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ABSTRACT 

Convexity in metric space is the main topic of discussion in this thesis. 

To undertake the study we have studied extensively the means introduced by 

Doss and included the results concerning means derived by Gahier and 

Murphy. We use this definition of a mean to define a new notion of convexity on 

a metric space, called B-convexity. B-convexity has been compared with other 

notions of convexity on a metric space. Finally following a construction given 

by Machado, we show that a B-convex metric space, satisfying certain 

properties, is essentially a convex subset of a normed space and the space is 

unique. 
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BASIC NOTATIONS 

The following terminology will be used in this thesis. Symbols other than these 

will be defined individually. 

X any arbitrary nonempty set. 

<[) empty set. 

A,B.  capital letters will usually denote subsets of X. 

a,b,c,x,y,..  small letters will usually denote elements of X. 

c usual set containment. 

u usual set union. 

n usual set Intersection. 

\ usual set difference operation, 

e.g. for example, 

i.e. that is. 

e belongs to (x e A means x belongs to A). 

R set of real numbers. 

Q set of rational numbers. 

Z set of all integers. 

N set of natural numbers . 

RN N-dimensional vector space. 

VI 



S(x,r) open ball with centre x, and radius r. 

S(x,r) closed ball with centre x, and radius r. 
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Chapter I 

Introduction 

1.1. Historical Review: 

Convexity is a broad geometrical concept studied by different 

mathematicans since early in the nineteenth century. The scope and 

applicability of convexity led different authors to investigate and extend the 

notion of convexity in different spaces. Our main topic of discussion will be 

convexity in metric space. 

Perhaps the earliest notion of convexity in a metric space was given by 

Menger [17] in 1928. He defined a betweenness condition: z is between x and 

y if d(x,z) + d(z,y ) = d(x,y). C is convex if for every x,y e C , then zeC, for z 

between x and y. Busemann [4] defined convexity in the Menger sense as 

follows: A set H in a metric space is convex in the Menger sense if for every 

pair of distinct points x, z in H, there exists a point y in H such that 

d(x,y) + d(y,z) = d(x,z). In a similar way P.S. Soltan [18] Introduced d-convexity 

as follows: a set M of a metric space X is called d-convex if d(x.j,X2) = 

d(x.j ,X3)+d(x3,X2) with x., ,X2 e X, then X3 e M. 

In 1969 W. TakahashI [19] introduced another notion of convexity in a 

metric space X by an operator W from X x X x [0,1] in to X satisfying 

d(z,W(x,y;a)} < (1- a )d(z,x)+ ad(z,y), for all x,y,z e X and a e [0,1]. 

Further a subset K E X is convex iff W(x,y; a)e K for x,y G K and 0 < a < 1. 
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Machado [15] in 1973 introduced conditions under which a convex metric 

space (using Takahashi's definition) is isomorphic to a convex subset of some 

normed linear space E. Although, Takahashi’s convexity structure produced a 

reasonably rich notion of convexity for a metric space, however, In general, W 

need not be continious and the permutations of the order of repeated convex 

combination may not be related. Louis A.Talman [20] addressed those 

problem and he complemented Takahashi’s notion of convexity by assuming 

compactness of the metric space or continuity of W. Secondly he extended the 

definition of Takahashi to a higher dimension and defined a strong convex 

structure on X. Using this he proved a fundamental property of convex hulls. 

In this thesis we will use Doss’s [9] definition of mean in a metric space 

and the properties of the mean as given by Gahler and Murphy[10]. Some of 

the proof presented in this thesis are different from Gahler and Murphy. We 

relate the definition of mean to a new definition of convexity . We call it 

B-convexity. The results derived by W.Takahashi [19], H.V.Machado [15] and 

LA.Talman [20] regarding convexity structure in their papers can be derived 

from B-convexity. 

We begin by giving some necessary definitions in the next section. 

1.2. Basic Definitions: 

The following definitions will be often referred to in this thesis. They can 

be easily found in any standard-text book. 

1.2.1. Definition: A linear space over the field R is a non empty set V of 

elements with two operations + and * is called additions and multiplications. 



respectively, satisfying the following axioms with respect to the elements of V 

and R . 

(1) To every pair, x and y e V, there correspond an element x + y, called the 

sum of X and y, in such a way that: 

(1) addition is commutative, x + y = y + x; 

(ii) addition is associative, x + (y + z) + ( x + y) + z; 

(iii) there exist in V a unique element ’'0"(called the origin ) such that x + O = x 

for every x e V; 

(iv) to every vector there corresponds a unique element -x such that 

X + (-x) = O. 

(2) To every pair a e R and x G V, there correspond an element a* x in V , 

called the product of a and x in such a way that 

(v) multiplication is associative, i.e., a*(p,^x)= ( a* p)*x; 

(vi) there is a 1G R sothat 1*x =x= x*t, for every XGV. 

(3) (i) Multiplication is disrtibutive with respect to addition, 

a* (x + y) = a* x+ a* y; 

(ii) Multiplication by vectors is distributive with respect to scalar addition, 

(a + P)* X = a*x+ P*x. 

The elements of V are called vectors whilst the elements of R are scalars. 

1.2.2. Definition : Two linear spaces X and X* over the same field are said to be 
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isomorphic if there is one-to-one corresponding x< >x* between X and 

X* which preserves the operations in the sense that: 

x<  >x*, y< >y* implies x + y< >x* + y* and 

axi > ax*, where a is an arbitrary scalar and x,y, e X and x*,y* € X*. 

1.2.3. Definition: Let X be any set. A function d(x,y) on the set X x X is a metric 

provided: 

(i) d(x,y) is a non negative real number for every pair (x,y) of X x X; 

(ii) d(x,y) = d(y,x); 

(iii) d(x,y) = 0 iff X = y: 

(iv) d(x,z) < d(x,y) + d(y,2). 

The pair (X,d) is called a metric space. 

1.2.4. Definition: Let (X,d) be a metric space. For p e X and 5 > 0, 

S(p, 5)= {x: d(p,x) < 5} and S(p, 5) = {x : d(p,x) < 5} are the open and closed 

balls centered at x with radius 5 . 

1.2.5. Definition: A metric space (X,d) is isometric to a metric space (Y,e) 

iff there exists a one-one and onto function f: X ->Y which preserves 

the distance, i.e., for all a,b e X, d(a,b) = e(f(a),f(b)). 

1.2.6. Definition: Let X be a linear space. A function which is associates with 

each X e X, a real number |1 x || is called a norm on X, provided : 

(i) II X II >0 and || x || = 0 iff x = 0. 
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(ii) II X + y II < II x|l + II y II for all x,y G X. 

(iii) II Xx II = I X\ II X II where A. e R. 

A linear space X with a norm is called a normed linear space or simply a 

normed space. 

1.2.7. Definition: A subset S of a linear space is called a convex set iff for all 

a,b e S and 0 < A. < 1 then Xx + (1 - A.) y G S. 

1.2.8. Definition: Aset C is compact if every infinite subset of C has an 

accumulation point in C. 

1.2.9. Fact: A bounded infinite set has at least one accumulation point. If the 

accumulation point lies in the set, then the set is finitely compact. 
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Chapter II 

Axiomatic Convexity Space. 

2.1. Introduction: 

Convexity is a broad geometric concept which has been studied for a 

long time. Usually when we consider convexity we consider convex subsets of 

linear spaces. Also convexity has been defined in several ways. In this 

chapter, an axiomatic setting for the theory of convexity is provided, following 

the approach of Kay and Womble [14]. 

2.2. Axiomatic Convexity Space: 

2.2.1. Definition : Let X be a set and Q be a family of subsets of X. Then 

(X,Q) IS an axiomatic g(^YExiiy.^ac^ if 

(i) <)), XG Q; 

(ii) OFG Q, for FQQ. 

The sets in Q are called Q-convex (or convex) sets. 

2.2.2. Example: Let G be a group and Q consists of all subgroups of G 

including ^ and G. Then (G,Q) is an axiomatic convexity space, since 

intersection of subgroups of G is a subgroup of G. 

2.2.3. Example: Let (X,Y) be a topological space, where Y Is a collection of 

closed subsets of X. Therefore (X,Y) is an axiomatic convexity space. 

2.2.4. Example: Let V be a linear space. Let Q be the usual collection of 

convex sets in V . Then (V,Q) is an axiomatic convexity space. 
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2.2.5 Example: Let (P,<) be a poset. Let Q = { A: AcP with the property that 

for a, be A, a < x < b implies x e A}. It can be shown that (P,Q) is an axiomatic 

convexity space. 

2.3. The convex hull : 

2.3.1. Definition : Let (X,Q) be a convexity space. For Ac X , the convex hull 

of A is defined as Q(A) = n{ C: C e Q , A g C}. 

2.3.2. Proposition : 

The hull operator possesses the following properties: 

(i) ?{<}>) =<}>: 

(ii) A c Q(A) for each A c X; 

(iii) A c B implies Q(A) c Q(B); 

(iv) Q(Q(A}) = Q(A): 

(v) Ae g iff Q(A) = A. 

Proof: (i) and (ii) are trivial by definition of Q(A). 

(iii) Q(A) = n{C:CG Q , A c C}. Also, by (ii). we have A cB g Q(B) = 

n{Ce g, BcC}. But g(A)gCforall A g C. Therefore g(A) g g(B). 

(iv) By (ii) and (iii). g(A)gg(g(A)). 

Now suppose a G g(g(A)) = n{C: C G g, g(A) g C} which now implies 

a GC for all CG g such that g(A) g C. Therefore aG g(A). 
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Thus Q(A) = Q(Q(A)). 

(v) If A G Q , by Definition 2.3.1., Q(A) Q A. Thus A = Q(A). 

2.3.3. Remarks: It may be noted that the hull operator Q Is not 

necessarily a topological closure operator since Q(AuB) Q(A) u Q(B) in 

general. 

2.4. Join hull-commutative fJHCT 

For any members a,b G X we denote the convex hull of a and b by 

Q(a,b), and call it a segment with end points a and b. The convex hull of 

finite sets {a,b,c,d,...} will be denoted by Q(a,b,c,d,...). If a = b it is not 

necessary that the open segment be empty. 

2.4.1. Definition: The join of x and A in a convexity space (X,Q) is the set 

defined by xJA = u{Q(x,a) : aG A} where XG X, AcX. For two sets A, BeX, 

their join will be AJB = u{Q(a,b): (a,b) G (A x B)}. 

2.4.2. Lemma: Let (X,Q) be an axiomatic convexity space. For any 

a,x G X, xJQ(A) c Q (xuA). 

Proof: Suppose y G XJQ(A). Then yeQ(x,a) for some a G Q(A). NOW Q(A) C 

Q (xuA). So Q(x,a)c Q (xuA). Hence xJQ(A) £ Q (xuA). 

The reverse Inclusion does not always hold. 

2.4.3. Example: Let X be the 3-dlmenslonal euclidean space (R^) and let Q 

be the collection of one and two dimensional convex subsets (in the usual 
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sense) including <|) and X. Let A, be a two dimensional subset of X and x, be 

a point not on the plane generated by A. Then x J Q(A) is a convex cone (in 

the usual sense with vertex x) whilst Q(xuA) is X(=R^) which is the smallest 

member of Q containing x and A. 

2.4.4. Definition: (X,Q) is said to be join hull-commutative (JHC) iff u{Q(x,b) : b 

^ C(A)} = Q (u {Q(x,a): a e A)) = Q(xuA) for each Ac X and for every x eX. 

2.5. Domain Finite (DF) 

2.5.1. Definition: (X,Q) is said to be domain finite (DF) iff for each A c X, Q(A) = 

: F c A and F is finite}. 

2.5.2. Lemma: If (X,Q) is domain finite and join hull commutative, then a 

subset A of X is convex iff Q(a,b)c A for all a,be A. 

Proof: It is easy to see that if A is convex then by definition Q(a,b) c Q(A) = A , 

V a,b G A. Conversely, it is sufficient to show that Q{A)QA . We prove this part 

by induction . Take |F| =1 i.e. F = {x}, then by assumption, Q(x) = Q(x,x) e A . 

Hence Q(F) cA. Now, suppose the above relation is true for | F| < n -1 and 

F cA. We shall prove that the relation is true when |F 1 = n . Let t e Q(F) then 

te 5(X^,X2,...X^). By join-hull commutativity there exists b G Q(X.,,X2....XJ such 

^ that t G Q(x.|,b) c A . Hence C(F)c A for any finite set F c A. Again by 
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definition of domain finiteness, Q(A) = u {Q(F) : F EA , F is finite } E A. 

2.5.3 Lemma: If (X,Q) is a convexity space which is domain finite and join hull 

commutative, then Q(AuB) = Q(A) J Q(B) = Q(B) J Q(A). 

Proof: By definition, Q(A) J Q(B) = u (Q(a,b) : a e Q(A) , b e Q(B)). Let 

a e Q{A) and be Q(B), then a,b e Q(A) u Q(B)EQ(AUB). Therefore Q(a,b) 

EQ(AUB) . So , u(Q(a,b)) s Q (AuB). Hence Q(A)JQ(B) E Q(AUB) Again by 

definition of domain finiteness for x e Q(AuB), we have 

xe Q(a^ ,82 a^) where a^,a2 ,a^ e AuB. If a^, a2,....,a„ belongs to 

either A or B, then x e Q(A) J Q(B). Consequently Q(AUB)EQ(A)JQ(B). Next 

we consider a.,, 82 ,a^ e A , and a^^^,a^^2 definition of the 

join hull commutative property we have Q(a^,a2...,a^,a^^|, ap)= a., J a2 J 

33  .a„)  .am)JQ(am+i ^n) = C(A)uQ(B). 

2.5.4. Lemma: Let (X,Q) be a DF and JHC convexity space. If A and B are 

convex subsets of X , then for each x e Q(AuB) , there exists a e A and b e B 

such that X e Q(a,b). 

Proof: Follows directly from the lemma 2.5.3. 

2.6. Regularity (REG): 

2.6.1 ■ Definition: (X,Q) Is regular (REG) iff each segment in ( X, Q) satisfies the 
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following properties: 

(i) non-discrete : V x,ye X , x y , then Q(x,y) \ {x,y} (j). 

(ii) decomposable: V z E Q (x.y). Q(x,z) nQ(x,y) = {z} and Q(x,z)uQ(z,y) = 

<?(x,y). 

(iii) extendable: V x y 3 u.v e x such that Q(x,y) c Q(xy) \ M and 

Q(x,y) =Q(u,y)\{u}. 

2.6.2. Lemma: If (X.Q) is REG then (i) Q(x,x) = x , V x E X; (ii) If a E Q{b,c) 

and b E Q(a,c), a b^* c then a = b; (iii) For any a,b,c E X,a^b?tc,if 

a EQ(b,c), then b ^ Q(a,c) and cs? Q(a,b). 

Proof: (i) Since x E Q(X,X) implies Q(x,x) 5* 

Also by definition of the non discrete property, we have Q(x,y) \ {x,y} 9^ ^ for 

X y . Since x E Q(x,y), then we have Q(x,x) n Q(x,y) = {x} and 

Q(x,x) u Q(x,y) = Q(x,y). So Q(x,x)s Q(x,y). Therefore Q(x,x) = {x}. 

(ii) Let a EQ(b,c). Therefore Q(b,c) = Q(b,a) u Q(a,c) and {a} = Q(b,a)n 

Q(a,c). Again b E Q(a,c). Therefore {b} = Q(a,b) n Q(b,c), and 

{b} = Q(a,b) n {Q(b,a) u Q(a,c)} =Q(a,b) n {Q(a,b) u Q(a,c)}= Q(a,b)u 

(Q(a,b) n Q(a,c)} = Q(a,b) u {a} = Q(a,b) 

Similarly, we can show that {a} = Q(a,b). Hence a = b. 
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(iii) On the contrary let us suppose b G Q(a,c). Then Q(b,c) £ Q(a,c). 

Also since aG Q(b,c) then Q(a,c) c Q(b,c) and Q(b,c) = Q{a,c). By (ii) we 

have a = b which is contradictory to the hypothesis. Therefore b^ Q(a,c). 

Similarly we can show that c G Q(a,b). 

2.6.3.Remarks: The segments in a regularspace can be given a natural linear 

ordering, because the decomposability relation essentially yields a betweeness 

relation. 

2.7. Straignt (STR): 

2.7.1. Definition : An axiomatic space (X,Q) is said to be straight iff the union of 

two segment having more than one point in common is a segment. 

2.7.2. Theorem: Let (X,Q) be a straight regularspace. For a,b G X , a b , 

then (a,b) the line determined by a and b, is uniquely determined. 

Proof: Omitted [22]. 

2.8. Line Spaces: The idea of line space was first Introduced by Cantwell [5] in 

1974. Later in 1978, Cantwell & Kay [6] proved that straight line spaces of 

dimension three or higher were isomorphic to an open convex subset of a real 

vector space. The approach used by Cantwell and Kay was classical and 

descriptive geometry and self contained. However, in 1976, Doignon [7] had 

also essentially obtained the same result that line spaces of dimension three or 

greater or of dimension two and desarguesian are linearly open convex 

subsets of a real affine space using a different technique than Cantwell and 
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Kay. But the result of Doignon [7] depends on a 1938 theorem of Spencer. In 

1981 Whitfield and Yong [22] used Doignon's result to prove the following 

linearization theorem: 

2.8.1. Theorem: If (X,Q) be convexity space of dimension 2 and desarguesian 

or of dimension >2, then (X,Q) is isomorphic to a linearly open convex subset 

of a real affine space iff (X.Q) Is DF, CMP, JHC, REG, and STR. 
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Chapter III 

Metric Characterization of Normed Linear Space 

3.1. Introduction: In this chapter a metric characterization of an arbitrary 

normed linear space is given by following the work of Gahler and Murphy [10]. 

In section 2, the fundamental notion of a mean Bp(a,b) as given by Doss 

[8] is considered. Frechet [9] called Bp(a,b) a generalized mean (T), and 

indicated that Bp(a,b) may be thought of as the points that divide the segment 

joining a and b in the ratio p : (1-p). That this holds is shown in Lemma 3.2.10. 

In section 3, B p(a,b) is shown to be a singleton for every p G R and 

for every a,b In an arbitary normed linear space. 

I A 
II I I VVO UUIIOIUOI CL mCLIIU OpClV/O /\ Will I piupoiiy V^IVI (given by 

Gahler and Murphy in their paper as C ). In that case also means are 

singletons. The property GM holds in every normed linear space. 

In section 5, it Is shown that a metric space with property GM will 

generate a linear structure Iff It has a certain property A which means 

associativity of addition. 

In section 6, assuming the same conditions for X , we show there 

exists a norm on X such that the corresponding metric is equal to the given 

metric on X . The resulting normed linear space is unique up to an isometric 
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isomorphism. 

3.2. Means: 

3.2.1 Definition: Let (X.d) be a metric space. For any a,b e X and any real p, 

the set Bp(a,b) is defined as follows: 

p G X, d(p,x) < (1 -p) d(a,x) + pd(b,x), Vx e X, p e [0,1]. 

p G X, d(p,x) > (1 - p) d(a,x) + pd(b,x), Vx G X, p ^ [0,1]. 

Frechet [9] calls an element of Bp(a,b) a generalized mean. As seen below 

(Lemma 3.2) the elements of Bp(a,b) divide the segment from a to b in the 

ratio p: (1 - p). We shall refer to the elements of Bp(a,b) as means. If A,B c x, 

we define Bp(A,B) = u{ Bp(a,b): a G A, b G B}. The set Bp(a,b) may be 

empty, a singleton or have more than one element as the following examples 

will illustrate. 

3.2.2. Example: For a discrete metric space X = {a,b,c,d}, Bp(a,b) = <[) for 

p 0,1 . 

3.2.3. Example: Let X = {a,b,c,d} be a discrete metric space with metric d 

except d(a,b) = 2. Then Bp(a,b) = {c,d}. 

When the set Bp(a,b) consists of one element p then we will write 



16 

Bp(a,b) = p instead of Bp(a,b) = {p}. The following lemmas list several 

properties of means. 

3.2.4. Lemma: BQ(a,b) = a , B^(a,b) = b for any a,b G X . 

Proof: Clearly a G BQ(a,b), follows from the definition . Next if 

p G Bo(a,b), then d(p,x) < d(a,x) for all x G X. So, 0 < d(p,a) < d(a,a) = 0 for 

x = a . This implies p = a. 

Again b G B.,(a,b) since d(b,x) <d(b,x), for all x G X . Next if 

pGB.|(a,b) then d(p,x) <d(b,x) for all XG X and 0 <d(p,b) <d(b,b) = 0 for 

x = b . This implies p = b. 

3.2.5. Lemma: For any real p and any a G X , Bp (a,a) = a. 

Proof: F.i'om definition we have 

p G x , d(p,x) < d(a,x) for all x G X , p G [0,1]. 

p G x , d(p,x) > d(a,x) for all x G X , p ^ [0,1]. 

\ 
In each case the Inequality implies p = a. 

3.2.6. Lemma: For any p 5^0, a,b G X and CG Bp(a,b) then b G Byp(a,c), 

and conversely. 

Proof: For pG (0,1), we have, d(c,x) < (1 -p) d(a,x) + pd(b,x) for all x if and 

only If d(b,x) > (1 - p'"’) d(a,x) + p''*d{ b,x). 
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3.2.7. Lemma: For any p < 0, and any a,b e X , c € pp(a,b) implies 

ae Bp/^p..|j(c,b) and conversely. 

Proof: p<0 implies 0<p(p-1)‘‘‘ <1 . Now ce Bp(a,b) implies 

d(c,x) > (1 - p) d(a,x) + pd(b,x) for all x, if and only if 

d(a,x) < p(p-1)''' d(b,x) - (p-1)'^d(c,x) = (1 -p(p-1)-’) d(c,x) + p(p-1) d(b,x) 

implies a e Bp/^p.,) (c.b). 

3.2.8. Lemma. For any a,b e X, p e R , Bp(a,b) = B.,.p(b,a). 

Proof: Follows immediately from the definition of mean. 

3.2.9. Corollary : By2(a.W = B.,/2(b,a). 

3.2.10 Lemma: If an element peBp^(a,b) then d(a,p) = |p| d(a,b) and 
r 

d(b,p) = |1 - p| d(a,b), for any a,b e X and for any p e R. 

Proof: Case (i). pe [0,1]. By definition, d(p,x) < (1 - p) d(a,x) + pd{b,x), 

for all X e X . So d(p,a) < (1 -p) d(a,a) + pd(a,b) = pd(a,b). In a similar way , 

d(b,p) < (1 - p) d{a,b). Now, d(a,b) < d(a,p) + d(p,b) < pd(a,b) + (1 - p) d(a,b) = 

d(a,b). Thus d(a,p) + d(p,b) = d(a,b), d(a,p) = pd(a,b) and d(b,p) = (1-p) d(a,b). 

Case (ii). Let pe (1 ,oo) , then by Lemma 3.2.4. and using case (i) 
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pe Bi/p(a,b), d(a,b) = p ’d(a.p), i.e., d(a.p) = pd(a.b) and d(b,p) = (1 - p‘ ’) 

d(a,p) = (p-1)p-’ 

d(a,p) = (p-1)p’Vd{a,b) = (p-1)d(a,b). Thusd(b,p) = |1 -p|d(a,b). 

Case (ill), pe (-^,0). By Lemma 3.2.5. ae (p,b) for pe Bp(a,b). By 

case (i) d(a,p) = p(p-1) d(p,b) and d(b,a) = (1 -p(p-1)'‘*) d(p,b) = - (p-1)-‘‘d(p,b). 

Therefore, d(p,b) = (1 - p) d{a,b) 

Also, d(a,p) = p(1-p)‘!(p-1) d(a,b) = -p d(a,b). 

3.2.11. Lemma: For p, p', p* e [0,1] (p, p', p* ^ [0,1] with p+ p'p* - pp* ^ [0,1]) 

and a,be X, 

Bp* (Bp(a.b), Bp.(a,b)) c Bp+p.p..pp*(a,b). 

Proof: Case (i). Consider first p,p',p*e [0,1]. 

Let p* 6 Bp*{Bp(a,b) ,Bp'(a,b)) then p*eBp*(p,p’) for some p s Bp(a,b) and 

p'e Bp'(a,b). Therefore d(p*,x) < (1-p*)d(p,x) + p*(p',x) for all xsX 

< (1 - p*)((1 - p) d{a,x) + pd(b,x)) + p*((1-p’) d(a,x) + p'd(b.x)) 

= (1 -(p + p’p* - pp*)) d(a,x) + (p + p’p* - pp*) d(b,x) 

As p + p'p* - pp* e [0,1], therefore p* e Bp ^ py . pp* (a,b). 
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Case(ii). If p,p',p*« [0,1] and p + p'p* - pp* e [0,1] then for p* e Bp*(Bp(a,b), 

Bp.(a,b)), d(p*,x) > (1 - (p + p'p* - pp*)) d(a,x) + (p + p’p* - pp*) d(a,b) 

Therefore p*e Bp + p.p. _ pp.(a,b). 

3.2.12. Theorem: If the means are singleton on the metric space (X,d), then 

Bp*{Bp(a,b), Bp.{a,b)) = Bp + p.p.. pp*(a,b), for any x,y e X and p,p*,p’e [0,1]. 

Proof: Follows from lemma 3.2.11. 

3.2.13. Corollary: Bp*(BQ(b,a), Bp*(b,a) = Bp'p*(b,a). 

3.2.14. Lemma: For any a,b e X and any real p', p* > 1 and p = 0, 

^p’{^>^)) - ^p + p'p* - pp*(^«^)* 

Proof: We need to show B(,*(a, BQ«(a,b)) E Bo'Q*(a,b) 
r r r r 

Let pe Bp*(a,Bp'(a,b)) , so p e Bp*(a,q) for some q G Bp-(a,b) 

Then it follows that for all x e X ,d(p,x) > (1 - p*) d(a,x) + p*d(q,x) > (1 - p*) d(a,x) 

+p*{(1-p') d(a,x) + p'd(b,x)} = (1-p*p’) d(a,x) + p'p*d(b,x). 

Asp'p* >1, p e Bp-p*(a,b). 

3.2.15. Theorem: If the means are singletons on the metric space (X,d),then 

■> Bp(x,y) is a continuous for every pair x,y e X with x^y ,then p G [0,1} 
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injection of [0,1] into X. 

Proof: Let a,p e [0,1] and suppose without loss of generality a > p. By 

theorem 3.2.12., d(B „(x,y), Bp(x.y)) = d(B( „_py(i .p) (( Bp(x.y), Bi(x,y)), 

Bp(x.y))= (a-p)/(1-p)d(Bj(x,y),y) = {a-p)(1-p)-1 (1-p) d(x,y) = (a-p) d(x,y). 

3.2.16. Remarks: The above argument proves that the map Bo^(x,y) ——>ad(x,y) 

gives an isometry of the subspace {Bo^(x,y): a € [0,1 J} of X onto a closed 

interval [0, d(x,y) ]. In particular a e [0,1]} Is homeomorphic with [0,1] 

If X y and is a singleton if x = y . 

3.3. The mean Bpfa.bl in a normed linear space: 

Frechet [9] asked if Doss' [8] mean would give a metric characterization 

of algebraic betweenness in normed linear spaces. Gahier and Murphy [10] 

answered Frechet's question in the affirmative. Their proof of this will be the 

main topic of discussion in this section. 

3.3.1 ■ Lemma: If d is a translation invariant metric in a linear metric space X 

then Bp(a + c,b + c) = Bp(a,b) + c, for any p e R and a,b,c G X. 

Proof: Let p G Bp(a + c, b + c), then for every x G X, d(p-c,x) = d(p,x + c) < 

(1-p) d(a + c, X + c) + pd(b + c, x + c) = (1 - p) d(a, x) + pd(b,x). Therefore p - c G 
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Bp(a,b) that is, p e Bp(a, b) + c. Thus Bp(a + c, b + c) c Bp(a, b) + c. 

Again let q + e Bp(a, b) + c , then for any x e X ,d(q + c, x) = d(q,x - c) 

< (1 - p) d(a, X - c) + pd(b, x - c) = (1 - p) d(a + c, x) + pd(b + c, x). Therefore q + c 

e Bp(a + c, b + c). Hence Bp(a + c, b + c) c Bp(a, b) + c. 

3.3.2. Corollary : For any normed linear space X, Bp(a + c, b + c) = Bp(a, b) + c. 

In the remainder of the section X will be considered as a normed linear 

space (n.I.s.). 

3.3.3. Lemma: If p e [0.1]. then for any a,b e X, p € Bp(a,b), where p = (1 - p)a 

+ pb. 

Proof: Let v (x) denote the norm for each x e X, then for any xe X, 

d(p,x)=v{p-x) = v((1 -p)a + pb-x)) =v((1 - p) (a-x) + p(b - x)) <(1 -p)v(a- 

x) + pv(b - x) = (1 - p) d(a - x) + pd(b, x). Thus p e Bp(a,b). 

The above lemma fails in a linear metric space . 

3.3.4. Example: Consider X =JL^i/2 be the set of pairs of realnumbers, with the 

metric defined by: 

d((Xi,yi). (X2.Y2)) = IX1-X21 IY1 - Vz ■ 

Let a = (1,0) and b = (0,1). By definition Bp(a,b) = n{S(x, r(x)): x e X}, where 



22 

r(x) = (1 - p) d(a, X) + pd(b,x), p € [0,1]. But Bp(a,b) = <}). 

3.3.5. Lemma: For any p e R and a,b e X , the set Bp(a,b) i s unaltered when 

the norm v is replaced by pv , where p > 0. 

Proof: The proof is immediate from the definition of Bp(a,b) and d(p, x) = 

V (p-x). 

3.3.6. Lemma: For any p G [0,1] and for any a,b G X , Bp(a,b) = p, where 

p = (1 - p) a + pb. 

Proof: If the dimension of X < 1, the above relation clearly holds. Assume that 

the dimension of X is at least two. Suppose there is a p G Bp(a,b) such that p 

aa + pb, where a = 1 - p . By Corollary 3.3.2. we may assume, without loss of 

generality that aa + pb = 0. We know by Lemma 3.3.5., the set Bp(a,b) is un- 

altered if we replace v by pv .when p > 0. So we assume v (b-a) =1 = d (a,b). 

Let X' be a two dimensional subspace of X containing a,b,p andco- 

ordinatized such that a = (-p,0), b = (a, 0) and p = (0, a) where a >0. 

Therefore, d(a, 0) = pd(a, b) = p, d(b,0) = ad(a, b) = a and d(p,0) = a, where v 

(0,1) =1. Now p eBp{a,b) implies d(p,0) < (1 - p) d(a, 0) + pd(b, 0) = apd(a, b) 
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+ apd(a, b) = 2ap. So a<2ap. Either p <1/2 orcr<1/2 so per <1/2, and 

a < 1. For any x,y e X, the connecting segment {(1 - e )x+ G y : e belongs to 

[0,1]} is denoted by < x, y >. Now 0 G Bp(a,b) and p G Bp(a,b) so, by lemma 

3.2.11<0, p > c Bp(a,b). Let (a, a') be any point of < (a,0), (a,a) >. 

Therefore d((0, 0), (a, a')) = d((0, -a'), (a,0)) = d(p',b). Further, since p'GBp(a,b) 

and, by lemma 3.2.10, d((0,0), (a,a')) = ad(a,b) = a. Thus any point of < (cr,0), 

(a,a) > has norm a Therefore it follows that s^ = (a,a) has norm > a. 

Let q = (0,a) and S denote the line through b and S., is the line 

through q and the point s’., of <0,s^> such that v (s.,) = a. The point 

intersection of S-| and S is s*., = (a,a.,). Now v (q) = cr, also v(s’.,) = a, by 

construction. We claim all points of <q,s'.,>\{q,s’i} have norm less than a. To 

see this let us assume that there Is one point on <q,s'.,> \{q,s'.,} which has 

norm > a. Now any point r = (p.,, P2) of [0, 00) (<q,s'.,>\{q,s'.|}) can be written as 

(p.|,p2) = pCpVP'a) where p is a suitable positive number and (p'., ,p*2) is a 

point on <q,s'^>\{q,s’}. 

Let us assume v (p'.,,p’2) = cr, therefore v (P1.P2) P (p'vP’2) = 1^^- 
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For some suitable X, (p'^.py =(1-X){0,a) +X(a,a^) =(Xa, (1-X)a+te^). 

p'^= XG, p2=(1-X)a+Xa^=(1-p'^a‘^)a +p'^a"^a^=(a-p'^)+p'^a"V^ 

=a-p'^(1-a^a’^) =a- p*^((a-a^)a"^). Now p^= )ip'^ and P2= PP2= P(<^'p'i{<^-^i)<y'^) 

implies pa= p2+PP'i (<7-c?i)<^"^==p2+Pi(<^"^i)^'^- Therefore v (p^,p2) = P2+ 

p^(a-a^)a“^ Now if we apply the definition pe Bp(a,b) with x= (a,1) and then 

using the translation invariance of d , we get, d((0,-a),(a,1)) < (1-p)d((-p,0),(a,1)) 

+ pd((a,0),(cT,1), i.e., d((0,0),(a,1+a)) < ad((-p,a),(a,1+a))+pd((a,a),(a,1+ a)). 

Then,v (a,1 +a)<ad((-p+p,a-a),(a+p,1 +a-a))+pd((a-a,a-a),(a-a,1 +a-a)) 

=ad((0,0),(1,1))+ od((0,0),(0,1)) = crv (1,1) +p. Therefore, (G-G^)G~^G +(1+a) < 

a(a-a.)a"Va+p yielding a <0 which is Impossible. Thus any points of 

<q,s.|>\{q,s.,} must have norm less than a. 

Again let S2=(a,1+a) and s'2 be points of <0,S2> such that v (s'2)= cj. 

S2 is the line containing q and s’2 and s*2=(cJ,c?2) is the intersection of S2 and S. 

An argument analogous to that above shows , by using x=(a,1+a+p) and 

p = (0,-a) that the points of <q, s'2> Mq.sy can never have norm a. Now S2 has 

norm (G-G^)^'^^ +1 +a. Now using the defining relation pe Bp(a,b), x=(a,1) 
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a’V+1 +a < a(a-a^)a'Vp+a implies a < By repeated application of 

this procedure we obtain {Sj}, {s'j} and {s*j}, where sj= and ^j=^j^+p+a , 

l>1, s'j is the point of <0, Sj > with norm a, and s* =(a,aj) is the intersection of S| 

(line through q and S|') and S. By application of the defining relation 

pe Bp(a,b), as above , with co-ordinates x=(a,^j+p) we can show that all points 

on <q,s'|>\{q,S|’} have norm < a. Another application of the defining inequality 

for pe Bp(a,b) with x=(a, ^j-a) shows that o.> Oj .j+a. Choose j such that c.^2o . 

Since -b, q both have norm a , the norm of sj must be greater than a, which Is a 

contradiction. Thus p= aa+pb and Bp(a,b) = p. 

3.3.7. Lemma: B.^fa.hWn. fnr n^=n.oo\anri fnrall a ht=X. where -rr li — ir - ■ r ^  I         ?     

p=(1-p)a+pb. 

Proof: Here p=(1-p)a+pb implies b=(1-p"^)a +p"V- Hence for any XGX, 

by lemma 3.3.3., we have, d(b,x) < (1-p‘^) d(a,x) +p"'*(p,x), so, d(p,x) > (1-p) 

d(a,x)+pd(b,x). Therefore peBp(a,b). 

Next let p and p' G Bp(a,b) , then by Iemma3.2.4, 
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b€Bp.^(a,p) r»Bp.j(a,p'). Since p“^e[0,1], by lemma 3.3.3. and 3.3.6., 

b=(1-p‘‘')a +p"'*b . Therefore p= p’. Hence Bp(a,b)=p , where p=(1-p)a+pb. 

3.3.8. Lemma: Bp(a,b)=p ,for pe (-a , 0) and for any a,b e X, where 

p= (1-p)a +pb. 

Proof: Here p=(1-p)a+pb for-a < p <0. Then a=(1-(p-1)'V )p +(p-1)‘‘*pb. Now 

0 < r = p(1-p)*‘‘<1. Therefore , d(a,x) =v (a-x) =v {(1-r)p+rb-x)} 

=v {(1-r)(p-x)+r(b-x)} < (1-r)v (p-x) +v r(b-x). So, d(p,x) > (1-p)d(a,x) +pd(b,x), 

proving pe Bp(a,b). To prove uniqueness let us consider 

p,p'eBp(a,b). Then it follows by lemma 3.2.7., ae (P.b)n 

(p',b). Hence by lemma 3.3.3.and 3.3.6.,a=(1-r)p+rb = (1-r)p* 
\r" \r • / / 

+rb, which implies p=p'. Thus Bp(a,b) = p, where p = (1-p)a +pb. 

The results of this section can be summarized in the following : 

3.3.9. Theorem: In a nomred linear space X, Bp(a,b) =p , for any real pe R and 

for any a,b eX, where p= (1-p)a+pb. 

Proof: The proof of the theorem follows from the lemmas 3.3.3.,3.3.5.,3.3.7., 

and 3.3.8. 
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3.4. Metric Space with Property GM. 

In the rest of the section X is considered to be a metric space with 

property GM , which was introduced by Gahler and Murphy as a sufficient 

condition for means to be singletons. 

Property GM: 

(1) and B2(a,b) are singletons. 

(2) The subset u{Bp(a,b): pe[0,1]} is complete , for all a,beX. 

3.4.1 ■ Lemma: B..|(a,b) is singleton, for all a,b G X. 

Proof: Since Bp(a,b)=B^.p(b,a) ,by lemma 3.2.6., 

B.^(b,a)= B2(b,,a) is a singleton. 

3.4.2. Lemma: If p is a dyadic rational of the form m/2" such that pc [0,1] 

l-^V —X where m and n are naiurctl nunibers,then Bp(a,uj uumainb ai leasi one eiemeni. 

Proof: By lemma 3.2.9., we have B.|/2(a, B.|/2(a,b))E By4(a,b). By property 

GM(1), B.|/2(a,B.,/2(a,b)) is a singleton. Therefore B^4(a,b) is nonempty. Again 

by lemma 3.2.9., andBi/8(a,b) 

=B.|/23 (a,b) is nonempty. Similarly, By2( By2(a.b), B^(a,b)) c B3/4(a,b), by 

lemma 3.2.9. and B3/4(a,b)=B3/22(a,b) is nonempty. Continuing In the same 

manner we can show that B^/2" nonempty. 
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3.4.3. Lemma: For any pe R and a,be X , B p(a,b) is closed. 

Proof: Let {pj} be a sequence which converges to p such that pjeBp{a,b). 

Therefore, for every xeX, d(x,pj) < (1-p)d(a,x)+pd(x,b). As pj—>p, then 

d(x,p) < (1 -p)d(a,x)+pd(x,b) and pe Bp(a,b). 

3.4.4. Lemma: If p is a non dyadic rational such that pe[0,1], then Bp(a,b) is 

nonempty. 

Proof: When p is not a dyadic rational, there exists a monotone decreasing 

sequence of dyadic rationals {pj}, i e N, converging to p and by Iemma3.4.2., 

there is PjG Bpj(a,b). Now by lemma 3.2.8., we get d(pj,pj)= |pj-pj| d(a,b) for any 

i,j. So the sequence {pj} is a Cauchy sequence and must converge to 

pGBp(a,b) and, consequently, Bp(a,b) is nonempty. 

3.4.5. Lemma: For pe[0,1] and a,bGX, Bp(a,b) is a singleton. 

Proof: If p=1/2 then Bp(a,b) is a singleton, by GM(1). If p?tl/2 , we consider 

p<1/2. Let a'GBp(a,b), b'eB^.p(a,b) and p'eB^/2(^,b). By Iemma3.2.9., we get 

Bi/2(a',b') £ B(p^j*j.py2 - p/2)(^»^) “P * p'-By2(s’.P')-By2(P'»3') 
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then by lemma 3.4.1., a’=B.^(p',b'). Hence Bp{a,b) must be singleton. The 

case p >1/2 follows by symmetry. 

3.4.6. Lemma: For any natural number m , Bgm (a,b) ^ (|). 

Proof: By Lemma 3.2.14. , B2(BQ(a,b), B2(a,b)) cB4(a,b) and by GM(1), 

B2(a,B2(^.b)) is a singleton . Therefore B22 (a,b) ^ (j). Similarly by lemma 

3.2.14 ., B2(Bo(a,b),B4(a,b)) cBg(a,b) and B23(a,b) 9^= <|). In a similar way it can 

be shown that B2m (a,b) ^ (j). 



3.4.7. Lemma: If p ^ [0,1], Bp(a,b) is a singleton ,for every a,b G X. 

Proof: It suffices to consider the case p e (1.00). since Bp(a, b) = Bi.p(a,b). 

Let m be a natural number such that p < 2'^. Then by lemma 3.4.6., p e 

B2m(a,b). Let p’ = (p-1) /(2"^-1), then by lemma 3.4.5., Bp*(b, p) = p' and 

Bi/p(a,p’) = b' are singletons. Thus since b e B.,/2m (a,p),for any x e X, 

d(b',x) s (1-p''')d{a.x) + p'’d(p',x) 

s (1-p'^) d(a,x)+ p'’{(1-p')d(b.x) + p’d(p,x)) 

< (1-p-’) d(a.x) + (1-p')p-i{(1-2-"')d(a,x) + 2-'^d(p,x)} + p'p-’d(p,x) 

= (1-p-'')d(a.x)+(1-p')p-''{1-2-")d(a.x)+(1-p’)p-''2-"'d(p.x)+p’p-id(p,x) 

= d(a,x){{p-1)p-V (1-p') p-i(2"^-1)2-'"} + d(p.x){(1-p')p-’2-"’ + p'p-1} 

= (1-2-'") d(a,x) + 2-"’d(p,x). 

Hence b' e B2m (a,p), and since B2m(a,p) is a singleton, therefore b = b'. 

Thus b e B.,/p{a,p') which implies p' e Bp(a,b). Therefore the set Bp(a,b) 

is nonempty. 

To show that Bp(a,b) Is a singleton, let r = B.,/2(a,b) and q G B^.p(a,b) 

= Bp(b,a) and p* G Bp(a,b). Thus for any x G X, d(q,x) > pd(a,x) + (1-p)d(b,x) 

and d(p*,x) > (1 - p) d(a,x) + pd(b,x). Therefore d(q,x) + d(p*,x) > d(a,x) + d(b,x). 
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Since r e therefore for any x e X, d(r,x) < (1/2) d(a, x) + (1/2) d(b,x) 

^ (1/2){d(q,x) + d(p*,x)}. Therefore re so p* e B2(q,r) which is a 

singleton. 

3.4.8. Theorem: Let X be a metric space with property GM. Then, for any real p 

and a,b e X, Bp(a,b) is a singleton. 

Proof: The proof of this theorem follows from the above lemmas. 

3.5. Linearization of X: In this section using, a construction given by Frechet 

[9], a linear structure is defined on a metric space X which satisfies property GM 

and some conditions given below 

First scalar multiplication is defined. In order to do this choose a fixed 

point in X which will be the origin and designated as "O”. For any a e R and 

any x G X , there exist one and only one point aa e X defined by aa = B^(0,a). 

Secondly addition of a,b e X is defined as the uniquely determined 

point 2mg ^ where m^ = B.|/2(a,b) and Is denoted a + b. 

In order to show that X together with these operations Is a linear space, 

a sequence of lemmas will be proved. 

3.5.1. Lemma: aO = O and 1 a = a , for all a G R and for all a G X. 

Proof: By lemma 3.2,5., aO = B(^(0,0) = O. Also by lemma 3.2.4.,1a = B.,(0, a) 

= a. 
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3.5.2. Lemma: If ae X and a^^Oe R , then aa = o implies a = 0. 

Proof: O = aa = a). By lemma 3.2.10., d(0,aa) = ad(0,a) implies 

d(0,0) = ad(0,a), i.e., ad(0,a) = O . But o implies d(0,a) = 0. Therefore 

a = 0. 

3.5.3. Lemma: For every a e X , there exists b e X such that a + b = O. 

Proof: If b = B_.,(0,a) then, for all x e X, d{b,x) > 2d(0,x) - d(a,x). Thus, 

d(0, x) < (1/2)[d(a,x) + d(b,x)] and O e By2(a.b). Therefore a + b = O. 

3.5.4. Lemma: If a + b = 0,then b = B..,(0,a). 

Proof: If a + b = O, then 2B.,/2(a,b) = O. Therefore By2(a.b) = O. Thus 

O € B^/2(^,b). By lemma 3.2.6., b e B2(a,0) = B.,.2(0,a) = B..,(0,a). 

3.5.5. Remarks: From the above lemmas it follows that for every a E X there 

exists a unique additive inverse b (= -a) such that b = -a = B_.,(0,a) and 

a + b = O. 

3.5.6. Lemma: For all a e X , d(0,a) = d(0,-a). 

Proof: By remarks 3.5.5. , B..,(0,a) = -a. Therefore by lemma 3.2.10., we get 

d(0,a) = |-1 |d(0,a) = d(0,a). 

3.5.7. Lemma: For all x E X , a 9^ 0 , a{(1/a)b} = b. 

Proof: By definition (1/a)b = B^/(^(0,b). Therefore by lemma 3.2.6., we get 
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b = B(^(0,a"^b) = a{(1/a)b}. 

3.5.8. Lemma: For all a e R and for all a e X, (-a)a = a(-a) = -(aa). 

Proof: For a = 0 or 1, the result is immediate. 

For a>1, let pe BQ^(0,-a), therefore for all XG X, d(p,x) > (1-a) d(0,x)+ 

ad(-a,x). But -a G B_-j (0,a), so, d(-a,x) >2d{0,x) - d(0,-a). Thus, d(p,x) > (1 - a) 

d(0,x) + a[2d(0,x) - d(0,-a)] = (1+a)d(0,x)-ad(0,a). Therefore p e B_Q^(0,a) 

and a(-a) = (-a)a. 

Next we prove (-a)a =-(aa). Letq^ G and q2G B^(0,a), 

therefore for all x G X, d(q|,x) > (1 + a) d(0,x) - ad(a,x) and d(q2,x) > (1-a) 

d(0,x) + ad(a,x). Therefore d(q.,,x) + d(qp,x) > 2d(0,x), which implies 

d(0,x) < (1/2){d{q^,x) + d(q2,x)}. Therefore O = B.,/2 (B_^(o,a), Bo^(o,a)) which 

implies (-a)a + aa = O. Thus (-aa) = -(aa), by lemma 3.5.4. 

If 0 < a < 1 , then (1/a) > 1 and (1/a) {-(aa)} = -{(1/a)(aa)} = -a, by 

above. Thus a[(1/a){ - (aa)}] = a(-a) Implies - (aa) = a(-a), by lemma 3.5.7. 

Again, (1/-a){(-a)a} =a . Therefore (1/a)((-a)a} =-a which Implies a((1/a)(-a)a} = 

a(-a). Hence (-a)a = -(aa). 

Finally let a < 0 , put p = -a > 0. Then aa = {-(-a)}a = (-p) a = -(pa) = 
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-((-a)a) implies -(aa) = (-a)a. Again a(-a) = {-(-a)}(-a) = (-p)(-a) = -{P("^)} = 

-{-(Pa)} = Pa = (-a)a . 

3.5.9. Lemma: For every a,p eR and ae X , a(pa) = (aP)a . 

Proof: The case for a = 0 or p = 0 and a = 1 or p =1 are immediate . To 

complete the proof four cases are considered. 

Assume 0 < a. p <1 . By lemma 3.2.11. , B^(0,Bj^(0,a)) c B(^p(0,a). 

Now each of the sets B(^(0,B|3(0,a)) and B(^p(0,a) are singletons. Therefore 

Bo^(0,Bp(0,a)) = B^3^p(0,a); consequently a(pa) = (ap)a. 

Assumea>1. p>1. Then by lemma 3.2.14.,Ba(0,Bp(0,a)) c Bo^p(0,a) 

and again by the same argument a(Pa)= (ap)a. 

Assume 0<a<1. p>1 or 0<p<1. g>1. It is sufficient to consider 

0 < a <1, p > 1. Then two subcases may arise ap > 1 or ap < 1. In the first 

case, ap > 1 ,p‘^ < 1, a"^ < 1. By lemma 3.5.7., (1/p)( (1/a) [ ap ]a) = (1/p)( ( a"^ 

ap)a) = (1/p)(Pa) = a. Now multiplying both sides by p, then by a, (ap)a = 

a(pa). 

Now consider ap< 1, (1/a)((1/p)([ap])a) = (1/a)((P“^aP) a) 

= (1/a)(aa) = a, by lemma 3.5.7. Now multiplying both sides by a, then by p, 
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we obtain (aP)a = p(aa). 

Assume a < 0 .p < 0 or a > 0. p < 0. It suffices to prove one of these 

cases, because the other case can be proved in a similar way. 

Let a < 0, p < 0, i.e., -a > 0 and - ap < 0. Therefore [-ap]a = [(-ap}a = (-a) (Pa) 

implies -[ap]a = -a(Pa) by lemma 3.5.8., and (aP)a = a(pa). 

3.5.10. Lemma: a + b = b + a , for all a,b € X. 

Proof: a + b = 2B.,/2 (a,b) = 2B.|/2(b,a) = b + a. 

3.5.11. Lemma: a + O = a, for all a e X. 

Proof: mgQ = B^/2(^*0) B.,/2(0,a). By lemma 3.2.6., a = B2(0, m^ J = 2ma ^ = 

a + 0. 

The main results of the lemmas in this section thus far can be 

summarized as follows : 

3.5.12. Summary : Let X be a metric space with property GM . Given O G X, 

two operations addition and scalar multiplication over R have been defined on 

X which satisfy the following: 

(1) Addition is commutative. 

(2) a + O = O, for all a e X. 

(3) To every "a" there exists a ”b''(= -a) such that a + b = O. 

(4) 1a = a. 

(5) Multiplication by scalars is associative, i.e., a(pa) = (ap)a. 
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We will have a linear structure in X provided the associative property of 

addition and the two distributive properties hold. In the remainder of this 

section the following notations will be used. 

A: Addition is associative. 

D.|i Multiplication Is distributive with respect to scalar addition ,i.e., (a + P)a = 

aa + pa. 

Multiplication by scalars is distributive with respect to vector addition, i.e. , 

a(a + b) = aa + pa. 

The properties A.D^.D^.are not independent. As seen below, D., and 

follow from A. Thus scalar multiplication and addition generate a linear 

structure on X provided X has the property A. 

3.5.13. Lemma: If X has property A, then for any a,b € X, -(a + b) = -a - b. 

Proof: By associativity and commutativity: a + b +(-a - b) = (a - a) + (b - b) = O 

Therefore -(a + b) = -a-b. 

3.5.14. Lemma: IfXhas property A, then for any aeXand a,p€[-1,1], 

(a + p)a = aa + pa. 

Proof: First consider a,p >0. Therefore for any xe X , dCm^^g p^, x) < 

(1/2) d(aa.x) + (1/2) d(pa,x) < (1/2) (1-a) d(0,x) + o/2) d(a,x) + ((1-p)/2)d(0,x) + 

(P/2) d(a,x) = (1 - (a + p)/2) d(0,x) + ((a + P)/2) d(a,x). Therefore + 
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p)/2 (O-a)- Thus aa + pa = ^ p)/2(0.a) = 2((a+p)/2)a = (a + P)a. 

Next consider a < 0 , p < 0. Let us put a'= -a > 0 and p* = -p > 0. Now 

(a' + p')a= a’a + P'a = (-a)a + (-p)a. Therefore, (-a-p)a = -(aa) -(pa) = -(aa + 

pa), by lemma 3.5.11., which implies, -(a + P)a= -(aa + pa), i.e., (a + p)a = (aa + 

pa). 

Now let a> 0, p <0, and |p| < a. aa + pa = ((a + p)-p)a + pa = ((a + P)a - 

pa) + pa = (a+P)a + (-pa+pa) = (a + p)a. 

If IPI > a, then also aa + pa = (a + p)a. 

3.5.15. Lemma: For every neN,na = a + a + a+ ••■ + a. 

Proof: n = 1 is trivial. 

n = 2 Is also trivial, as It follows immediately from the definition, for, 

a + a = 2ra^ ^ But m^ ^ = B-|/2{a,a) = a , implies a + a = 2a. 

Assume the result is true for n. We need to prove the result for n + 1. 

Let p = m„a a. By definition na e Ba(0,a) implies a G By^(0,na). 

Therefore for any x GX, d(p,x) < (1/2)d(na,x) +(1/2)d(a,x) 

< (1/2)d(na,x) + (1/2) {(1-(1/n))d(0,x) + (1/n)d(na,x)} 

= ((n-1)/(2n)) d(0,x) + (( n+1)/2n) d(na,x). 

Therefore m„a a= B(„^,,;2n(0.na) = {(n+1)/2n)na = ({n+1)/2)a 

So. 2m„3a=(n+1)a. 
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3.5.16. Lemma: For any n G Z, and any a,b G X , where X has property A, then 

n(a + b) = na + nb. 

Proof: The case n = 0,1 are trivial. Let n be a positive integer, then by lemma 

3,5.15, associativity and commtativity, 

n(a+b) = (a+b)+ (a+b)+* • *+(a+b) 

=(a+a+* * "+a) +(b+b+* * * +b) 

=na+ nb. 

Let n be a negative integer, then for m = -n , m(a + b) = ma + mb = (-n)a + {-n)b 

= -(na) -(nb) =-(na+nb) by lemma 3.5.9. Therefore -n(a + b) = -(na+nb) and 

n(a + b) = (na+nb). 

3.5.17. Lemma: If q G Q,and for any a,b G X (with property A), then q(a + b) = 

qa + qb. 

Proof: If q G Q, then q = (n/m) where n G Z and m > 0. Now, m(m‘‘'a + m"'*b) 

= mm''* a + mm'"* b =a+b implies m’'‘a + m‘‘‘b = m''*(a + b). Therefore 

q(a+b) = (n/m )(a+b) = n(m‘‘'(a+b)) = n(m‘‘'a+m'‘'b) = (n/m)a + (n/m)b. 

3.5.18. Lemma: If a G R and q G Q such that (ct/q) G [-1,1], and for any a G X 

(having property A), (a + q)a = aa + qa. 

Proof: By lemma 3..5.14., ((oc/q)+1)a = (oc/q)a + a. Therefore q((a+q)/q)a 

= q((o/q)a +a) implies (a + q)a = aa+qa. 

3.5.19. Lemma: If a G [1,-1] and a,b G X (having property A) then 
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a(a + b) = aa + ab. 

Proof: By lemma 3.5.17., if a is rational then a{a = b) = aa + ab. 

If a is an irrational, let {aj}, i e N, be a monotone decreasing sequence of 

rationale which converges to a, and by Lemma 3.5.14, a(a + b) = [(a-aj)+ aj] 

(a+b) = (a-aj)(a + b) + aj(a+b) = (a-aj)(a+b) + (aj-a)b +(aj-a)a+ aa + ab. 

Noting that, for arbitrary c,x G X and ye [0,1], then the relation d('yc,x) < 

(1-y)d(o,x) +yd(c,x) holds, we observe that the sequences {(a-aj)(a+b)}, 

{(aj-a)a} and {(aj-a)b}, i e N converge to zero. Therefore a(a + b) = aa+ab. 

3.5.20. Lemma: If a ^ [-1,1] and a,b e X, then a(a+b) = aa+ab. 

Proof: Here a‘^ e [-1,1]. Therefore (aa+ab) = a'\aa) +a’^(ab) = a+b 

implies aa +ab = a(a+b). 

3.5.21. Lemma: Let X be a metric space with property A, then a(a+b) = oa+ab, 

for any a,b e X and any a G R. 

Proof: The proof follows immediately from the lemmas 3.5.19 and 3.5.20. 

3.5.22. Lemma: For any a G X and any a ,p G R , then (a+P)a = aa+pa, where 

X is a metric space with property A. 

Proof: If a,p G [-1,1], then by lemma 3.5.14., (a+p)a = aa+pa. 
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Now consider a > 1 ,P e [-1,1], then -1 < (p/a)< 1. Therefore (oc/p)a + a = 

(a/p)a + (a/p){(p/a)a}= (oc/p)(a+ (p/a)a)= (a/p){(1+p/a)a} = ((o/p)+1)a. 

Therefore aa +pa = P[( o/p)a+a] = p[((cx/p)+1)a] = (a+P)a. 

Next consider a,p > 1. Therefore 1/aP < 1. It follows that 

(1/ap)(aa+pa) = (1/aP)aa +{1/ap)pa = (1/p)a +(1/a)a = ((1/a) +(1/p))a implies 

oa +pa = (a+P)a. 

Finally , the cases a < -1 and P e[-1,1] and a,p < -1 can be proved in a 

similar way. 

3.5.23. Theorem: For the metric space (X,d) having the property GM, the 

addition in X is associative if and only if the consistent mid point property holds 

i.e. for any arbitrary a,b,c,d e X, 

m m 
III 1 Ml b.dL 

Proof: Assuming addition is associative In X , then scalar multiplication and 

addition generate a linear structure in X , since D^. D2 holds. 

Therefore (1/2)[(a+b)/2 + (c+d)/2] = (1/2) [(a+c)/2 +(b+d)/2 ] 

Thus m 
m ; m 

_ m 
m ; m 

a,c 

If the consistent midpoint property holds then m , m 

m 
m ! m 

2e,o 

implies *^(2e+2f)/2 ;o ='^e.f Therefore 2e+2f = 2(e+f). 

Thus • m m ; m m ; m 
®,2c la^o ib^Ze. 
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m _ m 
(2a+2b)/2 . (o+2c)/2 “ (2a+o)/2 , (2b+2c)/2 

Hence (a + b) + c = a + (b + c). 

The results of this section can be summarized in the following 

linearization theorem: 

3.5.24. Theorem : Let (X,d) be a metric space with the property GM: 

Property GM: 

(1) and 62(3,b) are singleton 

(2) u{ B p(a,b): p G [0,1]} is complete for all a,b e X. 

Then a linear structure is generated in X iff the consistent midpoint property 

holds, i.e., for any arbitrary a.b.c.deX, • 
Q,l, ’ ’ bM 

3.6. Norming of X: In this section we assume that a linear structure is 

generated in X with the scalar multiplication, addition and associativity 

of addition with respect to a fixed point 0, as introduced in the previous section. 

Under this condition, there exists a norm on X such that the corresponding 

metric is equal to the given metric of X. 

3.6.1. Lemma: For any a,b,c G X, d(a, b) = d(a + c, b + c),i.e., the metric is 

translation invariant. 

Proof: First we shall prove d( a+ c, b + c) < d(a, b). Assume d(a + c, b + c) > 

d(a, b), X = d(a + c, b + c) - d(a, b) and choose a natural number m such that ] 
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= 2'^and 2jx > 5d(a, a + c) holds . Set bj = a + i(b - a), c j = bj + c , for i = 

0,1,2,* • ■ and 

c' = a + 2c. Now = (1/2)(a + 2j(b - a) + a + 2c) = a + j(b - a) + c = c j. So it 

follows that d(b2j, c’) = 2d(Cj, c') > 2d(Cj, CQ) - 2d(CQ, C). Now Cj = b| + c = a + j(b 

- a) + c = CQ + j(b - a) = CQ+ j(c^ - (c + a)) = Cg + j(c.j - Cg) = (1 - j)Cg + c^. Therefore 

by lemma 3.2.10., we get d(Cg, Cj) = j d(Cg, c^) = jd(a + c, b + c). Also we have 

d(Cg, c') = d(a + c, a + 2c) = d(a, a + c). These relation give; d(b2j, C) > 2d(Cj, 

CQ) - 2d(co,c’) = 2jd{a + c, b + c) - 2d(a, a + c) =2jd(a, b) + 2jx - 2d(a, a + c) > 

2jd(a, b) + 3d (a, a + c). (i) 

Now b2j = a + 2j(b - a) = (2j -1 )a + 2jb = 2jb + (2j -1 )bg. By lemma 3.2.10., 

d(bg, b2j) = 2jd(bg, b^) = 2jd(a, b). Moreover, d(bg, c') = 2d(a, a + c). Therefore 

d(b2j,C) < d(b2j, bg) + d(bg,c') = 2jd(a, b) + 2d(a, a + c), which contradicts (i). 

Therefore d(a + c, b + c) < d(a,b). 

Then d(a,b) = d((a + c) - c, (b + c) - c) < d(a, b) and the lemma is proved. 

3.6.2. Lemma: The function v(a) =d(0,a) defines a norm on X. 

Proof: That v(a) = 0 iff a = O is trivial. Now oca = Bgj(0,a) and by lemma 3.2.10., 

v(aa) = d(0,aa) = |a| d(0,a) = la|v(a). Therefore for any a,b e X, we have 

d(0,a+ b/2) < 1/2 d(0, a) + 1/2 d(0, b) and d(0, (a + b)/2) < (1/2) d(0, a + b) = 

(1/2)v(a + b). Therefore (1/2) v(a + b) < (1/2) v(a) + (1/2) v(b) which implies 
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v(a + b) <v(a) + v(b) 

The main result of this section can be summarized in the following; 

3.6.3: Theorem: Let (X, d) be a metric space satisfying property GM and 

having consistent midpoint property. Then X is a normed linear space 

with norm v(a) = d(0, a). 

3.7. Isomorphism of generated normed linear spaces: 

The above linearization and norming of X are dependent on the 

choice of the point O. Since the definition of m ^ Is independent of "O", 

it follows by theorem 3.5.23 that whether or not X has the consistent mid point 

property is Independent of the special choice of ”0". 

For any O e X (O' e X) denote by M (N) the normed linear space 

generated from X for which G(O') is the origin. The operations in M will be 

denoted a.a ,a + b while In N they will be denoted by a ♦ a, a 0 b, v and p. will 

be the corresponding norms. 

3.7.1 ■ Theorem: M and N are isometrically Isomorphic. An isometric iso- 

morphism f: M N is given by f(a) = a + O' 

Proof: By lemma 3.3.1., f(aa) = cca + O' = BQ^(0, a) + O' = BQ^(0 + O', a + O') 

= B^(0', a + O') = Bc,(0'. f{a)) = a • f(a). (i) 

Also, f(B^/2(^,b)) = B-j/2(a, b) + O' = + O', b + O') By2{^{e), f(b)) 

Now, by (i), f(a + b) = f(2B^/2(a. b)) = 2 • f(B^/2(^.b)) = 2-B^/2(^(a). m) 



44 

= f(a)0f(b). Thus f is a linear map from M into N. 

Further by lemma 3.6.1. and 3.6.2., v(a) = d{0, a) = d(0 + O’, a + O') 

= d(0',f(a))=p(f(a)). Since d is translation invariant, d(a,b) = d(a + O’, b + O') 

d(f(a), f(b)). Since f is one-one, a = b implies f(a) = f(b), for f(b) = b + 0'= a 

0’ = f{a). Finally f Is onto, since for every be N there exists b e M. 

Now O’e M implies there exists - O' e M (the additive inverse of O in M). 

Thus b-0' € M. Let a = b-0’, therefore f(a) = (b-0') +0' = b. 
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Chapter IV 

Convexity in Metric Spaces. 

4.1. Introduction: There are different ways in which one can introduce a 

notion of convexity in a metric space. 

In section 2, Monger [17] convexity (M-convexity) is defined and 

it is shown that it is not a good generalisation of convexity in a normed 

linear space. 

In section 3, we discuss the notion of convexity introduced by W.Ta- 

kahashi [19]. 

In section 4, using Doss's definition of a mean in metric space, we 

introduce B-Convexity and obtain some pleasant properties. We also observe 

that the results concerning Takahashi's convexity in Machado [15] and Tallman 

[20] can be derived from B-convexity. 

4.2. Menoer Convexity: First we give a definition of Monger Convexity which is 

a modification of Busemann's definition (1.1). However, our definition yields a 

convexity space (2.1). 

4.2.1. Definition: Let (X,d) be a metric space. Given x,y e X, z is between x 

and y in the Monger sense if d(x,z) + d(z,y) = d(x,y) and we define 

M(x,y) = {z: d(x,z) + d(z,y) = d(x,y)}. 

The following example shows M-convexity is not a good generalisation of 

convexity in normed linear space since balls are not necessarily M-convex. 
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4.2.2. Example: Let (X2,y2).... be points in R^. Then || (x.|,y.,|| = |xj+ |y^| 

is a norm and with the corresponding metric d((x^,y.,),(x2,y2)) = IX1-X2I + 

By definition z = (X3,y3) is between x = (x^.y^) and y = (X2,y2) in the Menger 

sense if d(x,y)= d(x,z) + d(z,y). (i) 

Case(a). If the line joining x and y is parallel to the x- axis, then M(x,y) is the 

line segment between x and y. 

Case(b). If the line joining x and y is parallel to the y-axis , then M(x,y) Is the 

line segment between x and y. 

Case(c). Otherwise M(x,y) is the rectangle (square) with diagonal the line 

segment joining x and y. 

To see this let z = (X3,y3) be any point in the rectangle with diagonal the 

line joining x = (x.|,y.,) and y = (X2,y2) then x., :^3< X2 and y., < y3 < ^2- Now 

d(x,z) = IX1-X3I + \y^-y^\ = X3-x^+y3-y^ and d(y,z) = IX2-X3I + |y2-y3l = X2-X3+y2-y3- 

Therefore d(x,z) + d(z,y) = X2-x^ + y2-y^ = d(x,z). 

Further we claim z cannot lie outside the rectangle, since the equality (i) 

does not hold. 

Now consider the closed ball S(0,1) ,that is ,S(0,1) = {(x^,y^); lx.,|+|y^| 

<1}. Now, if we take two points on the boundary of the ball say, a = (a., ,33) and 

b = (b^,b2), then M(a,b) is the rectangle with a diagonal as the line segment 

joining a and b. Evidently M(a,b) ^ S(0,1). 
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4.2.3. Example: Let X= S3={x e : Hxjl =1} and define a metric on X as d(x,y) 

is the length of the shorter arc along the great circle through x and y. Evidently 

d(x,y) <K. Now it can be shown that (X,d) is a metric space. 

For any x,y e X, M(x,y) Is the shorter arc along the great circle joining x and y. 

Let us consider the closed ball S(p,r), where p is the pole and r=7c/2 + e. 

0< e<7i:/2 and E ={x :d(x,p)=7i/2} is the equator. Now if we take two points x^and 

X2 below the equator on S(p,r), then M(x.j,X2), the shorter arc , lies outside the 

ball S(p,r). Hence S(p,r) Is not M- convex. 

4.2.4. Example: Consider X=£^2 with the mefric d((x.|,X2) .(yi.ya)) = lXrYiP^^ + 

|x2-y2p^^ as in example 3.3.4. Now consider the closed ball 

S(0,1), that is, S(0,1) = { x= (x.,,X2): |x.,|‘'^^+ |X2|'’^^ < 1}. Now if we consider 

(-1,0) and (1,0),then M((-1,0),(1,0)) is the square with the diagonal as the line 

segment joining (-1,0) and (1,0), by example 4.2.2. 

Therefore M((-1,0),(1,0)) s^S(0,1). 

4.3. Takahashi Convexity structure : 

A convexity structure was introduced by W. Takahashi [19] and has been 

studied by H. Machado[15] 

4.3.1. Definition: Let (X,d) be a metric space and ae [0,1]. A Takahashi 

convexity structure ( TCS) on X is a function W: X x X x [0,1 ] > X 
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which has the property that for every x,y e X and ae [0,1], 

d( z, W(x,y,a)) <{1-a) d(z,x) +ad(z,y) for every ZGX. If (X,d)hasa 

TCS, we say X is a W- convexity space. 

A set A c X is a W-convex set provided W(x,y,a) e A for each x,y G A 

and a G [0,1]. It is clear from the definition of mean that W(x,y,a) G B(^(x,y). 

Therefore when means are singletons, there exists one and only one TCS. 

In a normed linear space the means are singletons and B^(x,y) =(1-a)x +ay 

by theorem 3.3.9. Thus we have the following : 

The only TCS in normed linear space is the usual convexity and 

B(x(x,y) =W(x,ya) = (1-a)x + ay. 

The main properties of TCS can be derived from the corresponding 

properties of means. We have the following theoremi 

4.3.2. Theorem: There exists a TCS on X if and only If Bo^(x,y) ^ (|) ,for any 

x.yeX and aG[0,1] 

Proof: Suppose B(^(x,y) (|), then { B(^(x,y) : x,y G X, aG [0,1]} is family of 

nonempty sets. Therefore there exists a choice function 3: XxXx[0,1]——> 

uB(^(x,y) such that 3(x,y,a) G B(^(x,y). Then 3 = W, gives a TCS. 

The converse part of the theorem follows from the definition of mean. 
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In general it is clear that the function W, as defined in the above 

proof, need not be continuous. However, the following theorem indicates that 

W is continuous on some points. Further if means are singletons (W is unique- 

ly defined) and X is finitely compact, then W is continuous as the Theorem 

4.3.4. shows. 

4.3.3. Theorem: If the means are singletons on a metric space (X,d) .then 

B^(x,x) is continuous at each point (x,x,a) G XXXX[0,1]. 

Proof: Let {xj ,{y^}, and {aj be sequences in X and [0,1] which converge 

to X, X and a, respectively. We also note that B^(x.x) =x. It will be 

sufficient to prove that {B(^f,(Xn^yn)},!^-|converges to x which follows since, for 

each n, d(x, < (1-a„)d(x,x„) +a^d(x,y„). 

4.3.4. Theorem: If the means are singletons on a finitely compact metric space 

(X,d) ,then the mean is a continuous function from XxXxl to X. 

Proof: Let {(x^^ ,y^ ,t^)} be a sequence in { Xx Xx [0,1] jwhich converges to 

(x,y,t) and let w be a limit point of the sequence { B^^(x^,y^)}^^. Select a 

subsequence {Bp„^(Xp,^,yp,^)}^^., which converges to w. Then for any ZGX, 

d{z, B,|,(Xnk,ynk)) ^ (1-‘nk)d(z,Xn;,) + tnkd(z.ym,) for k = 1.2,3,... By continuity 

of the metric, d(z,w) <(1-t) d{z,x) +td(z,y). Since the means are singletons. 
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therefore w = (x,y) is the only limit point of the sequence {Btn(Xn,yn)}nTi- 

Since X is compact {B^ (x^,yn)} must converge to B^ (x,y) and hence the 

theorem is proved. 

4.3.5. Remarks: L.Tallman [20] proved the above two theorems with diffe- 

rent but equivalent hypotheses. 

4.4. B-convexity: Let (X,d) be an arbitrary metric space. In this section we 

begin studying a convexity structure in X which is given by using the mean 

studied in Chapter III. 

4.4.1. Definition: The set of all points in the segment in the sense of Doss's [8] 

mean, between x and y is defined to be uBo^(x,y) ,ae [0,1] and is denoted by 

< x ,y >. A set C E X is B-convex iff < x, y > E C, for all x,y e C. 

Let Q0 denote the family of B-convex subsets of X. We observe that 

(X,QB) is an axiomatic convexity space. The following lemma shows that the 

segments defined by the resulting hull operator coincides with the 

segments defined by means. 

4.4.2. Lemma : For all x,y e X , < x , y > = Q0(x,y). 

Proof: Let x,y G X . If C G Qg and x,y G C then < x ,y > E C. 

So, < X , y > s < {C eQg : C 2{x.y}} = Qe(x,y). 

On the other hand ,< x ,y > is B-convex, for if a,b G < X, y >, then there 
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exists p, p' € [0,1] such that ae Bp(x,y) and b G Bp'(x,y). So for any p* e [0,1] 

and, by lemma 3.2.11, we get Bp* (a,b) e Bp^p'p*.pp*(x,y). 

Thus <a, b > c <x ,y >. Therefore QB(X, y) c < x, y>. 

The following lemmas are the direct consequence of the definition of mean. 

4.4.3. Lemma: If x,yeX and BQ^(X, y) ^ (|), for all a e [0,1] , a >B(^(x ,y) 

is an injection. 

Proof: Suppose BQ^(X, y) = Bp(x, y), then by lemma 3.2.10., for some 

p e BQ^ (X, y) n Bp (x ,y), d(p,x) =a d(x,y) =pd(x ,y). This implies ^ = p. 

4.4.4. Lemma : The open and closed balls S(x,r), S(x,r), with center x and 

radius r, in X are B-convex subsets of X. 

^roof: Let y, zs S{x,r), then d(x,y) <r and d(z,x) < r. Again, let ws <y ,z> 

= U{BQ^(X , y): a e[0,1]}. Then there exists ae[0,1] such that we B(^{y, z). 

Therefore, for all x e X,d(w,x) < (1 -a)d(x,y) + ad(x,z) < (1 -a)r +ar = r. 

Therefore w e S(x,r). Hence S(x,r) is a B- convex set in X. Similar proof follows 

for S(x, r). 

4.5. Properties of the segment: 

The following lemmas list some properties of segments. 

4.5.1. Lemma: For all ae X, < a ,a > = a. 
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Proof: By dofinition < a. a> = B^(a,a) = u^[a} = a. 

4.5.2. Lemma: If c e < a, b > then <a,c>E<a,b>. 

Proof: By lemma 4.4.2, ce <a, b> = QB(a,b) which implies QB ( a , c ) = 

<a,c >cQg(a,b) = <a,b>. 

4.5.3. Lemma: If ce < a , b > then <a,c>u<c,b>c<a,b>. 

Proof: By lemma 4.5.2,< a,c>c<a,b> and < c ,b > c < a , b > 

Thus <a,ou <c,b>G<a,b>. 

The following example shows that equality does not hold in general. 

4.5.4. Example: Let X = {a, b , c , d } be a discrete metric space with metric 

3,except 9(a ,b )= 2. From example 3.2.3, we have, (a ,b) = {a , b , c , d}. 

Then Qg (a ,c) s{a , c} and Qg (c, b) = {c ,b}-. Thus < a ,c>u< c , b> is a 

proper subset of < a, b >. 

In general Pasch's axiom does not imply JHC (Chapter II). However 

in a B-convexity space when means are singletons Pasch's axiom implies JHC 

as the following lemma shows. 

4.5.5. Lemma: Let ( X, Q0) be a B- convexity space satisfying : 

(i) Bp(x,y) is singleton for all x,y,zeX, and p€[0,1] 

(ii) Pasch's axiom, i.e., for all a,p e [0,1], there exists y.O G[0,1] such that 
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Bp(BQj{x,y) ,z) = B0( BJx.z) ,y). Then, if H c X is B-convex and Xg6X\ H, 

QB(H U XQ) = U {ge{Xo ,y): ys H} 

Proof: By lemma 2.4.2, U {QB(^O ’V) • H} C Qg(H u Xg). Further to complete 

the proof, it is shown that U{Qg(Xo , y ): ye H} is B-convex. 

Let a,b G U{QB(XO , y): ye H} = U{ U{B ^^(Xo ,y): a [0,1]}: yeH }. Therefore, 

for some suitable p,j , P2e[0,1] and y^ , y2 eH , a = Bp^(Xg ,yi) and 

b e Bp2 (XQ .yg). Let, for some pe [0,1], z =Bp( a,b) =Bp(Bp,(xo,yi).Bp2(xo, y2)). 

By using Pasch's axiom and lemma 3.2.8. repeatedly we get the following 

steps: 

2= B^Bg(Xo .Bp2(X() .Yz)) ,yi) = (Bp2(*0 .V2) •>'0 ) - Vi) 

=B,^B^(B^(Xo,Xo), yj). y,) = B^(B^(xo .Vz) .Vi) = ->^6> -Vi) 

BxiYz ,yi) .XQ ) = Bi_^(xo , Bx(y2 .Vi). Since H is B-convex 

^X'^Vz- Yi) s H. So ze U Qg (^o -Y) -Y)- 

4.S.6. Remarks: L. A. Tallman [20] obtained a similar result for the so called 

" strict TCSThis notion holds when means are singletons. 

The following lemma gives a relation between M-convexity and B- 
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convexity. 

4.5.7. Lemma: Every M-convex set is a B-convex set. 

Proof: M(x,y) = { z : d(x,z) + d(z,y) = d(x,y), z is between x and y} 

Let a ,b e M(x,y),then by definition <a ,b>=U{Bp(a,b): pe [0,1]}. Let 

p e< a, b >,then there exists some p such that peBp(a ,b). Hence by 

lemma 3.2.10. we have d(a ,p) + d{ p, b) = d(a ,b), i.e., p is between a and b 

so that pe M(x, y). Thus <a ,b> c M (x,y). 

However the converse of the theorem is not true in general as the 

following example shows. 

4.5.8. Example: Consider example 3.3.4., where X=x2-|/2 and d( (x.,,X2), 

(71.72)) = 1^1 ‘7il ^^^+|X2'72I^^^- ®7 example 4.2.4., M((0,1),(1,0)) = rectangle 

ABCD. Further, by definition, < (0,1), (1,0) > = u{B,^( (0,1), (1,0)): 0 < p< 1}. 
r 

Now, by example 3.3.4, Bp{(0,1),(1,0)= (>. This implies <(0,1), (1,0)> is not 

M-convex set. 

4.6. Linearization of B-convex space : For the remainder of this chapter X will 

denote a metric space with the properties defined below : 

PROPERTIES : For any X.V.ZG X, a,p,yG [0,1]: 

I. B^(x,y) is singleton. 



55 

II. Distance is homethetic i.e. d(B(^(z,x), B^(z,y)) =ad(x,y). 

III. A specialised Pasch's axiom is satisfied, i.e.,Bp(z, Bp(y,x)). 

=®p(i-a) (Bap/(1+«P-P (2- -y) = Bap(Bp(i-p)/(i-aP)(z.y) -x)- 

In this section we will show, following a construction given by 

Machado[15] ,that if X is a B-convex metric space satisfying properties 

l-lll, then X is isometrically isomorphic to a convex subset of a normed linear 

space E. The construction of the normed linear space is lengthy and 

involved, so we will devide it into a sequence of steps. 

STEP 1: Construction of a cone G =R’^x X: 

In order to define positive scalar multiples of X ,we select an element O as the 

origin in X and for (XG [0,1] and XGX, define the scalar multiplication by 

ax=Bo^(0,x) as defined in section 3.5. 

The following properties are immediate : 

(1) Ox =aO =0 follows from lemmas 3.2.5. and 3.2.4. 

(2) a(px) =(ap)x, where a,pe I, follows from lemma 3.5.9. 

(3) d(ax,ay) =ad(x,y), follows from property II, when z=0. 

(4) PB„(y.x) = Bi_p+„p( y, p/(1-p+ap)}x ). 
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Proof of 14^: Substituting z = O in property III, we have Bo( 0,B^(y,x)) 

= ®p(i-a)(Bap/(i+ap-p) (O.x) ,y) which implies pB^^Cy.x) = 

^p{i-a)( {ocp/(1+ccP-p)}x ,y) and pB(5^(y,x)=Bi.p(i.(x)(y,{ap/(i+ap-p)}x). 

Thereforep Bot(y,x) = B-j+^^^p.p (y, {ap/{1+ap-p)}x). 

Next we consider the Cartesian product R'^x X , where R’^ is the set of all 

positive real numbers. Now we define a relation "A " on the set R‘*‘x X such 

that (k ,x) A (3, y) holds if and only if Xx/{X+d) =dy/{X+d). 

We claim the relation defined on the set A*^x X is an equivalence 

relation. Evidently the relation is reflexive and symmetric. To prove transitivity 

consider (X,x) A (3,y) and (3,y)A(y,z) i.e. we have Xx/{X+d)=dy/(X+d) and 3y/(3+y)= 

yzJ(d+y). Thus Xx/{y+X) =yzJ{y+X) i.e. (^,X)A (Y,Z). 

Let G =R‘^x X /A . For sake of simplicity the equivalence class for the pair 

(X, x) and the pair itself will be denoted by {X, x). The zero class Is written 

(1,0) = {(X.O) , >0, OeX}. 

STEP 2: Scalar Product of non negative numbers and vectors in G: 

For3e R+ and (X,x) eG define (5) d{X,x) =(dX,x), and 0(A,,x) = (1,0). 

To see that scalar multiplication , by non negative scalars and vectors in 

G is well defined, consider the pairs (X,x),(3,y) and where (X,x)A(3,y). 
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Now Xx/(d+X) = dy/{d+X), so yXx [yd+yX) =ydy/{yd+yX). Thus {yX,x) A {yd,y) and 

y{X,x) A y{d,y) as desired. 

We note that we are dealing with classes and furthermore y{^{X,x))=y^(XyX), 

1 (X,x)=(X,x) and X(^ ,0)=(1,0). We note 

STEP 3: Addition of vectors in G: 

For (A.,x) ,(9,y) eG , d,Xs R"** define 

(6) (X,,x) +(3,y) = (X+a, (x,y)). 

To see that addition is well defined , consider the pairs (X,x),(a,y) 

and (Y,Z) where (X,X)A {d,y). As XxJ{X+d) =dy/{X+d), we have Xx/{X+d+y) = 

ay/(X+a+y). By taking the mean with z we have : 

B(a+U7)/9+X+2y)(Z- >-X/(X+a+7) )= B(3+x+7)/(3+X+27) ( z.9y/(^+9+7))- 

By property III, 

(7+a)/(X+a+27)Bx/(x+Y)(z,x) = (a+7)/(X+a+27)B3/(3^.Y)(z,y). That is, 

(X+7)BY/(X+Y)(X.Z) = (a+7) Ba/(a+Y) (y.z) which 

implies (X,x) + (y.z) = (d,y) + (y,y) as desired. 

Addition is commutative ,for, (X,x) + (D,y) = (X+d ,B^/(X+d)(^>y)) 

=(d+X, B^^^^^^(y,x)) =(d+y) +(X,x). 
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The zero is (1,0) = {(^,0) : X >0 ,OeX}, since, (X,0) +(3,y) = 

{^+0 (O.y)) = ,0y/(X+0)) and (3,y) A (X+d, dy/{X+d)) and the proof is 

complete. 

In order to prove associativity, consider the identity, 

BY/a(B(xyQ)/(i-(y/n)) (y.x),z) = (z,y) ,x) where a=Ua+Y. 

Therefore (Bx/(x+a) (y,x),z) = B^yQ (Ba/(a+y (z.y) ,x). 

Now ((X,x) + (9+y)) +(Y+z) = {X+d ,Ba/(X+a) (x.y)) + (Y+z) 

=(x,+a+Y ,By(x+a+y (B a/(x+3)(^’y) > ^)) 

= (x+a+Y, By(x+a+Y)( Bxy(x+a)(y.x) ,z» 

=(x+a+Y,Bx/(Uy+a) (Ba/(a+Y)(^'y) 

=(x+a+Y.B(a+Y)/(x+a+Y) Ba/(a+Y) (^-y)) 

=(X,x) + (a+Y, Bg/p^y(z,y)) = (X,x) + (a+Y. By(3+y (y.z)) 

=(X,X)+ ({a+y) + (Y+z)). 

The two distributive laws are evident: 

(Y+^) (X,X) = Y(X,X) + ^(X.x) and y{(X,x) +(a,y)) = Y(X.X) +y{d,y) 

Firstly, (Y+?)(X,x) = {(Y+^)X ,X) = {yX+ ^X ,x). 



59 

Also, Y(X,X)+^(A,,x) = (yX., X)+{^X,x) = (yX+^X , ) =(,yX+%X,x). 

Thus (Y+^)(X.X) =y(X,x) +^{X,x). 

Again y((X.x) +(3,y)) = y{X+d ,B^/(x+d)M) =('Y(^+9).Bay(XY+ay)(x,y)). 

Therefore y{(X,x)+ (3,y)) = (X,Y,X) +(3y,x). 

STEP 4. A metric d' on G: 

(7) d’[(X,x) ,{a.y) ] = (X+d) d[ Xx/(X+d),dy/{X+d) ]. 

To prove d' is well defined let us consider the pairs (X,x), (3,y) and (y,z) 

where (X,x) A(3,y). Now (X,x)A{d,y) implies Xx/(X+d)=Xy/(X+d) 

and we have Xx/{X+d+y) = dy/{X+d+y). 

Thus d(Xx/(X+3+y) ,yz/(X+d+y)) = d( dy/{X+d+y) ,yzJ( X^d-^y)). 

By property 11I.,{( X+y)/(X+3+y) }d( Xx/(X+d) ,yz/(^+y)) 

={{a+y)/(Ua+y)}d(ay/(a+y)»7z/0+y) ).«•©., d’((X,x),(y,z)) = d’((a,y).(y,z)) as desired. 

The function d' satisfies all the properties of a metric. First, d'((^,x),(a,y))= 

(X+d) 6{Xx/{X+d), dy/{X+d)) =0 iff Xx/{X+d)=dy/{X+d) iff {X,x) A (a,y). If (X,x) and 

(a,y) do not belong to the same class then Xx/(X+d)jt^ dy/(X+d) and (X+a) 

d(Xx/(X,+a) ,ay/(X+a) >0, i.e., d'((X,x),(a,y)) >0. Further d'is symmetric. 

To prove the traingle inequality let us consider: 
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d(^x/Q,3y/n) < 6{Xx/Q,yz/Q.) + 6{y)//Q.,dzJQ.). By property II., 

{(X+ayn} d(^x/(ua) ,9y/(X+a)) < {(Uyy^^} d(>.x/(>.-f7) ,7z/(Uy)) + 

{(y+a)/n}d(yz/{y+3),ay/(y+3)) which implies d'((A,,x) ,(3,y)) < 

d' ((;i,x) ,(y,z)) + d-((y.z) , (a,y)). 

(8) The metric d' is homethetic i.e. if g and g' e G and X >0 then d'(>\.g,^g') = 

Xd'(g.g'). This can be seen from the definition. 

(9) The metric is translaton invariant, i.e., for all g,g',g"eG, 

<^'(9+g"+9'+9") = cl(g,g'), where g is of the form of (X,x). To see this, let g=(X,x), 

g'=(a.y). g"=(y.z)- Then d(B^^. (Z.XX/Q) , (Z, dy/Q) ) = {n/n'} d(Xx/i2, 

dy/Cl) where =^+9+2y and Q.= X+d+y. By using property II., and relation (4) 

we have. n'd({(A,+y)/Q'}Boiyn . {(3+Y)/^'} B9/p^y(y,z)) = {a(X+3)/Q} 

d(A,x/(X,+a), ay/(>.+a)) which implies 

n'd((A.+Y) By(x.+Y)(x.z) .{3+y)BY/(3+y)(y.z)) = {X+d)d{XxJX+d),Xy/(X+y). 

Therefore d'{(X,x) +(y,z) ,(9,y) +(y,z)) = d' ((X.x) ,(9,y)). • 

The result so far can be summarized as follows : 

4,6.1 .Summary: 

(i) Addition on G is commutative .associative and there is a zero element 

(1,0) which we will denote from now on by g^. 
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(ii) Multiplication by nonnegative scalars is distributive and associative . 

Also, if ge G and X >0 .then 1g= g, A-go=go and Og=gQ. 

(iii) (G.d') is a metric space which satisfies property II, i.e.,is homothetic and d’ 

is translation invariant. 

STEP 5: An isometry of X into G which preserves convexity: 

(10) The mapping f: X > G is given by f(x) ={1 ,x) has the following 

properties : 

(i) f(0) =(1,0) which is trivial. 

(ii) Preserves convex combination, i.e., for all x,y €X, (x,y)) =(1-a)f(x) 

+af(y). This holds since (1 ) = (1-a ,x) + (a, y) =(1-a)(1,x) +a(1 ,y). 

(iii) d'((1,x), (1,y)) = 2 d(x/2, y/2) = d(x,y) by definition and property II. 

As a direct consequence of results (8),(9),(10) we have 

(11) 9+9" = 9'+9" implies g = g', since d' is translation invariant,i.e., d’(g.g') 

=d’(g+g” ,g'+g”) = o. 

(12) If Xg =Xg' and X >0 then g =g' 

since d' is homothetic,i.e., d(^g,^g') =Xd(g,g') =0. 

(13) If >.g=X’g and g^^gQ then X=V,for, >.g=:X(3,x) =(Xd,x) where g=(9,x) and d > 

0 and Vg=(V0, x). So Xg=X'g implies Xdx/{Xd+X'd) =X'dx/{Xd+Xd) and 



62 

X/{X+X)= X/{X+X'} since x^o and 3 >0. Thus X= X\ 

Now since {X,x) =^(1 ,x),for every X >0 and XG X, we identify X and f(X). 

We can write G = R+X, that is the cone spanned by X. 

STEP S.Equivalence class in fGxG): 

We define an equivalence relation fi in (G x G) as follows. 

If e ,f, g, h G G , we say (g,h) A (e,f) if and only if g+f= e+h . 

Define E = GXG/A . We define on the quotient space E, addition and scalar 

multiplication as follows. 

Using the same symbol for the pair (c,d) and the corresponding 

equivalent class and we define the addition as follows. 

(14) (e.f)+(g,h) = (e+g, f+h ). 

To see that addition is well defined consider the pairs (c,d), (e,f) , 

(g,h) where (e,f) A (g,h). Now (c,d) +{e,f) = (c+e , d+f) and (c,d)+ (g,h) = (c+g 

d+h). Also (e,f) A (g,h) iff g+h =e+h. Therefore c+d+g+f =c+d+e+h. This 

implies (c+e , d+f) A (c+g ,d+h). 

Further it can be easily seen that addition is associative and 

commutative . The equivalence class of (go.9o)» ‘s the set {(g.g), geG }, is the 

zero element for addition and every element (e.f) has an additive Inverse (f,e). 

The product by the real scalars is defined below. 

(15) X(e,f) = (Xe.Xf) if X > 0 and >.(e,f) = |>L| (e,f) if X<0 

It can be easily seen that the above product is well defined and satisfies the 
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following Identities. 

(16) X(3(e,f)) =xa(e,f). 

(17) X{ (e.f)+(g,h)} (e,f) +X(g,h). 

(18) (U3)(e,f) = Me,f) +3(e.f). 

(19) 1(c.d)=(c.d). 

STEP 7. A norm on E: 

First we define a metric d" on E as follows ; 

(20) d"((c.d) .(e.f)) = d'(c+f ,e+d) 

In order to show d" is well defined, let us consider the pairs (e,f), (g,h) 

and (c,d) where (e,f) A(g,h). Then (e,f)A (g,h) implies e+h =g+f. 

Therefore d”((e,f) ,(c,d)) = d'(e+d, f+c) = d'(e+d+g+h ,f+c+g+h) =d'(d+g, c+h) 

=d”((g.h),(c.d)). 

d” is homothetic and translation invariant, for, 

d"({efl+(g+h) ,(j,k)+(g,h)) =d"((e+g,f+h) ,0+g, k+h) )= d'(e+g+k+h ,f+h+j+g) 

=d’(e+k,j+f) = d"((e.f) ,G.k)) and d"(X(e,f),X(g,h)) = d"((Xe,?if),(Xg,?Lh)) 

=d’(>.e+>.h,Xf+>.g)=d'(>.(e+h).X(f+g))=>.d’((e+h),(f+g)) = Xd"((e,f), (g,h)). 

Now all the properties put together Imply that E is a normed linear space 

with norm given by the formula. 

(21) ||v|| = d"(v,0) where v =(e,f) Is a typical element of E and 0= (g^.g^) is the 

zero element. 

STEP 8. Isometry of X into E: 
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We consider the mapping \|/from the cone G to the space E =GxG /A 

defined by v(g)= (g.go)* Evidently \|/is one-one. Further d"('i|/(g),Y(g')) = 

d”((g,go).(g',go))=d'(g+go.g'+go) =d'(g.g') and v(go)=(go.go)- Further v 

preserves convex combinations ,for, \j/((1-X)g^+g2) =({1-^)g-|+^g2.9o) 

=((i->-)gi+>^2 .(i-^)go+9o) =((i->>)gi.(i-^)go)+(^92.^go) 

={1-^)(gi-go)+Mg2.9o)=(i-^)¥(gi)+^v(g2)- 

The conclusion is that E contains a copy of G viz, \|r(G); in fact 

with this identification in mind we can write E=G-G in the sense that any vector 

v=(e,f) =(e,g„) -(f.gj =v(e) -v(f). 

Finally consider the composition 0= \\fA of two mappings f and \\r 

Then <i>(x) =(\yf)(x) = \\r{1 ,x) = ((1 ,x), (1 ,o)) for every xeX. As both Y and f 

preserve convex combinations , the same is true for O. Thus we have the 

following theorem: 

4.6.2. Theorem: If (X,d) is a B-convexity space which satisfies properties 

I, II ,and III, then there exists an isometry I from X onto a convex subset of some 

normed linear space which preserves convex combinations, that 

is, 0(Bo^(x,y)) = (1-a)x+ay. 

4.6.3. Remarks : The image 0(X) is a B-convex subset of a normed space E 
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which cannot be distinguished from a B-convexity space so far as the metric 

and convex structure is concerned . The point O , selected as a reference 

(origin) in X .gets identified with the zero vector in the normed space E. After 

making the identification X >0(x) we can write E = R’^X - R+X, or E= 

Span X. 

Indeed if, v = (e,f) G E and , say ,e={X,x), f=(3,y) then we have v = (e.f) 

\j/(e) -\j/(f) = \j/(X{1 ,x)) - \|/(3(1 ,y)) = XO(x) -3<I>(y). So that we can think of the 

normed space E as the minimal extension of X. 
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CHAPTER V 

CONCLUSION 

5.1 ■ Summary and Remarks: 

In this thesis we have developed B-convexity and compared it to 

other notions of convexity defined on metric spaces. Several results 

concerning B-convexity have been derived and, although the notion of 

B-convexity is quite general, it has several expected and desireable properties. 

Following the construction given by Machado [15] we show (Theorem 4.6.2) 

that if X is a B-convex metric space satisfying properties 1 - III, then X is 

essentially a convex subset of of a normed space and the space is unique. 

Further, as shown in Theorem 3.7.1, if a B-convex metric space satisfies 

property GM and the consistent midpoint property then B-convexity space 

becomes a normed space which is unique up to an isometric isomorphism. 

Many of the fixed point theorems that have been proved in the convex 

metric space (in the sense of Takahashi) setting can be obtained for B-convex 

metric spaces. Other results along these lines and other possible areas of 

application are topics for further investigation. Also the structural properties of 

B-convexity spaces could be further studied . 
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