more demanding 

[25].  The model is based on an existing stochastic simulation algorithm (SSA) used for 

measuring the Brownian/Smoluchowski dynamics, and part of the model is derived from 

the one discussed in section 2.19 [6,25,28].  The algorithm is similar to the Gillespie 

algorithm; however, the distribution of times is discreet and in constant increments, not a 

continuous exponential function due to non-overlapping particles being computationally 

more demanding as previously described [25,28].  More detail about how the algorithm 

functions will be discussed further into the section. 
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Just like what is mentioned in chapter 3, the following parameters discussed in 

this section are set so that the simulation matches what was observed in the experiments 

by Zhang et al [2,5]. 

To reproduce the food and antibiotic gradient used in the experiment by Zhang et 

al and by Allen and coworkers [2,5,6], a non-uniform gradient of both antibiotic and food 

is reconstructed in the simulation.  Unlike the gradient used by Allen and coworkers [6], 

this model’s antibiotic gradient has been reduced several magnitudes lower.  The impact 

the concentration has on reducing growth rate on bacteria is relatively comparable 

however due to the minimum inhibitory concentration (MIC) being reduced as well.  The 

MIC equation used for this model is based on the one used in reference [29], which will 

be discussed further in this section.  One other important difference that must be 

mentioned is that unlike the model used by Allen and coworkers [6], there has been a 

food gradient constructed in addition to the antibiotic gradient to more closely simulate 

the Goldilocks point experiment. 
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Figure 28: The food and antibiotic gradients used in the model.  The food gradient from 

the center to the right hand side has a value from 0.01 to 4.5.  The antibiotic gradient 

from the center to the right hand side has a value from 0 to 7. 

 

The curved shape of model’s food gradient in Figure 28 remains constant during 

the runtime of the simulation, (there is no consumption or degradation decreasing food 

concentration), thereby implying that the incoming food flux matches the bacterial 

metabolite consumption rate all the time [5].  The antibiotic is not consumed as well, (as 

stated by Zhang et al [5]), so the antibiotic curve in Figure 28 maintains its shape, 

implying that the concentration remains the same with respect to time.  Each position on 

the model is represented by an integer “ ” and can represent a microhabitat on the device.  
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A deme can be composed of several microhabitats thereby representing the “region” 

where accelerated mutation takes place.  The model contains 601 microhabitats, where 

bacteria are deposited into the center located at microhabitat 301. 

Part of shaping the population density gradient is the growth rate, and the growth 

rate is dependent on three factors.  The first factor to be discussed is the 

pharmacodynamics function.  The pharmacodynamics function is based on the Hill 

function.  The function describes the death rate of a bacterial population exposed to an 

antibiotic of concentration in reference [39]:  

 
 ( )      

(   ) 

  (   ) 
 

(36) 

where µ is the death rate of the bacteria due to the concentration of antibiotic, c.  Here β 

is the minimum inhibitory concentration (MIC) needed to inhibit growth of the selected 

bacteria, and κ is the Hill coefficient between the range 0.5 to 2.5.  In the paper the 

coefficient is determined to be around 1.1 to match experimental antibiotic curves it was 

based off of [39].  The growth rate in the paper is assumed to have the relationship 

 ( )        ( ), where      is the maximum growth rate.  However,  ( ) used in 

equation 36 is not used, but the pharmacodynamic function used to approximate the Hill 

function in equation 36 is used instead: 

   ( )    (   )
  (37) 

where   ( ) is the pharmacodynamic function used for location   in the model.    The 

coefficient κ is set to 2, which helps the function fit the threshold-like growth curves of E 

coli in Ciprofloxacin as seen in Allen’s work [29,40].  This function no longer produces 

the death rate of the bacteria because the drug ciprofloxacin does not kill the cell directly 
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but instead the antibiotic traps the gyrase-DNA complex where DNA is cut in order to 

inhibit DNA replication [5,6].  This equation is a product of the growth rate, and now the 

growth rate is proportional to the pharmacodynamic function of equation 37 instead of 

subtracting the maximum growth rate by the death rate of equation 36.   

 The second factor is the effect which food has on encouraging bacteria to grow, 

and this is proportional to the Monod Equation [29,41,42]: 

   ( )       .
 

   
/ (38) 

where      is the maximum growth rate of the bacteria,   is the concentration of food at 

the location   in the microhabitat, and   is the Monod constant, (which is the 

concentration of food when 
  ( )

    
    ) [29,41]. The equation relates to how a food 

source affects microbial growth in a liquid medium [41].  The value of K is set to        

and the concentration of food has a maximum value of 4.5 on the gradient.  The value of 

     is 1.25 so that when the concentration of the food gradient reaches 4.5, the 

maximum value of the Monod equation is   ( )   1.0.   

Based on the growth curves produced by Allen and coworkers, how susceptible 

bacteria are to the antibiotic depends on the bacteria’s growth rate [29,40].  This means 

that the MIC in equation 37 is nutrient-dependent and is described using the function: 

 
 ( )     [       (

 

    
)] 

(39) 

where      is the MIC needed if there is no bacterial growth, (thereby requiring a 

maximum MIC), while    is the concentration subtracted due to a higher relative growth 
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rate, given by .
 

    
/, (the subscripts “max” and “j” are just for labeling).  For this model 

     describes the maximum growth rate due to the parameters set on the food gradient 

and Monod equation; in this case the maximum value is 1.  Ciprofloxacin is a fast growth 

targeting antibiotic (FGTA) so this means that fast-growing E. coli due to higher nutrients 

are more susceptible than slow-growing E. coli [29].  For this reason the value used for 

     is 0.03 while the value for    is 0.027 thereby making the MIC needed to eliminate 

bacteria decrease linearly with growth rate.  The value    is the fitness function used to 

measure the relative fitness of bacteria i.  For this model the fitness of the wild type 

bacteria is 1, while the fitness of the first mutant is 20, followed by 100 for the second 

mutant, and 200 for the third and final one.  This value is chosen because Zhang et al 

measured four SNPs in the mutant species which they believed occurred sequentially and 

which had increased the resistance of the species by around 200 times the required MIC 

[2].  The model contains three types of mutants because two of the mutations occurred at 

neighbouring nucleotides and so will be counted as one mutation.  Mutation has to occur 

at a rate that allows computation time to be feasible.  Every time a bacterium reproduces, 

the probability of a mutation forming is         which may be slightly high due to 

computation time.  This also allows for the model to show that fixation is more rapid than 

turnover for reasons which will be discussed further in the results section for this model. 

Because of the combined food and Ciprofloxacin gradient in the model, an 

increased growth rate due to the Monod equation will actually decrease the MIC needed 

to reduce growth rate.  So while diffusion may draw the bacteria along the length of the 

model and the food gradient may increase the rate of growth of a population, a competing 
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FGTA gradient will decrease the MIC needed to prevent growth, and this may slow down 

the ability of a bacterium to invade further down the food gradient.   

The final factor is the population factor which prevents the bacteria from growing 

beyond the location’s carrying capacity.  Each location represents a microhabitat with a 

limited amount of space to survive.  This is represented by the following equation: 

 
 ( )    

  
  

 
(40) 

where   is the population factor at that microhabitat,    is the population of bacteria i, 

and    is the carrying capacity for each microhabitat.  The carrying capacity of the 

model is 400 in order to reduce computation time.  As the population increases, the 

growth rate for bacteria in the microhabitat should decrease linearly in proportion to the 

habitat’s population.  While the rate of growth is slowed for each bacterium, a higher 

population size should lead to an increased amount of bacteria reproducing due to there 

being a greater sample size to draw from. 

Using equations 37, 38, and 40, the total growth rate is a product of all three 

factors: 

   (     )    ( )    ( )    ( ) (41) 

this shows that the growth rate is dependent on the concentration of antibiotic, food, and 

the total number of bacteria.  The subheading   denotes the type of mutant the equation 

selects, (or the genotype selected). 

A constant death rate is added in order to prevent bacteria from filling each 

microhabitat completely.  This allows the death rate to counteract the growth rate in order 
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to create a steady state which prevents the population remaining static.  The death rate for 

this model is set to        .  Continuous reproduction allows a mutation to occur and 

possibly fix in that population however, the death rate has to be low enough to not allow 

the turnover rate towards a mutant majority to occur faster than bacteria can migrate.  

This would represent an environment with greater stress than the antibiotic stress 

gradient.  The high stress environment would therefore not show accelerated fixation and 

not represent the experiment by Zhang et al. 

The algorithm functions by drawing a random number in order to choose a n
th

 cell 

from the Ntotal cells in the system, (            ) on the first iteration.  For each 

iteration the algorithm cycles through every cell at random until all the cells of the 

current cycle is selected.  Then the rates at which the cell may replicate, migrate to a 

neighbouring microhabitat, or die are calculated.  First the replication rate is calculated: 

Rgrowth =   (     ).  The rate of migration is then Rmigration = D; D being the diffusion 

rate.  The death rate of the cell is then: Rdeath = d.  Three random numbers are drawn, r ∈ 

[0 . . . 1), where each r is calculated for each value in the order Rgrowth, Rmigration, Rdeath.  If 

the first r < Rgrowth, the algorithm executes replication.  Death is replicated if if the first r 

≥ Rgrowth and the second r < Rdeath, and migration is executed if the first and second r ≥ 

Rgrowth and Rdeath, and the third r < Rmigration.  As mentioned before the type of mutant, (or 

the genotype selected), is denoted by  , where i = 1, …, 4; the 4
th

 being the most fit 

mutant and 1
st
 being the least.  If the replication step is executed, an additional number is 

drawn,      ∈ [0...1).  If      < μ/2, then add a new cell of genotype i − 1, but if μ/2 < 

     <μ, instead add to the system one new cell of genotype i + 1.  Otherwise, add a new 
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cell of genotype i.  At the end of the cycle the simulation is updated and the time is 

progressed t → t+∆t.   

The simulation modeled the diffusion of bacteria using the equations discussed in 

section 2.17.  The diffusion coefficient used for the simulation is given a value of D = 5 

which helps set the time step.  Therefore, rearranging equation 13 the time step used 

would then equal         ⁄      to give 10 cycles per unit of time.  This helps 

make calculating the parameters of the model easier.  The bacteria then have a probability 

of moving with a distance    √          , where λ is a random number 

between 0 and 1.  Chemotaxis is not significant enough to have an impact on the 

migration so the chemotactic response of equation 20 goes to infinity (   ), and the 

speed with which a wave of bacteria travel reverts back to equation 15, which is derived 

from the Fisher-KPP wave equation 14,     √(   )(   ).  The diffusion constant 

is given a value     because there is an equal probability of the bacteria diffusing in 

either direction. 

While chemotaxis is negligible, the wave speed is still dependent on the growth 

rate of bacteria,  , which is proportional to the Monod equation 38,   ( ).  Therefore 

food does have an impact on increasing the speed with which the wave travels even if 

there is no chemotactic response.  The increased growth rate of a higher concentration of 

food will increase the wave speed of a bacterial population because there will be more 

bacteria to diffuse away from their initial location.  As well as the diffusion constant, 

combining equations 15 and 41 shows that the wave speed to travel from a location   is 

dependent on the Monod equation, the pharmacodynamic function, and the death rate, 
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   √0     .
 

   
/  (  (   ) )1   .  These factors will be addressed further when 

discussing the wave speeds for the various types of bacteria and their location in the SSA 

model. 

In the Smoluchowski Simulation the boundary conditions for diffusion are 

reflective or called zero flux boundary conditions [28].  However certain models of 

bacterial migration show that boundary conditions can be non-reflective and that bacteria 

can build up on the boundary [44].  Therefore if bacteria migrate to one of this 

simulation’s boundaries, the bacteria stop migrating instead of an elastic reflection back 

towards the opposite direction.  In the next iteration there is a probability for the bacteria 

to migrate backwards based on the diffusion of equation 13. 

4.2    Results 

 The SSA model is run to determine what effect an antibiotic and food gradient 

had on bacterial migration and accelerated fixation of mutant bacteria.  Population 

density is also analyzed to determine if fixation of migrant mutant bacteria is more rapid 

in a smaller population compared to a bacterial turnover of a mutant species in a large 

population.   

4.2.1    Diffusion and Population Density 

Initially bacteria are placed in the center of the model at position 301.  The food 

term allows bacteria to replicate until they reach the carrying capacity of their position.  

As growth rate is decreased the probability of migration increases.  Due to the diffusion 

of equation 13 the bacteria spread out to form a narrow peak with a finite width.   
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Figure 29: Initial growth of wild type bacteria.  As the carrying capacity is reached 

diffusion becomes more probable and a quasi-delta function is formed.  There is also a 

minor growth of mutant 1 bacteria starting. 

 

 Because diffusion is directionless, chemotaxis does not play a part in shaping the 

growth of bacteria; rather, only wave equation 15 determines the speed with which a 

population of bacteria travel.  The food concentration seen in Figure 28 needs to be large 

enough for bacterial growth to occur.  If the concentration is zero, the bacteria die due to 

the constant death rate.  The slope of the quasi-delta function shape forms a steep 

population density gradient on the function’s boundary. 
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4.2.2    Wave Speed of Bacteria and Accelerated Fixation 

 As wild type bacteria replicate, mutant bacteria begin to migrate outwards as seen 

in Figure 30. 

 
 

Figure 30: Mutant 1 accelerated fixation from time 100 to 200.  Top left is time 100 

where initial growth of mutant bacteria occur. Top right is time 120 where mutant 1 

bacteria begin to fix in a low wild type population.  Time 145 on the bottom left shows 

complete fixation of mutant 1 bacteria.  Time 200 on the bottom right is when mutant 1 

bacteria migrate along the food gradient. 

 

 As the wild type bacteria evolve to mutant 1 bacteria, the mutant 1 bacteria 

migrate towards a region with a lower population density of wild type bacteria if the 

migration rate is high enough.  In Figure 30 this can be seen as the mutant bacteria 

migrate towards the right along the antibiotic gradient.  The antibiotic gradient helps to 
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slow the progression of the wild type bacteria wave due to equation 37, allowing the 

mutant 1 bacteria to more quickly migrate towards regions with lower wild type 

population.  This is why fixation is seen on the right side.  As mutant bacteria migrate 

outwards, the bacteria can fix more rapidly in a region with a lower population of wild 

type bacteria, as seen in Figure 30.  On the left the antibiotic gradient is zero; as well the 

food is at a minimum.  Migration is lower so that the diffusion rate of the mutant bacteria 

cannot keep up with the wave speed of the wild type bacteria.  Therefore the region with 

no antibiotic shows no fixation of mutant 1 bacteria on the left side of the model.  

Because the MIC in equation 39 required is larger for mutant 1 bacteria, the 

mutant population wave speed can progress along the increasing antibiotic concentration, 

while also progressing along the food gradient of Figure 28.  The bacterial fitness of 

mutant 1 is 20 compared to the fitness of 1 for the wild type bacteria. 

 
 

Figure 31: Progression of mutant 1 bacteria wave from time 375 to 465.  The mutant 

bacteria wave travels from position 400 to 450 in the time span. 

 



 

95 

 As the mutant 1 bacteria progress the wave speed increases.  Figure 31 shows the 

mutant 1 bacteria wave travels from position 400 to 450 in a time span of 90 units of 

time.  This gives the travelling wave an average speed of 0.556 positions per unit of time.  

As the mutant 1 wave travels along an increasing concentration of antibiotic, the speed of 

the wave will decrease, just as the speed of the wild type bacteria wave did before. 

 
 

Figure 32: Progression of mutant 1 bacteria wave from time 465 to 515.  The mutant 

bacteria wave travels from position 450 to 460 in the time span. 

 

 Figure 32 shows the mutant 1 bacteria wave travels from position 450 to 460 in a 

time span of 50 units of time.  This gives the travelling wave an average speed of 0.2 

positions per unit of time.  This is 0.356 positions/unit time lower than the time to 

progress from position 400 to 450.  The antibiotic gradient slows down the progression of 

the bacteria because the wave equation 15 is proportional to the pharmacodynamic 

equation 37.  Eventually the MIC needed to prevent bacterial growth is reached and the 

wave of mutant 1 bacteria stops progressing along the antibiotic gradient. 

 The MIC equation 39 describes the susceptibility of bacteria to a FGTA 

ciprofloxacin.  The increasing concentration of food along the gradient will have an 
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impact due to the Monod equation 38.  Therefore a higher replication rate will make 

bacteria more susceptible to the antibiotic because it will lower the MIC required to 

prevent growth due to equation 39.  The combination of increasing food concentration 

with the antibiotic gradient may actually more dramatically reduce the replication rate at 

the wave edge compared to a lower concentration of food with the same antibiotic 

gradient.  The increased fitness of mutant 1 compared to wild type bacteria still however 

increased the MIC required to prevent growth, allowing the mutant bacteria to expand 

into the antibiotic regardless of the FGTA susceptibility.   

 
 

Figure 33: The distance travelled by mutant 1 bacteria compared to wild type bacteria. 
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Figure 33 above shows the progression of mutant 1 bacteria compared to the 

distance travelled by the wild type bacteria.  This shows that due to the wave speed being 

proportional to the Monod equation, the rate of migration is faster when there is a food 

gradient. 

 

Figure 34: The accelerated fixation of mutant 2 bacteria. 

 

 Figures 33 and 34 show that mutation of mutant bacteria 2 occurs within 

populations of mutant bacteria 1.  The bacteria do not fix in the populations of mutant 

bacteria 1 due to the higher population density.  Migration of mutant bacteria 2 is not 

enough to keep up with the wave edge for mutant bacteria 1, therefore fixation does not 

occur.  When the wave edge of mutant bacteria 1 stops progressing, migration of mutant 
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bacteria 2 can travel to the front with a lower population density.  Fixation of mutant 

bacteria 2 occurs due to an increased fitness advantage of 100 compared to 20 for mutant 

bacteria 1, and because of the lower population density.  This is what is observed in 

Figure 34. 

 

Figure 35: The accelerated fixation of mutant 3 bacteria. 

 

 The same process discussed occurs for the migration of mutant bacteria 2 along 

the antibiotic gradient.  When the wave edge for mutant bacteria 2 decreases, accelerated 

fixation occurs for mutant bacteria 3. 



 

99 

  
Figure 36: Mutant bacteria 3 fixes on the right hand side of the model.  The region on the 

left side without antibiotic prevents mutant bacteria from fixing in the region. 

 

 As the model continues to progress, the mutant bacteria 3 fixes on the right hand 

side.  This can be seen in Figure 36 where the time has progressed to 2450 units of time.  

The diffusion of mutant bacteria back towards the left side with the wild type population 

could explain what is observed in the experiment by Zhang et al where there was an 

invasion of mutant bacteria back towards the center of the device [5].  
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4.2.3    Discussion 

 The model is meant to replicate how a food and antibiotic gradient can accelerate 

evolution for antibiotic resistance in bacterial populations.  The model describes how E. 

coli populations mutate and fix to increase the fitness to resist the FGTA ciprofloxacin.  

The hypothesis by Zhang et al which is tested in the model states “the stepwise 

movement of motile mutant bacteria via successive mutations into regions of higher 

stress is accelerated if the mutation rate is very high and the population density gradient 

… is very steep” [5].  Figures 30 to 35 display how an antibiotic gradient can help 

accelerate mutation under certain conditions. 

 The sharp distribution curve at the wave edge of a bacterial population formes a 

population density gradient.  The steep decrease in population is directed towards a 

higher concentration of antibiotic.  The probability of fixation increased in agreement 

with equation 10, the Wright’s evolutionary potential.  A larger fitness potential will 

increase the probability that a bacterial population will move towards a more fit 

genotype.  This is also represented by the stochastic drive, ε, discussed in section 2.10.  A 

larger value of ε will reduce the probability of a population having a particular genotype 

which may increase the probability of other genotype frequencies.  As F-theorem in 

section 2.10 states, a more diverse genotypic frequency will allow for the potential of 

more fit mutants [7].  However, in terms of population density, a larger population will 

likely have a lower stochastic drive because of a greater frequency of one particular 

genotype.  A lower population density will be more susceptible to a fluctuation in 

genotypic frequencies, so a more fit mutant will fix more rapidly if the population is 
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lower [3,7].   This is what is observed in the model.  It is also shown is that a very steep 

population density gradient would result in a rapid fixation of mutant bacteria. 

 The mutation rate needs to be high enough to show fixation.  If mutation is too 

low the probability of a mutant bacteria migrating towards the edge of a population 

gradient would be too low.  This is also the case if the migration rate is too low. Then a 

mutant bacterium would not be able to migrate towards the wave edge of a less fit 

bacterial population; especially if the wave speed of the edge is too fast.  The replication 

and death rate have to be balanced with the mutation and migration rate.  If the turnover 

between replication and death rate is too fast then fixation would be fast enough without 

having the need for mutant bacteria to migrate towards a lower population density.  This 

also helped confirm the hypothesis by Zhang et al that the bacteria needed to be motile 

and the mutation rate needed to be very high [5].  A slower mutation rate is also difficult 

because then the computation time became too long.  The current parameters show how 

fixation is more rapid in a lower population compared to bacterial turnover in a large 

population. 

 The time to fixation is measured as in section 3.12.2.  Fifty trials are performed to 

measure the time it takes for mutant 3 to fix and reach a population of the carrying 

capacity of 400 cells.  Three exponential antibiotic gradients are measured given by the 

function: 

 
 ( )   

   (   )
   

    (42) 

where   is the position on the right half of the model, (       ).  The value of   is 

selected so that at the far right boundary of the model,  (   )   .  This is to determine 
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the maximum concentration of the exponential antibiotic function.  The time to fixation 

can be seen on Table 4. 

Table 4: Time for the population of mutant bacteria 3 to fix and reach carrying capacity.  

The average time, standard deviation, and median is calculated for 50 trials. 

 Gradient  

m =  0.25 

Gradient  

m =  1.00 

Gradient  

m =  7.00 

Average Time (unitless) 427.33 331.46 331.89 

Standard Deviation 

(unitless) 

48.48 14.56 29.79 

Median (unitless) 438.70 328.85 329.10 

Standard Error 

(unitless) 

6.86 2.06 4.21 

 

 Unlike section 3.12.2, the volume of antibiotic increases with increasing   value.  

The lowest time to fix is the antibiotic gradient with       , with an average time of 

331.46 units.  The standard deviation and median is also lowest at 14.56 and 328.85 units 

of time.  The highest average time is for the gradient with       , at 427.33 units.  It 

also had the highest standard deviation at 48.48 units.  Average time to fix and 

fluctuation is greatest for the lower concentration because the MIC needed to prevent 

mutation 2 with a fitness of 100 to grow is 0.3.  Setting the antibiotic to be lower than the 

MIC allowed for mutant 2 to migrate to the boundary and prevent mutant 3 from fixing.  

This pattern is seen in Figure 36 where the wild type bacteria prevent mutant 1 from 

fixing on the left hand side of the model.  The higher concentration of antibiotic for the 

gradient with        showed an average time of 331.89 units, slightly greater than 

      .  The standard deviation and median is also greater at 29.79 and 329.10 units 

of time.  While the higher concentration of antibiotic may slow down the time until 

fixation, the greater standard deviation and higher median may mean more outliers 

further away from the average times of        and       .  This is similar to what 
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was observed in section 3.12.2.  The greater concentration of antibiotic slows down the 

initial log phase of growth for wild type bacteria.  A greater initial population of wild 

type bacteria during the log phase of growth will greatly reduce the time to migration and 

increase the probability of mutation due to a larger selection of bacteria to mutate.  Even 

though the total volume of antibiotic for        is greater than       , the mean 

time to fixation is virtually the same, which could be due to the steeper gradient.  If the 

model is run whereby the concentration of antibiotic is greater than the MIC of the wild 

type bacteria, no evolution occurs and the wild type bacteria die. 

There are some limitations of the model which need to be discussed.  The major 

factor involved in spreading antibiotic resistance is horizontal gene transfer [22]; 

however, this is not included in the model.  Mutation in the model only occurs randomly 

through replication.  Chemotaxis is also not included, even though the food gradient still 

played a part in increased migration, (as discussed at the end of section 4.1).  Based on 

what is observed, a greater direction and speed to migration for mutant bacteria through 

chemotaxis may actually enhance accelerated mutation.  The fitness of mutants also plays 

a part when there is no antibiotic.  When a bacterium mutates there is a fitness penalty in 

replication unless it continues to be exposed to the antibiotic or it develops some 

compensatory mutation [22].  If a mutant bacterium is in a region with no concentration 

of antibiotic then there is no fitness penalty compared to a wild type one.  A reverse of 

antibiotic resistance in E. coli of three percent to ciprofloxacin has been observed over a 

six month period [22].  However, compensatory mutations could be what gave mutant E. 

coli a fitness advantage in the experiment by Zhang et al [5], as discussed in section 3.11.  

The model is built so that mutant fixation to a fitness of 200 is inevitable; however, if the 
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MIC is lower than necessary a more fit mutation may not have an advantage over less fit 

one, especially if there is a fitness penalty in replication.  
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Chapter 5 

Conclusion 

 The models constructed identified several evolutionary factors required for 

accelerated evolution of antibiotic resistance.  The required factors identified by Zhang et 

al for accelerated mutation were tested [5].  These include whether the bacteria are more 

motile, the mutation rate is high enough, and how steep the population density gradient 

is.  The main factor investigated is how antibiotic gradients enhance the rate of mutation.  

It is found overall that the rate of mutation is enhanced the steeper the antibiotic gradient 

under certain conditions.  The initial population growth of bacteria plays an important 

part in the time to fixation.  If the concentration of antibiotic slows the initial exponential 

growth of bacteria then the time to fixation is reduced.  An initial concentration of 

antibiotic greater than the MIC of wild type bacteria will result in the death of the wild 

type population.  Allowing for initial bacterial growth in the absence of antibiotic 

followed by migration towards an increasing gradient of antibiotic will result in 

accelerated mutation. 

The SSA model looked at a linear additive fitness increase but different epistatic 

genotypic combinations have varying degrees of fitness and the pathways to the most fit 

genotype may not be additive, as discussed in sections 2.09 and 2.10.  The model 

discussed in section 2.19 showed that a non-uniform drug distribution may slow down the 

emergence of resistant bacterial fixation if one of the epistatic genotypes had a lower 

fitness value than the previous genotype it evolved from, which resembles a fitness valley 

discussed at the end of the section [6].  One way to improve the Ising and SSA models is 
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to look to see how an epistatic pathway of intermediate genotypes with varying degrees 

of fitness affect accelerated resistance if utilization of food also plays a role.  As was 

stated in section 2.16, an acquired mutation in response to antibiotics may impose a 

fitness cost on a bacterium (measured by a decreased growth rate); this cost can be 

deleterious to the bacterial strain unless it continues to be exposed to an environment with 

antibiotic or also can be mitigated by a rapid development of compensatory mutations 

[22].  How well bacteria can utilize food as a compensatory mutation and the effect 

mutation has on bacterial growth would be noteworthy additions to improve the model.  

As mentioned in section 2.15, the main mechanism used for acquiring antibiotic 

resistance is horizontal gene transfer (HGT) [21,22].  Transferring mutations between 

two particles, (bacteria), would be an important mechanism which should be added to 

future models to better represent accelerated mutation. 

Combining the two models may serve to provide new and interesting systems to 

analyze.  The Ising model in chapter 3 is limited due to the demes represented by discreet 

states and not by populations of bacteria.  Currently the Ising model does not represent 

population density gradients.  The SSA model in chapter 4 is limited to a one dimensional 

model.  By combining the models of chapters 3 and 4, each model’s strength may 

compensate for the other model’s shortcomings.  For instance, a new combined model 

may be a two dimensional Ising model like in chapter 3, with a population of bacteria per 

deme as there are in the SSA model of chapter 4.  A future theoretical program would 

greatly improve how bacterial evolution is modeled and could be applied for a wider use 

of systems. 
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Appendix 

A 

Ising Type Bacterial Evolution Model 

% Mutation Model 

  
kT = 0.2; 
N = 100; 

  
%Check to make sure the N dimension of array is even. 
Even = mod(N,2); 
if Even == 1 % Odd number 
    disp('Cannot use this value. N has to be even.'); 
    return; 
end 
probSpinUp = 0.5; 

  
% Set up the random spin grid "spin" 
% 4 spins in the center with sigma = +1 
spin = zeros(N); 
spin(N/2,N/2) = 1; 
spin(N/2+1, N/2) = 1; 
spin(N/2, N/2+1) = 1; 
spin(N/2+1, N/2+1) = 1; 

  
%% 
% %FOOD GRID 

  
Food_Function = zeros(N); 
Food_ElRow = []; 
Food_ElCol = []; 
ColMax = N/2; 
RowMax = N/2; 
ColMin = 0; 
RowMin = 0; 

  
for Food_ElRow = 1:N 
    for Food_ElCol = 1:N 
        if Food_ElCol <= N/2 && Food_ElRow <= N/2 
            Food_Function(Food_ElRow,Food_ElCol) = max((ColMax+1 - 

Food_ElCol),(RowMax+1 - Food_ElRow)); 
        elseif Food_ElCol > N/2 && Food_ElRow <= N/2 
            Food_Function(Food_ElRow,Food_ElCol) = max((Food_ElCol- 

ColMax),(RowMax+1 - Food_ElRow)); 
        elseif Food_ElCol <= N/2 && Food_ElRow > N/2 
            Food_Function(Food_ElRow,Food_ElCol) = max((ColMax+1 - 

Food_ElCol),(Food_ElRow- RowMax)); 
        elseif Food_ElCol > N/2  && Food_ElRow > N/2 
            Food_Function(Food_ElRow,Food_ElCol) = max((Food_ElCol- 

ColMax),(Food_ElRow- RowMax)); 
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        end 
    end 
end 

  
Food_Function = 3.0 + 2.0*(Food_Function/(N/2)); 
surf(Food_Function); 

  
%% CIPRO GRID  

  
Cipro_Function = zeros(N); 
Cipro_ElRow = []; 
Cipro_ElCol = []; 
ColMax = N/2; 
RowMax = N/2; 
ColMin = 0; 
RowMin = 0; 
El_Col_Sum = 0; 
for Cipro_ElRow = 1:N 
    for Cipro_ElCol = 1:N 
        El_Col_Sum = Cipro_ElRow + Cipro_ElCol; 
        % Top Right Square 
        if El_Col_Sum >= N + 1 && Cipro_ElCol > N/2 && Cipro_ElRow <= 

N/2 
            Cipro_Function(Cipro_ElRow,Cipro_ElCol) = max((Cipro_ElCol- 

ColMax),(RowMax+1 - Cipro_ElRow)); 
        % Lower Left Square 
        elseif El_Col_Sum >= N + 1 && Cipro_ElCol <= N/2 && Cipro_ElRow 

> N/2 
            Cipro_Function(Cipro_ElRow,Cipro_ElCol) = max((ColMax+1 - 

Cipro_ElCol),(Cipro_ElRow- RowMax)); 
        % Lower Right Square 
        elseif El_Col_Sum >= N + 1 && Cipro_ElCol > N/2  && Cipro_ElRow 

> N/2 
            Cipro_Function(Cipro_ElRow,Cipro_ElCol) = max((Cipro_ElCol- 

ColMax),(Cipro_ElRow- RowMax)); 
        end 
    end 
end 
Cipro_Function = 2.115*Cipro_Function/(N/2); 
% surf(Cipro_Function); 

  
%% 
% The number of total iterations for the model 
% Count is a count of the iterations and FreeEnergyCount is every 10000 
% iterations 
numIters = 700*numel(spin); 
Count = 0; 
FreeEnergyCount = 0; 
%% Energy Matrix 
% These matricies are made to record the total energy of the system 
EnergyGrid = zeros(N); 
PlotEnergy = zeros(1,numIters); 
IterCount = []; 
% Plot_Entropy_Energy records the total energy of the system for each 

iter 
% count to be used by the Entropy Energy Historgram later 
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Plot_Free_Energy = zeros(1,(numel(spin)/1)); 
Free_Energy_Recording_Count = numIters/(numel(spin)/1); 
Record_Free_Energy = zeros(1, Free_Energy_Recording_Count); 
Record_Entropy = zeros(1, Free_Energy_Recording_Count); 

  
%% 
% Opening a video file to record the model 
v = VideoWriter('BacterialGrowth.avi'); 
open(v) 

  
%% Begin running the simulation 
for iter = 1 : numIters 
    % Pick a random spin 
    LengthOfSpinArray = randi(numel(spin)); 
    [row, col] = ind2sub(size(spin), LengthOfSpinArray); 

     
    % Find its nearest neighbours 
    % A = to the right [0 1] 
    A = circshift(spin, [0 1]); 
    % B = to the left [0 -1] 
    B = circshift(spin, [0 -1]); 
    % C = Shift down 
    C = circshift(spin, [1 0]); 
    % D = shift up 
    D = circshift(spin, [-1 0]); 
% The shifts move the surrounding neighbours to wherever the single 

spin is surrounded, and then "neighbours" adds up those surrounding 

spins at the same matrix element location of the surrounded spin, 

(without adding the surrounded spin value to the same matrix element 

location). 
%     neighbours = A + B + C + D; 

  
    % try to make a finite grid and not a torus shape continuous grid 
    if row == N && col ~= 1 && col ~= N 
        neighbours = A + B + C; 
        neighbours_sqrd = A.*A + B.*B + C.*C; 
        OneMinusNeighbour = (1 - A) + (1 - B) + (1 - C); 
    elseif row == 1 && col ~= 1 && col ~= N 
        neighbours = A + B + D; 
        neighbours_sqrd = A.*A + B.*B + D.*D; 
        OneMinusNeighbour = (1 - A) + (1 - B) + (1 - D); 
    elseif col == 1 && row ~= 1 && row ~= N 
        neighbours = B + C + D; 
        neighbours_sqrd = B.*B + C.*C + D.*D; 
        OneMinusNeighbour = (1 - B) + (1 - C) + (1 - D); 
    elseif col == N && row ~= 1 && row ~= N 
        neighbours = A + C + D; 
        neighbours_sqrd = A.*A + C.*C + D.*D; 
        OneMinusNeighbour = (1 - A) + (1 - C) + (1 - D); 
    elseif row == 1 && col == 1 
        neighbours = B + D; 
        neighbours_sqrd = B.*B + D.*D; 
        OneMinusNeighbour = (1 - B) + (1 - D); 
    elseif row == 1 && col == N 
        neighbours = A + D; 
        neighbours_sqrd = A.*A + D.*D; 
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        OneMinusNeighbour = (1 - A) + (1 - D); 
    elseif row == N && col == 1 
        neighbours = B + C; 
        neighbours_sqrd = B.*B + C.*C; 
        OneMinusNeighbour = (1 - B) + (1 - C); 
    elseif row == N && col == N 
        neighbours = A + C; 
        neighbours_sqrd = A.*A + C.*C; 
        OneMinusNeighbour = (1 - A) + (1 - C); 
    else 
        neighbours = A + B + C + D; 
        neighbours_sqrd = A.*A + B.*B + C.*C + D.*D; 
        OneMinusNeighbour = (1 - A) + (1 - B) + (1 - C) +(1 - D); 
    end 

  
%% J values  
   J = 1.86; 
   Jd = 5.95; 
   Jf = Food_Function(row,col);% 30 - 56 
   Jc = Cipro_Function(row,col); % 0 - 20.7 

    
   %% Remove Food to kill off bacteria 
   if iter > 350*numel(spin) 
       Jf = 0; 
   end 

    
%% BACTERIAL DEATH PROBABILITY VALUES 
%     initial spin neighbour interactions 
    death_neighbour_A = (1 - A.*A); 
    death_neighbour_B = (1 - B.*B); 
    death_neighbour_C = (1 - C.*C); 
    death_neighbour_D = (1 - D.*D); 
    death_neighbour_S = (1 - spin.*spin); 

     
%   Initial Death Neighbours 
    Initial_DN = []; 
    Initial_DN = [death_neighbour_A(row,col), ... 
        death_neighbour_B(row,col), death_neighbour_C(row,col), ... 
        death_neighbour_D(row,col), death_neighbour_S(row,col)]; 

  
    if row == N && col ~= 1 && col ~= N 
%       bottom row 
%       growth_neighbours = (1 + A.*A) + (1 + B.*B) + (1 + C.*C); 
        Counter_Food_Affinity = 

((A(row,col))^2)*((B(row,col))^2)*((C(row,col))^2)*((spin(row,col))^2); 
        Counter_Food_Affinity_Spin1 = 

((A(row,col))^2)*((B(row,col))^2)*((C(row,col))^2); 
%         Jd = Jd*(Initial_DN(1) + Initial_DN(2) + Initial_DN(3)); 
    elseif row == 1 && col ~= 1 && col ~= N 
%       top row 
%       growth_neighbours = (1 - A.*A) + (1 - B.*B) + (1 - D.*D); 
        Counter_Food_Affinity = 

((A(row,col))^2)*((B(row,col))^2)*((D(row,col))^2)*((spin(row,col))^2); 
        Counter_Food_Affinity_Spin1 = 

((A(row,col))^2)*((B(row,col))^2)*((D(row,col))^2); 
%         Jd = Jd*(Initial_DN(1) + Initial_DN(2) + Initial_DN(4)); 
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    elseif col == 1 && row ~= 1 && row ~= N 
%         very left column 
%         growth_neighbours = (1 - B.*B) + (1 - C.*C) + (1 - D.*D); 
        Counter_Food_Affinity = 

((B(row,col))^2)*((C(row,col))^2)*((D(row,col))^2)*((spin(row,col))^2); 
        Counter_Food_Affinity_Spin1 = 

((B(row,col))^2)*((C(row,col))^2)*((D(row,col))^2); 
%         Jd = Jd*(Initial_DN(2) + Initial_DN(3) + Initial_DN(4)); 
    elseif col == N && row ~= 1 && row ~= N 
%         very right column 
%         growth_neighbours = (1 - A.*A) + (1 - C.*C) + (1 - D.*D); 
        Counter_Food_Affinity = 

((A(row,col))^2)*((C(row,col))^2)*((D(row,col))^2)*((spin(row,col))^2); 
        Counter_Food_Affinity_Spin1 = 

((A(row,col))^2)*((C(row,col))^2)*((D(row,col))^2); 
%         Jd = Jd*(Initial_DN(1) + Initial_DN(3) + Initial_DN(4)); 
    elseif row == 1 && col == 1 
%         top left corner 
%         growth_neighbours = (1 - B.*B) + (1 - D.*D); 
        Counter_Food_Affinity = 

((B(row,col))^2)*((D(row,col))^2)*((spin(row,col))^2); 
        Counter_Food_Affinity_Spin1 = 

((B(row,col))^2)*((D(row,col))^2); 
%         Jd = Jd*(Initial_DN(2) + Initial_DN(4)); 
    elseif row == 1 && col == N 
%         top right corner 
%         growth_neighbours = (1 - A.*A) + (1 - D.*D); 
        Counter_Food_Affinity = 

((A(row,col))^2)*((D(row,col))^2)*((spin(row,col))^2); 
        Counter_Food_Affinity_Spin1 = 

((A(row,col))^2)*((D(row,col))^2); 
%         Jd = Jd*(Initial_DN(1) + Initial_DN(4)); 
    elseif row == N && col == 1 
%         bottom left corner 
%         growth_neighbours = (1 - B.*B) + (1 - C.*C); 
        Counter_Food_Affinity = 

((B(row,col))^2)*((C(row,col))^2)*((spin(row,col))^2); 
        Counter_Food_Affinity_Spin1 = 

((B(row,col))^2)*((C(row,col))^2); 
%         Jd = Jd*(Initial_DN(2) + Initial_DN(3)); 
    elseif row == N && col == N 
%         bottom right corner 
%         growth_neighbours = (1 - A.*A) + (1 - C.*C); 
        Counter_Food_Affinity = 

((A(row,col))^2)*((C(row,col))^2)*((spin(row,col))^2); 
        Counter_Food_Affinity_Spin1 = 

((A(row,col))^2)*((C(row,col))^2); 
%         Jd = Jd*(Initial_DN(1) + Initial_DN(3)); 
    else 
%         anywhere on the grid not on the edges 
%growth_neighbours = (1 - A.*A) + (1 - B.*B) + (1 - C.*C) + (1 - D.*D); 
        Counter_Food_Affinity = 

((A(row,col))^2)*((B(row,col))^2)*((C(row,col))^2)*((D(row,col))^2)*((s

pin(row,col))^2); 
        Counter_Food_Affinity_Spin1 = 

((A(row,col))^2)*((B(row,col))^2)*((C(row,col))^2)*((D(row,col))^2); 
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%         Jd = Jd*(Initial_DN(1) + Initial_DN(2) + Initial_DN(3) + 

Initial_DN(4)); 
    end 

  
%% 
% SPIN FLIP 
% Calculate the energies of flipping a spin 
   if spin(row,col) == 0 
       % Growth: spin = 0 --> 1 
       dE = -J*neighbours(row, col) + Jd - Jf*neighbours_sqrd(row,col) 

+ Jc ... 
           + 

(J/2)*OneMinusNeighbour(row,col)*Counter_Food_Affinity_Spin1*exp(-

Food_Function(1,1) + Jf + 0.095); 
       % Growth: spin = 0 --> -1 
       %        -J*(si=-1)*neighbours + Jd*(si)^2 - Jf*(si)^2 
       dE_0_n1 = J*neighbours(row,col) + Jd - 

Jf*neighbours_sqrd(row,col) - Jc ... 
           - 

(J/2)*OneMinusNeighbour(row,col)*Counter_Food_Affinity*exp(-

Food_Function(1,1) + Jf + 0.095); 

        
       dE_flip = 2*J*spin(row,col)*neighbours(row,col) - 

2*Jc*spin(row,col); 
   elseif spin(row,col) ~= 0 
       % Death: spin = 1 --> 0 
       dE = J*spin(row,col)*neighbours(row,col) - Jd + 

Jf*neighbours_sqrd(row,col) - Jc*spin(row,col) ... 
           - (1 - spin(row,col))*OneMinusNeighbour(row,col)*(J/2)*exp(-

Food_Function(1,1) + Jf + 0.095)*Counter_Food_Affinity; 

        
       % dE_flip = [-J(-si) + Jc(-si)] - [(-J)(si) + Jc(si)] 
       dE_flip = 2*J*spin(row,col)*neighbours(row,col) - 

2*Jc*spin(row,col) ... 
           - 2*spin(row,col)*OneMinusNeighbour(row,col)*(J/2)*exp(-

Food_Function(1,1) + Jf + 0.095)*Counter_Food_Affinity; 
       dE_n1_1 = -2*J*neighbours(row,col) + 2*Jc; 
   end 
% Calculate the probability of flipping a spin based on the change in 

energy 
   prob = exp(-dE/kT); 
   prob_0_n1 = exp(-dE_0_n1/kT); 
   Mutant_Potential = exp(-dE_flip/kT); 
% Enact the spin flips based on probability 
   SystemChange = 0; 
   prob_rand = rand(); 
   if spin(row, col)==0 && prob_rand < prob && dE < dE_0_n1 
       spin(row,col) = 1; 
       SystemChange = 1; 
   elseif spin(row,col)~=0 && prob_rand < prob 
       show_prob_rand = prob_rand; 
       spin(row,col) = 0; 
       SystemChange = 1; 
   elseif spin(row,col)~= 0 && prob_rand < Mutant_Potential 
       Mutant_Potential; 
       spin(row,col) = -spin(row,col); 
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       SystemChange = 1; 
   elseif spin(row,col) == 0 && dE_0_n1 < dE && prob_rand < prob_0_n1 
       spin(row,col) = -1; 
       SystemChange = 1; 
   end 

    
% Record an image of the system every 1000 iterations and put into 

video file 
   % "mod(iter,numel(spin)) == 0" selects every interval with length 

numel(spin) 
   if mod(iter,numel(spin)/10) == 0 
       image((spin)*216,'CDataMapping','scaled'); 
%        xlabel(sprintf('T = %0.2f, M = %0.2f, E = %0.2f', T, Mmean, 

TotalE)); 
%        set(gca,'YTickLabel',[],'XTickLabel',[]); 
       axis square; colormap default; drawnow;  

        
       frame = getframe(gcf); 
       writeVideo(v,frame) 
   end 

     
    %% Initializing the energy for the total system 
    %% Measuring the Energy for the total system 
    Entropy_iter = mod(iter,numel(spin)/1); 
    if Entropy_iter == 0 
        Entropy_iter = 10000; 
    end 

     
    if iter >= 1 %&& mod(iter,numel(spin)) == 0 %(SystemChange == 1 || 

spin(row,col)~= 0) 
        for newrow = 1:N 
            for newcol = 1:N 
                if newrow == N && newcol ~= 1 && newcol ~= N 
                    neighbours = A(newrow,newcol) + B(newrow,newcol) + 

C(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((B(newrow,newcol))^2) + ((C(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

B(newrow,newcol)) + (1 - C(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((B(newrow,newcol))^2)*((C(newrow,newcol))^2)*((

spin(newrow,newcol))^2); 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                elseif newrow == 1 && newcol ~= 1 && newcol ~= N 
                    neighbours = A(newrow,newcol) + B(newrow,newcol) + 

D(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((B(newrow,newcol))^2) + ((D(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

B(newrow,newcol)) + (1 - D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((B(newrow,newcol))^2)*((D(newrow,newcol))^2)*((

spin(newrow,newcol))^2); 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
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                elseif newcol == 1 && newrow ~= 1 && newrow ~= N 
                    neighbours = B(newrow,newcol) + C(newrow,newcol) + 

D(newrow,newcol); 
                    neighbours_sqrd = ((B(newrow,newcol))^2) + 

((C(newrow,newcol))^2) + ((D(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - B(newrow,newcol)) + (1 - 

C(newrow,newcol)) + (1 - D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((B(newrow,newcol))^2)*((C(newrow,newcol))^2)*((D(newrow,newcol))^2)*((

spin(newrow,newcol))^2); 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                elseif newcol == N && newrow ~= 1 && newrow ~= N 
                    neighbours = A(newrow,newcol) + C(newrow,newcol) + 

D(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((C(newrow,newcol))^2) + ((D(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

C(newrow,newcol)) + (1 - D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((C(newrow,newcol))^2)*((D(newrow,newcol))^2)*((

spin(newrow,newcol))^2); 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                elseif newrow == 1 && newcol == 1 
                    neighbours = B(newrow,newcol) + D(newrow,newcol); 
                    neighbours_sqrd = ((B(newrow,newcol))^2) + 

((D(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - B(newrow,newcol)) + (1 - 

D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((B(newrow,newcol))^2)*((D(newrow,newcol))^2)*((spin(newrow,newcol))^2)

; 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                elseif newrow == 1 && newcol == N 
                    neighbours = A(newrow,newcol) + D(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((D(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((D(newrow,newcol))^2)*((spin(newrow,newcol))^2)

; 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                elseif newrow == N && newcol == 1 
                    neighbours = B(newrow,newcol) + C(newrow,newcol); 
                    neighbours_sqrd = ((B(newrow,newcol))^2) + 

((C(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - B(newrow,newcol)) + (1 - 

C(newrow,newcol)); 
                    Counter_Food_Affinity = 

((B(newrow,newcol))^2)*((C(newrow,newcol))^2)*((spin(newrow,newcol))^2)

; 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
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                elseif newrow == N && newcol == N 
                    neighbours = A(newrow,newcol) + C(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((C(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

C(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((C(newrow,newcol))^2)*((spin(newrow,newcol))^2)

; 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                else 
                    neighbours = A(newrow,newcol) + B(newrow,newcol) + 

C(newrow,newcol) + D(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((B(newrow,newcol))^2) + ((C(newrow,newcol))^2) + 

((D(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

B(newrow,newcol)) + (1 - C(newrow,newcol)) +(1 - D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((B(newrow,newcol))^2)*((C(newrow,newcol))^2)*((

D(newrow,newcol))^2)*((spin(newrow,newcol))^2); 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                end    

                 
                El_Energy = -(J/2)*spin(newrow,newcol)*neighbours + 

Jd*(spin(newrow,newcol))^2 ... 
                    - (Jf/2)*neighbours_sqrd*(spin(newrow,newcol))^2 + 

Jc*spin(newrow,newcol) ... 
                    - (J/2)*(1 - 

spin(newrow,newcol))*OneMinusNeighbour*exp(-Food_Function(1,1)/kT + 

Jf/kT + (2*0.095)/(10*kT))*Counter_Food_Affinity; 
                EnergyGrid(newrow,newcol) = El_Energy; 

  
            end 
        end 
        for newrow = N:-1:1 
            for newcol = N:-1:1 
                if newrow == N && newcol ~= 1 && newcol ~= N 
                    neighbours = A(newrow,newcol) + B(newrow,newcol) + 

C(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((B(newrow,newcol))^2) + ((C(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

B(newrow,newcol)) + (1 - C(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((B(newrow,newcol))^2)*((C(newrow,newcol))^2)*((

spin(newrow,newcol))^2); 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                elseif newrow == 1 && newcol ~= 1 && newcol ~= N 
                    neighbours = A(newrow,newcol) + B(newrow,newcol) + 

D(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((B(newrow,newcol))^2) + ((D(newrow,newcol))^2); 
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                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

B(newrow,newcol)) + (1 - D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((B(newrow,newcol))^2)*((D(newrow,newcol))^2)*((

spin(newrow,newcol))^2); 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                elseif newcol == 1 && newrow ~= 1 && newrow ~= N 
                    neighbours = B(newrow,newcol) + C(newrow,newcol) + 

D(newrow,newcol); 
                    neighbours_sqrd = ((B(newrow,newcol))^2) + 

((C(newrow,newcol))^2) + ((D(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - B(newrow,newcol)) + (1 - 

C(newrow,newcol)) + (1 - D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((B(newrow,newcol))^2)*((C(newrow,newcol))^2)*((D(newrow,newcol))^2)*((

spin(newrow,newcol))^2); 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                elseif newcol == N && newrow ~= 1 && newrow ~= N 
                    neighbours = A(newrow,newcol) + C(newrow,newcol) + 

D(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((C(newrow,newcol))^2) + ((D(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

C(newrow,newcol)) + (1 - D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((C(newrow,newcol))^2)*((D(newrow,newcol))^2)*((

spin(newrow,newcol))^2); 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol); 
                elseif newrow == 1 && newcol == 1 
                    neighbours = B(newrow,newcol) + D(newrow,newcol); 
                    neighbours_sqrd = ((B(newrow,newcol))^2) + 

((D(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - B(newrow,newcol)) + (1 - 

D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((B(newrow,newcol))^2)*((D(newrow,newcol))^2)*((spin(newrow,newcol))^2)

; 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                elseif newrow == 1 && newcol == N 
                    neighbours = A(newrow,newcol) + D(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((D(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((D(newrow,newcol))^2)*((spin(newrow,newcol))^2)

; 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                elseif newrow == N && newcol == 1 
                    neighbours = B(newrow,newcol) + C(newrow,newcol); 
                    neighbours_sqrd = ((B(newrow,newcol))^2) + 

((C(newrow,newcol))^2); 
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                    OneMinusNeighbour = (1 - B(newrow,newcol)) + (1 - 

C(newrow,newcol)); 
                    Counter_Food_Affinity = 

((B(newrow,newcol))^2)*((C(newrow,newcol))^2)*((spin(newrow,newcol))^2)

; 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                elseif newrow == N && newcol == N 
                    neighbours = A(newrow,newcol) + C(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((C(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

C(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((C(newrow,newcol))^2)*((spin(newrow,newcol))^2)

; 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                else 
                    neighbours = A(newrow,newcol) + B(newrow,newcol) + 

C(newrow,newcol) + D(newrow,newcol); 
                    neighbours_sqrd = ((A(newrow,newcol))^2) + 

((B(newrow,newcol))^2) + ((C(newrow,newcol))^2) + 

((D(newrow,newcol))^2); 
                    OneMinusNeighbour = (1 - A(newrow,newcol)) + (1 - 

B(newrow,newcol)) + (1 - C(newrow,newcol)) +(1 - D(newrow,newcol)); 
                    Counter_Food_Affinity = 

((A(newrow,newcol))^2)*((B(newrow,newcol))^2)*((C(newrow,newcol))^2)*((

D(newrow,newcol))^2)*((spin(newrow,newcol))^2); 
                    Jf = Food_Function(newrow,newcol); 
                    Jc = Cipro_Function(newrow,newcol);  
                end    

                 
                El_Energy = -(J/2)*spin(newrow,newcol)*neighbours + 

Jd*(spin(newrow,newcol))^2 ... 
                    - (Jf/2)*neighbours_sqrd*(spin(newrow,newcol))^2 + 

Jc*spin(newrow,newcol) ... 
                    - (J/2)*(1 - 

spin(newrow,newcol))*OneMinusNeighbour*exp(-Food_Function(1,1)/kT + 

Jf/kT + (2*0.095)/(10*kT))*Counter_Food_Affinity; 
                EnergyGrid(newrow,newcol) = El_Energy; 
            end 
        end 
% Calculate total energy of the system for use in plots and histogram 
    Tot_Energy = sum(sum(EnergyGrid)); 
    end 
    Plot_Free_Energy(Entropy_iter) = Tot_Energy; 
    PlotEnergy(iter) = Tot_Energy; 
    Count = Count + 1; 

     
    %% Imaging the energy for the total system 

     
%     if mod(iter,numel(spin)/100) == 0 % selects every 1000 iterations 

if N =100 
%        image((EnergyGrid)*216,'CDataMapping','scaled'); 
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% %            xlabel(sprintf('T = %0.2f, M = %0.2f, E = %0.2f', T, 

Mmean, TotalE)); 
% %            set(gca,'YTickLabel',[],'XTickLabel',[]); 
%        axis square; colormap default; drawnow;  
%  
%        frame = getframe(gcf); 
%        writeVideo(v,frame) 
%     end 

  
%% Calculate Entropy Per Iteration 

  
% if mod(iter,numel(spin)/1) == 0 %&& iter == 300*numel(spin) % selects 

every 1000 iterations 
%      
%     FreeEnergyHistRange = round(range(Plot_Free_Energy),0); 
%     if FreeEnergyHistRange == 0 
%         FreeEnergyHistRange = 1; 
%     end 
%     FreeEnergyHistdata = Plot_Free_Energy; 
%     RangeOfFreeEnergyData = zeros(FreeEnergyHistRange,1); 
%     LowestDataValue = min(FreeEnergyHistdata); 
%     for HistElements = 1:length(Plot_Free_Energy) 
%         HistogramPosition = round(FreeEnergyHistdata(HistElements) - 

LowestDataValue,0); 
%         if HistogramPosition == 0 
%             HistogramPosition = 1; 
%         end  
%         RangeOfFreeEnergyData(HistogramPosition) = 

RangeOfFreeEnergyData(HistogramPosition) + 1; 
%     end 
%    
% %     data = PlotEnergy; 
% %     RangeOfData = zeros(round(range(PlotEnergy),0),1); 
% %     if RangeOfData == 0 
% %         RangeOfData = 1; 
% %     end 
% %     LowestDataValue = min(data); 
% %     for HistElements = 1:length(PlotEnergy) 
% %         HistogramPosition = round(data(HistElements) - 

LowestDataValue,0); 
% %         if HistogramPosition == 0 
% %             HistogramPosition = 1; 
% %         end 
% %         RangeOfData(HistogramPosition) = 

RangeOfData(HistogramPosition) + 1; 
% %     end 
%  
%     Element = []; 
%     for HistElements2 = 1:length(RangeOfFreeEnergyData) 
%         Element = [Element -round(-(LowestDataValue) - 

HistElements2)]; 
%     end 
%     Element = Element'; 
%      
% %     % % Histogram Energy Plot 
% %     bar(Element, RangeOfEntropyData, 'BarWidth', 20) 
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% % %     xlim([-180000 -165000]) 
% %     ylim([0 200])%max(RangeOfData)+2000]) 
% %     grid minor; 
% %     title('Frequency vs Total Energy') 
% %     xlabel('Total Energy') 
% %     ylabel('Frequency') 
%      
%     Tot_Free_Energy = 0; 
%     Tot_Entropy = 0; 
%     Free_Energy = zeros(1,length(RangeOfFreeEnergyData)); 
%     Entropy = zeros(1,length(RangeOfFreeEnergyData)); 
%     for HistElements = 1:length(RangeOfFreeEnergyData) 
%         EnergyValue = Element(HistElements); 
%         HistValue = RangeOfFreeEnergyData(HistElements); 
%         Free_Energy(HistElements) = 

(HistValue/numel(spin))*(EnergyValue ... 
%             + kT*log(HistValue/numel(spin))); 
% %         if Free_Energy(HistElements) ~= 0 
% %             EnergyValue 
% %             HistValue/numel(spin) 
% %             Current_FreeEn = Free_Energy(HistElements) 
% %         end 
%         Entropy(HistElements) = -

(HistValue/numel(spin))*log(HistValue/numel(spin)); 
%     end 
%     Free_Energy(isnan(Free_Energy))=0; 
%     Entropy(isnan(Entropy))=0; 
%     Point = iter/10000 
%     Tot_Free_Energy = sum(Free_Energy) 
%     Tot_Entropy = sum(Entropy) 
%     Tot_Energy 
%     FreeEnergyCount = FreeEnergyCount + 1; 
%     Record_Free_Energy(FreeEnergyCount) = Tot_Free_Energy; 
%     Record_Entropy(FreeEnergyCount) = Tot_Entropy; 
%   Plot_Free_Energy = zeros(1,numel(spin)/1); 
%      
% %     Tot_Entropy_Label = ['Total Entropy = ', 

num2str(Total_Entropy)]; 
% %     % % Entropy Energy Plot 
% %     plot(Element, Entropy, '.') 
% %     grid minor; 
% %     title('Entropy vs Total Energy') 
% %     xlabel('Total Energy') 
% %     ylabel('Entropy') 
% %     legend(Tot_Entropy_Label) 
% end 

  

  
%% Extra 

  
    % Testing ends when mutation occurs 
%     if spin(row,col) == -1 
%         break 
%     end 

  
    if iter == 0.05*numIters 
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         disp('5% complete') 
    elseif iter == 0.1*numIters 
         disp('10% complete') 
    elseif iter == 0.15*numIters 
         disp('15% complete') 
    elseif iter == 0.2*numIters 
         disp('20% complete') 
    elseif iter == 0.25*numIters 
         disp('25% complete') 
    elseif iter == 0.33*numIters 
         disp('33% complete') 
    elseif iter == 0.4*numIters 
         disp('40% complete') 
    elseif iter == 0.45*numIters 
         disp('45% complete') 
    elseif iter == 0.5*numIters 
         disp('50% complete') 
    elseif iter == 0.667*numIters 
         disp('66% complete') 
    elseif iter == 0.75*numIters 
         disp('75% complete') 
    elseif iter == 0.8*numIters 
         disp('80% complete') 
    elseif iter == 0.85*numIters 
         disp('85% complete') 
    elseif iter == 0.9*numIters 
         disp('90% complete') 
    elseif iter == 0.95*numIters 
         disp('95% complete') 
    end 
end 

  
% Close the video file 
close(v); 

  
% Create an array of iterations for plots 
IterCount = linspace(1, numIters, Count); 
Free_Energy_IterCount = linspace(1, numIters, FreeEnergyCount); 

  
%% Creating Energy and Free Energy Histogram 

  
% % "PlotEnergy" is the energy matrix created which records the total 

energy 
%     % of the system for each iteration 
% % "data" is the absolute value of all the energy values calculated 

for PlotEnergy 
% data = PlotEnergy; 
% % data = abs(PlotEnergy); 
% % The range of energy for the histogram "range(PlotEnergy)" 
% % "round" rounds any decimal value to the nearest integer 
% % RangeOfData creats an array of zeros representing the range of 

energies 
% RangeOfData = zeros(round(range(PlotEnergy),0),1); 
% % The lowest value for the range of data in the "data" array 
% LowestDataValue = min(data); 
%  



 

127 

% % "length(PlotEnergy)" is the number of elements in PlotEnergy 
% for HistElements = 1:length(PlotEnergy) 
%     HistogramPosition = round(data(HistElements) - 

LowestDataValue,0); 
%     if HistogramPosition == 0 
% %         SHOW_DATA = data(HistElements) 
%         HistogramPosition = 1; 
%     end  
%     % Put an energy value into the "bin" 
%     RangeOfData(HistogramPosition) = RangeOfData(HistogramPosition) + 

1; 
% end 
%  
% Element = []; 
% for HistElements2 = 1:length(RangeOfData) 
%     Element = [Element -round(-(LowestDataValue) - HistElements2)]; 
% end 
% Element = Element'; 

  
%% Total Free Energy 

  
% SumAll = 0; 
% Tot_Free_Energy = 0; 
% Free_Energy = zeros(1,length(RangeOfData)); 
% for HistElements = 1:length(RangeOfData) 
%     EnergyValue = Element(HistElements); 
%     HistValue = RangeOfData(HistElements); 
%     Free_Energy(HistElements) = 

(HistValue/sum(RangeOfData))*(EnergyValue ... 
%         + kT*log(HistValue/sum(RangeOfData))); 
%     SumAll = SumAll + RangeOfData(HistElements); 
% end 
% Free_Energy(isnan(Free_Energy))=0; 
% % SumAll 
% % Free_Energy 
% Tot_Free_Energy = sum(Free_Energy) 
% Exp_Free_Energy = exp((1/kT)*Tot_Free_Energy); 

  
%% Free Energy per iteration 
%  
% Tot_Free_Energy = 0; 
% Free_Energy = zeros(1,length(PlotEnergy)); 
% for HistElements = 1:length(PlotEnergy) 
%     EnergyValue = PlotEnergy(HistElements); 
%     HistValue = RangeOfData(HistElements); 
%     Free_Energy(HistElements) = 

(HistValue/sum(RangeOfData))*(EnergyValue ... 
%         + kT*log(HistValue/sum(RangeOfData))); 
%     SumAll = SumAll + RangeOfData(HistElements); 
% end 
% Free_Energy(isnan(Free_Energy))=0; 
%  
% Tot_Free_Energy = sum(Free_Energy); 
% Exp_Free_Energy = exp((1/kT)*Tot_Free_Energy); 

  
%% 
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% % Density of States 
% Density_of_States = zeros(1,length(RangeOfData)); 
% for HistElements = 1:length(RangeOfData) 
%     EnergyValue = Element(HistElements); 
%     HistValue = RangeOfData(HistElements); 
%     Density_of_States(HistElements) = ... 
%         (HistValue/sum(RangeOfData))*exp(EnergyValue*(1/kT) ... 
%         - Tot_Free_Energy); 
%     if HistElements = 0 
%         Energy = Element(HistElements) 
%         DoS = Density_of_States(HistElements) 
%     end 
% end 
%  
% plot(Element, Density_of_States, '.') 
% xlim([-170000 2000]) 
% % ylim([0 0.00001]) 
% grid minor; 
% title('Total Energy vs DoS') 
% xlabel('Total Energy') 
% ylabel('Density of States') 

  

  
%% Plots 

  
% % % Histogram Energy Plot 
% bar(Element, RangeOfData, 'BarWidth', 20) 
% % xlim([-1000 2000]) 
% ylim([0 1000])%max(RangeOfData)+2000]) 
% grid minor; 
% title('Frequency vs Total Energy') 
% xlabel('Total Energy') 
% ylabel('Frequency') 

  
% % % Iteration vs Energy Plot 
% figure(f1); 
% plot(IterCount, PlotEnergy, '.') 
% grid minor; 
% title('Total Energy vs Iterations') 
% xlabel('Iterations') 
% ylabel('Total Energy') 

  
% % % Iteration vs Entropy Plot 
% plot(Entropy_IterCount, Record_Entropy, '.') 
% grid minor; 
% title('Total Entropy vs Iterations') 
% xlabel('Iterations') 
% ylabel('Total Entropy') 

  
% % % Free Energy Plot 
% % Tot_Free_Energy_Label = ['Total Free Energy = ', 

num2str(Tot_Free_Energy)]; 
% figure(f2); 
% plot(Free_Energy_IterCount, Record_Free_Energy, '.') 
% grid minor; 
% title('Total Free Energy vs Iteration') 
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% xlabel('Iteration') 
% ylabel('Free Energy') 
% % legend(Tot_Free_Energy_Label) 

  
% figure(f1); 
% % % Iteration vs Energy Plot 
% plot(IterCount, PlotEnergy, '.') 
% hold on 
% plot(Free_Energy_IterCount, Record_Free_Energy, '.') 
% grid minor; 
% title('Total Energy and Free Energy vs Iterations') 
% xlabel('Iterations') 
% ylabel('Total Energy or Free Energy') 
% hold off 
%  
% figure(f2); 
% % % Iteration vs Entropy Plot 
% plot(Free_Energy_IterCount, Record_Entropy, '.') 
% grid minor; 
% title('Total Entropy vs Iterations') 
% xlabel('Iterations') 
% ylabel('Total Entropy') 
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B 

The SSA Model for Mutant Fixation at Goldilocks Point 

 
%*********** SSA For Mutant Fixation at Goldilocks Point 
%***** This version calculates move based on unit distance dx = 1 

  
% Create array for plotting 
itertot = 1; % total iteration 
ntot = 300; % total particle number 
ttim = 1500; % total time 
nl = 601;   % Total Position if particle position of particles 
Even = mod(nl,2); 
if Even == 0 % Even number 
    disp('Cannot use this value. nl has to be odd.'); 
    return; 
end 
xd = 5; % diffusion coefficient 
dx = 1; % unit position 
xcons = 1/(2*xd); 
dt = dx*dx*xcons; % Fick's diffusion length with RMS coefficient, 
                 % D = (1/(2*dimension))d/dt(rms(dx^2)) 
                 % In this model, dimension = 1 
                 % dx = sqrt(2*D*dt) = 1 
% a measure of how far the concentration has propagated  
% in the x-direction by diffusion in time t 
Fit_m1 = 20; % The fitness of the bacteria is 2 for the first mutation 
Fit_m2 = 100; % The fitness of the bacteria is 3 for the second 

mutation 
Fit_m3 = 200; % The fitness of the bacteria is 3 for the second 

mutation 
%% INSEERT FOOD CONCENTRATION 
Food_Function = zeros(nl,1); 
LeftConc = (nl-1)/2; % The max concentration of food is 40 
RightConc = (nl-1)/2; 
for Food_Pos = 1:nl 
    if Food_Pos <= ((nl-1)/2) %From 1 to (Middle - 1) 
%         Food_Function(Food_Pos) = (LeftConc+2 - Food_Pos); 
%         % Change Linear Function to Exponential 
%         Food_Function(Food_Pos) = exp(log(((nl-

1)/2)+1)*Food_Function(Food_Pos)/(((nl-1)/2)+1)); 
        Food_Function(Food_Pos) = 0; 
    elseif Food_Pos >= ((nl-1)/2)+1 % From Middle to Max (41 being the 

middle) 
        Food_Function(Food_Pos) = (Food_Pos - RightConc); 
        % Change Linear Function to Exponential 
        Food_Function(Food_Pos) = exp(log(((nl-

1)/2)+1)*Food_Function(Food_Pos)/(((nl-1)/2)+1)); 
    end 
end 
plot(Food_Function) 
xlim([1 nl]) 
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xbias = 0.01 + 5*Food_Function/(((nl-1)/2) + 1); 
% Removing baseline value 
% xbias = Food_Function/(((nl-1)/2) + 1); 
Max_xbias = 4.5; % Food Gradient 
for il = 1: nl 
    if xbias(il) > Max_xbias 
        xbias(il) = Max_xbias; 
    end 
end 
plot(xbias) 
xlim([1 nl]) 

  
%% Constant Food Function 
% for Food_Pos = 1:nl 
%     Food_Function(Food_Pos) = 0.03; 
% end 
% xbias = Food_Function; 

  
%% INSEERT CIPROFLOXACIN CONCENTRATION 
Cipro_Function = zeros(nl,1); 
LCipConc = (nl-1)/2; % The max concentration of food is 40 
RCiptConc = (nl-1)/2; 
for Cipro_Pos = 1:nl 
    if Cipro_Pos <= ((nl-1)/2) %From 1 to (Middle - 1) 
%         Cipro_Function(Cipro_Pos) = (LCipConc+2 - Cipro_Pos); 
%         % Change Linear Function to Exponential 
%         Cipro_Function(Cipro_Pos) = exp(log(((nl-

1)/2)+1)*Cipro_Function(Cipro_Pos)/(((nl-1)/2)+1)); 
        Cipro_Function(Cipro_Pos) = 0; 
    elseif Cipro_Pos >= ((nl-1)/2)+1 % From Middle to Max (41 being the 

middle) 
        Cipro_Function(Cipro_Pos) = (Cipro_Pos - RCiptConc); 
        % Change Linear Function to Exponential 
        Cipro_Function(Cipro_Pos) = exp(log(((nl-

1)/2)+1)*Cipro_Function(Cipro_Pos)/(((nl-1)/2)+1)); 
    end 
end 

  
plot(Cipro_Function) 
xlim([1 nl]) 
% Adjusting for a new volume of cipro 
Cip_xbias = 7*(Cipro_Function/(((nl-1)/2) + 1));  

  
plot(Cip_xbias) 
xlim([1 nl]) 

  
%% Constant Cipro Function 
% for Cipro_Pos = 1:nl 
%     Cipro_Function(Cipro_Pos) = 0.02; 
% end 
% Cip_xbias = Cipro_Function; 
% % Cip_xbias = zeros(nl,1); 

  
%% initialize position space 
w = zeros(nl,ttim); % Initialize wild type baceria array 
mut1 = zeros(nl,ttim); % Initialize mutant 1 array 
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mut2 = zeros(nl,ttim); % Initialize mutant 2 array 
mut3 = zeros(nl,ttim); % Initialize mutant 3 array 
CC = 400; % Carrying Capacity 
Death_Prob = 0.001; % The Death Rate 
Mut_Rate = 0.001; % Rate of Mutation 
Migration_Prob = 0.1; % Probability of Migration 

 

 
%%  Set iteration loop 
% Open video file to record 
v = VideoWriter('BacteriaMutantFix.avi'); 
open(v) 

  
for iter = 1:itertot; % set iterationloop 
% first initialization 
% x is a zeros matrix with dimensions "n1" by "ttim" 
x = zeros(nl,ttim); 
xx = zeros(nl,ttim); 
m1 = zeros(nl,ttim); 
mm1 = zeros(nl,ttim); 
m2 = zeros(nl,ttim); 
mm2 = zeros(nl,ttim); 
m3 = zeros(nl,ttim); 
mm3 = zeros(nl,ttim); 

  
% initialize in the middle x = (nl-1)/2+1 
x(((nl-1)/2+1),1) = ntot; % Wild type bacteria placed in the center 
xx(((nl-1)/2+1),1) = ntot; 
m1(((nl-1)/2+1),1) = 0; % The mutant bacteria are not  
mm1(((nl-1)/2+1),1) = 0;%   placed in the initial model 
m2(((nl-1)/2+1),1) = 0; 
mm2(((nl-1)/2+1),1) = 0; 
m3(((nl-1)/2+1),1) = 0; 
mm3(((nl-1)/2+1),1) = 0; 

  
xttim = 1; 
itim = 1; 
next_num = itim + 1; 
    % while dx is constant, dt is what helps move the particles around 
        % what shifts the particles is different lengths of time and 

not a 
        % constant time with various distances travelled 
        % dt varies while dx = 1 
    while (itim < ttim) % set time while loop 

  
        mutation_time = 0; % Used to check the first mutation 
        % ttimold is the time before adding dt to itim, (xttim = itim + 

dt) 
        ttimold = itim; 
        nxcount = 0; % count number of particles 
        % particle postion loop through all particle at postion il 
        for il = 1:nl % select position loop 

 
%% Wild Type Bacteria    
             % BEGIN particle diffusion/raction 
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             % nxloop selects the particle at the old time and old 

position 
                % xx(nl,ttim) to determine which way it moves then 

records  
                % it into new position x(nl,ttim) 
            % nxloop records the total number of particles at the   
                % original position and the old time 
             nxloop = xx(il,ttimold); 
             for ixl = 1:nxloop   % begin particle position loop 
                nxcount = nxcount + 1; % count number of particles 
                direction1 = rand(); % Random # between -1 and 1 
                dir = 1; 
                if (direction1 < 0.5) 
                    dir = -1; 
                end 
                distance = rand(); 
                dxx = (dx*dir)*distance; 
                xxx = il + dxx; 
                if (xxx < 1)  
                    xxx = 1; % The bacteria have stopped moving and 

settled 
                             % On the next loop the particles have a 

chance 
                             % of moving backwards or staying 
                end 
                if (xxx > nl)  
                    xxx = nl; 
                end 
                xxx = round(xxx); 
% GROWTH, DEATH, MIGRATION, AND CARRYING CAPACITY 
rep = rand(); 
mig = rand(); 
die = rand(); 
mut = rand(); 
Food_Conc = xbias; 
Food_Factor = Food_Conc(il);  
Cipro_Conc = Cip_xbias; 
Cipro = Cipro_Conc(il); % Cipro concentration is adjusted here 
K = Max_xbias/4; % The Monod Constant is the value of food when growth 

rate 
                 % is 1/2 the maximum growth rate 
                 % Measured in number of bacterial yields per 

microlitre 
                 % Max_xbias/3 assumes it is at 1/3 the food 

concentration 
% Max growth is set to 1 for this equation 

Monod = 1.25*(Food_Factor)/(K + Food_Factor);  
Max_Monod = 1.25*(Max_xbias/(K + Max_xbias)); % Maximum Growth Rate 
% Fast-Growth Targeting Anitibiotic MIC 

MICW = 1*(0.03 - 0.027*(Monod/Max_Monod)); % for Wild Type Bacteria 
% for FGTA the MIC decreases with growth rate 
  % when the growth rate is faster the concentration needed to inhibit 

growth 
  % decreases and less antibiotic is needed  
% The pharmacodynamic function describes bacterial inhibition by the 

antibiotic 
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   % because of MIC, the greater the growth rate, the less amount of 

cipro is  
   % needed to inhibit the bacteria 
   % with diminishing returns, more antibiotic is needed to eliminate 
   % fewer bacteria, so as food concentration increases growth rate the 
   % cipro has a greater effect of eliminating bacteria 
% Monod and the Pharmacodynamic Function describe the probability of 
% replication for the selected bacterium  
Pharma_Function = 1 - ((Cipro)/MICW)^2; 
% Geographic restriction can prevent the selected bacterium to grow 
Pop_Factor = (1 - (x(il,itim) + m1(il,itim) + m2(il,itim) + 

m3(il,itim))/CC); 
if (x(il,itim) + m1(il,itim) + m2(il,itim) + m3(il,itim)) > CC 
    Pop_Factor = 0; 
end 
% The probability of Replication is a combination of three factors like 

in 
% equation 41 
Replication_Prob = Monod*Pharma_Function*Pop_Factor; 

  
                if (rep < Replication_Prob) 
                    % THIS IS WHERE MUTATION TAKES PLACE 
                    if (mut > 0.0002*Mut_Rate) && (mut < Mut_Rate)  
                        m1(il,itim) = m1(il,itim) + 1; 
                    else 
                        x(il,itim) = x(il,itim) + 1; 
                    end 
                elseif (die < Death_Prob) && (x(il,itim) > 0) % Death 

Rate 
                    % Death rate needs to be proportional to food 
                    % concentration, fitness, cipro concentration, with 

a 
                    % minor constant death rate. 
                    x(il,itim) = x(il,itim) - 1; 
% The fixed rate should be a turnover rate where at steady state when 

there 
% is no cipro and there is food, the steady state is reached 
                else 
                    x(il,itim) = x(il,itim); 

     % Each position can grow up to CC 
                    if (x(xxx,itim) < CC) && (mig < Migration_Prob)  
                        % Remove particle from this position 
                        x(il,itim) = x(il,itim) - 1; 
                        % Place particle in this position 
                        x(xxx,itim) = x(xxx,itim) + 1; 
                    end 
                end 
             end % end particle position loop 

 
%% Mutant 1 
             mxloop = mm1(il,ttimold); 
             for ixl = 1:mxloop   % begin particle position loop 
                nxcount = nxcount + 1; % count number of particles 
                % Migration 
                direction1 = rand(); % Random # between -1 and 1 
                dir = 1; 
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                if (direction1 < 0.5) 
                    dir = -1; 
                end 
                distance = rand(); 
                dxx = (dx*dir)*distance; 
                xxx = il + dxx; 
                if (xxx < 1)  
                    xxx = 1; % The bacteria have stopped moving and 

settled 
                end 
                if (xxx > nl)  
                    xxx = nl; 
                end 
                xxx = round(xxx); 

 
% GROWTH, DEATH, MIGRATION, AND CARRYING CAPACITY 
rep = rand(); 
mig = rand(); 
die = rand(); 
mut = rand(); 
Food_Conc = xbias; 
Food_Factor = Food_Conc(il);  
Cipro_Conc = Cip_xbias; 
Cipro = Cipro_Conc(il); % Cipro concentration is adjusted here 
K = Max_xbias/4; 
Monod = 1.25*(Food_Factor)/(K + Food_Factor); % Max growth is set to 1 

for this equation  
Max_Monod = 1.25*(Max_xbias/(K + Max_xbias)); % Maximum Growth Rate 
MIC1 = Fit_m1*(0.03 - 0.027*(Monod/Max_Monod)); % Fast-Growth Targeting 

Anitibiotic MIC 
Pharma_Function = 1 - ((Cipro)/MIC1)^2; 
Pop_Factor = (1 - (x(il,itim) + m1(il,itim) + m2(il,itim) + 

m3(il,itim))/CC); 
if (x(il,itim) + m1(il,itim) + m2(il,itim) + m3(il,itim)) > CC 
    Pop_Factor = 0; 
end 
Replication_Prob = Monod*Pharma_Function*Pop_Factor; 

  
                if (rep < Replication_Prob) 
                    if mut < 0.0002*Mut_Rate 
                        x(il,itim) = x(il,itim) + 1; 

     % THIS IS WHERE MUTATION TAKES PLACE 
                    elseif (mut > 0.01*Mut_Rate) && (mut < Mut_Rate)  
                        m2(il,itim) = m2(il,itim) + 1; 
                    else 
                        m1(il,itim) = m1(il,itim) + 1; 
                    end 
                elseif (die < Death_Prob) && (m1(il,itim) > 0) % Death 

Rate 
                    m1(il,itim) = m1(il,itim) - 1; 
                else 
                    m1(il,itim) = m1(il,itim); 

     % Each position can grow up to CC 
                    if (m1(xxx,itim) < CC) && (mig < Migration_Prob)  
                        m1(il,itim) = m1(il,itim) - 1; 
                        m1(xxx,itim) = m1(xxx,itim) + 1; 
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                    end 
                end 
             end % end particle position loop 

              
%% Mutant 2 
             mxloop = mm2(il,ttimold); 
             for ixl = 1:mxloop   % begin particle position loop 
                nxcount = nxcount + 1; % count number of particles 
                % Migration 
                direction1 = rand(); % Random # between -1 and 1 
                dir = 1; 
                if (direction1 < 0.5) 
                    dir = -1; 
                end 
                distance = rand(); 
                dxx = (dx*dir)*distance; 
                xxx = il + dxx; 
                if (xxx < 1)  
                    xxx = 1; % The bacteria have stopped moving and 

settled 
                end 
                if (xxx > nl)  
                    xxx = nl; 
                end 
                xxx = round(xxx); 
% GROWTH, DEATH, MIGRATION, AND CARRYING CAPACITY 
rep = rand(); 
mig = rand(); 
die = rand(); 
mut = rand(); 
Food_Conc = xbias; 
Food_Factor = Food_Conc(il);  
Cipro_Conc = Cip_xbias; 
Cipro = Cipro_Conc(il); % Cipro concentration is adjusted here 
K = Max_xbias/4; 
Monod = 1.25*(Food_Factor)/(K + Food_Factor); % Max growth is set to 1 

for this equation  
Max_Monod = 1.25*(Max_xbias/(K + Max_xbias)); % Maximum Growth Rate 
MIC2 = Fit_m2*(0.03 - 0.027*(Monod/Max_Monod)); % Fast-Growth Targeting 

Anitibiotic MIC 
Pharma_Function = 1 - ((Cipro)/MIC2)^2; 
Pop_Factor = (1 - (x(il,itim) + m1(il,itim) + m2(il,itim) + 

m3(il,itim))/CC); 
if (x(il,itim) + m1(il,itim) + m2(il,itim) + m3(il,itim)) > CC 
    Pop_Factor = 0; 
end 
Replication_Prob = Monod*Pharma_Function*Pop_Factor; 

  
                if (rep < Replication_Prob) 
                    if mut < 0.0002*Mut_Rate 
                        m1(il,itim) = m1(il,itim) + 1; 

  % THIS IS WHERE MUTATION TAKES PLACE 
                    elseif (mut < Mut_Rate)  
                        m3(il,itim) = m3(il,itim) + 1; 
                    else 
                        m2(il,itim) = m2(il,itim) + 1; 
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                    end 
                elseif (die < Death_Prob) && (m2(il,itim) > 0) % Death 

Rate 
                    m2(il,itim) = m2(il,itim) - 1; 
                else 
                    m2(il,itim) = m2(il,itim); 

     % Each position can grow up to CC 
                    if (m2(xxx,itim) < CC) && (mig < Migration_Prob)  
                        m2(il,itim) = m2(il,itim) - 1; 
                        m2(xxx,itim) = m2(xxx,itim) + 1; 
                    end 
                end 
             end % end particle position loop 
%% Mutant 3 
             mxloop = mm3(il,ttimold); 
             for ixl = 1:mxloop   % begin particle position loop 
                nxcount = nxcount + 1; % count number of particles 
                % Migration 
                direction1 = rand(); % Random # between -1 and 1 
                dir = 1; 
                if (direction1 < 0.5) 
                    dir = -1; 
                end 
                distance = rand(); 
                dxx = (dx*dir)*distance; 
                xxx = il + dxx; 
                if (xxx < 1)  
                    xxx = 1; % The bacteria have stopped moving and 

settled 
                end 
                if (xxx > nl)  
                    xxx = nl; 
                end 
                xxx = round(xxx); 
% GROWTH, DEATH, MIGRATION, AND CARRYING CAPACITY 
rep = rand(); 
mig = rand(); 
die = rand(); 
mut = rand(); 
Food_Conc = xbias; 
Food_Factor = Food_Conc(il);  
Cipro_Conc = Cip_xbias; 
Cipro = Cipro_Conc(il); % Cipro concentration is adjusted here 
K = Max_xbias/4; 

% Max growth is set to 1 for this equation 
Monod = 1.25*(Food_Factor)/(K + Food_Factor);  
Max_Monod = 1.25*(Max_xbias/(K + Max_xbias)); % Maximum Growth Rate 

% Fast-Growth Targeting Anitibiotic MIC 
MIC3 = Fit_m3*(0.03 - 0.027*(Monod/Max_Monod));  
Pharma_Function = 1 - ((Cipro)/MIC3)^2; 
Pop_Factor = (1 - (x(il,itim) + m1(il,itim) + m2(il,itim) + 

m3(il,itim))/CC); 
if (x(il,itim) + m1(il,itim) + m2(il,itim) + m3(il,itim)) > CC 
    Pop_Factor = 0; 
end 
Replication_Prob = Monod*Pharma_Function*Pop_Factor; 

  



 

138 

                if (rep < Replication_Prob) 
                    if mut < 0.0002*Mut_Rate %Go back one genotype 
                        m2(il,itim) = m2(il,itim) + 1; 
                    else 
                        m3(il,itim) = m3(il,itim) + 1; 
                    end 

    % Death Rate 
                elseif (die < Death_Prob) && (m3(il,itim) > 0)  
                    m3(il,itim) = m3(il,itim) - 1; 
                else 
                    m3(il,itim) = m3(il,itim); 

  % Each position can grow up to CC 
                    if (mig < Migration_Prob)  
                        m3(il,itim) = m3(il,itim) - 1; 
                        m3(xxx,itim) = m3(xxx,itim) + 1; 
                    end 
                end 
             end % end particle position loop 
        end % end position loop 

  
        % now all the particles have moved by +/- dx=1 
        % time has moved by + dt=(dx*dx)/(2*xd) 
            % if dx = 1, xd = 5, then dt = 0.1 
        xttim = xttim + dt; % new time 
        if xttim < next_num 
            itim = next_num - 1; 
        elseif xttim >= next_num 
            itim = next_num; 
            next_num = next_num + 1; 
        end 
        ndum = nxcount; % count number of particles 

  
        for ill = 1:nl; % select position loop 

             
      % CheckCC combines the bacterium for each position and 
      % re-normalizes them so that they're within the carrying capacity 
           CheckCC = x(ill,itim) + m1(ill,itim) + m2(ill,itim) + 

m3(ill,itim); 
           if CheckCC > CC 
               x(ill,itim) = (x(ill,itim)/CheckCC)*CC; 
               m1(ill,itim) = (m1(ill,itim)/CheckCC)*CC; 
               m2(ill,itim) = (m2(ill,itim)/CheckCC)*CC; 
               m3(ill,itim) = (m3(ill,itim)/CheckCC)*CC; 
               x(ill,itim) = round(x(ill,itim)); 
               m1(ill,itim) = round(m1(ill,itim)); 
               m2(ill,itim) = round(m2(ill,itim)); 
               m3(ill,itim) = round(m3(ill,itim)); 
           end 

            
           % before this, w and mut1 were originally set to zero 
           % records number of particle at postion w and others 
           w(ill,itim) = x(ill,itim); %w(ill,itim) + x(ill,itim); 
           mut1(ill,itim) = m1(ill,itim);  
           mut2(ill,itim) = m2(ill,itim);  
           mut3(ill,itim) = m3(ill,itim);  
          % nxloop records the total number of particles at the   
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          % original position and the old time, nxloop = xx(il,ttimold) 
            % now xx shifts to the new value of x for all positions ill 
               %  to be used for the next while loop iteration 
           xx(ill,itim) = x(ill,itim); 
           mm1(ill,itim) = m1(ill,itim); 
           mm2(ill,itim) = m2(ill,itim); 
           mm3(ill,itim) = m3(ill,itim); 
       % For this "for" loop only, re-record the values of the old time 
            % itim into the new time ixxx 
            % if dt = 0.1, then this cycle continues 10 more times 
            % before it reaches itim  + 1, continuously updating the 
            % number of particles into the new time 
            % the values at a new position get moved from time itim to 
            % the new time ixxx when it's at the boundary of itim + 0.9 
           ixxx = itim + 1; 
           if xttim >= itim + 0.9 
                x(ill,ixxx) = x(ill,itim); 
                m1(ill,ixxx) = m1(ill,itim); 
                m2(ill,ixxx) = m2(ill,itim); 
                m3(ill,ixxx) = m3(ill,itim); 
           end 
        end % end system position loop 

  
% Record a video of the model         
    if mod(itim,5) == 0 

         
        xpos = zeros(nl,1); 
        xpos(1) = 1; 
        for il = 2:nl 
            xpos(il) = xpos(il-1) + 1; 
        end 

         
        xdata1=xpos(1:nl); 
        ydata1=w(1:nl,(itim)); 
        ydata1(ydata1==0)=nan; 
        xdata2=xpos(1:nl); 
        mutdata2=mut1(1:nl,(itim)); 
        mutdata2(mutdata2==0)=nan; 
        xdata3=xpos(1:nl); 
        mutdata3=mut2(1:nl,(itim)); 
        mutdata3(mutdata3==0)=nan; 
        xdata4=xpos(1:nl); 
        mutdata4=mut3(1:nl,(itim)); 
        mutdata4(mutdata4==0)=nan; 
        

plot(xdata1,ydata1,xdata2,mutdata2,xdata3,mutdata3,xdata4,mutdata4,'Lin

eWidth',2); 
        xlim([1 nl]) 
        ylim([0 (CC+100)]) 
        legend({'Wild Type Fitness = 1','Mutant 1 Fitness = 20','Mutant 

2 Fitness = 100','Mutant 3 Fitness = 200'},'Location','northwest'); 
        xlabel ('Position (unitless)', 'fontsize', 16); 
        ylabel ('Number of Cells', 'fontsize',16); 
        title(['Time is ',num2str(itim)]) 

         
        frame = getframe(gcf); 
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        writeVideo(v,frame) 
        drawnow; 
    end 

  
    end %  end of time while loop 
   % After the time while loop, the next iteration goes back and adds 

another ntot number of particles to the system starting at time 1, 

while the previous particles in iteration 1 continue with their 
original position 
   % REMEMBER: The total number of particles added to the system on 
   iteration 2 is added at ttim = 1.  This is when the particles in the 
   center only start to move, while particles in iteration 1 are no 
   longer moving. 
   % Both iteration 1 and any further iterations have roughly the same  
   displacement of particles from the initial position and onward,  
   (ttim + dt).  The average number of particles gets normalized back  
   to 500 below. 
end % end iteration loop 

  
% Close the video file recorded 
close(v); 

  
% ttim is the total time 
% Normalize y for total amount of iterations 
for itim = 1:ttim 
    for il = 1:nl 
       % With xcons = 1/(2*xd), the time loops through 10 times, adding 
         500 particles to each loop 
        w(il,itim) = w(il,itim)/(itertot); 
        mut1(ill,itim) = mut1(ill,itim)/(itertot); 
        mut2(ill,itim) = mut2(ill,itim)/(itertot); 
        mut3(ill,itim) = mut3(ill,itim)/(itertot); 
    end 
end 
% y(1:nl,1) 
% Total_Particles = sum(y(1:nl,1)) 

  
xpos = zeros(nl,1); 
xpos(1) = 1; 
for il = 2:nl 
    xpos(il) = xpos(il-1) + 1; 
end 

  
% Image of the model after it has finished 
xdata1=xpos(1:nl); 
ydata1=w(1:nl,(ttim - 1)); 
ydata1(ydata1==0)=nan; 
xdata2=xpos(1:nl); 
mutdata2=mut1(1:nl,(ttim - 1)); 
mutdata2(mutdata2==0)=nan; 
xdata3=xpos(1:nl); 
mutdata3=mut2(1:nl,(ttim - 1)); 
mutdata3(mutdata3==0)=nan; 
xdata4=xpos(1:nl); 
mutdata4=mut3(1:nl,(ttim - 1)); 
mutdata4(mutdata4==0)=nan; 
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plot(xdata1,ydata1,xdata2,mutdata2,xdata3,mutdata3,xdata4,mutdata4,'Lin

eWidth',2); 
xlim([1 nl]) 
ylim([0 (CC+100)]) 
legend({'Wild Type Fitness = 1','Mutant 1 Fitness = 20','Mutant 2 

Fitness = 100','Mutant 3 Fitness = 200'},'Location','northwest'); 
xlabel ('Position (unitless)', 'fontsize', 16); 
ylabel ('Number of Cells', 'fontsize',16); 

 

 

 


