VARIATION OF SYLLEPSIS IN ELEVEN TAMARACK [Larix laricina (Du Roi) K. Koch] PROVENANCES IN NORTHWESTERN ONTARIO AND ITS RELATION WITH HEIGHT GROWTH

Deng Shaotang

A Graduate Thesis Submitted in partial fulfilment of the requirements for the degree of Master of Science in Forestry

> Major Advisor : Dr. R. E. Farmer Committee: Dr. P. Knowles Dr. W. H. Parker

> > Lakehead University School of Forestry Thunder Bay, Ontario

December 1st, 1990

ProQuest Number: 10611828

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611828

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

Bibliothèque nationale du Canada

Service des thèses canadiennes

Canadian Theses Service

Ottawa, Canada K1A 0N4

The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

. . .

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-69159-X

Canadä

A CAUTION TO THE READER

This M.Sc.F. thesis has through a formal process of review and comment by several members of the faculty of the School of Forestry, Lakehead University, as well as an external examiner.

It is made available for loan by the faculty for the purpose of advancing the practice of professional and scientific forestry.

The reader should realize that opinions expressed in this document are the opinions of the student and do not necessarily reflect those of either the supervisor, the faculty or the University. MAJOR ADVISOR'S COMMENTS

ABSTRACT

Deng, S. 1990. Variation of syllepsis in eleven tamarack [Larix laricina (Du Roi) K. Koch] provenances in northwestern Ontario and its relation with height growth. 60 pp. Advisor: Dr. R.E. Farmer

Key Words: Broad-sense heritability, genetic correlation, genetic variation, Larix laricina (Du Roi) K. Koch, syllepsis, sylleptic long shoot.

Variation in syllepsis of tamarack and its relationship to juvenile height growth in eleven tamarack provenances from northwestern Ontario was evaluated in a four-year-old clonal test planted at Thunder Bay, Ontario. Significant provenance and clone-within-provenance effects were found for height growth, and occurrence and degree of syllepsis. There existed a southnorth trend of decreasing provenance means for both height growth and degree of syllepsis. Degree of syllepsis was found to be moderately correlated with current-year height growth. Provenance broad-sense heritability estimates ranged from 0.22 to 0.23 for 1989 final height and 1989 height growth respectively, and they ranged from 0.11 to 0.13 for number and length of sylleptic branches on 1989 height growth. Clonal broad-sense heritability estimates ranged from 0.16 to 0.18 for 1989 final height and 1989 height growth respectively, and they ranged from 0.33 to 0.37 for number and length of sylleptic branches on 1989 height growth. Although syllepsis of tamarack has high phenotypic plasticity, the potential for its development on tamarack is heritable. Syllepsis of tamarack may be an evolutionary mechanism that permits tamarack trees to deal with environmental uncertainty.

TABLE OF CONTENTS

-

Page
ABSTRACT V
LIST OF TABLES VIII
LIST OF FIGURES IX
ACKNOWLEDGEMENTSX
INTRODUCTION 1
LITERATURE REVIEW
SILVICS AND ECOLOGY OF TAMARACK 3
GENETICS OF TAMARACK 4
DIVERSITY OF SHOOT GROWTH OF WOODY PLANTS
Predetermined Growth and Free Growth of Terminal Shoots 6
Sylleptic and Proleptic Growth of Lateral shoots
Syllepsis in Tamarack
GENETIC CORRELATION 12
HERITABILITY13
METHODS
EXPERIMENT MATERIALS
TEST DESIGN
DATA COLLECTION
DATA ANALYSES
RESULTS
MORTALITY
HEIGHT
OCCURRENCE OF SYLLEPSIS
DEGREE OF SYLLEPSIS
HERITABILITY
CORRELATIONS
DISCUSSION
MORTALITY
HEIGHT
OCCURRENCE AND DEGREE OF SYLLEPSIS

		F	Page
IMPLICATIC	NS IN T	REE IMPROVEMENT PROGRAM	42
CONCLUSIO	ONS		43
LITERATUR		D	44
APPENDICE	S		51
APPENDIX	I.	Expected mean square table with adjusted	
		coefficients	52
APPENDIX	11.	ANOVA, variance components and heritability.	
		calculations for height traits	54
APPENDIX	HI.	ANOVA, variance components and heritability	
		calculations for sylleptic branching traits	56
APPENDIX	IV.	Calculations of covariance components	58
APPENDIX	V.	Examples of variance and covariance component	
		calculations	63
APPENDIX	VI.	Clone means for height growth	64
APPENDIX	VII.	Clone means for sylleptic long shoot traits	69
APPENDIX	VIII.	ANOVA of individual provenances, variance	
		components and heritability calculations for	
		height traits	74
APPENDIX	IX.	ANOVA of individual provenances, variance	
		component and heritability calculations for	
		sylleptic branching traits	78

LIST OF TABLES

Page

Table

1	Number designation of provenances used in the study	15
2	Design of experiment	18
3	Design for analysing height growth and sylleptic branching	
	traits of individual provenances	22
4	Mortality, percentage of clones and ramets with syllepsis	
	in 1988 and 1989	24
5	Ranked provenance means and ranges of clone means	
	for height (cm)	26
6	Analyses of variance for height growth traits	27
7	Variance components and percent of variance for height	
	growth traits	27
8	Ranked provenance means and ranges of clone means	
	for 1989 sylleptic branching traits	30
9	Analyses of variance for 1989 sylleptic branching	
	traits	31
10	Variance components and percent of variance for sylleptic branching traits	31
11	Broad-sense heritabilities based on provenance and	•••
	clonal variance	32
12	Broad-sense heritabilities based on clonal variance	
	from analyses of variance for individual provenances	33
13	Phenotypic and genetic correlations among height growth	
	and sylleptic branching traits	34
	· · · · · ·	

LIST OF FIGURES

Figure		Page
	Locations of the eleven provenances sampled in	
	northwestern Ontario	16

ACKNOWLEDGEMENTS

I first credit Dr. Robert E. Farmer for letting me participate in his projects and contributing his encouragement, patience, and advice to this study. Thanks also go to Drs. Peggy Knowles and W. H. Parker for their advice during my study. In addition, Drs T. Hazenberg and K. M. Brown provided some advice on statistical analyses.

I am especially indebted to Ms. Gwen J. OR'eilley for her excellent guidance in choosing statistical methods and analyzing data.

My graduate studies at Lakehead University were made possible by support from Nanjing Forestry School.

S. D.

INTRODUCTION

Tamarack [Larix laricina (Du Roi) K. Koch] is a widely distributed native North American conifer that exhibits rapid juvenile growth on moist to moderately well-drained sites (Fowells, 1965). In the past, it has been largely neglected by foresters because of its low available wood volumes and susceptibility to damage by the larch sawfly (Pristiphora erichsonii Hartig) (Graham, 1956; Calvert,1977). As a result of the predicted wood supply shortage for the United States and Eastern Canada (Carter,1985), tamarack is now receiving attention as a potentially important reforestation tree species in Canada and the United States. Consequently, interest in use of this species in tree improvement programs is rising.

Calvert (1977) suggested that genetic improvement should be made through selection for rapid juvenile growth rate and good stem form within climatically adapted provenances. For this reason, the characters that can possibly influence juvenile growth rate and stem form are important to examine in any provenance or progeny study (Calvert, 1977; Carter,1985). Sylleptic shoots, defined as lateral shoots developing and elongating simultaneously with the parent shoot, might be one of these characters as suggested by Powell (1987).

Sylleptic shoots are commonly observed on the terminal leader of young tamarack trees. Syllepsis can modify the crown architecture, and growth of young tamarack trees is reported to be positively correlated with the amount of syllepsis (Remphrey and Powell, 1984; 1985). Further, trees with a large

amount of syllepsis early in life are thought to have superior growth potential after passing the seedling stage (Powell,1987; Remphrey and Powell, 1984). There is also some evidence of genetic control over the degree of syllepsis (Remphrey and Powell, 1984). Together these characteristics of syllepsis suggest that it may be a useful character in early selection for growth in genetic improvement programs. Therefore, the goal of this thesis was to test the hypotheses that (1) the syllepsis of tamarack is a heritable trait, (2) it is genetically correlated with the juvenile growth rate, and (3) considerable variation of this trait exists both among the provenances and among clones within provenances in northwestern Ontario.

LITERATURE REVIEW

SILVICS AND ECOLOGY OF TAMARACK

Tamarack is a geographically widespread boreal conifer. The species occurs from Newfoundland and Labrador west along the northern limit of tree growth to the Yukon Territory and south to northeastern British Columbia and northern Maine (Fowells, 1965). Tamarack can pioneer under many conditions and can withstand high soil moisture, high acidity, and low soil temperature. However, growth performance of tamarack is sensitive to variation in site and competition (Jeffers, 1975). It occurs most commonly on wet to moist organic soils (Henry *et al.*, 1973) and grows best on moist but well-drained, loamy soils (Fowells, 1965; Rudolf, 1966).

Seedlings of tamarack are intolerant and require full light and an ample supply of water for rapid early establishment (Henry *et al.*, 1973; Park and Fowler, 1983). Because of this intolerance it can only survive as a dominant or co-dominant tree in a stand (Fowells, 1965).

Tamarack flowers at an early age (five to seven years) (Fowells, 1965). Seed production is low and infrequent (Fowells, 1965; Morgenstern *et al.*, 1984; Fowler ,1986). Large cone crops do not occur until trees are 40 or more years of age, and the frequency of a large seed crop ranges from 3 to 6 years (Fowells , 1965). Mature cones are small (1 to 2 cm in length). The small seeds generally are dispersed over distances of less than two tree heights (Duncan, 1954). Both germinative energy and capacity of the small seeds are low compared to most spruce and pine species (Armson, 1983; Farmer and Reinholt, 1986). However, rooting of cuttings of this species is relatively easy compared with other conifers (Morgenstern *et al.*,1984; Farmer *et al.*, 1986),

and it is also possible to produce plantable grafts in 1 or 2 years (Fowler, 1986).

Tamarack will germinate on a wide range of seedbeds, but seedlings are susceptible to flooding and drought (Armson, 1983). In swamps and peatlands germination occurs on clumps of sphagnum moss (Beeftink, 1956). Tamarack is one of the most rapid growing of the boreal conifers. It outgrows most other native conifers (Fowells, 1965; Logan, 1966; Henry *et al.*, 1973; Mead, 1978; Hall, 1986).

Larch sawfly and spruce budworm (<u>Choristoneura fumiferana</u> (Clem)) attack larch foliage. Occasional widespread epidemics of larch sawfly can cause severe reductions in growth and mortality in tamarack (Fowells , 1965). However these two insects can be controlled successfully by chemical and biological insecticides (Vallee, 1983). More recently, concern has arisen for tamarack's vulnerability to attacks of European larch canker (<u>Lachnellula willkommii</u> Hartig), which is a serious pest in Europe. This disease has been reported in eastern Canada and the United States (Magasi and Pond, 1982; Ostaff and Newell, 1986).

Tamarack is suitable for both pulp and lumber (Hall, 1986; Yang and Hazenberg, 1987). Although tamarack has never been utilized on a large scale, it is now receiving attention as a potentially important reforestation species for fibre production in eastern Canada and the United States (Calvert, 1977; Morgenstern *et al.*, 1984; Carter, 1985; Hall, 1986; OMNR, 1987).

GENETICS OF TAMARACK

Although tamarack's life history and ecological characteristics are known in general way, its genetics have not been extensively investigated until

recently, and literature is limited (Park and Fowler, 1983; Morgenstern *et al.*, 1984). Several researchers have found that a clinal pattern of variation in bud flushing, bud set, and height growth, typical of many wide ranging species, is also found in tamarack (Rehfeldt,1970; Cech *et al.*,1977; Riemenschneider and Jeffers, 1980). A cold hardiness study of tamarack populations from northern Ontario indicates that adaptive variation in cold hardiness is also clinal (Joyce,1987). Early fall hardiness is strongly correlated with latitude, longitude, and elevation of population origins.

No specific races are presently recognized in tamarack. The gene pool is thought to be highly variable and unsegmented (Rehfeldt, 1970; Cech *et al.*, 1977). However, a study comparing growth responses of seedlings from northern seed sources with those from a southern source indicates that tamarack contains photoperiodic ecotypes (Vaartaja, 1959).

Estimates of intrapopulation genetic variation based on common garden studies are relatively high (Rehfeldt, 1970; Jeffers, 1975; Park and Fowler, 1982;). Isozyme studies suggest that this is the case for many other northern conifers (*e.g.* Yeh and El-Kassaby, 1980; Yeh and O'Malley, 1980; Brown and Moran, 1981; Dancik and Yeh, 1983; Hiebert and Hamrick, 1983; Steinhoff, Joyce and Fins, 1983; Furnier and Adams, 1986). Fins and Seeb (1986) also found that most of the variation in allozymes of Western Iarch (<u>Larix</u> <u>occidentalis</u> Nutt.), occurred within rather than among populations. Furthermore, examination of allozyme variation in populations of eastern tamarack across northwestern Ontario did not reveal marked heterogeneity among the populations (Knowles and Perry, 1986; Liu, 1988).

Species of the genus <u>Larix</u> exhibit more deleterious effects of inbreeding than do most species in the family Pinaceae (Franklin, 1970), although Park and Fowler, (1982) found that tamarack is below average in self-

fertility and above average in number lethal equivalents. Rehfeldt (1970) observed three types of chlorophyll deficiencies (from both inter and intrapopulation crosses), and inferior performance of selfed progeny. Knowles *et al.* (1987) found that natural populations of tamarack in northern Ontario had lower outcrossing rates than those reported for other conifers. Significant heterozygote deficiencies occurred in most embryo populations, but few were observed in the adult populations.

Park and Fowler (1982) found a relatively high specific combining ability for early seedling height and suggested that non-additive effects would be the most important source of genetic variation throughout the life of tamarack.

Tamarack exhibits considerable phenotypic variation in stem form and branch habit (Fowler, 1986). Characteristics such as stem form, branching habit and wood quality, thought to be under relatively strong genetic control, also affect yields. However, to date no genetic data have been published on these characters.

DIVERSITY IN SHOOT GROWTH OF WOODY PLANTS

Predetermined growth and free growth of terminal shoots

Two patterns of terminal shoot growth are found in northern conifers. One is termed "predetermined growth" or "fixed growth" in which new leaf or stem unit initials are developed on a primordial shoot and extend together after a period of dormancy (*e.g.* overwinter) (Pollard and Logan, 1974). The other has been termed "free growth" (Jablanczy, 1971; Pollard and Logan, 1974, 1976), in which new stem units are initiated and extended without interruption on a continously expanding stem.

The pattern of shoot growth of trees has been the object of studies for a long time. The two modes of terminal shoot growth have been reported in <u>Larix</u>, <u>Abies</u>, <u>Picea</u> and <u>Pinus</u> species (Nienstaedt, 1966; Jablanczy, 1971; Pollard and Logan,1974; Von Wuhlisch and Muhs, 1986; Rudolph, 1964). Environmental conditions are found to have a distinct influence on predetermined growth and free growth (Rudolph, 1964; Von Wuhlisch and Muhs, 1986) and there are strong indications that the prevailing photoperiod and temperature can determine whether or not free growth begins (Pollard and Logan,1974; Von Wuhlisch and Muhs, 1986). Free growth of trees also decreases with increasing age, which causes a gradual change from free growth to predetermined growth until eventually nearly all shoot growth develops in the pattern of predetermined growth on adult trees (Busgen and Munch, 1929; Rudolph, 1964; Von Wuhlisch and Muhs, 1986).

Provenance differences have been found in both forms of growth (Jack pine (Pinus banksiana Lamb.), Rudolph, 1964; Black spruce (Picea mariana (Mill.) B. S. P), Pollard and Logan, 1974; Sitka spruce (Picea sitchensis (Bong.) Carr.), Cannell and Johnstone, 1978; European spruce (Picea abies (L.) Karst.), Von Wuhlisch and Muhs, 1987). Pollard and Logan (1974) found that when grown at southern latitudes, southern provenances of black spruce are more likely to enter free growth than northern provenances at the same location. Rudolph (1964) found frequency of occurrence of free growth in jack pine varied with seed sources, indicating that the potential to form free growth is under genetic control. Cannell and Johnstone (1978) noted that provenances producing large amount of free growth at a favourable site tend to improve their height rankings during first few years after planting.

Sylleptic and proleptic growth of lateral shoots

Two alternative developmental possibilities similar to the free growth and predetermined growth of terminal leader also exist in the development of lateral shoots of woody plants. One is known as "sylleptic growth" in which a lateral branch develops simultaneously with its parent shoot without an intervening period of dormancy after bud formation. The other possibility is termed "proleptic growth", in which a lateral meristem, usually a bud, undergoes a period of dormancy after which it may extend to form a lateral meristem chronologically later than its supporting axis (Tomlinson,1978). The terms "syllepsis" and "prolepsis" have been adopted by Tomlinson & Gill (1973) to refer specifically to those two possibilities of lateral shoot development.

In the architecture of most trees the two types of branching can be distinguished by fairly consistent morphological features. Syllepsis produces a branch axis that (1) lacks basal bud scales or their persistent scars, (2) has a long basal internode, and (3) has little transition in leaf morphology and size at the first few nodes. Prolepsis produces a branch axis that has basal bud scales, initially congested nodes and a gradual transition in leaf morphology and size at the first few nodes (*e.g.* Halle *et al.*, 1978).

Syllepsis is predominantly a tropical phenomenon and is found to be infrequent in most temperate woody plants in the northern hemisphere (Halle *et al.*, 1978; Remphrey and Powell, 1985). It is only common in several northern woody genera under certain growing conditions or stages of development (Halle *et al.*, 1978; Nienstaedt, 1984; Remphrey and Powell, 1985). There is a trend of increasing frequencies of species with syllepsis from north to south (Tomlinson, 1978). Why syllepsis should be rare in a temperate flora is not obvious.

In northern woody plants, Halle *et al.* (1978) observed that <u>Cornus</u> <u>alternifolia</u> always bears sylleptic shoots, and Owens (1984) reported that syllepsis is a persistent feature of the lateral shoot development of species of <u>Cupressaceae</u>. Syllepsis can also be found on vigorous shoots of <u>Tsuga</u> (Mitchell, 1965; Owens and Molder, 1973), and is often observed on leaders of vigorously growing seedlings of <u>Picea</u> (Pollard and Logan, 1974, 1976; Cannell and Johnstone, 1978; Von Wuhlisch and Muhs, 1986), <u>Betula</u> (Kennedy and Brown, 1984), <u>Cedrus</u> (Mitchell, 1965) and <u>Larix</u> (Mitchell, 1965; Powell and Vescio, 1986).

Few detailed investigations of sylleptic branching have been conducted in temperate trees. There is evidence to suggest that the occurrence and amount of sylleptic branching are correlated with shoot vigor, in particular the rapidity of parental shoot extension (Halle *et al.*,1978; Kennedy and Brown, 1984; Remphrey and Powell 1985). Tomlinson and Gill (1973) suggested that a threshold determined by vigour changed conditions from a low state producing prolepsis to a higher state producing syllepsis, but between species and between-tree variability are considerable (Kennedy and Brown, 1984). Remphrey and Powell (1985) suggested that sylleptic growth is partly due to a tree's response to current year growing conditions.

Syllepsis in tamarack

Leaders of tamarack exhibit considerable developmental plasticity, as in other species of <u>Larix</u>. The prominent features of the plasticity include (1) the production (in axils of certain leaves) of short shoot buds in more proximal

positions and long-shoot buds in more distal positions (Clausen and Kozlowski, 1970), (2) a remarkable potential for terminal leader free growth subsequent to growth of predetermined shoot elements (Remphrey and Powell, 1984), and (3) the capacity for production of sylleptic long shoots or short shoots (Remphrey and Powell,1985; Powell and Vescio, 1986). The capacity for free growth and sylleptic growth allows Larix leaders to respond to favorable growing conditions and to continue elongating late in the growing season (Mitchell, 1965; Powell and Vescio, 1986).

Sylleptic long shoots and short shoots are commonly observed on leaders of young Tamarack (Remphrey and Powell, 1985). Compared with the sylleptic long shoot, the sylleptic short shoot is a "form of less sylleptic development occurring when a few of the first-formed lateral appendages of a new lateral axis differentiated as leaves, but with limited axil growth among leaf bases " (Powell and Vescio, 1986). Sylleptic long shoots in tamarack are easily recognized both in the year of their formation and for a few successive years according to three criteria: (1) its occurrence along elongating leader, (2) having smooth connection with its parent shoot or lacking bud scales at its base, and (3) lacking a cluster of basal leaves (*e.g.* Powell and Vescio, 1986).

Mitchell (1965) concluded that sylleptic shoots of <u>Larix</u> species were confined within the free growth part of its parent leader. This is reported to be true for certain hardwoods (Brown *et al.*, 1967). However, Remphrey and Powell (1984) found it unlikely that syllepsis of Tamarack was determined by the free growth of leaders. The occurrence and degree of syllepsis, are reported to bear a positive relationship with parental shoot length, and syllepsis is restricted to the transition zone between predetermined growth and free growth of parental leader in tamarack (Remphrey and Powell, 1985). This is usually along the lower half of the parental leader (Powell and Vescio,

1986). The occurrence of sylleptic short shoots, however, is not restricted to the zone where sylleptic long shoots appear (Powell and Vescio, 1986). Syllepsis is observed less frequently in mature trees (Von Wuhlisch and Muhs, 1985). Remphrey and Powell (1985) observed no syllepsis in tamarack trees over 25 years of age.

McCurdy and Powell (1987) suggested that the propensity for sylleptic branching of tamarack may be a part of an adaptive mechanism permitting exploitive development of as much photosynthetic surface as possible in order to compete successfully. Sylleptically initiated branches were reported bearing many more short and long shoots than did proleptic branches, and leaders with heavy syllepsis (21-39 shoots) elongated faster and longer than leaders without syllepsis (Remphrey and Powell,1984). Sylleptic long and short shoots greatly increased the numbers of leaves on the leaders (Powell, 1987). The initial superior growth of sylleptic leaders was generally associated with previous sylleptic shoot production (Powell and Vescio, 1986).

McCurdy and Powell (1987) found that there were positive correlations among annual wood ring production and total stem cross-sectional areas at various positions along the main stem of tamarack trees and the proleptic, sylleptic, and total branching components occurring above the positions. Wood production along the stem was found to be greater and more uniform, and the resultant stem more conical in heavily sylleptic saplings than in less sylleptic saplings. Therefore, McCurdy and Powell (1987) further suggested that in untended stands competition among trees would favour the more vigorous , sylleptic trees.

Powell (1987) found that the longevity of sylleptic shoots was shorter than that of proleptic shoots. Therefore, they suggested that the crown of a mature tree may not be overly branchy even though the tree had highly

juvenile branchiness because of strong syllepsis. There was no association between leader crookedness and production of sylleptic long shoots (Powell, 1987).

Powell and Vescio (1986) suggested that there existed genetic control over the development of syllepsis. They reported that certain plantation-grown trees from a single seed source did not exhibit any sylleptic branching although the component height growth increments were generally very vigorous. However, to date, no genetic data have been published.

GENETIC CORRELATION

According to Falconer (1981), the genetic correlation measures how strongly two characteristics are correlated genetically. It is defined as the ratio of the genetic covariance to the product of the two genetic standard deviations. It is expressed as:

r_{XV} = cov(xy) /√var(x)*√var(y)

where cov(xy) is the genetic covariance between character x and y, and var(x), var(y) are the genetic variance components for character x and y respectively. The genetic components of covariance for the two characters can be computed from an analysis of covariance (Falconer, 1981; Becker, 1984).

Estimates of genetic correlations are thought to be subject to rather large sampling errors and are therefore not very precise (Falconer, 1981). Furthermore, genetic correlations are strongly influenced by gene frequencies and therefore may differ markedly in different populations (Bohren *et al.*, 1966).

Therefore, estimates of genetic correlations only give a general impression of how strongly two characteristics are correlated genetically.

Two types of genetic correlation are designated (Burdon, 1977). One type is the genetic correlation obtained from both traits measured on the same individuals. The other type of genetic correlation is obtained from a single trait measured on different individuals within genetic groups in different environments, which is a special case of genetic correlation between environments.

Genetic correlations among traits are commonly used in determining the degree to which selection for one trait will be successful in improving another trait (Zobel and Talbert, 1984). Therefore it is of interest to tree breeders. Working with forest tree species, several researchers have used genetic correlation between juvenile and mature traits to judge the effectiveness of early family selection (Wakeley,1971; Ying and Morgenstern,1979; Lambeth,1980). Genetic correlation has also been used as a concept for studying genotype environment interaction in forest tree breeding (Burdon,1977).

HERITABILITY

The concept of heritability is widely used in quantitative genetics. It is expressed as the ratio of genetic variance to total variance, and is commonly thought of as an estimation of the degree of genetic determination (Falconer, 1981) or the ability for parents to pass their characteristics to their offspring (Zobel and Talbert, 1984). There are two kinds of heritability estimates: broadsense heritability and narrow-sense heritability. Broad-sense heritability and narrow-sense heritability are expressed in the following two formulae:

Broad-sense: $h^2 = \sigma^2_G / \sigma^2_P = (\sigma^2_A + \sigma^2_{NA}) / (\sigma^2_A + \sigma^2_{NA} + \sigma^2_E)$ Narrow-sense: $h^2 = \sigma^2_A / \sigma^2_P = \sigma^2_A / (\sigma^2_A + \sigma^2_{NA} + \sigma^2_E)$

where σ^2_A , σ^2_{NA} and σ^2_E mean additive, non-additive and error variance components respectively. Therefore, heritability measures the relative importance of sources of variation which contribute to the determination of a phenotype.

Falconer (1981) explains that broad-sense heritability measures the extent to which an individual's phenotype is determined by its genotype, whereas the narrow-sense heritability estimates the relative importance of genes from parents in determining a phenotype.

METHODS

Genetic variation in syllepsis and juvenile growth of eastern tamarack in northwestern Ontario was studied in a clonal test established on a two hectare old-field site on Lakehead University land in Thunder Bay, Ontario.

EXPERIMENT MATERIALS

The area sampled to establish the experimental population was bounded by Long. 80° and 95° W and by Lat. 46° and 54° N (Table 1).

Latitude	Longitude					
	80-82 ⁰	84-850	90-910	93-940		
46-47 ⁰	1	4	-	-		
48-49 ⁰	2	5	8	-		
50-51 ⁰	3	6	9	-		
53-54 ⁰	-	7	10	11		

Table 1. Number designations of provenances used in the study.

Eleven provenances ranging from North Bay to Sandy Lake (Fig. 1), were included in the test. Each provenance was represented by twenty wildlings sampled from each of two stands. In each stand, sample trees were generally 20 meters or more apart and dispersed throughout the stand. These wildlings, ranging from 3 to 10 years of age, were used as ortets to produce planting stock for the test.

Figure 1. Location of collections of tamarack.

Wildlings were collected and transplanted during the spring and summer of 1984. These wildling transplants were excavated with soil in order to minimize disturbance to their root systems and planted in 6-liter pots filled with peat-vermiculite. Enough lateral shoots were developed to provide cuttings in the summer of 1984, and the cuttings were successfully rooted in Spencer-Lemaire containers (750 ml) via methods designed by Farmer *et. al.* (1986). The rooted ramets of these ortets were overwintered outdoors and brought into a greenhouse for forcing in January 1985. They were transferred to a lathhouse in June where they remained until planted.

The soil on the test sites is not homogeneous, with a sandy loam in Blocks 1 and 2 and stony, shallow, sandy loam in Blocks 2 and 3. Before ramets were planted the sites were cleared with a brush saw. Then a glyphosate herbicide (Roundup) was applied to eliminate competing vegetation. In the fall of 1985, rooted cuttings were planted into Blocks 1 and 2. Cuttings were planted into Blocks 3 and 4 in the spring of 1986. During the first growing season after planting, every tree was covered with a plastic bag, then Roundup was sprayed to eliminate competing vegetation. In the later years, weed control was done manually using a brushsaw during growing seasons.

TEST DESIGN

The test is part of long-term provenance studies in eastern tamarack being conducted by the School of Forestry, Lakehead University. The test is aimed at determining the natural variation patterns of biologically important characteristics of tamarack, especially those with fitness values which vary along environmental gradients in northwestern Ontario (Farmer, 1983).

The test has a three level nested design (Table 2) with provenances as main plots, and stands within provenances, and clones within stands within provenances as subplots. Eleven provenance plots are randomly arranged in each of four replications. Three ramets from each of 20 clones per provenance are completely randomized within each provenance plot. The design allows for evaluation of genetic variance within each provenance, and for evaluation of provenance effects under the assumption that the restriction error on randomization of provenances is negligible.

Table 2: Design of Experiment.

Source	Degree of Free	dom	Expected Mean Square
Bi	(Block)	3	$\sigma^2 + 3\sigma^2_{BC} + 30\sigma^2_{BS} + 60\sigma^2_{\omega} + 60\sigma^2_{BP}$
δ _(i)	(1st restriction error)	0	+ $660\sigma^{2}_{\delta}$ + $660\phi_{(B)}$ σ^{2} + $3\sigma^{2}_{BC}$ + $30\sigma^{2}_{BS}$ + $60\sigma^{2}_{\omega}$ + $60\sigma^{2}_{BP}$ + $660\sigma^{2}_{\delta}$
Pi	(Provenance)	10	$\sigma^2 + 12\sigma^2_{C} + 120\sigma^2_{S} + 60\sigma^2_{C} + 240\sigma^2_{P}$
, BP _{ii}	(Block X Provenance	e) 30	$\sigma^2 + 3\sigma^2_{BC} + 30 \sigma^2_{BS} + 60 \sigma^2_{W} + 60 \sigma^2_{BP}$
ω _(ij)	(2nd Restriction error	r) O	$\sigma^2 + 3\sigma^2_{BC} + 30\sigma^2_{BS} + 60 \sigma^2_{\omega}$
S _{(i)k}	(Stand/ Provenance) 11	$\sigma^2 + 12 \sigma^2_{\rm C} + 120 \sigma^2_{\rm S}$
BS _{i(i)k}	(Block X St. /Prov.)	33	$\sigma^{2} + 3 \sigma^{2}_{BC} + 30 \sigma^{2}_{BS}$
C _(ik) i	(Clone/ St. / Prov.)	198	σ^2 + 12 σ^2_{C}
BČ _{i(ik)}		594	σ^2 + $3\sigma^2_{BC}$
(Block)	K Clone/ St./ Prov.)		
E(ijkl)m	(Error)	1760	σ ²
Total		2639	

DATA COLLECTION

During early summer of 1989, the 1988 height increment was measured to the nearest 0.1 cm, and the number and length of sylleptic long shoots (>3cm) on 1988 apical shoots were recorded. Trees with severe terminal leader damage were excluded because of many abnormal adventitious shoots.

After trees ceased growing in late summer of 1989, the following were recorded: (1) the total number of sylleptic long shoots, (2) the total length of those shoots, (3) 1989 height growth and (4) mortality for each provenance. Total heights in 1989 were derived by adding 1989 height growth to 1988 total height. The total heights for 1987 and 1988 were available from previous measurements.

DATA ANALYSES

Since up to 25 percent missing entries caused problems in matrix manipulation, multivariate analysis of variance was not used. Univariate analyses of variance were done using individual tree data for each of the following attributes:

- 1. The total number of sylleptic long shoots on 1989 growth.
- 2. The total length of sylleptic long shoots on 1989 growth:
- 3. Number of sylleptic long shoots per cm of 1989 growth.
- 4. Length of sylleptic long shoots per cm of 1989 growth.
- 5. Total height in September 1988.
- 6. Height growth for 1988.
- 7. Height growth for 1989.
- 8. Total height in September 1989.

All the analyses of variance were carried out according to the following model:

$$\begin{aligned} Y_{ijklm} &= \mu + B_i + \delta_{(i)} P_j + BP_{ij} + \omega_{(ij)} + S_{(j)K} + BS_{i(j)k} + C_{(jk)k} \\ &+ BC_{i(jk)l} + E_{(ijkl)m} \end{aligned}$$

Where:

Y _{ijklm}	=the m th observation of the I^{th} clone of k^{th} stand of j^{th}						
	provenance in i th block						
μ	= overall effects						
B _i	= block effects (fixed), i=1,2,3,4;						
δ _(i)	= first restriction error (due to blocking)						
Pj	= provenance effects (random), j=1,2,11;						
BP _{ij}	= block X provenance interaction effect						
^ω (ij)	= second restriction error (due to provenances.within blocks)						
S (j)k	= effect of the k th stand within the J th provenance (random)						
BS _{i(j)k}	= block X stand interaction effect, k=1,2;						
C _{(jk)l}	= clonal effect (random), l=1,2,10;						
BC _{i(jk)} l	= block X clone interaction effect						
E(ijkl)m	= random effect, m=3;						

All analyses of variance were done using the Excel spreadsheet on a McIntosh microcomputer. The procedures for the calculation of unbalanced data for a nested design described by Sokal and Rohlf (1981) were followed.

The variance components were calculated following the design shown in Table 1. Since there were missing data entries, the coefficients in the expected mean square table were estimated using Sokal and Rohlf's (1981) procedure for an unbalanced nested design (Appendix I). Although it is unusual to use provenance test to estimate broad-sense heritability it is permissible here because both among provenance and within provenance variation can be estimated with this test design Broad-sense heritability for both provenances and clones within provenances are estimated using the following formulae (Falconer, 1981; Zobel and Talbert, 1981) :

$$h^{2}p = \sigma^{2}p / \sigma^{2}BP + \sigma^{2}S + \sigma^{2}BS + \sigma^{2}C + \sigma^{2}BC + \sigma^{2}$$
$$h^{2}C = \sigma^{2}C / \sigma^{2}C + \sigma^{2}BC + \sigma^{2}$$

Where: $h^2 p$ and $h^2 c$ represent the broad-sense heritability for provenances and clones within provenances respectively; $\sigma^2 p$, $\sigma^2 s$ and $\sigma^2 c$ are variance components due to provenances, stands and clones within provenances respectively; $\sigma^2 B p$, $\sigma^2 B s$ and $\sigma^2 B c$ stand for variance components due to block X provenance interactions, block X stand interactions and block X clone interactions respectively; σ^2 stands for the variance component due to random error;

Due to the nature of the clonal test design, it is possible to analyze individual provenances separately as for a randomized complete block design (Table 3) using the model:

 $Y_{ijk} = \mu + B_i + \delta_{(i)} + C_{j} + BC_{ij} + E_{(ij)k}$

Where:

Yijk =the kth ramet of the jth clone in ith block

 μ = overall effects

 B_i = block effects (fixed), i=1,2,3,4;

 $\delta_{(i)}$ = first restriction error (due to blocking)

 C_j = clone effect (random), j=1,2,....20;

BC_{ii} = block by clone interaction effect

 $E_{(ij)k}$ = random effect, k=3;

Therefore, clonal broad-sense heritability of a trait in an individual provenance can be estimated from the individual provenance analysis of variance.

Table 3.	Design for analysing height growth and syllepsis of individual
	provenances.

Source of Variation 1/	Degree of Freedom	Expected Mean Square
B _i (Block)	3	$\sigma^2 + 3 \sigma^2_{BC} + 60\sigma^2_{\delta} + 60\phi_{(B)}$
$\delta_{(i)}$ (Restriction error)	0	σ^2 + $3\sigma^2_{BC}$ + 60 σ^2_{δ}
C _i (Clone)	19	$\sigma^2 + 12 \sigma^2_{C}$
BC _{ij} (Block X Clone)	57	σ^2 + 3 σ^2_{BC}
E _{(ij)k} (Error)	160	σ ²
Total	239	

1/. Site within provenances had no significant effect (at 0.05 level of probability) on variation of any traits in analyses of variance using all provenances. Therefore, it was not included in this analysis.

Because of the importance of interrelationships among height growth characteristics and branching habits in selection and breeding programs, correlation analyses were applied to investigate the possible relationships among these attributes. Phenotypic correlations were calculated between all characters recorded at the individual tree level using Pearson product-moment correlations. The calculations were carried out using the SPSS-X statistical package on a MicroVax II computer system.

Genetic correlations among traits give information useful in determining effects of selection for one trait on other trait. Genetic correlation at the clonal level can be estimated as $r(g)_C$ = $COV(XY)_C / \sqrt{V(XX)_C} * \sqrt{V(YY)_C}$ where: $COV(XY)_C$ = clonal genetic covariance for trait X and Y. $V(XX)_C$ = clonal genetic variance of trait X. $V(YY)_C$ = clonal genetic variance of trait Y.

In this study, the procedures of covariance analysis for a nested design described by Becker (1984) were followed. Genetic correlations were investigated for the following pairs of traits:

- Total height for 1988 vs total number and length of 1989 sylleptic long shoots and 1989 total height.
- Height growth for 1988 vs. total number and length of 1989 sylleptic long shoots and 1989 total height.
- Height growth for 1989 vs. total number and length of 1989 sylleptic long shoots and 1989 total height.
- 4. Height growth for 1989 vs. 1989 total height.
- Total number of 1989 sylleptic long shoots vs. total length of 1989 sylleptic long shoots and 1989 total height.

RESULTS

MORTALITY

Mortality at the end of 1989 growing season averaged 22 percent and ranged from 7 percent for North Bay to 46 percent for Pickle Lake (Table 4). There is a trend of increasing provenance mortality from south to north. But there is no indication that this trend is statistically significant. Correlations between mortality of each provenance and mean provenance height growth for 1988 and 1989 were high (average r=-0.84; α =0.01). However, mortality of the Thunder Bay provenance was significantly higher than the average for provenances at the lower latitudes.

Despite the geographic trend in mortality for provenances, the mortality occurred randomly among clones within provenances. Only eleven clones were excluded from analyses of variance due to high mortality during 1988 (Table 4).

Provenance M		ortality	Number of	Percent of clones		Percent of trees			
	р	ercent	clones exclude	clones excluded with syllepsis			with syllepsis		
		1989	from analyses	1988	1989	1988	1989		
(1)	North Bay	7	0	55	95	1.20	61		
(2)	Sault S Mari	e 18	0	10	100	0.10	47		
(3)	Timmins	20	1	30	90	0.90	35		
(4)	Wawa	19	1	30	95	0.30	34		
(5)	Thunder Bay	31	1	35	95	0.35	48		
(6)	Fort Frances	15	0	75	95	1.60	51		
(7)	Red Lake	29	0	10	90	0.35	38		
(8)	Pickle Lake	46	2	5	65	0.05	22		
(9)	Kenogami R.	21	1	10	70	0.20	23		
(10)	Moosonee	40	4	10	45	0.10	14		
(11)	Sandy Lake	22	1	35	90	0.65	35		

Table 4.	Mortality	and	occurrence	of	syllepsis	in	1988	and	1989.
----------	-----------	-----	------------	----	-----------	----	------	-----	-------

HEIGHT

There is a significant provenance effect on height growth, as is the effect of clones within provenances (Table 6). However, no significant stand effect was detected. Comparisons among provenance means were made for 1988 and 1989 height growth and 1989 final height using Tukey-Kramer's multiplerange comparison method. The ranking of the eleven provenances indicates a north-south trend of increasing provenance means in height growth (Table 5). All southern provenances (Nos. 1 through 6) rank higher than northern provenances for both height growth and final height in 1989. Among southern provenances, the North Bay and the Fort Frances provenances are superior in height growth. Among northern provenances, the most northern provenance, Sandy Lake, exhibited the best height growth. The variance components for provenance were larger than those for clones within provenances for height growth traits, with the exception of 1988 height growth (Table 7). Variance components for provenance also increased with time, from 6.2 percent of total variance in 1988 height growth to 23 percent in 1989. The same relationship is true for final height. In contrast, there was little increase in clonal variance components between 1988 and 1989 (Table 7).
Table 5. Ranked provenance means and the range of clone means (in parentheses) for height growth (cm) traits. Provenance means followed by different letter suffixes are significantly different at the 0.05 level of probability.

	Height	Final	Height	Final 1/
Provenance	growth,	height,	growth,	height,
	1988	1988	1989	1989
(8) Pickle Lake	18.4	61.5	34.3 a	95.5 a
	(10.0-29.7)	(39.4-81.6)	(21.1-44.9)	(60.9-126.4)
(10) Moosonee	20.9	67.9	36.3 a	104.1 b
	(16.2-27.4)	(48.4-89.7)	(22.2-47.7)	(74.7-131.7)
(7)Red Lake	20.3	66.5	42.8 b	109.0 bc
	(11.7-31.9)	(44.1-89.4)	(22.6-65.9)	(68.3-146.5)
(9) Kenogami R.	22.8	71.0	43.1 b	114.0 cd
	(14.5-34.2)	(52.1-98.3)	(30.1-65.3)	(81.4-152.6)
(11) Sandy Lake	26.2	71.6	46.4 b	ົ117.6 d ໌
	(16.7-43.0)	(54.6-113.1)	(33.1-57.3)	(87.6-156.3)
(3) Timmins	25.2	77.6	52.4 c	129.1 e
	(17.6-39.7)	(64.5-101.6)	(41.7-72.8)	(108.8-174.4)
(4) Wawa	25.6	82.2	50.1 c	132.3 ef
	(16.7-30.7)	(65.6-101.3)	(35.7-59.7)	(108.1-154.8)
(2) Sault S. M.	24.8	85.7	53.8 cd	139.4 fg
	(19.6-31.4)	(67.0-105.0)	(37.8-65.0)	(109.7-162.5)
(5) Thunder Bay	27.0	89.8	53.3 cd	143.2 g
	(19.4-35.3)	(71.8-104.9)	(33.0-72.6)	(107.6-175.0)
(6) Fort Frances	29.5	90.3	56.8 d	146.6 g
··· · · -	(18.8-40.3)	(63.2-121.1)	(43.9-68.7)	(115.9-186.9)
(1) North Bay	30.9	99.9	68.7 e	168.5 h
	(19.1-47.3)	(82.7-129.5)	(53.3-91.7)	(140.1-204.4)

 $\underline{1}$. Provenances are ranked by this attribute.

<u> </u>	1. I	Height	Final	Height	Final
Source of		growth,	height,	growth,	height,
Variation		1988	1988	1989	1989
	DF		Mean So	uare	
Block	3	16170.24 n	72294.26 n	3990.66 n	104469.09 n
Provenance	10	2285.30 *	24065.71 **	16895.39 *	79617.35 **
Block X Prov.	30	1163.12 *	5250.45 *	3216.41*	15140.32 *
Stand	11	254.51 ns	1762.18 ns	356.93 ns	2879.12 ns
Block X Stand	33	157.82 ns	514.15 ns	192.75 ns	1069.01 ns
Clone	187	231.86 **	1311.04 **	599.62 *	2860.80 **
Block X Clone	528	104.25 ns	549.23 ns	187.56 ns	983.26 ns
Error	1191	98.99	508.44	192.59	1006.73

Table 6. Analyses of variance for height growth traits.

* and **, significant at 5% and 1% levels of probability respectively, ns, not significant, n, no valid test for block effect.

Table 7. Variance components and percent of variance (in parentheses) for growth characters..

Source of Variation	Height growth, 1988	Final height, 1988	Height growth, 1989	Final height, 1989
Block	30.2(16.6)	134.9(13.8)	1.6(0.39)	179.8(8.5)
Provenance	11.2(6.2)	123.4(12.6)	90.1(22.9)	424.4(20.0)
Block X Prov.	22.2(12.3)	104.0(10.6)	66.9(17.0)	311.5(14.7)
Stand	0.2(0.1)	4.5(0.5)	0 ` ´	0
Block X Stand	2.4(1.3)	o 1/	0	2.8(0.1)
Clone	14.0(7.7)	84.6(8.7)	42.9(10.9)	195.4(9.2)
Block X Clone	2.2(1.2)	17.2(1.7)	0	0 ` ´
Error	99.0(54.5)	508.4(52.0)	192.6(48.9)	1006.7(47.5)

1/. "0" stands for negative or zero variance component .

OCCURRENCE OF SYLLEPTIC SHOOTS

Percentage of living trees and clones with sylleptic long shoots increased greatly between the 1988 and 1989 growing seasons (Table 4). In 1988, only 5.4 percent of trees and 27 percent of living clones developed sylleptic long shoots. In 1989, 37 percent of trees exhibited syllepsis and 79 percent of the living clones (220) had one or more ramets with syllepsis.

Occurrence of sylleptic growth gradually decreased from southern to northern provenances. In 1988, the trees with sylleptic growth were mostly in southern provenances, such as Fort Frances (1.6%) and North Bay (1.2%), and the number of clones with sylleptic growth was greater in southern provenances (Provenances 1-6, average 7 clones) than that in northern provenances (Provenances 7-13, average 3 clones) (Table 4). An exception to this relationship is seen in the Sandy Lake provenance which, at Latitude 53°30', is the most northern provenance in the test. In 1988, it had seven clones with one or more sylleptic ramets, which is almost equal to the average of all southern provenances. The Sandy Lake provenance also had 0.65 percent of trees with sylleptic growth in 1988, which is a higher percentage than for trees from Sault Ste Marie (Lat. 46°48'N), Wawa (Lat. 48°49'N), and Thunder Bay (Lat. 48°24'N) (Table 4).

The south-north trend of decreasing potential for sylleptic growth for tamarack is clearer in 1989 than in 1988. In 1989, North Bay had the highest percentage of trees with syllepsis (61 percent), while Moosonee had only 14 percent (Table 4). Differences among the more southern provenances with regard to the percent of clones that had developed syllepsis are minor in 1989, when over 90 percent of clones exhibited sylleptic growth (Table 4). The northern provenances were more variable in this respect, with a range of 45 to 90 percent of clones exhibiting some syllepsis. However, provenance means for percentage of ramets with syllepsis ranged widely among both northern and southern provenances (Table 4).

DEGREE OF SYLLEPSIS

Provenance means for number and total length of sylleptic long shoots per tree, and the number and total length of sylleptic long shoots per cm height increment in 1989 are presented in Table 8. A strong statistically significant (Table 9) provenance effect is shown. Multiple comparison among provenances indicates an apparent south-north trend of decreasing provenance means. The North Bay provenance had the highest number of shoots (7.5); Moosonee had the lowest of (0.8). There also exists the same trend of decreasing provenance means for the other three attributes. In fact, provenance means for these four attributes are strongly correlated with each other (average r=0.98 p<0.01), and have identical ranges. Generally, southern provenances (Nos. 1-6) exhibit larger number and length of sylleptic shoots per cm of height growth than northern provenances (Table 8). Provenance means for number of sylleptic shoots per cm of 1989 height growth ranged from 0.016 to 0.091, while provenance means for length of sylleptic shoots per cm of 1989 height growth ranged from 0.048 to 1.022. The analyses of variance also indicate that the effect of clones within provenances was statistically significant for the four sylleptic branching traits. However, the effect of stands within provenance was not significant for any traits (Table 9). Variance components (Table 10) were calculated using the expected mean squares presented in Appendix I. Clone and provenance effects accounted for an average of 39 percent of the total variance for sylleptic branching traits. Clones within provenance contributed more variance than provenance for the four sylleptic branching traits. The average ratio of clonal variance to provenance variance is 2.9.

Table 8.	Ranked provenance means and the range of clone means (in
	parentheses) for 1989 sylleptic branch traits. Provenance means
	followed by different letter suffixes are significantly different
	at the 0.05 level of probability, Tukey-Kramer multiple range test.

		Total 1/	Total length of	Number of	Length (cm) of
		syllentic	svilentic	shoots per	shoots per
		shoots	shoots cm	cm height	cm height
Pro	venance	3110013	310013, 011	arowth	arowth
10	Moosonoo	082	26.0	0.016.2	0.05.2
10	MOUSUNEE	(0.050)	2.0 a	(000 094)	0.05 a
•		(0.0-5.0)	(0.0-19.2)	(.000004)	(0.00-0.32)
8	PICKIE LAKE	1.0 a	4.3 D	0.021 a	0.09 0
•		(0.0-3.5)	(0.0-22.8)	(0.00-0.069)	(0.00-0.40)
9	Kenogami R.	1.0 a	5.4 b	0.018 a	0.09 b
		(0.0-5.0)	(0.0-21.8)	(.000079)	(0.00-0.37)
11	Sandy Lake	1.7 b	7.7 c	0.03 4 b	0.14 c
		(0.0-5.0)	(0.0-24.3)	(.000098)	(0.00-0.43)
4	Wawa	2.0 b	11.5 d	0.035 b	0.18 cd
		(0.0-6.8)	(0.0-55.4)	(.000103)	(0.00-0.74)
7	Red Lake	2.2 bd	11.5 d	0.047 c	0.25 de
		(0.0-7.7)	0.0-35.1	(.000135)	(0.00-1.03)
3	Timmins	2.7 de	19.2 e	0.043 c	0.28 ef
		(0.0-13.8)	(0.0-129.2)	(.000173)	(0.00-1.56)
5	Thunder Bay	3.1 e	21.0 e	0.049 cd	0.30 f
	-	(0.1-8.8)	(2.1-62.9)	(<.001146)	(<0.01-0.95)
2	Sault S. M.	3.4 e	20.5 e	0.054 d	0.31 f
		(0.2-11.6)	(0.3-74.1)	(<.001198)	(<0.01-1.18)
6	Fort Frances	`4.5 f ′	`40.4 f	0.063 é	0.52 g
		(0.0-19.1)	(0.0-173.8)	(.000262)	(0.00-2.20)
1	North Bay	7.5 g	` 89.4 ´ a	`0.091 ´f	`1.02 ´h
		(0.0-26.4)	(0.0-369.0)	(.000268)	(0.00-3.59)

1/. Provenances are ranked by this attribute.

Source of Variation		Total number of sylleptic shoots	Total length of sylleptic shoots	Number of sylleptic shoots per cm height growth	Length of sylleptic shoots per cm height growth
	DF		Mean S	Square	
Block	3	202.28 no	22724.67 n	o 0.147 no	1.44 no
Provenance	10	763.56 **	132733.29 *	0.096 *	16.17 **
Block X Prov.	30	120.28 **	27508.54 **	* 0.019 **	3.06 **
Stand	11	120.52 ns	6637.30 n	s 0.025 ns	1.15 ns
Block X Stand	33	12.55 ns	1556.51 n	s 0.003 ns	0.22 ns
Clone	187	113.84 *	14687.86 *	* 0.021 **	1.85 **
Block X Clone	528	19.31 ns	2729.73 n	s 0.004 ns	0.34 ns
Error	1191	16.06	2137.10	0.003	0.27

Table 9. Analyses of variance.for 1989 sylleptic branching traits.

* and **, significant at 5% and 1% levels of probability respectively. no, no valid test for block effect.

ns, not significant.

Table 10. Variance components and percent of variance (in parenthesis) for sylleptic branching characters.

Source of Variation	Total number of sylleptic shoots	Total length of sylleptic shoots	Number of sylleptic shoots per cm height growth	Length of sylleptic shoots per cm height growth
Block	0.165(0.5)	± 01/	0.00026(4.0)	0
Provenance	3.557(10.5)	650 <i>.</i> 63(13.3)	0.00039(6.1)	0.079(13.1)
Block X Prov.	2.233(`6.6)	548.07(11.2)	0.00032(5.0)	0.060(10.0)
Stand	0.035(0.1)	Û	0.00005(0.8)	0
Block X Stand	0	0	Ó	0
Clone	10.303(30.5)	1322.53(26.9)	0.00178(27.6)	0.166(27.6)
Block X Clone	1.368(4.1)	250.05(5.1)	0.00035(5.4)	0.028(4.6)
Error	16.064(47.6)	2137.09(43.5)	0.00329(51.1)	0.269(44.7)

1/ "0" stands for negative or zero variance component .

HERITABILITY

Broad-sense heritabilities based on variance components for provenances and clones within provenance are presented for each attribute in Table 11. For sylleptic branching characters, heritabilities based on clonal variance were generally larger than those based on provenance variance. For growth characters, the opposite is true. Clonal heritabilities for sylleptic branch characters were the highest in the test (average $h^2=0.36$).

Table 11. Broad-sense heritabilities based on provenance and clonal variance.

Traits	Herita Provenance	bility Clone
Number of svileptic shoots on 1989 height growth	0.11	0.37+0.02 1/
Number of sylleptic shoots /cm 1989 height growth	0.06	0.33 <u>+</u> 0.03
Total length of sylleptic shoots on 1989 height grow	/th 0.13	0.36 <u>+</u> 0.02
Length of sylleptic shoots /cm 1989 height growth	0.13	0.36 <u>+</u> 0.03
Height Growth, 1988	0.07	0.12 <u>+</u> 0.03
Final Height, 1988	0.15	0.14 <u>+</u> 0.04
Height Growth, 1989	0.23	0.18 <u>+</u> 0.04
Final Height,1989	0.22	0.16 <u>+</u> 0.03

 $\underline{1/}$. Standard errors were calculated using the method described by Falconer (1981).

Clonal broad-sense heritability estimates for individual provenances are listed in Table 12. They range widely for both 1989 height growth and sylleptic branching traits. The Red Lake provenance exhibits the highest clonal broadsense heritabilities for height growth traits (average $h^2=0.42$), which is twice as large as the clonal broad-sense heritability estimates using all provenances. The Sault Ste. Marie, Wawa and Sandy Lake provenances exhibit very low clonal broad-sense heritabilities. The clonal broad-sense heritabilities for individual provenances vary from 0.11 to 0.52 for total number of sylleptic shoots in 1989 and from 0.10 to 0.44 for total length of sylleptic shoots in 1989. Apparently, those provenances which have low clonal broad-sense heritabilities for height growth also tend to have low heritabilities for sylleptic branching traits.

	Height	Final	Total number	Total length
	growth,	height,	of sylleptic	of sylleptic
Provenance	1989	1989	shoots,1989	shoots,1989
North Bay	0.25 <u>+</u> 0.08	0.15 <u>+</u> 0.06	0.50 <u>+</u> 0.09	0.44 <u>+</u> 0.09
Sault Ste. Marie	o 1/	0	0.21 <u>+</u> 0.07	0.10 <u>+</u> 0.05
Timmins	0.14 <u>+</u> 0.06	0.10 <u>+</u> 0.05	0.45 <u>+</u> 0.09	0.39 <u>+</u> 0.09
Wawa	0	0.09 <u>+</u> 0.05	0.17 <u>+</u> 0.07	0.19 <u>+</u> 0.07
Thunder Bay	0.21 <u>+</u> 0.07	0.16 <u>+</u> 0.07	0.30 <u>+</u> 0.08	0.18 <u>+</u> 0.07
Fort Frances	0.20 <u>+</u> 0.07	0.16 <u>+</u> 0.07	0.52 <u>+</u> 0.09	0.43 <u>+</u> 0.09
Red Lake	0.37 <u>+</u> 0.09	0.48 <u>+</u> 0.09	0.21 <u>+</u> 0.07	0.14 <u>+</u> 0.06
Pickle Lake	0.13 <u>+</u> 0.06	0.13 <u>+</u> 0.06	0.11 <u>+</u> 0.05	0.16 <u>+</u> 0.07
Kenogami River	0.31 <u>+</u> 0.09	0.27 <u>+</u> 0.08	0.37 <u>+</u> 0.09	0.27 <u>+</u> 0.08
Moosonee	0.24 <u>+</u> 0.08	0.40 <u>+</u> 0.09	0.36 <u>+</u> 0.08	0.37 <u>+</u> 0.09
Sandy Lake	0.08 <u>+</u> 0.04	0.08 <u>+</u> 0.05	0.16 <u>+</u> 0.06	0.11 <u>+</u> 0.06

Table 12. Broad-sense heritability estimates based on clonal variance from analyses of variance for individual provenances.

1/. Clonal effect is not significant. Therefore, estimation of broad-sense heritability is zero.

CORRELATIONS

Pearson product-moment correlation coefficients based on individual tree data for eight traits are shown in Table 13. The correlations were all positive and statistically significant. In most cases, they were moderate, except for those correlations between the 1989 sylleptic branching traits and the 1988 height traits, which were about 0.3. The number and total length of sylleptic shoots developed during the 1989 growing season were only moderately correlated with 1989 height increment.

Genetic correlations were calculated for several pairs of traits important to selection (Table 13). Genetic correlations between 1989 final height and other traits are similar, in most cases, to the equivalent Pearson product-moment correlations. Genetic correlations remain low between sylleptic branching in 1989 and 1988 final height (average r=0.28). However, the genetic correlations between sylleptic branching in 1989 and 1988 height growth are much higher than equivalent Pearson product-moment correlations.

Table 13. Phenotypic and genetic correlations (in parentheses) among eight traits. All the Pearson product-moment correlations are significant at the 0.01 probability level.

	(1) <u>1</u> / FHT88	(2) HIN88	(3) HIN89	(4) SY89	(5) LSY89
(2) HIN88	0.78				
(3) HIN89	0.58	0.59			
(4) SY89	0.24(.29)	0.24(.46)	0.54(.57)		
(5) LSY89	0.32(.27)	0.34(.50)	0.53(.55)	0.88(.95)	
(6) FHT89	0.93(.93)	0.78(.83)	0.83(.86)	0.40(.45)	0.45(.43)

<u>1</u>/ (1): Final height, 1988.

(2): Height growth, 1988.

- (3): Height growth, 1989.
- (4): Total number of sylleptic long shoots on 1989 height growth.
- (5): Total length of sylleptic long shoots on 1989 height growth.

(6): Final height, 1989.

DISCUSSION

MORTALITY

The south-north trend of increasing mortality for provenances indicates that mortality in the test is not occurring randomly among the eleven provenances. Results of other provenance studies with tamarack also are similar to my results (Cech et al., 1977; Jeffers, 1975). Why northern provenances generally have higher mortality than southern provenances is not apparent. It may be because northern provenances are more adapted to northern environments. When they are moved to lower latitudes they simply can not compete as successfully as provenances from lower latitudes. The high negative correlations between mean provenance mortality and height growth for 1988 and 1989 (average r=-0.84; α <0.01) suggest that the survival of a provenance is at least partly associated with good early height growth. However, the fact that the Thunder Bay provenance, the local provenance, had a significantly higher mortality than two higher latitude provenances (*i.e.* Sandy Lake and Kenogami River) seems to suggest that the genetic constitution of a provenance may play an important role in provenance mortality. The genetic constitution of some provenances may result in their being able to exhibit good height growth but may also make them more resistant to many mortality factors such as root disease. Provenances may also interact with test location to generate this exception to south-north trend of mortality.

HEIGHT GROWTH

The main reason for the decreasing provenance means from south to north for both 1988 and 1989 height growth may be that tamarack trees from different provenances respond to the local photoperiod differently. Southern provenances have a longer shoot elongation period than northern provenances. The influence of photoperiod on growth and dormancy in woody plants has been demonstrated by many researchers (Ekberg et al., 1976; Pollard and Logan, 1976; Heide, 1983). Generally, the higher the latitude, the longer the critical photoperiod for apical growth cessation (Heide, 1983). Variation in photoperiodic responses of tamarack has been reported in several studies. Vaartaja (1959) reported photoperiodic ecotypes between two geographically distant populations. Charrette (1990) found that tamarack provenances displayed significant variation in the critical daylength for inducing growth cessation. In the clonal test reported here, provenances from higher latitudes were found to set buds earlier than provenances from lower latitudes (G. O'Reilley, personal observation). Thus, provenances from higher latitudes have a shorter shoot elongation period.

Since a large proportion of leader extension is accomplished by free growth in tamarack seedlings (Mitchell, 1965; Remphrey and Powell, 1984) photoperiod may influence height growth by decreasing the free growth of northern provenances and enhancing the free growth of southern provenances. Changes in photoperiod from that of provenance origins are reported to have drastic effects on free growth of woody plants (Pollard and Logan, 1974; Von Wuhlisch and Muhs, 1985,1987). Pollard and Logan (1974) demonstrated that free growth of black spruce diminished when local photoperiod was shorter than that at provenance origin. From the point of view of ecological genetics the height growth differentiation of provenances caused by differential photoperiodic response reflects the adaptation of each provenance to its origin environment. Rehfeldt (1983) concluded that variation in height growth is a result of selection for height growth potential in mild environments and selection for cold hardiness in relatively severe environments. For tamarack, it is also the balance between selection for height growth and selection for cold hardiness that leads to photoperiodic ecotypes. On one hand, the species is shade intolerant (Fowells, 1965) and biological competition as a natural selection force would select fast growing trees. On the other hand, early autumn frost as a natural selection force may lead to selection for photoperiodic types that cease growing early enough to avoid severe frost damage.

Generally, variance components for provenances were larger than for clones within provenances (Table 6) and made up an increasingly large proportion of variance as tamarack trees aged. This increasing provenance variance with age of trees seems to suggest that the differences in height growth among provenances may increase with advancing tree development. The increasing provenance variance also results in increases in broad-sense heritability estimates of provenances for height growth from 1988 to 1989. The moderate broad-sense heritability estimate of provenances for 1989 height growth indicates that substantial genetic gain will result from selecting southern provenances.

Significant variation among clones within provenances for both 1988 and 1989 final height and height growth clearly indicates that clonal variation is also an important source of variation in the height of tamarack. When analyses of variance are done for each provenance separately using 1989 final height and height increment data, clonal effects are statistically significant for most of

the provenances. This confirms the significance of clonal variation in height growth noted in the overall analysis of variance. However, the large differences in clonal variance components among provenances and the resulting variable broad-sense heritability estimates for individual provenances indicate that the clonal variance component estimates for individual provenances are unstable. Several factors may possibly contribute to this. Because the estimates of clonal heritability are from a single test location they may be biased by the clonelocation interaction. Since there were only 20 genotypes sampled for each of the eleven provenances the large differences in clonal variation may be partly caused by sampling errors in the test. It may also be partly due to the fact that there may exist more variation in photoperiodic response in some provenances than others. Consequently, shoot elongation period may differ widely. Unpublished phenology data from the test indicate, for example, that clones in Red Lake, Moosonee and North Bay provenances respond to the same photoperiod more variably than clones in Sault Ste. Marie and Wawa provenances. However, there are exceptions to this relationship, and the phenology data were only recorded for ten clones within each provenance. Therefore, the clonal variance component estimates and the clonal broadsense heritability estimates for individual provenances may not be generally representative. Larger samples must be included for individual provenances to obtain reliable clonal broad-sense heritability estimates for them.

OCCURRENCE AND DEGREE OF SYLLEPSIS

Occurrence and the degree of sylleptic growth in the 1988 and 1989 growing seasons provide some insight into genetic control of syllepsis. Powell and Vescio (1986) conclude that vigorously growing tamarack trees have more

potential for exhibiting syllepsis. The increasing percentage of both clones and ramets within each provenance exhibiting syllepsis from 1988 to 1989 also supports this conclusion. The increasing vigor of tamarack trees between 1988 and 1989 was clearly demonstrated by the 1989 height increment of trees in the clonal test. The Pearson product-moment correlations between the percentage of clones with syllepsis and height increment in 1988 and 1989 (average r=0.84, α <0.03), and between the percentage of ramets with syllepsis and height increment in 1988, α <0.03) further indicate that the occurrence of syllepsis in provenances is generally associated with their height growth.

The correlation between height growth and occurrence of syllepsis and the fact that syllepsis only occurs during the most rapid elongation period (Powell, 1987), suggest that when an apical shoot of tamarack grows vigorously, its apical dominance is diminished. However, the mechanism by which the development of syllepsis is controlled seems to be more complex than apical dominance in which lateral buds are released from inhibition by decapitation of apical buds. In apical dominance, removal of an actively growing apical bud will release one or more upper axillary buds which become the dominant shoots. In development of syllepsis, on the other hand, lateral meristem growth is generally associated with actively elongating apical buds.

It is known that growth hormones play important roles in apical dominance (Zimmermann and Brown, 1980; Wareing and Phillips, 1981). However, the way in which hormones cause the inhibition of axillary bud growth is not fully understood. There are two major theories to explain the phenomenon of apical dominance. One is known as the 'Direct Theory', in which diffusible auxin, produced in young leaves of apical buds, is believed to

have a direct inhibitory effect on lateral buds. The other theory is the 'Nutritive Theory', in which apical buds are believed to be able to command a preferential supply of metabolites as these move along their concentration gradients, and auxin only has an indirect role (*i.e.* directing the transport of metabolites to apical buds). Neither of these two theories can adequately explain the development of syllepsis. Powell (1987) suggests that occurrence of syllepsis in tamarack is due to the attainment of two or three thresholds of some kind determined by the vigor of the parent shoot. But no studies have been done to find out exactly what these thresholds are and how they control the developmental process of syllepsis. As there is evidence that cytokinin is involved in release of lateral buds from inhibition (Wareing and Phillips, 1981), it is reasonable to believe that the development of syllepsis is not only a function of overall vigor and nutrition, but also involves the interactions of other growth factors, especially cytokinin.

Although in 1989, most of the clones exhibited the potential for sylleptic growth, the degree of syllepsis (*i.e.* total number and length of sylleptic long shoots) for each provenance was highly variable. Southern environments seem to be more conducive to the formation of large numbers of sylleptic shoots. This can be seen from the fact that southern provenances always bear significantly more sylleptic branches than northern provenances when growing at a southern location. Probably, a large number of sylleptic branches in trees from southern provenances has fitness value in that it allows trees to compete more successfully. As mentioned earlier, tamarack is an early successional species which is unable to tolerate shade (Fowells, 1965). For such a pioneer species, individual trees which are able to produce superior height growth and produce shoot structure rapidly, might have some advantage in competition. Remphrey and Powell (1985) also suggest that in untended stands,

competition tends to favour the survival of constantly sylleptic trees. Therefore, it is possible that the larger degree of syllepsis in southern provenances is a result of natural selection for syllepsis.

Syllepsis is a trait of great phenotypic plasticity, and environmental factors apparently have a profound effect on the occurrence and degree of syllepsis in tamarack. This can be seen from the fact that for most of the provenances, a large percent of ramets within clones did not develop syllepsis during the 1989 growing season despite existing potential. For example, 100 percent of clones within the Sault Ste Marie provenance had one or more ramets with sylleptic growth, only 47 percent of ramets exhibited syllepsis. This observation is similar to a study of Norway spruce (Von Wunlish and Muhs, 1987), in which factors influencing height growth could also affect the both free growth and sylleptic branching.

The plastic response of tamarack trees in terms of syllepsis may have some evolutionary significance. "Phenotypic plasticity" means that genetically identical organisms may show different characteristics under different conditions (Stearns, 1989). Plasticity of a trait is thought to be a trait itself, evolved to deal with environmental changes (Schlichting, 1989). In tamarack, the occurrence and degree of syllepsis is sensitive to environmental changes. It responds to favorable growing environments and is thought to be part of an adaptive and exploitive mechanism that allows tamarack to display maximal photosynthesizing surface (Remphrey and Powell, 1985). The plasticity of tamarack trees to environmental change manifested in syllepsis possibly evolved to deal with environmental uncertainty.

The correlations between syllepsis and height growth of tamarack clearly demonstrate the relationship between syllepsis and juvenile height growth. Clearly, it is the greater height growth that results in the large amount

of syllepsis. Syllepsis may enhance the height growth of tamarack in a later year. But it is unlikely that syllepsis on current-year shoots is the reason for the vigorous parent shoot growth.

Since significant clonal effects were also found for the eleven provenances, and broad-sense heritability estimates were moderate for both provenances and clones within provenances, selection for sylleptic branches should yield a good response. Further, the strong genetic correlation between degree of syllepsis and parent shoot growth indicates that if selection for propensity for syllepsis is made the correlated gains in height growth may also be large.

IMPLICATIONS IN TREE IMPROVEMENT

The results of this study have provided valuable information for guiding tamarack tree improvement programs in northwestern Ontario. First, the information about mortality seems to suggest that selection for trees with superior height growth potential may improve the survival of tamarack plantations. One important objective in forest tree improvement studies is to find out how much genetic variation exists both among and within populations with regard to the traits to be improved. This study shows that tamarack in northwestern Ontario is highly variable both within and among populations with regard to height growth and syllepsis traits. Therefore, selecting both provenances and individual trees within provenance should be stressed. Since height growth as the selection criterion would probably be sufficient. However, it would be more reliable to combine height growth with production of sylleptic branches as the selection criterion because: (1) the difference in the

production of sylleptic branches is easy to see and (2) a large amount of syllepsis in a tamarack tree is partly a response to a good environment, and therefore, tamarack trees with good potential of producing syllepsis are of more developmental plasticity and should have an advantage over those without or with little potential of producing syllepsis when environmental opportunity is high.

CONCLUSIONS

The results of my study of tamarack syllepsis and its relation to height growth indicates:

1) lower latitude provenances of tamarack will generally have survival advantage over higher latitude provenances when both are planted in a southern location.

2) tamarack in northwestern Ontario is highly variable both within and among provenances with regard to both height growth and sylleptic branching traits.

3) degree of syllepsis of tamarack trees has genetic correlation with the growth of parent leaders, and selection for heavy syllepsis in a tamarack population should result in superior height growth.

4) there is some evidence to suggest that syllepsis of tamarack has fitness value and enables the species to be opportunistic.

LITERATURE CITED

- Armson, K. A. 1983. Silviculture and site aspects of larch An overview. pp. 1-9 <u>In</u> Proc. Larch Symp: Potential for the future. Ont. Min. Nat. Res., Univ. Toronto. 175 pp.
- Becker, W. A. 1984. Manual of quantitative genetics. Academic Enterprises, Pullman, Washington. Fourth Edition. 190 pp.
- Beeftink, H. H. 1956. Some observations on tamarack or eastern larch (Larix laricina Du Roi (K. Koch)) in Alberta. For. Chron. 27: 38-39.
- Bohren, B. B., Hill, W. G. and A. Robertson. 1966. Some observations on asymmetrical correlated responses. Genet. Res. 7: 44-57.
- Brown, C. L., R. G. McAlpine and P. P. Kormanik. 1967. Apical dominance and form in woody plants: A reappraisal. Am. J. Bot. 54:153-162
- Brown, A. H. D., and G. F. Moran. 1981. Isozymes and the genetic resources of forest trees. pp. 1-10. In M. T. Conkle [Ed.], Proc., symp. on isozymes of North American forest trees and forest insects, . USDA For. Serv., Gen.Tech. Rep. PSW-48.
- Burdon, R. D. 1977. Genetic correlation as a concept for studying geneotypeenvironment interaction in forest tree breeding. Silv. Genet. 26: 5-6.
- Busgen, M., and E. Munch 1929. The structure and life of forest trees. Translated by T. Thomson. John Wiley & Sons, Inc., New York. pp. 11-24.
- Calvert, R.F. 1977. The potential of tamarack in forestry and an approach.to its genetic improvement. File report study PS-6-030. Canadian Forestry Institute, Chalk River, Ontario. 67 pp.
- Cannell, M. G. R. and R. C. B. Johnstone. 1978. Free or lammas growth and progeny performance in <u>Picea sitchensis</u>. Silv. Genet. 27:248-254.
- Carter, K. K. 1985. Status and outlook for tree improvement programs in the Northeast. N. J. of Appl. For. 2: 127-131.
- Cech, F. C., R. N. Keys, and D. H. Weingartner. 1977. Seventh-year results of a tamarack provenance study. pp. 55-59 In Proc. of the 24th Northeastern For. Tree Improv.Conf., July 26-29, 1976. College Park, MD, U.S.A.
- Charrette, P. 1990. Dormancy induction of tamarack and balsam poplar provenances from northern Ontario, 1988. Thesis (M.Sc.) Lakehead University. 57 pp.

- Clausen, J. J., and T. T. Kozlowski. 1970. Observations on growth of long shoots in Larix laricina, Can. J. Bot. 48:1045-1048.
- Dancik, B. P., and F. C. Yeh. 1983. Allozyme variability and evolution of lodgepole pine (<u>Pinus contorta</u> var. <u>latifolia</u>) and jack pine (<u>Pinus banksiana</u> in Alberta. Can. J. Genet. Cytol. 25: 57-64.
- Duncan, D.P. 1954. A study of some factors affecting the natural regeneration of tamarack (Larix laricina (Du Roi) K. Koch) in Minnesota. Ecology 35: 498-521.
- Ekberg, I., I. Dormling, G. E., and D. Von Wettstein. 1976. Inheritance of the photoperiodic response in forest trees. pp. 207-222 In Tree Physiology and Yield Improvement. M. G. R. Cannell and F. T. Last (Eds). Academic Press, London and New York. 567 pp.
- Falconer, D. S. 1981. Introduction to Quantitative Genetics. Longman Inc., New York. 340 pp.
- Farmer, R. E., Jr. 1983. Proposal for NSERC Forestry Development Grant. School of Forestry, Lakehead University. 64 pp.
- Farmer, R. E., Jr., H. A. Foster, O. Bakowsky, B. MacDonald, G. O'Reilley, and R. Reinholt. 1986. A vegetative propagation system for tamarack. N. J. Appl. For. 3: 91-93.
- Farmer, R. E., Jr., and R. W. Reinholt. 1986. Seed quality and germination characteristics of tamarack in northwestern Ontario. Can. J. For. Res. 16: 680-683.
- Farmer, R. E., Jr., Garlick, K., and S. R. Watson. 1988. Heritability and C effects in a 3-year-old balsam poplar clonal test. Can. J. For. Res. 18: 1059-1062.
- Fins, L., and L. W. Seeb. 1986. Genetic variation in allozymes of western larch. Can. J. For. Res. 16: 1013-1018.
- Fowells, H.A. 1965. Silvics of the Forest Trees of the United States . U.S. Dept. Agric., For. Serv., Agric. Handb. No. 271, 762 pp.
- Fowler, D. P. 1986. Strategies for the genetic improvement of important tree species in the maritimes. Can. For. Serv., Inf. Rep. M-X-156.
- Franklin, E. C. 1970. A survey of mutant forms and inbreeding depression in species of the family Pinaceae. USDA For. Serv. Res. Pap. SE-61.
- Furnier, G. R. and W. T. Adams. 1986. Mating system in natural populations of Jeffery pine Amer. J. Bot. 73: 1000-1006.

Graham, S. A.1956. The larch sawfly in the Lake States. For. Sci. 2: 132-160.

- Hall, J. P. 1986. Growth and development of larch in Newfoundland. pp. 21-26
 <u>In</u> Murray, M. (ed), Proc. of the Sixth Int. Workshop on For. Regeneration: The Yield Advantages of Artificial Regeneration at High Latitudes. U.S. Dept. Agric., For. Serv., Pacific Northwest Res. Sta., Gen. Tech. Rep. PNW-194, 60 pp.
- Halle, F., R. A. A. Oldeman, and P. B. Tomlinson. 1978. Tropical Trees and Forests. An Architectural Analysis. Springer-Verlag, Berlin, Heidelberg, and New York. 441 pp.
- Heide, O. M. 1983. Physiological aspects of climatic adaptation in plants with special refference to high-latitude environments. pp 1-22 In Proceedings from Plant Adaptation Workshop Tromso, Norway. September 4-9. Edited by Ase Kaurin Olavi Junttila and Jarle Nilsen.
- Henry, R. B. Brooks and C. Davis. 1973. Population density in Larix laricina in a sphagnum bog habitat. Michigan Academician 5: 529-535.
- Hiebert, R. D., and J. L. Hamrick 1983. Patterns and levels of genetic variation in Great Basin bristlecone pine, <u>Pinus longaeva</u>. Evolution 37: 302-310.
- Jablanczy, A. 1971. Changes due to age in apical development in spruce and fir. Can. For. Serv. Bio-monthly Res. Notes 27, 10.
- Jeffers, R. M. 1975. Survival and height growth of tamarack planted in northern Wiscconsin. U.S. Dep. Agric., For. Serv., N. Cent. For. Exp. Sta., Res. Note NC-190.
- Joyce, D. G. 1987. Adaptive variation in cold hardiness of eastern larch, <u>Larix</u> <u>laricina</u>, in northern Ontario. Can. J. For. Res. 18: 8 5-89
- Kennedy, D., and I. R. Brown. 1984. Crown development and shoot growth in <u>Betula pendula</u> Roth. and its implications for forestry and arboriculture. Arboric. J. 8: 245-257.
- Knowles, P. and D. J. Perry. 1986. Geographic variation of allozymes in eastern larch (<u>Larix laricina</u> (Du Roi) K. Koch) from northwestern Ontario. pp. 64-67 <u>In</u> Proc. Symp. on Current Topics in For. Res. November 4-6,1986, Gainesville, Florida. U.S. Dep.Agric., For. Serv., Southeastern For. Exp. Sta., Gen. Tech. Rep. SE-46. 186 pp.
- Knowles, P., G.R. Furnier, M. A. Aleksiuk and D.J. Derry. 1987. Significant levels of self-fertilization in natural populations of tamarack. Can. J. Bot. 65: 1087-1091.
- Lambeth, C. C. 1980. Juvenile-mature correlations in Pinaceae and implications for early selection. For. Sci. 26 : 571-580.

- Liu, Z. 1988. Patterns of allozyme variation in tamarack (<u>Larix laricina</u> (Du Roi) K. Koch) from northern Ontario, 1988. Thesis (M.Sc.) Lakehead University. 67 pp.
- Logan, K. T. 1966. Growth of tree seedlings as affected by light intensity. II. Red pine, white pine, jack pine and eastern larch. Can. Dep. For., Pub. No. 1160. 19 pp.
- Logan, K. T. and Pollard, D. F. W. 1975. Mode of shoot growth in 12-year-old black spruce provenances. Can. J. For. Res. 5: 539-540.
- Magasi L. P. and S. E. Pond. 1982. European larch canker: A new disease in Canada and a new North American host record. Plant Dis. 66: 339
- McCurdy, W. D. and G. R. Powell. 1987. Syllepsis in <u>Larix laricina</u>: Association of sylleptic branching with cross-sectional stem growth and stem form of saplings. Can. J. For. Res. 17: 1609-1619.
- Mead, D. A. 1978. Comparative height growth of eastern larch and black spruce in northwestern Ontario. For. Chron. 54: 296-297.
- Mitchell, A. F. 1965. The growth in early life of leading shoots of some conifers. Forestry 38: 121-136.
- Morgenstern, E.K., J.M. Nicholson and Y. S. Park. 1984. Clonal selection in <u>Larix laricina</u>. 1. Effects of age, clone and season on rooting of cuttings. Silv. Genet. 33: 155-160.
- Nienstaedt, H. 1966. Dormancy and dormancy release in white spruce. For.Sci. 12: 374-384.
- Ontario Ministry Natural Resources. 1987. Tree Improvement Master Plan for Ontario. 81 pp.
- Ostaff, D. P. and W. R. Newell. 1986. Early infection of larch populations by the European larch canker <u>Lachnellula willkommii</u>. Can. For. Serv., Marit., Inf. Rep. M-X-157, 5pp.
- Owens, J. N. 1984. Patterns of bud and shoot development in conifers. Can. Bot. Assoc. Bull. 17 (Supll. 2): 34. (Abstract).
- Owens, J. N., and M. Molder 1973. Bud development in western hemlock. I. Annual growth cycle of vegetative buds. Can. J. Bot. 51: 2223-2231.
- Park, Y.S. and D.P. Fowler. 1982. Effects of inbreeding and genetic variances in a natural population of tamarack (<u>Larix laricina</u> (Du Roi) K. Koch) in Eastern Canada. Silv. Genet. 31: 21-26.

- Park, Y.S. and D.P. Fowler. 1983. A provenance test of Japanese Larch -Larix leptolepis in eastern Canada including comparative data on European larch - Larix decidua and tamarack -Larix laricina. Silv. Genet. 32: 96-101.
- Pollard, D. F. W., and K. T. Logan. 1974. The role of free growth in the differentiation of black spruce <u>Picea mariana</u> (Mill.) B. S. P. Can. J. For. Res. 4: 308-311.
- Pollard, D. F. W., and K. T. Logan. 1976. Inherent variation in " free" growth in relation to numbers of needles produced by provenances of <u>Picea</u> <u>mariana</u> (Mill.) B. S. P. pp. 245-252 <u>In</u> Tree Physiology and Yield Improvement. M. G. R. Cannell and F. T. Last (Eds). Academic Press, London and New York. 456 pp.
- Powell, G.R. and S. A. Vescio. 1986. Syllepsis in <u>Larix laricina</u>: Occurence and distribution of sylleptic long shoots and their relationships with age and vigor in young plantation-grown trees. Can. J. For. Res. 16: 597-607.
- Powell, G. R. 1987. Syllepsis in Larix laricina: Analysis of leaders with and without sylleptic long shoots. Can. J. For. Res. 17: 490-498.
- Rehfeldt, G. E. 1970. Genecology of <u>Larix laricina</u> (Du Roi) K. Koch in Wisconsin. I. Patterns of natural variation. Silv. Genet. 19: 9-16.
- Rehfeldt, G. E. 1983. Ecological adaptations in Douglas-fir (<u>Pseudotsuga</u> <u>menziesii</u> var. glauca) populations. III. Central Idaho. Can J. For. Res. 13: 626-632.
- Riemenschneider, D. E. and R. M. Jeffers. 1980. Height and diameter of tamarack seed sources in northern Wisconsin. U. S. Dep. Agric., For. Serv., N. Cent. For. Exp. Sta., Res. Pap. NC-190. 6 pp.
- Remphrey, W. R. and G. R. Powell. 1984. Crown architecture of <u>Larix laricina</u> saplings: Shoot preformation and neoformation and their relationships to shoot vigor. Can. J. Bot. 62: 2181-2192.
- Remphrey, W. R. and G. R. Powell 1985. Crown architecture of <u>Larix laricina</u> saplings: Sylleptic branching on the main stem. Can. J. Bot. 63: 1296-1302.
- Rudolph, T. D. 1964. Lammas growth and prolepsis in jack pine in Lake States. For. Sci. Monograph No. 6. 70 pp.
- Rudolf, P.O. 1966. Botanical and commercial range of tamarack in the Lake States. USDA For. Serv. Res. Note NC-17. 4 pp.
- Schlichting, C. D. 1989. Phenotypic integration and environmental change. BioScience Volume 39 No. 7. pp.460-464.

Sokal, R. R. and J. F. Rohlf. 1981. Biometry. Freeman and Co., 776 pp.

- Stearns, S. C. 1989. The evolutionary significance of phenotypic plasticity. BioScience Vol. 39 No. 7. pp.436-445.
- Steinhoff, R. J., D. G. Joyce, and L. Fins. 1983. Isozyme variation in <u>Pinus</u> <u>monticola</u>. Can. J. For. Res. 13: 1122-1132.
- Tomlinson, P. B. 1978. Branching and axis differentiation in tropical trees. pp.187-206 <u>In</u> Tropical Trees as Living Systems. Edited by P.B.
 Tomlinson and M. H. Zimmermann. Cambridge University Press, Cambridge, U.K. 675 pp.
- Tomlinson, P. B. and A. M. Gill. 1973. Growth habits of tropical trees: Some guiding principles. pp.401-422 In Tropical Trees as Living Systems. Edited by P.B. Tomlinson and M. H. Zimmermann. Cambridge University Press, Cambridge, U.K. 675 pp.
- Vaartaja, O. 1959. Evidence of photoperiodic ecotypes in trees. Ecol. Monogr. 29: 27-28.
- Vallee, G. 1983. Growth and performance of larch plantations. pp. 47-63 In Proc. Larch Symp: Potential for the Future, Ont. Min. Nat. Res., Univ. Toronto. 175 pp.
- Von Wuhlisch, G. and H. -J. Muhs. 1986. Influence of age on sylleptic and proleptic free growth of Norway spruce seedlings. Silv. Genet. 35: 42-48.
- Von Wuhlisch, G. and H. -J. Muhs. 1987. Effect of spacing on growth, especially predetermined and free shoot growth of Norway spruce (<u>Picea abies</u> (L.) Karst.). Silv. Genet. 36: 72-76
- Wakeley, P. C. 1971. Relation of thirtieth-year to earlier dimensions of southern pines. For. Sci. 17: 200-209.
- Wareing, P. F. and I. D. J. Phillips. 1981. Growth & differentiation in plants. 3rd Edition. Pergmon Press. 342 pp.
- Yang, K. C., and G. Hazenberg. 1987. Geographical variation in wood properties of <u>Larix laricina</u> juvenile wood in northern Ontario. Can. J. For. Res. 17: 648 -653.
- Yeh, F. C., and Y. A. El-Kassaby. 1980. Enzyme variation in natural populations of Sitka spruce (<u>Picea sitchensis</u>). I. Genetic variation patterns among trees from 10 IUFRO provenances. Can. J. For. Res. 10: 415-422.

- Yeh, F. C., and D. M. O'Malley. 1980. Enzyme variation in natural populations of Douglas-fir, <u>Pseudotsuga menziesii</u> (Mirb.) Franco, from British Columbia. 1. Genetic variation patterns in coastal populations. Silv. Genet. 29: 83-92.
- Ying, C. C., and E. K. Morgenstern. 1979. Correlations of height growth and heritabilities at different ages in white spruce. Silv. Genet. 28: 181-185.
- Zimmerman, M. H. and C. L. Brown. 1980. Trees: Structure and Function.Fourth printing, Springer-Verlag New York Inc. 336 pp.
- Zobel, B. and J. Talbert. 1984. Applied Forest Tree Improvement. John Wiley & Sons, Inc. 505 pp.

APPENDICES

APPENDIX I

EXPECTED MEAN SQUARE TABLE WITH ADJUSTED COEFFICIENTS

Source of Variation	DF	Expected Mean Square
Block	3	σ^2 + 2.46 σ^2_{BC} + 22.71 σ^2_{BS} + 45.17 σ^2_{ω} +
(B _j)		45.17 σ ² _{BP} + 496.87σ ² δ + 496.87φ _(B)
Provenance (P _i)	10	$σ^2 + 9.85 σ^2_{C} + 90.86 σ^2_{S} + 45.17 σ^2_{ω} + 180.70 σ^2_{P}$
Block X Provenance (BP _{ij})	30	σ^2 + 2.46 σ^2_{BC} + 22.71 σ^2_{BS} + 45.17 σ^2_{ω} + 45.17 σ^2_{BP}
Stand (S _{(j)k})	11	σ^2 + 9.83 $\sigma^2_{\rm C}$ + 90.04 $\sigma^2_{\rm S}$
Block X Stand (BSi(j)k)	33	σ^2 + 2.46 σ^2_{BC} + 22.51 σ^2_{BS}
Clone (C _(jk) l)	187	σ^2 + 9.49 σ^2_{C}
Block X Clone (BC _{i(jk)})	528	σ^2 + 2.37 σ^2_{BC}
Error (E _(ijkl) m)	1191	σ ²

Total 1993

APPENDIX II

ANALYSES OF VARIANCE, VARIANCE COMPONENTS AND HERITABILITY CALCULATIONS FOR HEIGHT TRAITS

Height growth, 1988							
Source of	Sums of	Degrees	of Mean	Variance	Percent of	Herit-	
variation	squares	freedom	square	components	variance	ability	
Block	48510.7	2 3	16170.24	30.203	16.6		
Provenance	22852.9	5 10	2285.30	11.236	6.2	0.07	
Block X Prov.	34893.6	0 30	1163.12	22.246	12.3		
Stand	2799.6	4 11	254.51	0.199	0.1		
Block X Stand	5207.9	2 33	157.82	2.371	1.3		
Clone	43357.9	8 187	231.86	14.001	7.7	0.12	
Block X Clone	55044.1	2 528	104.25	2.219	1.2		
Error	117898.3	8 1 1 9 1	98.99	98.991	54.6		
Total	330565.3	1					
		Final hei	ght, 1988				
Source of	Sums of	Degrees	of Mean	Variance	Percent of	Herit-	
variation	squares	freedom	square	components	variance	ability	
Block	216882.7	8 3	72294.26	134.932	13.8		
Provenance	240657.1	1 10	24065.71	123.398	12.6	0.15	
Block X Prov.	157513.5	3 30	5250.45	104.862	10.7		
Stand	19383.9	8 11	1762.18	4.691	0.5		
Block X Stand	16966.9	9 33	514.15	-1.627	-0.2		
Clone	245164.6	6 187	1311.04	84.573	8.7	0.14	
Block X Clone	289992.7	8 528	549.23	17.209	1.8		
Error	605556.1	2 1 1 9 1	508.44	508.443	52.1		
Total 1	1792117.9	5					

Height growth, 1989						
Source of	Sums of	Degrees	of Mean	Variance	Percent of	f Herit-
variation	squares	freedom	square	components	variance	ability
Block	11972.0	03	3990.67	1.558	0.4	
Provenance	168953.8	8 10	16895.39	91.533	23.4	0.24
Block X Prov.	96492.3	7 30	3216.41	66.939	17.1	
Stand	3926.1	8 11	356.93	-2.857	-0.7	
Block X Stand	6360.7	4 33	192.75	0.239	0.1	
Clone	112128.4	0 187	599.62	42.890	11.0	0.18
Block X Clone	99031.0	1 528	187.56	-2.123	-0.5	
Error	229375.7	1 1 1 9 1	192.59	192.591	49.3	
Total	728240.2	8				
**						
		Final hei	ght, 1989			
Source of	Sums of	Degrees	of Mean	Variance	Percent of	f Herit-
variation	squares	freedom	square	components	variance	ability
Block	313407.2	7 3	104469.09	179.783	8.5	
Provenance	796173.5	2 10	79617.35	424.653	20.1	0.22
Block X Prov.	454209.6	3 30	15140.32	311.502	14.8	
Stand	31670.3	4 11	2879.12	-0.534	0.0	
Block X Stand	35277.2	4 33	1069.01	3.849	0.2	
Clone	534969.3	6 187	2860.80	195.371	9.3	0.16
Block X Clone	519161.8	0 528	983.26	-9.901	-0.5	
Error	1199010.3	8 1 1 9 1	1006.73	1006.726	47.7	
Total 3	3883879.5	2			-	

Appendix II Continued

APPENDIX III

ANALYSES OF VARIANCE, VARIANCE COMPONENTS AND HERITABILITY CALCULATIONS FOR SYLLEPTIC BRANCHING TRAITS

	Total number of sylleptic shoots, 1989						
Source of	Sums of	Degrees	sof	Mean	Variance	Percent of	f Herit-
variation	squares	freedom	I _	square	components	variance	ability
Block	606.86	3	20	2.29	0.165	0.5	
Provenance	7635.62	10	76	3.56	3.557	10.6	0.11
Block X Prov.	3608.45	30	12	0.28	2.386	7.1	
Stand	1325.69	11	12	0.52	0.035	0.1	
Block X Stand	414.28	33	1	2.55	-0.305	-0.9	
Clone	21287.21	187	11	3.84	10.303	30.7	0.37
Block X Clone	10192.91	528	1	9.30	1.368	4.1	
Error	19131.83	1191	1	6.06	16.064	47.8	
Total	64202.86						
* = = = = = = = = = = = = = = = = = = =							
	Iotal	enght of	sylle	ptic sho	oots,1989		
Source of	Sums of	Degrees	s of	Mean	Variance	Percent of	Herit-
variation	squares	treedom		square	components	variance	ability
Block	68174.0	6 3	227	724.69	-9.628	-0.2	
Provenance	1327332.9	4 10	1327	733.29	698.102	14.5	0.14
Block X Prov.	825256.0	6 30	27	08.54	5/4.7/6	11.9	
Stand	/3010.3	0 11	66	537.30	-94.405	-2.0	
Block X Stand	51364.9	4 33	1:	556.51	-53.120	-1.1	
Clone	2/46629.5	5 18/	146	587.86	1322.525	27.4	0.36
BIOCK X Clone	1441296.9	1 528	2	(29./3	250.057	5.2	
Error	2545279.8	31191	2	137.09	2137.095	44.3	
Iotal	9078344.5	9					

Number of sylleptic shoots per cm height growth, 1989						
Source of	Sums of	Degrees of	f Mean	Variance	Percent of	Herit-
variation	squares	freedom	square	components	variance	ability
Block	0.4	4 3	0.15	0.000257	4.0	
Provenance	0.9	6 10	0.10	0.000393	6.1	0.06
Block X Prov.	0.5	6 30	0.02	0.000353	5.5	
Stand	0.2	8 11	0.03	0.000050	0.8	
Block X Stand	0.0	9 33	0.00	-0.000057	-0.9	
Clone	3.7	7 187	0.02	0.001780	27.7	0.33
Block X Clone	⊭ 2.1	7 528	0.00	0.000348	5.4	
Error	3.9	2 1 1 9 1	0.00	0.003293	51.3	
Total	12.2	1 1993				
Le	ength of sy	lleptic shoo	ts per cm	height growth	, 1989	
Source of	Sums of	Degrees o	f Mean	Variance	Percent of	Herit-
variation	squares	freedom	square	components	variance	ability
Block	4.3	3 3	1.44	-0.00326	-0.6	
Provenance	161.7	2 10	16.17	0.08317	14.0	0.14
Block X Prov.	91.9	3 30	3.06	0.06293	10.6	
Stand	12.6	2 11	1.15	-0.00842	-1.4	
Block X Stand	7.3	5 33	0.22	-0.00508	-0.9	
Clone	345.6	1 187	1.85	0.16638	28.1	0.36
Block X Clone	176.6	4 528	0.33	0.02758	4.7	
Error	320.5	8 1191	0.27	0.26917	45.4	

Appendix III continued

APPENDIX IV

CALCULATIONS OF COVARIANCE COMPONENTS

Total length of 1989 sylleptic shoots vs.total height,1988						
Source	Sums of	Degrees o	f Mean	Covariance		
	covariance	freedom	covariance	components		
Block	95788.18	3	31929.39	95.91		
Provenance	471787.85	10	47178.79	258.93		
Block X Prov.	-471787.85	30	-15726.26	-809.43		
Stand	4337.11	11	394.28	-7.72		
Block X Stand	681570.03	33	20653.64	909.40		
Clone	197929.78	187	1058.45	91.29		
Block X Clone	96838.11	528	183.41	-3.68		
Error	228812.99	1191	192.12	192.12		
Total	1305276.19					
Total length of 1989 sylleptic shoots vs.height growth,1988						
Source	Sums of	Degrees o	f Mean	Covariance		
	covariance	freedom	covariance	components		
Block	51238.42	3	17079.47	43.54		
Provenance	136699.72	10	13669.97	70.92		
Block X Prov.	-136699.72	30	-4556.66	-243.93		
Stand	9371.22	11	851.93	1.07		
Block X Stand	211388.35	33	6405.71	278.87		
Clone	136943.97	187	732.32	67.60		
Block X Clone	67067.28	528	127.02	15.27		
Error	108183.10	1191	90.83	90.83		
Total	584192.35					

Total leng	gth of 1989 sylle	ptic shoots v	s. height growth	,1989
Source	Sums of	Degrees o	f Mean	Covariance
	covariance	freedom	covariance	components
Block	9674.25	3	3224.75	34.52
Provenance	417817.49	10	41781.75	225.84
Block X Prov.	-417817.49	30	-13927.25	-722.68
Stand	10735.37	11	975.94	-6.56
Block X Stand	612253.12	33	18553.12	814.50
Clone	284626.12	187	1522.06	131.12
Block X Clone	116684.95	528	220.99	-23.92
Error	330732.13	1191	277.69	277.69
Total	1364705.94			
Total leng	oth of sylleptic sh	noots, 1989 v	s. total height, 1	989
Source	Sums of	Degrees of	f Mean	Covariance
	covariance	freedom	covariance	components
Block	104691.80	3	34897.27	129.99
Provenance	890689.27	10	89068.93	484.77
Block X Prov.	-890689.27	30	-29689.64	-1534.71
Stand	16244.26	11	1476.75	-12.62
Block X Stand	1296499.04	33	39287.85	1727.55
Clone	474869.89	187	2539.41	216.78
Block X Clone	213120.69	528	403.64	-33.13
Error	574236.13	1191	482.15	482.15
Total	2679661.81			

Appendix IV Continued

Appendix IV Con	tinued					
Number of	sylleptic shoots	s, 1989 vs. 19	89 height grow	th		
Source	Sums of	Degrees of	Mean	Covariance		
	covariance	freedom	covariance	components		
Block	-2192.29	3	-730.76	0.77		
Provenance	33427.52	10	3342.75	17.63		
Block X Prov.	-33427.52	30	-1114.25	-56.24		
Stand	1727.31	11	157.03	0.14		
Block X Stand	46657.18	33	1413.85	61.71		
Clone	26178.10	187	139.99	11.98		
Block X Clone	13147.62	528	24.90	-0.59		
Error	31334.75	1191	26.31	26.31		
Total	116852.68					
Number of sylleptic shoots, 1989 vs. total height, 1988						
Source	Sums of	Degrees of	Mean	Covariance		

Source	Sums of	Degrees of	Mean	Covariance
	covariance	freedom	covariance	components
Block	-9353.19	3	-3117.73	-3.74
Provenance	37833.14	10	3783.31	20.55
Block X Prov.	-37833.14	30	-1261.10	-63.37
Stand	776.18	11	70.56	-0.30
Block X Stand	52383.23	33	1587.37	70.06
Clone	17649.93	187	94.38	8.67
Block X Clone	5457.54	528	10.34	-0.74
Error	14411.83	1191	12.10	12.10
Total	81325.51			

Number of sylleptic shoots, 1989 vs.1988 height growth						
Source	Sums of	Degrees of	Mean	Covariance		
	covariance	freedom	covariance	components		
Block	-4073.94	3	-1357.98	-2.01		
Provenance	10739.46	10	1073.95	5.29		
Block X Prov.	-10739.46	30	-357.98	-18.39		
Stand	1301.39	11	118.31	0.64		
Block X Stand	15465.16	33	468.64	20.55		
Clone	11058.78	187	59.14	5.53		
Block X Clone	3251.75	528	6.16	-0.20		
Error	7911.75	1191	6.64	6.64		
Total	34914.89					
Number of sylle	ptic shoots, 1989	vs.total lengt	h of 1989 sylle	eptic shoots		
Source	Sums of	Degrees of	Mean	Covariance		
	covariance	freedom	covariance	components		
Block	-2418.45	3	-806.15	4.98		
Provenance	98481.71	10	9848.17	49.76		
Block X Prov.	-98481.71	30	-3282.72	-176.10		
Stand	9440.69	11	858.24	-4.37		
Block X Stand	152867.72	33	4632.36	197.40		

187

528

1191

1213.58

187.76

158.61

111.17

12.30

158.61

Appendix IV Continued

Clone

Error

Total

Block X Clone

226938.97

188901.88

674866.83

99136.02

Number of sylleptic shoots, 1989 vs.total height, 1989						
Source	Sums of	Degrees of	Mean	Covariance		
	covariance	freedom	covariance	components		
Block	-11523.37	3	-3841.12	-2.95		
Provenance	71326.44	10	7132.64	38.11		
Block X Prov.	-71326.44	30	-2377.55	-119.76		
Stand	2697.63	11	245.24	0.09		
Block X Stand	99180.74	33	3005.48	131.94		
Clone	43039.90	187	230.16	20.10		
Block X Clone	18873.15	528	35.74	-1.54		
Error	46908.08	1191	39.39	39.39		
Total	199176.14					

Appendix IV Continued
APPENDIX V

EXAMPLE OF VARIANCE COMPONENT CALCULATIONS: NUMBER OF SYLLEPTIC BRANCHES

1). Error variance component σ^2 = 16.06Variance component for block X clone interaction 2). $\sigma^2_{BC} = (MS_{BC} - MS_{Error})/2.37 = (19.30 - 16.06)/2.37 = 1.368$ Clone variance component 3). $\sigma^2_{\rm C}$ = (MS_C -MS_{Error})/9.49 = (113.84-16.06)/9.49 = 10.303 Variance component for Block X Stand interaction 4). $\sigma^2_{BS} = (MS_{BS} - MS_{Error} - 2.46 \sigma^2_{BC})/22.51$ = (12.55-16.06-2.46* 1.368)/22.51= -0.305 5). Stand variance component $= (MS_{S} - MS_{Error} - 9.83 \sigma^{2}_{C})/90.04$ σ^2s = (120.52-16.06-9.83* 10.303)/90.04= 0.035 Variance component for block X provenance interactions 6). $\sigma^2_{BP} = (MS_{BP} - MS_{Error} - 2.46 \sigma^2_{BC} - 22.71 \sigma^2_{BS})/45.17$ = (120.28-16.06-2.46*1.368-22.71*0)/45.17= 2.386 7). Provenance variance component σ^{2}_{P} $= (MS_P - MS_{Error} - 9.85 \sigma^2_C - 98.06 \sigma^2_S) / 180.7$ = (763.56-16.06-9.85*10.303-90.86*0.035)/ 180.7= 3.557 Block variance component 8). = (MS_B -MS_{Error}-2.46 σ^2_{BC} -22.71 σ^2_{BS} -45.17 σ^2_{BP})/ 496.87 σ^2_B = (202.29-16.06-2.46*1.368-22.71*0-45.17*2.386)/496.87 = 0.165

APPENDIX VI

CLONE MEANS FOR HEIGHT GROWTH, CM

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	·	Height	Final	Height	Final	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		growth,	height,	growth,	height,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CLONE	1988	1988	1989	1989	
101223 27.59 95.09 71.91 167.00 101233 27.33 88.46 60.17 148.63 101233 32.86 103.73 53.45 157.18 101313 19.05 90.05 56.23 146.27 101323 35.75 129.54 74.83 204.38 101333 25.18 88.14 71.36 159.50 101343 41.00 121.00 80.25 201.25 101363 27.95 97.59 76.64 174.23 101373 34.29 108.75 79.63 188.38 102223 35.36 110.09 78.09 188.18 102223 23.42 100.63 65.50 166.13 102263 47.32 115.36 78.41 193.77 102273 25.45 87.73 63.27 151.00 102293 31.21 82.67 64.54 147.21 102323 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102363 26.28 86.78 53.28 10.06 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201233 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201333 19.82 69.73 54.45 124.18 201333 19	101213	30.92	102.00	72.25	173.00	
101233 27.33 88.46 60.17 148.63 101293 32.86 103.73 53.45 157.18 101313 19.05 90.05 56.23 146.27 101323 35.75 129.54 74.83 204.38 101333 25.18 88.14 71.36 159.50 101343 41.00 121.00 80.25 201.25 101363 27.95 97.59 76.64 174.23 101373 34.29 108.75 79.63 188.38 102223 35.36 110.09 78.09 188.18 102253 23.42 100.63 65.50 166.13 102263 47.32 115.36 78.41 193.77 102233 31.21 82.67 64.54 147.21 102333 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102363 28.28 86.78 53.28 140.06	101223	27.59	95.09	71.91	167.00	
101293 32.86 103.73 53.45 157.18 101313 19.05 90.05 56.23 146.27 101323 35.75 129.54 74.83 204.38 101333 25.18 88.14 71.36 159.50 101343 41.00 121.00 80.25 201.25 101363 27.95 97.59 76.64 174.23 101373 34.29 108.75 79.63 188.38 102223 35.36 110.09 78.09 188.18 102253 23.42 100.63 65.50 166.13 102263 47.32 115.36 78.41 193.77 102273 25.45 87.73 63.27 151.00 102293 31.21 82.67 64.54 147.21 102323 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102363 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 17.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201333 19.82 69.73 54.45 124.18 201363 2	101233	27.33	88.46	60.17	148.63	
10131319.0590.0556.23146.2710132335.75129.5474.83204.3810133325.1888.1471.36159.5010134341.00121.0080.25201.2510136327.9597.5976.64174.2310137334.29108.7579.63188.3810225323.42100.6365.50166.1310226347.32115.3678.41193.7710227325.4587.7363.27151.0010229331.2182.6764.54147.2110232330.3388.6156.94145.5610234324.7391.9159.27151.1810235336.8294.0091.73185.7310238328.2886.7853.28140.0620121320.3285.7359.73145.4520124330.4191.5958.82150.4120126325.9181.0555.82136.8620127328.55105.0052.65157.6520128320.9271.8337.83109.6720130327.50101.7160.79162.5020132320.9271.8337.83109.6720133319.8269.7354.45124.1820136322.4581.0951.64132.732023324.5587.4048.80140.8020223328.3091.3542.30138.65 <t< td=""><td>101293</td><td>32.86</td><td>103.73</td><td>53.45</td><td>157.18</td><td></td></t<>	101293	32.86	103.73	53.45	157.18	
101323 35.75 129.54 74.83 204.38 101333 25.18 88.14 71.36 159.50 101343 41.00 121.00 80.25 201.25 101363 27.95 97.59 76.64 174.23 101373 34.29 108.75 79.63 188.38 102223 35.36 110.09 78.09 188.18 102253 23.42 100.63 65.50 166.13 102263 47.32 115.36 78.41 193.77 102273 25.45 87.73 63.27 151.00 102293 31.21 82.67 64.54 147.21 102323 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201333 19.82 69.73 54.45 124.18 201333 19.82 69.73 54.45 124.18 201333 19.82 69.73 54.45 124.18 201333 19.82 69.73 54.45 124.18 201333 19.82 69.73 54.45 124.18 201333 19	101313	19.05	90.05	56.23	146.27	
101333 25.18 88.14 71.36 159.50 101343 41.00 121.00 80.25 201.25 101363 27.95 97.59 76.64 174.23 101373 34.29 108.75 79.63 188.38 102223 35.36 110.09 78.09 188.18 102253 23.42 100.63 65.50 166.13 102263 47.32 115.36 78.41 193.77 102273 25.45 87.73 63.27 151.00 102293 31.21 82.67 64.54 147.21 102323 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102333 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 57.65 59.13 148.00 201333 20.92 71.83 37.83 109.67 201283 26.42 90.25 59.13 148.00 201333 19.82 69.73 54.45 124.18 201333 22.45 81.09 51.64 132.73 202213 31.35 92.00 48.80 140.80 20222	101323	35.75	129.54	74.83	204.38	
101343 41.00 121.00 80.25 201.25 101363 27.95 97.59 76.64 174.23 101373 34.29 108.75 79.63 188.38 102223 35.36 110.09 78.09 188.18 102253 23.42 100.63 65.50 166.13 102263 47.32 115.36 78.41 193.77 102273 25.45 87.73 63.27 151.00 102293 31.21 82.67 64.54 147.21 102323 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201303 21.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24	101333	25.18	88.14	71.36	159.50	
101363 27.95 97.59 76.64 174.23 101373 34.29 108.75 79.63 188.38 102223 35.36 110.09 78.09 188.18 102263 47.32 115.36 76.41 193.77 102273 25.45 87.73 63.27 151.00 102293 31.21 82.67 64.54 147.21 102323 33.18 115.00 66.09 181.09 102333 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201333 19.82 69.73 54.45 124.18 201333 19.82 69.73 54.45 124.18 201333 19.82 69.73 54.45 124.18 201333 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 $24.$	101343	41.00	121.00	80.25	201.25	
101373 34.29 108.75 79.63 188.38 102223 35.36 110.09 78.09 188.18 102253 23.42 100.63 65.50 166.13 102263 47.32 115.36 78.41 193.77 102273 25.45 87.73 63.27 151.00 102293 31.21 82.67 64.54 147.21 102323 33.18 115.00 66.09 181.09 102333 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 202213 21.30 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21	101363	27.95	97.59	76.64	174.23	
102223 35.36 110.09 78.09 188.18 102253 23.42 100.63 65.50 166.13 102263 47.32 115.36 78.41 193.77 102273 25.45 87.73 63.27 151.00 102293 31.21 82.67 64.54 147.21 102333 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201303 27.50 101.71 60.79 162.50 201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 202233 28.30 91.35 42.30 133.65 202233 28.30 91.35 42.30 133.65 202233 28.60 87.65 59.85 147.50 202333 24.55 87.45 53.75 141.20 202333 24.55 87.45 53.75 141.20 202363 22.1	101373	34.29	108.75	79.63	188.38	
102253 23.42 100.63 65.50 166.13 102263 47.32 115.36 78.41 193.77 102273 25.45 87.73 63.27 151.00 102293 31.21 82.67 64.54 147.21 102323 33.18 115.00 66.09 181.09 102333 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202253 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202233 24.5	102223	35.36	110.09	78.09	188.18	
102263 47.32 115.36 78.41 193.77 102273 25.45 87.73 63.27 151.00 102293 31.21 82.67 64.54 147.21 102323 33.18 115.00 66.09 181.09 102333 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201333 19.82 69.73 54.45 124.18 201333 19.82 69.73 54.45 124.18 202233 28.30 91.35 42.30 133.65 202233 28.30 91.35 42.30 133.65 202253 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202233 25.60	102253	23.42	100.63	65.50	166.13	
102273 25.45 87.73 63.27 151.00 102293 31.21 82.67 64.54 147.21 102323 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102363 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202333 24.55 87.45 53.75 141.20 202363 22.13 81.75 52.04 133.79 202363 22.13 81.75 52.04 133.79 202363 30.50 <	102263	47.32	115.36	78.41	193.77	
102293 31.21 82.67 64.54 147.21 102323 33.18 115.00 66.09 181.09 102333 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202233 28.30 91.35 42.30 133.65 202243 22.28 67.00 54.50 121.50 202263 22.28 67.00 54.50 121.50 202263 22.28 67.00 54.50 121.50 202233 25.60 87.65 59.85 147.50 202333 24.55 87.45 53.75 141.20 202363 22.13 81.75 52.04 133.79 202363 22.13	102273	25.45	87.73	63.27	151.00	
102323 33.18 115.00 66.09 181.09 102333 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202263 22.28 67.00 54.50 121.50 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 87.65 59.85 147.50 202333 24.55 87.45 53.75 141.20 202363 22.13 81.75 52.04 133.79 202363 30.50	102293	31.21	82.67	64.54	147.21	
102333 30.33 88.61 56.94 145.56 102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 20213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 87.65 59.85 147.50 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	102323	33.18	115.00	66.09	181.09	
102343 24.73 91.91 59.27 151.18 102353 36.82 94.00 91.73 185.73 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 202233 28.30 91.35 42.30 133.65 202253 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	102333	30.33	88.61	56.94	145.56	
102353 36.82 94.00 91.73 185.73 102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202233 28.30 91.35 42.30 133.65 202253 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	102343	24.73	91.91	59.27	151.18	
102383 28.28 86.78 53.28 140.06 201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202253 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	102353	36.82	94.00	91.73	185.73	
201213 20.32 85.73 59.73 145.45 201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	102383	28.28	86.78	53.28	140.06	
201243 30.41 91.59 58.82 150.41 201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	201213	20.32	85.73	59.73	145.45	
201263 25.91 81.05 55.82 136.86 201273 28.55 105.00 52.65 157.65 201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	201243	30.41	91.59	58.82	150.41	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201263	25.91	81.05	55.82	136.86	
201283 26.42 90.25 59.13 148.00 201303 27.50 101.71 60.79 162.50 201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202253 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	201273	28.55	105.00	52.65	157.65	
201303 27.50 101.71 60.79 162.50 201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202253 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202323 25.60 87.65 59.85 147.50 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	201283	26.42	90.25	59.13	148.00	
201323 20.92 71.83 37.83 109.67 201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202253 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	201303	27.50	101./1	60.79	162.50	
201333 19.82 69.73 54.45 124.18 201363 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202253 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202323 25.60 87.65 59.85 147.50 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	201323	20.92	71.83	37.83	109.67	
201303 22.45 81.09 51.64 132.73 201373 23.27 80.32 58.41 138.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202253 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202323 25.60 87.65 59.85 147.50 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	201333	19.82	69.73	54.45	124.18	
201373 23.27 80.32 58.41 136.73 202213 31.35 92.00 48.80 140.80 202233 28.30 91.35 42.30 133.65 202253 19.60 74.40 48.55 122.95 202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202323 25.60 87.65 59.85 147.50 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	201303	22.45	81.09	51.64	132.73	
20221331.3592.0048.80140.8020223328.3091.3542.30133.6520225319.6074.4048.55122.9520226322.2867.0054.50121.5020227324.3191.8852.25144.1320230321.6088.1049.90138.0020232325.6087.6559.85147.5020233324.5587.4553.75141.2020235322.1381.7552.04133.7920236330.5093.4365.00158.43	201373	23.27	00.32	20.41	138.73	
20225328.3091.3542.30133.6520225319.6074.4048.55122.9520226322.2867.0054.50121.5020227324.3191.8852.25144.1320230321.6088.1049.90138.0020232325.6087.6559.85147.5020233324.5587.4553.75141.2020235322.1381.7552.04133.7920236330.5093.4365.00158.43	202213	31.33	92.00	40.00	140.00	
202263 22.28 67.00 54.50 121.50 202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202323 25.60 87.65 59.85 147.50 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	202233	20.30	91.35	42.30	100.00	
202273 24.31 91.88 52.25 144.13 202303 21.60 88.10 49.90 138.00 202323 25.60 87.65 59.85 147.50 202353 24.35 87.45 53.75 141.20 202363 30.50 93.43 65.00 158.43	202255	22.28	67.00	40.55 54 50	122.90	
202303 21.60 88.10 49.90 138.00 202323 25.60 87.65 59.85 147.50 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	202273	24 21	91 88	52 25	144 12	
202323 25.60 87.65 59.85 147.50 202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	202303	21.60	88.10	192.25 19 90	138.00	
202333 24.55 87.45 53.75 141.20 202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	202323	25.60	87 65	59.85	147 50	
202353 22.13 81.75 52.04 133.79 202363 30.50 93.43 65.00 158.43	202333	24 55	87.45	53 75	141 20	
202363 30.50 93.43 65.00 158.43	202353	22 13	81 75	52 04	133 79	
	202363	30.50	93.43	65.00	158 43	

Appendix VI Ccontinued

301263 39.70 101.60 72.80 174.40 301273 26.91 75.86 41.73 117.59 301283 25.32 76.55 51.82 128.36 301293 24.09 82.64 54.64 137.00 301303 21.82 84.86 57.41 140.82 301333 27.44 82.56 59.63 142.19 301343 28.68 75.36 52.77 128.14 301353 34.40 84.50 56.00 140.50 302213 19.05 67.50 53.00 120.50 302263 21.83 71.17 55.25 126.42 302263 21.83 71.17 55.25 126.42 302283 17.56 64.50 44.33 108.83 302293 26.88 66.06 52.31 118.06 302303 26.50 77.13 45.75 110.13 302343 25.00 75.96 50.88 126.67 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 </th
301273 26.91 75.86 41.73 117.59 301283 25.32 76.55 51.82 128.36 301293 24.09 82.64 54.64 137.00 301303 21.82 84.86 57.41 140.82 301333 27.44 82.56 59.63 142.19 301343 28.68 75.36 52.77 128.14 301353 34.40 84.50 56.00 140.50 302213 19.05 67.50 53.00 120.50 302223 17.64 74.77 42.91 117.23 302263 21.83 71.17 55.25 126.42 302283 17.56 64.50 44.33 108.83 302293 26.88 66.06 52.31 118.06 302303 26.50 77.13 45.75 110.13 302343 25.00 75.96 50.88 126.67 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
301283 25.32 76.55 51.82 128.36 301293 24.09 82.64 54.64 137.00 301303 21.82 84.86 57.41 140.82 301333 27.44 82.56 59.63 142.19 301343 28.68 75.36 52.77 128.14 301353 34.40 84.50 56.00 140.50 302213 19.05 67.50 53.00 120.50 302223 17.64 74.77 42.91 117.23 302263 21.83 71.17 55.25 126.42 302283 17.56 64.50 44.33 108.83 302293 26.88 66.06 52.31 118.06 302303 26.50 77.13 45.75 110.13 30233 25.90 87.70 48.70 136.40 302343 25.00 75.96 50.88 126.67 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
301293 24.09 82.64 54.64 137.00 301303 21.82 84.86 57.41 140.82 301333 27.44 82.56 59.63 142.19 301343 28.68 75.36 52.77 128.14 301353 34.40 84.50 56.00 140.50 302213 19.05 67.50 53.00 120.50 302223 17.64 74.77 42.91 117.23 302263 21.83 71.17 55.25 126.42 302283 17.56 64.50 44.33 108.83 302293 26.88 66.06 52.31 118.06 302303 26.50 77.13 45.75 110.13 302323 25.90 87.70 48.70 136.40 302343 25.00 75.96 50.88 126.67 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
301333 27.44 82.56 59.63 142.19 301343 28.68 75.36 52.77 128.14 301353 34.40 84.50 56.00 140.50 302213 19.05 67.50 53.00 120.50 302223 17.64 74.77 42.91 117.23 302263 21.83 71.17 55.25 126.42 302283 17.56 64.50 44.33 108.83 302293 26.88 66.06 52.31 118.06 302303 26.50 77.13 45.75 110.13 302323 25.90 87.70 48.70 136.40 302343 25.00 75.96 50.88 126.67 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
301343 28.68 75.36 52.77 128.14 301353 34.40 84.50 56.00 140.50 302213 19.05 67.50 53.00 120.50 302223 17.64 74.77 42.91 117.23 302263 21.83 71.17 55.25 126.42 302283 17.56 64.50 44.33 108.83 302293 26.88 66.06 52.31 118.06 302303 26.50 77.13 45.75 110.13 302323 25.90 87.70 48.70 136.40 302343 25.00 75.96 50.88 126.67 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
301353 34.40 84.50 56.00 140.50 302213 19.05 67.50 53.00 120.50 302223 17.64 74.77 42.91 117.23 302263 21.83 71.17 55.25 126.42 302283 17.56 64.50 44.33 108.83 302293 26.88 66.06 52.31 118.06 302303 26.50 77.13 45.75 110.13 302323 25.90 87.70 48.70 136.40 302343 25.00 75.96 50.88 126.67 302353 23.70 82.80 54.40 137.20 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
302293 26.88 66.06 52.31 118.06 302303 26.50 77.13 45.75 110.13 302323 25.90 87.70 48.70 136.40 302343 25.00 75.96 50.88 126.67 302353 23.70 82.80 54.40 137.20 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
302303 26.50 77.13 45.75 110.13 302323 25.90 87.70 48.70 136.40 302343 25.00 75.96 50.88 126.67 302353 23.70 82.80 54.40 137.20 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
302323 25.90 87.70 48.70 136.40 302343 25.00 75.96 50.88 126.67 302353 23.70 82.80 54.40 137.20 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
302343 25.00 75.96 50.88 126.67 302353 23.70 82.80 54.40 137.20 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
302353 23.70 82.80 54.40 137.20 302363 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
302383 25.00 77.28 49.78 127.06 401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
401223 16.75 70.40 48.60 119.00 401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
401243 20.05 65.59 42.68 108.27 401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
401263 22.05 75.91 49.73 125.64 401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
401283 24.22 85.06 53.06 138.11 401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
401293 28.23 94.00 49.09 143.09 401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
401303 30.73 95.50 56.59 152.09 401313 24.63 87.25 53.08 140.33
401313 24.63 87.25 53.08 140.33
401333 28.44 76.89 45.94 122.83
401343 24.06 79.69 44.50 124.19
401363 25.95 75.64 43.73 119.36
402233 27.23 101.27 53.50 154.77
402243 21.30 68.40 56.60 123.60
402253 29.40 92.75 56.20 148.95
402203 28.08 89.13 59.71 148.83 402272 09.55 96.50 50.00 100.01
402273 20.00 80.09 53.32 139.91
402203 22.20 70.90 33.40 130.30
402303 29.07 72.33 33.72 100.00
402343 23.45 03.73 47.09 130.02
501223 27.85 102.25 52.05 156.20
501253 21.05 103.25 53.05 150.50
501263 32.61 101.94 51.94 154.22
501273 29 79 101 38 62 79 164 17
501283 29.95 86.86 64.09 150.95
501293 35.28 102.78 63.00 165.78
501313 25.42 79.13 51.25 130.38
501333 23.18 74.55 61.14 135.68
501343 19.44 71.75 35.81 107.56
502213 21.33 75.17 33.00 108.17

Appendix V	I Continued				
502233	33.43	101.36	49.57	150.93	
502263	25.55	83.00	54.50	137.50	
502273	30.29	102.07	55.57	157.64	
502283	23.17	92.25	37.67	129.92	
502293	26.50	102.35	72.60	174.95	
502313	28.55	104.86	60.68	165.64	
502323	20.06	82.50	47.00	129.50	
502333	28.38	78.00	56.50	134.50	
502343	27.00	83.83	50.92	134.75	
601213	26.00	82.73	45.45	128.18	
601243	31.86	98.36	52.79	151.14	
601253	34.63	96.56	68.75	165.31	
601263	29.00	87.25	55.05	142.30	
601293	34.27	102.36	66.59	156.59	
601303	29.95	100.68	58.32	159.00	
601323	18.78	76.17	49.11	125.28	
601333	34.08	121.08	65.79	186.88	
601343	26.18	101.95	57.73	159.68	
601353	32.36	86.91	55.23	142.14	
602223	26.41	75.86	56.77	132.64	
602243	31.75	86.46	58.75	145.21	
602253	23.00	63.21	51.50	115.88	
602293	36.00	102.56	63.39	165.94	
602303	21.50	77.55	43.90	121.45	
602323	40.32	110.41	67.59	178.00	
602333	25.44	74.28	51.06	125.33	
602353	33.75	84.13	59.69	143.81	
602363	24.05	80.85	53.90	134.75	
602373	30.45	96.00	55.45	151.45	
701213	20.57	71.21	41.36	112 57	
701223	21.93	65.14	46.93	112.07	
701243	13 75	58.08	31.67	89 75	
701263	19 14	63.36	37.91	101 27	
701283	21 50	79 72	44 56	121.39	
701323	16.86	58.09	37.09	95 18	
701333	15.00	66 45	39.64	106.09	
701343	11 60	50 01	3/ 12	85.06	
701373	22.20	70.34	40.67	122 44	
701383	1/ 33	12.00	49.07	72 92	
701303	21.96	90 57	29.75	146 50	
702243	20.70	80.57	00.90 EE 70	140.00	
702255	29.70	09.40	55.70	143.10	
102203	23.4U 26 45	02.7U	40.00	131.50	
102213	20.40	60.00 62.00	01.04 AE EO	130.39	
102203	19.09	03.00	45.50	107.50	
102313		00.10	43.60	99.70	
102323	15.25	40.56	22.63	68.31	
702333	22.56	06.06	44.22	110.17	
/02353	25.59	81.00	50.73	131./3	

,,

Appendix VI Continued

702383	17.50	48.43	33.57	82.00	
801223	18.11	59.67	40.56	100.22	
801233	20.38	63.25	21.13	84.38	
801243	13.88	15 25	40.00	85.25	
001240	10.00	40.20	40.00	03.23	
001203	19.00	03.39	34.44	97.03	
801263	13.70	54.00	34.40	88.40	
801283	14.50	39.38	21.50	60.88	
801303	29.69	81.56	44.88	126.44	
801313	20.45	57.59	35.95	93.55	
801323	14.38	68.19	30.50	98.69	
801363	18.50	61.67	42.25	103.92	
802213	17.88	65.81	35.13	100 19	
802243	10.00	42 30	25 40	67 70	
802273	19.00	65.00	20.40	00.00	
002270	05.67	79.00	39.10	110 59	
002293	23.07	70.33	32.23	110.50	
802323	14.00	58.63	28.44	87.06	
802333	19.69	62.94	38.63	101.56	
802353	20.06	72.50	27.67	100.17	
802363	21.88	66.88	44.75	111.63	
901213	18.45	60.64	35.27	95.77	
901223	24.81	78.94	45.38	124.31	
901243	29.04	85.79	46.75	132.54	
901253	22.63	79.83	40.83	120.58	
001283	22.00	76.00	25 75	112 65	
001200	20.00	70.90	55.75	150.64	
901313	34.23	90.27	54.30	152.04	
901343	27.50	79.89	65.33	145.22	
901373	24.50	70.21	51.25	122.38	
901403	19.82	71.82	33.73	104.86	
901413	20.25	60.35	45.60	105.95	
902233	16.57	62.79	34.93	97.71	
902253	26.15	67 25	42 45	109 70	
002213	22.10	68 72	20 78	108.50	
002010	15 14	50.72	00.01	100.00	
902323	10.14	52.07	30.21	01.30	
902343	19.67	52.83	38.56	91.39	
902353	25.42	73.17	54.63	127.79	
902363	23.41	67.00	41.23	108.23	
902403	25.45	81.32	52.50	133.14	
902413	14 50	61 42	30.08	91.83	
1001223	23.00	74.00	11 61	118.61	
1001223	20.00	F0 70	44.01	01 14	
1001233	19.21	52.79	20.30	01.14	
1001283	26.45	89.65	39.40	129.05	
1001303	17.90	56.90	31.50	90.00	
1001333	19.50	64.35	39.25	103.70	
1001353	21.35	80.65	32.60	110.75	
1001363	23.70	74.95	40.30	115.05	
1002223	16.15	52.55	22.15	74,70	
1002233	17 59	57 82	35.86	93 77	
1002200	20.05	90 E0	00.00 25 25	115 75	
1002243	22.90	00.00	33.23	115./5	

Appendix VI Continued

1002253	17.06	60.67	32.11	92.78	
1002293	19.67	66.25	42.83	109.08	
1002303	17.50	48.40	28.80	77.20	
1002343	18.88	61.44	33.00	94.44	
1002353	26.33	84.00	47.72	131.72	
1002363	27.40	81.40	46.50	127.90	
1301213	32.45	77.55	49.05	126.60	
1301233	24.27	65.55	43.45	109.00	
1301243	16.65	70.00	38.60	108.60	
1301273	24.00	68.88	41.75	110.63	
1301293	22.64	66.32	44.95	111.27	
1301303	22.06	58.94	57.33	116.28	
1301313	25.22	68.00	45.06	113.06	
1301323	23.35	59.65	37.70	97.35	
1301343	31.41	81.50	51.00	132.50	
1302213	28.32	73.59	51.50	125.09	
1302223	19.69	54.56	33.06	87.63	
1302233	26.21	82.14	41.64	124.07	
1302243	29.50	75.10	52.70	127.80	
1302253	29.00	73.25	50.17	123.00	
1302263	43.00	113.08	43.25	156.33	
1302273	22.29	66.54	50.83	117.38	
1302283	28.83	80.71	54.25	128.29	
1302293	25.22	58.44	51.44	109.89	
1302303	23.38	65.92	43.63	109.54	

APPENDIX VII

CLONE MEANS FOR SYLLEPTIC BRANCHING TRAITS

	Tota nun sylle sho	al nber of eptic ots	Tota lengt sylle shoo	Total length of sylleptic shoots, cm		Length of sylleptic shoots per cm height growth
Clone	1988	1989	1988	1989	1989	<u> </u>
101213	0.17	5.58	0.42	56.33	0.072	0.693
101223	0.09	8.18	0.64	115.41	0.097	1.336
101233	0.00	5.58	0.00	58.21	0.079	0.768
101293	1.00	4.73	3.86	44.14	0.074	0.638
101313	0.00	2.18	0.00	16.45	0.029	0.209
101323	0.25	5.83	1.00	84.04	0.077	0.966
101333	0.82	8.45	3.45	82.09	0.102	0.930
101343	0.33	6.58	0.63	62.54	0.082	0.745
101363	0.00	4.18	0.00	41.55	0.050	0.493
101373	1.83	19.83	12.25	264.04	0.207	2.924
102223	0.27	9.45	2.18	107.50	0.118	1.358
102253	0.00	1.08	0.00	15.00	0.013	0.172
102263	4.91	19.18	51.68	258.14	0.228	2.895
102273	0.00	7.45	0.00	53.09	0.098	0.648
102293	2.33	12.00	5.08	122.96	0.169	1.565
102323	0.00	2.64	0.00	28.77	0.035	0.356
102333	0.00	0.22	0.00	5.00	0.005	0.111
102343	0.00	0.55	0.00	2.77	0.009	0.042
102353	1.36	26.36	10.36	368.95	0.268	3.592
102383	0.00	0.00	0.00	0.00	0.000	0.000
201213	0.00	5.45	0.00	51.73	0.067	0.590
201243	0.00	2.18	0.00	13.91	0.033	0.206
201263	0.00	2.09	0.00	15.64	0.033	0.234
201273	0.00	2.20	0.00	12.45	0.032	0.179
201283	0.00	6.33	0.00	46.38	0.102	0.774
201303	0.00	7.43	0.00	30.30	0.118	0.529
201323	0.00	0.33	0.00	74 14	0.008	1 1 9 4
201353	0.00	11.00	0.00	17.05	0.198	0.204
201303	0.00	4.27	0.00	20.72	0.072	0.304
201373	0.00	1 30	0.00	29.75	0.098	0.445
202233	0.00	0.30	0.00	1 00	0.021	0.100
202253	0.00	4.80	0.00	16.45	0.004	0.025
202263	0.00	0.22	0.00	1 0.45	0.092	0.230
202273	0.00	1.38	0.00	7 63	0.004	0.010
202303	0.00	1 10	0.00	9.25	0.013	0.100
202323	0.00	0.20	0.00	0.20 N an	0.023	0.200
	0.00	0.20	0.00	0.30	0.000	

Appendix V		luea				
202333	0.00	2.70	0.00	14.85	0.046	0.262
202353	0.00	1.92	0.00	11.58	0.030	0.179
202363	0.14	5.43	0.43	42.00	0.074	0.569
301253	0.00	0 1 1	0.00	0.56	0.002	0.009
301263	1 80	13.80	10.25	129 20	0 173	1 560
201200	0.00	0.72	0.00	2 22	0.110	0.030
301273	0.00	0.73	0.00	2.52	0.012	0.000
301203	0.00	3.09	0.00	20.32	0.040	0.299
301293	0.09	1.27	0.45	36.95	0.115	0.544
301303	0.00	4.27	0.00	18.77	0.064	0.277
301333	0.00	8.63	0.00	61.06	0.138	0.972
301343	0.00	0.91	0.00	4.41	0.017	0.080
301353	0.00	2.40	0.00	15.95	0.048	0.342
302213	0.00	3.82	0.00	28.41	0.065	0.434
302223	0.00	0.45	0.00	1.86	0.008	0.032
302263	0.00	0.25	0.00	1.00	0.005	0.022
302283	0.00	0.00	0.00	0.00	0.000	0.000
302293	1.25	1.00	11.63	4.25	0.018	0.069
302303	0.25	° 2.63	0.38	24.50	0.043	0.389
302323	0.00	1.30	0.00	8.00	0.033	0.221
302343	0.08	0.75	1.50	3.38	0.013	0.057
302353	0.20	0.50	2.00	2.70	0.008	0.043
302363	0.00	0.11	0.00	0.22	0.002	0.004
401223	0.00	0.10	0.00	0.65	0.002	0.010
401243	0.00	^a 4.73	0.00	11.05	0.103	0.224
401263	0.00	1.91	0.00	12.14	0.032	0.194
401283	0.00	1.89	0.00	12.00	0.034	0.211
401293	0.00	0.18	0.00	1.64	0.005	0.044
401303	0.00	0.18	0.00	0.18	0.003	0.003
401313	0.17	1.83	0.42	8.83	0.027	0.121
401333	0.00	0.00	0.00	0.00	0.000	0.000
401343	0.63	1.75	0.81	10.63	0.031	0.181
401363	0.09	1.82	0.09	9.18	0.034	0.165
402233	0.55	2.73	2.36	26.55	0.045	0.390
402243	0.00	1.00	0.00	5.10	0.018	0.088
402253	0.00	4.10	0.00	18.75	0.070	0.310
402263	1 50	6.83	12.58	55 38	0.094	0.737
402273	0.00	1 55	0.00	8 05	0.027	0 126
402283	0.00	1.00	0.00	7 85	0.020	0 126
402200	0.00	0.33	0.00	2.00	0.020	0.120
402303	0.00	0.00	0.00	17.00	0.063	0.074
402343	0.00	3.73	0.00	11.91	0.003	0.295
402353	0.58	2.00	3.50	01.20	0.037	0.103
501223	0.00	2.30	0.00	21.50	0.030	0.270
501253	0.63	5.13	1.88	33.81	0.089	0.585
501263	0.00	2.89	0.00	15.67	0.048	0.256
501273	0.00	2.00	0.00	14.17	0.027	0.191
501283	0.55	7.82	1.64	49.64	0.113	0.658
501293	0.11	1.22	0.78	5.78	0.021	0.089
501313	0.00	2.83	0.00	16.63	0.055	0.276

Appendix VII Continued

•

Appendix V	<u>'II Contir</u>	nued				
501333	0.00	8.82	0.00	51.50	0.146	0.806
501343	0.00	0.75	0.00	7.50	0.013	0.129
502213	0.00	2.00	0.00	9.67	0.057	0.241
502233	0.43	3.29	1.86	19.14	0.052	0.293
502263	0.45	0.91	3.27	6.41	0.021	0.142
502273	0.00	0.14	0.00	2.14	0.018	0.093
502283	0.00	0.50	0.00	2.25	0.013	0.056
502293	0.80	2 70	7.55	22.90	0.039	0.277
502313	0.00	8 64	0.00	62 86	0.000	0.000
502323	0.00	0.78	0.00	4 89	0.138	0.950
502333	0.00	2.63	0.00	22 50	0.013	0.076
502343	1 58	3 4 2	7 67	30.83	0.037	0.313
601213	0.00	0.42	0.00	5.82	0.060	0.515
601213	0.00	1 00	3.00	6.21	0.000	0.112
601243	262	10.00	1 69	110.00	0.000	0.084
601255	2.03	0.00	9.05	0.00	0.127	1 308
601203	0.00	0.00	0.00	82.64	0.127	0.000
601293	0.00	0.27	1.55	45 72	0.000	1.048
601303	0.27	1.30	1.55	40.70	0.112	0.644
601323	0.22	1.22	0.50	JA 21	0.002	0.044
601333	0.07	3.50	5.04	20 64	0.020	0.000
601343	0.00	4.04	0.00	39.04	0.047	0.501
601333	2.10	3.55	20.45	59.55	0.009	0.521
602223	0.55	5.09	4.73	21 71	0.040	0.024
602243	0.00	0.58	1 25	6.58	0.000	0.000
602203	1 00	0.50 g 1 1	7.61	75 9/	0.090	0.095
602293	0.00	1 20	0.00	14 40	0.000	0.000
602323	5.82	19.09	24 14	173 77	0.015	0.171
602333	0.02	0.33	0.00	2.89	0.262	2.175
602353	0.63	1.50	5 25	12 50	0.005	0.041
602363	0.80	7.10	2.75	48.45	0.025	0.175
602373	2.64	7.36	10.64	58.55	0.130	0.832
701213	0.00	5.00	0.00	25.57	0.127	1.027
701223	0.00	2.57	0.00	16.79	0.125	0.639
701243	0.00	1.50	0.00	6.83	0.051	0.289
701263	0.00	2.45	0.00	9.82	0.030	0.137
701283	0.00	0.11	0.00	0.33	0.052	0.192
701323	0.00	1.64	0.00	5.91	0.003	0.009
701333	0.00	1.73	0.00	6.64	0.040	0.133
701343	0.00	0.25	0.00	1.00	0.033	0.126
701373	0.00	0.11	0.00	1/17	0.006	0.024
701383	0.00	0.00	0.00	0:00	0.002	0.019
702243	0.00	0.86	0.00	4.14	0.000	0.000
702253	0.80	3.80	3.40	29.50	0.013	0.061
702263	0.00	6.40	0.00	32.30	0.063	0.484
702273	0.00	2.36	0.00	16.77	0.105	0.523
702283	0.00	1.33	0.00	7.06	0.036	0.249
702313	0.00	3.20	0.00	11 10	0.031	0.180
		0.20				

Appendix	VII Conun	ueu				
702333	0.00	2.44	0.00	9.06	0.000	0.000
702353	[©] 1.64	7.73	3.14	35.09	0.043	0.154
702383	0.00	1.14	0.00	4.00	0.135	0.568
801223	0 44	0.67	0.56	2.22	0.022	0.078
801233	0.00	0.07	0.00	0.00	0.013	0 044
001200	0.00	1 25	0.00	1 29	0.010	
001243	0.00	1.20	0.00	4.30	0.000	0.000
801253	0.00	1.44	0.00	5.00	0.026	0.069
801263	0.00	0.00	0.00	0.00	0.026	0.090
801283	0.00	0.00	0.00	0.00	0.000	0.000
801303	0.00	2.25	0.00	5.94	0.000	0.000
801313	0.00	1.27	0.00	6.00	0.045	0.120
801323	0.00	3.50	0.00	18.88	0.024	0.110
801363	0.00	0.17	0.00	0.67	0.069	0.368
802213	0.00	0.00	0.00	0.00	0.003	0.013
802243	0.00	0.40	0.00	0.50	0.000	0.000
802273	0.00	3.50	0.00	22.75	0.013	0.017
802293	0.00	0.33	0.00	2.50	0.062	0.390
802323	0.00	1.38	0.00	3.38	0.008	0.056
802333	0.00	0.00	0.00	0.00	0.041	0.101
802353	0.00	0.67	0.00	2.28	0.000	0.000
802363	0.00	0.75	0.00	3.63	0.022	0.078
901213	0.00	0.18	0.00	0.45	0.012	0.058
901223	0.00	1.25	0.00	4.63	0.003	0.008
901243	0.00	0.00	0.00	0.00	0.021	0.076
901253	0.00	0.00	0.00	0.00	0.000	0.000
901283	0.00	0.00	0.00	0.00	0.000	0.000
901313	1.18	2.45	4.36	18.95	0.000	0.000
901343	1.33	5.00	5.11	21.78	0.034	0.255
901373	0.00	3.08	0.00	16.13	0.079	0.328
901403	0.00	0.36	0.00	0.91	0.056	0.270
901413	0.00	0.30	0.00	1 10	0,009	0.023
002233	0.00	1 86	0.00	9.21	0.006	0.021
902253	0.00	0.20	0.00	1 60	0.000	0.177
002213	0.00	0.20	0.00	0.00	0.007	0.030
902010	0.00	0.00	0.00	0.00	0.004	0.000
902323	0.00	0.14	0.00	0.21	0.000	0.000
902343	0.00	0.00	0.00		0.003	0.005
902353	0.00	3.58	0.00	21.71	0.000	0.000
902363	0.00	0.00	0.00	0.00	0.050	0.305
902403	0.00	0.91	0.00	5.05	0.000	0.000
902413	0.00	0.00	0.00	0.00	0.017	0.090
1001223	0.00	1.89	0.00	7.78	0.000	0.000
1001233	0.00	0.00	0.00	0.00	0.036	0.148
1001283	0.20	0.00	0.40	0.00	0.000	0.000
1001303	0.00	0.80	0.00	0.80	0.000	0.000
1001333	0.00	0.10	0.00	0.90	0.024	0.024
1001353	0.00	1 80	0.00	4 65	0.024	0.018
1001262	0.00	n an	0.00	2 00	0.002	0 125
1001303	0.00	0.30	0.00	2.30	0.002	0.125
1002223	0.00	0.00	0.00	0.00	0.015	0.040

Appendix VII Continued

Appendix V	II Contin	ued				
1002233	0.00	1.09	0.00	3.09	0.000	0.000
1002243	0.00	0.10	0.00	0.10	0.024	0.068
1002253	0.00	0.00	0.00	0.00	0.002	0.002
1002293	0.00	5.00	0.00	19.17	0.000	0.000
1002303	0.00	0.00	0.00	0.00	0.084	0.316
1002343	0.00	0.00	0.00	0.00	0.000	0.000
1002353	0.00	0.00	0.00	0.00	0.000	0.000
1002363	0.80	0.50	3.30	1.60	0.009	0.026
1301213	4.70	2.40	31.10	10.20	0.049	0.206
1301233	0.00	2.18	0.00	9.27	0.044	0.158
1301243	0.00	1.30	0.00	2.80	0.029	0.063
1301273	0.00	0.00	0.00	0.00	0.000	0.000
1301293	0.09	1.00	0.27	2.18	0.021	0.045
1301303	0.00	0.56	0.00	1.72	0.012	0.035
1301313	0.00	3.89	0.00	15.50	0.075	0.274
1301323	0.00	0.20	0.00	2.30	0.003	0.035
1301343	0.82	1.73	4.73	5.27	0.037	0.112
1302213	1.18	3.45	5.82	19.73	0.070	0.321
1302233	0.00	0.86	0.00	1.29	0.022	0.033
1302243	1.00	1.70	4.05	5.55	0.037	0.116
1302253	0.25	1.67	0.25	10.19	0.029	0.183
1302263	2.33	0.83	21.33	16.67	0.015	0.303
1302273	0.42	5.00	0.83	24.25	0.098	0.428
1302283	0.00	1.58	0.00	4.83	0.028	0.085
1302293	0.00	2.11	0.00	6.56	0.038	0.114
1302303	0.00	2.08	0.00	8.58	0.040	0.160

APPENDIX VIII

ANALYSIS OF VARIANCE OF INDIVIDUAL PROVENANCES FOR HEIGHT GROWTH TRAITS

		Height gr	owth, 1989	9		
	Source	Sums	Degrees	Moan	Variance	Percent
Provenance	Variation	Squares	Freedom	Square	onent	variance
North Bay	Block Clone B X C	23205.69 22571.40 10767.97	3 19 57	7735.23 1187.97 188.91	109.12 83.54	24.29 18.60 0.00
	Total	36684.92 93229.98	222	256.54 419.95	256.54	57.11
Sault. Ste. Marie	Block Clone B X C Error	2632.14 6521.03 9177.43 26396.13	3 19 56 118	877.38 343.21 163.88 223.70	11.28 9.96 223.70	4.61 4.07 0.00 91.33
Timmins	Total Block Clone B X C Error	44726.72 4550.34 8610.17 11091.38 21613.96	196 3 18 54 116	228.20 1516.78 478.34 205.40 186.33	22.35 30.42 7.95 186.33	9.05 12.31 3.22 75.42
Wawa	Total Block Clone B X C Error Total	45865.84 7076.39 6143.58 9350.71 25751.75 48322.44	191 3 18 52 120 193	2358.80 341.31 179.82 214.60 250.38	43.79 13.06 214.60	16.13 4.81 0.00 79.06
Thunder Bay	Block Clone B X C Error Total	5404.57 14902.46 15514.50 27179.04 63000.58	3 17 45 99 164	1801.52 876.62 344.77 274.54 384.15	23.05 73.07 34.09 274.54	5.69 18.05 8.42 67.83

Appendix VIII Contin	nued
----------------------	------

Appendix VIII	Continued	Height ar	with 1989	1		
	Source	Sums	Degrees	·,	Variance	Percent
	of	of	of	Mean	Comp-	of
Provenance	Variation	Squares	Freedom	Square	onent	variance
Fort Frances	Block	30329.53	3	10109.84	187.10	50.77
	Clone	9894.87	19	520.78	36.69	9.95
	BXC	8028.60	57	140.85		0.00
	Error	18094.42	125	144.76	144.76	39.28
	Total	66347.42	204	325.23		
Red Lake	Block	1588.85	3	529.62		0.00
	Clone	15549.48	19	818.39	79.73	33.45
	вхс	9734.88	53	183.68	21.99	9.22
	Error	12983.71	95	136.67	136.67	57.33
	Total	39856.92	170	234.45		
Pickle Lake	Block	3554.09	3	1184.70	31.23	15.91
	Clone	4730.54	17	278.27	20.78	10.59
	ВХС	5521.58	45	122.70		0.00
	Error	9086.79	63	144.23	144.23	73.50
	Total	22893.00	128	178.85		
Kenogami R.	Block	11950.67	3	3983.56	70.00	22.53
	Clone	13417.98	18	745.44	63.31	20.38
	BXC	11832.03	53	223.25	33.37	10.74
	Error	16560.17	115	144.00	144.00	46.35
	I Otal	53760.85	189	284.45		
Moosonee	Block	14502.06	3	4834.02	142.87	45.29
	Clone	6902.41	16	431.40	41.46	13.15
	BXC	5515.81	42	131.33	0.30	0.09
	Error	10855.38	83	130.79	130.79	41.47
	I Otal	37775.66	144	262.33		
Sandy Lake	Block	3670.02	3	1223.34	18.92	7.66
	Clone	6810.66	18	378.37	17.89	7.24
	BXC	8856.84	51	173.66		0.00
	Error	24169.46	115	210.17	210.17	85.09
	Iotal	43506.98	187	232.66		

Appendix VIII Continued

	Total Height, 1989						
	Source of	Sums of	Degrees of	Mean	Variance Comp-	Percent of	
Provenance	Variation	Squares	Freedom	Square	onent	variance	
North Bay	Block	182569.59	3	60856.53	937.48	34.28	
	Clone	86549.72	. 19	4555.25	273.56	10.00	
	BXC	88778.75	57	1557.52	18.81	0.69	
	Error	215228.88	143	1505.10	1505.10	55.03	
	lotal	573126.94	222	2581.65			
Sault. S. M.	Block	19798.80	3	6599.60	106.07	9.54	
	Clone	27846.01	19	1465.58	41.83	3.76	
	BXC	47321.76	56	845.03		0.00	
	Error	113702.25	118	963.58	963.58	86.69	
	Total	208668.82	196	1064.64			
Timmins	Block	38556.35	3	12852.12	233.44	16.17	
	Clone	39732.22	. 18	2207.35	115.91	8.03	
	BXC	57179.03	54	1058.87		0.00	
	Error	126969.71	116	1094.57	1094.57	75.81	
	Total	262437.31	191	1374.02			
Wawa	Block	46449.70	3	15483.23	292.16	20.10	
	Clone	36392.69	18	2021.82	98.89	6.80	
	BXC	45136.83	52	868.02		0.00	
	Error	127510.96	120	1062.59	1062.59	73.10	
	Total	255490.18	193	1323.78			
Thunder Bay	Block	54992.18	3	18330.73	406.05	21.28	
-	Clone	55086.22	. 17	3240.37	242.32	12.70	
	ВХС	57494.07	' 45	1277.65	16.50	0.86	
	Error	123122.38	99	1243.66	1243.66	65.16	
	Total	290694.85	164	1772.53			
Fort Frances	Block	261274.60	3	87091.53	1620.87	50.36	
	Clone	76413.88	19	4021.78	262.07	8.14	
	BXC	57912.26	57	1016.00		0.00	
	Error	166950.04	125	1335.60	1335.60	41.50	
	Total	562550.78	204	2757.60			

Appen	dix VII	I Con	tinued
and the second s	the second s		

	Outtilled	Total He	ight, 1989			
	Source	Sums	Degrees		Variance	Percent
_	of	of	of	Mean	Comp-	of
Provenance	Variation	Squares	Freedom	Square	onent	variance
Red Lake	Block	702.85	5 3	234.28		0.00
	Clone	89800.77	7 19	4726.36	490.62	42.26
	BXC	43882.97	53	827.98	138.67	11.95
	Error	50500.08	<u> </u>	531.58	531.58	45.79
	Iotal	184886.67	170	1087.57		
Pickle Lake	Block	2109.74	4 З	703.25		0.00
	Clone	22308.95	5 17	1312.29	101.58	13.39
	BXC	26911.40) 45	598.03		0.00
	Error	41396.38	8 63	657.09	657.09	86.61
	Total	92726.47	7 128	724.43		
Kenogami R.	Block	32183.85	5 3	10727.95	165.81	14.18
-	Clone	56799.23	3 18	3155.51	257.67	22.04
	ВХС	42283.43	3 53	797.80	37.97	3.25
	Error	81377.58	3 115	707.63	707.63	60.53
	Total	212644.09	9 189	1125.10		
Moosonee	Block	53231.86	6 3	17743.95	470.44	30.91
	Clone	44547.75	5 16	2784.23	318.24	20.91
	BXC	39537.45	5 42	941.37	256.20	16.83
	Error	39591.58	3 83	477.01	477.01	31.34
	Total	176908.65	5 144	1228.53		
Sandy Lake	Block	75747.37	7 3	25249.12	526.72	33.20
- · · · · , - · · · ·	Clone	31162.24	1 18	1731.24	79.96	5.04
	BXC	48001.09	51	941.20		0.00
	Error	112660.54	115	979.66	979.66	61.76
	Total	267571.24	187	1430.86		

APPENDIX IX

ANOVA OF INDIVIDUAL PROVENANCES FOR SYLLEPTIC BRANCHING TRAITS

Total number of sylleptic shoots, 1989						
	Source	Sums	Degrees		Variance	Percent
_	of	of	of	Mean	Comp-	of
Provenance	Variation	Squares	Freedom	Square	onent	variance
North Bay	Block	713496.97	7 3	237832.32	2109.38	9.11
	Clone	2043369.03	3 19	107545.74	8652.71	37.35
	BXC	843136.25	5 57	14791.86	1335.91	5.77
	Error	1582726.96	5 143	11068.02	11068.02	47.78
	Total	5182729.20) 222	23345.63		
Sault. S. M.	Block	3497.90) 3	1165.97		0.00
	Clone	76521.29	9 19	4027.44	192.83	10.11
	BXC	53962.82	2 56	963.62		0.00
	Error	202195.04	118	1713.52	1713.52	89.89
	Total	336177.05	5 196	1715.19		
Timmins	Block	6529.88	3 3	2176.63		0.00
	Clone	170987.39	€ 18	9499.30	852.10	36.27
	ВХС	94342.23	3 54	1747.08	178.29	7.59
	Error	153025.42	2 116	1319.18	1319.18	56.15
	Total	424884.92	2 191	2224.53	1	
Wawa	Block	4671.52	2 3	1557.17		0.00
	Clone	32759.57	7 18	1819.98	129.62	18.72
	BXC	27123.42	2 52	521.60	I	0.00
	Error	67521.25	5 120	562.68	562.68	81.28
	Total	132075.75	5 193	684.33		
Thunder Bay	Block	437.18	3 3	145.73		0.00
	Clone	54340.94	17	3196.53	247.06	17.55
	BXC	51382.20) 45	1141.83		0.00
	Error	114910.58	3 99	1160.71	1160.71	82.45
	Total	221070.90	164	1347.99		

Appendix	IX	Continued	ł

Total number of sylleptic shoots, 1989

	Source	Sums	Degrees		Variance	Percent
	of	of	of	Mean	Comp-	of
Provenance	Variation	Squares	Freedom	Square	onent	variance
Fort Frances	Block	145103.87	<mark>' 3</mark>	48367.96	489.28	8.27
	Clone	370423.18	8 19	19495.96	1681.01	28.41
	BXC	345540.41	57	6062.11	1481.54	25.04
	Error	283206.79	125	2265.65	2265.65	38.29
	Total	1144274.25	5 204	5609.19		
Red Lake	Block	10904.85	5 3	3634.95	33.01	2.99
	Clone	42253.36	5 19	2223.86	152.60	13.81
	ВХС	31500.29	53	594.35		0.00
	Error	87318.54	95	919.14	919.14	83.20
	Total	171977.05	5 170	1011.63		
Pickle Lake	Block	1516.77	′ 3	505.59		0.00
	Clone	5845.58	8 17	343.86	28.92	8.76
	ВХС	17509.37	45	389.10	143.72	43.55
	Error	9913.08	63	157.35	157.35	47.68
	Total	34784.81	128	271.76		
Kenogami	Block	2222.14	. 3	740.71		0.00
	Clone	11965.42	! 18	664.75	54.47	23.28
	BXC	11864.87	′ <u>53</u>	223.87	32.26	13.79
	Error	16932.33	115	147.24	147.24	62.93
	Iotal	42984.77	189	227.43	*****	
Moosonee	Block	720.11	3	240.04	1.04	1.36
	Clone	2464.82	16	154.05	17.26	22.45
	BXC	3474.69	42	82.73	29.71	38.63
	Total	2397.42	83 144	28.88	28.88	37.56
				02.00		
Sandy Lake	Block	4328.93	3	1442.98	20.74	7.37
	Clone	8709.27	18	483.85	28.22	10.03
	BXC	12825.29	51	251.48	14.01	4.98
	Error	25132.41	115	218.54	218.54	77.63
	Iotal	50995.90	187	2/2./1		

Appendix	IX	Continued
----------	----	-----------

nued Total length of sylleptic long shoots, 1989

	Source of	Sums of	Degrees of	Mean	Variance Comp-	Percent of
Provenance	variation	Squares	Freedom	Square	onent	variance
North Bay	Block Clone B X C Error	1823.34 10453.13 3137.11 6442 83	3 19 57 143	607.78 550.16 55.04 45.05	0.79 45.30 3.58 45.05	0.84 47.82 3.78 47.56
	Total	21856.41	222	98.45	40.00	47.00
Sault. Ste.	Block Clone B X C Error Total	168.41 1691.10 848.52 2522.67 5230.69	3 19 56 118 196	56.14 89.01 15.15 21.38 26.69	5.64 21.38	0.00 20.86 0.00 79.14
Timmins	Block Clone B X C Error Total	75.37 2315.12 1176.32 1681.67 5248.48	3 18 54 116 191	25.12 128.62 21.78 14.50 27.48	11.89 3.04 14.50	0.00 40.41 10.32 49.28
Wawa	Block Clone B X C Error Total	231.40 628.01 612.90 1398.83 2871.14) 3 18 52 120 193	77.13 34.89 11.79 11.66 14.88	0.91 2.40 0.05 11.66	6.09 15.95 0.36 77.61
Thunder Bay	Block Clone B X C Error Total	214.66 1278.98 573.97 1658.00 3725.61	5 3 3 17 45 99 164	71.55 75.23 12.75 16.75 22.72	7.10 16.75	0.00 29.77 0.00 70.23
Fort Frances	Block Clone B X C Error Total	464.08 4214.85 1951.22 2293.50 8923.64	3 19 57 125 204	154.69 221.83 34.23 18.35 43.74	19.85 6.20 18.35	0.00 44.71 13.96 41.33

I otal length of sylleptic long shoots, 1989						
	Source	Sums	Degrees	Mean	Comp-	of
Provenance	Variation	Squares	Freedom	Square	onent	variance
1 iovolianoo	Vanation,	oqualou	1.0000	oquaro	Unon	rananoo
Red Lake	Block	504.13	3 3	168.04	2.72	11.91
	Clone	980.39	9 19	51.60	4.17	18.21
	BXC.	809.10) 53	15.27		0.00
	Error	1518.67	7 95	15.99	15.99	69.88
	Total	3812.29	9 170	22.43		
Pickle Lake	Block	114.04	4 3	38.01	0.77	7.27
	Clone	165.65	5 17	9.74	0.68	6.42
	BXC.	512.38	3 45	11.39	3.73	35.32
	Error	338.83	8 63	5.38	5.38	50.99
	Total	1130.90) 128	8.84		
Kenogami R	Block	109.74	4 3	36.58	0.26	3.95
J	Clone	396.04	18	22.00	1.96	29.36
	BXC	317.50) 53	5.99	1.11	16.65
	Error	384.83	3 115	3.35	3.35	50.04
	Total	1208.11	189	6.39		
Moosonee	Block	103.65	5 3	34.55	0.63	9.98
	Clone	176.71	16	11.04	1.22	19.38
	BXC	264.42	2 42	6.30	2.27	35.98
	Error	181.33	8 83	2.18	2.18	34.65
	Total	726.11	144	5.04		
Sandy Lake	Block	406.50) 3	135.50	2.61	24.32
	Clone	312.92	2 18	17.38	1.19	11.12
	BXC	403.76	5 51	7.92	0.74	6.90
	Error	710.67	7 115	6.18	6.18	57.66
	Total	1833.85	5 187	9.81		

Appendix IX Continued

Total length of sylleptic long shoots, 1989