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ABSTRACT 

Elastic scattering and inelastic scattering of conduction 

electrons by oscillating ionized impurities in semiconductors 

have been analj^zed on the assumption that the scattering poten- 

tial is the Coulomb potential between the conduction electrons 

and the excess charge of the impurity ions and that the electrons 

are non-degenerate and have a simple spherical energy bands. 

Two possible cases for impurity oscillations by thermal agitation 

are considered; (i) ionized impurities oscillating with a local- 

ized oscillating frequency, o) , widely separated from the normal 
o 

acoustic and optical modes of the crystal, and (ii) ionized 

impurities oscillating with frequencies common to those of host 

lattice. 

The analysis shows that the effect of impurity oscillation 

tends to increase the effective deformation potential coupling 

constant, and hence to decrease the effective electron-phonon 

relaxation time. But the change of those parameters due to 

this effect is very small in most extrinsic semiconductors 

even at temperatures up to their melting point and with impurity 

concentrations reaching the degenerate condition. The computed 

results including the effect of impurity oscillation are 

practically similar to those of Conwell and Weisskopf, and 

Brooks and Herring. This effect can not explain the deviation 

3/2 
from the T law experimentary observed in several semiconductors 

such as Ge and Si. 
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INTRODUCTION 

In valence semiconductors it is well-known that the formula 

of Conwell and Weisskopf (1950) accounts reasonably well for mobility 

arising from the scattering of electrons from ionized impurities. 

In this model the impurities are assumed to be stationary and the electron 

(n-type semiconductors) or the hole (p-type semiconductors) are scattered 

elastically from a fixed Coulomb field. This formula leads to a T^^^ 

temperature dependence of the electric mobility. There are, however, many 

examples of semiconductors with mobility dominated by ionized impurity 

scattering, where deviation from the T ' law has been observed (see, e.g., 

Debye and Conwell (1954); Morin and Maita (1954); Ludwing and Watters (1956)). 

These experimental evidences show that a temperature dependence of the 

mobility generally follows i the form T*^ with < n < 2^. 

Many investigators have considered the effects to be expected in 

a medium containing a number of impurities. Brooks (1951) replaced the 

Coulomb potential by a potential screened by the conduction electrons 

and obtained essentially the same result as obtained by Conwell and Weisskopf 

(1950), who used a simple Rutherford scattering law, as for an unscreened 

ionized impurity, but cut off the scattering at small angles. Dingle (1955) 

considered these problems in detail. Horie (1950) took into account 

the local dilatation of the lattice in the neighbourhood of the impurity 

center. 
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It is actually not easy to account for the departures of the 

impurity mobility from the T ' law. These theories are affected in 

only the cut-off effect in the.scattering cross section and this 

quantity enters logarithmically into the expression for the mobility, 

so that this effect is rather weak. In most circumstances it does not 

seriously modify the temperature dependence from that given by Conwell 

and Weisskopf (1950). Another possible correction is that for electron- 

electron collisions which act to equalize the distributions, and hence 

reduce the mobility (Spitzer and Harm (1955)). 

To explain the observed temperature dependence of the properties 

of a semiconductor, we shall consider more closely some of the mechanisms 

that scatter electrons in crystals. The two most significant modes are 

scattering by ionized impurities and scattering by thermal oscillations 

of a crystal. These scattering mechanisms occur simultaneously in real 

crystals. We shall consider the effects of elastic scattering by ionized 

oscillating impurities in Parts I and II, and the effects of inelastic 

scattering by ionized oscillating impurities in Part III, where we shall 

derive the effective deformation potential (the electron-phonon coupling) 

constant, Cg^^(T,np^^), by comparison with the ordinary lattice-electron 

scattering result for a pure crystal (Kittel (1963)) to see the effects of 

the temperature, T, and the ionized oscillating impurity density, n^^^. 

We shall derive the relaxation time from which we can deduce the various 

transport coefficients. 
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We introduce in this thesis a model in which the impurity atom 

oscillates around a fixed equilibrium position. This kind of model 

was first introduced by Koshino (1960, 1963) to understand departures 

of the resitivity of dilute alloys from Matthiessen's rule. Similar 

investigation was made by Taylor (1962, 1964). That impurity atoms 

are oscillating around their equilibrium positions is self-evident 

and the conduction electrons are scattered by not only host atoms but 

impurity atoms. Hence the scattering from localized ionized oscilat- 

ing impurity atoms or from ionized oscillating impurity atoms incorpo- 

rated with the host atoms may contribute the electronic conduction 

significantly. We therefore consider the following two possible cases. 

In Part I, we consider the impurity to have a localized oscillating 

frequency, , widely separated from the normal acoustic and optical 

modes of the crystal. This model implies that the frequency, , is larger 

than kgO/ti where 0 is the Debye temperature of the crystal. For simplicity 

we treat the ionized impurity atom as a simple harmonic oscillator which 

scatters the conduction electron through an oscillating Coulomb force field. 

We introduce a cut-off equal to the half distance between impurity centres 

to avoid the divergence of the Coulomb type cross section. 

In Parts II and III, we consider a more developed model in which the 

ionized impurity atoms oscillate with frequencies common to those of the 

host atoms. We assume here that the thermal motion of ionized impurity 

atoms is identical with that of the host atoms. 
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This assumption may be valid particularly at low acoustic frequencies 

since for long wave lengths many atoms are moving in the same direction 

and will carry the impurities with them when the mass and the valence of 

the impurity atoms are not much different from those of the host atoms. 

The problem here is thus one of normal modes and we consider the 

phonon absorption or emission process due to the thermal motion of ionized 

impurity atoms interacting with the conduction electron through an oscil- 

lating, screened Coulomb force field, where electron-lattice interaction 

involves the absorption or emission of one or more acoustic phonons and 

hence such processes are inelastic. However,the cross section for an 

electron scattering from ionized oscillating impurity atoms has also an 

elastic part in which no acoustical phonons are absorbed or emittted. 

We thus consider the full elastic scattering processes as well as the 

inelastic scattering process for the cross section of the oscillating, 

screened Coulomb field. 

The relaxation time due to the full elastic part is obtained by the 

theory mathematically identical with that for the recoil-free y-ray emission 

by nuclei bound in solids (Mossbauer (1958)) or that of newtron capture by 

crystals (Lamb (1939)) and also with that of X-ray scattering from a crystal; 

the well-known Debye- Waller effect (see, e.g., Ziman (1972)). 

The relaxation time due to the inelastic part is derived by solving the 

Boltzmann transport equation (see, e.g., Wi 1 son (1965)). 



PART I 
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Electron Scattering from Localized Oscillating Impurities 

1. Model Hamiltonian 

To determine the relaxation time due to scattering of conducton 

electrons by ionized impurity atoms in semiconductors, we first 

postulate a model in which the ionized impurity atoms oscillate with 

a natural frequency, o)^, widely separated from the normal modes of lattice 

vibration in the host crystal. Since the acoustic modes pass through zero 

frequency this model implies that is much larger than the Debye 

cut-off frequency, = k^e/ti, where 0 is the Debye temperature of 

the bulk material, and also smaller than the optical frequency. 
XU 

Therefore it is sufficient to consider the iionized oscillating 

impurity atom as an isotropic harmonic oscillator with a position 

coordinate, ^i2* ^i3^* measured from its equilibrium 

position which may be taken(without loss of generality) to be the origin. 

The conduction electron is then at " ~e^^el* ^e2’ ^e3^ 

Hamiltonian of the system is: 

H = 
2M % 

+ 5s (1-1) 

where M and m are the mass of an impurity atom and the band-model 

effective mass of a conduction electron, e is the dielectric constant 



of the bulk material and Z is the excess charge of the impurity atom. 

We treat the last term in (1-1) as a perturbation; 

Ze' 
int £ r -R. 

0 ^^^e '^1 
(l-l:a) 

for which the unperturbed Hamiltonian is: 

H° = - 
OM p- + 4 Moj (l-l:b) 

and the corresponding wave function is: 

n,k> = 
'XJ ^ k^e Of 

(1-2) 

where the wave function of the ionized oscillating impurity atom is 

that of an isotropic harmonic oscillator; viz.. 

3 3 n 
H^,(/3X,.)exp{ -%,32X.2} (i-2:a) 

where 3 = (——) and is the Hermite function, and we take the 
J 

wave function for the conduction electron to be a plane wave normalized 

to the volume of the crystal. 

0 

(l-2:b) 
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The energy of the unperturbed system is: 

E° = ttu) (fl + 3/2) +(1-3) 
" 2m 

where is the vector with components, n. (j=l,2,3) characterizing the 

state of the oscillator. 

2. Scattering Matrix 

For the Born approximation the matrix element for transition from a 

state,(n,k), to another, (n',k‘), is given by: 
'V 'V '\j '\j 

To solve (2-1), we introduce new coordinates; centre-of-mass 

coordinate and relative coordinate; viz.. 

■k 

where m = M + m . 

(2-2:a) 

(2-2:b) 

The inverses of (2-2) are: 
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m 
^ ’ m 

r 've % w\ ^ 

(2-3:a) 

(2-3:b) 

hence (2-1) can be written in terms of the new coordinates as: 

-7T 
0 0 

xlJl dR^ (2-4) 

where |J| 1s a Jacobian; 

II _ 

9r 9r 

9R. ^1 

9? '\j 

9R. >1 

= 1 

and K = k - k‘ is the change of the wave-vectors of a conduction electron. 
'\j '\j ^ 

We now introduce the shift operator: 

“ ^ • JTT 

S(P) = e " (2-5) 

which has the property that for any function, F(R) 

S(R) F(R) = F(R -«) (2-6) 
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i.e., S operates to shift the argument of F from R to R - a. By use 

of (2-6), we find: 

(j) = e 

m ^ 
m ^'dR * 

’5{X^,(R)X^(R)} (2-7) 

Using (2-7), the matrix element (2-4), may now be written: 

<n*k'IH. .Ink> = - Ze 
e V / p 

0 0 ' 

* 
m d 

iK-R.nSL 3 
'\j Or 

(2-8) 

where the integral over R may be evaluated by expanding the shift oprator 

and ignoring higher order terms, i.e., 

/ 
* 

m d 
m ^dR r * /QN /4D^ 

e {Xjr,.(g)Xjj(JS)>e >dg 

=  )(xJ,(«)x^(R)}e^‘«-«dg3 

+ ••••)/'xJ.()?)x^(R) C1R3 (2-9) 

Hence substituting (2-9) into (2-8), we find: 

Ze' 

e V 
0 0 

/- 
. M 
1 m 

^ i 
*Jx*.(g)x,{^)e^'J^’V 

(2-10) 
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The integral over ^ breaks up into two parts 

2 
• M 

/ e .3 4TT / m \ J —j— " :r'i^ ■) 

£ 
K 

and 

/ 
1- FTK 

.3 . 8'TT , m v3 
‘‘ft =' ^ir' 

(2-ll:a) 

(2-ll:b) 

Hence (2-10) becomes, using (2-11), 

fxn*(«)Xn(«) e V K / ^ ^ 
0 0 

47rZe^ 

e V K 
O 0 R 

-jx^U^)x„{^) e‘«-« <JR3 (2-12) 

Since ^ «1 , where = jj-jlc' and x-(Jg) is given by (l-2;a). 

The first factor in (2-12) leads to the ordinary Coulomb scattering 

from a stationary nucleus but the integral modifies the matrix element 

through the oscillations of the impurity centre. We note that when 

statistical averages are taken, both n and JK will depend on the 

temperature and hence the integral indicates the possibility of a 

modification in the temperature dependence for ionized impurity 
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scattering from that given by the Conwell-Weisskopf formula. 

2-1 Scattering from the Zero-point Oscillations 

It is instructive to examine the effect of the zero-point oscillation 

of the ionized impurity atom; at the absolute zero temperature, T = 0°K, 

the ionized oscillating impurity atom is in the ground state, i.e., 

ji' = jj = 0. In this case the integral in (2-12) may be written: 

where the ground state wave function is: 

x^(Xj) - (/ir3 exp(-i^3^Xj^) ^ 3 = 1,2,3. (2-l4) 

Hence: 00 

e 

so that (2-13) becomes: 

J = 1 

3 
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The matrix element for the ground state is thus: 

'2-15) 
£ V K 

0 0 

Mtx). ^ 

where K = k - k' and 3 = (— 
'h ^ % n 

We note that (2-15) becomes the matrix element for pure Coulomb 

scattering from a stationary impurity nucleus only when 3 ^ i.e., 

M -> « or (JO^ ^ The exponential factor in (2-15) can be v/ritten as i 

exp i- 4^2 f 
exp 2M )/( 

= exp J- ( Recoil energy of the impurity nucleus 
4 ^ Zero-point energy of the impurity nucleus (2-16) 

This shows that when the recoil energy of the impurity nucleus is very 

small compared to the zero-point energy of the oscillating impurity, 

the Conwell - Weisskopf result is exactly recovered. For larger 

recoil, the matrix element may be reduced and may lead to an enhanced 

mobility of the conduction electrons. 

2-2 Elastic Scattering at Finite Temperatures 

When T > 0°K, we must consider the integral in (2-12) for an 

n and n' are not zero. The case, n = n' 
'KJ 'X, ■ '\J i 

arbitrary excitation; i.e.. 
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leads to the elastic scattering, but |j' involves the emission or 

absorption of one or more phonons and leads to inelastic scattering. 

Here we consider only the elastic scattering case, i.e., n = |j'. 

For finite n; i.e., n. ^ 0 (j = 1,2,3), we must calculate thb 
^ j 

integral; 

I 
J ^ i K X 

(2-17) 

where Xp (XO» the normalized simple harmonic oscillator wave function, 
J 

is given by: 

X„ (Xj) = H (sx.) 
j ^ ^ j 

(2-18) 

Letting n = 3X-, there results: 
vl 

l!, ■ 
_ 2 i(K./3)n 2 

e ^ e ^ H (n) dn 
j 

(2-19) 

To evaluate (2-19), we introduce the generating function and for 

the Hermite polynomials ( e.g.*see Margenau and Murphy (1956)): 

2tx - t^ °° t^ 
" ^ A—0 » 

(2-20) 
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In our case, t E 1K./23 and x = n» so that: 
J 

iK.n/S -K.^/4S^ » .A K. A 
(2-21) 

Substituting (2-21) into (2-ig), the integral (2-17) is: 

2,..2 
-1 "'^i 

.A) ^ P ^ 
J 

TJ "i -1 -Ki^/4B^ 

(2-22) 

Since (n) is an even function of ru in order to calculate the 
J 

non-zero solution, A must be an even integer. Letting A = 2p 

(p = 0,1,2, ), (2-22) becomes: 

2...2 1j n. -K. /4B » / ,,P K. 
„ = (/if 2 n.l) ^ e ^ E (-^)‘^ I „ (2-23) 
"j J- p=0 (2P) 4^2 |p,n. 

where I I P>n, 
is: 

c 

Ip.rij "/' e (n)H^^ (n) dn j = 1,2,3. 
^ j 

(2-24) 

To evaluate the integral, (2-24), we now make use of the identity: 

(2-25) 
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so that: 

p,n 

a 

-/ 2p' ^ n' dn 

and by partial integration, (2-26) becomes 

a 

|p.n =/ 

Again by use of (2-25) and partial integration, 

CO 

|p,n " f®'" 

SO that repeating in this manner, we finally obtain the result 

op 

|p.n =/ dr) ^ 

n 

But since H^(n) = 1, we have the final expression of |p ^ 

2 ,n 

|p,n 

It is now easy to evaluate (2-27) for small values of n; 

(i) n = 0 

|p,n 

(2-26) 

(2-27) 

. 00 
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where use has been made of the orthogonal result; viz., 

00 

.00 

(ii) n = 1 

00 00 

|p^l=y'e‘" -j;r{H2p{n)Hi(r,)}dn =/'e'" {n2p(n)Hi{n) 
.00 ^CO 

+H2p(n)Hj(n) | dn 

By use of the recurrence formula, viz., 

H|!^(ri) = 2nH^_^(n) 

and of (2-28)^ we obtain: 

00 

2 ^2 
^ J® H2p(ri)H^(ri)dn + ^ H2p_j(n)Hj(n)dn 

=2/ir <S ^ + 8v/V^p 6 , p,0 ^ p,l 

(2-28) 

(2-29) 
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(i i i) n = 2 

2 2 

Ip,2=/®'" ^ {H2p(n)H2{T,)} dn 
-00 Qn 

oo 2 

~ S^ ^ H2p(n)H2(n)| dn 

2 

-^{ 4H2 Hj + 4pH2 JH2| dn {By use of (2-29)) 
— 00 

" "PS-l"2 " 4P^<2p-1^^2}'*^ 

00 2 

= /"■' i^Vo ^ 8p{2p-l)H2p.2H2}dn 

(By use of (2-29)) 

= 8/JT Q ■•■ 64/rT p6p ^ + 64/7Tp(2p-l) 6p 2 

(By use of (2-38)) 

(iv) n = 3 

Ip,3 " ^^’^‘^p,0 ^ S.l ■" 192V7p(2p-l) 6p^3/2 

+ 384/ir p(2p-l) 6„ , + 1536/)f p(p-l)(2p-l) , 
P »t P » O 
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(v) n = 4 

|p^4 = 384/^r 6p_Q + 1536/^ (3p+l) + 3072/!^ (2p-l)(5p+l) 6^^^ 

+49152/S' p(p-l)(2p-l) «„ , + 24576/ir p(p-l)(2p-l)(2p-3) „ P 5 O P » ^ 

From these results we deduce that: 

j j ,/ 2 1J J 

"rP 

2,..2 
K, -K,V4B 

j 1 (-f) ® ' J n. 6^ 
(2-30) 

PJ 9 ? 
^ is a polynomial of degree n. with argument, K- /3 , and may 
n. J J 

be expressed as: 

J K 2 

P"j - 

1 for K. << 3 
* J 

2"^ nj! 

(j = 1.2,3) 

(-1) I ( —p ) j for K. >> 3 
3 ^ 

(2-31 :a) 

(2-31:b) 

By use of (2-30), the matrix element, (2-12), for scattering due 

to the ionized oscillating impurity with a localized frequency widely 

separated from the normal modes of the host atoms is: 

<nk' IH. . |nk> = - 477 Ze^ 

e V j = l * n) 3^ 
0 0 J 

2 2 2 

F^( e (2-32) 
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'1 , is given by (2~31:a,b) and K. . 
* * j O U 

We note here that the factor, 

3 
n 

j=l 

2 

is due to the impurity oscillation and that if 3 (2-32) becomes 

the ordinary pure "Coulomb" scattering matrix element for electron 

scattering from a fixed scattering centre, and leads to the Conwell- 

Weisskopf formula. 

3. Mean-Free-Time and Relaxation Time for Momentum Transfer 

3-1 Mean-Free-Time 

The matrix element for the elastic scattering of a conduction 

electron from a state, k, to another, k', by interaction with a localized 

oscillating ionized impurity atom in the state, n, is given by (2-32); 

viz., 

2 3 
4iTZe'^ . 

2 ^ 
e V r j = l 

0 0 

2 2 

)-e J (3-1) 

where = J< " J<'» 3 = (Ma)^/!^) and is given by (2-31). We may 
j 

now calculate the mean-free-time of a conduction electron by use of 

the microscopic transition probability second based on Fenai s 

Golden rule, viz,, 



Rk-.nk' '^nk) 
'\/\> ’\f\) '\f\j 

(3-2) 

where the initial and the final energies of the system are: 

-2. 2 
E' , = Tiw (n + 3/2) + 

2m 

En.k'=K(fl"3/2) 
^ 2m 

(3-3:a) 

(3-3:b) 

Since for elastic processes the oscillata states do not change, 

the 6-function in (3-2) ensures the energy conservation of the 

system . This im-olies : 

k - k' (3-4) 

To find the mean-free-time of the conduction electrons, we must 

appeal to the electronic distribution function, f(k,t), such that: 

\ f(Jfe.t) djc^ (3-5) 
01T 

is the number of conduction electrons with wave numbers between k 

and k+dk. Here f(k,t) is a dimensionless quantity. The rate of 

change of f(k) due to scattering of electrons from a state, J<, to 

another state, k', by the interaction with all the localized oscillating 
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ionized impurity atoms in various states, n, may be given by: 

E E 

<3 r F.R 13 '^13(;-"13J$' 
(3-6) 

where E = E E E and is the number of localized oscillating jj n^ ^2 "3 « 

ionized impurity atoms in a state, ;j. 

Similarly, the rate of change of f(J<) due to the inverse scattering 

processes of conduction electrons from a state, jk', to another, )<, 

by the interaction with the localized oscillating ionized impurity atoms 

may be given by: 

gain = E E 

13 13 I3i3'^l3^ 
(3-7) 

We note that, in (3-6) and (3-7), we have introduced the Fermi 

statistics to the electrons and employed the probabilities of un- 

occupancy of electron; l-f(k') and l-f(k), which make sure the electrons 

to be scattered into either the k'- or k- states. We assume that a- Or 

the impurity atoms are in good thermal contact with the host atoms, 

so that at temperature, T, F is determined by its equilibrium value; 
KJ 

viz., 

exp I -(fl + 3/2) tlo^/kgTj. (3-8) 
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where is the total number of the localized oscillating ionized 

impurity atoms and a is the partition function of a three dimensional 

isotropic oscillator. 

By adding (3-6) and (3-7) we have the net rate of change of f(Jl<jt) 

at net at Jgam at J1 oss 

= z z (3-9) 

where we have used the property of microreversibility, i.e.. 

Pik->nk' Pr nk->nk‘ I nk'-^nk 
\/\j 

We may write (3-9) as follows 

A{k) - B(k).f(k) 

where 

A(J<) = E i: p p f(^') 

B(J<) = E E 
n k' ■ n ■ nk->-nk 
'V 'Xf *\j xy\; 

R P, 

(3-10) 

(3-10:a) 

(3-10:b) 
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If we assume that f(k) is not too far from its equilibrium value, 

we may regard A(jc) as a slowly varying function of time and (3-10) may be then 

integrated to give: 

f(^) ' (3-11) 

As t -> <», the distribution function, f(J<), must attain its 

equilibrium value; viz., 

= |exp(E(J<) - u)/kgT + l|'^ (3-12) 

SO that A(k) /B(,k) = f°(k) and we obtain: 
^ ^ 'V 

f(k) = f“(k) (3-13) 

Clearly we see that B(k) acts as a reciprocal relaxation time for 

the distribution function to approach equilibrium. It is, in fact, 

the mean-free-time of a conduction electron, viz.. 

rn u* F P u ' n k I n r nk-^nk 

From (5-10, 11, 15, 14), we haves 

(3-14) 
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= -B()<) { f()<) - f°(k)( 

=. f.(a- (3-15) 

and (3-15) is the usual form of the collision term employed in the 

Boltzmann's equation. Using (3-1),(3-2), (3-3:a,b) and (3-8) in (3-14) we 

may obtain the explicit form of the mean-free-time of a conduction electron. 

But of greater interest for mobility calculation is the relaxation time 

for momentum transfer considered in detail in the next section. 

3-2 Relaxation Time for Momentum Transfer 

A conduction electron being scattered from a state, k, to another 

state, J<‘, by a localized oscillating ionized impurity suffers a 

momentum loss: 

Therefore,the total rate^at which linear momentum is being transfered 

from all the electrons with wave numbers between k and k + dk to all 
a- ^ 'X, 

of the localized oscillating ionized impurity centres^is: 

(3-16) 

(3-17) 
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Similarly, the total rate^at which linear momentum is being gained 

by all the conduction electrons with wave numbers between J< and k+d^ 

through interaction with all the impurities^is: 

Consequently the net rate^at which linear momentum is being gained 

by all the conduction electrons with wave numbers between k and k+dk 

through interaction with all the impurities is: 

3M(k) 

“Tt J net 

3li(k) 

“Tt gam 9t , loss 

= E E P (3-19) 

where use has been made of the property of microreversibility; 

nkmk' nk'mk 
W 'W 

Since the total linear momentum of all the conduction electrons with 

wave numbers between J< and )<+d^ is: 

(3-20) 
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(3-19) becomes: 

^ 8/t 
= E S 

<3 J$ )3 !CJ3-"33l^ 

or 

5f(k) 
dV = A(J<) - B{k)-f(^) (3-21) 

where: 

A(|<) = E I {l- F P ^ I,. 

B(k) = I E 
C Js .(■-^>F„ R J3 

(3-21:a) 

(3-21:b) 

Clearly B(Jk) acts like a reciprocal relaxation Time for Momentum 

transfer to the localized oscillating ionized impurity centres; i.e.. 

1 

—TkY ^ ^ 
{l . p p 

\j \AJ 

(3-22) 

where p" and given by (3-B) and by (3-2) with (3-1) 

and with (3-3:a,b), respectively. Employing (3-1) and (3-2) becomes: 

2 
1 2TT ( , 
T-i r\ 

p|n PV)! 
• rnlj=l . 6 2 ) 

, k • k' 
2l- -7- 

(H')" 

\f\j 

(3-23) 
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It is now convenient to replace the summation over the final state, 

J^', by the integral as a usual manner; viz., 

(3-24) 

(3-25) 

where z = z z E 
U 02 Og 

To evaluate (3-25), we establish J< along the x^-axis in the Cartesian 

coordinates, and let J<' make angles, 0 and c|), in the polar coordinates. 

so that using (3-24), (3-23) becomes: 

From (3-3:a,b) we have: 

F F = /b.2 ,2^ 
^nk' ■ ^nk - * ^ 
'vu -VO 2m 

from which: 

k'^dk' = (3-26) 
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so that (3-25) becomes: 

(3-27) 

Noting that the integral over the energy contributes only when 

k' = k, we have: 

We note here that the above integral diverges at e=0. This is 

the usual "Coulomb cross section divergency" which may be eliminated by 

introducing the fact that small angle scattering has to do with 

electrons whose distance of closest approach to the scattering centre 

is very large, or by introducing the screening factor of electrons 

which screen the scattering centre and cut off the long range effect of 

Coulomb field at a certain distance. There is thus a limit to the 

smallness of the scattering angle possible since for great enough 

distances the electron will see not only the scattering centre in question 

2 

k'=k l-cose 
sine 

(3-28) 
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but also the next-nearest-neighbour scattering centre. The lower limit 

on 0 in the integral in (3-28) is thus given by the scattering of 

electrons whose impact parameters are approximately half the mean distance, 

L, say, between nearest neighbour scattering centres. We now note that 

the greatest contribution to the integral in (3-28) comes from small 

angle scattering. Hence we may take the polynomial being approximately 

unity. We may then perform the sum over easily to give the total 

number of impurity atoms; i.e.. 

. F ■ «S*> ■ 
R R 

where is the impurity concentration given in terms of impurity 
(+ ) -3 spacing, L; n^ = L . We, therefore, have (3-28) as: 

--J^(l - cose) 

de (3-29) 

We note that (3-29) leads to the Conwel1-Weisskopf result if 6 

goes to “. 

3-3 Determination of Small Scattering Angle 

Before proceeding the calculation of (3-29), we must determiners . . > min^ 
the small scattering angle. From the dynamics of collisions (Goldstein, 

(1950)), the relative velocity of the electron, v, its impact parameter. 
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bs and the scattering angle, e, are connected by the Rutherford scattering 

formula; viz., 

(3-30) 

As mentioned in the previous section, the limitation on impact 

parameter is equivalent to the limitation on e. For the largest 

impact parameter, b = L/2, i.e., half the mean distance between 

neighbouring impurities, we have: 

e 
tan min „ 2Ze^ 

* 2 
m V 

e L 
0 

(3-31) 

This gives the lower limit on the angular integration in (3-29). 
* 

Here v is just the electron velocity because the electron mass, m , 

is much smaller than the impurity mass, M. From (3-30), we see that 

e = 0 corresponds to b = «>, and which is not allowed when the impurity 

-3 (+) concentration is finite (Recall L” « n^ and that e = TT corresponds 

to b = 0(back scattering), we see the limitation on 0 % 0 

2 
necessarily. Letting = 2Ze /e^L for potential energy at the half 

* 2 2 2 * spacing of impurities and = m v /2 = "h k /2m for kinetic energy of 

an incident conduction electron, (3-31) gives: 

tan min 
sin 

O 0 . 2 min 

or 

1- sin^ 
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Hence: 

(3-32) 

From (3-32), cos0„. - 1 for E » P gives 0_. > 0 (small angle min e e min ^ 

scattering), so that small angle scattering will be predominant mainly 

at fairly high electron temperatures and low impurity concentrations. 

3-4 General Form for Relaxation Time and Deduction of the Conwell- 

Weisskopf Result 

From the small scattering angle, we can calculate the 

reciprocal relaxation time, (3-29), due to the scattering from localized 

oscillating impurity atoms by use of (3-32). Before obtaining the 

general form we first obtain the Conwel1-Weisskopf result by taking 

3 Then (3-29) becomes: 

scattering) but cos0 - -1 for E « P gives 0 - TT (back min e e min 

2 4 * (+) 
Q m n ' • 

(3-33) 

which is the exactly the result obtained by Conwel1 and Meisskopf 

assuming fixed scattering centres. To calculate (3-29),generally 
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2 2 
we introduce a new variable, X = ( 1 - cose)k /a . The upper and the 

lower limits of the integral in (3-29) are, respectively, 

Xu = 
6 

(3-34:a) 

and 

X. = „2 
r _ 

1 + 

(3-34:b) 

so that the integral in (3-29) becomes: 

2 
7T - - . K- 

I sine 

/ ^ 

-d-cose) ~ h -X 
de E ‘ ® dX 

'6=0 . 
min 

(3-35) 

We may evaluate (3-35) from tables of the exponential integral (see 

e.g,, Arfken, (1970)); viz.. 

-t 
dt (3-36) 

(3-35) may be given in terms of E^.; viz., 

X.. 

^ V “X V / V = Ei(Xi) - E,.(XJ (3-37) 

but it is difficult to extract the functional dependence unless the 
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argument is very small or large. 

2 2 
Now consider the quantity, k /g ; viz., 

m k^ _ tik^ _ « , 
,2 " Mo) “ ^ -ho) ^ M 
3 o o 

(3-38) 

2 2 * 
where = Ti k /2m is the energy of an incident electron. From (3-38) 

13 -1 
we see that, unless oo is unusually small (assume co 10 sec ) or 

is particularly large (usualTy E^ ~ 10’^^ . 10”^^ erg), the quantity S 6 
2 2 

k /3 , will be much less than unity since the ratio of an electron mass 

-5 
and an impurity mass is of the order of 10 . Hence in such a case we may 

expand the exponential term in the integral (3-35) to give: 

X.. 

I \ 2 2 ^dX = ln^- (X^ - X^) + % (X/ - Xi^) - 

e , 2k- , = in (1 . ) . 24 ( 
,2 

1+ E//P/ 
-) + (3-39) 

2 
where use has been made of (3-34:a,b), and 3 = Mcjo^/ti. 

From (3-29) and (3-39), the reciprocal of relaxation time for 

momentum transfer becomes: 

72 4 (+) j TTZ e n^ 

2(2m*)^=E 3/2 

2 2 2 
E ^ 2 E^VP/ 

In (1 + -^) - ^ (—- o- g ) + 
Pe' B' 1+ E//P/ 

(3-40) 
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2 2 * where E = n k /2m is the energy of the incident electron and P 
^ 1/3 ^ 

= 2Ze^/£^L = 2Ze^n^^^ /e^ is the potential at half spacing of 

impurities. We see from (3-40) that if 3 goes to infinity, (3-40) 

leads to the Conwell-Weisskopf result. 

(i) Fairly Low Temperatures and High Impurity Concentrations 

In this case the condition, « P^, is satisfied, so that we can 

expand the logarithmic term in (3-40) to give: 

(+) 
TTZ e n^ 

? * 
e, (2m )^ 

4E 

(jQ 

m 

We, therefore, have the relaxation time as: 

xy AE^ (1 + + e 
(3-41:a) 

where: 

If we assume the phonon temperature, Tp E "hco^kg = 200°K, electron 

temperature, T^, of the order of 10 ^ we have BE^ - 1. Otherwise^BE^ is 

negligibly small. 
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(ii) Fairly High Temperatures and Low Impurity Concentration 

In this case holds and the reciprocal of the relaxation 

time, (3-40), is expressed by: 

"i ’ e 3/2 
In (y-) 

2E. 

i^O) 
m 

This leads toi 

Ti 
3/2 (1 + DEg +  ) (3-41:b) 

where: 

C = 
O 

« -,2 4 
27TZ e n, 1n(E^/Pg) 

^ -\tuo ln(E /P„) * o e e m 

and the logarithmic term, ln(E /P^), is slowly varying with E^ ^ KT„ 
0 0 0 0 

(T^: the electron temperature). Clearly DE_ must be comparable to 
0 0 

3/2 
unity if other than a dependence of mobility is to be observed, 

but this is unlikely since for all reasonable values of co^ not in the 

spectrum of the lattice vibration it is clear that: 

Tg « 
M 

m 
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where Tp E is the phonon temperature of the impurities. Assuming 

Tp 200°K, as before, we find that for all temperatur6$ Tg << 10^ °K, 

DE^ « 1. e 

We conclude from these results that an impurity with a localized 

mode widely separated from the normal lattice modes will not modify the 

Conwell-Weisskopf result appreciably. 



PART II 
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Electron Scattering from Impurities Oscinating with Frequencies 

Common to Solvent Atoms 

In semiconductors it is anticipated that most impurities will have 

masses and a force constant not widely different from those of the solvent 

atoms which make up the lattice, and consequently, in first approximation, 

they will oscillate with natural frequencies common to those of the solvent 

atoms. This means that we may not treat the impurity atoms as isolated 

harmonic oscillators as in Part I, but must include their dynamical 

properties with those of all the other crystal atoms. 

To consider the scattering properties of such impurities, it is 

necessary, first, to establish the nature of the lattice vibration in 

the host crystal and in this section we therefore establish the form 

of the acoustic modes in a pure crystal and treat it as an isotropic, 

compressible medium. As is well known, such a formulation is valid at 

long wavelengths and should be adequate to give the order-of-magnitude 

of the effects we are considering. 

4. The Lagrangian Formulation of a Lattice Field 

In this chapter, we investigate the low frequency acoustical motion 

of the crystal and for this purpose we treat the lattice as a homogeneous, 

isotropic, elastic continuous medium characterized by a certain sound 
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velocity and macroscopic density. The procedure is to set up the 

classical field of an isotropic continuum. The equations of motion 

are then formed from the Lagrangian density and lead to the normal 

coordinates of the medium. These coordinates are collective in nature 

and in terms of them the total lattice Hamiltonian is a sum of squares; 

i.e., diagonal. Quantization is then straightforward and for this 

purpose we introduce field variables which are themselves creation and 

destruction operators for acoustic phonons. 

To illustrate the Lagrangian procedure for handling the motion of 

continuous mechanical system, we shall seek the equations of motion for 

the longitudinal vibrations of a medium. 

To this end, let n(R,t) be the small displacement of the medium at the 

point JR = (X,Y,Z) at a time t. If is the undisturbed density of 

the medium, the kinetic energy density is: 

To obtain the potential energy density, let the mass of the medium 

be M, then the equilibrium volume is V^== ^ potential 

energy density then v\l^ represents the potential energy of the medium. 

As a result of a compressional disturbance, the volume changes from VQ 

to VQ + AV. NOW during a change in volume, dV, the work performed on 

the system, i.e., the increase in the potential energy is -PdV. Hence 
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the potential energy corresponding to a volume change from to 

V + AV is: 

7V = - 
o 

V 
0 

To evaluate (4-2), we expand the pressure, P, in a Taylor series 

about and restrict ourselves to small changes in volume. Then we 

have: 

/ 
V +AV 

0 

PdV (4-2) 

P = p + (—) A]t + 
o ^ aV ^V=V 

0 

so that (4-2) becomes: 

- n / ^ 7 \/ / \ t \2. 

O 0 

(4-3) 

Since the compressibility of a medium is defined by; 

K = 1 ( 9V \ _ 1 / 9p \ 
o = “ V ' 8P ‘ p ^ 9P 

o o 
(4-4) 

which is assumed known, (4-3) may be expressed in terms of the 

compressibility, (4-4): 

^ V ^ 2K ^ V ^ 
O 0 0 

(4-5) 
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It is now convenient to eliminate AV in favour of the associated 

density change, Ap. Thus let: 

p(Jg,t) = pjl + 

where cj(^,t) is the fractional change in the density of the medium. 

Since V = M/^ the change in V is given by: 

AV = A (^) = ^ Ap = -V o(g,t) 

Pp 

SO that (4-5) becomes: 

V = ^ (4-6) 
o 

Finally we require to express a in terms of the displacement, 

To do this, we employ the conservation of mass. Consider a closed 

surface. A, of any finite volume,V, in the medium. The mass flowing 

out of this volume due to a small disturbance from equilibrium is 

given by: 

= pp 
A 

which is converted to the volume integral by use of Gauss' theorem; 
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(4-7) 
V 

6M is also given by: 

« = - /(p - P„) dV = - PQ/ a dV (4-8) 
V ' V 

Since the equality holds for any arbitrary volume we must have 

from (4-7) and (4-8): 

= - V • (Jg.t) (4-9) 

It is now seen that the term, P a = - P v • n, can not contribute 

to the total potential energy of the medium since ^ over 

a volume, V^, being considered. Using this fact together with (4-9), 

the final form of the potential energy density, (4-6), for small 

disturbances is thus: 

P=^(V.Q)2 (4-10) 
o 

Using (4-1) and (4-10), the Lagrangian and the Hamiltonian 

densities are, respectively, 

L = T - 7 = P } - S ^(v-n)^} 
o W o ■'0 ' 

(4-ll:a) 
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H = T + V = kp ]f)^ + S ^(y*n)^ } (4-ll:b) 

where the sound speed in the medium is defined by: 

2 1 
0 K p 

o 0 
(4-12) 

The equations of motion follow from the Lagrangian density 

(Goldstein. (1950)): 

d / 9L 
dt 

0=1 ^'o 

3L 
9n • 

V. 

9L = 0 (4-13) 

From (4-ll:a) and (4-13) we find 

D4 = S 
2 8 

(y-n) oli 0 9X. 
1 

(4-14:a) 

which may be combined into one vector equation as 

*n = S V -(v-n) % 0 "V (4-14:b) 

Taking the divergence of both sides of (4-14:b) and using (4-9)^ 

we find: 

.. . c 2 ^2 
a = S V a 

0 • 
(4-15) 
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2 

Where v = v.v is the Laplacian operator. (4-15) is the three 

dimensional acoustic wave equation with sound speed* S^. We now note 

that a plane wave solution: 

= exp \ i.(a>t + g • R)} 

leads to the well-known dispersion formula for the longitudinal acoustic 

waves; viz., 

2 c 2 2 fA 
u)q = q (4-16) 

We note here that is a symmetric function of q ^nd that, 

following Debye, q < q , is assumed to give the correct number of 
max 

modes, q. Here q^^^ is the Debye cut-off wave number chosen so that 

the total number of acoustic modes equals three times the total 

number of particles in the crystal. 

4-1 Normal Modes of Lattice 

The Hamiltonian density and the total Hamiltonian of the system; 

viz., 

H = ^*n) \ (4-ll:b) 
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and 

^lattice = / « 

are not a sum of squares of the generalized coordinates; ^ and jj. 

To make the total energy diagonal we express them in terms of a new 

coordinates, i.e., the normal coordinates, which follow from the 

equations of motion; viz.. 

fl(R.t) = -J- ^ Iq Qq (t) (4-18) 
/V q ^ 

o 

where | is the polalization vector parallel to ij for acoustic waves. 

The inverse of (4-18) is: 

(4-19) 

where use has been made of the orthogonality result: 

939' 

(4-20) 

As defined by (4-18) the Q are complex quantities and they have to 

satisfy the relations: 

* 

in order that n(R»t) is real. 
Oj 

(4-21) 
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The Q are the normal coordinates of the system and are essentially 
it 

the Fourier amplitudes of the lattice displacement vector. From (4-19) 
; i 

they are seen to be collective in nature in that they depend ori the 

sum of displacements at all points in the medium. We now see that the 

Hamiltonian is a sum of squares in terms of the Q^: From (4-17), we find 

the total kinetic energy as: 

T =/T df = k pf E Q Q. 

A 1 ^ ^ 
(4-22) 

and the total potential energy as: 

= *5 P^S 
0 O- = % P-S 

0 0 
Z q^Q 
q 

(4-23) 

where use has been made’of (4-18), (4-20) and (4-21). Hence from (4-22) 

and (4-23), we have the total Hamiltonian for lattice as: 

H, .. . = T + V = ^ p Z (6 Q + 0) Q ) (4-: lattice % q \ ^ 

where use has been made of the dispersion relation (4-16). 

Using (4-18) in (4-14:b), the equation of motion for the Q are 

seen to be: 

0 
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or, scalar multiplying with g: 

Q‘ (t) + co.V(t) = 0 (4-25) 

We see that the Q^lt) oscillate harmonically in time and that the 

crystal is thus equivalent to 3N^ independent harmonic oscillators. 

4-2 Quantization of Lattice Field 

Since the Q are complex quantities it is necessary to define real 

amplitudes to quantize properly. Thus let 

Q + 

so that we have: 

(4-26) 

' (2)*^ " '^*3 

By use of (4-26) and (4-27), (4-24) becomes 

(4-27) 

^lattice ^ Q> 

where the sum is taken over positive wave numbers, q. 

We now define momenta canonically conjugate to u and v_as: 

(U 
IV 

^ + 0) U ^) + (v^ + 0) 
>/>} 

(4-28) 
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3H 
lattice 

9U 
)3 

” P U i 
an 

lattice 
= p 

giving: 

H lattice 

n ^ p o K p p 
I I 9—^ + u_ i + z { 9^~ + ^ P V I (4-29) 
.n^2p^ 0 q g. ’ n.n2p^ " "^p q g » 

q>0 

which corresponds two sets of oscillators since the Q are complex. 

Since n and u_, and K and v are canonically conjugate variables, 
° g ^ ^ 

the system is quantized by requiring: 

u n 
q q 

V K 

n u = i1i 

= iTi 

(4-30) 

In a Schordinger representation, (4-30) implies the momenta: 

"q = - ^ 
9 

(4-31) 

)3 

and substituting (4-31) into (4-29), the total lattice Hamiltonian 

becomes: 

H 
2 2 2 2 

n - r 3 , 2 2, . r „ , 3 , 2 .. 2^ Z (“■ — + a U^ ) + *5*r— Z ^ + a,^ } lattice 2p^ 2 

g. 
£J0. q' 2po q>0 av^ q 

= —5S I )( P U ) +a i 

2p !nl ^ v''g^^ "kr * V''q^ ^v) ni 0) q 9v 
0 ;g>0' q q q q 
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where a = p w /ti 
0) 0 q 

q 

It is now desirable to make one final transformation from the real 

amplitudes, u and v , of the normal coordinates to the field operators, 

B and B , which act as destruction and creation operators for the 

field quanta (phonons). This transformation has been defined by Frohllch, 

(1956) as: 

1 9 

i(2) \ (JO q /— n ^ /a ^-q 
^ (JO AJ 

q 
(4-33) 

(-/5 Q + ^  
•I i(2)"^ “q 

q 

and since B^ H B we have: 

B 1 (Q + 1 9 

1(2)’^ “q -^3 

(4-34) 

Q„ + 1 3 

*“q 

From these results the inverses are given by: 
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/2cx ^ ^ 0) 

‘5-a = -^=- (^-n - ^n) ^ /2ct ^ ^ 
“q 

and 

(4-35) 

a_(B + B"^) 
2 -a g' 

(4-36) 

From (4-26) and (4-27) we find the inverses 

(Q + Q .) 
^ /2 ^ ^ 

''n = ('3n - Q-n) 
^ i /2 ^ ^ 

so that from (4-35) we have (4-37) as 

(4-37) 

u„ = —— (B + B - B'^ - B'*' ) 
« 2^■■ ^ -3 9 

v„ = —-— (B - B + -B "^ ) 
^ 2/a 3 g 

(4-38) 

Again , from (4-26) and (4-27) we find: 
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3Q 

3U 

3Q 

<3 
3Q„ 3U' ' 3Q „ 3U„ 

33 *3 -<3 « ^ "^)3 ' 

3Q 
3V 

a. 
3Q 

9 
30 3v 

4- = 4- ( 

^''Q yz 

■) 

3 

(4-39) 

SO that from (4-36), we have (4-39) as: 

— = 4- ^ (B + B + B'*’ + B'*' ) 
9U^ 2 03^ ^ q -q q -q' 

9 

A (B„ - B „ - + B'^^) 
^q ^ "■9 9 9V 

(4-40) 

The results, (4-38) and (4-40), are now to be used in (4-32). 

't* 
To express (4-32) in terms of the operators; B , B_ , B and B , 

we first note that: 

-r;^ + a U = -i\/a (B^ + B^ ) 
g q ^ q ^ ^ 

+ a = Va (B„ + B'^^) 
“q fl “q S3 -S3 

(4-41) 

r—  + a V \/a ( B"** - B ) 
“Q S3 ^ ' J3 -S3 S3 

■r  + a V =\/a (B - B ) 
'')3 “*9 ^ “q -« 

Hence by use of (4-41) ^(4-32) becomes 
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Hn^— E ja (B + B )(B + B ) + a lattice 2p. 03^ g g -g' o) 
o g>0( 

Ti^ 
2p 

K k (B^; - B ^ “i « 0) a “Q ^ 0 g>0I “q S 

= h t tiw (B;!; + Bk){B„ + B „) +1 
i^>0 ^ Q ^ 

+ h ^ tio) I (B'^ - B'^ )(B - B ) + 1 
g>0 V *3 -« « -!3 

Z T^co ) B B + %( + Z Tiw IB B H 
q>0 '1 / « « S q>G V -g 
% 

1 Tio) < B^B_ + (4-42) 

This is the usual form for the energy arising from the field of 

3N independent single harmonic oscillators. 

4-3 Displacement Vector 

We will express in this section a displacement vector of a lattice 

in terms of the operators; B and B^. For this purpose we shall use 

the results obtained in the previous sections. For each point in the 

medium we have introduced the displacement vector, ;^(R,t), that 

characterizes the displacement of the medium from its equilibrium 

position. 

The displacement of the lattice at R may be expressed by (4-18); viz.. 



(V ' 0' 

but from (4-35)^ we have: 

Qq = ; Q-n = (B-n ' 
'M 

OJ 
9 <3‘ 

q q 

Hence we can express n(R.t) in terms of the operators: 

n(R,t) =—E £ \—   (B - B'*' )e^'^'^ 
(V q>0 ' 3 -3' 0 'M' 

1 
I E \—   (B - B'^)e 

(V q>0 ^-^ l/2cT s' 

+N -iq»R \a. ^ r\j 

0 'M 

i 

0). 

v2a V q>0 
03 0 

q 

5 (B e^^'^ + BV’^'^) - £ (B e’’9‘S + B 
L»3 « « -g 

where use has been made of the property of the polarization vector, 

^ ‘' %■ 

On reversing q in the second term in the square bracket and noting 

k-q = - 4q» we have: 

(R,t) = n. 
/2a V ^>0 

(B ^i q • R e ^ 'v n+«-iq*R\ Be 'v) 
q 
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Hence the displacement vector of the lattice at ^ may be expressed by: 

where a = p co^/Ti =p S q/?i 
o)q 0 q o 

(4-43) 

4-4 Commutation Rules for B and 
  3  g 

It is important to obtain the main properties of the field operators; 

B„ and B^. The first of these follows from the basic commutation q q 

results, (4-30). Using (4-33),we find: 

a 03 
_9. 

2 k’ %] k ■ 3Q 
q 

3 ’^Qq ] ■ 
^ *- 

aQ 

but 

that: 
k • \] ■ 

0 since Q = Q_ . Also we easily find, from (4-37), 

d 3 3ii. ^ av 
M 

^ ^ AJ oi 

 i ) 
' ■:iii f 

3U 9V 

3Q „ 3u„ 3Q „ 3v„ 3Q „ /Z ' 3u„ ' 3V„ 
'^3 !J 

(4-44) 
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Hence we have: 

From (4-26) and (4-44) we find: 

[ 1 
IT iu 

a. 

1 vr 

= -1 

Similarly, from (4-27) and (4-44), we find: 

Hence we find the commutation rule for and as: 
^ Q 

Q Q 
B'^B 
«a 

1 (4-45) 
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Similarly^ we may show that: 

[ "a ■ "5'] ■ ° «' * 

['a-Vl-t'r'a']-" 

4-5 Property of B and 
M ni 

The property of the operators, B and B^, which make them particularly 

useful is that they are respectively destruction and creation operators. 

To see this, let us examine the eigenstates and the eigenvalues of the 

following engenvalue equation: 

(4-46) 

(4-47) 

a g S 

Using the commutation relation, (4-45), on 

we get: 

+ 1) B lx^>= EM B |XM> 
g g ^ g 

or 
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h BO(BQ|XH> ) = - 1) B^|XN> g !S 

but: 

^ 9 

so that we have: 

^ -1^ 9 9 ’’9^9 

If ^   > we see that the eigenvalues are integers. 
q M 

^99 

but the states are orthonormalized so that we have 

Hence v1^ x (Arbitrary phase factor). We, therefore, have the 

following equation: 

-1^ 
^ Q 'V Q 

(4-48) 
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tt follows then that: 

^|XN> ■■ V\'> -1> 

and therefore 

(4-49) 

We see from (4-48) and (4-49) that the B 's act to destroy a phonon 

+ ^ 
with mode, q, and that the B„'s act to create a phonon with mode, a. 

It follows that B^ destroys p phonons and B^*^ creates p phonons: 

Bq' |Xp> = •^lx„> 

(4-50) 

\''K'> - ^ lxp> 

Using these results, the energy and the state vector of the lattice 

Hamiltonian, (4-42), are: 

E (N h) (4-51) 

> = " IXN > (4-52) 

respectively. Here w = S q,an<l )j with its components, N (j = 1,2, •• 
q 

 tSHo), represents the state of all 3N phonons comprising the medium. 
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5. The Model Hamiltonian of the System 

In the light of the previous section, we now return to the problem 

of electron scattering from ionized impurities assuming these to oscillate 

at frequencies common withthoseof the pure, host crystal. Here we 

consider only acoustic modes. 

If the equilibrium position of the ionized impurity centre is R^- 

and its displacement at time t is ;i3-j (§-j >t) > the Hamiltonian of the 

system (electron + ionized impurity + lattice)!s: 

^ ~ ^lattice ^ ^electron ^ ^int (5-1) 

where: 

(5-2:a) 

(5-2:b) 

(5-2:c) 

where is the dielectric constant of the bulk material and ^ and 

are the position vectors of a conduction electron and the ith ionized 

oscillating impurity atom, respectively. In (5-2:c) we have introduced 

the screened Coulomb potential where: 

HT . . . = E fia) (B'*' B + h) 
lattice g q ' g g 

H electron * 2 
2m ar 

«int 

o -kn r-R.-n 2 ^1 ^ 
Ze e 

~e f r - R. - ri I 
O ' ^ "Vyl ^ ' 
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47Tn e 
o 

o D e 
(5-3) 

is the Debye screening wave number , n^ being the average number 

density of conduction electrons, n^ is replaced by Zn^^^ when all the 

impurities are ionized (in semiconductors at room temperature, this 

replacement is generally valid.). 

As is well known, and as will be shown below, use Of the screened 

potential (5-2:c) prevents the divergency in electron scattering at 

small angles discussed in Part 1,3. It is thus not necessary in this 

and subsequent sections to introduce any cut-off in the range of the 

interaction between the electron and ionized impurity. 

6. Matrix Elements for Elastic Scattering 

The matrix element for the scattering of a conduction electron from 

a state, Jc, to another, )<', due to the potential caused by the i^^ 

ionized oscillating impurity whose vibrational state remains unchanged 

will be discussed by use of the Born approximation. 

From (5-2:c), the matrix element for elastic scattering due to the 

potential caused by the i^^ ionized oscillating impurity is: 

(6-1) 



-63- 

where \j\ k > is the state vector of the unperturbed Hamiltonian; 

“lattice “electron’ S'*''®" 

|ji J<> = lc>|k> 

where: 

l)3> =lxn> ■ Ixfj > 

for the lattice and 

|k> = -^exp (i;^-r) 
O 

for the conduction electron. 

(6-2) 

(6-2:a) 

(6-2:b) 

Letting - Ij' be the change in the wave number of the conduction 

electron on scattering, and - J?,- - IJ its relative coordinate with 

respect to the i^^ impurity centre, the matrix element, (6-1), is re- 

written as: 

/nk' |H. . |nk^ = - 
o iK*(R.+ri) 

<^fti^<Xnh^ Ixn> 

iK.R. iK-n ) 
’ <Xnh^^K> (6-3) 
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where, from(4-43), the displacement of the Impurity centre may be 

expressed by: 

n(R.) = —j====-~ 1 E 

VZa V q ^ (ii 0 ^ 
q 

with a = p w /ti =p S q/Ti. 
0) 0 q 0 0^ 

q 

By use of (6-4), we obtain: 

v2a V q ^ 
03 0 'w 

q 

iq*R. , -iq-R. 
+ B\ ^ (6-4) 

Be 
iq-R. , -iq-R. 

+ B„e (6-5) 

In the above expression iJ<*j^ must be pure imaginary. It is, thus, 
I"*"-'" 1 TT / 2 

convenient to include the factor i =‘J-1 with the phase factor; i = e . 

Introducing g*R.j = ^-R.- + TT/2, we obtain (6-5) as: 

iK*n = i ^ % % a. 
q /2a V 
^ 03 O 

q 

iq-R. , -iq-R,- 
B e ^ + B^e ^ 

)3 9 01 
(6-6) 

Since B and B_ operate only the lattice state, )xw^> we find, using 
^ ^ 

(6-6), that the lattice part of the matrix element, (6-3), becomes: 

<x = j, <»»,( -p 
iq-R. . -iq-R,. 

.|i /r» . PI+ -X ^ iW„ (B„e + B^e ) I^N > 

(6-7) 

where we have dropped the "bar" notation and 



with being the unit vector in the recoil direction K = k - k'. 

The quantity, W , is a measure of the "recoilessness" of the scattering. 

When goes to zero as when M = p M (total mass of the bulk material) 
g o 0 ' 

is large, the scattering is purclli^ coidombic as from a stationary impurity 

Since can be made arbitrarily small, we may expand the exponential in 

(6-7), as: 

exp jiWg (B^e + Be ) = E 
n=0 

. (-l)^w/" 

TWi A 2n 
elastic (6-9) 

where: 

«2n 
elastic (B + BV'^-^D^" (6-10) 

We have restricted the sum in (6-9) to be taken over only even 

powers since odd powers lead to a net creation or destruction of acoustic 

phonons and hence to inelastic scattering which is of no interest here. 

We now have to find the general form for the expectation values of 

the transition matrix of : i.e.. 

= (B e ^ + B e "^ "^’) E (B + B )^" elastic ^ q q ' ^ q q^ 

This final expression is valid for elastic cases because of the even 
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power of the bracket, but terms that have equal numbers of 

operators of the B 's and the s need be taken into account for 

elastic scattering. The general form for the expectation value of 

Elastic (see Appendix A ) is: 

,2n (2n)!2*" 
^ ^N„l\lasticl^N.^ „-n %| g Q r=0 2 (rl) (n-r)! 

N„ I 

(N„-r) 1 (6-11) 

where n = 0,1,2 . It is significant to note that the coefficient 

of the highest power of N is given by: 

llnLl 
(nl) h2 (6-ll:a) 

while the constant terra is given by: 

(2n)i 

2" n I 
(6-ll:b) 

If we appeal to the assumption that W is small (recall that the 

crystal mass is essentially infinite), we may restrict our interest to 

small values of n in (6-9). From (6-11), we have: 

(i) for n = 0 

'Lsticl’^N > = ^ 
^3 
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(i i) For n = 1 

<’^N l''LsticlX> = % ^ 1 

(ill) For n = 2 

|A 

!3 
elastic'^N 

+ 6N„ + 3 

(iv) For n = 3 

" 30N ' 40N + 15 Q n ^ oJ 

etc., so that from (6-9) we may have the following form for the full 

elastic scattering processes; viz.. 

i q • R. 
oi 'IJI 

2n 
elastic 

Reordering the powers of N , (6-12) may be written as: 

(6-12) 
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<x,Jexp{1W^-(B^e + B. e ’) }|xfj> 
fl 

2 2 W ^ W 
1 - (-^) + (4-)2 - 1 (-3-)3 + 

w 

W2 
1 - -^ + - W/N^ 

4 2 r ^Ci 
+ 1 - -^ + 

3 y 6N 3 

100 g J3 1 - 

+ 

where: 

] 
] 

(6-13) 

6-1 Absolute Zero Temperature 

At the absolutely zero of temperature, T = o°K, N is zero. Hence 

(6-13) reduces to the first set of square brackets and may be expressed 

by: 

<xjexp I iWq (Bge ^ + B^e ^ '^'')}|x> 

w. 
= 1 - 21 

W, , 
-(-4-)' 3 I 

'^Q 3 
<-^r + exp(-W V2) (6-14) 
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6-2 Low Temperatures 

At very low temperatures, N << 1. Hence the matrix, (6-13), reduces 

approximately to the first two terms of (6-12) and may be written as: 

We note here that the Gaussian expressions, (6-14) and (6-15), 

represent the well-known Debye-Waller factor for the reductipn in the 

cross section for- the scattering of a plane wave from a crystal - the 

excess momentum being taken up by the whole lattice. For y-ray emission 

from a radioactive impurity in a crystal, (6-14) and (6-15) lead to the 

Mdssbaur effect. It represents the fraction of events which occur 

without recoil (if W = 0 there is no recoil), and hence leads to 

(6-14) and (6-15) lead to the fraction of such recoil less scatterings, 

and in neutron diffraction to the fraction of recoilless scatterings 

or capture possible for a given neutron energy. 

(6-15) 

which leads to (6-14) when T = 0°K (i.e., N = 0). 

In our problem the Debye-Waller factor will lead to the fraction 

of conduction electrons which scatter from ionized oscillating impurity 
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centres without recoil; the recoil being taken up by the acoustic phonons. 

The Conwell-Weisskopf (1950) and the Brooks-Herring formulae (un- 

published) are based on a model in which this factor is assumed to be 

unity (i.e., infinitely massive scattering centres lead to fully recoil less 

scattering). What we do here is to estimate what reduction from unity 

is to be expected in the practical case. 

6-3 High Temperatures 

At high temperatures, N » 1 holds. Hence each of the matrix elements 

will be characterized essentially by the terms with the highest power 

of N ; viz., 

Inelastic |XN_> = <x,^ J (Bg + 
iln)! . 
(n I) ^ 

(6-16) 

Hence the matrix, (6-12), »ay be expressed by: 

E 

n=0 

(-i)V" 
(n!)^ 

(6-17) 

We note here that the series expansion for the zero-order Bessel 

function is: 

J (x) = o' E 

n=0 

(-1)" 

(nj)^ 
2n (6-18) 
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Hence (6-17) may be written: 

<X„_|exp { > - J„(2WqNp’'^) (6-19) q q 

From the results, (6-14)* (6-15), (6-19) and (6-7), the scattering 

matrix, (6-3), may be expressed in the following form ; viz., 

4TrZe 

2.-2, ^ e V (r+kn^) 
0 o D 

(6-20) 

where the Debye-Waller factor, D , is defined by: 

exp |-W^(1 + 2N )/2> for very low temperatures (6-21:a) 

(N « 1) 

J (2W N^) for high temperatures (6-21:b) 

and W is given by (6-8) and J is the zero-order Bessel function 

given by (6-18) 

7. Relaxation Time for Momentum Transfer (Elastic Case) 

/ 
We have obtained the scattering matrix in the previous chapter. The 

probability of a transition per unit time can be obtained by use of it. 

Since the perturbation theory gives for the transition rate from i to f: 
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2,Tr 
ti (7-1) 

the transition probability rate that a conduction electron will be 

scattered from a state, k, to another, k‘, due to the potential caused 

by the i ionized impurity, but the lattice state reiiairts unchanged is 

given from (6-20) and (7^1): 

-^nk) 

32TT Z e ';v - 
'\j'h 

(7-2) 

Assuming that the all scattering events by oscillating ionized 

impurities are independent we then find the total transition probability 

rate by summing (7-2) over all impurities, viz.. 

i = l 
Rik->nk ‘ 

oZir Z e nA j) 
) 

(7-3) 

where = J< ■ )<' Is the momentum change that the conduction electron 

suffers on scattering and n^^^ = is the ionized impurity density. 

The initial and the final energy of the system are, respectively: 

2 2 
E I = ^ + T. ti(jo (N + %) 
^ 2m g ^ ^ 

^2. ,2 

nk 'VX^ 2D) 8 
q a 

(7-4:a) 

(7-4:b) 
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We see that the 6-function ensures the energy conservation of the 

system^and thus from (7-4:a,b), it follows that: 

k ^ k' (7-5) 

We must now sum (7-3) over all final electronic states to find the 

relaxation time, keeping In mind the distribution function of the 

conduction electrons for semiconductors follows the Boltzmann statistics. 

We take the electronic distribution function, f(J|c), to be a pure 

number such that: 

-3 fQ;) (7-6) 
STT 

is the number of electrons having wave numbers between k and k+dk. 

Now the linear momentum of the conduction electron in this range is: 

W = (7-7) 

Since in a simple scattering event, an electron in a state, )^, 

initially will change its momentum by an amount, AP()^) = 

the total rate of loss of momentum by the electrons in the state, )^, 

through interaction with one or another of the ionized oscillating 

impurities is given by: 
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J loss 
z 

r 
(7-8) 

where 1 - f()<') 1s the probability that the final state, , is un- 

occupied. In a similar way we may find the total rate of gain of 

momentum by electrons in the state, k, through scattering from all 

possible states, )<', by the processes in question to be: 

From (7-8) and (7-9) the net rate of gain of momentum by electrons 

between k and k+dk may be given by: 
'XJ 'XJ '\i 

3M(k) _ 3M(k) 
net - gam 

, 3M(k) 
loss 

= ?. -RCH') I f()<') - PI nk-^nk' 
'XAJ nyxj 

(7-10) 

where we have used the principle of microscopic reversibility; viz.. 

Pi f = (p is a transition probability rate). 

From (7-7) and (7-10) the rate of change of the distribution for 

the conduction electrons relevant to momentum transfer by the elastic 

scattering processes is, thus: 

A(^) - B(|c).f(k) (7-11) 



where: 

A(jc) =1 (1 1^^^. f(^') (7-12:a) 

B(|c) = I (1 - )<'-Vk2) (7-12:b) 

As in chapter 3, the standard technique for formulating the concept 

of the relaxation time is to treat A()<) as a slowly varying function of 

time since B(J^) is time-independent. Then (7-10) may be integrated to 

give: 

f(k) = f°(k) (7-13) 

where f°()<) is the equilibrium distribution function, and B(^) is the 

reciprocal of the relaxation time; viz.. 

— =2: (1 - k'-k/k^) P^. ,, (7-14) 

where we may replace the sum over all the final states, k', by an integral 

using the density of states function, viz.. 

We, therefore, have (7-14) as: 

(7-15) 
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or employing (7-3), the reciprocal of the relaxation time is given by: 

1 

i TIE f I/.. .-l^2^,, 2,2 qS W W ^ |(k-k')^+kn'^i ^ ' a, a, ' D ' 

Where the Debye-Waller'^factor, D , is given by (6-21:a,b). 

% We first evaluate (7-16) by integrating over the magnitude of k' to 

get rid of the 6-function. Since from (7-4:a,b) 

^2.. 2 *2.2 *2 
d(E^, - E^) = d(2-!L H-) = k‘-dk' * * 

2m 2m m 

we have: 

-E^). 

Without loss of generality we can let J< lie along the Z-axis so that 

3 2 J(' makes an angle, 0^,, with J^. Since djj' = k' dk'dJ^^,, using 

(7-17), (7-16) becomes: 

2 , . 

(7-18) 

where dfi. , = sine. , d6j^,d(|). , is the differential solid angle and here 
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(e ,, <|). ,) are the polar and the azimuthal angle of k'. We first integrate 

(7-18) about the energy part. Keeping in mind that, due to the 6-function, 

only k' = k contributes to the integral, the general form for the reciprocal 

of relaxation time, (7-18), is given by: 

y2 4 * (+) 
Z e m n^ ' 1 - cose. p 

z 2 )2 ^^^Q^k'=k ^^k cose.+kpV2r g ^^ 
19) 

where the Debye-Waller factor, D , must be evaluated for k' = k at which 

W„ is given by: 

U tik‘ 
« ~w '> \7 c ;r~— (cos0„ - cose. ) (7-20:a) 

with cose. = cose, cose + sine, sine cos(c() - <b ) (7-20:b) 
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7-1 The Conwell-Weisskopf Formula 

From the general form for the reciprocal relaxation time due to the 

ffcfssbauertype scattering, we can deduce the Conwell-Weisskopf (1950) 

formula. To show this, we assume that = 1 for all q, i.e., we assume 

that all scattering events take place without recoil or - what amounts 

to the same thing - that the phonons remove the excess momentum completely 

and distribute it over the whole lattice so that the solvent atoms and 

the impurity atoms remain fixed. Taking k^ *0, which corresponds to 

no screening by conduction electrons, (7-19), after integrating over 

<1). , becomes: 

1 
C-W 

T • 

(7-21) 

which exhibits the divergency at a lower limit, 9. = 0; the well-known 

"Coulomb divergency". In a plasma of ionized impurity atoms and 

conduction electrons at finite concentration, it is clear that scattering 

angle, = 0, can not exist since it corresponds to scattering events 

which take place at infinite distances from the impurity centre and 

such can not occur at finite concentrations because of interference from 

the next-nearest neighbour impurity. Hence in practice 0. has a lower 

limit, determined by the impact parameter, b, which is of the order 

of half the average distance between scattering centres; 2b = L - (n^^^)" 

Determination of the lower limit of the integral was given in chapter 3. 

Letting 0^ = 0^:j^ for the lower limit of the integral in (7-21),and using 

c
o

ll
-*
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the result of (3-32), we have the Conwell-Weisskopf formula: 

ln{ 1 + -V) 
P_ 

(7-22) 

2 2 * 2 where = "h k /2m and = 2Ze /e^L are the kinetic energy of an 

incident electron and the potential energy at a half distance of 

impurity spacing, L/2, respectively. 

7-2 The Brooks-Herring Formula 

The Brooks-Herring formula is essentially the same as the Conwell- 

Weisskopf formula. Here one takes account of the screening effect of 

all g. For this case we can readily integrate (7-19) over the solid 

angle P t'n ni\/o "hho Ry'rknl/c_NQv»i«'i niri V'QCII1+* 

and = "h k /2m is the energy of an incident electron and Ep = ti kp /2m 

is the Debye energy of an incident electron with wavenumber equal to 

the Debye wave number. The Debye wave number, kp, is given by (5-3). 

electrons: The result follows from (7-19) assuming that D = 1 for 
a*. 

where b H ---2' 

(7-23) 

(7-24) 

2,.2,^ * 
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7-3 Relaxation Time for Mossbaur Type Scattering 

To evaluate relaxation time due to the Mossbaur type impurity 

scattering, (7-19), we have to calculate the Debye-Waller factor at 

k' = k. 

(i) Low Temperatures (N_ « 1) 

For very low temperatures, the Debye-Waller factor is given by 

(6-21:a), from which we have: 

We may replace the summation over all phonon modes, 

by an integral introducing the density of lattice states, p(g)^ via.. 

(7-25) 

(7-26) 

where in the Debye theory p(g) is given by: 

3V 
(7-27) 

which implies that the medium is isotropic so that one longitudinal 

mode and two transverse acoustic modes are taken into account. According 



-81- 

to the Debye theory, the maximum wave number that the medium can propagate 

is found by the condition that the total number of modes equals three 

times the number of lattice atoms, N , in the medium; viz., 
0 

Hence: 

q = (■ 
^max ' 

^ '1/3 . ,, 2 >1/3 
y ) (6TT n^} 

(7-28) 

Employing (7-26) and (7-27) to calculate the power of the exponential 

in (7-25) and from (7-20:a)^ we have: 

E ^ (1+2N ) 
Q ^ ^ 

3V 

8TT' /“ (1+2N„) do^ 

3 
2 

16n^p S 
o 
/ (cose - cose. )'^ dn / (1+2NJqdq 

^ J 

(7-29) 

where dn„ * s'* ”80 *180 ‘•♦n- 

Since average number of acoustic phonons, N , is independent 

of angles, 0 and c}) , we can integrate (7-29) over the angular part by use of 

(7-20 :b) 
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J (cose„ - cose. dn = -|2- (1 - cosej (7-30) 

Hence^from (7-30), (7-29) becomes: 

2 
,tiS^q/k^T . ^ -) q dq 

where use has been made of the Planck distribution function for phonon 

number; viz., 

=[ 
N = exp(tiS^q/kgT)- 1 -1 

(7-31) 

Letting u E tiS^q/kgT and introducing the Debye temperature, 0, of 

the bulk material by the relation, US = ko0, we have: o^max B 

0/T 

,w 2 (1.2N ) = (i-cose )(^)2 / (1. J_)u du 
'^zirpS 'A' 0 e-1 

o o 

3R^k^N 
 ( 

2kg0 1 + I-^^(4-)^ ) (1 - cosej (7-32) 

where use has been made of dLv = /v„ ^max 0 o 
and 

0 

The approximation to the upper limit is valid since for very low 

temperatures T << 0. Defining: 
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e kg0 
1+22 
1 + 3 IT (7-33) 

(7-32) can be written in terms of 3^ and then (7-25) can be written as: 

(no ) 2 
k'=k ■ 

exp 1 - cose 1} (7-34) 

Substitution of (7-34) into (7-19) gives the reciprocal of relaxation 

time for the Mossbauer type ionized impurity scatterin^g at very low 

temperatures: 

-S+d-cose.) 

% 
(7-35) 

It is important to note that (7-35) differs from the Brooks-Herring 

result (see(7-23)) only through the exponential factor exp |-3(l-cos0|^)} 

in the integral. 

(ii) High Temperatures (N >> 1) 

For high temperatures, the Debye-Waller factor is given by (6-21:b) 

and for phonon number, N , we can use the high temperature approximation; 

viz., 

N q/kgT) - 1 -1 _k^ 

"hS q 
(7-36) 

Since series expansion of the zero-order Bessel function is: 
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J (x) 
o' ' 

1 - (f)2. c2 ^2^ 

we have: 

J ^(x) = 1 - |x^ + x^ - ~ x^ + o' 2 32 576 

On the other hand; 

e-'/2=a_l,2.1,4 
48 ' x'. 

Hence for small value of the argument of we may approximate 

J ^(x) as: 0 ' 

J ^(x) < e“^ o ' 

and there results: 

(HD )^ < exp {-2 E N. | (7-37) 

We note here that this approximation can be made as precise as desired 

by choosing the volume sufficiently large. Comparing (7-37) with 

(7-25) we see that at very low temperatures (T < 1°K) one phonon process 

is very signigicant. For semi conductors,except for very low temperatures, 

we can use (7-36) as the phonon distribution and we may, therefore. 
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neglect unity compared with 2N in the round bracket in (7-25). This 

leads to the expression, (7-37). To calculate (7-37) we introduce the 

density of lattice states and employ the phonon distribution, (7-36). 

We then have the power of the exponential in (7-37) as: 

? 3V r « . 

q ^ 9 QTT L ^ ^ 

3k^kgT 

16ir^p w/ (cos0^ - cose, A dq d^2„ (7-38) 
05 

where use has been made of (7-20:a). The angular part of the integral in 

(7-38) is exactly the same as (7-30). Hence (7-38) can be written as: 

E W. N_ = 
k^kgT ^max 

-(1 - cose. ) j dq 

^ 0 
2 2 

27T p S O 0 

3RVN„ 
(7-39) 

3 2 
where we have used the relation, US q„^„ = koG and q^,„ = 6TT N /V o^max B ^max o" o 

Defining: 

E * 
o' =19 ^ T 
^k ~ k^G (M/H ) Q 
^ B ' ' o' 

(7-40) 

(7-38) can be written in terms of and then (7-37) can be written as 
a- 

(nDn)^-i, = exp |-e' ( 1 - cose. )|- 
j2 

Vk'=k 
(7-41) 
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Substituting (7-41) into (7-19), we have the reciprocal of relaxation 

time for the Ntossbauer type ionized impurity scattering at high 

temperatures: 

1 - COS9|^ 

■|l - C0S8|^ + kp^/2k^ p 

I 

6jl-COS6|^; 

(7-42) 

where now is given by (7-40). 

7-4 Change in Relaxation Time for Elastic Recoilless Scattering 

To obtain the explicit forms of (7-35) and (7-42), we have to 

calculate the following integral: 

X e -cX 

(X + a) 
dX (7-43) 

2 2 where X = 1 - cosBj^ , a = kp/2k and c = for low temperatures 
'\j o- 

and 3^ for high temperatures are given by (7-33) and (7-40), respectively. 

The lower and the upper limits of the integral, (7-43), take 0 and 2, 

corresponding to 0j^ = 0 and TT, respectively. 
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This integral, (7-43), may be evaluated exactly from tables of the 

exponential integral for any given c. However, for our purposes c is, 

practically, bound to be small for both 3i. and . Since T < 0, it is 
* ^ ^“5 

clear, because of the small ratio, m /(M/H^) - 10" , that Ej^ » kg0 for 

both and 3/, to be comparable to unity. This indicates a need for hot 

electrons in media of low Debye temperature for significant recoil scatter- 

ing to occur. Setting = 3kgT /2 and T^/0 == 10^ ~ 10^, we see both 3i^ 
-4 -3 / \ 3u - 10 ~ 10 and, accordingly, we may expand the exponential in (7-43) 

to give: 

1 (X + a)^ 
dX = /    5- (1 - cX + •••• 

Jo ^ 
)dX 

= {ln(l + |) - 2/a —}+2ac{ln(l + |)- ^ 
1+2/a ® 2 + a 

(7-44) 

where c = 3i^ for low temperatures and 3^ for high temperatures are given 
^ ^ P p 

by (7-33) and (7-40), respectively and a = kp/2k . 

(i) Low Temperatures (N « 1) 

For very low temperatures, from (7-35) and (7-44) we have the reciprocal 

of relaxation time for the Mdssbauer type ionized impurity scattering as: 
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1 
T i 

v2 4 (+) IT Z e n ^ \ 

2, p3/2 
eo(2m ) 

—^—}+4-^ln(l+b) 
1 + b ° 

i±^}+ 
1 + 1/b ] 

(7-45) 

where b and c are given by (7-24) and (7-33), respectively. We note here 

that the first term on the R. H. S. of (7-45) expresses the reciprocal of 

the Brooks-Herring relaxation time, (7-23). 

It follows from (7-23) and (7-45) that the ratio of T. and is: 
j I 

-^= 1 - 4(S|^/b){ln(l+b) - (l+b/2)b/(l+b)}/{ln(l+b) - b/(l+b)} + 
T . 'V 

(7-46) 

We can see from (7-46) that the relaxation time due to the oscillating 

ionized impurities is slightly greater than that due to the fixed impurities. 

Physcally this means that the acoustic phonons induced by oscillating ionized 

impurities carry away the recoil momentum slightly less effectively. 

For example when Ej^ = E^, i.e., when b = 4, the ratio of and is 1 + 

9.4 X 10“^ , and in this case there is about 0.001 % increase in the relax- 

ation time. 
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For high temperatures, from (7-42) and (7-44) we have the reciprocal 

of relaxation time for the Mossbauer type ionized impurity scattering as: 

somewhat greater than at low temperatures. Physically this means 

that the acoustic phonons induced by oscillating ionized impurities 

are more active at high temperatures than at low so that these acoustic 

phonons carry away the recoil momentum slightly less effectively at 

high temperatures than at low. 

1 + b ^ 1 + 1/b 
^—}+4-|-nn(l+b) - 

(7-47) 

where b and c are given be (7-24) and (7-40), respectively. 

From (7-23) and (7-47), the ratio of T. and is: 

(7-48) 



-90- 

For example when Ej^ = Ep, i.e., when b = 4, the ratio of 

and is 1 + 9.4 x 10’^, and in this case there 1s about 0.01 % 

increase in the relaxation time. 

We conclude from these results obtained in (i) and (ii) that, 

even under these conditions of fairly hot electrons, the relaxation 

time-increase is only about 0.001 ~ 0.01 %. Our model,taking account 

of the impurity oscillation frequency common to lattice,does not modify 

the Brooks-Herring result appreciably. 



PART III 
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8. Matrix Element for Inelastic Scattering 

In Part II we considered the elastic scattering processes (i.e., 

the lattice state is unchanged), taking account of all the terms in 

the expansion of the exponential in powers of ;j. In this part* we shall 

consider only first-order processes for inelastic scattering. 

From (5-2:C), the matrix element for the inelastic scattering i$ : 

,2 , 

 dr3|x_> 

(8-1) 

where [nk>is the state vector of the unperturbed Hamiltonian; 

^electron’ given by (6-2), the states |n>for the lattice and |k > 
for the conduction electron are given by (6-2:a) and (6-2:b), respectively. 

(8-1) shows that a lattice state goes from n to |j' and a conduction electron 

goes from J< to Jc', respectively, due to the interaction potential caused by 
th the i ionized oscillating impurity. 

As in Part II, letting p=r-R.-n and K=k-k', (8-1) becomes : 
f\j 'X, O) 'XJ '\j '\j 

- JV(kV) 
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The exponential, exp(ij<‘;j), may be expanded in power series with respect 

to and the last factor in (8-2) is reduced to: 

«{)3% )j) + K)J'+  (8-3) 

The first term on the R.H.S. of (8-3) corresponds to the elastic part 

while the second term corresponds to the first-order (one-phonon) processes 

for inelastic scattering, which is our main interest here. We may neglect 

the one-phonon processes arising from the higher order terms which are much 

smaller than the first-order term in 

From (6-6), the second term in (8-3) is: 

(8-4) 

where W is given by (6-8) and use has been made of (4-48) and (4-49). 

From (8-2) and (8-4), the matrix elements of the first-order processes 

are reduced to: 

(8-5:a) 

<yi.r «int^ .P=- VI (N +1)*'= 
e V (K^+k^) ^ ^ 

0 0 D 

(8-5:b) 
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where (8-5:a) and (8-5:b) correspond to the phonon absorption and the 

phonon emission processes, respectively. This interaction changes the 

state of the semiconductor by scattering the conduction electron from 

Ic to k' and either absorbing or emitting a phonon with mode q. Hence 

we can write: 

k' - k + q = 0 (8-6) 

8-1 Transition Probability 

From (8-5:a,b), we have the squares of the matrix element for 

a phonon absorption and emission as: 

2 2 4 
ISTT Z e .,2 M 

'2: "2" - 2 Z-2W N 
e V K + kn ^ ^ 0 0 D 

(8-7:a) 

2 2 4 
ISir Z e 

2 2 2 2 2 9 9 
W„(N +1) (8-7:b) 

respectively. Substituting (8-7:a) an^(8-7:b) ^nto (7-1) ^ the 

corresponding Born approximation for the transition probability is: 

'XJ 

2 2 4 
2T! 16 ¥ Z e 11^ «i r 
 2-7-T N 6( E, 

Ti E_VJK + kp) M ^ ^ 
) (8-8:a) 
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when a phonon with mode is absorbed and 

'k^k' Or 

^ 16 
2 2 4 

IT Z e 
2 2 ,2 

^0 + kp) 

(8-8:b) 

when a phonon with mode q is emitted. Collecting the results (8-8:a,b), 

the transition probability rate for all phonon modes g is: 

2TT 
2 2 4 

16 TT Z e 
~Z 27“2 2” 

V -(K + kj 
•Tico 

q 
) 

+ (N +l)s(Ej^,-Ej^+TiiOq)} (8-9) 

where 6-function ensures the energy conservation; a conduction electron 

in state k is scattered onto one of two surfaces defined by the energy 

conservation relation E|^, = Ei. ± Since each scattering event of a 

conduction electron by impurity centres is assumed to be independent, 

we can sum (8-9) over all impurities, N^t^to give the total transition 

probability rate: 

N(+) 

EP 
fife’r 

„ 3,2 4„(+) 32 7T Z e n^ 
"2 

ti e V O 0 
E 

g 

w‘ 
g 

(K^ + kp)^ ^ % '\j ^ 
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= R)$* fc' =k*- a) (8-10) 

where nl^^= Np^Vv^^is the impurity density and 

P(!<.k-)= ^ 

W‘ 

1i V 
0 0 

- <7t77V'=rV%> g ( K + kp ) 

and (8-10:a) 

P(!l.!<,') = 

^9 3y2A(+) Oil 7T z e rip 

Ti E^ V 
0 0 

E 
w 

2 ,2 ,2 ‘"S " ‘ 
g ( K + kp ) 

(8-10:b) 

are the transition probability rate for phonon absorption and the phonon 

emission processes, respectively. 

9. Collision Term 

Using the transition probability,(8-10), that a conduction electron 

in a state k makes a transition to another state k' by either absorbing 

or emitting a phonon and taking into account the property of micro- 

reversibility and of the probability of electron occupations, f(j<){l-f(J<')}, 

i.e., the probability that the initial state k is occupied and the final 

state k' is unoccupied, the collision term in the Boltzmann equation is: 
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—I -Ef t / collisionL 
P'(k'.k)f{k')(l-f{)<)) - P^(:^.k-)f(j^)U-f{k-)) 

- p^{i.|t')f(^)(i-f(^')) - p\4')f{^){i-f{^')) 

(9-1) 

where the first, seconii, thir<d and fourth term of (9-1) correspond to 

the following diagrams respectively. 

Substituting (8-10:a,b) into (9-1) , we obtain: 

^ t /collision e p S 
0 0 

3,2 4 (+) q 16 TT Z e npj f 



X (9-2) 6(Ej^,-Ej^+TioOq) - N^f(k)(l-f(k'))6(Ej^.-E^-TiCq) 

where use has been made of (6-8), noting ^ " J<' = 

Introducing the density of lattice states and the density of electron 

states given by (7-26) with (7-27) and by (7-15) respectively, we can re- 

place the sum over all lattice modes, g, and the final electron states, J<', 

by integrals • Thus (9-2) becomes. 

+l)f(k')(l-f(k)) n ' ''\j 

X 6(Ej^-Ej^.+n<.q) + N^f(k')(l-f(k))6(Ej^-E|^,-1i(.q) - (N +l)f(k)(l-f(^')) 

dJs'V 

(9-3) 

The first two terms in (9-3) give the number of conduction electrons scattered 

into the state Jc and the last two in (9-3) give the number of conduction 

electrons scattered out of the state 1^ per unit time, either by emission or 

absorption of an acoustic phonon. 
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The expression of (9-3) may be simplified if it is assumed that the 

phonon number, N_, is determined by the equilibrium distribution function 

(7-31). However,we note here that the use of (7-31) in (9-3) is not 

always justified. But it will be satisfactory whenever the relaxation 

processes which establish equilibrium of the phonon distribution are 

rapid compared to that which operate to return the electronic distribution 

to equilibrium. In this case, we proceed under the assumption that (7-31) 

may be valid to use. 

9-1 Thermal Equilibrium Situation 

If the system is in equilibrium, the collision term, (9-3), is zero. 

This is easily proved (see Appendix B) by replacing N for phonons by 

(7-31) and f(^) for electrons by: 

f°(k) 
(Ek-M)/kgT^ 

e ^ + (9-4) 

for their equilibrium distribution functions, respectively. 

At the equilibrium, the following useful relations hold: 

{(N +l)f°(J<')(l-f°(J<))}6(E.,-E|^-Tia. ) = {N f°(J<)(l-f°(J<'))}6(E.,-E|^-ti<0 

(9-5:a) 

{(N^+l)f°(k)(l-f°(k'))}6(Ej^,-E^+1la:q) = (N^f° {^') (l-f° (j^) ) }6 (E^,-£^+710.^: 

(9-5:b) 



lUU- 

10. Derivation of Linearized Boltzmann Equation 

When the system is in a uniform weak electric field the Boltzmann 

equation can be written as: 

then v/e may solve (10-1) easily. (10-2) implies 

that any change in f(k) from its equilibrium value will relax exponentially 

with a time constant T towards the equilibrium value f°(J<). We note 

that a thermal gradient is assumed to be absent so that the distribution f(J<) 

is only a function of J< and t. Therefore from (10-1) and (10-2), we have, 

within a first power of 

(10-1) 

If we assume that the collision term can be taken to be of the form 

(the relaxation time approximation): 

(10-2) 

(10-3) 
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where f°(k) is the equilibrium distribution function and is given by (9-4). 
'\j 

o 2 2* 
Since f depends on k through the electron energy (= "h k /2m based on 

the simple effective mass model), we have: 

df°(k) af° (10-4) 

where: 

af‘ = - 6f°(k)(l-f°(k)) (10-5) ■ a. 

and 3 = write (10-3) as 

f(k) - f°(k) - .(k) 
BE 

(10-6) 

where: 4(|<) E ^ (k-|) (10-7) 

$(k) is defined by (10-7) and is now the unknown function and assumed 
'v 

to be small. Substituting (10-6) into (9-3), keeping only terms with 

the first power of $ (since we are considering the terms with the first 

power of ^) and using (9-5:a,b), after some manipulation (see Appendix C), 
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the collision term (9-3) becomes: 

Sf(k) 

d t /collision /, 3 2 ^ 
477 e p S 

0 0 0 

^ ^ . 2 ^2 ^ ( C| + krx ) 
f°(^)(l-f°(j<')) 

x6(E^,-E^--ho) ) + f°(k‘)(l-f^{k))6(E^,-E,^+fla) ) ) - $(k) 
% 'v 'h 'll 

^L.3. 3 dk dq 

(10-8) 

where we have made use of (10-5),and k' = k ± q for either a phonon 

absorption (+) or phonon emission (-) processes. 

From (10-1), (10-3) and (10-8), the linearized Boltzmann equation is: 

3Z^e^nl‘^^ D 

A 3 2 . 
HTT e p S 

0 0 0 ( q^+l<D 

- tU) I" dk'^dq' 
df°(V 

S)S 

(10-9) 

where: 

(10-10) 
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Note that <J>(k) is derived under the assumption that the energy is 

a quadratic function of )<. If we assume ^ = ( 0, 0, ), (10-9) becomes 

4TT' £ p b 
0 0 0 ( q^+ko 

"h ^ 

(10-11) 

where ^ 1s given by (10-10). (10-11) is the basic equation to determine 

relaxation time T. 

11. Relaxation Time for Momentum Transfer (Inelastic Case) 

For lightly doped, nondegenerate semiconductors we can use the 

Boltzmann distribution function for conduction electrons; 

f°(k.) = e 
-(Ek-y)/kB‘ 

(11-1) 

in stead of the Fermi-Dirac distribution function (9-4). Hence we can 

replace the square brackets in (10-10) by unity. The basic equation 

for nondegenerate semiconductors may be written as: 
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K^(k') - M(J<) 

f\ 'd k. 
(11-2) 

We first integrate (11-2) over k'. Noting f^(k) = f°(E, ) and that k^dk '\j K 

={(2m )^^^/2ti^}E^dE|^, and since E. = Ti^Jj^/2m , we have: 
'\i '\i *0 

4T(k') - k^x(k) f°{k)6(E|^,-E.-Ti(o ) + f°()<')«(E|^,-E|^+tia) dk^ 'V 

= 2irJ|k'cose^,)T(k') - k^r{J<)jj^f°(k)6{Ej^,-Ej^-TiiOq) + f°()^')«(E,^,-E|^+no), 

2 
xk' sine. ,de. ,dk 

27Tk j2m*)^/^T(k) 

Ti' 
6{E^.-Ej^-fi.q)dE^ 

■ 'h'° (E^.) 
'XJ 

2irk,{2ni*)3/2^(k) 

” . Oi Oi “ “ 

(11-3) 



-105- 

From (11-2) and (11-3) we have the reciprocal of relaxation time 

for momentum transfer as: 

O/” 

dq' (11-4) 

For semiconductor E|^ is of the order of thermal energy of a conduction 

electron; Ej^ = 3kgT^/2, and Max tia) is of the order of k^e = 

where 0 is the Debye temperature of the bulk material. If T^>> 0, we can 

approximate: 

l±>5tiyEj^-- ) (11-5) 

and noting ho) = tiS^q << hgT^, we can write: 

(E.-tiu)„-u)/k„T - Tiu)„/kRT 
f°(Ej^ - ho)q) = e ^ “I ^ ® = e ® ® f°(E^) - f°(E^) 

(11-6) 

Thus: 
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-‘kj— - -i^r— °ty— = - 

^K. ^ EJK 
TT^f°(Ej 
m kgTg ^ 

(11-7) 

2 2 ^ where use has been maide of (11-1) and Ei^ = t1 k /2m , 
K o. 

O- 

From (11-5), (11-6) and (11-7), (11-4) becomes: 

where N is defined by the Planck distribution function, (7-31), 
H 

which follows: 

(11-9) 

for kgT >> tiS^q. This high temperature approximation is valid for 

temperatures , T > i °K. 

From (11-8) and (11-9), we have, after angular integrations; 

12zV(2ni*)8/8n(+)kgTE| 

TI P li^ 
0 0 o (q^ * 

(11-10) 

It is important to note that the integration is carried out over the 

whole range of values of q. We shall determine the limits of this range, 
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2 2 * If the energy of a conduction electron is = ti J< /2m and the frequency 

of the longitudinal acoustical waves is = S q, where S is the speed q 0 o 

of these waves, it follows from the law of energy conservation ( recall that 

6-function ensures the energy conservation of the system ) that: 

r - r ^ -fe ^ ± q)^ ^ -br E. I- E. ± rici3 1 .e., —W—5-4^— = —— ± nS q (11-11) 
2m 2m 

The upper sign represents the absorption of an acoustic phonon and the 

lower sign the emission of an acoustic phonon. Therefore, 

q = + 2k cose ± 2m*S^/ti (11-12) 

where e is the angle between the directions of the vectors k and q. 

We shall find the second term in (11-12), dividing it by k, 

2m*S^/nk = 2m*S^/p = 2m*S^/y3m*kgTg = 2Jl/Tg (11-13) 

* 2 
where T = m S /Sk^, and ko is the Boltzmann’s constant. Since conduction 

0 B B 

electrons are distributed in accordance with Boltzmann’s law, we can V* 5 * 
3m kpT . If S =10 Cm/sec and m 

Q 6 0 

= 0.5 X 10"^^g, we find T < 1 °K. At all temperatures we can 

neglect the second term in (11-12) and, therfore. 

q = ij: 2k cose (11-14) 
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which shows that the range of integration with respect to q extends 
★ 

from q = 0 to q = 2k. Neglecting the term 2m S^/Ti is equivalent to 

neglecting the second term in (11-11), i.e., equivalent to neglecting 

the term describing the inelasticity of electron-phonon collisions. 

But an electron in a state k is actually not scattered onto a surface 

of constant energy E^, = but onto one of two surfaces slightly 

displaced in energy, ticOq, from it. 

Since the average value of k for electron at 300°K is about lO^Cm"^, 

and according to the Debye theory the value of q„.^ is, from (7-28), 
niaX 

8 1 10 Cm"-^, it follows that 2k < q .We therefore take 2k for the upper ^max 
limit of the integral in (11-10) for semiconductors. Hence the integral 

in (11-10) becomes: 

2{q^+kp) 2K 
tan'^ (q/kp) 

2k 

—2 2 4k^ + k2 2 k, 
tan'^(2k/kp) 

= F(2k/kp) (11-15) 

Hence from (11-10) and (11-15), the reciprocal of relaxation time due 

to ionized oscillating impurities is: 
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12z2e^(2m*)^/^n^^^kgT 

 T—"TTA ^ E p S" ti 
OOP 

F(2k/kQ) 

(2m*)^/^ kgT 4z2e^ni") . 'D 
^2 
P s 

0 0 
kf, 

0 D 

E|J G(2k/kp) (11-16) 

where use has been made of (5-3) in which is replaced by 

Here G(k/2kp) is given by: 

1 2k/kp 
G(2k/kn) = tan -^(2k/kn)  (H-17) 

^ ° 1 + (2k/kp)^ 

Note that (11-16) is valid except for extremely low temperatures. 

(i) Fairly Low Temperatures and High Impurity Concentration 

In this case the condition, 2k « kp, is satisfied, so that we 

can expand the terms in (11-17) to give G(2k/kp) as: 

G(2k/kp) = 2k/kg - (2k/kg)^/3 + a-(2k/kp)^}2k/kp + ••. 

^ 2 ,2k.3 
^ 3 ^IT^ .5 Kp (11-18) 
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We, therefore, have the reciprocal of relaxation time as: 

8 (2m*)^ k„T 

i Ti 

B' ^4 

^ 
j  

*^o''o "D 

9 (2m y T 

^2 n+y 
ZTT n p S n,; 0 0 D 

(11-19) 

where we have used (5-3) in which is replaced by Zn^^^when all 

2 2 * impurities are ionized, and = T\ /2m = 3kgT^/2. 

(ii) High Temperatures and Low Impurity Concentration 

In this case the condition, 2k » kp, is satisfied, so that 

(11-17) approximates to: 

-1 G(2k/kp) = tan""(2k/kp) (11-20) 

We, therefore, have the reciprocal of relaxation time as: 

6*^ (2m*)^^^ kgT 

. 3/2 -4 
1 TT n 

i*)h . .._-l 
3/2 . e p o 
0 *^0 0 

r "D tan 

* \l- 
4e m V E. 

o \ X. 
3TrZn^/ efi 

3 , (2.*)3/2 (Ze2)3/2 ^2 
—j —a   ■ 

2 3/2 .2 D e p S 
0 0 0 

ni T T_ tan -1 3e m* k.T^ 
0 \ B e 

4TrZn m- efi 

(11-22) 
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where we have used (5-3) in which is replaced by Zn^^^when all 

2 2 * 
impurities are ionized, and Ej^ = /2m = 3kgTg/2. 

% 

12. Effective Relaxation Time (Mixed Scattering) 

In real crystals, several scattering mechanisms usually act 

simultaneously. In fact, in every interpretation of the results 

obtained for a given transport phenomenon we are faced with the 

problem of the mixed scattering of conduction electrons; these 

scattering mechanisms are usually the scattering by ionized impu- 

rities and by acoustic phonons. 

Applying the well-known addition rule to the reciprocals 1/x: 

1_ 

■'eff 
(12-1) 

we obtain the following expression for the simultaneous scattering 

by the acoustic phonons and oscillating ionized impurities: 

^ = j_( 1 + ^) 
■'eff ■'p '^i ’■p ■'i 

(12-2) 

where is given by (11-16) and T is the relaxaion time due to the 
r 

ordinary electron-phonon scattering (see Appendix D for derivation) and 

is given by: 
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1 
T 

P 

^ kgT 

27T p 
(12-3) 

where C is the deformation potential constant (the electron-phonon 

coupling constant) and E. is the average energy of a conduction 

2 2 * ^ 
electron (E|^ “ /2m =3kgT^/2). We note here that the acoustic 

% 
phonon scattering is encountered in intrinsic semiconductors. 

Since the temperature range valid for both and T^. is the same 

; i.e., T > 1°K, we may find the effective relaxation time, (12-2), 

in extrinsic semiconductors. 

12-1 Oscillating Ionized Impurity Effect 

To calculate the effect of oscillating ionized impurities on 

we consider . From (11-16) and (12-3), 

^ 12z2e^W 

1 2 p2 u e C kn 0 D 

G(2k/kp) (12-4) 

where G(2k/kp) is given by (11-17) and k^ by (5-3) in which n^ is replaced 

by Zn^^^ when all impurities are ionized. Then is called the screening 

wave number (the extrinsic Debye wave number). 
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“11 * 
Assuming C - 1.76 x 10 erg, m = 2.004 x 10 g, - 15.8 

and that the impurities are singly ionized (i.e., Z = 1), we have, 

from (5-3), (11-17), (12-4) and using k = (3m kgTg)^/ti, for a thermal 

electron: 

—^ = 1.066 X 10"^ for Tg = 300 °K, = 10^^ Cm"^ 

~ 9-867 X 10'^ for Tg = 300 °K, = 10^^ Cm"^ 

—2- = 2.011 X 10 -4 for Tg = 10^ °K, = 10^^ Cm'^ 

_R, 5.657 X 10 -3 for Tg = 10^ °K, = 10^^ Cm"^ 

From the above results and (12-2), we have: 

0.01 % for Tg = 300 °K, = 10^^ Cm‘^ 

0.10 % for Tg = 300 °K, = 10^^ Cm'^ 

0.02 % for Tg = 10^ °K, = 10^^ Cm'^ 

0.56 % for Tg = 10^ °K, = 10^^ Cm’^ 
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We conclude from these results that the oscillating ionized impurity 

effect is too small to be observable at temperatures ^ ^ 

but we see that as temperature or impurity density is increased, oscillating 

impurity effect is slightly increased. Physically this means that as tempe- 

rature is increased, electron-phonon scattering is more active, not only due 

to the oscillation of solvent atoms but also due to that of impurity atoms. 

Hence electron-phonon scattering through impurity oscillations should be taken 

into account. Since impurity atoms also oscillate like solvent atoms, as 

impurity densities are increased, electron-phonon scattering through the 

impurity oscillations contribute to the effective scattering mechanisms. 

12-2 Oscillating Ionized Impurity Effect on the Deformation Potential 

(or the Electron-Phonon Coupling) Constant 

Comparing (11-16) with (12-3), we have the effective deformation 

potential (or the effective electron-phonon coupling) constant, as: 

Ceff = C{ 1 + 
0 D 

G(2k/kp)} (12-5) 

where G(2k/kp) is given by (11-17). 



00 We see from (12-5) that as n (+) 
D ^ 0 or kp -?■ (i.e., Tg - 0) j c, 

i.e., the effective deformation potential (electron-phonon) coupling 

constant, goes to that for intrinsic semiconductors. 

Using the results obtained in the previous section, we have 

Ceff( n^^^ ) as follows: 

Cgff(300,10^^) = ( 1 + 5.330 X 10'^ )C 

Cgff(300,10^^) = ( 1 + 4.934 x 10"^ )C 

Cgff(10^,10^^) = ( 1 + 1.006 X 10'^ )C 

Cgff(10^,10^^) = ( 1 + 2.829 X 10"^ )C 

where the units of T and n^^'are °K and Cm"^, respectively. 

We conclude from the above results that the effective 

deformation potential energy is slightly increased at higher 

temperatures or higher impurity densities but these effects 

(due to the oscillating ionized impurities) are too small 

to be observable at the temperatures, 
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Conclusions 

From the analysis and the computed results presented 

in the previous chapters, tentative conclusions are drawn 

as follows: 

(i) The effect of the impurity oscillation tends to increase 

the effective deformation potential coupling constant, ^eff • 

In the case of high temperature apporoximation, such a change 

is still less than 1 % for most non-degenerate non-polar semi- 

conductors . 

(ii) This effect tends also to decrease the effective’ electron- 

phonon relaxation time since it is inversely proportional to 

2 
This implies that this effect tends to lower the electron 

mobility. However the lowering is small, and it would be less 

than 1 % even at temperatures up to the melting point and with 

impurity concentrations reaching the degenerate conditions. 

(iii) These theoretical results are essentially the same as 

those of Conwell and Weisskopf, and Brooks and Herring whose 

theory is based on a scattering potential due to a stationary 

impurity, which is coulombic. 

(iv) The results taking into account the effect of the oscillation 

of impurity ions are not sufficient to explain the deviations 

3/2 from the T law. 
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It should be noted that the failure of using this effect 

3/2 to explain the deviation from the T law observed in some 

non-polor semiconductors may be due to the following facts: 

(i) The high temperature approximation may be inappropriate 

for non*degenerate semiconductors since at low temperatures, 

scattering by acoustic phonons through impurity oscillations 

becomes inelastic and can not be described using high temperature 

approximation. 

(ii) High temperature approximation implies that the conduction 

electron energy is always greater than the interaction potential 

energy. However, there is a possibility that the conduction 

electrons are trapped by ionized impurities. In fact, such a 

possibility may become very signifficant, especially at low 

temperatures. 

(iii) Direct interaction between phonons and oscillating 

impurities has been neglected in our calculation. this may also 

be very significant at low temperatures and with high impurity 

concentrations. 
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(A) The Harmonic Oscniator and The Derivation of the General 

Form : 

(2n)l2 I 
N n 

^ n ? 
r = 0 2 (rj) (n-r)l (N^- r) I 

Oj 

The Schrbdinger equation for the harmonic oscillator is given 

by: 

? 2 
9 . 1 2 

•K—-  sr + ^03 >=n (x) = E^x,(x) (A - 1) 

where 

ER ' ^“q + ^ ) (A - 2) 

(x) =- I n> = J- 
n I 

H„(3x)e 
1 .2 2 -h^ X 

(A - 3) 

where Xp(x) is normalized and 6 . 

Now we consider the following matrix element: 

<n| x'’ |m> = —=1 
(it2"'^n|m|)’^. 

oo 

V, f HR(Bx)H^(6x)e 
J- 2 X dx 

6P(.2"-^%lml) 

00 

HI-\ 
-00 

(n)H^(n)e ^ dn (n = Bx) 
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2"-P pin! s (n,m) 

where use has been made of the following formula: 

00 2 

/n'^e ^ H (n)H (n)dn ^PlnlS (n*m) (A - 4) ^ n m • » p 
-00 

with 

p/2 2A 
S z 
A=0 v=0 

2'’(n + 2v - 2x) ! ‘^in,n+2v-2x 
vl(p/2 - X) j (2A - v)j(n +v -2x)j 

(A - 4:a) 

S (n.m) = 

for p = 2q (q = 0,1,2, ) 

(p-l)/2 mi 2-(n.2v-2x-l)|6^^^^,^.3^., 

A=0 v=0 V j|(p-l)/2 - A[ ! (2A-^V+1) ! (n+v-2A-l)! 

(A - 4:b) 

for p = 2q + 1 (q = 0,1,2,  

Taking, account of the fact that: 

m = n + 2v - 2A when p is an even integer 

and that • 

m=n+2v-2A-l when p is an odd integer. 

the matrix element is 



(A - 5) 
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P ! 2nn!(n+2v-2A)!]^ '^m.n+2v-2x 

(2B)P' A=0 V=0 V!(P/2 -A)!(2A-v)!(n+v-2A)! 

<n|x*’|m>= for even integers p 

P - 1 

_A.T~ 2(^"^-)[nj(n-.2v-2A-l)jf-6^^„,,^.,,,i 
(2g)P A=0 v=0 vJ(p/2 -A-J5)!(2A-V+1) ! (n+v-2A-l) I 

(A - 6) 

for odd integers p 

For the case n=m (corresponding to energy conservation) the initial 

and the final states are the same, p(even) gives v = A, but for p odd, m 

and n can never be equal. Thus only when p is even is energy 

conserved. Letting p = 2q (q = 0,1,2,  ) in (A - 5)^ we have: 

<n|x^P|n> = 1 1 (2q)!2^n! 
(2e^)P A=0 2P{A!)^(q-A)!(n-A)! 

(A - 7) 

Now if we define: 

X 

p = 

(A - 8) 

(A - 9) 

the Hamiltonian for the harmonic oscillator is; 
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Is + raiOqX^ ^ liu.q (B^B^ + h) (A - 10) 

which is exactly the same form given by (4-42) apart from the 

summation. (A - 10) expresses the Hamiltonian of the single 

harmonic oscillator with frequency u) . The operators B and B 

obey the commutation rules (4-45), (4-46) and (4-47). From (A-8), we have 

<n|xPlm>= <n|(B^ + (A - 11) 

Replacing p by Zq for the case of energy conservation we have: 

<n|x^‘’|n> = <n|(B^ + ej)^''|n> 

-^<ni(B„ + B;!;)2''in> 
(2S )^ ^ 8 

(A - 12) 

By comparing (A - 7) to (A - 12), the general form for elastic 

processes is: 

<n|(Bq I"> 

q 
z 
x=0 

(2q)l2^n! 

2‘’{xj)2(q - x)!(n-x)l 
(A - 13) 

i.e. by replacing n,q and xby N , n and by r, respectively. 

ThU0 : 
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>+ ^2r] (2n) ! 2’ 
N 

<Nal(^Q ^ ) i^> = ^ —n~nT I ^ 9 ^ ^ r=0 2^(r I )^(n-r) I %" 

(A - 14) 

[Note: Derivation of (A - 4)] 

The Hermite polynomials, H^(n)> may be defined by the generating 

function: 

g(n,z) = e'^ = i H„(n) 
n=0 n' n I (1) 

It follows from the generating function that: 

-00 

g(n,z^)g(m,Z2)dn 

n_ m » 
00 00 z 

= z z 
n=0 m=0 

— 00 

■J 
-Oo 

-"2^^2Z2T, 

nee e dn 

^^1^2 r D -(z^+z^)}^ 
= e ^ J p^e ^ dp 

-CO 

Letting u = n - we have: 

2 
fpPe-tn-(Zi+Z2)} = J {u +{2^ + z2)}Pe'“ 

-00 -00 

du 
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so that: 

z z 
n=0 m=0 

n m 

n m 
T 2z,z, f „ 
[p(fi.m) = e J { u + (zj + Z2)}^e “ 

-CO 

du (ii) 

where 

00 2 

= J n*^e ^ H^(n)Hj^(n)dn 

-00 

(iii) 

(a) Case p = 2q = even integers (q = 0,1,2, ) 

{u + (Zj + 22)}^ ^ { u + (Zj + Z2)} 2q 

. /2q\ 2q-s, , 

■ -olJ “ 

= z JM! ,2q-S 

s=0 M(2q-S)l 
u"^'"(Zj+Z2) 

Since e ^ is an even function^only even integers s, i.e. s = 2A 

(A = 0,1,2, ) contribute to the integral in (ii). Hence putting 

s = 2A , we have 

{u + (z,+Z2)}^^ = i - 
s=0 

(2q)j iA(q-^) /, +7 \ 
(2x)!{2(q-x)}j “ '^1^2^ 

2x 

SO that : 
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2ZIZ9 r On ..2 

-00 

2ZIZ2 q (2q) I (z^+Z2) |*^2(q-A) ^-u 
= e E  j 

X=0 (2x) ! {2(q-x)}| -« 

2Z^Z2 q vV (2q)j (z^+Z2)^^ 

^ Lo 2^^'’‘^)(2x)!(q-x)i 

where use has been made of the following formula 

/ 
op 2 

2n -ax , 
X e dx = (2n)! 

,2n 
-00 

2n+l 

(n: positive integers) 

Since: 

2Z,Z2 “ (2z.Zp)'^ 
e = E    r— 

n' n' 

and 

(Zj + Z2) 
2A 2A“V^'^ 

^2 

= (2A)! ^ 2A-V ^ V 

v=0 
I (2A-V)I 1 

(iv) 



-126- 

we have: 

2z,Zp q 
e E 

A=0 

^ (2q)j(z^+Zg)^^ 
22(q-X) j2x)!(q-x)l 

°° q 2A «n 
= VTT (2q)j E E E ^ 

n'+2A-v n'+v 
Zi Z2 

n'=0 X=0 v=0 n'! 2^^'’"^^q-x)!v!(2x-v)! 

00 00 

(2q)j E E 
n'=0 m=0 

n'+2A-v m , 
1 ^2 m,n'+v q 2A „n 

X=0 v=0 n'! 2^^'’'^^(q-x)j vj(2x-v)! 

Putting n'+2A-v = n, i.e. n' = n+v-2A 

00 CO 

= v^ (2q)! E E 
n=0 m=0 

„ Ox O*^+^-2A n , m „ 

I z ^ ^m,n+2v-2x 
x=0 v=0 2^^''‘^^q-x)! V!(2X-V)! (n+v-2x).l 

Hence we have: 

00 00 

E E z/zo^ 
n=0 m=0 ^ 

l2q(n,m) 
la 
n|m! 

00 00 

= E E Z*? Zp 
n=0 m=0 ^ 

« «n-2q+v 

^7 (2q)j E E m,n+2v-2A 
A-0 v=0 (q-A)|VI (2A-V)j(n+v-2A)j 
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n m By equating the coefficients of on both sides, we 

have the following formula: 

T M 9n q 2A 2^(n+2v-2x)|6 « 
L(n.tn) {2q)!nlE E  — ' 

A=0 v=0 (q-A)!V!(2A-v)!(n+v-2A)I 
(v) 

(b) Case p = 2q+l = odd integers (q = 0,1,2, ) 

{u + (z^+z^)}^{u + (Zj+Z2)}^^^^ 

s=0 s|(2q-s+l)! 

(Z1+Z2)’ 

zq-s+1/ . x: u ^ (z^+Z2) 

V.. Since e is an even function^only odd integers s, i.e. 

s = 2A+1 (A = 0,1,2, ) contribute to the integral in (ii). 

Hence putting s = 2A+1, we have: 

{u + (Zj+Z2)}^‘* ^ - E^^ (2A+lV(2(q-A)}! 2A+1 
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SO that: 

2z,z * 
e ^ ^ j"{u + e"“ du 

-00 

2ZJZ2 q (2qn)!(Zj+Z2)^'-^l J? 2(g.,) .^2 
- e E  ^  I u ' e du 

A=0 (2A+l)|{2(q-A)}! J 

= e 
2ZJ^Z2 'I ^/ii{2q+l) j(z^+Z2) 2A+1 

A=0 2^''’’^^ (2A+l)!(q-A)| 

where use has been made of (iv). 

Since: 

2Z^Z2 - (2Z^Z2)" 

= z 
n'=0 n'l 

and 

(Z1+Z2) 2X-V+1 V Zi Z2 

= z 
V V 

(2A+1)! 2A-V+1 V 

l(2A-v+l)l 1 2 
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we have: 

2A+1 
^^1^2 ^ (Z2+Z2) 

\=0 2^^'''^^(2A+1)! (q-x)! 

= ^ (2q+l) I E L E 
q 2X+1 ^n‘ Zj"'^2X-v+l ^^n'+v 

n'=0 X=0 v=0 n'! 22(q-^)(q.x)jv[(2X-v+l) \ 

00 00 

y/a (2q+l) 1 E E 
n'=0 m=0 

2A+1 «n 
E ^ 

n '+2A-V+1 m n 
^2 m,n'+v 

X=0 v=0 n'! 2^^‘’"^^(q-A)!v!(2x-v+l)! 

Putting n'+2x-v+l = n; i.e. n' = n+v-2x-l 

00 00 

^/^ (2q+l) I E E 
n=0 m=0 

o OAJ.1 on+v-2A-l n , m ^ q 2A+1 2 z, z« 6^ .r) T 
^ ^ 1 2 m,n+2v--2A-l  

X=0 v=0 2^^''"^^(q-x)!v}(2x-v+l)!(n+v-2x+l)! 

Hence we have: 

00 00 T (njm) 
Z Z z z ^ J-?3+l  
U m=0 1 2 mm! 

00 00 

= E E 
n=0 m=0 

z "z Zi Z2 
_ q 2A+1 6 p p , 

M {Zq+l)\i ,E  m,n+2v-2x-I 
A=0 v=0 (q-A)|V i(2A-v+l)!(n+v-2A+l)j 
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from which we have the following formula: 

l2q+i{n.m) (2q+l)ln [ X 
v=0 (q-A)jV](2A-V+1)!(n+v-2A-l)! 

(vi) 

From the results (v) and (vi) we have the formula (A - 4). 
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(B) Thermal Equilibrium Situation: 

If the system is at the equilibrium, we can replace N for 

phonons and f(J<) for electrons in (9-3) by their equilibrium 

distribution functions, i.e., 

N_ =  —   and = —sTc \  

^ e ^ - 1 e ^ + 1 

respectively. Noting the property of the 6-function, i.e., 6(x) = 6(-x), 

the first and the fourth terms in (9-3) are then: 

{(Nq + l)f°(k-)(l - f"(k)) - N^f"(k)(l - f°(J^'))}6(Ej^.-E^-tiu)q) 
O- 

= {(f°(k') - f°(k))N + f°(k')(l - f°(k))}6(E|^,-E|^-Tiio ) 

3(E.+fia) -y) B(E.,-y) 
e 'V ^ - e 

B(E. ,-y) 
(e 

B(E.-y) BboT 
+ l)(e + l)(e ^ - 1) 

^(E^,-E^-flo>q) 

where due to the 6-function we can replace E|^ + tico by Ej^,. The above 

result, therefore, vanishes. In the same way we can prove that the 

second and the third terms in (9-3) also vanish at thermal equilibrium. 

Hence the collision term, (9-3), goes to zero and both (9-5:a) and 

(9-5:b) hold. 
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(C) Derivation of the Linearized Boltzmann's Equation: 

By use of (10-6) and noting the equality (9-5:a), the first and 

the fourth terms in (9-3) are: 

E (N^+l)f(k')(l-f(J<)) - N^qf(k)(l-f(k')) 6(Ek,-E|^-tiM ) 
'\j 

(N +i){f°(k' )||-}a-f°()^)+$o^)^} 
- ^ k' k 

3f°, r, 
g - “ “ =-k 'X) a- 

. ^ ^ K 

-(N +l)(l-f“()<))$(Ng+j. 

omit 

3Ej, 3E^.. 
a- a. 

Y°(j<)(i-f°(r))-Ngf°(i<)*(r)||r. 

+N (l-f°(|c'))$()^)|^ +N 

omit 

6{E^,-E^-fio3 ) 
% ^ 
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(Nq+l){f°(k' )$(k)|^ - d-f°(k))4>(k' )||-} 

Oy 

^ k k J ^ ^ 
'Z '^y 

where the terms with   have been canceled each other due to (9-5:a) 

2 
and the terms of $ have been omitted since we are cosidering only up to 

the first order power of ^ (electric field). 

Substituting (10-5) into the above equation and noting (9-5:a), the 

above equation becomes: 

[(N^+l)f{^')(l-f(^))-N^f(k)(l-f()c'))]s(Ej^,-E^-tio.q) 

X 5(E|^,-E^-fia)q) 
% 

(C-1) 
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Similarly^by use of (10-6) and noting the equality (9-5:b), the 

second and the third terms in (9-3) are: 

= 6N f°(J<')(l-f°(Jc)){<t(^')-4-(^))s(E..-E.+tiio ) (C-2) 

2 
where use has been made of (10-5) and the terms of ^ have been omitted. 

From (C-1) and (C-2) there results: 

r{(N^+l)f(^')(l-f(^))-N^f(Jc)(l-f(J^'))}5(Ej^,-Ej^-H»q) 

+{Ngf{jc')(l-f(Jc))-(N^+l)f(J<)(l-f(J<-))}s{Ej^,-Ej^+1ia3q)] 

= SN^[f“(k)(l-f°(J<'))6{Ej^,-E|^-1i.q) + f°(k')(l-f°()c))«(E^.-E^-R.q)] 

x|^$(J<') - (C-3) 

Replacing the square bracket in (9-3) by (C-3) leads to the collision 

term (10-8), from which the Linearized Boltzmann's equation follows. 
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(D) Derivation of ; Electron Scattering from Lattice Oscillation: 

(i) Electron-Lattice interaction 

We consider the interaction between a conduction electron and the 

acoustic vibrations of atoms, which make up the lattice field. If the 

lattice is regarded as continuum (see Chap. 4), one expects the inter- 

action between an electron at r and a density wave at R to be proportion- 

al to the product: 

is the volume change in the medium. The total interaction between 

the conduction electron and the lattice oscillations is then given by: 

where C is a deformation potential constant ( an electro-phonon coupling 

constant) having the dimensions of energy and is determined by experiments. 

(D-2) shows the energy change due to the volume change (or density change) 

of the medium. 

Suppose that: 

(D-1) 

2 
where |ip| is the probability density of the conduction electrons and 

(D^2) 

Il'(r)|^ = «(JC - V (D-3) 
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then (D-2) becomes: 

Hint = C v.flCic.t) (D-4) 

Using the displacement vector given by (4-43), (D-4) becomes: 

= - C 1 nt 
0 0 0 q 

O. 

where the sound speed S is given by: 

s = ° V 
(D-6) 

where is the compressibility and is the density of the medium. 

We note here that B and are , respectively, phonon destruction and 

creation operators. Since the minus sign in (D-5) comes from a trivial 

phase factor, e^^, we can simply write (D-5) as: 

Hint = C. 
\ 2p V S S 3 
f 0 0 0 q 

(D-7) 

O- 

(ii) The Basic Hamiltonian for Intrinsic Semiconductors 

The Hamiltonian of the system for intrinsic semiconductors is: 

H = Hi.ttice " Heiectron " H^^t 
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‘^lattice’ ^electron ^'nt 9"''®" (5-2:a), (5-2:b) and (D-7), 

respectively. Since and are independent each other, the 

wave function of the unperturbed system is given by 

(6-2). 

(iii) Matrix Elements for Scattering 

The rate at which a conduction electron in a state k is scattered 

into another state J<‘ by a lattice oscillation is determined by the matrix 

element: 

r 

(D-9) 

where use has been made of (6-2). 

Since: 

(D-10) 

(D-9) becomes: 



- <XM.|B 

^\j lij l^k'-k^^N ^ 
%2p V S L \'-k ^ ^ \'-k 
»OO0 AJO) 'b'V/ 

-<x 
-(k'-k)'^"^'^'’fe^'’^^-(k'-k) 

'll O- 

>1 (D-11) 

We see that the transition k -> k' of a conduction electron and.the 

+ h 
simultaneous transition N„ ± 1 of the lattice mode can occur 

only when (D-10) is satisfied; i.e., 

r - ± = 0 (D-12) 

which ensures the momentum conservation. 

Noting (D-12) and the orthogonality of the lattice wave function, 

(D-11) is reduced to: 

M 
2p V S 

0 0 0 

2p V S OOP 

(D-13:a) 

(D-13:b) 
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where use has been made of (4-48) and (4-49). Here (D-13:a) and (D-13:b) 

correspond to the phonon absorption and the phonon emission processes, 

respectively. 

(iv) Transition Probability 

From (D-13:a,b), the transition probability for one-phonon processes 

is: 

Pnk^n' k' 
<V\; % '\j 

IT C‘ 

P V s 
0 0 0 

(D-14) 

where: 

TT C 

P V S 
0 0 0 

^ V^^k'-^k-’^“q) 
'\j a. ^ 

(D-14:a) 

and 

P'^(k.k') = 
TT 

P V S 
0 0 0 

(D-14:b) 

are the transition probability for the phonon absorption and the phonon 

emission processes, respectively. 
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(v) Conislon Term 

Using (D-14) and taking into account of the principle of micro- 

reversibility and of the probability of electron occupations, f(k)(1-f(k)), 

i.e., the probability that the initial state k is occupied and the final 

state k' is unoccupied, the collision term in the Boltzmann equation is: 

where we may replace the sum over all the final states,k', by an integral 

using the density of states function (7-15). We note here that each term 

in (D-15) corresponds to its diagram given by Fig. I . Using 

(D-14:a,b) and (7-15), we have (D-15) as: 

(D-15) 

) - (N +l)f(j^)(l-f()<')) 
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(D-16) is the change in the distribution function,f(k), due to the 

interaction between the conduction electrons and the lattice. 

(vi) Linearized Boltzmann Equation 

Derivation of the Linearized Boltzmann equation is exactly the 

same as that given in Chap,10. Noting the terms in the square brackets 

in (9-3) and (D-16) are exactly the same, and substituting (10-6) into (D-16), 

we have the Linearized Boltzmann equation as: 

(D-17) is the basic equation to determine T. 

For non-degenerate intrinsic semiconductors we can use (11-1) for 

conduction electrons. We, therefore, can replace the square brackets in 

(10-10) by unity. Assuming E = (0,0,E^), (D-17) becomes: 

(D-17) 

(0-18) 
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(vii) Relaxation Time for Momentum Transfer 

Noting the integral over the final states, Jk', is exactly the same 

form as (11-3), (D-18) becomes: 

C^(2m*)^= qk^ 

2TTP S h 
0 0 

^ k z 

(D-19) 

From (11-5), (11-6), (11-7) and (11-9) for the high temperature approximation 

and from (D-19), we have the reciprocal of relaxation time due to the electron 

-lattice interaction; i.e,, electron-phonon scattering, as: 

1 
T 

P 

1 (2m*)kgT 

2ir ti^ p 
0 0 

(D-20) 

We note here that (D-20) is valid for T > 1 °K. 
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