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ABSTRACT 

In the first phase of this study, mammalian serotonin2-like (5-HT2-like) binding sites in 

juvenile rainbow trout {Oncorhynchus mykiss) hypothalamus, were examined by 

radioligand binding assay using the tritiated analog of a selective serotonin antagonist, 

ketanserin ([^Hjketanserin), as the radioligand. Specific [^Hjketanserin binding (Bsp) to 

juvenile hypothalamus membrane was tissue-dependent where Bsp increased linearly with 

tissue concentration. Therefore, 1 hypothalamus-equivalent per tube (1100 ± 115 cpm/mg 

protein) was subsequently used throughout the rest of the first phase. In association 

experiments (n=5), Bsp increased progressively with time to achieve equilibrium binding 

levels (1192+ 120 cpm/mg protein) which remained stable for at least 60 min thereafter; 

kobs, and k+i were 0.032 and 0.048 min'^nM'\ respectively. This consistent, and relatively 

stable association of radioligand to the binding site indicates good stability of 

[^H]ketanserin binding to this binding site. In dissociation experiments, Bsp completely 

dissociated within 20 min following addition of excess ketanserin; k_i, and ti/2 were 

0.0803 min'^ and 8.7min, respectively. This pattern of [^HJketanserin binding to this 

binding site is consistent with the association and dissociation kinetics of radioligand 

binding to a receptor. Bsp was saturable (2500 ± 256 cpm/mg protein); Scatchard- 

calculated values for the equilibrium dissociation constant (KD) and capacity (BMAX) were 

0.48nM, and 125 fmol/mg protein, respectively, indicating the presence of a finite 

population of high-affmity 5-HT2-like binding sites. Bsp was differentially displaced by 

various competitors, with a rank order of potency of ketanserin = mianserin > ritanserin > 

5-HT = spiperone » methiothepin mesylate > metergoline = DOI > 2-methyl-5-HT > a- 

methyl-5-HT »»5-HIAA = reserpine. This rank order suggests that specific 5-HT2 
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agonists and antagonists displace specifically bound [^HJketanserin more effectively 

compared to non-specific competitors, and in a manner comparable with the 5-HT2-like 

binding site of mammals. Collectively, these findings provide pharmacological evidence 

for the existence of a 5HT2-like receptor subtype in the trout hypothalamus. 

In the second phase of this study, the distribution of these 5-HT2-like binding sites 

was compared with serotonin (5-HT) content in corresponding brain regions of juvenile 

(no obvious gonads present) and sexually recrudescing female (presence of ovaries) trout. 

Amounts of specifically bound [^Hjketanserin (Bsp) varied widely among brain regions. 

Levels of Bsp were significantly greater in the hypothalamus than in the olfactory lobe, 

which were at least three-fold greater than all other tissues examined. The magnitude of 

Bsp was hypothalamus » olfactory lobes » optic lobes > pre-optic area »>spinal cord 

»» pituitary. In juveniles, highest Bsp levels were detected in the hypothalamus (1620 

±109 cpm/mg protein), which were larger than Bsp levels in the olfactory lobe (987 ± 67 

cpm/mg protein), which in turn were larger than levels in the optic lobe, pre-optic area 

and spinal cord. Similarly, in sexually recrudescing females, highest Bsp levels were 

detected in the hypothalamus (1100 ± 127 cpm/mg protein), which were larger than Bsp 

levels in the olfactory lobe (423 + 34 cpm/mg protein), which in turn were larger than 

levels in the optic lobe, pre-optic area and spinal cord. Binding site densities in the 

hypothalamus, olfactory lobe, pre-optic area, and optic lobes were greater in juveniles 

compared with corresponding tissues from sexually recrudescing females. In contrast, 

binding site densities in the spinal cord did not differ between juveniles and sexually 

recrudescing females. These results indicate possible age-related changes in the density 

of specific 5-HT2-like binding sites in rainbow trout brain regions. 
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HPLC-EC analysis of biogenic amine standards resulted in a stereotypic elution 

pattern; peaks were consistently separable in time with highly conserved retention times. 

Concentrations of 5-HT varied widely among brain regions of juvenile and sexually 

recrudescing female trout. In juveniles, 5-HT concentration was three to four fold greater 

in the hypothalamus (228 ±12 ng/g tissue) than in both the pre-optic area (56 ± 7 ng/g 

tissue) and olfactory lobe (78 ± 13 ng/g tissue). Similarly, in sexually recrudescing 

females, 5-HT concentration was greater in the hypothalamus (93 ± 7 ng/g) than both 

pre-optic area (21+2 ng/g) and olfactory lobe (73 + 20 ng/g). 5-HT concentration was 

significantly greater in the hypothalamus of juveniles compared with sexually 

recrudescing females. 

In general, tissue 5-HT levels (pmoles/g tissue) were greater in the brain regions of 

juvenile trout, than in corresponding brain regions of sexually recrudescent females, with 

the exception of the olfactory lobe, where 5-HT levels were comparable between 

juveniles and sexually recrudescent females. 

When Bsp density and 5-HT content are represented in units of fmol/g tissue and 

pmol/g tissue, respectively, it is possible to compare them with each other. The ratio of 5- 

HT content to specifically bound [^Hjketanserin in all trout brain regions was collectively 

947 (+ 240); 1 with the exception of juvenile olfactory lobe where 5-HT content was 

approximately 300-fold greater than specifically bound [^HJketanserin. This suggests 

high ratio of neurotransmitter.binding sites for the serotonergic system in trout brain 

regions, and possibly higher neuronal activity in trout olfactory lobe compared with other 

brain regions. 

In conclusion, the findings in these two studies collectively suggest, the existence of a 



5-HT2-like binding site in trout brain, which has variable distribution among tissue types 

in the same age class of fish, and relatively higher levels in corresponding brain regions 

of juveniles compared with sexually recrudescing females. The levels of these 5-HT2-like 

binding sites were lower than levels of 5-HT detected in corresponding brain regions, 

however, similar neurotransmitter:binding site ratios were observed in all brain regions 

with the exception of the juvenile olfactory lobe. Results of this study suggest that the 

levels of 5-HT can be predictive of local levels of specific [^HJketanserin binding, and 

that 5-HT plays important age-related role (s) in rainbow trout brain regions. 

Key Words. Serotonin, [^HJketanserin, High Performance Liquid Chromatography- 

Electrochemical Detection, and sexually recrudescing female rainbow trout. 



CHAPTER 1 

General Introduction 



General Introduction 

This research examines the existence of a specific [^HJketanserin binding site (mammalian 

5-HT2-like binding site) in trout hypothalamic membranes as well as the relationship 

between tissue 5-HT content and specific [^HJketanserin binding site density in trout brain 

regions. 

5-HT: BIOSYNTHESIS AND METABOLISM 

5-HT, an indoleamine neurotransmitter, was first identified in mammalian blood platelets 

(Rapport et al. 1948). It has since been found in the CNS of annelids (earthworm, Sloley 

1994), arthropods (insects, Sloley and Orikasa 1988), as well as in the CNS of various 

0 vertebrates including fishes (Kah and Chambolle 1983, Ekstrom and Van Veen 1984, 

Corio et al. 1991), birds (Hall et al 1986), reptiles (Doshi et al. 1975), and mammals 

3 (Dahlstrom and Fuxe 1964; Dinan 1996). 

5-HT biosynthesis and metabolism have been most extensively studied in 

> mammals. In the pre-synaptic neuron, serotonin biosynthesis and metabolism starts with 

5 the conversion of tryptophan to 5-hydroxytryptophan (5-HTP) by tryptophan hydroxylase. 

5 5-HTP is converted to 5-HT via aromatic amino acid decarboxylase (Frazer and Hensler 

1994). 5-HT molecules are stored in vesicles which lodge at activation sites in the pre- 

.8 synaptic neuron terminal (Tamir and Gershan 1990). 5-HT molecules released from the 

9 pre-synaptic neuron enter the synaptic cleft, may subsequently bind specifically with post- 

20 synaptic 5-HT receptor subtypes. The specific interaction of ligand molecule (5-HT) and 

21 binding site triggers a series of secondary messages in the post-synaptic neuron. Any 5-HT 

22 remaining in the synaptic cleft may be transported back into the pre-synaptic neuron via 

3 specific uptake carrier proteins; this reabsorbed 5-HT may be metabolized to an inactive 
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metabolite, 5-hydroxy-indoleacetic acid (5-HIAA), through the action of monoamine 

oxidases (MAO’s; Frazer and Hensler 1994). 

5-HT PATHWAYS IN TELEOST CNS 

Immunocytochemical techniques have been used in bony fish (teleosts) to examine 

the projection of hypothalamic neurohormonal fibers into the teleost pituitary (Fryer and 

Maler 1981, Peter et al. 1990, Anglade et al. 1993). These fibers are in direct association 

with pituitary target cells. Because teleosts lack a functional hypothlamo-hypophyseal 

portal system, and because of this special neuroanatomical arrangement, teleosts provide a 

unique experimental model to study 5-HT regulation of pituitary endocrine cells (Peter et 

al. 1990). 5-HT neurons exist in the midbrain, brain stem and diencephalon of various 

teleost species: goldfish (Carassius auratus, Kah and Chambolle 1983), African catfish 

{Clarias gariepinus, Corio et al. 1991) and rainbow trout (Salmo gairdneri; Frankenhuis- 

van den Heuvel and Nieuwenhuys 1984). 5-HT producing neurons are located in high 

concentrations in the nucleus raphe' medialis of the teleost midbrain region (Kah and 

Chambolle 1983, Corio et al. 1991, and Frankenhuis-van den Heuvel and Nieuwenhuys 

1984). Large numbers of serotonergic neurons originating in the nucleus raphe' medialis 

extend fibers to various teleost brain regions. For example, neuronal fibers originating in 

the raphe' nucleus extend to; the hypothalamus and ventral thalamus, in three spined 

stickleback (Ekstrom and Van Veen 1984), the pre-optic nucleus of the African catfish 

(Corio et al. 1991), and the pars distalis of the pituitary gland, medulla oblongata, spinal 

cord, and olfactory lobe of the goldfish (Kah and Chambolle 1983). This extensive 

distribution of 5-HT neuronal fibers in teleost brain and pituitary regions implies a local 



biological function for 5-HT as well as the existence of specific 5-HT binding sites in these 

regions of teleost brain. 

ROLES OF 5-HT IN TELEOST CNS 

Serotonin mediated regulation of neuroendocrine bioactivity in teleost brain 

regions has been the subject of ongoing investigations. To illustrate, in in vitro perifused 

goldfish pituitary fragments, 5-HT has an inhibitory effect on the secretion of growth 

hormone (GH) through an 5-HT2 receptor subtype, and a stimulatory effect on the 

secretion of gonadotropin (GtH) through 5-HT2 and possibly 5-HTi receptor subtypes 

(Wong et al. 1998). In the pituitary of both female Atlantic croaker {Micropogonias 

undulatus, Khan and Thomas 1992) and female and male goldfish (Somoza et al. 1988), 

5-HT stimulates the release of maturational GtH. In the pituitaries of both male and female 

mollies (Poecilia latipimia), serotonin mildly stimulates GtH secretion at different stages 

of reproduction (Groves and Batten 1986). Collectively, these findings on 5-HT 

\ bioactivity in teleost pituitary imply the presence of specific 5-HT binding sites in the 

5 teleost pituitary. In the Indian catfish (Heteropneutes fossilis), hypothalamic serotonin 

5 levels are known to vary with annual physiological changes (Senthilkumar and Joy 1993). 

7 For example, levels of 5-HT in trout brain and pituitary regions undergo various 

8 physiological fluctuations during ovarian recrudescence and ovulation (Saligaut et al. 

^ 1992). These changes exert major effects on the trout hypothalamo-hypophysial complex, 

0 which in turn, results in changes in rainbow trout annual reproductive cycle (Saligaut et al. 

1992). These findings imply the existence of specific 5-HT binding sites in these brain 

2 regions. 
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5-HTIN THE CNS OF MAMMALS 

In mammals, serotonin cell bodies are abundant in the raphe' nucleus of the 

midbrain region (Dahlstrom and Fuxe 1964; Frazer and Hensler 1994; Tork 1990). Axon 

fibers project from the raphe' nucleus to various regions of the rat brain including the 

caudate-putamen (Jacobs et al. 1974, Stienbusch 1981), the hippocampus (Stienbusch 

1981), and the paraventricular nucleus of the hypothalamus (Van de Kar 1991). 

Serotonin regulates various neuroendocrine and psychological functions in 

mammalian CNS via its complex receptor system. Serotonin receptor subtypes in 

mammals are known to be structurally and pharmacologically diverse (Hoyer et al. 1984, 

Saudou and Hen 1994, Frazer et al 1990, Hoyer and Shoeffler 1991). These 5-HT 

receptors can be classified into at least three, possibly up to seven, classes of receptors 

(Lacau-Mengido et al. 1996). They comprise the 5-HTi, 5-HT2, and S-HTs classes, the 

“uncloned” 5-HT4 receptor and the recombinant receptors S-hts, S-hte and S-ht?. Previous 

studies have investigated the roles of different serotonin receptor subtypes in 

neuroendocrine responses to the activation of the serotonergic system. To illustrate, 5-HT 

acting at the 5-HT3 receptor mediates FSH (follicle stimulating hormone) and LH 

(leutinizing hormone) release in female infantile rats; by contrast, 5-HT2c or 2A receptor 

subtypes participate in the release of prolactin at this stage (Lacau-Mengido et al. 1996). 

Evidence based partly on the ability of selective serotonin receptor antagonists to prevent 

the increase in ACTH and corticosterone in rats in vivo (Fuller 1990; 1996) in humans 

(Dinan 1996, Van de Kar 1991), has implicated 5-HTIA and 5-HT2/1C receptor subtypes in 

regulating CRF secretion. Serotonin directly regulates the release of TRH (thyrotropin 

releasing hormone) in human anterior pituitary (Tuomisto and Mannisto 1985) via 5-HTIA 



or 5-HTIB receptor subtypes, oxytocin, vasopressin and renin in both humans and rats 

(Van de Kar and Brownfield 1993, Tuomisto and Mannisto 1985; Van de Kar 1991) 

stimulated by the 5-HT2 receptor subtype. Besides regulating physiological functions in 

mammals 5-HT also plays the role of an important psychological modulator. For example, 

5-HT abnormalities in humans are directly linked to a number of psychiatric disorders, 

particularly schizophrenia and depression (Kapur and Remington 1996). 

OBJECTIVES OF THIS RESEARCH 

Although specific 5-HT binding sites and their physiological functions have been 

studied extensively in mammals, there is little to no direct information on the existence or 

0 distribution of specific 5-HT binding sites in teleosts. Therefore, this research investigates 

! the existence and pharmacological characteristics of specific 5-HT2-like binding sites in the 

2 trout hypothalamus, and attempts to describe the distribution of these binding sites in 

3 selected brain regions of juvenile and sexually recrudescing female trout. In the first phase, 

\ I use [^HJketanserin (selective 5-HT2 antagonist) in a radioligand-binding assay to identify 

s specific [^HJketanserin binding sites and to describe the structural criteria for ligand 

recognition by these 5-HT2-like sites. Ketanserin has been used in previous determinations 

’ of existing 5-HT2 receptor subtypes (Leysen et al. 1982, Leysen et al. 1984, Vanhoutte et 

18 al. 1983, Janssen 1983) in mammalian CNS. In order to provide substantial evidence for 

19 the specific binding of [^H]ketanserin to trout hypothalamic 5-HT2-like binding sites 

20 various pharmacological characterization experiments (Bylund and Yamamura 1990) 

21 including, saturation analysis, kinetic (association and dissociation) analysis, and 

'’2 displacement analysis, using a diverse assembly of pharmacological probes are conducted. 



In a second phase of this research, I examine the distribution levels of 5-HT2-like 

binding sites in corresponding brain regions of juvenile and sexually recrudescing females, 

and investigate changes in receptor distribution in rainbow trout related to reproductive 

status. I use [^HJketanserin radioligand binding assay and HPLC-EC analysis to detect 

levels of specific 5-HT2-like binding sites and 5-HT respectively, in the brain regions of 

juvenile and sexually recrudescing females. Specific [^HJketanserin binding levels are then 

compared to 5-HT content in corresponding brain regions as well as between juvenile and 

sexually recrudescing females. 

This investigation provides valuable information on the existence and 

0 pharmacological characteristics of specific [^HJketanserin binding sites in selected brain 

\ regions of juvenile and sexually recrudescing female rainbow trout. Moreover, comparison 

2 of local 5-HT contents and binding site densities will permit consideration of mechanisms 

3 for their mutual regulation. 
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CHAPTER 2 

Specific binding of fHJketanserin to the hypothalamus 

membranes of juvenile rainbow trout ('Oncorhynchus mykiss^. 



1 Specific binding of [^Hjketanserin to hypothalamus membranes of juvenile rainbow 

2 trout, Oncorhynchus mykiss 

3 Abstract 

4 This study examines the existence and pharmacological specificity of [^Hjketanserin 

5 binding in hypothalamus of juvenile rainbow trout. Hypothalamic membranes were 

6 incubated with [^HJketanserin (selective 5HT2-antagonist) under several experimental 

7 conditions; reactions were terminated by filtration and bound radioactivity was counted by 

8 liquid scintillation spectroscopy. Tissue dilution experiments revealed that specific 

9 [^HJketanserin binding (Bsp) was tissue-dependent; 1 hypothalamus-equivalent per tube 

10 (1100+115 cpm/mg protein) was subsequently used throughout the rest of this study. In 

11 association experiments, Bsp increased progressively with time, achieved equilibrium 

12 binding levels (1192+ 120 cpm/mg protein) within 80 min, and remained stable for at least 

13 60 min thereafter; kobs, and k+i were 0.032 and 0.048 min'^nM'^ respectively. In 

14 dissociation experiments, Bsp completely dissociated within 20 min following addition of 

15 excess ketanserin; k.i, and ti/2 were 0.0803 min'^ and 8.7min, respectively. Bsp was 

16 saturable (2500 + 256 cpm/mg protein); Scatchard-calculated values for the equilibrium 

17 dissociation constant (KD) and capacity (BMAX) were 0.48nM, and 125 fmol/mg protein, 

18 respectively. Bsp was differentially displaced by structurally related competitors, with a 

19 rank order of potency of ketanserin = mianserin > ritanserin > 5-HT = spiperone » 

20 methiothepin mesylate > metergoline = DOI > 2-methyl-5-HT > ot-methyl-5-HT »»5- 

21 HIAA = reserpine. These findings provide pharmacological evidence for the presence of a 

22 5HT2-like receptor subtype in the trout hypothalamus. 

23 Key Words: hypothalamus, [^H]ketanserin, 5-HT2 receptor subtype, and rainbow trout. 



1 Introduction 

2 Serotonin (5-hydroxytryptamine, 5-HT), an indoleamine neurotransmitter /neurohormone, 

3 is present in the nervous systems of many invertebrates including annelids (Sloley 1994), 

4 and insects (Sloley and Orikasa 1988, Lutz and Tyrer 1988). 5-HT is also prominent in the 

5 central nervous system (CNS) of all studied vertebrates (Brodie et al. 1964, Karki and 

6 Lahovaara 1965), including fish (Kah and Chambolle 1983, Ekstrom and Van Veen 1984, 

7 Corio et al. 1991), birds (Hall et al. 1986), reptiles (Doshi et al. 1975), and mammals 

8 (Dahlstrom and Fuxe 1964; Dinan 1996). 

Immunocytochemical studies of brain regions of teleosts (bony fishes) have 

10 demonstrated populations of 5-HT neurons in the midbrain, brain stem and diencephalon 

11 of goldfish (Carassius auratus; Kah and Chambolle 1983), African catfish {Clarias 

12 gariepinus, Corio et al. 1991), and rainbow trout {Salmo gairdneri; Frankenhuis-van den 

13 Heuvel and Nieuwenhuys 1984). Particularly high densities of 5-HT have been found in 

14 the nucleus raphe' medialis in various species of teleosts including the African catfish, 

15 Corio et al. 1991), three spined stickleback {Gasterosteus aculeatus L; Ekstrom and Van 

16 Veen 1984), and sockeye salmon {Oncorhynchus nerka Walbaum; Ekstrom and Ebbesson 

17 1989). The raphe' nucleus projects large numbers of serotonergic axons to multiple 

18 regions of the teleost brain, including the hypothalamus, ventral thalamus, and pituitary of 

19 the three spined stickleback (Ekstrom and Van Veen 1984), pars distalis of the pituitary 

20 gland, medulla oblongata, olfactory lobes, pre-optic area optic lobe and spinal cord of 

21 goldfish (Kah and Chambolle 1983), as well as the pre-optic nucleus in the African catfish 

22 (Corio et al. 1991). A few scattered 5-HT-varicosities have also been observed in the 

23 cerebellum of the three spined stickleback (Ekstrom and Van Veen 1984). Serotonergic 



1 neurons also occur in the pineal and circumventricular areas of rainbow trout (Hafeez and 

2 Zerihun 1976). This distribution of 5-HT is consistent with aspects of 5-HT bioactivity in 

3 the teleost brain: pituitary axis. 

Teleost pituitary function and hormone secretion is directly and indirectly 

5 regulated by serotonergic input. For example, 5-HT regulates the secretion of growth 

6 hormone (GH) and gonadotropin (GtH) (Somoza and Peter 1991) from in vitro perifused 

7 goldfish pituitary fragments; 5-HT also stimulates release of maturational GtH from the 

8 pituitary of female Atlantic croaker {Micropogonias undulatus, Khan and Thomas 1992) 

9 and female and male goldfish (Somoza et al. 1988). In rainbow trout, Saligaut et al. 

10 (1992) demonstrated physiological fluctuations in hypothalamus and pituitary serotonin 

11 levels during ovarian recrudescence and ovulation. Senthilkumar and Joy (1993) also 

12 observed similar annual variations of serotonin levels in the hypothalamus of the Indian 

13 catfish {Heteropneutes fossilis). These findings implicate 5-HT as a major neuroendocrine 

14 regulator in teleosts. This evidence for the presence of 5-HT pathways and bioactivity in 

15 teleost brain regions, logically suggests for the presence of 5-HT binding sites (receptors) 

16 in these brain regions. This study was conducted to determine the existence of any such 

17 binding sites. 

18 In mammals, 5-HT-receptors are classified into 7 major receptor subtypes (for 

19 reviews see: Sanders-Bush and Mayer 1996, Alexander and Peters 1997, Watson and 

20 Gridlestone 1995). These receptors, acting through intracellular signaling systems, 

21 regulate, in part, the mammalian CNS, including brain: pituitary axes (Pandey et al 1994, 

22 Rahimian and Hrdina 1995, Conn and Sanders-Bush 1987). In mammals 5-HT exerts its 

23 influence in the brain: pituitary axis primarily through activation of the 5-HT2 receptor 



1 subtype (Dinan 1996, Fuller 1992, Leysen and Pauwels 1990). By contrast, there is little 

2 to no direct information on 5-HT receptors in teleosts. 

Previous studies in goldfish (Wong et al. 1998) have already suggested that 5-HT 

4 has an inhibitory effect on the secretion of growth hormone (GH) through an 5-HT2 

5 receptor subtype, and a stimulatory effect on the secretion of gonadotropin (GtH) through 

6 5-HT2 and possibly 5-HTi receptor subtypes. Ketanserin, a selective 5-HT2 antagonist, has 

7 been used to identify the 5-HT2 receptor subtype in mammal CNS models (Sanders-Bush 

8 and Mayer 1996, Wolf and Shutz 1997, Mokler et al 1997, Marazziti et al 1997, Janssen 

9 1983, Leysen et al 1981. The purpose of this study is to evaluate the existence and binding 

10 characteristics of [^Hjketanserin to hypothalamus membranes of juvenile rainbow trout. 



1 Materials and methods 

2 Experimental animals 

3 Fingerling rainbow trout {Oncorhynchus mykiss\ Rainbow Springs Trout Hatchery, 

4 Thamesford, Ont.) were raised to juveniles in the Lakehead University Aquatic Animal 

5 Research facility in flow-through aquaria with dechlorinated water at simulated ambient 

6 temperature (annual range, 5 to 16^C) and photoperiod (annual range, 8 to 14h 

7 photophase). Fish were fed commercial trout pellets daily (1 to 3% body weight; Zeigler 

8 trout feed. Thunder Bay Co-Op. Juvenile fish (38 + 8 cm long) were approximately 24 

9 months old and did not possess obvious gonads; any fish with the obvious presence of 

10 gonads were excluded from this study. All fish were maintained and handled in accordance 

11 with guidelines established by the Canadian Council on Animal Care as well as the Ontario 

12 Animals for Research Act. In all cases, fish were anesthetized with tricaine 

13 methanesulphonate (MS-222, 0.5g/liter; Syndel Laboratories, Vancouver, B.C.) prior to 

14 any handling, then killed by spinal transection posterior to the medulla oblongata. 

15 Tissue preparation for binding assay 

16 Whole brains were isolated and placed in ice-cold assay buffer (50 mM Tris-HCl, pH = 

17 7.4). Each hypothalamus, the region below the thalamus and posterior to the 

18 telencephalon, commencing at the optic tract and extending posteriorly to the nucleus 

19 difflisus lobi inferioris (Billiard and Peter 1982), was surgically isolated using recurved 

20 dissection sissors. For each independent experiment, hypothalami were harvested and 

21 pooled into Corning 15-ml polystyrene centrifuge tubes, suspended in liquid N2, 

22 (preliminary experiments showed no obvious difference in [^HJketanserin binding to fresh 

23 or frozen rainbow trout hypothalamus preparations, Agrawal and Omeljaniuk, 



1 unpublished). Frozen hypothalami were stored in liquid N2 until the following day for 

2 inclusion in a radioligand binding assay. 

3 [^HjKetanserin binding assay 

4 Frozen tissue was transferred to an ice-cold glass mortar and combined with (100 

5 |Lil/original tissue sample) ice-cold homogenization buffer (50 mM Tris-HCl, pH 7.4; 0.32 

6 M sucrose; Gallaher and Wang 1990; Leysen et al. 1982); all subsequent procedures were 

7 carried out at 0 to 4®C. Tissue was homogenized with ten strokes of a motor-driven 

8 Potter-Elvehjem homogenizer (0.125-mm clearance). Homogenates were transferred to 

9 10-ml polypropylene centrifuge tubes and centrifuged at 1000 x g for 20min, the resulting 

10 supernatants were subsequently aspirated and transferred to Beckman Ultra-Clear 

11 centrifuge tubes (13 x 32mm) and centrifuged at 100,000 x g for 30min. The resulting 

12 supernatants were discarded and pdlets were homogenized in 100 pi assay buffer per 

13 original tissue sample, and centrifuged at 100,000g (30min). To prepare the membrane 

14 suspension, the resulting supernatant was decanted to waste and pellet suspended in lOOpl 

15 assay buffer per original tissue sample. 

Typically, a lOOpl aliquot of membrane suspension was incubated with 100 pi [^H] 

17 ketanserin (NEN-Dupont, Boston, MA; 66.4 Ci/mmol) and either lOOpl assay buffer, to 

18 determine total binding (Bo), or lOOpl unlabelled ketanserin (lOpM) to estimate non- 

19 specific binding (NSB), resulting in a final volume of 300pl. Specific binding (Bsp) was 

20 calculated as the difference between total (Bo) and nonspecific binding (NSB); Binding 

21 reactions were terminated by filtration through Whatman GF/B filters, presoaked 

22 overnight in assay buffer containing 0.3% polyethyleneimine to reduce nonspecific binding 

23 (Schwartzentruber and Omeljaniuk 1994), followed by 3 rinses of 3 ml ice-cold assay 



1 buffer. Filters placed in 6-ml scintillation vials (Beckman, Mississauga, ON) were 

2 incubated overnight in 4 ml of scintillation cocktail (Readysafe’’’'^; Beckman, Mississauga, 

3 ON) and radioactivity was determined by liquid scintillation spectroscopy at 50% counting 

4 efficiency. 

5 Protein Determination 

6 Protein content was determined by the Bradford method (Bradford 1976) using Bio-Rad 

7 dye reagent (Bio-Rad Laboratories, Richmond, CA) and bovine serum albumin (Sigma 

8 Chemicals, St. Louis, MO) as a protein standard. 

9 Data Analysis 

10 specific binding (Bsp) was calculated as the difference between mean total (Bo) and mean 

11 nonspecific (NSB); the standard error of mean Bsp (BspSEM) was calculated as (BoSEM ^ 

12 + NSBSEM (Hulme and Birdsall 1992). 

Where indicated, kinetic data (association and dissociation) were transformed 

14 based on the method of Bylund and Yamamura (1990) to determine observed rate of 

15 association (kobs), association rate constant (k+i), and dissociation rate constant (k_i), and 

16 to calculate the kinetically derived dissociation constant (k_i/k+i). For association 

17 experiments, k<,bs was calculated from the plot of In [Be /Be-Bsp ] versus time (min), where 

18 Be is the level of binding at equilibrium and Bsp is specific binding at each time interval; 

19 kobs is slope of the straight line derived from the linear regression equation. From 

20 dissociation analysis, Li was calculated from the linear regression analysis of InBsp/Bzerot 

21 versus time (min), where Bsp is specific binding at each time interval and Bzerot is specific 

22 binding just prior to the addition of excess unlabelled ketanserin, and k.i is the slope of the 

23 line derived from linear regression. The association rate constant (k+i) was calculated as 



1 kobs - k-i / F, where F is the concentration of free [^HJketanserin (nM). 

Data from equilibrium binding experiments were used to calculate the half-maximal 

3 inhibitory concentration (IC50), maximum number of receptors bound by radioligand 

4 (BMAX), and equilibrium dissociation constant (Ki). Scatchard analysis (1949) of triplicate 

5 independent experiments was used to calculate KD (Ki) and BMAX from the data in 

6 saturation analysis as well as competitive displacement analysis of [^HJketanserin binding; 

7 results in each were reported as (mean ± SEM). Ki values were comparable to those 

8 calculated according to Cheng & Prusofif (1973), Ki = IC50 / [1 + C /KD], where C is 

9 concentration of radioligand and KD is dissociation rate constant obtained from saturation 

10 experiments. Half-maximal inhibitory concentration (IC50) values for each competitor were 

11 estimated from logit-log plots by plotting logit (logit = ln[P/(100 -P)], P is percent bound) 

12 of total [^HJketanserin binding to trout hypothalamic membrane preparation versus -log 

13 [competitor, M], The IC50 is 50% binding, and the logit of 50 % [In (1)] is 0. Thus, the 

14 IC50 was determined by linear correlation (Bylund and Yamamura 1990) (not shown). 

15 LIGAND analysis (Munson and Rodbard 1980) of displacement data confirmed results of 

16 Scatchard analyses (Scatchard 1949). 



1 Results 

2 Effect of tissue concentration on [^HJketanserin binding 

3 In five independent experiments, various amounts of rainbow trout hypothalamus membrane 

4 preparation were incubated in triplicate with [^H]ketanserin for 90 minutes prior to termination. 

5 Specifically bound [^H]ketanserin increased linearly with protein concentration between 0.07 and 

6 0.42 mg protein, with a relationship of Bsp (cpm) = 1539 protein (mg) + 9.42 (r^= 0.94) (Fig. 1). 

7 In these experiments. Bo and Bsp for one hypothalamus-equivalent per tube (0.17 + 0.03 mg 

8 protein) were 2161 ± 260 and 1100 + 115 cpm, respectively. NSB increased with protein and 

9 generally represented 38.4% of Bo. Based on these results, one hypothalamus-equivalent per tube 

10 was used in subsequent experiments. 

11 Association of [^HJketanserin. 

12 In five independent experiments, one hypothalamus-equivalent per tube was incubated in triplicate 

13 with [^HJketanserin for various time intervals prior to termination. Specific binding increased with 

14 time and reached equilibrium binding (1192 ± 120 cpm/mg protein) within 80 minutes (Fig. 2 

15 panel A); equilibrium Bsp remained relatively stable for at least 60 minutes. Data were transformed 

16 (In [Be /(Be-Bsp )]), according to Bylund and Yamamura (1990), pooled and replotted as a 

17 function of time (min) (Fig. 2 panel A, inset). Linear regression analysis of this relationship (In [Be 

18 /(Be-Bsp )] = 0.032 min + 0.044, r^=0.93) estimated kobs (slope of the line) as 0.032 min; the 

19 association rate constant (k+i) was subsequently estimated as 0.048 min'^nM'^ 



1 Dissociation of [^HJketanserin. 

2 In five independent experiments, hypothalamus membrane preparation (one hypothalamus- 

3 equivalent per tube) was incubated in triplicate with [^HJketanserin for 90 minutes prior to the 

4 addition of 5000-fold excess radiostable (unlabelled) ketanserin in all the tubes. Tubes were then 

5 incubated at various time intervals before termination. Bsp at equilibrium (1400 + 120 cpm/mg 

6 protein) rapidly dissociated in response to excess competitor and reached a state of complete 

7 dissociation within 20 minutes (Fig 2 panel B). Data were transformed (In B/Bzero), according to 

8 Bylund and Yamamura (1990), pooled and replotted as a function of time (min) (Fig. 2 panel B, 

9 inset). Linear regression analysis of this relationship (In B/Bzerot = 0.0803 min + 0.417, r^ = 0.9) 

10 provided estimates of half-life and dissociation rate constants of ti/2 = 8.7 min and k-i =0.0803 

11 min’\ respectively. The kinetically derived dissociation constant (k-i/k+i) was estimated to be 1.67 

12 nM. 

13 Saturation analysis of [^H] ketanserin. 

14 In five independent experiments, one hypothalamus-equivalent per tube was incubated with 

15 varying concentrations of [^H]ketanserin in triplicate for 90 minutes prior to termination. Bsp 

16 increased steadily with increasing concentrations of radioligand (between 0.25 and 4.64nM) to 

17 reach saturation levels of 2500 + 256 cpm/mg protein (Fig. 3). Data from 6 independent 

18 experiments were pooled and analyzed by Scatchard analysis (Fig. 3, inset, Scatchard, 1949) to 

19 yield estimates of the equilibrium dissociation constant (KD = 0.48 nM) and maximum number of 

20 binding sites (BMAX 125 fmol/mg protein). The equation of the relationship was B/F = -2.07 x B 



1 +0.03 (r^ = 0.95). 

2 Competitive displacement of [^HJketanserin 

3 Varying concentrations of competitors were incubated with [^HJketanserin and one 

4 hypothalamus-equivalent of membrane preparation per tube for 90 minutes prior to termination. 

5 Experiments were conducted in triplicate with 3 replicate determinations per experiment. Varying 

6 competitors (Fig. 4) specifically and differentially displaced [^HJketanserin equilibrium bound to 

7 trout hypothalamus membrane preparation. Data from triplicate independent experiments for each 

8 competitor were pooled and analyzed by the method of Scatchard (1949) to determine the 

9 equilibrium dissociation constant KD (Ki) and maximum binding capacity (BMAX) for each 

10 competitor (Table 1). Ki values were found to be comparable with calculated values according to 

11 Cheng & PrusofF (1973), Ki = IC50 / [1 + C /KD], where C is concentration of radioligand and KD 

12 is equilibrium dissociation constant obtained from saturation experiment. The estimated half- 

13 maximal inhibitor concentrations (IC50) (Table 1) were derived from logit-log plots by plotting 

14 logit of total [^HJketanserin binding to trout hypothalamic membrane preparation versus -log 

15 [competitor, M] (Bylund and Yamamura 1990) (not shown). LIGAND analysis of displacement 

16 data indicated only a single class of binding sites, and LIGAND-derived parameter estimates were 

17 comparable with Scatchard-derived parameters. Competitors represented 5-HT receptor- 

18 antagonists (ketanserin, mianserin, ritanserin, metergoline, and methiothepin mesylate), 5-HT 

19 receptor-agonists (DOI, 2-methyl-5-HT maleate, a-methyl-5-HT maleate), a D2/5-HT2 antagonist 

20 (spiperone), a 5-HT metabolite (5-HIAA), and a 5-HT storage vesicle depletor (reserpine). 



1 Comparison of binding affinity and specificity of the various competitors (Fig. 4, Table 1) reveals 

2 a rank order of potency of ketanserin = mianserin > ritanserin > 5-HT = spiperone » 

3 methiothepin mesylate > metergoline = DOI > 2-methyl-5-HT > a-methyl-5-HT »»5-HIAA = 

4 reserpine. 



1 Discussion 

2 Our research on [^HJketanserin binding to trout hypothalamus membrane preparation 

3 indicates the presence of a single class of high affinity, low capacity sites, with binding 

4 specificity reminiscent of the mammalian 5-HT2 receptor family. Radioligand binding is an 

5 effective tool in 5-HT receptor studies (Gallaher and Wang 1990, Hamon 1984, Leysen et 

6 al. 1981; 1982, Hulme and Birdsall 1991). We used [^HJketanserin, a 5-HT2 receptor 

7 antagonist (Leysen et al. 1981, 1982), in our examination of rainbow trout hypothalamus 

8 as ketanserin has been employed in many mammalian studies of 5-HT2 receptor binding 

9 (Leysen et al 1981; 1982, Leysen and Pauwels 1990). [^HJKetanserin is particularly useful 

10 as a 5-HT2 radioligand since it has no prominent antagonistic or agonistic (Janssen 1983) 

11 activity on other 5-HT receptor subtypes besides 5-HT2. Leysen et al. (1981), however, 

12 demonstrated one exception to this binding specificity, in rat prefrontal cortex, where 

13 ketanserin exhibited small and atypical crossreactivity with a 1-sites (5 times less potent at 

14 this receptor than at the 5-HT2 binding site), HI-sites (5 times lower binding affinity for 

15 this receptor than for 5-HT2 binding site), and DA:D2-sites (100 times weaker affinity for 

16 this receptor than for 5-HT2 binding sites). Because of its marked selectivity for 5-HT2 

17 receptors and high potency in mammalian brain, ketanserin is the most suitable and 

18 available pharmacological probe for our research on teleost brain membrane preparations. 

19 [^HJKetanserin binding to hypothalamic membrane preparation was saturable, 

20 thereby defining a finite number of binding sites (Fig 3). Scatchard analysis (Scatchard 

21 1949) estimated the affinity (KD) and capacity (BMAX) of the sites as 0.48 nM and 125 

22 finol/mg protein, respectively. Our findings on the affinity of the juvenile trout 

23 hypothalamus [^H]ketanserin binding site are comparable to those previously reported on 



1 rat prefrontal cortex (KD = 0.42 + 0.02 nM, Leysen et al. 1982; Leysen and Pauwels 

2 1990). However, the density of 5-HT2 binding sites in trout hypothalamus is somewhat 

3 greater than that of the rat pre-frontal cortex (BMAX= 33.1+ 1.2 fmol/mg protein, Leysen 

4 et al. 1982, Leysen and Pauwels 1990). 

Specific binding of ['^HJketanserin incubated with trout hypothalamus membrane 

6 preparation reached equilibrium within 80 min and remained bound for at least 60 minutes 

7 thereafter (Fig. 2 panel A), with an association rate constant of k+i = 0.048 min'^nM'V The 

8 rate of association in teleost hypothalamus was slower than that observed in the rat 

9 prefrontal cortex, which according to the authors was too fast to be measured accurately 

10 (Leysen et al. 1982). This difference in speed of binding may be due to their higher 

11 incubation temperature (37°C, mammalian body) compared with our incubation 

12 temperature of 4°C (average trout body temperature range is 0 to 16°C); as well, the lower 

13 incubation temperature used in our experiments may suppress ligand dissociation (Bylund 

14 and Yamamura 1990) and receptor degradation thus accounting in part for our larger 

15 observed BMAX- 

16 Bsp at equilibrium dissociated rapidly, to completely dissociate within 20 min (Fig. 

17 2 Panel B), with a dissociation rate constant of k_i = 0.0803 min'\ and half-life of bound 

18 radioligand receptor complex of ti/2 = 8.7 min. The kinetically derived dissociation 

19 constant was calculated as 1.67 nM. Both k-i and t 1/2 are comparable with values 

20 observed in rat prefrontal cortex (Leysen et al. 1982). However [^HJketanserin and the 5- 

21 HT2 receptor complex in rat prefrontal cortex dissociated more quickly (lci= 0.7 min‘\ ti/2 

22 = 1 min (Leysen et al 1982). Lower temperatures are known to retard binding kinetics 

23 (Bylund and Yamamura 1990), thus explaining, in part, the lower association and 



1 dissociation rate of ['"HJketanserin binding in our trout model compared with mammals. 

2 Thus, results from association/dissociation experiments in teleost hypothalamus are 

3 comparable to [“"HJketanserin binding to 5-HT2 receptors in mammalian prefrontal cortex. 

Mammalian 5-HT receptors are classified into numerous subtypes. 5-HTIA, 5- 

5 HTIB, 5-HTID, 5-HTIE, 5-HT2A, 5-HT2B, 5-HT2C, S-HTS, 5-HT4, S-HTSA, S-HTSB, 

6 5-HT6, and S-HTy (Sanders-Bush and Mayer 1996, Alexander and Peters 1997, Watson 

7 and Gridlestone 1995, Van de Kar 1991, Hoyer et al. 1984). 5-HT agonists and 

8 antagonists bind to these receptors with variable degrees of affinity and capacity. Effective 

9 displacement of [^H] ketanserin by specific competitors in the present study was as 

10 follows; ketanserin = mianserin > ritanserin > 5-HT = spiperone » methiothepin mesylate 

11 > metergoline - DOI > 2-methyl-5-HT > a-methyl-5-HT »»5-HIAA = reserpine (Table 

12 1, Fig. 4). High Ki values for a competitor suggests low binding affinity of that competitor 

13 to the receptor. Ketanserin, well known as a selective mammalian 5-HT2 receptor- 

14 antagonist (Leysen et al 1982, Van Nueten et al. 1981, Vanhoutte et al. 1983, Leysen et 

15 al. 1984, Janssen 1983), displaces [^H]ketanserin bound to teleost hypothalamus most 

16 effectively (Fig. 4) (Ki= 1.9 nM, Table 1). Mianserin, also a mammalian 5-HT receptor- 

17 antagonist, non-specifically binds to all 5-HT receptor subtypes with equal binding affinity 

18 (Leysen et al. 1982, Peroutka and Snyder 1981), and displaces bound [^H]ketanserin from 

19 trout hypothalamus as effectively as ketanserin (Fig. 4). Spiperone, a DA;D2/5-HT2 

20 antagonist, exhibits cross-reactivity with DA/D2 as well as 5-HT2 sites in a tissue-specific 

21 manner. In the present study, spiperone also displaces specifically bound ['^HJketanserin 

22 from trout hypothalamus membrane preparation, suggesting possible crossreactivity of the 

23 trout hypothalamus 5-HT2-like receptor for ketanserin and spiperone. 5-HT-antagonists 



1 (metergoline and methiothepin mesylate) very sparingly displace ['^HJketanserin bound to 

2 trout hypothalamus membrane preparation, and, if at all, only at extremely high 

3 concentrations. Similarly 5-HT-agonists (DOI, 2-methyl-5-HT, a-methyl-5-HT) have high 

4 Ki values (Table 1), implying low binding affinity to the 5-HT binding site in trout 

5 hypothalamus. Reserpine (biogenic amine depletor) and 5-HIAA (5-HT metabolite) did 

6 not displace ['HJketanserin bound to trout hypothalamus even at large concentrations (10 

7 pM, Fig. 4). These data indicate that primarily ligands which are structurally related to 

8 ketanserin (4-substituted piperidine derivatives, 3-{2-[4 -4 fluorobenzoyl)-l-piperidinyl 

9 ]ethyl-2,4 (IH, 3H)-quinazolinedione, Janssen 1983) or spiperone (8-[4 (4 

10 fluorophenyl) 4-oxobutyl ]-l-phenyl-1,3,8-triazaspirol [4,5]decan-4, Research 

11 Biochemicals International 1995) can successfully interact with the trout hypothalamic 5- 

12 HT2-like binding site and implies a high degree of conservation of ligand recognition 

13 properties of this site. The present results support the concept that specific binding of 

14 [^HJketanserin identifies the existence of a specific 5-HT2-like receptor in the juvenile 

15 trout hypothalamus. 

Our findings also support a biological role for 5-HT as an important 

17 neuroendocrine regulator in teleosts. To illustrate, previous studies have indicated various 

18 regulatory roles for 5-HT in the secretion of gonadotropin (GtH) in teleost brain;pituitary 

19 axis (Khan and Thomas 1992, Somoza et al. 1988, Groves and Batten 1985, and Somoza 

20 and Peter 1991), as well as growth hormone (GH, Somoza and Peter (1991). Saligaut et 

21 al. (1992) demonstrated physiological fluctuations in 5-HT levels in pituitary fragments 

22 during ovarian recrudescence and ovulation of rainbow trout; Senthilkumar and Joy 

23 (1993) also observed similar annual variations of 5-HT levels in the hypothalamus of the 



1 Indian catfish {Heteropmiites fossilis). Collectively, these data on the presence and 

2 dynamics of neuronal serotonergic activity, combined with our findings on the presence of 

3 a 5-HT2-like binding site strongly imply a biological role for 5-HT in this region of the 

4 teleost brain, with potential significant involvement in reproduction. 

In conclusion, we present the first direct evidence for the existence of a specific 5- 

6 HT2-like receptor subtype in the hypothalamus of a teleost fish. [^HJKetanserin specifically 

7 bound to hypothalamic membrane preparations in a classical, one-site receptor model. 

8 Binding was tissue dependent (Fig. 1), associable (Fig. 2 panel A) reversible (Fig. 2 Panel 

9 B), as well as saturable (Fig. 3). [^HJKetanserin binding was of high affinity (nM) and low 

10 capacity (fmol/mg protein) and, notably, displaced by competitors (Fig. 4). To the best of 

11 our knowledge, these are the first findings to directly indicate the presence, and determine 

12 the pharmacological specificity of a 5-HT2-like binding site (receptor) in the CNS of a 

13 teleost. This teleost 5-HT hypothalamic receptor may regulate various neuroendocrine 

14 ftmctions in this region of the teleost brain and is implicated in regulation of the 

15 brain:pituitary axis. 



1 Reference 

2 Agrawal, S.M. 1999. “The presence and distribution of [^HJketanserin binding sites in the 

brain and pituitary regions of rainbow trout {Oncorhynchm mykiss).''’ Masters 

Thesis. Lakehead University, Thunder Bay, ON. [In preparation]. 

5 Alexander S.P.H and Peters J.A 1997. Receptor and Ion Channel Nomenclature 

Supplement. Trends Pharmacol. Sci. 8. 46-49. 

7 Billiard, R. and Peter, R. E. 1982. A stereotaxic atlas and technique for nuclei of the 

diencephalon of the rainbow trout {Salmo gairdneri). Reprod. Nutr. Dev. 22.T-15. 

9 Bradford, M. 1976. A rapid and sensitive method for the quantification of microgram 

in quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 

72: 248-254. 

12 Brodie, B.B., Bogdanski, D.F., and Bonomi, L.. 1964. Formation, storage and metabolism 

of serotonin (5-HT) and catecholamines in lower vertebrates Comp. Neurochem. 

Proc. Fifth Int. Neurochem. Symp. 1:22-31. 

15 Bylund, B. D., and Yamamura, H. I. 1990. Methods for receptor binding. In Methods in 

16 neurotransmitter receptor analysis. Edited by H. I. Yamamura, S. J. Enna, and M.J. 

Kuhar. Raven Press Ltd. New York, NY. pp. 1-35. 

18 Cheng, Y.-C., and PrusoffW. H. 1973. Relationship between the inhibition constant (Ki) 

and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an 

enzymatic reaction. Biochem. Pharmacol. 22:3099-3108. 

21 Conn, P.J. and Sanders-Bush, E. 1987. Relative efficacies of piperazines at 

22 phosphoinositide hydrolysis-linked serotonergic (5-HT2 and 5-HTlC)receptors, J. 

Pharmacol. Exp. Ther. 242: 552-557 



1 Corio, M., Peute, M.C., and Steinbusch, H.W.M. 1991. Distribution of serotonin- and 

dopamine-immunoreactivity in the brain of the teleost Clarias gariepinus. Jour. 

Chem. Neuroanat. 4: 79-95. 

4 Dahlstrom, A. and Fuxe, K. 1964. Evidence for the existence of monoamine-containing 

neurons in the central nervous system. I. Demonstration of monoamines in cell 

bodies of brain stem neurons. Acta. Physiol. Scand. Suppl. 232:1-55. 

7 Dinan, R., A. 1996. Serotonin and the regulation of hypothalamic-pituitary-adrenal axis 

function, Life Science. 58; 1683-1694. 

9 Doshi, E.C. Huggins, S.E. and Fritzgerald, J.M. 1975. Circadian rhythm in the brain 

serotonin concentrations in the lizard, Anolis carolinensis. Comp. Biochem. 

Physiol. 51:227-229. 

12 Ekstrom, P. and Ebbesson, S.O.E. 1989. Distribution of serotonin-immunoreactive 

neurons in the brain of sockeye salmon fry, J. Chem. Neuroanat. 2:201-213 

14 Ekstrom, P. and Van Veen, T. 1984. Distribution of 5-HT in the brain of the teleost 

Gasterosteus aculeatus L. Jour. Comp. Neurol. 226: 307-320. 

16 Frankenhuis-van den Heuvel, T.H.M. and Nieuwenhuys, R. 1984. Distribution of 

serotonin-immunoreactivity in the diencephalon and mesencephalon of the trout 

lo (Salmo gairdneri), Anat. andEmbryol. 169:193-204 

19 Fuller, R. 1992. The involvement of serotonin in regulation of pituitary-adrenocortical 

20 function. Front. Neuroendocrinol. 13:250-270. 

21 Gallaher, T. K., and Wang, M. H. 1990. Serotonin receptors. In Receptor Purification. 

22 Edited by G. J. Seigel. Raven Press, New York, NY. pp. 284-301. 

23 Groves, D. J., and Batten, T. F. C. 1985. Ultrastructural autoradiographic localization of 



serotonin in the pituitary of a teleost fish, Poecilia latipinna. Cell Tiss. Res. 240: 

489-492. 

3 Hall, M.E., Hoffer, B.J., and Gerhardt, G.A. 1989. Rapid and sensitive determination of 

catecholamines in small tissue samples by HPLC coupled with dual-electrode 

coulometric electrochemical detection. Liq.Chromat-Gas Chromat. Int. 2:238-242. 

6 Hamon, M. 1984. Radioactive ligand binding studies: Identification of central 5-HT 

receptors. In Neurobiological Research. Edited by P.J. Marangos, I.C Campbell, 

R.M Cohen. Brain Receptor methodologies Part A. Academic Press Inc. 17. pp. 

309-337. 

10 Hafeez, M.A. and Zerihun, L. 1976. Autoradiographic localization of [^H]5-HTP and 

[^H]5-HT in the pineal organ and circumventricular areas in the rainbow trout, 

Salmo gairdneri R. Cell Tiss. Res. 170:61-76. 

13 Hoyer, D., Clarke, D.E., Fozard, J.R., Hartig P.R., Martin, G. R., Mylechame E.J., 

'' Saxena P.R., Humphrey P.P.A. 1984. VII. International Union of Pharmacology 

Classification of receptors for 5-HT (serotonin). Pharm. Rev. 46: 157-203. 

16 Hulme, E.C., and Birdsall, J.M. 1992. Strategy and tactics in receptor binding studies. In 

Receptor-Ligand Interactions: A practical approach. Edited by E.C.Hulme. The 

Practical Approach Series. Oxford University Press. New York. N. Y. 4: pp.63- 

176. 

20 Janssen, P.A.J. 1983. 5-HT2 receptor blockade to study serotonin-induced pathology. 

2: TIPS. 4: 189-206. 

22 Kah, O., and Chambolle, P. 1983. Serotonin in the brain of the goldfish Carassius 

auratus. An immunocytochemical study. Cell Tiss. Res. 234: 319-333. 



1 Karki, N.T and Lahovaara, S. 1965. Identification and assay of 5-HT in the brain and 

intestine of lower vertebrates Ann. Med. Exp. Fenn. 43:419-423. 

3 Khan, I. A., and Thomas, P. 1992. Stimulatory effects of serotonin on maturational 

gonadotropin release in the atlantic croaker, Micropogonias undulatus. Gen. 

Comp. Endocrinol. 88: 388-396. 

6 Leysen, J.E., and Pauwels, P.J. 1990. 5-HT2 receptors, roles, and regulation. In The 

Neuropharmacology of Serotonin. Edited by P. A Whitaker-Azmitia, and S.J. 

Peroutka. Annals New York Acad. Sci. 600. pp. 53-67. 

9 Leysen, J. E., Neimegeers, C. J. E., VanNueten, J. M., Laduron, P. .M. 1982. [^H] 

ketanserin (R 41468), a selective ^H-ligand for serotonin2 receptor binding sites. 

Mol. Pharmacol. 21: 301-314. 

12 Leysen, J. E., Awouters, F., Kennis, L., Laduron, P .M., Vandenberk, J., and Janssen 

P. A. J. 1981. Receptor binding profile of R 41468, a novel antagonist at 5-HT2 

receptors. Life Sciences, 28: 1015-1022. 

15 Lutz, E. and Tyrer, N.M. 1988. Immunohistochemical localisation of serotonin and 

choline acetyltransferase in sensory neurons of the locust J.Comp. Neurol. 

267:335-342. 

18 Marazziti D., Rossi A., Palego L., Giannaccini G., Naccarato A., Lucachini A., and 

Cassano G.B., 1997, [^HJKetanserin binding in human brain postmortem, 

zv Neurochem. Res. 22 (6); 753-7. 

21 Mokler D. J., Abbreuzzese S., Trumble V., Whitten B., 1997, Effects of ketanserin on the 

22 discrimination of electrical stimulation of the dorsal raphe nucleus in rats. 

Neuropharm. 36 (4): 631-6. 



1 Munson, PJ. and Rodbard, D. 1980. LIGAND; A versatile computerized 

approach for characterization of ligand-binding systems, Analyt. Biochem. 

107:220-239. 

4 Pandey, S. C. Davis, J. M., Ghanshyam, M.D., and Pandey, N. 1994. Phosphoinositide 

system-linked serotonin receptor subtype and their pharmacological properties and 

clinical correlates, J. Psychiatry Neurosci. Vol 20, 3:215-225. 

7 Peroutka, S.J., and Snyder, S.H. 1981. [^HJmianserin; differential labeling of serotonin2 

and histamine i receptors in rat brain J. Pharmacol. Exp. Ther. 216; 142-148. 

9 Rahimian, R. and Hrdina, P.D. 1995. Possible role of protein kinase C in regulation of 

10 5-HT2A receptors in rat brain. Can. J. Physiol. Pharmacol. 73: 1686-1691. 

11 Sanders-Bush E. and Mayer S.E, 1996. 5-HT (serotonin) receptor agonists and 

antagonists. In Goodman and Gilman’s: The pharmacological basis of 

therapeutics Eds-in-chief Hardman J.G and Limbird L.E 11: 249-263. 

14 Schwartzentruber, S. R., and Omeljaniuk, R. J. 1994. Specific binding of [^H]pGlu-3Me- 

’" His-Pro-NH2 ([^HJMeTRH) to hypothalamic membranes of juvenile rainbow 

lo trout, O. mykiss. Life Sciences. 55: 751-759. 

17 Saligaut, C., Salbert, G., Bailhache, T., Bennani, S., Jego, P. 1992. Serotonin and 

18 dopamine turnover in the female rainbow trout {Oncorhynchus mykiss) brain and 

19 pituitary; changes during the annual reproductive cycle. Gen and Comp. 

20 Endocrinol. 85: 261-268. 

21 Scatchard, G. 1949. The attraction of proteins for small molecules and ions. Ann. N. Y. 

22 Acad. Sci. 51:660-672. 

23 Senthilkumar, B., and Joy, K. P. 1993. Annual variations in hypothalamic serotonin 



and monoamine oxidase in the catfish Heteropneustes fossilis with a note on 

brain regional differences of day-night variations in gonadal preparatory phase. 

Gen. and Comp. Endocrinol .90: 372-382. 

4 Sloley, D. B. 1994. y-glutamyl conjugation of 5-HT (serotonin) in the earthworm 

{Lumbricus terrestris) Neurochem. Res. Vol 19, 2:217-222. 

6 Sloley, D.B. and Orikasa, S. 1988. Selective depletion of dopamine, octopamine and 5-HT 

in the nervous tissue of the cockroach {Periplaneta americana), J. Neurochem. 

Vol 51 2:535-541 

9 Somoza, G. M., and Peter, R .E. 1991. Effects of serotonin on gonadotropin and growth 

hormone release from in vitro perifused goldfish pituitary fragments. Gen and 

Comp. Endocrinol. 82: 103-110. 

12 Somoza, G. M., Yu, K. L., Peter, R. E. 1988. Serotonin stimulates gonadotropin release 

in female and male goldfish, Carassius auratus L. Gen. and Comp. Endocrinol. 

72: 374-382. 

15 Van de Kar, L.D. 1991. Neuroendocrine pharmacology of serotonergic (5-HT) neurons, 

Annu. Rev. Pharmacol. Toxicol. 31:289-320. 

17 Vanhoutte, P.M., VanNeuten, J.M., Symoens, J., Janssen, P.A.J. 1983. Antihypertensive 

18 properties of ketanserin (R 41 468). Federation Proc. 42: 182-185. 

19 Van Neuten, J. M., Xhonneux, R., Vanhoutte, P.M., Janssen, P.A.J. 1981. Vascular 

20 activity of ketanserin (R 41 468). a selective 5-HT2 receptor antagonist. Arch. Int. 

21 Pharmacodyn. Ther. 250:328-329. 

22 Watson S.P and Gridlestone D 1995. Receptor and Ion Channel Nomenclature 

Supplement Trends Pharmacol. Sci. 16, 15-16. 



1 Wolf W. A. and Shutz L. J, 1997, The serotonin 5-HT2c receptor is a prominent serotonin 

receptor in basal ganglia: evidence from functional studies on serotonin-mediated 

phosphoinositide hydrolyses J. Neurochem. 69 (4): 1449-58. 

4 Wong, A.O.L, Murphy, C.K., Chang, J.P., Neumann, C.M., Lo, A., and Peter R.E. 1998. 

Direct actions of serotonin on gonadotropin-II and growth hormone release from 

goldfish pituitary cells: interactions and gonadotropin releasing hormone and 

dopamine and further evaluation of serotonin receptor specificity. Fish Physiol. 

Biochem. 19: 23-34. 



1 Fig. 1. Specific binding of [^HJketanserin to juvenile trout hypothalamus membrane preparation. 

2 [^HJKetanserin was incubated with varying dilution’s of membrane preparation for 90 minutes in 

3 the absence (Bo) and presence (NSB) of unlabelled ketanserin (10 pM) at 0-4°C, prior to 

4 termination. Specifically bound [^H]ketanserin (Bsp) was calculated as the difference between 

5 mean Bo and NSB; Bsp SEM was calculated as (Bo SEM ^ + NSB SEM Linear regression 

6 analysis of colinear data (Bsp (cpm) = 1539 protein (mg) + 9.42, 0.94) indicates a strong linear 

7 relationship between binding and protein content between 0.07 and 0.42 mg of protein. Values are 

8 means from replicate determinations (± SEM, n=4) from multiple (n=5) independent experiments. 
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1 Fig. 2 Panel A. Specific binding of [^HJketanserin to juvenile trout hypothalamus membrane 

2 preparation (cpm/mg protein) as a function of time (min). Membrane suspension (1 

3 hypothalamus-equivalent per tube) was incubated with [^HJketanserin at various time intervals in 

4 the absence (Bo) or presence (NSB) of unlabelled ketanserin (10 pM) prior to termination. 

5 Specifically bound [^H]ketanserin (Bsp) was calculated as the difference between mean Bo and 

6 NSB, and Bsp SEM was calculated as (BoSEM^ + NSB SEM^)^^^ Values are means from replicate 

7 determinations (± SEM, n=3) from multiple (n=5) independent experiments and are represented 

8 by a common data symbol for clarity. Plot is an estimated line of best fit. Inset; Pseudo first-order 

9 association plot (Bylund and Yamamura, 1990), the slope of which (kobs) is 0.032 min*^ with an 

10 association rate constant (k+i) of 0.048 min'^nM'^ based on the equation of the line ln(Be/Be-B) = 

11 0.032 X time + 0.0437 (r^=0.9). Panel B. Dissociation of specifically bound pHJketanserin 

12 (cpm/mg protein) from juvenile trout hypothalamus membrane preparation as a function of time 

13 (min). Membrane suspension (1 hypothalamus-equivalent per tube) was incubated with 

14 [^HJketanserin for 90 minutes in the absence (Bo) or presence (NSB) of unlabelled ketanserin (10 

15 pM). 5000 fold excess unlabelled ketanserin was then (t=0) added to all tubes and reactions 

16 terminated at various times thereafter. Specifically bound [^Hjketanserin (Bsp) was calculated as 

17 the difference between mean Bo and NSB, while Bsp SEM was calculated as (BoSEM ^ + NSB 

18 SEM Values are means from replicate determinations (+ SEM, n=3) from multiple (n=5) 

19 independent experiments; common symbols are used to represent data points for clarity. Inset: 

20 Semilogarithmic plot of dissociation data with ln(Bsp/Bzerot) plotted as a function of time (Bylund 



1 and Yamamura, 1990). The equation of the line is 

2 In (B/Bzerot )= 0.0803 x time + 0.417 , with = 0.93. Bzerot is Bs 

3 5000 fold excess unlabelled ketanserin. The slope of the line (k_i 

4 (ti/2 ) = In (0.5) /k.i = 8.7 min and kinetically derived dissociation 

5 1.67 X 10'^ M. 

14 

15 

p immediately before addition of 

) is 0.0803 min'^ with half -life 

constant is calculated as k.i/k+i= 

1/^ 
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1 Fig. 3. Saturation analysis of [^Hjketanserin binding (cpm/mg protein) to juvenile trout 

2 hypothalamus membrane preparation. Membrane suspension (1 hypothalamus-equivalent per 

3 tube) was incubated with varying concentrations of [^HJketanserin for 90 minutes in the absence 

4 (Bo) and presence (NSB) of unlabelled ketanserin (10 pM) prior to termination. Specifically 

5 bound [^Hjketanserin (Bgp) was calculated as the difference between mean Bo and NSB; Bsp SEM 

6 was calculated as (BoSEM^ + NSB SEM^)^^^ Values are means from replicate determinations (± 

7 SEM, n=3) from multiple (n=5) independent experiments; common symbols are used to represent 

8 data points for clarity. Inset: Scatchard analysis of data, regression analysis of which (Bound/Free 

9 = -2.07 X Bound (cpm/mg protein) + 0.03, r^=0.95), was used to estimate KD (0.48 nM) and 

10 BMAX (125 frnol/mg protein). 
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1 Fig. 4. Inhibition of ['HJketanserin binding to trout hypothalamic membrane preparation by 

2 various classes of structurally related competitors. Membrane suspension (1 hypothalamus 

3 equivalent per tube ) was incubated with [^HJketanserin in the absence (Bo) or presence (NSB) of 

4 various structurally related competitors. Specifically bound (Bsp, cpm/mg protein) [^HJketanserin 

5 was calculated as the difference between Bo and NSB, and Bsp SEM was calculated as (Bo SEM ^ 

5 + NSB SEM Values are means from replicate determinations (± SEM, n=3) from multiple 

7 (n=5) independent experiments. The first panel represents displacement curves for serotonin 

8 (neurotransmitter), ketanserin (5-HT2 antagonist), mianserin (non-specific 5-HT antagonist), and 

9 ritanserin (5-HT2/1C antagonist), the second panel represents displacement curves for 5-HTi 

10 antagonists, (metergoline and methiothepin mesylate) and spiperone (D2/5-HT2 antagonist), the 

11 third panel represents displacement curves for DOI (5-HT2/1C agonist), 2-Methyl-5-HT maleate 

12 (5-HT3 agonist) and a-Methyl-5-HT maleate (5-HT2 agonist), and the last panel represents 

13 displacement curves for 5-HIAA (5-HT metabolite) and reserpine (biogenic amine depletor). 
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Table 1. Binding constants of selected competitors for [^HJketanserin binding to trout 

hypothalamus membrane preparation. 

COMPETITOR K. 

(10'’ M) 

IC50 

(-log M) 

BMAX 

(fmol/mg protein) 

Ketanserin 

Mianserin 

Ritanserin 

Serotonin 

Spiperone 

(D-2-5- 

Dimethoxy-4- 

iodoamphetamine 

hyrobromide (DOI) 

Methiothepin 

mesylate 

Metergoline 

2-Methyl-5-HT- 

maleate 

a-Methyl-5-HT- 

maleate 

5-fflAA 

Reserpine 

(5-HT2A antagonist) 

(5-HT antagonist) 

(5-HT2/5-HT1C 

antagonist) 

(neurotransmitter) 

(D2/5-HT2 

antagonist) 

(5-HT2/5-HT1C 

agonist) 

(5-HTi antagonist) 

(5-HTi antagonist) 

(5-HT3 agonist) 

(5-HT2 agonist) 

(5-HT metabolite) 

(amine depletor) 

1.9 

2.0 

2.2 

2.8 

2.8 

3.54 

7.91+0.09 

7.89 ± 0.06 

7.65 ± 0.54 

7.3 ±0.49 

7.2 ±0.21 

6.8 + 0.21 

20 

2600 

6.9 ±0.67 

6.7 ±0.58 

5.7 ±0.76 

5.8 ±0.12 

5.1 ±0.28 

5.3+0.32 

140 

120 

102 

80.6 

79 

62.8 

58 

31 

38 



Note: [^HJKetanserin was incubated with juvenile trout hypothalamus membrane preparation in 

the absence (Bo) and presence (NSB) of radiostable ketanserin to determine specific binding 

(Bsp). [^HjKetanserin was displaced differentially by various competitors, depending on their 

binding affinity and capacity for the 5-HT2-like binding site in the tissue sample. Experiments were 

conducted in triplicate and data were expressed as the mean + SEM. Scatchard plots (Scatchard 

1949) were used to determine KD (Ki) values for each competitor (except 5-HIAA and reserpine) 

and the Half-maximal inhibitory concentration (IC50) values for each competitor were estimated 

from logit-log plots by plotting logit (logit = ln[P/(100 -P)], P is percent bound) of total 

[^Hjketanserin binding to trout hypothalamic membrane preparation versus -log [competitor, M], 

The IC50 is 50% binding, and the logit of 50 % [In (1)] is 0. Thus, the IC50 was determined by 

linear correlation (Bylund and Yamamura 1990) (not shown). Ki values were comparable to those 

calculated according to Cheng & Prusoff (1973), Ki = IC50 / [1 + C /KD], where C is 

concentration of radioligand and KD is dissociation rate constant obtained from saturation 

experiment. Comparison of binding affinity and specificity of the various structurally related 

competitors reveals a rank order of potency of ketanserin = mianserin > ritanserin > 5-HT = 

spiperone » methiothepin mesylate > metergoline = DOI > 2-methyl-5-HT > a-methyl-5-HT 

»»5-HIAA = reserpine. 



CHAPTER 3. 

Levels of specifically bound fHJketanserin compared to levels of 

5-HT in the brain regions of juvenile and sexually recrudescing 

female rainbow trout fOncorhynchus mykiss^. 
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Levels of specifically bound [^HJketanserin compared to levels of 5-HT in the brain 

regions of juvenile and sexually recrudescing female rainbow trout Oncorhynchus 

mykiss^ 

Abstract 

This study compared the distribution of specifically bound [^HJketanserin (Bsp) with 

serotonin (5-HT) in brain regions of juvenile and sexually recrudescing female trout. 

Amounts of Bsp varied widely among brain regions and consistently differed between 

juvenile and sexually recrudescing females. Levels of Bsp were significantly greater in the 

hypothalamus than the olfactory lobe, which were at least three-fold greater than all other 

tissues examined (Kruskal Wallis test, p<0.05). Bsp densities in the hypothalamus, pre- 

optic area, and optic lobe were significantly greater in juveniles compared with 

corresponding tissues from sexually recrudescing females (Mann Whitney-U test, 

p<0.05); in contrast, Bsp in olfactory lobe and spinal cord did not differ significantly 

between the two classes of fish. 5-HT concentration was determined by HPLC-EC 

analysis. Biogenic amine standards eluted in a stereotypic pattern, with peaks 

consistently separable in time. 5-HT concentration was significantly greater in 

hypothalamus than in olfactory lobe and undetectable in the pituitary (Kruskal Wallis 

test, p<0.05). Trends in distribution of Bsp and 5-HT were comparable in the 

hypothalamus and pre-optic area in juvenile and sexually recrudescing females. In 

general, density of specific [^HJketanserin binding sites was directly related to 5-HT 

content of brain regions in juvenile and sexually recrudescing females. 5-HT 

concentrations (pmoles/g tissue) were approximately 900-fold greater than Bsp (fmoles/g 

tissue) in all brain regions, and approximately 300-fold greater than Bsp in the olfactory 

lobe. These results suggest important regulatory role(s) for 5-HT in the trout pre-optic- 



hypothalamo-hypophysial axis, which may differ from 5-HT role(s) in trout olfactory 

lobe. 

Key Words: High. Performance Liquid Chromatography-Electrochemical Detection, 

[^HJketanserin, and sexually recrudescing female trout. 
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Introduction 

Expression of biological activity of neuroactive substances depends largely on co- 

localization of the primary messenger, such as serotonin (5-HT), with its specific receptor. 

Examination of regional distribution and density of messengers, such as 5-HT, and their 

receptors can reveal important aspects of their inter-dependence, and may predict 

localization of messenger biological activity. Previously we have described the existence 

and binding characteristics of a specific [^H]ketanserin binding site in the hypothalamus of 

rainbow trout Oncorhynchus mykiss (Agrawal and Omeljaniuk 1999, submitted). The 

binding characteristics of this site are reminiscent of the mammalian 5-HT2 receptor 

(Sanders-Bush and Mayer 1996, Leysen and Pauwels 1990, Leysen et al. 1981). Now we 

use this radioreceptor assay to survey various brain regions and the pituitary in juvenile 

and sexually recrudescing female rainbow trout to determine the relative abundance of this 

binding site. As well, we use the technique of high-performance liquid chromatography 

with electrochemical detection (HPLC-EC) to determine the content of 5-HT, other 

biogenic amines, and their metabolites in these same brain regions. 

Serotonergic neuron and fiber distribution has been extensively studied in brain 

regions of various species of bony fish (teleosts). A large number of 5-HT cell bodies are 

found in the midbrain, brain stem and diencephalon of goldfish (Carassius auratus, Kah 

and Chambolle 1983), African catfish {Clarias gariepinus, Corio et al. 1991) and rainbow 

trout (Salmo gairdneri; Frankenhuis-van den Heuvel and Nieuwenhuys 1984). Particularly 

high densities of 5-HT have been found in the nucleus raphe medialis in various species of 

teleosts including the Afncan catfish (C. gariepinus, Corio et al. 1991), three spined 

stickleback (Gasterosteus aculeatus L; Ekstrom and Van Veen 1984), sunfish {Lepomis 

49 



0 

3 

\ 

5 

16 

'7 

18 

19 

20 

21 

22 

'^3 

gibbosus. Parent et al. 1978), and sockeye salmon {Oncorhynchus nerka Walbaum; 

Ekstrom and Ebbesson 1989). The raphe nucleus in the three spined stickleback (G. 

aculeatus L) projects large numbers of serotonergic axons to multiple regions of the brain 

including the ventral thalamus, hypothalamus, and pituitary with a few scattered 

varicosities in the cerebellum (Ekstrom and Van Veen 1984). Small populations of 

serotonergic neurons are found in other goldfish (C auratus) brain regions including, 

olfactory lobe, pre-optic area and optic lobe (Kah and Chambolle 1983) and fibers from 

the raphe nucleus of the midbrain, extend to the pars distalis of the pituitary gland, medulla 

oblongata, spinal cord, the olfactory lobes (Kah and Chambolle 1983). The abundance of 

5-HT in these regions implicates the presence of a teleost 5-HT receptor therein. 

Serotonin is an important neuroendocrine factor in teleost brain regions. For 

example, 5-HT inhibits secretion of growth hormone (GH) (in a dose-related manner) and 

causes a dose-related release of gonadotropin (GtH) (Somoza and Peter 1991) from in 

vitro perifused pituitary fragments of goldfish (C auratus L). By comparison, 5-HT 

stimulates release of maturational GtH from the pituitary of female Atlantic croaker 

{Micropogonias undulatus) in vivo and in vitro (Khan and Thomas 1992); similarly, 5-HT 

increases plasma GtH levels in both female and male goldfish (C auratus L) in vivo 

(Somoza et al. 1988). In the pituitary of mollies (Poecilia latipinna), 5-HT mildly 

stimulates secretion of GtH in both males and females at different stages of reproduction 

(Groves and Batten 1985), indicating serotonergic regulation of reproduction. In rainbow 

trout, Saligaut et al. (1992) demonstrated physiological fluctuations in 5-HT levels during 

ovarian recrudescence and ovulation as well as simultaneous brain 5-HT and dopamine 

(DA) turnover at various reproductive cycles of the female rainbow trout, implying 



regulatory roles for 5-HT and DA in female rainbow trout reproduction. Comparable 

annual and daily variations in serotonin levels were demonstrated in the hypothalamus of 

the Indian catfish {Heteropneutes fossilis) in vivo, during gonadal recrudescence or 

gonadal dormancy (Senthilkumar and Joy 1993). Collectively, these data strongly 

implicate the presence of a 5-HT-receptor site in teleost brain and pituitary regions and 

suggest an extensive age-related, serotonergic regulation of the teleost hypothalamic- 

pituitary axis. These findings also suggest possible significant variation in 5-HT and 5-HT 

receptor dynamics in this region. 

Our present research investigates distribution of 5-HT and a specific 

0 [^H]ketanserin binding site in the brain:pituitary axis of rainbow trout and examines the 

1 impact of sexual maturity on these parameters. 



Materials and methods 

Experimental animals 

Fingerling rainbow trout {Oncorhynchus my kiss; Rainbow Springs Trout Hatchery, 

Thamesford, Ont.) were raised to juveniles in the Lakehead University Aquatic Animal 

Research Facility in flow-through aquaria with dechlorinated water at simulated ambient 

temperature (annual range, 5 to 16®C) and photoperiod (annual range, 8 to 14h 

photophase). Fish were fed commercial trout pellets daily (1 to 3% body weight; Zeigler 

trout feed. Thunder Bay Co-Op), and were assorted into two groups: juveniles and 

sexually recrudescing females. Juvenile fish (38 ± 8 cm long) were approximately 24 

^ months old (and did not possess obvious gonads) whereas sexually recrudescing female 

1 fish (65 ± 8 cm long) were approximately 36 months old (were gravid, and possessed 

I obvious ovaries). Any of the few fish with the obvious presence of testes were excluded 

3 from this study to keep the brain pool relatively constant in every trial. All fish were 

< maintained and handled in accordance with guidelines established by the Canadian Council 

on Animal Care as well as the Ontario Animals for Research Act. In all cases, fish were 

3 anesthetized with tricaine methanesulphonate (MS-222, 0.5g/liter; Syndel Laboratories, 

Vancouver, B.C) prior to any handling, then killed by spinal transection posterior to the 

8 medulla oblongata. 

^ Tissue preparation for radioligand binding assay 

:0 Individual tissue preparations were created for every independent experiment in this study. 

1 Whole brains were removed and placed in ice-cold assay buffer (AB; 50 mM Tris-HCl, pH 

= 7.4). For a given assay, olfactory lobe, hypothalamus, pituitary, pre-optic area (just 

superior and dorsal to the hypothalamus, and ventral and inferior to the optic lobes; it was 



dissected from the ventral side of the brain, after the hypothalamus had been just 

removed), optic lobe, and spinal cord, identified on the basis of Billiard and Peter (1982), 

were surgically isolated by microdissection. For each experiment replicate tissue samples 

were pooled into individual Corning 15-ml polystyrene centrifuge tubes, suspended in 

liquid N2. These pools of different tissue types were stored in liquid N2 until the next day 

for inclusion in the radioligand binding protocol. 

[^HjKetanserin binding assay 

The [^HJketanserin binding assay was previously developed in our lab (Agrawal and 

Omeljaniuk 1999, submitted) based on a modification of Leysen et al. (1982). Frozen 

tissue was transferred to an ice-cold glass mortar and combined with (100 pl/original 

tissue sample) ice-cold, homogenization buffer (HB: 50 mM Tris-HCl, pH 7.4; 0.32 M 

sucrose; Gallaher and Wang 1990; Leysen et al. 1982); all subsequent procedures were 

carried out at 0 to 4^C. Tissue was homogenized with ten strokes of a motor-driven 

Potter-Elvehjem homogenizer (0.125 mm clearance) and homogenate was transferred to 

10-ml polypropylene centrifuge tubes. Homogenate was centrifuged at lOOOg (20min), the 

supernatant aspirated and transferred to Beckman Ultra-Clear centrifuge tubes (13 x 

32mm) and centrifuged at 100,000g (30min). The resulting supernatant was decanted to 

waste and pellet was homogenized in AB (100 pi/ original tissue sample) and centrifuged 

at 100,000g (30min). To prepare the membrane suspension, the resulting supernatant was 

decanted to waste and pellet suspended in AB (100 pi/ original tissue sample). 

Typically, a lOOpl aliquot of membrane suspension was incubated with lOOpl 

[^HJketanserin (NEN-Dupont, Boston, MA; 61 Ci/mmol) and lOOpl AB (to estimate total 

binding (Bo)) or lOOpl competitor (lOpM unlabelled ketanserin), to estimate non-specific 



binding (NSB), resulting in a final volume of 300|j,l. Specifically bound [^H]ketanserin 

(Bsp) was calculated as the difference between Bo and NSB. Binding reactions were 

terminated by filtration through Whatman GF/B filters (CanLab, Vancouver, BC.), 

presoaked overnight in AB containing 0.3% polyethyleneimine to reduce nonspecific 

binding (Schwartzentruber and Omeljaniuk 1994), followed by 3 rinses of 3 ml ice-cold 

assay buffer. Filters were placed in 6-ml scintillation vials (Beckman, Mississauga, ON) 

and incubated overnight in 4 ml ReadySafe scintillation cocktail (Beckman, Mississauga, 

ON); radioactivity was determined by liquid scintillation spectroscopy at 50% counting 

efficiency. [^H]ketanserin bound optimally to trout hypothalamic membrane preparation 

within the range of 0.5 ± 0.02 to 1.5 + 0.3 mg protein/ml (Agrawal and Omeljaniuk 1999 

submitted); all subsequent tissue preparations were diluted to within this range. 

Data Analysis for radioligand binding assay 

Data were derived from 4 independent experiments (4 replicates/experiment) and 

expressed as mean + SEM. BSPMEAN was calculated as the difference between BQMEAN and 

NSBMEAN; BspSEM, in comparison, was calculated as (BOSEM^ + NSBSEM^) (Hulme and 

Birdsall 1992). Specifically bound [^Hjketanserin has been presented as cpm/mg protein 

for each tissue type for comparison with values in Agrawal and Omeljaniuk (1999 

submitted). Bsp is also expressed as pmoles/g tissue for comparison with biogenic amine 

content in brain tissues (fmoles/g tissue). Bsp of tissues was statistically compared among 

tissue types within a class of animals on the basis of Kruskal Wallis test (p<0.05), and 

between juveniles and sexually recrudescing females in corresponding tissue types on the 

basis of Mann Whitney-U test (p<0.05). 



Tissue preparation for high-performance liquid chromatography analysis 

Whole brains were removed and placed on an ice-cold petri dish. The hypothalamus, pre- 

optic lobe, olfactory lobe, and pituitary gland were isolated by microdissection, then 

individually transferred to pre-weighed 1.5-ml polyethylene centrifuge tubes suspended in 

liquid N2. Tissue was stored in liquid N2 for not more than two hours, before being 

processed for HPLC-EC analysis. 

High-performance liquid chromatography with electrochemical detection of 5-HT 

and other biogenic amines 

The protocol for high-performance liquid chromatography (HPLC) analysis was derived 

) from Sloley et al. (1991) with few modifications. All steps were conducted at 0 to 4‘^C. 

l Frozen tissue samples were individually sonicated in their centrifuge tubes in the presence 

! of 500 pi (200pl for pituitary) perchloric acid (HCIO4; 0.2M) with a Branson Ultrasonic 

' Tissue Disruptor (70 Watts, 20khz, for 15 seconds). Sonicates were centrifuged at 

12,800g (10 min) and supernatant aspirated and centrifuged at 12,800g (10 min) to ensure 

complete removal of tissue particles and precipitated proteins. Isoproterenol (300pg in 10 

pi) was added to all sample extracts as an internal standard (Sloley et al. 1991). Aliquots 

(lOpl) of sample extracts were applied to the HPLC column using a Shimadzu SIL-lOA 

8 automatic sample injector. 

Standard solutions of serotonin (5-HT), dopamine (DA), epinephrine (E), 

0 homovanillic acid (HVA; DA metabolite), 3, 4-dihydroxyphenylacetic acid (DOPAC; DA 

1 metabolite), norepinephrine (NE), and 5-hydroxyindole-acetic acid (5-HIAA; 5-HT 

2 metabolite) (all purchased from Research Biochemicals Inc., Natick, MA), were freshly 

prepared in 0.2M HCIO4 in concentrations ranging from 30pg/10pl to 900pg/10pl for 



each experiment. The HPLC mobile phase, included 75mM NaH2P04, ImM sodium octyl 

sulphate and 0.05 mM EDTA, was prepared in double-distilled, deionized water with a 

resistance approximately 18.3 MQ-cm (Barnstead NANOpure Ultrapure water system) 

and filtered prior to addition of acetonitrile (final concentration, 13% v/v) to make up the 

final volume. pH was adjusted to 2.75 with concentrated phosphoric acid, and the mobile 

phase was degassed at 1 ATM for at least 24 hrs before use in the HPLC system. 

All chromatographic separations were performed through a Beckman Ultrasphere 

ODS column (10 x 0.46 cm, 3-)im particles). The HPLC system consisted of an LC-IOAS 

HPLC pump coupled with an SIL-lOA model automatic sample injector, and regulated by 

0 a Shimadzu SCL-lOA system controller. An ESA (Bedford, MA) model 5100A 

1 Coulochem detector was used for electrochemical detection of eluting species. The filter 

2 time constant was set to 2s and sensitivity was usually set at 35 x 10 (nA). The ESA 

5100A system included a model 5011 dual analytical cell and a model 5020 guard cell. 

l Guard cell voltage was set at + 0.43 V, and detector 2 at + 0.43V. Chromatographic data 

were acquired and stored by Shimadzu EZChrom software (1994). During each 

separation, the mobile phase was pumped at a flow rate of Iml/min (Sloley et al. 1991) 

'' and pressure of 165 + 2 atmospheres. 

.8 Data Analysis for HPLC 

9 Chromatography peaks for 5-HT, DA, HVA, DOPAC, 5-HIAA, NE, E and isoproterenol 

20 were identified on the basis of their retention times derived from repeated analyses (n=8, 

".1 with 2 repetitions per experiment). All the detected species were quantitated based on 

22 peak height. % CV in the elution pattern of the biogenic amines were estimated on the 

3 basis of internal standard (isoproterenol) elution levels. This method of estimation is 



consistent with previous studies (Sloley et al. 1992, Dulka et al. 1992). Although, low C V 

values (approximately 6.6 %), suggested low variability in elution levels of the internal 

standard between samples and standards, values for chemical species were calculated on 

the basis of standard curves for each experiment. This method suggested accurate 

detection in our study, with low margin of error. Tissue levels of biogenic amines were 

determined in each HPLC analysis session on the basis of standard curves for each species; 

results were expressed in terms of ng/g wet-weight of tissue. 5-HT concentration in 

tissues was statistically compared among tissue types within a class of animals on the basis 

of Kruskal Wallis test (p<0.05); and between juveniles and sexually recrudescing females 

0 in corresponding tissue types on the basis of Mann Whitney-U test (p<0.05). All 

statistical estimations were based on the SPSS/PC^ computer software package. 

1 Protein content 

As individual fish pituitaries were difficult to weigh accurately, estimates of specifically 

1 bound [^HJketanserin and 5-HT content were related to protein content, determined by the 

5 Bradford method (Bradford 1976) using Bio-Rad dye reagent (Bio-Rad Laboratories, 

5 Richmond, CA) and bovine serum albumin (Sigma Chemicals, St. Louis, MO) as a protein 

standard. 
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Results 

Amounts of specifically bound [^HJketanserin (Bsp) varied among trout brain regions 

(Table 1) . In general, levels of Bsp in the hypothalamus were significantly larger than in the 

olfactory lobe, which, in turn, were at least three-fold greater than in all other tissues 

examined (Kruskal Wallis test, p<0.05) (Table 1). In juveniles, highest Bsp levels were 

detected in the hypothalamus (1620 + 109 cpm/mg protein), which were larger than Bsp 

levels in the olfactory lobe (987 + 67 cpm/mg protein), which in turn were larger than 

levels in the optic lobe, pre-optic area and spinal cord (Table 1). Similarly, in sexually 

recrudescing females, highest Bsp levels were detected in the hypothalamus (1100 + 127 

cpm/mg protein), which were larger than Bsp levels in the olfactory lobe (423 ±34 cpm/mg 

protein), which in turn were larger than levels in the optic lobe, pre-optic area and spinal 

cord (Table 1). Binding site densities in the hypothalamus, pre-optic area, and optic lobes, 

and hypothalamus were significantly greater in juveniles compared with corresponding 

tissues from sexually recrudescing females (Mann-Whitney U test, p<0.05). In contrast, 

binding site densities in the spinal cord did not differ significantly between juveniles and 

sexually recrudescing females (Mann-Whitney U test, p<0.05) (Table 1). Amounts of 

protein detected in the pituitaries of both juveniles and sexually recrudescing females were 

almost vanishingly small hence levels of Bsp detected in each were relatively low at 1.92 + 

0.63 and 3.26 + 1.4 cpm/pg protein respectively (data not shown). 

HPLC-EC analysis of biogenic amine standards resulted in a stereotypic elution 

pattern; peaks were consistently separable in time (Fig. 1), and had highly conserved 

retention times (Table 2). The order of elution of chemical species from our system was 

norepinephrine, epinephrine, DOPAC, dopamine, 5-HIAA, HVA, and 5-HT (Table 2). 
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Varied amounts of standards were examined for electroactivity; based on these values, 

standard curves were generated and quantified by linear regression analysis (Fig 2). 

Standard curves for chemical species were grouped and represented according to their 

closest biosynthetic and metabolic origins (Fig. 2 panels a, b, and c). Linear regression 

analysis for data from each standard curve consistently resulted in r^ values >0.996. 

Chemical species in tissue samples were identified based on their retention time; a typical 

chromatogram is depicted in Fig 1. As in the standards, peak overlap was not observed 

between any chemical species. The amount of each chemical specie present in fish samples 

was estimated based on relevant standard curves. 

Concentrations of chemical species varied widely among brain regions and the 

pituitary of juvenile and sexually recrudescing female trout (Table 3). In juveniles, 5-HT 

concentration was three to four fold greater in the hypothalamus (228 ±12 ng/g tissue) 

than in both the pre-optic area (56 ± 7 ng/g tissue) and olfactory lobe (78 ± 13 ng/g 

tissue). Similarly, in sexually recrudescing females, 5-HT concentration was greater in the 

hypothalamus (93 ± 7 ng/g) than both pre-optic area (21+2 ng/g) and olfactory lobe (73 

± 20 ng/g). 5-HT concentration was significantly greater in the hypothalamus of juveniles 

compared with sexually recrudescing females (Mann Whitney-U test, p<0.05). Although 

5-H3AA levels were usually greater than 5-HT in both juvenile and sexually recrudescing 

female tissue types (Table 3), no obvious correlation could be derived for the distribution 

of the neurotransmitter and its metabolite. Limited tissue availability precluded larger scale 

pituitary analyses. 

DA levels in the hypothalamus were significantly greater than in both olfactory lobe 

and pre-optic area in both classes of trout (Kruskal-Wallis test, p<0.05) (Table 3). In 
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juveniles, DA levels were approximately two-fold greater in the hypothalamus, olfactory 

lobes and pre-optic areas compared with corresponding tissues from sexually recrudescing 

females. DA levels in juvenile pituitary were quite low, but comparable with levels in 

sexually recrudescing females. In juvenile and sexually recrudescing females, either 

DOPAC, HVA, or both, were detected (much lower levels) in brain regions corresponding 

to DA, however, no apparent correlations could be made about the distribution of the 

neurotransmitter and its metabolites. Comparable levels of NE were detected in the 

hypothalamus and olfactory lobes of trout brain. These levels were significantly greater 

(approximately two-fold) than those detected in the pre-optic area in both classes of trout 

(Kruskal-Wallis test, p<0.05) (Table 3). NE levels were consistently greater in brain 

regions of juveniles compared with corresponding regions in sexually recrudescing 

females. In all cases, levels of epinephrine were below detection limits (data not shown). 

In general, tissue 5-HT levels (pmoles/g tissue) were greater in juveniles, than in 

corresponding brain regions of sexually recrudescing females, with the exception of the 

olfactory lobe, where 5-HT levels were comparable between juveniles and sexually 

recrudescing females (Fig. 3 panel A). Bsp levels (pmoles/g tissue) were significantly 

greater in juvenile hypothalamus, pre-optic area and olfactory lobe than in corresponding 

regions of sexually recrudescing female trout (Mann-Whitney U test, p<0.05) (Fig. 3 panel 

B). The ratio of 5-HT content to specifically bound [^Hjketanserin in all trout brain 

regions was collectively 947 (± 240): 1 with the exception of juvenile olfactory lobe 

where 5-HT content was approximately 300-fold greater than specifically bound 

[^Hjketanserin (Fig. 3 panel A and B). 
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Discussion 

Colocalization of neurotransmitters with their respective receptors is a necessary 

requirement for expression of neurotransmitter biological activity. The teleost (bony fish), 

brain: pituitary axis constitutes a powerful model for investigation of 

neurotransmitter:receptor interaction and their mutual regulation. The teleost pituitary 

gland is directly innervated by neurosecretory axons originating from the hypothalamus. 

This feature, and the absence of a functional hypothalamo-hypophysial portal system, 

makes teleosts a unique experimental model (Fryer and Maler 1981, Peter et al. 1990, 

Anglade et al. 1993). Direct innervation of individual cells allows for a precise 

hypothalamic regulation of pituitary hormone secretion and implies the presence of various 

neuroendocrine receptors in this axis (Peter et al. 1990). The power and utility of this 

model is illustrated in part by examination of the distribution of serotonin and its receptors 

in the teleost brain:pituitary axis, and the influence of serotonin on release of pituitary 

hormones associated with reproduction and stress-response physiology. For example 

several prominent regions of the teleost brain:pituitary axis participate in 5-HT bioactivity. 

Frequently cited regions include, olfactory lobe of three spined stickleback (Gasterosteus 

aculetus L. Ekstrom and Van Veen 1984), hypothalamus of goldfish (C auratus L, Kah 

and Chambolle 1983), pre-optic area of catfish {Clarias gariepinus Corio et al 1991), and 

rainbow trout {Salmo gairdneri, Frankenhuis-van den Heuvel and Nieuwenhuys 1984), as 

well as the pituitary gland of mollies {Poecilia latipinna. Groves and Batten 1985), and 

goldfish (Kah and Chambolle 1983). In this study we present evidence on the differential 

distribution of 5-HT2-like receptors in elements of the teleost brain:pituitary axis that have 

been implicated in regulating release of reproductive and stress-response hormones. 
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Moreover, we present data on the influence of reproductive status of receptor density and 

relationship of local 5-HT content and receptor density. 

The first direct evidence for existence of a teleost (CNS) 5-HT2 receptor was 

based on the ligand recognition criteria and specific binding of [^HJketanserin, a selective 

mammalian 5-HT2 antagonist, to rainbow trout hypothalamic membrane preparation 

(Agrawal and Omeljaniuk 1999 submitted). Various regions of trout brain are constituents 

of a neural pathway, which figures prominently in brain regulation of 

“brain:pituitary:gonadar’ function (Anglade et al. 1993, Corio et al. 1991); this makes 

these regions ideal candidates in this study. For example, prominent hypophysiotrophic 

areas include the pre-optic area, hypothalamus and pituitary in the brain regions of 

goldfish (Anglade et al. 1993), and African catfish (Corio et al. 1991). In this study, 

amounts of specifically bound [^H]ketanserin varied among trout brain regions (Table 1). 

Bsp in trout hypothalamus was significantly larger than in olfactory lobe (Fig. 3, Panel B), 

which, in turn were at least three-fold greater than in all other regions examined. Rank 

order of binding density in trout brain regions was hypothalamus > olfactory lobe »> pre- 

optic area > spinal cord > optic lobe »> pituitary. Bsp levels in trout hypothalamus were 

comparable with previous results (Agrawal and Omeljaniuk 1999, submitted), implying the 

reliability of this protocol between independent studies. In rat brain, by comparison, the 

rank order of specifically bound [^HJketanserin density was prefrontal cortex (23.7 + 0.5 

pmoles/g tissue) » temporal cortex (10.7 + 2 pmoles/g tissue) »»» hypothalamus 

(0.7 + 0.4 pmoles/g tissue) »» pituitary (undetectable) (Leysen et al. 1982). Similar 

trends were found in guinea pig (Leysen et al. 1982 and Leysen et al. 1983) and human 

(Schotte et al. 1983) brain regions. 
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In our trout, pituitary levels of Bsp in both juvenile and sexually recrudescing 

females were 1.92 ± 0.63 and 3.26 ±1.4 cpm/pg protein respectively (data not shown). 

These levels are fairly large when expressed as cpm/mg protein. However, this detection is 

limited by the extremely small amount of tissue associated with individual trout pituitaries. 

Also, the signal;noise ratio is low even for pooled samples of trout pituitaries. By 

comparison, Bsp levels are undetectable in rat pituitary and comparatively very low in 

guinea pig (0.5 ± 0.2 pmoles/g tissue) (Leysen et al. 1982). Collectively these results 

suggest that the relatively larger density of binding sites in the trout pituitary is indicative 

of a relatively more prominent role for 5-HT in the pituitary of teleosts than mammals. 

This observation is consistent with our demonstration of large numbers of binding sites in 

trout brain regions implicated in growth and reproduction. For example, 5-HT stimulates 

gonadotrophs in the hypothalamus and pre-optic area in, Atlantic croaker (M undulatus, 

Khan and Thomas 1992), in goldfish (C. auratus, Somoza and Peter 1991; Somoza et al 

1988; Yu et al. 1991) and in male and female mollies {P. latipinna. Groves and Batten 

1985). 5-HT also inhibits growth hormone (GH) release in goldfish pituitary (Somoza and 

Peter 1991). 

Levels of Bsp varied significantly in the olfactory lobe, optic lobe, pre-optic area 

and hypothalamus between juvenile and sexually recrudescing females (Table 1). Although 

there is no direct previous information which compares levels of specifically bound 

[^Hjketanserin between juvenile and sexually recrudescing females in teleost models, 

indirect evidence suggest that 5-HT regulates factors governing teleost growth and 

reproductive status. In teleost hypothalamus, gonadotropic releasing hormone (GnRH) 

releasing neurons project fibers into gonadotrophs (Peter et al. 1990) located in the 
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pituitary, which, in turn, release gonadotropic hormone (GtH) into circulation. Previous 

investigations suggest serotonin has dose dependent stimulatory effects on 

immunoreactive-GnRH release from goldfish pre-optic area:hypothalamus brain slices and 

GtH from pituitary fragments, suggesting, serotonergic inputs at both the pre-optic and 

pituitary levels of the GnRH:GtH system (Yu and Peter 1990). 5-HT stimulates GtH 

release in goldfish both in vivo (Somoza et al. 1988) and in vitro from perfused fragments 

of the pituitary (Somoza and Peter 1991); pretreatment of fish with ketanserin blocked the 

stimulatory effects of 5-HT on serum GtH levels in both female and male goldfish 

(Somoza et al.l988) suggesting involvement of 5-HT2-like binding sites in the release of 

GtH. In 1-year old Atlantic croaker (M.undulatus, Khan and Thomas 1992), 

intraperitoneal administration of the combination of leutinizing hormone releasing 

hormone (LHRHa) and 5-HT elicited an increase in GtH levels, which were significantly 

greater than that induced by LHRHa or 5-HT alone. In comparison, 5-HT alone or in 

combination with LHRHa, stimulated GtH release both in vitro and in vivo using sexually 

mature croakers (Khan and Thomas 1992). Our findings collectively support the concept 

of 5-HT as a major neuroendocrine regulator of the brain:pituitary gonadal axis and 

suggest that this 5-HT regulation may vary as a function of sexual maturity. 

Our biogenic amine analysis was reliable and yielded results comparable with 

previous studies (Hemandez-Rauda et al. 1996, Sloley et al 1992, Saligaut et al 1990, 

1992, and Dulka et al. 1992). Retention times for all the detected biogenic amines in our 

study (Table 2) were comparable to previously observed values (Hernandez-Rauda et al. 

1996) derived from HPLC-EC analysis using comparable mobile phase composition. In 

studies where similar mobile phase was used at different pH values (Hall et al. 1989, Cox 
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Gariepy et al. 1994) retention times were found to vary, however, the elution order of 

chemical species were similar. Chemical species eluted in a consistent order, with the 

fastest elution of norepinephrine (2.14 ± 0.021 min.) and slowest of 5-HT (7.27 ± 0.112 

min.) (Fig 1 and Table 2). Standard curves used for biogenic amines were highly 

predictable and reproducible with very small interassay variability (< 5%), emphasizing the 

reliability of this technique. 

In our trout, (both juvenile and sexually recrudescing female), 5-HT concentration 

was found to be greater in the hypothalamus (228 ±12 ng/g tissue; 93 + 7.3 ng/g tissue), 

than in both the pre-optic area (56 + 7.3 ng/g tissue; 21 ± 3 ng/g tissue) and olfactory lobe 

(78 + 13 ng/g tissue; 73 ±_20 ng/g tissue) (Table 3). By comparison, Saligaut et al. (1992) 

detected similar trends in 5-HT levels with higher levels of 5-HT (approximately 500 ng/g 

tissue) in the hypothalamus of sexually recrudescing female rainbow trout, compared to 

the pre-optic area (approximately 150 ng/g tissue). Actual levels of 5-HT detected in our 

study were much lower compared to corresponding brain tissues in the Saligaut et al. 

(1992) study. Overall, levels of 5-HT and other biogenic amines were higher in juveniles 

than sexually recrudescing females (Table 3). This trend is consistent with levels of Bsp in 

juvenile versus sexually recrudescing-female trout (Fig. 3). Saligaut et al (1992) observed 

an increase in 5-HT content in trout hypothalamus during the pre-ovulatory period, 

suggesting increased 5-HT synthesis and release in this region of the brain. This 

observation is consistent with the age-related changes in the distribution of 5-HT in the 

forebrain and pituitary observed in platyfish during reproductive senescence (Margolis- 

Nunno et al. 1986). Collectively these results imply a role for 5-HT in the regulation of 

teleost sexual maturation and ovulation. In rats by contrast, highest 5-HT levels were 
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detected in the hippocampus (8.1 + 3.58 pg/30ul sample), (Cox Gariepy et al. 1994, 

Acworth et al. 1994), striatum (15 fold less than in hippocampus) (Wong et al. 1995), 

with no detectable levels in hypothalamus or pre-optic area. Collectively this information 

suggests that 5-HT may play a more prominent role in the teleost preoptic 

area;hypothalamus axis than it does in mammals. In contrast to our findings in the brain, 5- 

HT levels were undetectable in trout pituitary (Table 3); this finding is consistent with 

those of Saligaut (1992) who failed to reliably measure 5-HT in female trout pituitary at 

any stage of its reproductive cycle. 

DA levels were also high in trout hypothalamus compared with other brain 

regions, both in juveniles and sexually recrudescing females (Table 3). Our finding is 

comparable with the high DA levels observed in goldfish hypothalamus (656 + 55 ng/g) 

(Dulka et al. 1992) compared with other brain regions. In mammals, high DA levels have 

been observed in rat hippocampus (Cox Gariepy et al. 1994) with basal levels of 6.3 ± 0.5 

“pg/collection” (Acworth et al. 1994), rat striatum (Wong et al. 1995) with basal levels of 

51.8 + 6.8 pg/collection, and rat cortex (Alburges et al. 1993). Collectively our findings 

support the concept that DA and 5-HT may act as coordinate neuroregulators in these 

neuroendocrine pathways. 

Neurotransmitter:receptor ratios for 5-HT and Bsp were highly predictable 

throughout the trout brain in both juvenile and sexually recrudescing females, with the 

exception of the juvenile olfactory lobe (Inset to discussion. Fig 4). To the best of our 

knowledge, this investigation is the first ever to compare levels of 5-HT to its specific 

binding site in trout brain. Bsp values (finoles/g tissue) were plotted as a function of 5-HT 

content (pmoles/g tissue) using data points including all tissue types from both juvenile 
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and sexually recrudescing female fish, with the exception of juvenile olfactory lobe and 

analyzed by linear regression analysis. The very high correlation of Bsp with 5-HT content 

(r^= 0.994) suggests a direct influence of 5-HT on the density of specific [^HJketanserin 

binding sites in these brain regions, within the ages and sexual status of the trout 

examined. Differing 5-HT;Bsp ratio in the olfactory lobe suggest that 5-HT regulation of 

the olfactory lobe might differs from that in the pre-optic-hypothalamo-hypophysial axis. 

To conclude, the primary findings of this research include, high Bsp levels and 5- 

S HT content in trout hypothalamus compared to other brain regions, suggesting important 

regulatory role(s) of 5-HT in the hypothalamus of rainbow trout. Both, Bsp and 5-HT 

0 levels were higher in juvenile brain regions compared to corresponding regions in sexually 

1 recrudescing females suggesting age-related changes in 5-HT regulation of growth and 

2 sexual maturity in rainbow trout brain. 5-HT content (pmoles/g tissue) was directly related 

3 to Bsp levels (fmoles/g tissue) suggesting a region specific relation between 

i neurotransmitter and 5-HT2 levels in rainbow trout brain regions. Collectively these results 

3 suggest that levels of specific [^Hjketanserin binding and 5-HT may be mutually predictive 

6 in these trout brain regions. 
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Fig. 1. Electroactivity of eluate (Volts) for biogenic amine and metabolite standards 

plotted as a ftinction of time (min). Panel A is a typical chromatogram for biogenic amine 

and metabolite standards at 900pg; elution pattern is as follows: NE, E, DOPAC, DA, 5- 

HIAA, HVA, and 5-HT. Panel B shows a chromatogram for juvenile hypothalamus with 

chemical species identified according to elution pattern. Species identified are as follows: 

NE, DA, 5-HIAAA, HVA and 5-HT. Levels of other chemical species were too low to be 

detected by this method. 
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Fig. 2. Standard curves for biogenic amine and selected metabolite standards where 

electroactivity (V) is plotted as a function of amount of standard (pg). Species are 

grouped according to biological activity and values are means (± SEM). In all cases linear 

regression of the data resulted in r^ values > 0.996. Panel a, serotonin (5-HT), peak 

height (V) = (2.55 x 10'^) x (5-HT (pg)) + 5.4 x 10'^ (r^ = 0.99); and its metabolite 5- 

hydroxyindoleacetic acid (5-HIAA), peak height (V) = 1.7 x lO''^ x (5-HIAA(pg)) + 0.01 

X 10'^ (r^ = 0.98). Panel b, dopamine (DA), peak height (V) = 3.049 x lO'"^ x (DA(pg)) + 

1.74 X 10'^ (r^ = 0.99); and its metabolites 3, 4-dihydroxyphenylacetic acid (DOPAC), 

peak height (V) = 2.7 x 10'^ x (DOPAC (pg)) + 1.74 x 10'^ (r^ = 0.99); and homovanillic 

0 acid (HVA), peak height (V) = 2.3 x 10’^ x (HVA (pg)) + 7.1 x 10’^ (r^ = 0.99). Panel c, 

1 catecholamines norepinephrine (NE), peak height (V) = 4.06 x lO’'* x (NE (pg)) + 7.3 x 

1 10'^ (r^ = 0.99); and epinephrine (E), peak height (V) = 2.43 x lO''^ x (E (pg)) + 7.6 x 10'^ 

3 (r^ = 0.99). 
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Fig. 3. Serotonin (5-HT, pmoles/g tissue) and specifically bound [^HJketanserin (Bsp, 

pmoles/g tissue) in selected brain regions of juvenile (clear bars) and sexually recrudescing 

female (shaded bars) rainbow trout. Panel A, 5-HT values are means (± SEM) from 

duplicate tissue samples from 6 independent experiments (n = 12 replicate determinations). 

5-HT contents of tissue was statistically compared among tissues in the same age class of 

fish, on the basis of Kruskal Wallis test (p<0.05) and between juveniles and sexually 

recrudescing females in corresponding brain regions on the basis of Mann Whitney-U test 

(p<0.05). Data points which were not significantly (p<0.05) different share a common 

letter, case conserved. Panel B, Mean Bsp values (± SEM) from 4 independent 

experiments; in an individual experiment, quadruplicate determinations of Bo and NSB for 

a tissue preparation of pooled samples contributed to calculated mean values of Bo and 

NSB. Bsp MEAN for a given experiment was the difference between Bo MEAN and NSB MEAN. 

Similarly, Bsp in tissues was statistically compared among tissues in the same age class of 

fish, on the basis of Kruskal Wallis test (p<0.05) and between juveniles and sexually 

recrudescing females in corresponding brain regions on the basis of Mann Whitney-U test 

(p<0.05). Data points which were not significantly (p<0.05) different share a common 

letter, case conserved. 
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Fig. 4. [^HJKetanserin specifically bound (Bsp) (fmoles/g tissue) is plotted as a function of 

tissue 5-HT content (pmoles/g tissue). Bsp values were pooled from hypothalamus, pre- 

optic area, and olfactory lobe of juveniles and sexually recrudescing females. Linear 

regression of the data describes a relationship of [^Hjketanserin specifically bound 

(fmoles/g tissue) = 1.43 x 5-HT (pmoles/g tissue) - 84.2 (r^ = 0.994); [^Hjketanserin 

specifically bound (finoles/g tissue) = 1.3 x 5-HT (pmoles/g tissue) + 79 (r^ = 0.7) if 

juvenile olfactory lobe data is not excluded. 
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Table 1; Specifically bound [^HJketanserin in the brain regions of juvenile and sexually 

recrudescing female rainbow trout {Oncorhynchus mykiss) 

Specifically Bound f HJKetanserin 
 (cpm/mg protein)  

Tissue 

Olfactory lobe 

Optic lobe 

Pre-optic area 

Hypothalamus 

Spinal cord 

Juveniles 

987 (67)" 

125 (23)" 

342 (58) 

1620 (109) 

285 (13)*’’’’ 

Sexually recrudescing females 

423 (34) 

64 (10)* 

65 (6) 

1100(127)"^ 

231 (29) ®’" 

Note: Values (cpm/mg protein) are means (+ SEM), derived from 4 independent experiments each, with 4 
replicates per experiment. Juvenile fish were approximately 24 months old and did not possess obvious 
gonads; sexually recrudescing females were approximately 36 months old and possessed obvious ovaries. 
Bsp in tissue types were statistically compared among tissues in the same age class by the Kruskal Wallis 
test; values which were not significantly different (p<0.05) share a common letter, case conserved. By 
comparison, Mann Whitney-U test was used to statistically compare Bsp levels between juveniles and 
females for a given tissue type. Values for specific tissue types between age classes which were not 
significantly different (p<0.05) are identified by an *. 



Table 2; Retention times of standard biogenic amines and detected metabolites. 

Specie Retention time 
(min)  

Norepinephrine 

Epinephrine 

DOPAC 

Dopamine 

5-HIAA 

HVA 

5-HT 

2.14(0.021) 

2.36 (0.080) 

3.00 (0.010) 

3.14(0.088) 

4.56 (0.210) 

6.13 (0.240) 

7.27 (0.112) 

Note: Values (min) are mean (+ SEM) for species listed, from 8 independent experiments each, with 
2 replicates per experiment. 



Table 3; Biogenic amines and selected metabolites in brain regions of rainbow trout 
{Oncorhynchus mykiss). 

Juveniles 
Species Olfactory lobes Pre-optic area Hypothalamus Pituitary 

5-HT 

DA 

NE 

HVA 

DOPAC 

5-HIAA 

78 (13)"’ 

753 (191) 

1833 (128)*’ 

97(12)'’ 

56 (7.3) 

363 (24) 

940 (58)" 

176 (27) 

228 (12) 

1911 (143) 

1699 (125) 

95 (2.1) 

183 (78) 

6.1(1)“’ 

5.2 (1)" 

4.0(1)"- 

Sexually recrudescing females 
5-HT 

DA 

NE 

HVA 

DOPAC 

5-HIAA 

73 (20) 

312 (74) 

1008 (56) ® 

80 (16)® 

288 (27)^ 

21 (2.7)^ 

170 (33)® 

507 (94) ^ 

28 (4.4) 

88 (12) ^ 

93 (7.3) ^ 

867 (47) 

942 (80) ® 

53 (8.4) ^ 

176 (10) * 

5.0 (0.6) 

7.0(1)"^ 

Note: Values (ng/g tissue) are means (n=6, + SEM), from 6 independent experiments (in each experiment 
individual samples were analyzed twice by HPLC-EC analysis). Results from the pituitary are expressed as 
means (± SEM, pg/pg of protein). Juvenile fish were, 24 months old and did not possess obvious gonads, 
sexually recrudescing females were typically 36 months old and possessed obvious ovaries. - => not 
detectable. Contents of specific chemical species were statistically compared (Kruskal Wallis test, p<0.05) 
among tissues in a given age class of animals; values which were not significantly (p<0.05) different share 
a common letter, case conserved. The contents of different chemical species within a single tissue type 
were not statistically compared. The content of a specific chemical specie in a given tissue type was 
statistically compared between age-classes on the basis of Mann Whitney-U test; values between age- 
classes that were not significantly (p<0.05) different share an asterix (*). 
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General Discussion 

My results describe binding properties of [^HJketanserin to specific binding sites in trout 

hypothalamus (Chapter 2); the binding properties and ligand recognition criteria for these 

sites are comparable with those of the mammalian 5-HT2 class of serotonin receptors. 

These 5-HT2~like binding sites are differentially distributed among the brain regions 

examined. There is a very strong correlation of 5-HT2-like binding site density with 

amounts of 5-HT and distribution of 5-HT (Chapter 3) in the brain regions of juvenile and 

sexually recrudescing female rainbow trout. In general, site density is typically greater in 

juveniles than in sexually recrudescent female trout. These findings support previous data 

on the distribution of 5-HT in teleost CNS and provide the first direct evidence for the 

existence, properties and distribution of a 5-HT2-like binding site in trout brain and 

pituitary axis. 

The presence of 5-HT cell bodies and serotonergic tracts have been previously 

reported in teleost brain;pituitary axis. To illustrate, large populations of 5-HT neurons are 

found in the midbrain, brain stem and diencephalon of goldfish {Carassius auratus\ Kah 

and Chambolle 1983), African catfish {Clarias gariepinus, Corio et al. 1991), and rainbow 

trout (Salmo gairdneri, Frankenhuiswan den Heuvel and Nieuwenhuys 1984). Particularly 

high densities of 5-HT have been found in the nucleus raphe' medialis in various species of 

teleosts including the African catfish, Corio et al. 1991), three spined stickleback 

{Gasterosteus aculeatus L; Ekstrom and Van Veen 1984), sunfish {Lepomis gibhosus\ 

Parent et al. 1978), and sockeye salmon {Oncorhynchus nerka Walbaum; Ekstrom and 

Ebbesson 1989). The raphe' nucleus projects large numbers of serotonergic axons to 

multiple regions of the teleost brain, including the hypothalamus, ventral thalamus, and 
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pituitary of the three spined stickleback (Ekstrom and Van Veen 1984), pars distalis of the 

pituitary gland, medulla oblongata, olfactory lobes, pre-optic area optic lobe and spinal 

cord of goldfish (Kah and Chambolle 1983), as well as the pre-optic nucleus in the African 

catfish (Corio et al. 1991). 

Serotonin has prominent biological role(s) in these brain regions. For example, 5- 

HT regulates the secretion of growth hormone (GH) and gonadotropin (GtH) (Somoza 

and Peter 1991) from in vitro perifused goldfish pituitary fragments. 5-HT also stimulates 

release of maturational GtH from the pituitary of female Atlantic croaker (Micropogonias 

undulatus, Khan and Thomas 1992) and female and male goldfish (Somoza et al. 1988). In 

rainbow trout, Saligaut et al. (1992) demonstrated physiological fluctuations in 

hypothalamus and pituitary serotonin levels during ovarian recrudescence and ovulation; 

and Senthilkumar and Joy (1993) observed similar annual variations of serotonin levels in 

the hypothalamus of the Indian catfish {Heteropneutes fossilis). Although 5-HT pathways 

and biological functions are well studied in teleost brain regions, by contrast, there is little 

to no direct information on the existence of 5-HT receptors in teleost brain regions. 

However previous studies do indicate that 5-HT neurochemistry in teleost brain regions 

vary as a result of changes in sexual status. To illustrate, in 1-year old Atlantic croaker 

{M.undulatus, Khan and Thomas 1992), intraperitoneal administration of the combination 

of leutinizing hormone releasing hormone (LHRHa) and 5-HT elicited an increase in GtH 

levels, which were significantly greater than that induced by LHRHa or 5-HT alone. By 

comparison, 5-HT alone, stimulated GtH release both in vitro and in vivo using sexually 

mature croakers (Khan and Thomas 1992). These findings collectively suggest that 5-HT 

regulation may vary as a fiinction of sexual status. 
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Specific binding of [3H]ketanserin to trout hypothalamus was saturable, indicating 

the presence of a finite number of binding sites in a definite region of brain tissue. The 

associable and reversible nature of this binding indicates that in accordance with 

ligand;receptor binding kinetics, [^H]ketanserin associates and dissociates with the trout 

binding site in a predictable pattern consistent with a receptor. Differential displacement by 

various competitors, suggests that the binding site is specific (5-HT2-like); it has 

differential binding affinity to various competitors depending upon their chemical 

structure. To illustrate, my results indicate that primarily ligands which are structurally 

related to ketanserin (4-substituted piperidine derivatives, 3-{2-[4 -4 fluorobenzoyl)-!- 

piperidinyl ]ethyl-2,4 (IH, 3H)-quinazolinedione, Janssen 1983) or spiperone (8-[4 - (4 - 

fluorophenyl) 4-oxobutyl ]-l-phenyl-1,3,8-triazaspirol [4,5]decan-4, Research 

Biochemicals International 1995) can successfully interact with the trout hypothalamic 5- 

HT2-like binding site and implies a high degree of conservation of ligand recognition 

properties of this site. 

The distributions of 5-HT and this binding site in teleost brain regions were 

predictable. To illustrate, in accordance with previous information on 5-HT neuron and 

fiber distribution as well as 5-HT role(s) in teleost brain regions, large amounts of 5-HT 

and its binding site were found in teleost hypothalamus compared to other brain regions. 

In my study, trout, (both juvenile and sexually recrudescing female), 5-HT concentration 

was greater in the hypothalamus (228 + 12 ng/g tissue; 93 + 7.3 ng/g tissue), than in both 

the pre-optic area (56 + 7.3 ng/g tissue; 21+3 ng/g tissue) and olfactory lobe (78 + 13 

ng/g tissue; 73 ±_20 ng/g tissue) (Table 3). In comparison, Saligaut et al. (1992) detected 

similar trends in 5-HT levels with higher levels of 5-HT (approximately 500 ng/g tissue) in 
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the hypothalamus of sexually recrudescing female rainbow trout, compared to the pre- 

optic area (approximately 150 ng/g tissue). Similarly, rank order of [^HJketanserin 

specific binding density in trout brain regions was hypothalamus > olfactory lobe »> pre- 

optic area > spinal cord > optic lobe »> pituitary. By comparison, in rats, the rank order 

of specifically bound [^HJketanserin density was prefrontal cortex (23.7 ±0.5 pmoles/g 

tissue) » temporal cortex (10.7 ± 2 pmoles/g tissue) »»» hypothalamus (0.7 ± 0.4 

pmoles/g tissue) »» pituitary (undetectable) (Leysen et al. 1982). Similar trends were 

found in guinea pig (Leysen et al. 1982 and Leysen et al. 1983) and human (Schotte et al. 

1983) brain regions. Collectively, the distribution of 5-HT and its binding site in teleost 

brain regions were comparable with other vertebrate models. 

Levels of both 5-HT and 5-HT2 binding sites varied significantly among the 

olfactory lobe, optic lobe, pre-optic area and hypothalamus between juvenile and sexually 

recrudescing females, with levels in juveniles far exceeding those in brain regions of 

sexually recrudescing female trout. Although there is no direct previous information which 

compares levels of 5-HT and its binding site between juvenile and sexually recrudescing 

females in teleost models, indirect evidence suggest that sexual status influences 5-HT 

levels and functions in teleost brain:pituitary axis. For example, Saligaut et al (1992) 

observed an increase in 5-HT content in trout hypothalamus during the pre-ovulatory 

period, which provides direct evidence for changes in 5-HT synthesis and release 

influenced by sexual status in this region of the brain. This observation is consistent with 

changes in the distribution of 5-HT in the forebrain and pituitary observed in platyfish 

during reproductive senescence (Mafgolis-Nunno et al. 1986). These findings suggest that 

sexual status of the trout influences 5-HT and its binding site distribution in trout 
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brain:pituitary axis. 

Collectively this research provides insight into potential 5-HT roles and function in 

the teleost brain [pituitary axis. 5-HT plays important role(s) in trout hypothalamus both 

prior to and at sexual maturity, therefore the highest observed levels of both 5-HT and 

specific binding site 5-HT2, are in the hypothalamus. 5-HT plays important roles in trout 

sexual maturation and growth; this observation is consistent with my finding of difference 

in levels of 5-HT and its binding sites (5-HT2) between juveniles and sexually recrudescing 

females. 5-HT role(s) differ between brain regions in the same class of trout; to illustrate, 

differing 5-HT:Bsp ratios between the olfactory lobe and other brain regions suggest that 

0 5-HT neural activity in the olfactory lobe differs from that in other elements of the pre- 

^ optic-hypothalamo-hypophysial axis. These findings provide fertile ground for future 

2 projects involving direct neuroendocrine role(s) of 5-HT and its binding site in the teleost 

3 brain:pituitary axis. 

Therefore to conclude, my results demonstrate the presence of both, 5-HT and its 

> specific 5-HT2-like binding site in the brain [pituitary regions of the rainbow trout. Levels 

L6 of both 5-HT and its binding site differ between specific brain regions, with highest levels 

7 in the hypothalamus. Also, levels of both 5-HT and its binding site differ between juvenile 

18 and sexually recrudescing female trout, suggesting that 5-HT role(s), prominent in teleost 

19 hypothalamus are influenced by the sexual status of the fish. Differing 5-HT:Bsp ratio in 

20 the olfactory lobe suggest that 5-HT regulation of the olfactory lobe differs from that in 

21 the pre-optic-hypothalamo-hypophysial axis. This demonstration of the existence of 5-HT 

22 and its binding site in trout brain regions, in my study, is a timely contribution to the 

'^3 already existent information on 5-HT role(s) in teleost brain [pituitary axis. 
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Appendix 1 

Determination of kineticallv derived estimates of and Kn 

The kinetically derived equilibrium dissociation constant (KD) was determined on the basis 

of association and dissociation experiments; KD = k-i/k+i where Li and k+i represent the 

rate of dissociation and the rate of association respectively. 

Li was based on a semilogarithmic plot of dissociation data (Fig 2b, chapter 2) 

wherein. In Bsp/Bzerot was plotted as a function of time t (min); where Bzerot was Bsp 

immediately before addition of 5000 fold excess unlabelled ketanserin. The equation of the line 

was In B/Bzerot = 0.0803 x time + 0.417 , r^ = 0.93, with slope of the line (Li) = 0.0803 min'\ 

and half -life (ti/2) = In (0.5) /k.i = 8.7 min (Bylund and Yamamura, 1990). 

k+i estimated from a pseudo first-order association plot (Fig 2a, chapter 2), was based 

on equation of the line [ln(Be/Be-B)] = 0.129 x time + 0.0437 , r^=0.9 (Bylund and 

Yamamura, 1990), the slope of which (kobs) was 0.129 min'\ 

k+i = (kobs - k-i)/F, where F is die concentration of free radioligand. 

k^i (kobs-k.i)/F 

0.129-0.0803 
InM 

0.048 min'^ nM'^ 

KD for [^H]ketanserin binding to hypothalamic membrane preparation was calculated as: 

KD k-i (min'^)/k+i (min’^ nM'^) 

0.0803/0.048 

1.67 nM. 
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Appendix 2 

Determination of Scatchard estimated values ofKn. 

In a Scatchard analysis (Scatchard 1949), the ratio of bound to free (B/F) radioligand is 

plotted versus bound radioligand (B). The equilibrium dissociation constant (KD) is the 

negative reciprocal of the slope, and maximum binding capacity (BMAX; 250 fmol/mg 

protein) is the intercept on the x-axis! For saturation experiments (Fig 3, inset. Chapter 2), 

KD and BMAX were estimated from the equation of the straight-line: (Bound/Free = -2.07 x 

10 ^ Bound + 0.03, r^=0.95). 

Therefore: KD (- slope) nM'^ 

- (-2.07) nM-^ 

0.48 nM 

Similarly for displacement data, estimates of inhibition constant (Ki; affinity of the 

inhibitor for the 5-HT2-like binding site. Table 1, Chapter 2), for each competitor were 

based on Scatchard analysis (1946) where the ratio of bound to free (B/F) radioligand is 

plotted versus bound radioligand (B). 

Half-maximal inhibitory concentration (IC50) values for each competitor were 

estimated from logit-log plots: logit values (logit = ln[P/(100 -P)], P is percent bound) of 

total [^Hjketanserin binding to trout hypothalamic membrane preparation versus -log 

[competitor, M] (Bylund and Yamamura 1990). The IC50 value was the concentration of 

competitor when P=50% (Table 1, Chapter 2). 

logit In [P/(100-P)]; where 

P B-NSBx 100 
Bo 

amount of Bsp in the absence of competing drug. Where B, 



The accuracy of Ki values from Scatchard analysis (1946) was confirmed by comparable 

Ki values, estimated by the Cheng & Prusoflf (1973) equation, 

Ki = IC50 / [1 + C / KD], where C is concentration of radioligand and KD is 

dissociation rate constant obtained from saturation experiments. 



Appendix 3 

l. Estimation of specifically bound [^HJketanserin Bsp (cpm) as pmoles/g tissue (wet 

weight). (All conversions for binding data were based on this calculation). 

Radioactivity of sample 

Conversion of cpm to dpm 
(50% efficiency) 

Conversion of dpm to Ci 

a cpm 
a cpm -r (0.5 cpm/dpm) 
= 2a dpm 

2a dpm 2.2 x 10^^ dpm/Ci 
=0.909ax 10'^^ Ci 

Conversion of Ci to moles 0.909a x 10'^^ Ci 61 x 10^ Ci/mol 
(S.A = 61 * 10^ Ci/mol) = 0.149a x 10'^^ mol 

Relation of moles to tissue mass = 0.149a x 10'^^ mol -r “y” tissue weight (g) 
= 0.149a X 10'^^ X (mol/g tissue) 

y 
4 
5 2. The equation of straight line from standard graphs of biogenic amines and metabolites 

were used to estimate pg as pmoles/g tissue (wet weight) in HPLC-EC analysis. 

Specie concentration (pg) was calculated from corresponding peak height (volts) 

values. 

Level of chemical specie detected “b” x 10'^^ g 

Total amount in 1 tissue (“b” x 10*^^ g )x 50 
(1 tissue was homogenized in 500 pi HCIO4 
each (except pituitary in 200 pi HCIO4), 
but injection volume was 10 pi) 

Conversion of pg to moles 50b x 10’^^ g -r MW (g/mol) 
= 50b X 10'^^ mol 

Relation of moles to tissue mass 50b x 10’^^ moles -i- “y” tissue (g) 
= 50b X 10'^^ X (mol/g tissue) 

y 



Appendix 4 

1. Chemical structures of competitors used in displacement experiments (Chapter 2). 

Figures adapted from Research Biochemicals International 1995Catalog/ Handbook. 

Group I 
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Group IV 

Reserpine 

CHjO 

CKTKi 

5-HIAA 

CHJCHINHJ 

o 
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8 2. Chemical structures of biogenic amines used in HPLC-EC analysis (Chapter 3). 
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