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Abstract 

 

Paraquat (PQ), one of the most commonly used herbicides worldwide, is highly toxic to humans 

and exposure can result in severe clinical situations with no effective treatments available.  The 

toxicity of PQ has been attributed to its ability to continuously produce reactive oxygen species 

(ROS) via redox cycling.  Oxidants have been shown to induce the expression of several early 

response genes and to activate transcription factors, which may contribute to the inflammatory 

response associated with PQ injury.  In order to further elucidate the mechanism(s) of PQ injury, 

we investigated its effects on the cellular status and gene expression profile of immortalized 

human alveolar epithelial A549 cells in vitro.  Incubation of cells with PQ resulted in time- and 

concentration-dependent increases in intracellular PQ levels, which correlated with increases in 

intracellular ROS levels, and decreases in intracellular glutathione (GSH) content, mitochondrial 

membrane potential, and cell viability.  Messenger RNA analysis revealed differential gene 

expression in response to PQ exposure, particularly increases in the expression of pro-

inflammatory genes (i.e. IL1A, IL6, IL18), which correlated with increases in the secretion of 

pro-inflammatory cytokines (i.e. IL-8, IL-6).  Recognizing that ROS play a major role in PQ-

induced cytotoxicity, modulating the levels of antioxidants may serve as a potential treatment 

strategy.  Since the delivery of many natural antioxidants exhibit poor bioavailability and cannot 

easily cross biological barriers, we investigated the in vitro effects of the thiol-containing 

antioxidant N-acetylcysteine (NAC) delivered to A549 cells either in its free or liposome-

encapsulated form (L-NAC).  Pre-treatment of cells with NAC or L-NAC protected against PQ-

induced cytotoxicity (i.e. decreased ROS levels and LDH leakage; increased GSH content, 

cellular antioxidant potential, and cell viability), and messenger RNA analysis revealed 
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modulation of gene expression, particularly inflammatory mediators (i.e. IL8, IL10, IL18), which 

correlated with modulation of inflammatory cytokine secretion (i.e. IL-8).  These cytoprotective 

effects were more evident in cells pre-treated with L-NAC, which is attributable to the increased 

levels of intracellular NAC achieved via liposomal delivery.  These data provide evidence for 

further studies investigating the protective effects of L-NAC in PQ- and other oxidant-mediated 

lung injuries in vivo.  
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Preface 

 

Paraquat (PQ) is an agent that, when introduced into humans and animals, enters the blood and is 

accumulated in the alveolar type I and II epithelial cells and Clara cells of the lung (Suntres 

2002).  Due to the chemical nature of PQ (it does not directly interact with cellular processes, it 

primarily acts to produce ROS through a process of redox cycling, and it is specifically 

accumulated in the lung), this agent is used as a model to simulate oxidant-induced lung injuries 

(Bus and Gibson 2008).  The inflammatory response induced by PQ also contributes to oxidant-

induced lung injuries and is similar to that seen following challenge of lungs to a variety of other 

toxins and certain oxidative stress-mediated pulmonary diseases, including acute lung injury and 

acute respiratory distress syndrome (ARDS) (Bus and Gibson 1984).  Recognizing that PQ 

mediates its toxic effects primarily via the generation of ROS, it may follow that an increase in 

cellular thiol content via pre-treatment with N-acetylcysteine (NAC) or liposomal-NAC (L-

NAC; liposomes have been used to enhance the delivery of drugs (Stone and Smith 2004)) will 

protect against its associated cytotoxicity.  Accordingly, the objectives of this study are to: (i) 

characterize the uptake and cytotoxic effects of PQ in alveolar type II-like A549 cells; (ii) 

characterize the uptake of NAC and L-NAC in A549 cells; (iii) examine the effectiveness of 

NAC and L-NAC against PQ-induced cytotoxicity and delineate the mechanism(s) by which 

these antioxidant formulations confer their cytoprotection; and (iv) assess whether L-NAC 

confers a greater cytoprotective effect against PQ-induced cytotoxicity than NAC.  The results of 

this in vitro study will help to delineate the mechanism(s) of PQ-induced cytotoxicity, provide 

insights into the mechanism(s) of possible NAC cytoprotection, and may also provide evidence 
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for future studies regarding the therapeutic use of NAC or L-NAC in animal models of oxidative 

stress-related pulmonary injury. 
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CHAPTER I 

 

Introduction 

 

1.1 - Paraquat 

 

1.1.1 - History 

 

Paraquat (1,1′-dimethyl-4,4′-bipyridinium chloride; PQ) is a fast-acting, non-selective broadleaf 

weed herbicide that acts on contact and is now frequently used in over 120 countries worldwide 

(Roberts et al. 2002).  First synthesized in 1882 by Weidel and Rosso by the reaction of 4,4‟-

bipyridine with methyl iodide (Bromilow 2004), PQ was later used as an oxidation-reduction 

indicator (methyl viologen) in 1932 when it was found to undergo a single electron reduction to a 

blue-coloured free radical mono-cation, with a redox potential of -0.446 V (Bromilow 2004); a 

second reduction to the fully reduced and colourless 1,1′-dimethyl-4,4′-dihydrobipyridyl has a 

redox potential of -0.88 V.  Its herbicidal properties were later discovered in 1955 at Jealott‟s 

Hill International Research Centre, Bracknell, UK (Bromilow 2004), and PQ was introduced into 

the market as a herbicide in 1962 by the Plant Protection Division Ltd of Imperial Chemical 

Industries (ICI; now Syngenta) (Dinis-Oliveira et al. 2008).  Paraquat is now sold under many 

trade names in concentrated formulations (10 - 30 % active PQ ion) that contain PQ alone (i.e. 

Gramoxone®), PQ and diquat, or PQ and urea herbicides as the active ingredients. 
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1.1.2 - Use as herbicide 

 

PQ is a desiccant and defoliant able to strongly adsorb to organic matter, and quickly induces its 

toxicity on contact via its rapid penetration through the leaf surface.  Leaves turn visibly brown 

within a few hours due to scorching under strong light conditions in the presence of oxygen, with 

complete desiccation occurring within a few days (Bromilow 2004).  Though readily 

translocated in the xylem, PQ is poorly translocated in the phloem and is thus not effective at 

controlling perennial plants (Preston et al. 2005).  However, unlike many other herbicides that 

rely on translocation within the plant for their activity, the mechanisms employed by PQ do not 

require the plant to be in an active stage of growth.  Thus, PQ can be applied in the dry season or 

winter months provided there is leaf present.   

 

 

1.1.3 - Interaction with soil 

 

The use of PQ is not considered to have a significant environmental impact for various reasons: 

in addition to reducing soil erosion, it does not present the risk of leaching to groundwater 

(Roberts et al. 2002); it becomes inactive and biologically unavailable when bound to soil 

particles (Roberts et al. 2002); and there is a reduced loss of soil organic carbon into the 

atmosphere.  The PQ di-cation sorbs strongly to the negatively-charged soil clay particles, 

having a sorption coefficient (Kd) of over 1000 L/kg, which is notably high since leaching is 

considered insignificant for compounds having Kd > 10 L/kg (Bromilow 2004).  Due to its 
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inactivity in soils, the herbicide may be applied in a variety of situations, including pre-

emergence or pre-plant, without risk of phytotoxicity (Bromilow 2004).   

 

 

1.1.4 - Environmental degradation 

 

PQ can be degraded into less toxic derivatives in the environment, predominantly by ultraviolet 

radiation originating from the sun (particularly between 290 – 310 nm wavelengths) (Slade 

1966), but also by naturally occurring soil microorganisms (Roberts et al. 2002, Bromilow 2004, 

Amondham et al. 2006).  The main intermediates of photochemical and microbial degradation of 

PQ are of relatively low toxicity and will decompose easily as they do not strongly sorb to soil 

particles, freeing them for further microbial degradation (Bromilow 2004).  PQ has not been 

shown to be metabolized by plants themselves, as any degradation of PQ in the plant has been 

attributed to photochemical means (Slade 1966).  The degradation of PQ in the environment does 

not occur at appreciable rates, indicating that in agricultural practices its degradation in soil is 

negligible.  However, the natural deactivation capacity of soil is several times the recommended 

application rate, suggesting this is not an issue.    

 

 

1.1.5 - Mechanisms of plant toxicity 

 

Upon its rapid absorption into the plant, PQ exerts its toxic effects almost immediately by 

interfering with photosynthesis.  The PQ cation diverts electrons from the iron-sulfur centers of 



16 
 

photosystem I in chloroplasts (Bromilow 2004), thereby replacing ferredoxin as an artificial final 

electron acceptor and consequently inhibiting the formation of NADPH.  The newly formed PQ 

radical is then rapidly reoxidized by molecular oxygen produced in chloroplasts, forming the 

superoxide radical and regenerating the PQ cation, which is free to divert more electrons from 

photosystem I (Bromilow 2004).  This PQ redox cycling in plants forms copious amounts of 

superoxide anion, which can generate hydroxyl radicals either directly or via a hydrogen 

peroxide intermediate and damage cellular lipids, proteins, and nucleic acids (Bromilow 2004).  

Consequently PQ is most effective during the day while photosynthesis is occurring, as opposed 

to overnight when there is a relative lack of reducing equivalents for the redox cycling of PQ.   

 

PQ can be applied safely if used according to the manufacturer‟s instructions, and essentially has 

no environmental impact as it is strongly adsorbed to soil particles and is degraded by soil 

microorganisms and ultraviolet light.  Nevertheless, due to the extensive herbicidal use of PQ, 

many cases of human PQ intoxication have followed and there remain no effective treatments.     

 

 

1.2 - Cellular Redox Balance 

 

1.2.1 - Reactive oxygen species 

 

Reactive oxygen species (ROS) are small molecules capable of oxidation, and include oxygen 

ions, free radicals (highly reactive molecules possessing unpaired valence shell electrons), 

peroxides, and derivatives of oxygen that do not contain unpaired electrons (i.e. hydrogen 
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peroxide) (Ciencewicki et al. 2008, Rahman et al. 2006).  Although they play a role in important 

cellular processes, such as initiating certain signal transduction pathways (Bilska and Wlodek 

2005), ROS are capable of causing deleterious effects such as damage to cellular organelles, 

proteins, lipids, and nucleic acids, and play a role in many diseases (Aitio 2006).   

 

Cells are constantly exposed to ROS, which can be formed endogenously via the reduction of 

molecular oxygen to water following mitochondrial electron transport during cellular respiration, 

by cellular enzymes such as cyclooxygenases, lipoxygenases, peroxidases, cytochrome P450 

oxidase and xanthine oxidase, and can be released by inflammatory cells (i.e. phagocytes such as 

neutrophils and macrophages) (Ciencewicki et al. 2008, Rahman et al. 2006, Mak 2008, Gram 

1997).  The primary ROS formed in vivo are superoxide anion and hydrogen peroxide (H2O2).  

Superoxide is formed via the reduction of molecular oxygen, while H2O2  is formed through non-

enzymatic or enzymatic dismutation of superoxide (Rahman et al. 2006, Mak 2008).  The most 

reactive and harmful ROS is the hydroxyl radical which can be formed via both the Fenton and 

Haber-Weiss reactions (Mak 2008), but also from the reaction of superoxide with nitric oxide to 

produce reactive molecule peroxynitrite, which decomposes to form nitrogen dioxide and the 

hydroxyl radical (Ciencewicki et al. 2008, Rahman et al. 2006, Gram 1997).  Other examples of 

ROS include the peroxyl radical and singlet oxygen (Rahman et al. 2006), and exogenous 

sources derive from, among other things, ozone, cigarette smoke, and other air pollutants. 
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1.2.2 - Antioxidants 

 

The cell is normally equipped with a variety of antioxidant defences which limit the extent of 

oxidation taking place and maintain a redox balance in vivo.  There are two recognized classes of 

antioxidants: enzymatic and non-enzymatic.  Enzymatic antioxidants include catalase, 

superoxide dismutase (SOD), glutathione reductase (Gred), glutathione peroxidise (GPx), and 

thioredoxins, which degrade ROS to less toxic molecules (Rahman et al. 2006, Mak 2008).  

Non-enzymatic antioxidants include ascorbic acid, α-tocopherol, β-carotene, melatonin, and low-

molecular weight thiol-containing compounds (i.e. the reduced form of glutathione, 

metallothionein, and others) (Rahman et al. 2006, Mak 2008).  These antioxidants can directly 

interact with ROS to control their levels, and are regulated by feedback mechanisms such that 

balanced levels of both antioxidants and ROS are maintained in the cell (Rahman et al. 2006, 

Mak 2008).   

 

Glutathione is one of the most important cellular antioxidants.  In its reduced (GSH) form, 

glutathione is able to scavenge free radicals non-enzymatically via its free thiol group and 

enzymatically via GPx and GSH S-transferase (GST), which protect against H2O2 and toxic 

compounds, respectively (Arakawa and Ito 2007, Kelly 1998).  The oxidized dimer (GSSG) of 

glutathione, can be reduced to GSH by Gred, a NADPH/NADP+ - dependent enzyme, to restore 

the redox potential (Arakawa and Ito 2007).  However, this activity will be inhibited by a 

reduced NADPH/NADP+ redox level, whereupon GSSG is exported from the cell to restore GSH 

redox state (van de Poll et al. 2006).  This will reduce the GSH pool, so that the cellular 

reductive potential becomes dependent on glutathione de novo synthesis (van de Poll et al. 
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2006).  Glutathione is synthesized from the amino acids glutamate, glycine, and cysteine, and is 

an almost exclusively intracellular process that occurs in the cytoplasm (van de Poll et al. 2006).  

Depletion of any of these amino acids may lead to changes in GSH metabolism, though cysteine 

is most frequently the rate-limiting constituent due to its small pool size (van de Poll et al. 2006). 

 

 

1.2.3 - Oxidative stress 

 

When cellular redox balance is compromised and an oxidizing environment prevails, the cell is 

considered to be in a state of oxidative stress.  In this type of environment, ROS can cause 

extensive cellular damage.  For instance, ROS can react with base pairs and the deoxyribose 

phosphate backbone of DNA, the main target of radical damage, resulting in damage and 

scission of strands (Gram 1997).  Reactive oxygen species can also initiate the lipid peroxidation 

of polyunsaturated fatty acids, affecting phospholipids that constitute biological membranes 

(Rahman et al. 2006).  The hydroxyl radical can abstract a hydrogen atom from polyunsaturated 

fatty acids to form a conjugated diene radical, resulting in the formation of epoxides, peroxides, 

and lipid peroxyradicals (Gram 1997, Shek et al. 1994).  Subsequently, this newly formed radical 

may abstract a hydrogen atom from another polyunsaturated fatty acid, resulting in a potentially 

cytotoxic chain reaction (Gram 1997).  In addition, lipid peroxidation products such as lipid 

radicals or aldehydes may cause DNA strand breaks, DNA adducts, and DNA-protein cross-links 

(Gram 1997).  ROS may also damage amino acids and proteins resulting in denaturation and 

inhibition of enzymatic activity (Rahman et al. 2006, Gram 1997).  If unmanaged, oxidative 

stress can lead to the death of the cell (Gram 1997).          
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1.3 - Oxidant-related Pulmonary Injuries 

 

1.3.1 - Lung architecture and function 

 

The lung is a heterogeneous organ composed of more than 40 different cell types (Shek et al. 

1994).  Two of these cell types, alveolar epithelial type I and II cells, are the main constituents of 

the alveolar epithelium.  Type I cells, which comprise 33 % of total alveolar epithelial cells and 

cover 93 % of the alveolar surface area, are responsible for gas exchange in the lung between the 

air space and capillaries (Dinis-Oliveira et al. 2008).  In contrast, alveolar type II cells comprise 

67 % of total epithelial cells in the lung, yet merely cover 7 % of the alveolar surface area (Dinis-

Oliveira et al. 2008).  These precursors of type I cells function in active transport of water and 

ions, and are responsible for the secretion of surfactant in the lung (Dinis-Oliveira et al. 2008).  

Surfactant, which is mainly composed of phospholipids, is responsible for preventing lung 

collapse upon exhalation and is able to protect the lung from exposure to the wide array of 

environmental toxins (Shek et al. 1994).         

 

 

1.3.2 - Oxidative stress in the lung 

 

The lung is particularly vulnerable to oxidant-mediated damage as it is constantly and directly 

exposed to ambient air containing ozone, nitrogen dioxide, diesel exhaust, cigarette smoke, and 

other airborne oxidant gases and particulates, all of which can cause damage via ROS 

(Ciencewicki et al. 2008, Rahman et al. 2006).  It is also vulnerable to injury induced by 
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bacterial infections and foreign toxic compounds, among other things.  The most prominent cell 

types affected by various toxicants are the capillary endothelial cells, Clara cells, and both type I 

and type II alveolar epithelial cells (Shek et al. 1994).  Reactive oxygen species have been 

implicated in the pathogenesis of many diseases (i.e. acute lung injury, acute respiratory distress 

syndrome, etc.) through a variety of mechanisms.  Physiologically, ROS can cause the 

remodelling of extracellular matrix and blood vessels, and stimulate mucous secretion and 

alveolar repair processes.  At the biochemical level, ROS can inactivate antiproteases, induce 

apoptosis, regulate cell proliferation, and modulate the immune system in the lungs.  Finally at 

the molecular level, ROS have been implicated in initiating inflammatory processes in the lung 

through the activation of nuclear factor-κB (NF-κB) and activator protein-1, various signal 

transduction pathways, chromatin remodelling, and gene expression of pro-inflammatory 

mediators (Rahman et al. 2006). 

 

Acute lung injury and its more severe form, ARDS, are syndromes of acute pulmonary 

inflammation characterized by sudden reduction in gas exchange, static compliance, and non-

hydrostatic pulmonary edema (Ciencewicki et al. 2008).  These inflammatory disorders of the 

lung are commonly caused by pneumonia, sepsis, trauma and/or aspiration (Chopra et al. 2009).  

Oxidative stress has been suggested to be involved in the pathogenesis of ARDS, and ROS are 

believed to play an important role in pulmonary vascular endothelial damage, which is 

hypothesized to be responsible for the clinical manifestations of ARDS (Ciencewicki et al. 

2008).  The inflammatory response results in large numbers of neutrophils and macrophages 

migrating to the lungs, which contribute to a state of oxidative stress (Ciencewicki et al. 2008, 

Chopra et al. 2009).  One potential approach to alleviating such injuries is to target the increased 
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oxidative stress in the lung, which may regulate major cellular events such as gene expression 

and cellular signalling pathways leading to inflammation (Sadowska et al. 2007).  This may be 

achieved via the restoration of cellular antioxidant defences, or through anti-inflammatory agents 

by attenuating the activity of inflammatory cells and their production of ROS.     

 

 

1.4 - PQ Toxicity in Humans 

 

Human exposure to PQ can cause severe clinical situations.  The most common cause of PQ-

induced mortality is through ingestion of the concentrated formula, which is commonly between 

10 - 30 % PQ ion (Bateman 2008).  Improper storage of the concentrated PQ formulation in 

various containers, often cola bottles and coffee mugs, resulted in death due to mistaken 

ingestion attributable to its dark colour.  To circumvent this and to reduce the amount of PQ 

absorbed in the gut, current PQ formulations contain a stenching agent as well as an emetic 

(Bateman 2008).  PQ exposure has also been implicated as an etiological factor of Parkinson‟s 

disease (i.e. as a result of chronic, non-pneumotoxic levels since PQ is able to cross the blood-

brain barrier) (Dinis-Oliveira et al. 2006a, Bove et al. 2005) and is associated with an increased 

risk of certain cancers, particularly of the skin (Spiewak 2001).   

 

1.4.1 - Human exposure to PQ 

 

Most poisonings due to PQ result from ingestion of the compound, but can also occur through 

inhalation, skin absorption, injection, and ocular exposure.  Ingestion of PQ can cause 
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gastrointestinal irritation and death through general organ failure (high dose) or respiratory 

dysfunction (lower dose) (Bus and Gibson 1984, Clark et al. 1966, Eddleston et al. 2003).  

Inhalation of PQ does not usually result in severe clinical cases, particularly in open spaces, due 

to its low vapour pressure and its tendency to form large droplets (median diameter is 100μm) 

which has difficulty reaching the alveoli of humans, but cases have been reported of inhalation in 

enclosed spaces causing toxicity (Chester and Ward 1984).  Intact human skin has a low 

permeability to PQ (permeability coefficient of 0.73) since PQ is very hydrophilic (Walker et al. 

1983).  One study had six volunteers percutaneously exposed to PQ and found that only minute 

quantities (0.23 - 0.29 % of dose) had been absorbed over a 24-hour period, depending on the 

site tested (Wester et al. 1984).  However, extensive skin contaminations have been reported 

(Soloukides et al. 2007).  Cases of lethal injection have also been reported, with the minimum 

lethal dose via intraperitoneal (i.p.), subcutaneous, intravenous, or intramuscular injection being 

considerably less than that from ingestion (Choi et al. 2008).  Finally, contact with the eyes can 

cause retinal damage, but does not usually lead to systemic toxicity (Cant and Lewis 1968).      

 

 

1.4.2 - PQ toxicokinetics 

 

Following ingestion, PQ is rapidly distributed in most tissues with the highest concentrations 

found in the kidney and lung (Bus and Gibson 1984, Clark et al. 1966, Smith 1985, Smith and 

Heath 1975) .  PQ is eliminated from the body largely unchanged through the kidneys into the 

urine, and over 90% of the initial dose is excreted unchanged within 12 to 24 hours of ingestion, 

assuming renal function is not compromised (Bus and Gibson 1984, Clark et al. 1966, Smith 
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1985, Smith and Heath 1975).  However, PQ is preferentially taken up in the lung, and results in 

pulmonary toxicity (Suntres 2002). 

 

 

1.4.3 - PQ lung injury 

 

Systemic PQ accumulates to lethal concentrations in the lung over time, and as a result is the 

primary site of chronic PQ injury.  PQ is actively uptaken by alveolar type I and II epithelial 

cells and Clara cells against a concentration gradient, a process attributed to the chemical 

structure of PQ as it is mistakenly recognized as a substrate for the polyamine uptake system in 

these cells (Smith et al. 1990, Hoet and Nemery 2000).  Once inside the cell, the PQ cation is 

reduced by cellular diaphorases, including NADPH-cytochrome P450 reductase, 

NADH:ubiquinone oxidoreductase (complex I), xanthine oxidase, and nitric oxide synthase, to 

form PQ∙+ (Ciencewicki et al. 2008, Gram 1997, Day and Crapo 1996, Bus et al. 1976).  This 

radical is quickly oxidized by molecular oxygen to form the superoxide anion and re-generate the 

PQ cation, with a very fast reaction rate of 7.7×108 M-1s-1 (Dinis-Oliveira et al. 2008).  The 

redox potential of PQ (PQ2+/PQ∙+) is very high (E′0 = -0.45 V), while that of O2 (O2/O2
∙-) is lower 

(E′0 = -0.16 V), thus facilitating electron flow from the reduced PQ to O2 (Farrington et al. 

1973).  Therefore, as long as reducing equivalents for PQ are present, the cation will 

continuously be reduced and then re-oxidized in a process termed “redox cycling,” which will 

result in the continuous generation of superoxide anion, leading to other toxic ROS.  Other toxic 

outcomes of PQ redox cycling include: the depletion of NADPH, the primary source of reducing 

equivalents for the intracellular reduction of PQ, which will affect NADPH-requiring 
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biochemical processes, and lipid peroxidation of polyunsaturated fatty acids (Gram 1997, Bus 

and Gibson 1984, Freeman et al. 1985).   

 

The continuous formation of superoxide generates an imbalance in the oxidant/antioxidant ratio, 

leading to the generation of other ROS, mainly hydrogen peroxide and hydroxyl radical, and a 

state of oxidative stress.  Hydrogen peroxide is formed by the dismutation of superoxide anion, 

as well as by the reduction of superoxide anion to O2
-2 by the PQ radical, which exists as H2O2 in 

aqueous solution at physiologic pH (Gram 1997, Quinlan et al. 1994).  The hydroxyl radical can 

be formed by the Haber-Weiss reaction, which can be catalyzed by traces of transition metal ions 

or metal chelates (i.e. the Fenton reaction) (Gram 1997).   

 

NADPH is an essential co-factor for the maintenance of normal biochemical and physiological 

functions.  It is a cofactor of glutathione reductase in the generation of GSH from GSSG, and the 

lack of NADPH may also interfere with the synthesis of proteins and lipids (Bus et al. 1976, 

Quinlan et al. 1994).  The pentose phosphate pathway, the main source of cellular NADPH 

generation, is upregulated during PQ injury (the rate-limiting enzyme is glucose-6-phosphate 

dehydrogenase), which directly correlates with the degree of inhibition of fatty-acid synthesis 

(Dinis-Oliveira et al. 2008).  Ironically, this attempt by the cell to restore NADPH levels may 

simply exacerbate PQ-induced cytotoxicity as more reducing equivalents will be available for 

PQ redox cycling.  Lipid peroxidation, the final consequence of PQ redox cycling, is an 

irreversible reaction that occurs when polyunsaturated fatty acids react with ROS in the presence 

of transition metals, and is one of the most important causes of cell membrane damage (Gram 

1997, Bus et al. 1976).   
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1.4.4 - Lung pathophysiology 

 

Two stages are associated with the lung injury induced by PQ in humans: initially there is a 

destructive phase in which the alveolar epithelium is destroyed and inflammatory cells infiltrate 

the lung, followed by a proliferative phase where fibroblasts lay down collagen leading to 

pulmonary fibrosis, with injury occurring due to limited gas exchange (Ciencewicki et al. 2008, 

Rahman et al. 2006, Bus and Gibson 1984, Smith 1985, Smith and Heath 1975).  The destructive 

phase is characterized by early damage to the alveolar epithelium, particularly type I and II cells 

(Bus and Gibson 1984, Smith and Heath 1975).  In type I cells, swelling is observed followed by 

vacuolation and disruption of organelles, increased numbers and swelling of mitochondria, and 

the appearance of dark granules in the cytoplasm (Bus and Gibson 1984, Smith and Heath 1975).  

Over time they show hydropic degeneration in the form of numerous large vacuolated swellings 

projecting into the alveolus (Smith and Heath 1975).  Type II cells have also been observed to 

form ultrastructural lesions, but these are generally not apparent until after the first lesions are 

seen in type I cells (Smith 1985, Smith and Heath 1975, Smith and Heath 1976).  Type II cells 

undergo swelling of their mitochondria, vacuolation of lamellar bodies, and disruption of 

endoplasmic reticulum (Bus and Gibson 1984, Smith and Heath 1975).  Within days, as PQ 

continues to accumulate in these cells, ROS accumulate to toxic levels and play a major role in 

the destruction of the alveolar epithelium (Bus and Gibson 1984).   

 

The proliferation of type II cells is thought to be a non-specific reaction to alveolar epithelial 

damage, but may only occur when epithelial cell damage is moderate (Fukuda et al. 1985).  

When the damage is severe, it is thought that type II cells die and are replaced with epithelial 
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cells of bronchiolar origin (Fukuda et al. 1985).  However, due to the targeted destruction of type 

II cells in addition to type I cells by PQ, no precursors are available to replace the destroyed type 

I cells and, thus, the basement membrane may become completely denuded (Bus and Gibson 

1984).   

 

Alveolar pulmonary oedema, capillary congestion, hyaline membranes, and an acute 

inflammatory exudate may induce dyspnoea in man, but are rarely directly fatal (Smith and 

Heath 1975).  The reason for the liberation of the oedema fluid into the alveolar spaces is 

somewhat unclear, since PQ does not damage the pulmonary capillaries (Smith and Heath 1975).  

It may be due to increased vascular permeability, or perhaps the loss of pulmonary surfactant that 

is normally generated by type II cells (Smith and Heath 1975).  This may then withdraw fluid 

from the alveolar capillaries to produce oedema.  It has also been suggested that the loss of 

surfactant leads to the formation of hyaline membranes (Smith and Heath 1975).  This phase of 

destruction produces many inflammatory mediators, which attract inflammatory cells (i.e. mainly 

polymorphonuclear leukocytes, including neutrophils and eosinophils) to the site of injury (Bus 

and Gibson 1984, Smith 1985, Smith and Heath 1975). 

 

The inflammatory response which is initiated in the destructive phase is maintained through the 

proliferative phase.  This phase is morphologically characterized by the infiltration and 

proliferation of profibroblasts into the alveolar spaces, their differentiation into fibroblasts, and 

the development of fibrosis (Bus and Gibson 1984).  This intra-alveolar migration of connective 

tissue cells through gaps in the epithelial basement membrane is one of the most important 

events responsible for the development of intra-alveolar fibrosis (Fukuda et al. 1985).  The 
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release of factors including fibronectin, a chemoattractant and growth factor for fibroblasts, from 

macrophages in the alveolitis may be responsible for the recruitment and migration of these cells 

(Fukuda et al. 1985).  These fibroblasts produce extensive amounts of collagen that contribute to 

pulmonary fibrosis.  Histologically, following the proliferative phase there is a dense mass of 

fibroblastic tissue with nearly complete obliteration of normal lung architecture (Smith and 

Heath 1975). 

 

If the injury is mild and only small gaps are present in the epithelial lining covering the basement 

membrane, regenerating epithelial cells will re-establish the epithelial lining (Smith and Heath 

1975).  If this is the case, intra-alveolar fibrosis will not develop.  Denuded basement membranes 

are thought to act as scaffolding for epithelial cell regeneration (Fukuda et al. 1985).  If the 

alveolar injury is severe and the gaps in the epithelial lining are large, the regenerating epithelial 

cells may grow over a layer of fibrinous exudate deposited on the surface of the epithelial 

basement membrane and thus will not establish contact with the existing basement membrane 

(Fukuda et al. 1985).  This may lead to a duplication of the basement membrane, with the 

original basement membrane appearing convoluted, perhaps contributing to the loss of normal 

alveolar architecture seen in such injuries (Fukuda et al. 1985).   

 

These processes are presumed to be a reparative mechanism for alveolitis, but ultimately will 

result in the obliteration of normal alveolar architecture, limited gas exchange, and may lead to 

death via anoxia (Gram 1997, Bus and Gibson 1984).  The destruction of the alveolar epithelium 

during the destructive phase allows proteolytic enzymes secreted from inflammatory cells to 

degrade the exposed basement membrane (Eddleston et al. 2003, Smith and Heath 1975).   
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It seems that the formation of a fluid exudate during the destructive phase is not necessary for the 

initiation of the proliferative phase.  It was found that PQ caused extensive necrosis of alveolar 

cells but not of mesenchymal structures, and that alveolar and peritoneal macrophages were more 

readily killed by PQ than fibroblasts (Dinis-Oliveira et al. 2008).  In addition, it appears that the 

presence of macrophages results in a more rapid proliferation of fibroblasts, suggesting PQ may 

actively stimulate the proliferation of fibroblasts using macrophages as an intermediate.   

 

 

1.4.5 - Clinical treatments 

 

The clinical treatment strategies for PQ poisoning generally focus on removing PQ from the 

gastrointestinal tract to limit its absorption (i.e. using activated charcoal and Fuller‟s earth, due to 

its strong adsorption to these compounds), increasing its elimination from the body (i.e. forced 

diuresis, gastric lavage) and its excretion from the blood (i.e. hemoperfusion), and limiting 

pulmonary damage with anti-inflammatory agents (Eddleston et al. 2003, Choi et al. 2008, Ruiz-

Bailen et al. 2001, Drault et al. 1999, Lopez Lago et al. 2002, Lheureux et al. 1995).  These 

strategies have had limited success.    
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Objective 

 

Characterize the uptake and cytotoxic effects of PQ in A549 cells.  The uptake of PQ in A549 

cells will be assessed via ultra-performance liquid chromatographic analysis of a concentration- 

and time-course of PQ exposure.  The cytotoxicity of PQ in A549 cells will be assessed via the 

MTT viability assay and by assessing intracellular GSH content, ROS levels, mitochondrial 

membrane potential, apoptosis, cellular gene expression, and inflammatory cytokine release.  
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Methods 

 

1.1 - Cell culture 

 

Human alveolar type II-like epithelial A549 cells (American Type Culture Collection # CCL-

185; ampule passage no. 80; ATCC, Manassas, VA, USA) were maintained in Costar 0.2 μm 

vent cap cell culture flasks (Corning, Corning, NY, USA) with standard Dulbecco‟s modified 

Eagle‟s medium nutrient mixture F-12 Ham (Sigma-Aldrich, Oakville, ON, Canada) 

supplemented with 10 % iron-fortified bovine calf serum (SAFC Biosciences, Lenexa, KS, 

USA), 2 mM L-glutamine (Gibco, Carlsbad, CA), and antibiotic/antimycotic (100 U/mL 

penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B; Gibco).  Cultures were 

incubated at 37 ºC in a humidified atmosphere of 5 % CO2 in air until 80 % confluence.  Cell 

counts and viabilities were assessed using a Vi-Cell XR Cell Viability Analyzer (Beckman 

Coulter, Mississauga, ON, Canada). 

 

 

1.2 - Paraquat (PQ) preparation 

 

PQ (Paraquat dichloride x-hydrate, Sigma-Aldrich) was dissolved in ddH2O to produce a 100 

mM stock solution, and was added to serum-free culture media to form specific treatment 

concentrations.  PQ stock solutions were stored at 4 °C in the absence of light.   
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1.3 - Viability (MTT) 

 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay is used as a 

quantitative index of cell viability in which the mitochondrial and cytosolic dehydrogenases of 

living cells reduce the yellow tetrazolium salt to produce a purple formazan dye that can be 

measured spectrophotometrically (Voloboueva et al. 2005).  A549 cells were seeded into sterile 

flat-bottom 96-well plates (Corning) at a concentration of 10,000 cells/well and incubated 

overnight.   Cells were challenged with 150 μL of control or PQ-containing media (various 

concentrations and times; serum-free).  Following challenge, culture media was replaced with 

control media containing 10 % yellow MTT (Thiazolyl Blue Tetrazolium Bromide; Sigma-

Aldrich, St. Louis, MO, USA) reagent and cells were incubated at 37 °C for an additional 4 

hours, during which the MTT was converted to purple formazan crystals in living cells.  

Following this, the incubation media was aspirated and 50 μL dimethylsulfoxide per well was 

added to solubilise the formazan crystals.  Following agitation, absorbance was measured 

spectrophotometrically at a wavelength of 570 nm (650 nm correction wavelength) using a 

PowerWave XS Microplate Spectrophotometer (BioTek, Winooski, VT, USA).  Viability of 

treated wells were assessed relative to control wells, which were taken to have 100 % viability. 

 

 

 1.4 - Ultra-performance liquid chromatography 

 

Liquid chromatography was performed on an Acquity Ultra-Performance Liquid Chromatograph 

(UPLC) composed of an Acquity Binary Solvent Manager, Sample Manager, and Photodiode 
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Array (PDA) Detector (Waters, Milford, MA, USA).  Conditions for the optimization of PQ and 

GSH detection using UPLC were based on high-performance liquid chromatography 

methodology outlined by Raggi et al. (Raggi et al. 1998).  Briefly, cells were grown in sterile 

150 cm2 culture flasks (Corning) to 80 % confluence, then challenged with control or PQ-

containing media (serum-free) for a pre-determined amount of time.  Following challenge, cells 

were harvested via trypsinization, washed twice with PBS, and stored at -80 ºC overnight via 

liquid nitrogen snap-freezing.  Frozen samples were thawed and lysed via sonication (20 s, 100 

% amplitude; Sonic Dismembrator Model 500, Fisher Scientific, Pittsburgh, PA, USA).  Lysates 

were centrifuged at 16,000 × g and 4 ºC for 5 min (Eppendorf Centrifuge 5415 R), and injected 

onto an Acquity UPLC HSS T3 analytical column (2.1 mm I.D. x 150 mm length, 1.8 µm 

particle size; Waters) with a Vanguard pre-column (2.1 mm I.D. x 5 mm length; Waters), at 30 

ºC.  The mobile phase consisted of 23 mM ammonium formate (pH 3.0) at a flow rate of 0.250 

mL/min.  PQ and GSH concentrations were measured at 257.7 and 202.1 nm, respectively, using 

Empower 2 software.   

 

 

1.5 - Total protein assay  

 

Total protein of treated samples was assessed using the Micro Lowry Total Protein Kit – 

Peterson‟s Modification (Sigma-Aldrich), in accordance with the manufacturer‟s instructions.  

Cell lysates were thawed and 10 μL aliquots were diluted to 1.0 mL with 0.1 M NaCl (used to 

eliminate ampholyte interference).  100 μL of deoxycholate solution was added and left to stand 

at room temperature for 10 minutes after mixing, followed by the addition of 100 μL of 
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trichloroacetic acid (72% w/v) to precipitate the protein.  After centrifugation for 5 minutes at 

500 × g, supernatants were decanted and pellets were dissolved in 1.0 mL Lowry‟s reagent 

solution.  This was transferred to a 24-well plate and allowed to stand at room temperature for 20 

minutes.  Following this, 500 μL of Folin & Ciocalteu‟s phenol reagent working solution was 

added while mixing the sample, and colour was allowed to develop for 30 minutes at room 

temperature.  Absorbance was measured spectrophotometrically at 570 nm using a PowerWave 

XS Microplate Spectrophotometer (BioTek), and converted to protein concentration using a 

standard curve of known values. 

  

 

1.6 - Reactive oxygen species levels 

 

CM-H2DCFDA (5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester) 

is used as a cell-permeant indicator of ROS.  This molecule remains nonfluorescent until the 

acetate groups are removed by intracellular esterases and oxidation occurs within the cell.  In 

addition, esterase cleavage of the lipophilic blocking groups yields a charged form of the dye that 

is much better retained by cells than the parent compound.  This chloromethyl derivative of 

H2DCFDA allows for covalent binding to intracellular components, permitting even longer 

retention within the cell.  Cells seeded into sterile flat-bottom 6-well plates (Corning) at 0.5 × 106 

cells/well and grown overnight to 80 % confluence were challenged with control or PQ-

containing (0.25 mM or 1.0 mM) serum-free media for 1, 4, or 8 h.  Following challenge, cells 

were washed with PBS and stained for 30 minutes with CM-H2DCFDA (Molecular Probes, 

Eugene, OR, USA) under standard incubation conditions.  Stained cells were washed with PBS 
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and detached from the plate surface using Fisherbrand disposable sterile cell scrapers (Fisher 

Scientific) and suspended in PBS for flow cytometric analysis using the FL1-H channel of a BD 

FACSCalibur Flow Cytometer (BD Biosciences, San Jose, CA) with BD CellQuest Pro 

Software.  A minimum of 10,000 gated events were acquired per trial.  Fluorescence was directly 

proportional to levels of intracellular ROS. 

 

 

1.7 - Hydrogen peroxide levels 

 

Levels of hydrogen peroxide (H2O2) in treated cells were measured via electrochemical 

detection.  Cells seeded into sterile flat-bottom 6-well plates (Corning) at 0.5 × 106 cells/well and 

grown to 80 % confluence overnight were challenged for 6 h with 2.0 mL of control or PQ-

containing (0.1, 0.25, 0.5, 1.0 mM) media (serum-free).  Immediately following challenge, 

incubation media was analyzed using the Apollo 4000 Free Radical Analyzer (World Precision 

Instruments, Sarasota, FL, USA) in the 10 nA range.  Raw data was interpolated to H2O2 

concentrations using a standard curve of known values.   

 

 

1.8 - Mitochondrial membrane potential 

 

Mitochondrial membrane potential was assessed using the MitoProbe JC-1 Assay Kit for Flow 

Cytometry (Molecular Probes).  Cells seeded into sterile flat-bottom 6-well plates (Corning) at 

0.5 × 106 cells/well and grown overnight to 80 % confluence were challenged with control or 
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PQ-containing (0.25 mM or 1.0 mM) serum-free media for 1, 4, or 8 h.  Following challenge, 

cells were washed with PBS and stained for 30 minutes with JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-

tetraethylbenzimidazolylcarbocyanine iodide), a cationic dye that exhibits potential-dependent 

accumulation in mitochondria, under standard incubation conditions.  Stained cells were then 

detached from the plate surface using Fisherbrand disposable sterile cell scrapers (Fisher 

Scientific) and suspended in PBS for flow cytometric analysis using the FL1-H and FL2-H 

channels of a BD FACSCalibur Flow Cytometer (BD Biosciences) with BD CellQuest Pro 

Software.  A minimum of 10,000 gated events were acquired per trial.  Mitochondrial 

depolarization was indicated by decreased red fluorescence intensity due to concentration-

dependent formation of red fluorescent J-aggregates. 

  

 

1.9 - Annexin V 

 

Phosphatidylserine (PS) translocation, an indicator of apoptosis, was assessed via flow 

cytometric analysis of control and treated cells dually stained with annexin V and propidium 

iodide (PI) using the Vybrant Apoptosis Assay Kit #2 – Alexa Fluor 488 annexin V / propidium 

iodide (Molecular Probes).  In normal viable cells, PS is located on the cytoplasmic surface of 

the cell membrane, but becomes translocated from the inner to the outer leaflet in apoptotic cells.  

The human vascular anticoagulant annexin V is a 35 – 36 kD Ca2+-dependent phospholipid-

binding protein that possesses a high affinity for PS.   Thus, annexin V labelled with a 

fluorophore can identify apoptotic cells by binding to PS on the outer leaflet.  However, because 

annexin V conjugates are able to pass through the compromised membranes of dead cells and 
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bind to PS in the interior of the cell, propidium iodide, a cell-impermeant dead cell stain that 

binds to DNA, was used in combination with annexin V staining to distinguish necrotic from 

apoptotic cells.   

 

Cells seeded into sterile 25 cm2 culture flasks (Corning) at 1.25 × 106 cells and grown to 80 % 

confluence overnight were challenged with control or PQ-containing (0.25 mM or 1.0 mM) 

serum-free media for 1, 4, or 8 h.  Following challenge, cells were washed with PBS and 

suspended via trypsinization in 100 µL annexin-binding buffer at 1 × 106 cells/mL.  Cells were 

then incubated at room temperature with Alexa Fluor 488 annexin V (ANX) and PI stains in the 

absence of light.  Following 15 minute incubation, dually-stained samples were diluted by 

adding 400 μL annexin-binding buffer and immediately analyzed flow cytometrically on a BD 

FACSCalibur Flow Cytometer (BD Biosciences) using the BD CellQuest Pro Software  on the 

FL1-H (ANX) and FL3-H (PI) channels, acquiring a minimum of 10,000 gated events per trial.  

ANX-/ PI- cells were considered live, ANX+/ PI- cells apoptotic, and ANX+/-/ PI+ cells necrotic.      

 

 

1.10 - Quantitative polymerase chain reaction (qPCR) 

 

1.10.1 - RNA isolation 

 

RNA isolation was performed using the RT2 qPCR-Grade RNA Isolation Kit (SA Biosciences, 

Frederick, MD, USA) in accordance with the manufacturer‟s instructions using certified RNase-

free barrier tips (Ambion Applied Biosystems, Foster City, CA, USA).  Cells seeded into sterile 
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25 cm2 culture flasks (Corning) at 1.5 × 106 cells and incubated to 80 % confluence overnight 

were washed with PBS and treated with control or 0.25 mM PQ-containing media (serum-free) 

for 1, 4, or 8 h.  Adherent cells were washed once with PBS and detached via trypsinization.  

Following centrifugation (500 × g for 5 min at 4 ˚C), cells were washed with PBS and lysed 

using the provided lysis and binding buffer, which contained chaotropic components that 

stabilized RNA and inhibited RNase activity.  Lysates were placed in RNAse-free microfuge 

tubes (Ambion Applied Biosystems) and RNA was extracted using a silica membrane spin 

column.  Upon loading of the RNA onto the column, genomic DNA was digested with an 

RNase-free DNase enzyme and, following washes to remove degraded genomic DNA, salts, and 

other cellular components, low ionic strength conditions eluted the pure RNA from the column.  

Aliquots were stored at -80 ˚C. 

 

 

1.10.2 - Experion 

 

The concentration and integrity of extracted RNA was assessed using the Experion RNA 

StdSens analysis kit (Bio-Rad) on an Experion Automated Electrophoresis Station (Bio-Rad), in 

accordance with the manufacturer‟s instructions.  Briefly, 1 μL aliquots of denatured RNA 

samples and ladder were loaded onto a microfluidic chip containing channels that, once primed 

with a gel matrix, allowed for separation, staining, detection, and data analysis of the samples by 

measuring the 18 and 28 S rRNA peaks.  Only high-quality RNA samples were used for 

subsequent gene expression analysis.  
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1.10.3 - First strand cDNA synthesis 

 

First strand complementary DNA (cDNA) synthesis reactions were performed using an RT2 First 

Strand Kit (SA Biosciences) in accordance with the manufacturer‟s instructions.  Briefly, to 

eliminate contaminating genomic DNA from samples prior to reverse transcription, 2.0 μg RNA 

was added to a DNA elimination buffer and incubated for 5 min at 42 ˚C using an MJ Mini 

Personal Thermal Cycler (Bio-Rad), and placed on ice for one minute.  Following this, the 

solution was incubated at 42 ˚C for 15 min with random hexamers and oligo-dT to prime reverse 

transcription, and a reverse transcriptase to synthesize cDNA product.  The reaction was 

terminated by heating to 95 ˚C for 5 min.  This was placed on ice and diluted with 91 μL ddH2O 

in preparation for real-time PCR.   

 

 

1.10.4 - Real-time PCR 

 

Quantitative real-time PCR analysis was performed using the Human Stress & Toxicity 

PathwayFinder RT2 Profiler PCR Array (Table 1.1; SA Biosciences) on an iQ5 Multicolor Real-

Time PCR Detection System (Bio-Rad) in accordance with the manufacturer‟s instructions.  

Briefly, cDNA synthesized via reverse-transcription of extracted RNA was added to 2X RT2 

Real-Time SYBR Green/Fluorescein PCR Master Mix (SA Biosciences) and protected from 

light.  Following gentle mixing, 25 μL was pipetted into each well of the array (containing pre-

dispensed gene-specific primer sets), with wells sealed using optical thin-wall 8-cap strips, and 

bubbles removed following brief centrifugation.  Real-time PCR was performed using a two-step 
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cycling program involving an initial single cycle of 95 ˚C for 10 min (required to activate the 

HotStart DNA polymerase), followed by 40 cycles of 95 ˚C for 15 s, then 60 ˚C for 1 min 

(SYBR Green fluorescence was recorded during the annealing step of each cycle).  Following 

the qPCR reaction, a first derivative dissociation curve was performed as a quality control 

measure.  Briefly, the reaction was heated to 95 ˚C for 1 min, cooled to 65 ˚C for 2 min, then 

ramped from 65 to 95 ˚C at a rate of 2 ˚C/min with optics on.  The formation of a single peak at 

temperatures greater than 80 ˚C indicated the presence of a single PCR product in the reaction 

mixture.   

 

 

1.11 - Bio-Plex 

 

Bio-Plex cytokine assays are multiplex bead-based assays designed to quantitate multiple 

cytokines in diverse matrices, including cell culture supernatants.  Cells were seeded into sterile 

25 cm2 culture flasks (Corning) at 1.35 × 106 cells and incubated overnight, then washed with 

PBS and treated with 2 mL of control, 0.25 or 1.0 mM PQ-containing media (serum-free) for 1, 

4, or 8 h.  Following incubation, media of treated cells were analyzed for levels of various 

cytokines using a Human Grp I Cytokine 7-Plex Panel kit (Bio-Rad) specific for interleukins 1β, 

6, 8, 10, and 15, TNF-α, and eotaxin, using a Bio-Plex 200 System (Bio-Rad) in accordance with 

the manufacturer‟s instructions.  Antibodies specifically directed against the cytokines of interest 

were covalently coupled to colour-coded polystyrene beads, which were allowed to react with 

sample containing the cytokines of interest.  Biotinylated detection antibodies specific for a 

different epitope on the cytokines were added, resulting in the formation of a sandwich of 
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antibodies around each cytokine.  Streptavidin-phycoerythrin was then added to bind the 

biotinylated detection antibodies, allowing the reaction mixture to be detected.  Each well was 

analyzed via the flow-based Bio-Plex suspension array system, which identified and quantitated 

each specific reaction based on bead colour and fluorescence, and cytokine concentrations were 

assessed using Bio-Plex Manager software via a standard curve derived from a recombinant 

cytokine standard.       

   

 

1.12 - Statistics 

 

Data were presented as mean ± S.E.M (n ≥ 3) and analyzed for statistical significance using the 

paired Student‟s t-test, with p < 0.05 considered significant.  For normalized data, a paired one 

sample t-test was performed comparing means to a hypothetical mean of 1 (p < 0.05). 
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Table 1.1: Human Stress & Toxicity PathwayFinder RT2 Profiler PCR Array gene table.  
Unigene GeneBank Symbol Description Gene Name 

Hs.480653 NM_001154 ANXA5 Annexin A5 ANX5/ENX2 

Hs.367437 NM_000051 ATM Ataxia telangiectasia mutated AT1/ATA 

Hs.631546 NM_004324 BAX BCL2-associated X protein Bax zeta 

Hs.516966 NM_138578 BCL2L1 BCL2-like 1 BCL-XL/S 

Hs.2490 NM_033292 CASP1 Caspase 1, apoptosis-related 

cysteine peptidase (interleukin 1, 

beta, convertase) 

ICE/IL1BC 

Hs.5353 NM_001230 CASP10 Caspase 10, apoptosis-related 

cysteine peptidase 

ALPS2/FLICE2 

Hs.655983 NM_001228 CASP8 Caspase 8, apoptosis-related 

cysteine peptidase 

ALPS2B/CAP4 

Hs.502302 NM_001752 CAT Catalase MGC138422 

Hs.57907 NM_002989 CCL21 Chemokine (C-C motif) ligand 21 6Ckine/CKb9 

Hs.514107 NM_002983 CCL3 Chemokine (C-C motif) ligand 3 G0S19-1/LD78ALPHA 

Hs.75703 NM_002984 CCL4 Chemokine (C-C motif) ligand 4 ACT2/G-26 

Hs.430646 NM_005190 CCNC Cyclin C CycC 

Hs.523852 NM_053056 CCND1 Cyclin D1 BCL1/D11S287E 

Hs.79101 NM_004060 CCNG1 Cyclin G1 CCNG 

Hs.370771 NM_000389 CDKN1A Cyclin-dependent kinase inhibitor 

1A (p21, Cip1) 

CAP20/CDKN1 

Hs.291363 NM_007194 CHEK2 CHK2 checkpoint homolog (S. 

pombe) 

CDS1/CHK2 

Hs.408767 NM_001885 CRYAB Crystallin, alpha B CRYA2/CTPP2 

Hs.1349 NM_000758 CSF2 Colony stimulating factor 2 

(granulocyte-macrophage) 

GMCSF 

Hs.632586 NM_001565 CXCL10 Chemokine (C-X-C motif) ligand 

10 

C7/IFI10 

Hs.72912 NM_000499 CYP1A1 Cytochrome P450, family 1, 

subfamily A, polypeptide 1 

AHH/AHRR 

Hs.12907 NM_000773 CYP2E1 Cytochrome P450, family 2, 

subfamily E, polypeptide 1 

CPE1/CYP2E 

Hs.1644 NM_000780 CYP7A1 Cytochrome P450, family 7, 

subfamily A, polypeptide 1 

CP7A/CYP7 

Hs.290758 NM_001923 DDB1 Damage-specific DNA binding 

protein 1, 127kDa 

DDBA/UV-DDB1 

Hs.505777 NM_004083 DDIT3 DNA-damage-inducible transcript 

3 

CEBPZ/CHOP 

Hs.445203 NM_001539 DNAJA1 DnaJ (Hsp40) homolog, subfamily 

A, member 1 

DJ-2/DjA1 

Hs.380282 NM_007034 DNAJB4 DnaJ (Hsp40) homolog, subfamily 

B, member 4 

DNAJW/DjB4 

Hs.654393 NM_005225 E2F1 E2F transcription factor 1 E2F-1/RBBP3 

Hs.326035 NM_001964 EGR1 Early growth response 1 AT225/G0S30 

Hs.212088 NM_001979 EPHX2 Epoxide hydrolase 2, cytoplasmic CEH/SEH 

Hs.435981 NM_001983 ERCC1 Excision repair cross-

complementing rodent repair 

deficiency, complementation 

group 1 (includes overlapping 

antisense sequence) 

COFS4/UV20 

Hs.469872 NM_000122 ERCC3 Excision repair cross-

complementing rodent repair 

BTF2/GTF2H 
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deficiency, complementation 

group 3 (xeroderma pigmentosum 

group B complementing) 

Hs.2007 NM_000639 FASLG Fas ligand (TNF superfamily, 

member 6) 

APT1LG1/CD178 

Hs.1424 NM_002021 FMO1 Flavin containing monooxygenase 

1 

FMO1 

Hs.642706 NM_001461 FMO5 Flavin containing monooxygenase 

5 

FMO5 

Hs.80409 NM_001924 GADD45

A 

Growth arrest and DNA-damage-

inducible, alpha 

DDIT1/GADD45 

Hs.616962 NM_004864 GDF15 Growth differentiation factor 15 GDF-15/MIC-1 

Hs.76686 NM_000581 GPX1 Glutathione peroxidase 1 GSHPX1 

Hs.271510 NM_000637 GSR Glutathione reductase MGC78522 

Hs.2006 NM_000849 GSTM3 Glutathione S-transferase M3 

(brain) 

GST5/GSTB 

Hs.517581 NM_002133 HMOX1 Heme oxygenase (decycling) 1 HO-1/bK286B10 

Hs.530227 NM_005526 HSF1 Heat shock transcription factor 1 HSTF1 

Hs.520028 NM_005345 HSPA1A Heat shock 70kDa protein 1A HSP70-1/HSP72 

Hs.690634 NM_005527 HSPA1L Heat shock 70kDa protein 1-like HSP70-HOM/hum70t 

Hs.432648 NM_021979 HSPA2 Heat shock 70kDa protein 2 HSPA2 

Hs.90093 NM_002154 HSPA4 Heat shock 70kDa protein 4 APG-2/HS24 

Hs.605502 NM_005347 HSPA5 Heat shock 70kDa protein 5 

(glucose-regulated protein, 

78kDa) 

BIP/GRP78 

Hs.654614 NM_002155 HSPA6 Heat shock 70kDa protein 6 

(HSP70B') 

HSP70B 

Hs.702021 NM_006597 HSPA8 Heat shock 70kDa protein 8 HSC54/HSC70 

Hs.520973 NM_001540 HSPB1 Heat shock 27kDa protein 1 CMT2F/DKFZp586P13

22 

Hs.523560 NM_001040

141 

HSP90A

A2 

Heat shock protein 90kDa alpha 

(cytosolic), class A member 2 

HSP90ALPHA/HSPCA 

Hs.509736 NM_007355 HSP90A

B1 

Heat shock protein 90kDa alpha 

(cytosolic), class B member 1 

D6S182/HSP90-BETA 

Hs.595053 NM_002156 HSPD1 Heat shock 60kDa protein 1 

(chaperonin) 

CPN60/GROEL 

Hs.1197 NM_002157 HSPE1 Heat shock 10kDa protein 1 

(chaperonin 10) 

CPN10/GROES 

Hs.36927 NM_006644 HSPH1 Heat shock 105kDa/110kDa 

protein 1 

DKFZp686M05240/HS

P105 

Hs.274313 NM_002178 IGFBP6 Insulin-like growth factor binding 

protein 6 

IBP6 

Hs.83077 NM_001562 IL18 Interleukin 18 (interferon-

gamma-inducing factor) 

IGIF/IL-18 

Hs.1722 NM_000575 IL1A Interleukin 1, alpha IL-1A/IL1 

Hs.126256 NM_000576 IL1B Interleukin 1, beta IL-1/IL1-BETA 

Hs.654458 NM_000600 IL6 Interleukin 6 (interferon, beta 2) BSF2/HGF 

Hs.36 NM_000595 LTA Lymphotoxin alpha (TNF 

superfamily, member 1) 

LT/TNFB 

Hs.567303 NM_002392 MDM2 Mdm2, transformed 3T3 cell 

double minute 2, p53 binding 

protein (mouse) 

HDMX/hdm2 

Hs.407995 NM_002415 MIF Macrophage migration inhibitory GIF/GLIF 
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factor (glycosylation-inhibiting 

factor) 

Hs.647371 NM_005953 MT2A Metallothionein 2A MT2 

Hs.654408 NM_003998 NFKB1 Nuclear factor of kappa light 

polypeptide gene enhancer in B-

cells 1 (p105) 

DKFZp686C01211/EB

P-1 

Hs.81328 NM_020529 NFKBIA Nuclear factor of kappa light 

polypeptide gene enhancer in B-

cells inhibitor, alpha 

IKBA/MAD-3 

Hs.706746 NM_000625 NOS2A Nitric oxide synthase 2A 

(inducible, hepatocytes) 

HEP-NOS/INOS 

Hs.147433 NM_182649 PCNA Proliferating cell nuclear antigen MGC8367 

Hs.354056 NM_000941 POR P450 (cytochrome) 

oxidoreductase 

CPR/CYPOR 

Hs.180909 NM_002574 PRDX1 Peroxiredoxin 1 MSP23/NKEFA 

Hs.706768 NM_005809 PRDX2 Peroxiredoxin 2 NKEFB/PRP 

Hs.201978 NM_000962 PTGS1 Prostaglandin-endoperoxide 

synthase 1 (prostaglandin G/H 

synthase and cyclooxygenase) 

COX1/COX3 

Hs.643267 NM_005053 RAD23A RAD23 homolog A (S. cerevisiae) HHR23A 

Hs.655835 NM_005732 RAD50 RAD50 homolog (S. cerevisiae) RAD50-2/hRad50 

Hs.414795 NM_000602 SERPINE

1 

Serpin peptidase inhibitor, clade E 

(nexin, plasminogen activator 

inhibitor type 1), member 1 

PAI/PAI-1 

Hs.443914 NM_000454 SOD1 Superoxide dismutase 1, soluble 

(amyotrophic lateral sclerosis 1 

(adult)) 

ALS/ALS1 

Hs.487046 NM_000636 SOD2 Superoxide dismutase 2, 

mitochondrial 

IPO-B/MNSOD 

Hs.241570 NM_000594 TNF Tumor necrosis factor (TNF 

superfamily, member 2) 

DIF/TNF-alpha 

Hs.279594 NM_001065 TNFRSF

1A 

Tumor necrosis factor receptor 

superfamily, member 1A 

CD120a/FPF 

Hs.478275 NM_003810 TNFSF1

0 

Tumor necrosis factor (ligand) 

superfamily, member 10 

APO2L/Apo-2L 

Hs.654481 NM_000546 TP53 Tumor protein p53 LFS1/TRP53 

Hs.654499 NM_007120 UGT1A4 UDP glucuronosyltransferase 1 

family, polypeptide A4 

HUG-BR2/UDPGT 

Hs.191334 NM_003362 UNG Uracil-DNA glycosylase DGU/DKFZp781L1143 

Hs.98493 NM_006297 XRCC1 X-ray repair complementing 

defective repair in Chinese 

hamster cells 1 

RCC 

Hs.647093 NM_005431 XRCC2 X-ray repair complementing 

defective repair in Chinese 

hamster cells 2 

DKFZp781P0919 

Hs.534255 NM_004048 B2M Beta-2-microglobulin B2M 

Hs.412707 NM_000194 HPRT1 Hypoxanthine 

phosphoribosyltransferase 1 

(Lesch-Nyhan syndrome) 

HGPRT/HPRT 

Hs.523185 NM_012423 RPL13A Ribosomal protein L13a RPL13A 

Hs.544577 NM_002046 GAPDH Glyceraldehyde-3-phosphate 

dehydrogenase 

G3PD/GAPD 

Hs.520640 NM_001101 ACTB Actin, beta PS1TP5BP1 
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Results 

 

Effect of PQ on viability of A549 cells.  Initially, a concentration and time response of A549 

cells to PQ was carried out to determine an appropriate range of PQ concentrations for 

subsequent experiments.  Viability of PQ-challenged A549 cells decreased in both a 

concentration- and time-dependent manner relative to control cells as determined by the MTT 

colorimetric assay (Figure 1.1).  Significant cell death was observed following challenge with as 

low as 0.1 mM PQ for 24 h, approximately 50 % of cells were dead using 0.25 mM PQ with the 

greatest number of cells dying following 1.0 mM PQ exposure (Figure 1.1 A).  This final 

concentration was further investigated to determine the progression of cell death over time 

(Figure 1.1 B).  It was found that significant cell death was achieved following 1 h of incubation, 

approximately 50 % after 8 h, with the greatest number of cells dying at 24 h post-PQ exposure.  

Based on these results, all subsequent experiments were carried out using 0.25 and / or 1.0 mM 

PQ for 1, 4, 8, and / or 24 h. 

 

 

Uptake of PQ and intracellular GSH content in PQ-challenged cells.  To further investigate the 

mechanism(s) leading to cell death in A549 cells following PQ challenge, challenged cells were 

analyzed for PQ uptake and intracellular GSH content.  The uptake of PQ in A549 cells 

increased in both a concentration- and time-dependent manner following PQ exposure, with 

concomitant decreases in intracellular GSH content as determined by UPLC analysis (Figure 

1.2).  Following 24 h exposure, uptake was detected with as low as 0.10 mM PQ, and increased 

linearly (R2 = 0.971) with increasing PQ concentrations (Figure 1.2 A).  This correlated with 
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decreased intracellular GSH levels following 24 h PQ exposure, which was evident with 0.25 

mM and greater PQ concentrations.  Similarly, PQ uptake was detected as early as 1 h exposure 

with 1.0 mM PQ, and increased linearly (R2 = 0.987) over a 24 h period (Figure 1.2 B).  This 

again correlated with decreases in intracellular GSH content, as levels were significantly reduced 

relative to control cells following 4 and 8 h challenge with 1.0 mM PQ, and decreased further 

after 24 h.  Figures 1.2 C-D depict chromatograms with increasing PQ uptake and decreasing 

GSH content, respectively, in a concentration-dependent manner.   

 

 

Effect of PQ exposure on intracellular ROS levels.  Since it is known that one of the primary 

actions of PQ is to generate ROS via redox cycling resulting in concomitant decreases in the 

antioxidant status of cells (i.e. GSH), the role of ROS in PQ-induced toxicity of A549 cells was 

assessed.  Flow cytometric analysis of PQ-challenged cells stained with CM-H2DCFDA revealed 

concentration- and time-dependent increases in ROS levels (Figure 1.3).  Relative fluorescence 

increased in a concentration-dependent manner following 4 and 8 h PQ exposure, and in a time-

dependent manner at both 0.25 and 1.0 mM PQ, reaching as high as a 3.26-fold increase relative 

to control cells following 1.0 mM PQ challenge for 8 h (Figure 1.3 A).  Representative 

histograms show increased FL1-H fluorescence intensity with increasing PQ concentrations 

following 1, 4, and 8 h exposure (Figures 1.3 B-D).  In addition, data of H2O2 levels from 

preliminary experiments of PQ-challenged cells suggest that levels in culture media increased 

following challenge with increasing PQ concentrations for 6 h (Figure 1.4).   
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Effect of PQ exposure on cellular mitochondrial membrane potential.  Flow cytometric 

analysis of PQ-challenged cells stained with the cell permeable JC-1 dye revealed that PQ 

depolarizes the mitochondrial membrane as indicated by decreases in FL2-H fluorescence 

(Figure 1.5).  This effect of PQ on A549 cells is concentration- and time-dependent, reaching 

approximately 50 % less fluorescence in cells challenged with 1.0 mM PQ relative to control 

cells after 8 h.  Representative histograms (Figures 1.5 B-D) show decreased FL2-H fluorescence 

intensity with increasing PQ concentrations relative to control cells, particularly following 4 and 

8 h exposure.       

 

 

Effect of PQ exposure on apoptosis of A549 cells.  PQ-challenged cells did not exhibit 

significant changes in apoptosis relative to control cells, as indicated by PS translocation via 

annexin V staining (Figure 1.6) and caspase-3 activation (data not shown), when challenged with 

0.25 or 1.0 mM PQ for 1, 4, or 8 h (Figures 1.6 A-C).  Representative flow cytometric dot-plots 

show no apparent changes in apoptotic and necrotic cells following 0, 0.25, and 1.0 mM PQ 

challenge for 1 h (Figures 1.6 D-F).   

 

 

Time-course of gene expression in PQ-challenged cells.  Gene expression was assessed using a 

PCR array designed to study genes involved with cellular stress and toxicity.  The magnitude of 

gene expression in cells challenged with 0.25 mM PQ for 1, 4, and 8 h was generally increased 

relative to control cells (Figure 1.7).  The relative fold change of each gene is listed in Table 1.2.  

As indicated in Table 1.2.1, the expression of many genes relating to oxidative or metabolic 
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stress, including CAT, GPX1, SOD1, and SOD2, were unchanged relative to control following 1, 

4, and 8 h PQ exposure, though GSR expression increased 1.6-fold after 8 h.  Similarly, the 

expression of many heat shock genes were generally not changed relative to control, though the 

expression of HSPA2 was decreased 1.6-fold and HSPA5 was increased 1.5-fold following 8 h 

PQ exposure (Table 1.2.2).  With respect to proliferation and carcinogenesis related genes (Table 

1.2.3), of note was the increased expression of CCNC over time (1.7-fold after 8 h PQ exposure), 

as well as EGR1 (2- and 2.5-fold after 4 and 8 h, respectively).  Significant increases in 

expression were observed 4 and 8 h post-PQ exposure in certain genes involved with growth 

arrest and senescence, including CDKN1A (1.5- and 1.8-fold, respectively), DDIT3 (2.1- and 

1.8-fold, respectively), and GDF15 (1.8- and 1.7-fold, respectively), while MDM2 was increased 

2.5-fold after 8 h (Table 1.2.4).  In addition, the expression of certain pro-inflammatory 

cytokines was increased following 4 and 8 h PQ exposure, including IL18 (1.4- and 1.7-fold, 

respectively), IL1A (2.39- and 1.7-fold, respectively), IL6 (2.9- and 2.1-fold, respectively), 

NOS2A (1.6- and 2-fold, respectively), and SERPINE1 (1.5- and 1.8-fold, respectively), while 

other inflammatory cytokines (i.e. CCL21, CCL3, CCL4, CSF2, CXCL10, IL1B, and LTA) were 

not expressed in A549 cells challenged with these conditions (Table 1.2.5).  The expression of 

DNA damage and repair genes were largely unchanged following PQ exposure (Table 1.2.6), as 

were apoptosis signalling genes with the exceptions of ANXA5, CASP10, and CASP8 (Table 

1.2.7), each of which progressively increased with increasing PQ exposure time (1.6-, 1.7- and 

1.6-fold, respectively, after 8 h).   

 

Measures were taken throughout the quantitative gene expression procedure to ensure that 

reliable results were obtained.  Figure 1.8 depicts representative gels and electropherograms of 
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extracted RNA samples, achieved using the Experion automated electrophoresis station, 

indicating high RNA integrity with little or no apparent degradation of 18 and 28 S rRNA.  

Additionally, a single peak (or zero if no product was amplified) was present in first-derivative 

dissociation curves for every PCR reaction on all arrays, indicating that only a single PCR 

product (i.e. the gene of interest) was amplified in each case (Figure 1.9 depicts representative 

dissociation curves of selected genes).  

 

 

Effect of PQ challenge on inflammatory cytokine release by A549 cells.  Analysis of incubation 

media of PQ-challenged cells using Bio-Plex technology revealed that levels of secreted IL-8 

and IL-6 increase in both a time- and concentration-dependent manner (Figure 1.10).  Following 

a slight increase in IL-8 levels secreted by cells challenged with 1.0 mM PQ for 1 h relative to 

control cells, IL-8 levels progressively increased after 4 and 8 h (1.93- and 3.17-fold, 

respectively; Figure 1.10 A).  This same effect was seen with increasing PQ concentrations at 

both 4 and 8 h post-PQ exposure.  Similar patterns were seen with regards to IL-6 secretion at 4 

and 8 h, where the levels were increased 1.55- and 2.25-fold, respectively, following 1.0 mM PQ 

challenge relative to control cells (Figure 1.10 B).  Levels of secreted IL-1β, IL-10, IL-15, and 

TNF-α were below detection limits, while eotaxin was only consistently detectable following 1.0 

mM PQ challenge for 8 h (1.393 ± 1.023 pg/mL; n = 3).   
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Discussion 

 

PQ, one of the most commonly used herbicides worldwide, is highly toxic to humans.  PQ 

primarily accumulates in the lung due to its active uptake by type I and II alveolar cells, resulting 

in destructive and proliferative phases.  The initial destruction of the lung by PQ leads to further 

damage via an inflammatory response, and fibroblasts colonize the lung resulting in pulmonary 

fibrosis and eventually death via anoxia (Smith et al. 1990, Suntres 2002).  Since the 

consequences of PQ-induced toxicity are not unique to the chemical, it can also effectively be 

used as a model for oxidative stress-related pulmonary injuries.  In this study, the effects of PQ 

in A549 type II-like alveolar cells, and its potential mechanism(s) of action, were investigated in 

vitro.   

 

Challenge of A549 cells with PQ resulted in both concentration- and time-dependent decreases 

in cell viability as measured via the MTT assay (Figure 1.1), a widely used method of assessing 

toxicity in vitro.  These results correspond to those of Weidauer et al. 2004 using primary 

alveolar type II cells isolated from rat lung, where 1.0 mM PQ challenge for 24 h resulted in 

approximately 20 % viability as assessed via the MTT assay (Weidauer et al. 2004).  In the 

present study, the decreases in viability were associated with concomitant time- and 

concentration-dependent increases in cellular uptake of PQ (Figure 1.2). 

 

PQ is known to undergo redox cycling, a process resulting in the generation of ROS and 

depletion of intracellular GSH levels, an indicator of cellular redox status.  In the present study, 

the time- and concentration-dependent increases in PQ uptake were associated with both 
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concentration- and time-dependent decreases in intracellular GSH levels and increases in the 

presence of ROS.  Flow cytometric analysis revealed increased ROS production in a 

concentration- and time-dependent manner, reaching nearly 3.5-fold greater levels relative to 

control following 1.0 mM PQ challenge for 8 h (Figure 1.3).  It is important to note that the 

increases in fluorescence (i.e. formation of DCF) following PQ challenge were not a result of 

direct interactions between PQ and the H2DCFDA molecule, as these compounds were found to 

not interact with each other (unlike other molecules including the bacterial toxin pyocyanin) 

(O'Malley et al. 2004).  Thus, it is evident that PQ is responsible for increased ROS production 

in the cell.  Additionally, levels of H2O2 were investigated in culture media following PQ 

exposure and preliminary data suggested that levels of this damaging species increased in a 

concentration-dependent manner in PQ-challenged cells, supporting the aforementioned ROS 

data.  Collectively, these results suggest that the uptake of PQ in A549 cells leads to increased 

ROS production, including H2O2, which is, at least in part, responsible for the significant 

decreases in intracellular GSH levels observed following PQ exposure, and these events 

contribute to cell death. 

 

Although PQ is known to produce cell death via necrosis, less is known of its ability to cause cell 

death via apoptotic mechanism(s).  Thus, the effect of PQ on apoptosis was also investigated.  

Mitochondrial membrane potential, a very early indicator of apoptosis, decreased in a 

concentration- and time-dependent manner following PQ exposure of A549 cells (Figure 1.5), 

correlating with the increased levels of ROS under the same conditions.  This is in accordance 

with results obtained by Cheng et al. 2009, in human corneal endothelial cells challenged with 

PQ, in which there was an approximate 60 % decrease in mitochondrial membrane potential 
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following 0.5 mM PQ challenge for 24 h.  In addition, it should be noted that PQ itself does not 

have a direct effect on the membrane energy level (Costantini et al. 1995).  However, no changes 

in annexin V staining (i.e. PS translocation), were observed in cells post-PQ exposure under the 

same conditions (Figure 1.6), and cells were negative for caspase-3 activation (data not shown).  

Although Cappelletti et al. found that incubation of A549 cells with lower doses of PQ (80 and 

160 μM) for 24 h with an additional 72 h incubation in PQ-free cell culture media resulted in 

apoptotic features (i.e. morphological changes and TUNEL staining) (Cappelletti et al. 1998), the 

results presented here provide evidence to suggest that apoptosis does not play a major role in 

PQ-induced toxicity of A549 cells under the presently studied conditions (i.e. measured 

immediately following shorter PQ exposure times).   

 

In order to further investigate the intracellular processes taking place during PQ challenge, gene 

expression was investigated over time (i.e. 1, 4, and 8 h following 0.25 mM PQ exposure) using 

PCR arrays specific for genes relating to cellular stress and toxicity.  The magnitude of gene 

expression in PQ-challenged cells was generally increased relative to control cells (Figure 1.7), 

indicating that the cell actively responded to the novel stress.   

 

Expression of many oxidative or metabolic stress-related genes did not change significantly 

following PQ challenge (i.e. CAT, SOD1, SOD2, and GPX1; Table 1.2.1), corresponding to 

other studies (Weidauer et al. 2004, Lehmann et al. 2001, Tomita et al. 2005, Tomita et al. 

2007).  For instance, the expression of CAT, SOD1, and SOD2 genes remained unchanged 

following PQ challenge of primary type II alveolar cells isolated from rats (Lehmann et al. 2001) 

and in the H358 alveolar type II-like cell line (Weidauer et al. 2004), while GPX1 gene 



53 
 

expression was similarly unchanged in the lungs of both PQ-challenged rats (Tomita et al. 2005) 

and mice (Tomita et al. 2007).  Additionally, GSR was up-regulated after 8 h PQ exposure in our 

study (Table 1.2.1), which is in agreement with its up-regulation in the lungs of PQ-challenged 

rats (Tomita et al. 2005) and mice (Tomita et al. 2007).  Although the gene expression levels for 

these antioxidant enzymes (i.e. SOD, CAT) were not up-regulated following PQ exposure, other 

studies have shown that their respective enzymatic activities were increased following PQ 

exposure (Saito 1986).   

 

Expression levels of many inflammatory genes were up-regulated following PQ exposure, 

particularly following 4 and 8 h.  These include IL18, IL1A, IL6, NOS2A, and SERPINE1 

(Table 1.2.5).  IL18, IL1A, and IL6 all code for pro-inflammatory cytokines, while NOS2A 

codes for inducible nitric oxide synthase, an enzyme involved in the production of nitric oxide, 

and SERPINE1 codes for plasminogen activator inhibitor-1, which inhibits urokinase 

plasminogen activator by forming a 1:1 stoichiometric complex (Sato et al. 2004).  These 

increases in gene expression correlated with increased secretion of pro-inflammatory cytokines 

into the cell culture supernatant, including IL-8 and IL-6.  Levels of both cytokines were 

observed to increase in a concentration- and time-dependent manner following PQ challenge 

(Figure 1.10), though IL-8 protein was substantially more abundant in the cell culture 

supernatant.  It has been well established that one of the initial consequences of PQ injury is the 

infiltration of neutrophils into the lung (Shek et al. 1994, Eddleston et al. 2003), a treatment 

effect mediated by the early production of IL-8, which acts primarily to chemically attract and 

activate infiltrating neutrophils.  Other studies have shown increased IL-8 gene expression in 

A549 cells, peripheral blood mononuclear cells, and retinal pigment epithelial cells under similar 
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PQ exposure conditions (Bianchi et al. 1993, Fernandes et al. 2008).  IL-6 functions in 

inflammation and in the maturation of B cells, and is produced at sites of acute or chronic 

inflammation.  The expression of this cytokine was stimulated at both the gene (Table 1.2.5) and 

protein level (Figure 1.10 B) following PQ challenge under the studied conditions, which 

corresponds with gene expression findings in PQ-challenged mice from another study (Tomita et 

al. 2007).  Together with IL-8, this cytokine may have a role in the inflammatory response 

associated with PQ toxicity in the lung.   

 

In addition, levels of IL-1β, IL-10, IL-15, and TNF-α secretion in cell culture supernatants were 

not detectable, while eotaxin was only consistently detectable following challenge with the 1.0 

mM PQ for 8 h (the most damaging condition studied).  This suggests that the secretion of 

eotaxin, a chemoattractant for eosinophils, is also up-regulated during PQ-induced toxicity in 

A549 cells.  Eosinophil infiltration is believed to be another early consequence of PQ toxicity in 

the lung (Fukuda et al. 1985, Candan and Alagozlu 2001) and these results provide evidence to 

suggest that type II alveolar cells may contribute to their chemoattraction during such injuries.  

The up-regulation of these inflammatory genes in concert with the increased secretion of certain 

pro-inflammatory cytokines suggest that type II alveolar cells are, at least in part, responsible for 

initiating the inflammatory response due to PQ in the lung.   

 

PQ challenge also had an impact on the cell cycle of A549 cells since a variety of such genes 

were up-regulated in this study.  CCNC, which encodes a cyclin that interacts with cyclin-

dependent kinase 8 (together inducing the phosphorylation of the carboxy-terminal domain of the 

large subunit of RNA polymerase II (Rao et al. 2009)) and has recently been implicated in cell 
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cycle transitions between G0 to G1 and G1 to S phase (Rao et al. 2009), exhibited increased gene 

expression (nearly 1.7-fold) after 8 h (Table 1.2.3).  This increase in CCNC expression 

corresponds with findings in BJ Foreskin cells challenged with single-walled carbon nanotubes, 

which are known to increase intracellular ROS levels (Sarkar et al. 2007).  CDKN1A is another 

gene that was up-regulated following PQ exposure, reaching a 1.8-fold increase after 8 h (Table 

1.2.4).  This gene encodes a cyclin-dependent kinase (CDK) inhibitor that inhibits the activity of 

cyclin-CDK2 or -CDK4 complexes, thus regulating cell cycle progression at G1 (King and 

Cidlowski 1998).  Furthermore, DDIT3 and GADD45A, both DNA damage-inducible genes 

whose expressions are known to be up-regulated in a wide variety of cells under genotoxic stress 

conditions (Oyadomari and Mori 2004), were maximally expressed after 4 h PQ exposure (2.1- 

and 1.6-fold increases, respectively; Table 1.2.4), corresponding with the more than 3-fold 

increase in GADD45A following PQ challenge of neuroblastoma (SH-SY5Y) cells (Moran et al. 

2008).  In addition, gene expression of GADD45A and MDM2 (which codes for a protein with 

p53-regulatory activity (Stoyanova et al. 2009)) were found to increase in GPX1-knockout mice 

challenged with PQ (Cheng et al. 2003), correlating with the up-regulation of both genes in this 

study (MDM2 was up-regulated nearly 2.5-fold following 8 h PQ challenge; Table 1.2.4).  

Finally, GDF15, which is also involved in growth and differentiation of cells, was increased at 4 

and 8 h post-PQ challenge (1.8- and 1.7-fold, respectively; Table 1.2.4).  These results suggest 

that PQ challenge, perhaps through the generation of ROS, has a considerable impact on the cell-

cycle of A549 cells, which may lead to growth arrest as a result of the increased expression of 

the aforementioned genes.    
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EGR1, which encodes a transcriptional regulator that activates genes (including p53) required for 

differentiation and mitogenesis (Sperandio et al. 2009), was substantially up-regulated with 

increasing PQ exposure, reaching 2.0- and 2.5-fold increases after 4 and 8 h, respectively (TP53 

expression remained unchanged under these conditions; Table 1.2.4).  This cancer suppressor 

gene has not been studied in PQ-induced toxicity, but results from a study using ionizing 

radiation injury on A549 cells showed that EGR1 has a radiation-inducible promoter that 

promotes the elevation of growth factors or their receptors (i.e. TGF-β1, TNF-α, or EGFR) 

(Shareef et al. 2007).  They found that ionizing radiation induced EGR1 gene expression in 

A549 cells, which led to increased TNF-α protein.  However, they speculated that activation of 

NF-κB by TNF-α in A549 cells may have led to abrogation of the pro-apoptotic effects of both 

TNF-α and TRAIL (Shareef et al. 2007).  Based on these findings, it is possible that the 

increased levels of intracellular ROS due to PQ in this study are the cause of EGR1 up-

regulation, and perhaps a similar mechanism may be in play in this model to help explain the 

lack of apoptosis observed following PQ challenge, despite the up-regulation of certain apoptotic 

signalling genes after 8 h (i.e. ANXA5, CASP10, and CASP8; Table 1.2.7).       

 

Finally, it was interesting to note that, though the expression of ACTB was unchanged following 

1 and 4 h PQ exposure, it was up-regulated 1.8-fold following 8 h PQ exposure relative to other 

housekeeping genes (Table 1.2.3), suggesting ACTB was not a reliable housekeeping gene in 

this model of PQ-induced toxicity.  This is supported by a study by Cappelletti et al where 24 h 

PQ challenge (80 μM) of A549 cells resulted in irreversible actin filament disorganization 

(Cappelletti et al. 1994).  The use of ACTB as a housekeeping gene in PQ toxicity studies 

requires further investigation, particularly as many gene studies involving PQ have utilized it in 
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this capacity (Lehmann et al. 2001, Ishida et al. 2006).  Expression of B2M, HPRT1, RPL13A, 

and GAPDH, the housekeeping genes used in these experiments, effectively remained constant 

under all studied conditions. 

 

The results from this study indicate that exposure of A549 cells to PQ resulted in concentration- 

and time-dependent cellular PQ uptake, increases in the production of ROS (including H2O2), 

and decreases in intracellular GSH levels, with each of these factors contributing to cell death.  

Despite the decreases in mitochondrial membrane potential, apoptosis was found to not play a 

significant role in PQ-induced toxicity under the studied conditions, as evidenced by 

insignificant PS translocation and caspase-3 activation.  However, PQ challenge may have 

affected the cell-cycle as evidenced by the up-regulation of many genes involved in growth 

arrest.  In addition, gene expression analysis revealed significant increases in certain pro-

inflammatory genes, which correlated with increases in the secretion of pro-inflammatory 

cytokines (i.e. IL-8 and IL-6).  Finally, alveolar type II epithelial cells, because of their 

abundance in the lung and their ability to take up the chemical, contribute to the initiation of the 

inflammatory response in cases of PQ lung toxicity.     
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Figure 1.1:  Effect of PQ concentration and time of exposure on the viability of A549 cells.  

Viability of cells challenged with PQ was assessed by measuring the activity of mitochondrial 

dehydrogenases using the MTT colorimetric assay.  Cells seeded into 96-well plates at 10,000 

cells/well and grown to 80 % confluence were challenged with (A) increasing concentrations of 

PQ for 24 h or (B) with 1.0 mM PQ for various time points up to 24 h.  Cells were incubated for 

4 h with MTT reagent post-PQ challenge and absorbance was measured spectrophotometrically 

at 570 nm (650 nm correction wavelength).  Viability of PQ-challenged cells was assessed 

relative to control cells.  Data points represent mean ± S.E.M. of 5 (A) and 3 (B) independent 

experiments performed in octuplet.  * denotes significant difference relative to control (p < 0.05).   
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Figure 1.2:  PQ uptake and intracellular GSH content in PQ-challenged cells: a 

concentration and time effect.  Cells challenged with increasing concentrations of PQ for 24 h 

(A) or with 1.0 mM PQ for various times up to 24 h (B) were sonicated, and lysate was assessed 

concurrently for cellular PQ uptake and intracellular GSH content via UPLC (dotted line: PQ 

levels; solid line: GSH levels).  Lysates were normalized to total protein.  Representative UPLC 

chromatograms show increases in PQ uptake (C) and decreases in GSH content (D) as the PQ 

treatment concentration increases (PQ treatments are as labelled in figures; retention times are 

indicated at peak maxima).  Data points represent mean ± S.E.M. of 3 independent experiments 

performed in duplicate.  * denotes significant difference relative to control (p < 0.05). 
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Figure 1.3:  Levels of intracellular ROS post-PQ challenge.  Following challenge with 0, 0.25 

or 1.0 mM PQ for 1, 4, or 8 h, cells were stained with the cell-permeable CM-H2DCFDA 

fluorescent probe and analyzed using flow cytometry (minimum 10,000 events; FL1-H).  

Increases in relative fluorescence indicate a greater abundance of intracellular ROS compared to 

control cells (A).  Representative histograms show FL1-H fluorescence intensity of stained cells 

following 1 (B), 4 (C), and 8 h (D) PQ exposure (shaded area: 0 mM PQ control; solid blue line: 

0.25 mM PQ; dotted red line: 1.0 mM PQ).  Bars represent mean ± S.E.M. of 3 independent 

trials.  * denotes significant difference relative to control (p < 0.05). 
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Figure 1.4:  Effect of PQ exposure on levels of hydrogen peroxide.  Hydrogen peroxide levels 

were measured in culture media of cells challenged with increasing concentrations of PQ for 6 h.  

Cells were seeded into 6-well plates at 0.5 × 106 cells/well, incubated overnight, and challenged 

with 3.0 mL of control or PQ-containing media.  Immediately following challenge, data was 

obtained via electrochemical detection of incubation media using the Apollo 4000 Free Radical 

Analyzer, and was interpolated to H2O2 concentrations (µM) from pA using a standard curve of 

known values.  Bars represent data obtained from 1 independent experiment due to failure of 

equipment.        
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Figure 1.5:  Effect of PQ challenge on cellular mitochondrial membrane potential.  Cells 

seeded into 6-well plates at 0.5 × 106 cells/well and challenged with 0, 0.25 or 1.0 mM PQ for 1, 

4, and 8 h were stained with the membrane-permeable JC-1 fluorescent dye for 30 min.  Normal 

mitochondrial membrane potential caused aggregation of the dye molecules resulting in red 

fluorescence emission (measured flow cytometrically using FL2-H channel), while 

depolarization of mitochondrial membrane potential was indicated by decreased red 

fluorescence.  Representative histograms show FL2-H fluorescence intensity of stained cells 

following 1 (B), 4 (C), and 8 h (D) PQ exposure (shaded area: 0 mM PQ control; blue solid line: 

0.25 mM PQ; dotted red line: 1.0 mM PQ).  Bars represent mean ± S.E.M. of 3 independent 

trials.  * denotes significant difference relative to control (p < 0.05). 
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Figure 1.6:  Effect of PQ challenge on apoptosis of A549 cells.  Following 0, 0.25, or 1.0 mM 

PQ challenge for 1, 4, or 8 h, cells were suspended via trypsinization and dually stained for 15 

minutes with annexin V (ANX) and propidium iodide (PI) for flow cytometric analysis of 

phosphatidylserine translocation (A-C), an indicator of apoptosis.  Representative flow 

cytometric dot-plots show similar ANX and PI staining among 0, 0.25, and 1.0 mM PQ-

challenged cells (1 h exposure; D-F, respectively).  Annexin V and PI fluorescences were 

measured on FL1-H and FL3-H channels, respectively.  ANX-/ PI- cells were considered live 

(LL), ANX+/ PI- cells apoptotic (LR), and ANX+/-/ PI+ cells necrotic (UL + UR).  Bars represent 

mean ± S.E.M. of 3 independent trials (A-C).  LL: lower left; LR: lower right; UL: upper left; 

UR: upper right.      
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Figure 1.7:  Effect of PQ exposure on the magnitude of gene expression in A549 cells.  RNA 

was extracted from cells challenged with 0 or 0.25 mM PQ for 1 (upper panel), 4 (middle panel), 

or 8 h (lower panel) and analyzed via quantitative reverse-transcription PCR using a gene array.  

The magnitude of expression of each gene is expressed on a scale ranging from minimal (intense 

green) to maximal (intense red) expression (n = 3 independent trials). 
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Table 1.2:  Relative expression, via gene array analysis, of genes involved with cellular stress 
and toxicity in cells challenged with 0.25 mM PQ for 1, 4, or 8 h.  Fold change is expressed 
relative to untreated control using the housekeeping genes B2M, HPRT1, RPL13A, and 
GAPDH. 
 
Table 1.2.1:  Oxidative or metabolic stress-related genes. 

Symbol 1 h 4 h 8 h 
CAT 1.16 ± 0.15 -1.01 ± 0.10 1.00 ± 0.04 

CRYAB -1.10 ± 0.06 1.24 ± 0.21 1.00 ± 0.15 
CYP1A1 -1.08 ± 0.20 -1.01 ± 0.07 1.29 ± 0.06 
CYP2E1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
CYP7A1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

EPHX2 2.03 ± 0.56 0.00 ± 0.00 1.04 ± 0.34 
FMO1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
FMO5 1.12 ± 0.09 1.16 ± 0.20 -1.18 ± 0.14 
GPX1 1.00 ± 0.04 1.01 ± 0.07 -1.10 ± 0.05 
GSR 1.15 ± 0.22 1.12 ± 0.19 1.60 ± 0.18 

GSTM3 1.32 ± 0.15 1.29 ± 0.11 1.36 ± 0.14 
HMOX1 1.06 ± 0.08 1.18 ± 0.10 1.00 ± 0.14 

MT2A 1.04 ± 0.07 1.08 ± 0.08 1.35 ± 0.22 
POR 1.52 ± 0.46 -1.15 ± 0.26 -1.36 ± 0.88 

PRDX1 1.02 ± 0.04 1.00 ± 0.04 1.18 ± 0.09 
PRDX2 1.33 ± 0.44 0.00 ± 0.00 0.00 ± 0.00 
PTGS1 1.06 ± 0.15 0.00 ± 0.00 0.00 ± 0.00 
SOD1 -1.03 ± 0.02 -1.08 ± 0.08 -1.01 ± 0.07 
SOD2 1.01 ± 0.04 1.02 ± 0.11 1.26 ± 0.16 

 
Table 1.2.2:  Heat shock genes. 

Symbol 1 h 4 h 8 h 
DNAJA1 1.03 ± 0.09 1.30 ± 0.11 1.05 ± 0.03 
DNAJB4 1.04 ± 0.11 1.29 ± 0.06 1.31 ± 0.09 

HSF1 -1.04 ± 0.06 1.07 ± 0.04 -1.02 ± 0.06 
HSPA1A 1.14 ± 0.13 -1.16 ± 0.03 -1.29 ± 0.03 
HSPA1L 1.28 ± 0.21 -1.57 ± 0.47 -1.11 ± 0.18 

HSPA2 1.05 ± 0.05 -1.03 ± 0.04 -1.59 ± 0.07 
HSPA4 1.14 ± 0.12 -1.00 ± 0.09 -1.08 ± 0.08 
HSPA5 -1.01 ± 0.06 1.31 ± 0.09 1.47 ± 0.07 
HSPA6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
HSPA8 1.46 ± 0.30 -1.04 ± 0.19 -1.14 ± 0.08 
HSPB1 1.07 ± 0.06 -1.02 ± 0.09 -1.37 ± 0.09 

HSP90AA2 -1.01 ± 0.08 1.24 ± 0.22 1.39 ± 0.13 
HSP90AB1 1.08 ± 0.03 1.04 ± 0.09 -1.08 ± 0.22 

HSPD1 1.03 ± 0.01 1.05 ± 0.09 1.27 ± 0.07 
HSPE1 -1.08 ± 0.04 1.03 ± 0.05 1.16 ± 0.04 
HSPH1 1.06 ± 0.03 1.18 ± 0.10 1.19 ± 0.07 
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Table 1.2.3:  Proliferation / carcinogenesis related genes. 
Symbol 1 h 4 h 8 h 

ACTB 1.13 ± 0.12 1.15 ± 0.14 1.79 ± 0.12 
CCNC 1.15 ± 0.22 1.34 ± 0.19 1.67 ± 0.34 

CCND1 1.48 ± 0.37 1.08 ± 0.19 1.45 ± 0.34 
CCNG1 -1.13 ± 0.04 -1.02 ± 0.05 1.07 ± 0.04 

E2F1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
EGR1 1.40 ± 0.38 2.04 ± 0.16 2.47 ± 0.82 
PCNA 1.02 ± 0.06 -1.01 ± 0.04 1.07 ± 0.03 

 

Table 1.2.4:  Growth arrest and senescence related genes. 
Symbol 1 h 4 h 8 h 

CDKN1A 1.03 ± 0.01 1.48 ± 0.09 1.81 ± 0.18 
DDIT3 1.20 ± 0.08 2.14 ± 0.07 1.79 ± 0.00 

GADD45A 1.16 ± 0.06 1.59 ± 0.06 1.52 ± 0.14 
GDF15 1.05 ± 0.10 1.83 ± 0.09 1.73 ± 0.15 

IGFBP6 1.09 ± 0.14 1.09 ± 0.12 -1.26 ± 0.22 
MDM2 1.13 ± 0.12 1.24 ± 0.16 2.45 ± 0.16 
TP53 1.34 ± 0.21 1.06 ± 0.13 1.15 ± 0.22 

 

Table 1.2.5:  Inflammatory genes.  
Symbol 1 h 4 h 8 h 
CCL21 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
CCL3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
CCL4 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
CSF2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

CXCL10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
IL18 1.10 ± 0.05 1.41 ± 0.10 1.70 ± 0.12 
IL1A 1.36 ± 0.31 2.39 ± 0.44 1.74 ± 0.14 
IL1B 1.38 ± 0.33 0.00 ± 0.00 0.00 ± 0.00 

IL6 -1.07 ± 0.13 2.91 ± 0.36 2.10 ± 0.26 
LTA 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
MIF -1.08 ± 0.06 1.02 ± 0.04 -1.06 ± 0.05 

NFKB1 -1.04 ± 0.08 1.23 ± 0.18 1.24 ± 0.07 
NOS2A -1.03 ± 0.16 1.60 ± 0.36 1.97 ± 0.54 

SERPINE1 -1.05 ± 0.08 1.51 ± 0.13 1.77 ± 0.24 
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Table 1.2.6:  DNA damage and repair genes. 
Symbol 1 h 4 h 8 h 

ATM 1.25 ± 0.25 1.11 ± 0.24 1.39 ± 0.08 
CHEK2 1.06 ± 0.03 -1.11 ± 0.02 1.24 ± 0.09 

DDB1 1.26 ± 0.27 -1.08 ± 0.20 1.44 ± 0.37 
ERCC1 1.15 ± 0.18 1.13 ± 0.17 1.07 ± 0.30 
ERCC3 1.23 ± 0.21 1.12 ± 0.11 1.34 ± 0.34 

RAD23A 1.07 ± 0.12 -1.07 ± 0.09 1.13 ± 0.08 
RAD50 1.13 ± 0.22 -1.01 ± 0.20 1.13 ± 0.28 

UGT1A4 1.14 ± 0.38 1.03 ± 0.03 0.00 ± 0.00 
UNG 1.02 ± 0.09 1.01 ± 0.10 -1.01 ± 0.05 

XRCC1 1.17 ± 0.11 -1.21 ± 0.15 -1.05 ± 0.32 
XRCC2 1.24 ± 0.16 1.14 ± 0.15 1.43 ± 0.24 

 

Table 1.2.7:  Apoptosis signalling genes. 
Symbol 1 h 4 h 8 h 
ANXA5 1.06 ± 0.08 1.24 ± 0.13 1.55 ± 0.00 

BAX 1.35 ± 0.15 -1.01 ± 0.11 1.32 ± 0.32 
BCL2L1 1.23 ± 0.19 -1.13 ± 0.26 1.09 ± 0.43 
CASP1 1.13 ± 0.16 -1.32 ± 0.35 1.31 ± 0.23 

CASP10 1.14 ± 0.34 1.55 ± 0.28 1.71 ± 0.23 
CASP8 1.15 ± 0.06 1.24 ± 0.10 1.62 ± 0.17 
FASLG 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

NFKBIA 1.08 ± 0.11 1.19 ± 0.10 -1.06 ± 0.04 
TNF -1.14 ± 0.48 1.60 ± 0.43 1.09 ± 0.23 

TNFRSF1A 1.17 ± 0.20 -1.13 ± 0.20 -1.36 ± 0.40 
TNFSF10 -1.08 ± 0.24 0.00 ± 0.00 0.00 ± 0.00 

Values represent mean ± SEM of 3 independent experiments. 
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Figure 1.8:  Validation of RNA integrity.  Aliquots of extracted RNA from control or PQ-

challenged A549 cells were assessed for RNA concentration and integrity using the Experion 

Automated Electrophoresis Station.  Representative gels artificially depict 18 and 28 S rRNA 

banding (A; L: ladder; 1 - 12: extracted RNA from control or PQ-challenged cells) using data 

obtained from electropherograms.  Representative electropherograms of samples 3 and 4 (4 h 

control and 0.25 mM PQ-challenged samples, respectively) display 18 and 28 S rRNA peaks (B-

C).   
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Figure 1.9:  Assessment of PCR gene product quality.  Representative first-derivative 

dissociation curves of amplified PCR product from select genes of a PCR array are depicted.     
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Figure 1.10:  Levels of inflammatory cytokines in culture media following PQ challenge.  

Culture media from cells challenged with 0, 0.25, or 1.0 mM PQ for 1, 4, or 8 h were analyzed 

using Bio-Plex technology for levels of secreted IL-8 (A) and IL-6 (B), according to the 

manufacturer‟s instructions.  Levels of IL-1β, IL-10, IL-15, and TNF-α were not detectable, 

while eotaxin was only consistently detectable following 1.0 mM PQ challenge for 8 h (1.393 ± 

1.023 pg/mL).  Bars represent mean ± S.E.M. of 3 independent trials.  * denotes significant 

difference relative to control (p < 0.05).    
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CHAPTER II 

 

Introduction 

 

2.1 - Antioxidants in PQ lung toxicity 

 

Recognizing that PQ is preferentially accumulated in the lung and exerts its cytotoxic effects via 

the generation of ROS, many studies have focused on increasing the antioxidant status in the 

lung to protect against PQ injury using various antioxidants, including antioxidant enzymes (i.e. 

superoxide dismutase), vitamins (i.e. ascorbic acid, α-Tocopherol), melatonin, and low-

molecular weight thiol-containing antioxidants (i.e. glutathione, NAC, metallothionein).  The 

success of these antioxidants has thus far been variable, as reviewed by Suntres (Suntres 2002).   

 

Superoxide dismutase (SOD) administration fails to ameliorate the effects of PQ, mainly due to 

its inability to enter cell membranes because of its high molecular mass and its charge (Suntres 

2002).  A recent study found that cationization of SOD significantly increased its intracellular 

delivery and suppressed PQ-induced toxicity and lipid peroxidation (Ishimoto et al. 2006).  It 

was also found that SOD fusion proteins containing a nuclear localization signal or membrane 

translocation sequence successfully transduced into the nucleus or cytosol of cells in vitro, 

increasing the viability of cells challenged with PQ (Kim et al. 2008).  SOD mimetics were also 

found to have a beneficial effect against PQ toxicity in the kidney (Samai et al. 2008, Samai et 

al. 2007). 
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Curcumin (diferuloyl methane), the component of turmeric, is widely used as a potent anti-

inflammatory, antioxidant, anticancer, and membrane-stabilizing agent (Venkatesan 2000, 

Soudamini et al. 1992).  One study found that oral administration of curcumin to PQ-challenged 

rats reduced lipid peroxidation in tissues (i.e. lung, liver, kidney, and brain) of mice compared to 

mice challenged with PQ alone (Soudamini et al. 1992).  In another study, curcumin was found 

to protect against PQ-induced toxicity in the lung by having beneficial effects on 

myeloperoxidase activity (an index of neutrophil content), bronchoalveolar lavage fluid protein 

content, thiobarbituric acid reactive substances formation, and viability (Venkatesan 2000).  

These protective effects were attributed to curcumin‟s ability to decrease neutrophil influx into 

the lung, stabilize cell membranes, decrease the oxidant burden, and enhance the natural cellular 

antioxidant defenses (i.e. GSH) (Venkatesan 2000).     

 

3-Methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), a novel free radical scavenger recently 

introduced clinically, has exhibited beneficial effects in acute PQ toxicity.  MCI-186 improved 

the survival of rats treated orally with 175 mg/kg PQ from 8 to 42 % after 6 days, and from 4 to 

38 % after 14 days when administered immediately following PQ.  However, the beneficial 

effects of MCI-186 on survival were significantly diminished when administered 30 min after 

PQ challenge (Saibara et al. 2003).  These therapeutic effects on acute PQ toxicity were 

attributed to the potent inhibitory activity of MCI-186 both on non-enzymatic lipid peroxidation 

and lipoxygenase activity (Saibara et al. 2003).         

 

Amifostine, a thiophosphate prodrug approved by the Food and Drug Administration for the 

prevention of toxicities associated with cisplatin and therapeutic radiation, can be converted to its 
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active metabolite (WR-1065) and function as an oxygen and DNA radical scavenger (Wills et al. 

2007).  This has been shown to protect against lipoperoxidation, but a study showed that 

subcutaneous injections of amifostine did not improve survival or lung injury caused by PQ 

toxicity in mice (Wills et al. 2007).    

 

Captopril, a thiol-containing angiotensin-converting enzyme inhibitor, has also provided 

beneficial effects against PQ-induced toxicity in the lung, attributable to its antioxidant 

properties (Candan and Alagozlu 2001).  This molecule can scavenge free radicals independently 

of angiotensin-converting enzyme inhibition (Candan and Alagozlu 2001).  One study showed 

that the simultaneous administration of captopril (50 mg/kg i.p.) and PQ (40 mg/kg i.p.) in rats, 

followed by an additional captopril injection 1 h later, significantly reduced lipid peroxidation, 

normalized the activities of SOD, GPx, and GSH content in the lung tissue, and prevented the 

increase in lung fibrosis (Candan and Alagozlu 2001).  In another study on isolated perfused rat 

lungs, captopril (10μM) significantly reduced LDH leakage and lipid peroxidation, while 

increasing GSH and total protein content when exposed to 600 μM PQ for 1 h (Ghazi-Khansari 

et al. 2005).  However, it was found that oral administration of a lower dose (10 mg/kg) of 

captopril had no effect on glutathione levels and lipid peroxidation in PQ (20 mg/kg; i.p.)-treated 

rats after 21 days, but improved pulmonary fibrosis (Ghazi-Khansari et al. 2007).  Interestingly, 

the authors suggest that the antifibrotic effects of captopril may be related to the inhibition of 

angiotensin-converting enzyme, and not from the thiol group on captopril, since the non-thiol 

angiotensin-converting enzyme inhibitor enalapril exhibited similar effects to captopril (Ghazi-

Khansari et al. 2007). 
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Dexamethasone, a potent synthetic glucocorticoid which acts as an anti-inflammatory and 

immunosuppressant (its effects are related to de novo synthesis of P-glycoprotein), was also 

found to have a protective effect in the rat lung following PQ challenge by decreasing lipid 

peroxidation and carbonyl groups content, normalizing myeloperoxidase activities, and 

preventing the increase in lung weight (Dinis-Oliveira et al. 2006).  Dexamethasone was also 

responsible for decreasing PQ accumulation in the lung (Dinis-Oliveira et al. 2006b) and was 

shown to have a protective effect in the lung when combined with surfactant treatment (Chen et 

al. 2001).  However, increased damage to the kidney and spleen were noted with dexamethasone 

treatment (Dinis-Oliveira et al. 2006).   

 

Sodium salicylate (NaSAL), a nonsteroidal anti-inflammatory drug, is able to modulate 

inflammatory signalling and prevent oxidative stress (Dinis-Oliveira et al. 2007).  In rats, 

NaSAL caused a significant reduction in PQ-induced oxidative stress, platelet activation, and 

NF-κB activation in the lung, while the survival of rats treated with NaSAL following PQ 

challenge was 100 % after 30 days, compared to 100 % mortality after 6 days in rats challenged 

with PQ alone (Dinis-Oliveira et al. 2007).  One possible mechanism for this protection may 

involve the ability of NaSAL to chemically react with PQ (Dinis-Oliveira et al. 2008), a novel 

feature for therapeutic drugs targeted against PQ toxicity, which correlates with another study in 

which NaSAL decreased the herbicidal activity of PQ when simultaneously applied to plants 

(Silverman et al. 2005). 

 

Rats fed diets containing soy protein isolate and soy peptide containing 0.025 % PQ had 

decreased serum thiobarbituric acid reactive substances levels and reduced lung weight 
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compared animals receiving PQ but no soy protein isolate or soy peptide in their diets (Takenaka 

et al. 2003).  This effect was suggested to be a result of the antioxidative properties of soy 

protein.  In another study, green tea extract mixed with food decreased PQ-induced pulmonary 

fibrosis in rats by suppression of oxidative stress and endothelin-1 expression (Kim et al. 2006).       

 

Finally, pre- and post-treatment with ethyl pyruvate in PQ challenged rats significantly decreased 

the malondialdehyde levels in the lung and liver tissues, and decreased plasma nitric oxide 

concentrations at 6 h, but failed to show a significant change in GSH levels (Lee et al. 2008).   

 

 

2.2 -  N-acetylcysteine  

 

2.2.1 - Antioxidant role 

 

N-acetylcysteine (NAC), the acetylated variant of the amino acid L-cysteine, is a low-molecular 

weight thiol-containing antioxidant with free radical-scavenging properties and is a pre-cursor to 

cellular glutathione (GSH) synthesis (Sadowska et al. 2007, Suntres 2002, Atkuri et al. 2007).  

The scavenging capabilities of NAC are attributed to the nucleophilicity and redox interactions 

of its thiol group, and it is able to undergo transhydrogenation or thiol-disulfide exchange 

reactions with other thiol redox couples (Arakawa and Ito 2007).  Additionally, NAC is a source 

of cysteine, often the limiting pre-cursor of de novo GSH synthesis (Arakawa and Ito 2007, 

Kelly 1998, van de Poll et al. 2006, Sadowska et al. 2007).  GSH is an important antioxidant as it 

is the most abundant non-protein thiol present in living cells, and its levels are commonly used as 
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an indicator of intracellular antioxidant status.  Unlike cysteine, which is taken up by the alanine-

serine-cysteine system, a ubiquitous system of Na+-dependent neutral amino acid transport, NAC 

is a membrane-permeable molecule that does not require active transport to enter the cell 

(Arakawa and Ito 2007).  Once available, γ-glutamylcysteine synthetase converts L-cysteine and 

glutamate to γ-glutamylcysteine, after which GSH synthetase converts this product and glycine 

to GSH, both reactions being driven by adenosine triphosphate (Arakawa and Ito 2007).  This 

pathway can be controlled by feedback inhibition of γ -glutamylcysteine synthetase by GSH (Ki 

~ 1.5 mM) (Richman and Meister 1975), meaning that under physiologically normal conditions 

this enzyme is likely not operating at its maximal rate.  Thus, these two modes of action make 

NAC an attractive therapeutic candidate for the treatment of ROS-mediated toxicity.   

 

 

2.2.2 - Role in cellular signalling 

 

Due to its antioxidant properties, NAC has been shown to influence redox-sensitive cell-

signalling and transcription pathways, such as NF-κB (which regulates pro-inflammatory genes), 

and the p38, ERK1/2, SAPK/JNK, c-Jun, and c-Fos pathways, among others, in a wide variety of 

different systems (Sadowska et al. 2007, Pajonk et al. 2002, Zafarullah et al. 2003).  NAC has 

been shown to promote cell growth and survival by activating the MAPK pathway in response to 

ROS-induced injuries (which normally lead to growth arrest and apoptosis) and is able to limit 

inflammatory processes, such as the release of pro-inflammatory cytokines (Zafarullah et al. 

2003).  These actions may play a role in its cytoprotective effect. 
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2.2.3 - Clinical uses  

 

NAC is used clinically mainly in two capacities: as a mucolytic agent and for the treatment of 

acetaminophen toxicity.  NAC was originally introduced as a mucolytic agent for the treatment 

of congestive and obstructive pulmonary diseases, particularly those associated with hyper-

secretion of mucus (i.e. cystic fibrosis and chronic bronchitis), and has been used clinically in 

this capacity since the mid-1950s (Arakawa and Ito 2007, Henke and Ratjen 2007).  The 

commercial formulation Mucomyst® is one of two drugs currently used in North America and 

Europe for aerosol administration in the treatment of cystic fibrosis (Henke and Ratjen 2007).  Its 

sulfhydryl groups are able to reduce the disulfide bonds of the high-molecular weight 

glycoproteins of mucus, resulting in reduced viscosity and elasticity of mucus (Aitio 2006, 

Atkuri et al. 2007, Henke and Ratjen 2007).  The mucolytic activity of NAC increases with pH, 

operating optimally in a range from 7.0 – 9.0 (Henke and Ratjen 2007).   

 

In addition to its use as a mucolytic agent, NAC has been used clinically since the mid-1970s for 

the treatment of acetaminophen (paracetamol; N-acetyl-p-aminophenol) poisoning, one of the 

most commonly encountered substances to be taken deliberately in overdosage (Atkuri et al. 

2007, Prescott 2005).  During the course of acetaminophen poisoning, the metabolite N-acetyl-p-

benzoquinoneimine is generated in the liver by the hepatic cytochrome P450 enzymes (Atkuri et 

al. 2007) and damages essential mitochondrial and other cellular enzymes by covalently binding 

to and arylating their protein sulphydryl groups (Prescott 2005).  High concentrations of GSH are 

required to detoxify this metabolite in order to avoid permanent liver damage (Atkuri et al. 

2007).  Therefore due to the excessive GSH depletion from acetaminophen overdose, the liver 
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may benefit from de novo synthesis of hepatic GSH via the administration of NAC.  Studies 

indicate that NAC is almost completely effective in preventing severe liver damage, renal failure, 

and death, provided that it is administered intravenously or orally within 8 to 10 hours of 

acetaminophen overdose; its efficacy was reduced when treatment was delayed beyond 15 hours 

(Prescott 2005).  Although the arylation of sulphydryl groups by acetaminophen can be reversed 

by excess GSH, there is limited time as the changes eventually become permanent and lead to 

irreversible hepatic damage and necrosis (Prescott 2005).    

 

In addition to cystic fibrosis and acetaminophen toxicity, NAC has been used clinically to treat 

HIV/AIDS, chronic obstructive pulmonary disease, and diabetes (Atkuri et al. 2007), and many 

placebo-controlled trials have reported beneficial effects regarding oral NAC treatment for 

various other diseases, including colon cancer, Alzheimer‟s disease, bronchitis, ARDS, 

pulmonary oxygen toxicity, cardiac dysfunction, and protein energy malnutrition (Arakawa and 

Ito 2007, Atkuri et al. 2007).   

 

 

2.2.4 - Administration and distribution 

 

NAC is generally administered orally, intravenously, or through aerosol inhalation (i.e. for 

airway mucolytic activity).  The intravenous administration of NAC for acetaminophen toxicity 

was first used in the 1970s in the UK, and consists of a loading dose of 150 mg/kg followed by 

subsequent lower doses totalling 300 mg/kg in 20 ¼ hours (Prescott 2005).  Oral NAC was 

introduced near the same time in the USA and is delivered with an initial dose of 140 mg/kg, 
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followed by subsequent lower doses totalling 1330 mg/kg over 3 days (Prescott 2005).  Both 

routes of administration appear to be equally effective, though there is inevitably a delay 

between the administration of oral NAC and the absorption of an effective dose (Prescott 2005).  

When given as a chronic nutritional supplement, 300 to 600 mg NAC is administered daily (van 

de Poll et al. 2006).     

 

NAC forms disulfides in plasma, prolonging the existence of the drug for up to 6 h (Arakawa and 

Ito 2007).  Following a single intravenous injection of 200 mg/kg NAC in humans, the peak 

plasma level declined rapidly and biphasically (αT1/2 = 6 min, βT1/2 = 40 min) (Cotgreave et al. 

1987).  However, the free thiol is largely undetectable following oral administration of 200 

mg/kg NAC, being 5% bioavailable (Cotgreave et al. 1987).  It is suggested that the drug itself 

does not accumulate in the body, but instead its oxidized forms and metabolites do.  NAC is 

readily taken up in the stomach and gut and sent to the liver where it is largely converted to 

cysteine for the synthesis of glutathione, which is secreted into circulation (Atkuri et al. 2007).  

The plasma half-life is estimated to be approximately 2.5 h after oral administration, while no 

NAC is detectable 10-12 h after administration (Arakawa and Ito 2007).  NAC is also known to 

cross the blood-brain barrier (Arakawa and Ito 2007), and has been reported to reverse memory 

impairment and reduce oxidative stress in the brain in aged SAMP8 mice (Farr et al. 2003). 

 

Serious and life-threatening anaphylactoid reactions to NAC, though uncommon, have been 

reported and include nausea, vomiting, hypotension, flushing, urticaria, and pruritis (Atkuri et al. 

2007, Prescott 2005).  However, most reactions to intravenous administration of NAC are minor 

and subside rapidly following a temporary discontinuation of NAC treatment or reduction in the 
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rate of NAC infusion (Atkuri et al. 2007, Prescott 2005).  Adverse reactions via oral 

administration are rarely mentioned, suggesting this route may be safer (Prescott 2005).  

Interestingly, many reactions to intravenous NAC occur during the first hour, coinciding with the 

greatest infusion rate during treatment, which has prompted many investigators to suggest that 

the incidence and severity of such reactions may be reduced by slowing the initial rate of 

infusion (Prescott 2005).       

 

 

2.2.5 - Role in PQ toxicity   

 

Several studies have investigated the effects of NAC on PQ toxicity in various systems.  In vitro 

studies have demonstrated NAC to have a beneficial effect primarily via the amelioration of 

redox status.  NAC exhibited a protective effect against PQ-induced cytotoxicity of isolated 

hepatocytes (Dawson et al. 1984) and alveolar type II cells (Hoffer et al. 1996, Cecen et al. 

2002) via  enhancement of cellular GSH content.  Additionally, NAC suppressed the levels of 

PQ-induced ROS in normal pooled plasma and in 3T3 fibroblasts in vitro (Hong et al. 2003), and 

decreased apoptosis (measured 72 h following treatment) of PQ-challenged A549 cells when co-

incubated or pre-treated with NAC (Cappelletti et al. 1998). 

 

In vivo studies have also shown NAC to exhibit beneficial effects against PQ toxicity, 

particularly in the inflammatory response.  PQ-challenged (70 mg/kg; i.p.) rats post-treated with 

NAC (100 mg/kg × 4; i.p.) exhibited an increased survival rate (Yeh et al. 2006).  NAC was 

responsible for decreasing lipid peroxidation and superoxide anion production, as well as 
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augmenting total glutathione concentrations in the lung, liver and kidney, which played a role in 

limiting the destruction of the lung tissue and decreasing the infiltration of inflammatory cells in 

interstitial stroma (Yeh et al. 2006).  Similarly, rats challenged with 20 mg/kg PQ (i.p.) and 

given 1 % NAC solution as drinking water displayed less oedema and cellular infiltration in the 

lung than animals not given NAC (Wegener et al. 1988).  Finally, NAC administration (50 

mg/kg; i.p.) post-PQ challenge (30 mg/kg; i.p.) reduced the release of chemoattractants in the rat 

lung and delayed neutrophil infiltration, suggesting NAC may delay inflammation (Hoffer et al. 

1993, Hoffer et al. 1997).   

 

Clinically, NAC has been used in combination with other treatment regimens (i.e. forced 

diuresis, Fuller‟s earth, gastric lavage, hemoperfusion, etc.) to ameliorate the adverse effects of 

PQ toxicity.   One such regimen resulted in the full recovery of a patient that developed ARDS 

and pulmonary fibrosis following ingestion of 6650 mg PQ and 3500 mg diquat (Eisenman et al. 

1998), while another led to recovery of a patient following ingestion of 60 g PQ (Drault et al. 

1999).  In two other cases of accidental PQ ingestion, patients had improved symptoms and 

undetectable levels of PQ 48 h after such treatment (Lopez Lago et al. 2002), and death was 

prevented in another patient following ingestion of a potentially lethal PQ dose (Lheureux et al. 

1995).  Finally, treatment involving NAC was successful in ameliorating PQ toxicity following 

10 g PQ ingestion in an adolescent female (Dinis-Oliveira et al. 2006c).  However, it is unclear 

what role, if any, NAC played in each of these cases. 
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2.3 - Liposomes 

 

Liposomes are lyotropic liquid crystals consisting of an aqueous inner compartment entrapped by 

a bilayer of naturally-occurring phospholipids, and can be unilamellar or multilamellar (Goyal et 

al. 2005).  They possess a low intrinsic toxicity, and are biocompatible, biodegradable, and non-

immunogenic (Shek et al. 1994, Goyal et al. 2005).  Both lipophilic and hydrophilic drug types 

can be incorporated into liposomes; lipophilic drugs into the phospholipid bilayer, and 

hydrophilic drugs into the inner aqueous compartment.  Liposomes allow indiscriminate passage 

of drugs through biological barriers such as cellular membranes, as they are able to either fuse 

with the membrane and deliver their contents (Goyal et al. 2005) or may be taken up directly by 

the cell through endocytosis depending on their size (Hashimoto and Suzuki 1992).  This makes 

liposomal encapsulation especially useful for drugs or compounds that normally cannot cross 

such barriers.   

 

 

2.3.1 - Composition of liposomes 

 

The specific composition of liposomes can differ, with various phospholipids or surfactants 

employed in various ratios.  Pulmonary surfactant is a mixture of lipids and proteins that coat the 

inside of the mammalian lung, and is necessary to maintain proper expansion of small air sacs to 

avoid lung collapse (Goyal et al. 2005, Stone and Smith 2004).  Dipalmitoyl-

phosphatidylcholine (DPPC), dimyristoyl-phosphatidyl-glycerol, dimyristoyl-

phosphatidylcholine, and disaturated-phosphatidylcholine, are all naturally-occurring lipids and 
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components of human lung surfactant (i.e. DPPC accounts for 60-70 % by weight of human lung 

surfactant) which can be synthetically produced and incorporated into liposomes (Bernsdorff et 

al. 1999).  An important consideration for liposomal design is their encapsulation efficiency, 

which is determined by the composition of the liposome (i.e. lipid content and particle size), 

since it must be balanced with substrate permeability to achieve a useful formulation for drug 

administration.  Enhanced drug release can be achieved by incorporating cholesterol in the 

liposomal membrane (Shek et al. 1994). 

 

 

2.3.2 - Antioxidant liposomes 

 

Antioxidant liposomes contain lipid- or water- soluble antioxidants, enzymatic antioxidants, or 

some combination thereof.  As reviewed by Stone et al., researchers have investigated several 

liposomal antioxidants, such as the lipid-soluble tocopherols, carotenoids, and flavenoids, the 

water-soluble ascorbate, GSH, lipoic acid, and NAC, and the entrapped antioxidant enzymes 

SOD and catalase, and have demonstrated an improved effect for these antioxidants in various 

models of oxidative stress (Stone and Smith 2004).  A major advantage of antioxidant liposomes 

is their ability to simultaneously contain and deliver both water- and lipid-soluble antioxidants 

for an improved effect, and they are also able to more effectively deliver antioxidant enzymes 

which are normally unable to cross biological barriers (i.e. cell membranes) (Stone and Smith 

2004).  Thus, the incorporation of antioxidants into liposomes has garnered great therapeutic 

interest.     
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2.3.3 - Administration 

 

Antioxidant liposomes can be administered topically, intratracheally, intravenously, 

subcutaneously, intramuscularly, or by inhalation of its aerosolized form (Shek et al. 1994, Stone 

and Smith 2004).  Topical administration is of considerable interest in the cosmetics industry for 

treating skin disorders such as psoriasis, inhalation and intratracheal administration can be useful 

in situations where pulmonary tissues are subjected to oxidative stress, such as influenza 

infection or in cases of PQ injury, and intravenous administration is used in situations where 

oxidative stress is a component of an acute trauma or disease, since it has the potential to rapidly 

increase the plasma and tissue concentration of antioxidants (Shek et al. 1994, Stone and Smith 

2004).  Aerosol inhalation is the most convenient and practical approach for direct liposomal 

drug delivery to the lung (Shek et al. 1994) and DPPC may be the most biocompatible 

phospholipid for drug delivery to the lung since it constitutes the major component of naturally-

occuring lung surfactant.  It is also more suitable than other lipids due to its lipid-phase transition 

temperature being the most physiologically relevant (41 °C), allowing slower release of the 

entrapped drug (Shek et al. 1994).  

 

A problem with conventional liposomes, particularly when delivered intravenously, is their 

recognition by the immune system and rapid removal from circulation by phagocytic cells, 

particularly in the liver and spleen (Stone and Smith 2004, Vyas et al. 2006).  However, recent 

advances have been made in the design of “stealth liposomes,” which circumvent the phagocytic 

cells of the immune system and thus have a considerably longer half-life in circulation (Stone 

and Smith 2004, Vyas et al. 2006).  Stealth liposomes are created by coating liposomes with a 
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layer of polyethylene glycol-phosphatidylethanolamine (PEG liposomes), which is inert in the 

body and creates a shield around the pegylated liposome due to its large hydrodynamic volume, 

protecting it from renal clearance and recognition by cells of the immune system (Stone and 

Smith 2004, Molineux 2002). 

 

Others have also investigated various ways to target liposomes to specific tissues or cell types, 

including noncovalent association of cell-specific antibodies, coating with heat-aggregated 

immunoglobulin M, addition of glycoproteins or glycolipids, or covalent attachment of poly and 

monoclonal antibodies to the liposome (referred to as “immunoliposomes”) (Goyal et al. 2005).  

Immunoliposomes are potent carriers that accelerate cellular uptake due to the recognition of the 

antibody by the target cell (Hatakeyama et al. 2007).  These features make liposomes very 

attractive vehicles for the administration of various drugs.  

 

 

2.3.4 - Clinical applications 

 

Liposomal drug delivery has a variety of clinical applications, such as the delivery of anticancer, 

antimicrobial, and antiviral drugs (Goyal et al. 2005).  The anticancer drug doxorubicin, a potent 

antineoplastic agent active against a wide range of human cancers, constitutes the first liposomal 

product (DoxilTM) to be licensed in the United States (Goyal et al. 2005).  This liposomal 

formulation reduced the drug‟s associated non-specific toxicity and maintained or enhanced its 

anticancer effect (Goyal et al. 2005).  Several types of antimicrobial drugs, including those used 

to treat mycobacterial and fungal infections, have been incorporated into liposomes.  These 
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formulations are able to localize in the liver and spleen, where many pathogenic microorganisms 

reside, and can increase intracellular targeting to these cells (Goyal et al. 2005).  As an antiviral 

vehicle, liposomes have been used to treat herpes, hepatitis C, and HIV(Sinico et al. 2005, 

Ferguson et al. 2006, Pecheur et al. 2007), while antioxidant liposomes have been investigated 

for the treatment of acute lung injuries and respiratory distress in infants and adults (Stone and 

Smith 2004).   

 

 

2.3.5 - Antioxidant liposomes in PQ toxicity 

 

The effectiveness of certain antioxidant liposomes against PQ-induced lung injuries in animals 

has been investigated.  Intratracheal administration of liposomal GSH conferred better protection 

than conventional GSH against PQ-induced acute lung injury, which was attributed to its 

increased retention in the lung (Suntres and Shek 1996).  Intratracheal administration of α-

tocopherol liposomes was also shown in various studies to alleviate many of the pulmonary toxic 

effects of PQ (Suntres et al. 1992, Suntres and Shek 1995a, Suntres and Shek 1995b), suggesting 

the protective effect of liposomal α-tocopherol in PQ toxicity may be due to the increased 

concentration of α-tocopherol achieved in the lung (Suntres 2002).  Finally, bifunctional 

antioxidant liposomes containing both α-tocopherol and GSH provided increased protection 

against PQ-induced lung injuries compared to antioxidant liposomes containing only α-

tocopherol (Suntres and Shek 1996).  Thus, liposomal encapsulation improved the therapeutic 

potential of these antioxidants against PQ-induced lung injuries presumably due to their ability to 
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facilitate intracellular delivery and prolong the cellular retention of entrapped agents (Shek et al. 

1994).   

 

 

2.3.6 - Liposomal NAC 

 

The liposomal formulation of N-acetylcysteine (L-NAC) has only recently been focused on for 

therapeutic potential in the lung.  In 2000, Fan et al showed that liposomal antioxidants including 

NAC, both alone and in bifunctional liposomes with α-tocopherol, were successful in providing 

long-lasting protection against ARDS in rats by reducing the increase in transpulmonary albumin 

flux, neutrophil influx, and myeloperoxidase in the lung of shock/LPS rats (Fan et al. 2000).  L-

NAC was also shown to have a prophylactic effect against both LPS-induced lung injuries 

(Mitsopoulos et al. 2008) and LPS-induced hepatotoxicity in rats (Alipour et al. 2007).  The use 

of L-NAC was also investigated in half sulfur mustard-induced acute lung injury in rats 

(McClintock et al. 2006, Hoesel et al. 2008) and guinea pigs (Mukherjee et al. 2009).  

McClintock et al. found that the effects of airway instillation of 2-chloroethyl ethyl sulfide 

(CEES), which has been shown to induce acute lung injury (assessed by the leakage of plasma 

albumin into the lung) in rats, were attenuated with immediate and 1 h-delayed instillation of 

liposomes containing reducing agents (i.e. NAC, GSH, or resveratrol) or bifunctional liposomes 

(containing NAC and GSH) (McClintock et al. 2006).  Additionally, Hoesel et al. found that 

airway instillation of L-NAC was protective when administered 4 h following CEES application 

in rats, as well as 3 weeks after CEES with bifunctional α-tocopherol and NAC liposomes, 

though not with L-NAC alone after 3 weeks (Hoesel et al. 2008).  Also, antioxidant liposomes 
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containing NAC, and α- and γ-tocopherol together were effective in providing protection 5 min 

and 1 h following CEES lung exposure in guinea pigs (Mukherjee et al. 2009).  Thus, L-NAC 

possesses considerable therapeutic potential for the treatment of various lung diseases. 
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Objectives 

 

Objective I:  Characterize the uptake of NAC and L-NAC in A549 cells.  The cytotoxicity of 

NAC will be assessed in A549 cells via the MTT assay to determine the concentration range in 

which NAC has no detrimental effect on cell viability, and the uptake of NAC delivered to A549 

cells in both its free and liposomal formulation will be assessed via UPLC analysis of a 

concentration- and time-course of NAC and L-NAC exposure.  

 

Objective II:  Examine the effectiveness of NAC and L-NAC against PQ-induced 

cytotoxicity and delineate the mechanism(s) by which these antioxidant formulations confer 

their cytoprotection.  PQ-challenged A549 cells pre-treated with NAC or L-NAC will be 

assessed for cytotoxicity via the MTT and LDH leakage assays, and the mechanism(s) of NAC 

and L-NAC cytoprotection will be investigated by assessing cellular PQ uptake, intracellular 

GSH content, ROS levels, cellular antioxidant potential, mitochondrial membrane potential, 

cellular gene expression, and inflammatory cytokine release.   

 

Objective III:  Assess whether the L-NAC confers a greater cytoprotective effect against 

PQ-induced cytotoxicity in A549 cells than NAC.  This assessment will be based on the results 

of the aforementioned readouts (Objective II).    
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Methods 

 

2.1 - Cell culture 

 

Cell culture was performed as detailed in Chapter 1. 

 

2.2 - N-acetylcysteine (NAC) preparation 

 

NAC (N-acetyl-L-cysteine, SigmaUltra > 99 % TLC; Sigma-Aldrich) was dissolved in PBS and 

adjusted to pH 7.4 using an Accumet Basic pH Meter (Fisher Scientific) to produce a 0.1 M 

stock solution.  Following filter sterilization (0.2 μm pore-size filters), specific volumes of NAC 

stock solution were added to culture media for the pre-treatment / treatment of cells.  NAC 

stocks were made fresh daily. 

 

 

2.3 - Liposomal-N-acetylcysteine preparation 

 

Liposomal-N-acetylcysteine (L-NAC) was prepared from a mixture of DPPC 

(dipalmitoylphosphatidylcholine) and NAC in a 7:3 molar ratio by using a dehydration-

rehydration method.  The lipid was dissolved in chloroform in a 50 mL round-bottomed flask 

and dried at 45 °C with a rotary evaporator (Buchi Rotavapor R 205).  The lipid film was dried 

with nitrogen to eliminate traces of chloroform and hydrated with a 2 mL sucrose-water solution 

(1:1; DPPC:sucrose, w/w) and subsequently sonicated (Model 500 Dismembrator, Fisher 
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Scientific) for 5 minutes (cycles of 40 s on and 20 s off).  After formation of multilamellar 

vesicles, NAC was added to the solution and freeze-dried overnight.  Upon rehydration with PBS 

(pH 6.5), the liposomal solution was placed in a water bath for 15 and 30 minutes and mixed, 

followed by centrifugation at 30,000 × g (TLA 110 rotor, Optima MAX Ultracentrifuge, 

Beckman Coulter) for 30 minutes at 4 °C to separate free-NAC.  Liposomes were re-suspended 

in PBS (pH 7.4) and added to culture media for treatment of cells.  Liposomal vesicle size was 

determined with a Submicron Particle Sizer (Nicomp Model 270) following rehydration and was 

found to have a mean diameter of 181.5 ± 19.6 nm.  The encapsulation efficiency of NAC by 

DPPC-liposomes was measured as 18.5 %. 

 

 

2.4 - PQ preparation 

 

PQ was prepared as detailed in Chapter 1. 

 

 

2.5 - Viability (MTT) 

 

To determine the effect of NAC alone on viability, cells were treated with control or NAC-

containing media (serum-free).  To determine the effect of NAC or L-NAC pre-treatment on 

viability of PQ-challenged cells, cells were first pre-treated with control or NAC / L-NAC- 

containing media (5.0 mM for 4 h), followed by challenge with control or PQ-containing media 

(serum-free).  The methodology was otherwise carried out as detailed in Chapter 1.    
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2.6 - Viability (LDH leakage) 

 

Lactate dehydrogenase (LDH) leakage, an indicator of cell membrane integrity and therefore 

relative cell viability, was assessed using the Lactate Dehydrogenase-Based In Vitro Toxicology 

Assay Kit (Sigma-Aldrich).  LDH is an enzyme that leaks out of the cell when the cellular 

membrane is compromised.  Thus, the amount of cytoplasmic LDH released into the incubation 

media of treated cells can be quantified by measuring its enzymatic activity using a colorimetric-

based system.  This assay is based on the reduction of NAD+ by LDH.  The resulting NADH is 

utilized in the stoichiometric conversion of a tetrazolium dye, which can be quantified 

spectrophotometrically.   

 

LDH leakage was measured in accordance with the manufacturer‟s instructions.  A549 cells 

seeded were into sterile flat-bottom 96-well plates (Corning) at 10,000 cells/well and incubated 

overnight.  Cells were pre-treated with control media or 5.0 mM NAC- or L-NAC-containing 

media for 4 h prior to 4 or 24 h PQ challenge (0, 0.25 or 1.0 mM).  Following treatment, plates 

were centrifuged at 250 × g for 4 min to pellet debris, and 70 μL aliquots of the contents of each 

well were transferred to a clean 96-well plate.  46.7 μL of each of the provided LDH assay 

substrate, cofactor, and dye solutions were then added (collectively equalling twice the volume 

of sample media), and the plate was incubated at room temperature in the absence of light for 30 

minutes.  The reaction was terminated by the addition of 1N hydrochloric acid (20 μL) to each 

well, and absorbance was measured spectrophotometrically at a wavelength of 490 nm (690 nm 

wavelength correction) using a PowerWave XS Microplate Spectrophotometer (BioTek).  
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Absorbance was indirectly proportional to LDH leakage, and viabilities of treated cells were 

assessed relative to control cells. 

 

 

2.7 - Ultra-performance liquid chromatography 

 

To determine the uptake of NAC and its effect on intracellular GSH content, cells were treated 

with control or NAC / L-NAC-containing media (various concentrations and times; serum-free).  

To determine the effect of NAC or L-NAC pre-treatment on intracellular GSH content and levels 

of NAC and PQ uptake on PQ-challenged cells, cells were first pre-treated with control or NAC / 

L-NAC- containing media (5.0 mM for 4 h), followed by challenge with control or PQ-

containing media (various concentrations and times; serum-free).  The methodology was 

otherwise carried out as detailed in Chapter 1.   

 

 

2.8 - Total protein assay 

 

The total protein assay was performed as detailed in Chapter 1. 
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2.9 - Reactive oxygen species levels 

 

To determine the effect of NAC or L-NAC pre-treatment on intracellular ROS levels in PQ-

challenged cells, cells were first pre-treated with control or NAC / L-NAC- containing media 

(5.0 mM for 4 h), followed by challenge with control or PQ-containing media (0.25 or 1.0 mM 

for 4 h; serum-free).  The methodology was otherwise carried out as detailed in Chapter 1.   

 

 

2.10 - Total antioxidant potential 

 

Total antioxidant potential was determined using the Bioxytech AOP-490 Colorimetric 

Quantitative Assay for Total Antioxidant Potential (Oxis International) in accordance with the 

manufacturer‟s instructions.  This assay is based upon the reduction of Cu++ to Cu+ by the 

combined actions of all the antioxidants present in the sample.  Bathocuproine (2,9-dimethyl-4,7-

diphenyl-1,10-phenanthroline), a chromogenic reagent, selectively forms a 2:1 complex with Cu+ 

and has a maximal absorbance at 490 nm.  Briefly, cells were grown to 80 % confluence in 

sterile 150 cm2 culture flasks (Corning) and pre-treated for 4 h with control media or 5.0 mM 

NAC- or L-NAC-containing media (serum-free) followed by challenge with 1.0 mM PQ for 4 h.  

Adherent cells were detached via trypsinization, washed once with PBS, and suspended in 100 

μL PBS.  Following sonication (20 s, 100 % amplitude; Sonic Dismembrator Model 500, Fisher 

Scientific), samples were centrifuged at 16,000 × g for 5 minutes at 4 ºC and aliquots of the 

supernatant were diluted 1:40 (i.e. 8 μL in 320 μL) with R1 reagent (containing bathocuproine) 

in a flat-bottom 96-well plate.  Following a reference measurement (490 nm), 40 μL of R2 
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reagent (containing Cu++) was added and incubated for 3 minutes.  The reaction was terminated 

by the addition of a stop solution (40 μL), and the reference absorbance was subtracted from the 

final absorbance at 490 nm.  Values were expressed as mM Uric Acid Equivalents by comparing 

the absorbance to a standard curve generated using uric acid.  

 

 

2.11 - Superoxide dismutase activity 

 

The activity of superoxide dismutase (SOD) enzymes in cell extracts was assessed using the 

Superoxide Dismutase Kit (R&D Systems, Minneapolis, MN, USA).  In this assay, superoxide 

anions, generated by the conversion of xanthine to uric acid and H2O2 by xanthine oxidase, 

converted NBT to NBT-diformazan (absorbs light at 560 nm).  SOD reduces superoxide ion 

concentrations and thus lowers the rate of NBT-diformazan formation.  The percent inhibition of 

the formation of NBT-diformazan by SOD was converted to the relative SOD activity of the 

sample.  Cells were seeded into sterile 150 cm2 culture flasks (Corning) and grown to 80 % 

confluence.  To determine the effect of NAC or L-NAC pre-treatment on the activity of SOD in 

PQ-challenged cells, cells were first pre-treated for 4 h with control or NAC / L-NAC- 

containing media (5.0 mM; serum-free), followed by 4 h challenge with control or PQ-

containing media (0.25 mM; serum-free).  Cells were lysed and relative SOD activity was 

assessed in accordance with the manufacturer‟s instructions using a PharmaSpec UV-1700 

Visible Spectrophotometer (Shimadzu, Columbia, MD, USA). 
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2.12 - Mitochondrial membrane potential 

 

To determine the effect of NAC or L-NAC pre-treatment on mitochondrial membrane potential 

in PQ-challenged cells, cells were first pre-treated with control or NAC / L-NAC- containing 

media (5.0 mM for 4 h), followed by challenge with control or PQ-containing media (0.25 or 1.0 

mM for 4 h; serum-free).  The methodology was otherwise carried out as detailed in Chapter 1.   

 

 

2.13 – Quantitative polymerase chain reaction (qPCR) 

 

To determine the effect of NAC or L-NAC pre-treatment on gene expression in PQ-challenged 

cells using the Human Stress & Toxicity PathwayFinder RT2 Profiler PCR Array (SA 

Biosciences), cells were first pre-treated with control or NAC / L-NAC- containing media (5.0 

mM for 4 h), followed by challenge with control or PQ-containing media (0.25 mM for 4 h; 

serum-free).  The methodology was otherwise carried out as detailed in Chapter 1.   

 

To determine the effect of NAC or L-NAC pre-treatment on gene expression in PQ-challenged 

cells using the RT2 qPCR Primer Assays (Table 2.1; SA Biosciences), cells were first pre-treated 

with control or NAC / L-NAC- containing media (5.0 mM for 4 h), followed by challenge with 

control or PQ-containing media (0.25 mM for 4 h; serum-free).  The methodology (RNA 

Isolation, Experion, First Strand cDNA Synthesis, and Real-Time PCR) was carried out similar 

to that detailed in Chapter 1, with the exception that 1 μL of the appropriate primer was manually 
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added to each well of the iCycler iQ 96 well PCR Plates (Bio-Rad), and were covered with 

Microseal „B‟ Film (Bio-Rad).   

 

 

2.14 - Bio-Plex 

 

To determine the effect of NAC or L-NAC pre-treatment on the secretion of inflammatory 

cytokines in PQ-challenged cells, cells were first pre-treated with control or NAC / L-NAC- 

containing media (5.0 mM for 4 h), followed by challenge with control or PQ-containing media 

(0.25 or 1.0 mM for 4 h; serum-free).  The methodology was otherwise carried out as detailed in 

Chapter 1.   

 

 

2.15 - Interleukin-8 secretion 

 

Levels of interleukin-8 (IL-8) in cell culture supernatants were assessed using the Quantikine 

Human CXCL8/IL-8 Immunoassay (R&D Systems), a quantitative sandwich enzyme 

immunoassay technique.  Briefly, cells were seeded into sterile flat-bottom 6-well plates 

(Corning) at 0.6 × 106 cells/well and grown to 80 % confluence overnight.  To determine the 

effect of NAC or L-NAC pre-treatment on the secretion of IL-8 in PQ-challenged cells, cells 

were first pre-treated for 4 h with control or NAC / L-NAC- containing media (5.0 mM; serum-

free), followed by 4 or 24 h challenge with control or PQ-containing media (0.25 mM; serum-

free).  Immediately following treatment, aliquots of cell culture supernatants were added to the 
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provided microplate pre-coated with a monoclonal antibody specific for IL-8.  Thus, any IL-8 

present in the sample was bound by the immobilized antibody and, after washing unbound 

substances, an enzyme-linked polyclonal antibody specific for IL-8 was added.  Following 

washes to remove unbound antibody-enzyme reagent, a substrate solution was added and colour 

developed in proportion to the amount of IL-8 bound in the initial step.  Absorbance values 

(measured at 450 nm, with wavelength correction at 570 nm) were interpolated to IL-8 

concentrations via a standard curve of known values using a recombinant human IL-8 standard. 

 

 

2.16 - Statistics 

 

Statistical analysis was performed as detailed in Chapter 1. 
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Table 2.1: RT2 qPCR Primer Assays gene table.  
Unigene GeneBank Symbol Description Gene Name 

Hs.502302 NM_001752 CAT Catalase MGC138422 

Hs.72912 NM_000499 CYP1A1 Cytochrome P450, family 1, 

subfamily A, polypeptide 1 

AHH/AHRR 

Hs.25647 NM_005252 FOS V-fos FBJ murine osteosarcoma 

viral oncogene homolog 

 

Hs.1722 NM_000575 IL1A Interleukin 1, alpha IL-1A/IL1 

Hs.126256 NM_000576 IL1B Interleukin 1, beta IL-1/IL1-BETA 

Hs.654458 NM_000600 IL6 Interleukin 6 (interferon, beta 2) BSF2/HGF 

Hs.624 NM_000548 IL8 Interleukin 8  

Hs.193717 NM_000572 IL10 Interleukin 10  

Hs.861 NM_002746 MAPK3 Mitogen-activated protein kinase 

3 

 

Hs. 

138211 

NM_002750 MAPK8 Mitogen-activated protein kinase 

8 

 

Hs.588289 NM_001315 MAPK14 Mitogen-activated protein kinase 

14 

 

Hs.155396 NM_006164 NFE2L2 Nuclear factor (erythroid-derived 

2)-like 2 

 

Hs.654408 NM_003998 NFKB1 Nuclear factor of kappa light 

polypeptide gene enhancer in B-

cells 1 (p105) 

DKFZp686C01211/EB

P-1 

Hs.81328 NM_020529 NFKBIA Nuclear factor of kappa light 

polypeptide gene enhancer in B-

cells inhibitor, alpha 

IKBA/MAD-3 

Hs.523185 NM_012423 RPL13A Ribosomal protein L13a RPL13A 

Hs.443914 NM_000454 SOD1 Superoxide dismutase 1, soluble 

(amyotrophic lateral sclerosis 1 

(adult)) 

ALS/ALS1 
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Results 

 

Effect of NAC alone on viability of A549 cells.  Viability of cells treated with NAC alone was 

unchanged following 24 h with concentrations ranging from 0 - 10.0 mM.  However, a 30 % 

decrease in viability relative to control cells was observed following treatment with 50.0 mM 

NAC (Figure 2.1).     

 

 

Uptake of NAC in A549 cells and its effect on cellular GSH content.  The uptake of NAC by 

A549 cells was assessed using UPLC following treatment with 5.0 mM NAC- or L-NAC-

containing media for 0, 1, 2, 4, 8, and 24 h (Figure 2.2 A).  Treatment with free-NAC resulted in 

increased NAC uptake following 1 and 2 h treatment, with levels remaining unchanged between 

2 and 24 h.  Cells treated with L-NAC exhibited increased uptake over time, with maximal levels 

achieved following 4 h treatment.  However, levels of NAC uptake in L-NAC-treated cells 

decreased between 4 and 24 h treatment.  Interestingly, under all investigated conditions, the 

uptake of NAC by A549 cells was significantly greater following treatment with the liposomal 

formulation compared to free-NAC.   

 

In addition, intracellular GSH content of samples was measured in concert with NAC uptake via 

UPLC.  GSH levels remained relatively constant through 8 h of treatment with free- and 

liposomal-NAC, but decreased significantly in both cases following 24 h treatment relative to 4 h 

treated cells (Figure 2.2 B).  Based on Figures 2.1 – 2.2, the treatment conditions which resulted 

in optimal uptake of NAC without compromising cell viability or intracellular redox status (i.e. 
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GSH levels) were found to be 5.0 mM for 4 h.  These conditions were used for all subsequent 

NAC and L-NAC pre-treatments.   

 

 

Effect of NAC and L-NAC pre-treatment on cell viability post-PQ challenge.  Viability of cells 

challenged with PQ (0.1 and 0.5 mM) for 24 h, as assessed by measuring the activity of 

mitochondrial and cytosolic dehydrogenases via the MTT assay, was higher in those cells pre-

treated with L-NAC (Figure 2.3).  In contrast, NAC pre-treatment did not confer any observable 

effect on cell viability of PQ-challenged cells under these conditions.  In addition, no significant 

changes in the amount of LDH leakage was observed following 4 h PQ exposure (Figure 2.4 A), 

though both NAC or L-NAC pre-treatment protected against LDH leakage following 24 h 

exposure with both 0.25 and 1.0 mM PQ, returning leakage to basal levels in each case (Figure 

2.4 B).  LDH leakage is frequently used as an indicator of cell membrane integrity and viability. 

 

 

Effect of NAC and L-NAC pre-treatment on cellular redox status and PQ uptake following PQ 

challenge.  Exposure of cells to increasing concentrations of PQ for 24 h significantly decreased 

intracellular GSH content, which correlated with increases in cellular PQ uptake, as measured by 

UPLC analysis (Figure 2.5).  Pre-treatment with L-NAC was effective in increasing intracellular 

GSH content of cells exposed to 0.1 or 0.5 mM PQ compared to cells without pre-treatment, 

while NAC pre-treatment was only effective in increasing GSH content of 0.5 mM PQ-

challenged cells.  Pre-treatment with NAC or L-NAC had no effect on the linear (R2 = 0.969) 

uptake of PQ in A549 cells challenged with increasing concentrations of PQ (Figure 2.5 B).  In 
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accordance with the data on intracellular GSH content under the studied conditions, ROS levels 

increased following PQ exposure, but pre-treatment with NAC or L-NAC significantly reduced 

levels of ROS in 0.25 and 1.0 mM PQ-challenged cells (4 h) to either basal or sub-basal levels as 

assessed via flow cytometric analysis of CM-H2DCFDA stained cells (Figure 2.6).  In fact, pre-

treatment of control cells also reduced levels of intracellular ROS below basal levels.  In addition 

cells challenged with 0.25 mM PQ for 4 h exhibited decreased cellular antioxidant potential, but 

this was returned to basal levels when pre-treated with either NAC or L-NAC (Figure 2.7).  

Finally, preliminary data regarding the enzymatic activity of cellular superoxide dismutases in 

cells challenged with 0.25 mM PQ for 4 h indicated that activities were increased following PQ 

exposure compared to untreated control cells, but decreased when pre-treated with L-NAC 

(Figure 2.8).  No apparent difference in superoxide dismutase activity was observed in PQ-

challenged cells pre-treated with NAC.   

 

 

Effect of NAC or L-NAC pre-treatment on mitochondrial membrane potential following PQ 

challenge.  The mitochondrial membrane potential of cells challenged with 0.25 mM PQ for 4 h 

was significantly decreased relative to untreated control cells, and was further decreased 

following 1.0 mM PQ challenge.  Pre-treatment with L-NAC was effective in preventing the 

decreases of mitochondrial membrane potential in both 0.25 and 1.0 mM PQ-challenged cells, 

returning it to basal levels in the former, as well as increasing it nearly 2-fold in untreated control 

cells (Figure 2.9).  Conversely, pre-treatment with NAC only significantly prevented the 

decrease in mitochondrial membrane potential of 0.25 mM PQ-challenged cells, having no 

apparent effect on untreated control or 1.0 mM PQ-challenged cells.  
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Effect of NAC or L-NAC pre-treatment on cellular gene expression following PQ challenge.  

Changes in gene expression were assessed using a PCR array designed to study genes involved 

in cellular stress and toxicity.  The magnitude of gene expression in cells pre-treated with NAC 

or L-NAC prior to 0.25 mM PQ challenge for 4 h was generally decreased relative to challenged 

cells with no pre-treatment (Figure 2.10).  Fold changes (relative to control cells) of each gene of 

the array following PQ challenge with no pre-treatment, NAC pre-treatment, or L-NAC pre-

treatment are listed in Table 2.2.   

 

The expression of many oxidative or metabolic stress-related genes, including CAT, GPX1, 

MT2A, PRDX1, SOD1, and SOD2, remained unchanged relative to control cells following PQ 

challenge regardless of pre-treatment (Table 2.2.1).  However, the expression patterns of other 

genes were altered, such as the 4.6-fold increase in CYP1A1 in PQ-challenged cells with L-NAC 

pre-treatment compared to a 1.4-fold decrease with no pre-treatment.  Also noteworthy is the 

expression of POR, which was down-regulated 1.7-fold following PQ challenge with no pre-

treatment, but was up-regulated 2.2-fold with NAC pre-treatment.  With respect to the expression 

of heat shock genes, DNAJA1 and DNAJB4 were increased 1.6- and 1.7-fold, respectively 

following PQ challenge with no pre-treatment, but NAC pre-treatment limited this increase and 

L-NAC pre-treatment maintained expression at control levels (Table 2.2.2).  The expression of 

heat shock genes was otherwise not substantially altered under the studied conditions.  In regards 

to genes involved with proliferation and carcinogenesis, the expression of EGR1 was increased 

2.8-fold in PQ challenged cells with no pre-treatment, and though NAC pre-treatment did not 

significantly alter this, L-NAC pre-treatment prevented expression from increasing beyond 

control levels (Table 2.2.3).  GDF15 expression was increased following PQ challenge with no 
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pre-treatment, and though NAC pre-treatment did not significantly alter GDF15 expression 

levels, the increase was limited in cells pre-treated with L-NAC (i.e. 1.5-fold increase with L-

NAC pre-treatment compared to 1.9-fold increase with no pre-treatment; Table 2.2.4).  The 

expression patterns of several inflammatory genes were also altered in PQ-challenged cells pre-

treated with NAC and/or L-NAC relative to cells with no pre-treatment.  For instance, the 

increases in expression of certain genes (i.e. IL18 and SERPINE1) in PQ-challenged cells with 

no pre-treatment were limited when pre-treated with L-NAC (Table 2.2.5).  IL-6 was found to be 

highly up-regulated in all studied conditions, with greatest up-regulation following L-NAC pre-

treatment of PQ-challenged cells.  Alternatively, LTA was significantly decreased (2.3-fold) in 

PQ-challenged cells pre-treated with L-NAC compared with the fold changes from the other 

studied conditions, while other genes were not found to be expressed (i.e. CCL21, CCL3, CCL4, 

CSF2, and CXCL10).  Expression of the majority of DNA damage and repair genes were not 

substantially altered between conditions with the exception of ATM, which was increased 2.3-

fold in PQ-challenged cells with no pre-treatment, but NAC and L-NAC pre-treatment prevented 

its expression from changing from control levels (Table 2.2.6).  Finally, the expression of many 

apoptosis signalling genes were not altered under the studied conditions with the exception of 

CASP10, which was increased in PQ-challenged cells with no pre-treatment.  This increase was 

limited when pre-treated with NAC, and further limited with L-NAC pre-treatment (Table 2.2.7).     

 

Individual primer assays were also performed under the same conditions to confirm findings 

obtained from the gene arrays.  For these assays, an additional condition was performed in which 

PQ-challenged cells were pre-treated with empty liposomes (EL).  Similar gene expression 

patterns were observed for the majority of the genes (i.e. CAT, CYP1A1, IL1A, NFKB1, 
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NFKBIA, SOD1, and TNF) analyzed by both gene array and individual primer assays (Table 

2.3). 

 

The expression patterns of additional genes not analyzed via the gene array were investigated 

with individual primer assays (Table 2.4).  The expression of FOS was unchanged from control 

levels following PQ challenge with no pre-treatment, but NAC pre-treatment caused a significant 

increase in expression (2.2-fold).  IL8 expression was significantly increased in non-pre-treated 

cells challenged with PQ, but this increase was limited with NAC or L-NAC pre-treatment.  

Expression of IL10 exhibited a similar pattern where NAC and L-NAC pre-treatment 

ameliorated the 3-fold decrease in expression of PQ-challenged cells with no pre-treatment.  

Finally, NFE2L2 exhibited increased expression in PQ-challenged cells with no pre-treatment, 

but this increase was limited with L-NAC pre-treatment.    

 

Measures were taken throughout the quantitative gene expression procedure for both the gene 

array and individual primer assays to ensure that reliable results were obtained.  Figure 1.8 

depicts representative gels and electropherograms of extracted RNA samples, achieved using the 

Experion automated electrophoresis station, indicating high RNA integrity with little or no 

apparent degradation of 18 and 28 S rRNA.  Additionally, a single peak (or zero if no product 

was amplified) was present in first-derivative dissociation curves for every PCR reaction on all 

arrays and individual primer assays, indicating that only a single PCR product (i.e. the gene of 

interest) was amplified in each case (Figure 1.9 depicts representative dissociation curves of 

individual primer assays).  
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Effect of NAC or L-NAC pre-treatment on the secretion of inflammatory cytokines post-PQ 

challenge.  Levels of IL-8 secreted by cells exposed to 0.25 mM and 1.0 mM PQ were 

significantly increased relative to untreated control cells (Figure 2.12 A).  Both NAC and L-NAC 

pre-treatments decreased IL-8 levels in untreated control cells and 0.25 mM PQ-challenged cells, 

while L-NAC, but not NAC, was also able to significantly reduce levels of IL-8 following 1.0 

mM PQ challenge.  Pre-treatment of PQ-challenged cells was less effective in altering IL-6 

secretion (Figure 2.12 B).  Though both NAC and L-NAC pre-treatment lowered IL-6 levels in 

untreated control cells, only NAC pre-treatment was able to significantly decrease IL-6 levels of 

0.25 mM PQ-challenged cells.  Levels of IL-1β, IL-10, IL15, TNF-α, and eotaxin were not 

reliably detectable under these conditions.  In addition, a second method of IL-8 detection was 

employed to confirm the results achieved using Bio-Plex analysis.  A quantitative sandwich 

enzyme immunoassay of cells challenged for 24 h with 0.25 mM PQ indicated that both NAC 

and L-NAC pre-treatments decreased the more than 4-fold increase in IL-8 secretion caused by 

PQ exposure by 1.6- and 2.1-fold, respectively (Figure 2.13).   
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Discussion 

 

The protective effect of the thiol-containing antioxidant N-acetylcysteine (NAC), both in its free 

and liposomal (L-NAC) form, was investigated in PQ-induced cytotoxicity.  In addition to 

directly scavenging ROS via its thiol group, the membrane-permeable NAC is also a source of 

cysteine, the limiting pre-cursor to intracellular glutathione synthesis (Arakawa and Ito 2007, 

Sadowska et al. 2007, Atkuri et al. 2007).  These two modes of action make NAC a suitable 

candidate for the amelioration of PQ-induced toxicity.   

 

The optimal pre-treatment conditions for NAC and L-NAC in A549 cells were investigated for 

subsequent experiments involving PQ challenge.  NAC has been reported to exhibit cytotoxicity 

at variable concentrations depending on cell type: 10 mM NAC was non-toxic in human 

bronchial epithelial cells (Sadowska et al. 2007), 40 mM was non-toxic in 3T3 fibroblasts (Hong 

et al. 2003), and 50 mM was non-toxic in aortic endothelial cells (Sadowska et al. 2007); 

however, 30 mM was cytotoxic in vascular smooth muscle cells, monocytes and neutrophils 

(Sadowska et al. 2007), and as low as 5.0 mM NAC was cytotoxic in porcine aortic endothelial 

cells (Sadowska et al. 2007).  Studies involving NAC in A549 cells have generally employed 

concentrations ranging from 1 to 10 mM (Cappelletti et al. 1998, Kim et al. 2007, Rogalska et al. 

2008, Woo et al. 2008, Wu et al. 2005, Heberlein et al. 2000, Alexandre et al. 2006).  Our results 

indicate that concentrations of 10.0 mM or less had no negative impact on viability, while a 

greater concentration (i.e. 50.0 mM) resulted in significantly decreased viability after 24 h 

(Figure 2.1).  Since the uptake of NAC in A549 cells has yet to be well characterized, the cellular 

uptake of 5.0 mM NAC and L-NAC, a concentration within the non-cytotoxic range, was 
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assessed using UPLC over a 24 h time-course.  The cellular uptake of NAC, when delivered in 

its free form, was found to plateau after 2 h incubation, while uptake with L-NAC incubation 

was optimal after 4 h (Figure 2.2 A).  It should be noted that liposomes enhanced the delivery of 

NAC in the A549 cells since the cellular uptake of this antioxidant was greater (i.e. up to 4-fold) 

under all conditions when delivered as L-NAC compared to free-NAC (Figure 2.2 A).  These 

results, in concert with intracellular GSH data under the same conditions (Figure 2.2 B), 

indicated that the optimal conditions for the uptake of NAC via both the free and liposomal 

formulations, without compromising cell viability or cellular redox status (i.e. GSH levels), was 

5.0 mM for 4 h.  These conditions were used for all subsequent pre-treatments in this study.   

 

The effect of NAC or L-NAC pre-treatment on the viability of PQ-challenged cells was assessed 

via the MTT and LDH leakage assays.  L-NAC pre-treatment limited the decrease in viability of 

24 h PQ-challenged cells by up to 23 % at various PQ concentrations (i.e. 0.1 and 0.5 mM) as 

measured by the MTT assay, while NAC pre-treatment did not exhibit any significant protective 

effect (Figure 2.3).  Assessment of LDH-leakage indicated that, while there were no significant 

changes in 4 h PQ-challenged cells (Figure 2.4 A), NAC or L-NAC pre-treatment of 24 h PQ-

challenged cells (i.e. 0.25 or 1.0 mM) prevented the increase in LDH leakage observed in cells 

with no pre-treatment (Figure 2.4 B), correlating with similar findings in PQ-challenged 

hepatocytes co-incubated with NAC (Dawson et al. 1984).  Since NAC or L-NAC pre-treatment 

had no effect on intracellular PQ levels in A549 cells (Figure 2.5 B), agreeing with data obtained 

by Hoffer et al. in alveolar type II cells (Hoffer et al. 1996), it is evident that pre-treatment with 

NAC or L-NAC conferred protection against PQ-induced cytotoxicity independent of PQ uptake.  
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The effects of NAC‟s antioxidant properties in PQ-induced cytotoxicity were investigated by 

assessing the cellular redox status of PQ-challenged cells pre-treated with NAC or L-NAC.  Pre-

treatment with NAC significantly limited the decrease of cellular GSH content in cells 

challenged with 0.5 mM PQ for 24 h, while L-NAC pre-treatment exhibited the same effect in 

cells challenged with both 0.1 and 0.5 mM PQ (Figure 2.5 A).  It is unclear whether this is a 

result of NAC‟s direct scavenging properties or the de novo synthesis of GSH using NAC as a 

precursor.  The effect of NAC or L-NAC pre-treatment of PQ-challenged cells was further 

investigated by assessing intracellular ROS levels.  In addition to decreasing basal levels of ROS 

in control cells, pre-treatment with either formulation limited ROS to basal or sub-basal levels 

following both 0.25 and 1.0 mM PQ challenges (Figure 2.6).  Similarly, the total antioxidant 

potential (i.e. the total reducing capacity of all cellular antioxidants) of PQ-challenged cells (0.25 

mM for 4 h) was decreased relative to control cells, but pre-treatment with NAC or L-NAC 

maintained basal levels following PQ challenge (Figure 2.7).  Finally, preliminary data indicated 

that the increased activity of SOD observed following 0.25 mM PQ challenge for 4 h was 

modulated with L-NAC, but not NAC, pre-treatment (Figure 2.8).  These data indicate that NAC, 

either in its free or liposomal form, confers some level of protection against PQ-induced 

cytotoxicity by maintaining a normal cellular redox status.  These effects were more prominent 

in cells pre-treated with L-NAC, which can be attributed to the greater intracellular NAC levels 

achieved via liposomal delivery.    

 

The mitochondria are thought to be essential targets of PQ and important in its toxicity.  In fact, 

there is evidence that PQ disrupts the mitochondrial electron transfer chain resulting in a 

reduction of metabolic function, and it is suggested that lesions due to PQ first occur in the 
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mitochondria (Fukushima et al. 2002).  Pre-treatment with NAC or L-NAC exhibited a 

beneficial effect on the mitochondrial membrane potential of PQ-challenged cells (Figure 2.9).  

NAC or L-NAC pre-treatment increased the membrane potential above control levels in 0.25 

mM PQ-challenged cells for 4 h, while L-NAC, but not NAC, pre-treatment limited the decrease 

of membrane potential in cells exposed to 1.0 mM PQ.  Interestingly, control cells pre-treated 

with L-NAC exhibited nearly a 2-fold increase in fluorescence intensity relative to control cells 

with no pre-treatment.  Previous studies by Suntres et al. (1993) have shown that radioactively-

labelled liposomal antioxidant vesicles were associated with mitochondria, and antioxidants that 

are selectively accumulated into mitochondria can inhibit mitochondrial oxidative damage that 

contributes to a range of degenerative diseases related to oxidative stress (Suntres et al. 1993). 

 

In order to further investigate the protective effects of NAC or L-NAC pre-treatment in PQ-

challenged cells, cellular gene expression was investigated in 4 h PQ-challenged cells with or 

without pre-treatment using PCR arrays specific for genes relating to cellular stress and toxicity.  

Gene expression was investigated under these conditions since many genes were found to be 

differentially expressed after 4 h in 0.25 mM PQ-challenged cells (Table 1.2).  In this study, the 

magnitude of gene expression in cells pre-treated with NAC or L-NAC prior to 0.25 mM PQ 

challenge for 4 h was generally decreased relative to challenged cells with no pre-treatment 

(Figure 2.10).  Although the exact mechanism(s) by which NAC affected the pathways involved 

in signal transduction and gene expression cannot be delineated from the results of this study, it 

is possible that these pathways are regulated by oxidants and redox-sensitive steps since 

increasing levels of intracellular NAC (Figures 2.1 and 2.2) affect the steady state level of 

oxidants (Figure 2.6) and can modify the redox status of the cell (Figures 2.5 and 2.7), an effect 
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known to exert a regulatory effect on transcriptional activation and gene expression (Zafarullah 

et al. 2003, Garcia-Ruiz and Fernandez-Checa 2007, Oktyabrsky and Smirnova 2007).  In the 

next few paragraphs, the modulation of gene expression of PQ-challenged cells by NAC and L-

NAC is discussed.  

 

Several genes known to be induced in cases of cellular stress were differentially expressed.  

Expression of GDF15, which is present in a wide variety of epithelial cells, is known to be 

dramatically increased in response to acute injury (Bauskin et al. 2006).  Accordingly, our data 

indicates this gene was up-regulated 1.9-fold in PQ-challenged cells, and its expression was 

ameliorated with L-NAC, but not NAC, pre-treatment (Table 2.2.4).  Additionally, NFE2L2, a 

gene coding for a transcription factor that induces cytoprotective genes in response to various 

stressors (Yang et al. 2007), was up-regulated over 3-fold in PQ-challenged cells with no pre-

treatment, but this was ameliorated in challenged cells pre-treated with L-NAC (Table 2.4).  

ATM, which is up-regulated in response to DNA damage (Zenz et al. 2008), was also up-

regulated over 2-fold in PQ-challenged cells with no pre-treatment, but its expression was 

maintained at basal levels when challenged cells were pre-treated with NAC or L-NAC (Table 

2.2.6).  Lastly, the expression of CASP10, which codes for the initiator caspase-10 involved in 

the death-inducing signalling complex during apoptosis (Bidere et al. 2006), was up-regulated 

1.9-fold in PQ-challenged cells with no pre-treatment, but was ameliorated in challenged cells 

pre-treated with L-NAC (Table 2.2.7).   

 

The expression and/or secretion of a variety of inflammatory mediators in PQ-challenged cells 

were modulated with NAC or L-NAC pre-treatment.  The expression of IL8, the gene coding for 
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the pro-inflammatory neutrophil chemoattractant IL-8, was up-regulated in 4 h PQ-challenged 

cells with no pre-treatment, but its expression was substantially modulated with NAC or L-NAC 

pre-treatment (Table 2.4).  This correlated with decreased IL-8 protein secretion in the cell 

culture supernatant of PQ-challenged cells pre-treated with NAC or L-NAC (Figures 2.13 A and 

2.14).  This effect was observed via Bio-Plex after 4 h PQ challenge (Figure 2.13 A), where 

NAC or L-NAC pre-treatment reduced IL-8 secretion in 0.25 mM PQ-challenged cells, but only 

L-NAC pre-treatment was able to significantly reduce IL-8 protein secretion following 1.0 mM 

PQ exposure.  This effect was confirmed after 24 h PQ challenge (0.25 mM) via a quantitative 

sandwich enzyme immunoassay technique (Figure 2.14).  These effects exhibited by NAC are in 

accordance with other studies: the increased IL-8 gene (Bianchi et al. 1993) and protein 

(Horiguchi et al. 1993) expression of PQ-challenged peripheral blood mononuclear cells was 

blocked by NAC (Horiguchi et al. 1993), and NAC administration was found to inhibit the 

release of chemotactic factors for neutrophils and consequently reduce their infiltration into the 

lungs of PQ-challenged rats (Hoffer et al. 1993).  The protective effects of NAC on IL-8 gene 

and protein expressions in our study were more evident in cells pre-treated with the liposomal 

formulation than free-NAC, which is attributed to the increased intracellular NAC levels 

achieved via liposomal delivery. 

 

Other inflammatory genes were also differentially expressed under the conditions studied.  IL10, 

which codes for the anti-inflammatory cytokine interleukin-10 (IL-10), is down-regulated 3-fold 

following PQ-challenge (Table 2.4), suggesting that the cell may be actively repressing anti-

infammatory mediators in favor of pro-inflammatory mediators (i.e. IL-8).  However, expression 

of IL10 is maintained at basal levels with L-NAC pre-treatment, suggesting that the 
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inflammatory response is tempered due to L-NAC‟s cytoprotection.  Since this effect is present 

in challenged cells pre-treated with L-NAC, but not NAC or EL (i.e. the liposomes themselves 

have no direct effect), it is thus attributable to the increased intracellular NAC content achieved 

via liposomal delivery. 

 

The expressions of other pro-inflammatory cytokines in PQ-challenged cells were affected by 

NAC or L-NAC pre-treatment.  IL18 expression, which was slightly up-regulated in PQ-

challenged cells with no pre-treatment, was ameliorated in challenged cells with L-NAC pre-

treatment (Table 2.2.5).  LTA, a characteristic cytokine of Th1 cells which codes for TNF-

β/lymphotoxin (Lin et al. 2008), was found to become down-regulated in the L-NAC pre-treated 

group while remaining at basal levels in PQ-challenged cells with no pre-treatment or NAC pre-

treatment.   

 

Finally, certain genes relating to the cell cycle were differentially expressed under the conditions 

examined.  EGR1, which encodes a transcriptional regulator that activates genes (including p53) 

required for differentiation and mitogenesis (Sperandio et al. 2009), was substantially up-

regulated in PQ-challenged cells with no pre-treatment, but its expression was ameliorated with 

L-NAC pre-treatment, where basal expression was maintained (Table 2.2.3).  The expression of 

E2F1, which codes for a transcription factor that regulates several important genes involved in 

cell cycle progression (i.e. G1/S and G2/M progression) (Tategu et al. 2008), was further down-

regulated in the L-NAC, but not NAC, pre-treatment group compared to challenged cells with no 

pre-treatment (Table 2.2.3). 
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Gene array data was validated using quantitative RT-PCR of various genes (Table 2.3), the 

majority of which (i.e. CAT, CYP1A1, IL1A, NFKB1, NFKBIA, SOD1, and TNF) exhibited 

similar expression patterns to those achieved via gene array analysis.  In addition, only quality 

RNA samples showing no signs of degradation were used for both gene array and quantitative 

RT-PCR analyses (Figure 2.11), and a first-derivative dissociation curve was created following 

each PCR reaction to ensure the presence of a single PCR product (Figure 2.12).  

 

Based on these data, it was evident that NAC pre-treatment, both in its free and liposomal form, 

conferred cytoprotection against PQ-induced toxicity in A549 cells.  This was mainly attributed 

to its ability to ameliorate cellular redox status (i.e. intracellular GSH content, ROS levels, and 

total antioxidant potential), and was independent of PQ uptake.  In addition, antioxidant pre-

treatment conferred a beneficial effect on mitochondrial membrane potential, and decreased the 

expression of a variety of genes known to be up-regulated under acute stress conditions (i.e. 

GDF15, NFE2L2, and ATM).  NAC and/or L-NAC pre-treatment also lessened the 

inflammatory response of A549 cells to PQ toxicity, in particular decreasing both IL-8 gene and 

protein expressions and modulating IL-10 gene expression.  These protective effects were more 

evident in cells pre-treated with L-NAC, which is attributed, at least in part, to the increased 

NAC levels achieved via liposomal delivery.   
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Figure 2.1:  Effect of NAC concentration on the viability of A549 cells.  Viabilities of cells 

treated for 24 h with increasing concentrations of NAC (0 - 50.0 mM) were assessed using the 

MTT colorimetric assay.  Cells were seeded into 96-well plates at 10,000 cells/well and grown to 

80 % confluence prior to treatment.  Absorbance was measured spectrophotometrically at 570 

nm (650 nm correction wavelength), and viability of treated cells was assessed relative to control 

cells.  Bars represent mean ± S.E.M. of 3 independent experiments performed in octuplet.  * 

denotes significant difference relative to control (p < 0.05).   
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Figure 2.2:  Uptake of NAC in A549 cells and its effect on cellular GSH content.  Cells were 

treated with either 5.0 mM NAC- or L-NAC-containing media for various time-points up to 24 h.  

NAC uptake (A) and intracellular GSH content (B) were measured concomitantly via UPLC 

(solid line: NAC treatment; dotted line: L-NAC treatment).  Lysates were normalized to total 

protein.  Data points represent mean ± S.E.M. of 3 independent experiments performed in 

duplicate.  † denotes significant difference relative to NAC-treated group; * denotes significant 

difference relative to 0 h untreated control (p < 0.05). 
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Figure 2.3:  Effect of NAC or L-NAC pre-treatment on viability of PQ-challenged cells.  

The viability of cells pre-treated with control media (No Pre-treatment), or 5.0 mM NAC- (NAC 

Pre-treatment) or L-NAC-containing media (L-NAC Pre-treatment) for 4 h prior to 24 h PQ 

challenge (0, 0.1, 0.5, or 1.0 mM) was assessed using the MTT colorimetric assay.  Viability of 

challenged cells was assessed relative to untreated control cells.  Bars represent mean ± S.E.M. 

of 3 independent experiments performed in octuplet.  * denotes significant difference relative to 

cells with no pre-treatment (p < 0.05).   
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Figure 2.4: Effect of NAC or L-NAC pre-treatment on LDH leakage in PQ-challenged cells.  

The cellular membrane integrity of cells pre-treated for 4 h with control media or 5.0 mM NAC- 

(N) or L-NAC-containing media (L) prior to 4 (A) or 24 h (B) PQ exposure (0, 0.25, or 1.0 mM) 

was assessed by measuring the relative amounts of LDH leakage into cell culture supernatants 

from control and challenged cells.  Absorbance was measured spectrophotometrically at 490 nm 

(690 nm correction wavelength), and LDH leakage was assessed relative to untreated control 

cells.  Bars represent mean ± S.E.M. of 3 independent experiments performed in octuplet.  * 

denotes significant difference relative to PQ-challenged cells with no pre-treatment (p < 0.05).   
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Figure 2.5:  Effect of NAC or L-NAC pre-treatment on GSH content and PQ uptake of PQ-

challenged cells.  Cells pre-treated for 4 h with control media (No Pre-treatment) or 5.0 mM 

NAC- (NAC Pre-treatment) or L-NAC-containing media (L-NAC Pre-treatment) were 

challenged with increasing PQ concentrations (0, 0.1, 0.5, 1.0, and 5.0 mM) for 24 h.  Cells were 

harvested and lysed for the determination of intracellular GSH content (A) and PQ uptake (B) 

via UPLC analysis.  Lysates were normalized to total protein.  Bars represent mean ± S.E.M. of 3 

independent experiments performed in duplicate.  * denotes significant difference relative to cells 

with no pre-treatment (p < 0.05). 
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Figure 2.6:  Effect of NAC or L-NAC pre-treatment on levels of intracellular ROS 

following PQ challenge.  Cells pre-treated for 4 h with control media or 5.0 mM NAC- (N) or 

L-NAC-containing media (L) were challenged with 0, 0.25 or 1.0 mM PQ for 4 h.  Cells were 

stained for 30 min post-treatment with the cell permeable CM-H2DCFDA fluorescent dye 

specific for oxidative species.  Adherent cells were scraped and analyzed flow cytometrically 

using the FL1-H channel.  Bars represent mean ± S.E.M. of 3 independent experiments.   * 

denotes significant difference relative to cells with no pre-treatment (p < 0.05). 
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Figure 2.7:  Effects of NAC or L-NAC pre-treatment on total antioxidant potential in PQ-

challenged cells.  Cells were pre-treated for 4 h with 5 mM NAC- (N) or L-NAC-containing 

media (L), followed by 0 or 0.25 mM PQ challenge for 4 h.  Absorbance of cell lysates was 

measured at 490 nm following the addition of a chromogenic reagent, which formed a complex 

with Cu+ upon its reduction by cellular antioxidants.  Total cellular antioxidant potential was 

measured in uric acid equivalents.  Bars represent mean ± S.E.M. of 3 independent experiments.  

* denotes significant difference relative to PQ-challenged cells with no pre-treatment (p < 0.05). 
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Figure 2.8:  Effects of NAC and L-NAC pre-treatment on SOD activity in PQ-challenged 

cells.  Cells were pre-treated for 4 h with control media or 5.0 mM NAC- (N) or L-NAC-

containing media (L), followed by 0 or 0.25 mM PQ challenge for 4 h.  Activity of cellular SOD 

enzymes was assessed by monitoring the rate of inhibition of absorbance at 560 nm for 5 min 

(measured in U/mL, where one unit is that amount of SOD which inhibits the rate of increase in 

absorbance due to NBT-diformazan formation by 50 %).  Bars represent values of 1 independent 

experiment. 
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Figure 2.9: Effect of NAC or L-NAC pre-treatment on mitochondrial membrane potential 

following PQ challenge.  Cells pre-treated for 4 h with control media or 5.0 mM NAC- (N) or 

L-NAC-containing media (L) were challenged with 0, 0.25, or 1.0 mM PQ for 4 h.  Cells were 

stained for 30 min post-treatment with the cell permeable JC-1 fluorescent dye.  Aggregation of 

the dye due to high mitochondrial membrane potential produced red fluorescence, measured flow 

cytometrically on the FL2-H channel, while depolarized mitochondrial membranes resulted in 

decreased red fluorescence.  Bars represent mean ± S.E.M. of 3 independent experiments.   * 

denotes significant difference relative to cells with no pre-treatment (p < 0.05). 
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Figure 2.10:  Effect of pre-treatment on the magnitude of gene expression in PQ-challenged 

cells.  RNA was extracted from cells challenged with 0 or 0.25 mM PQ for 4 h following pre-

treatment with 5.0 mM NAC- or L-NAC-containing media, and analyzed via quantitative 

reverse-transcription PCR using a gene array.  The magnitude of expression of each gene is 

expressed on a scale ranging from minimal (intense green) to maximal (intense red) expression 

(n = 3 independent trials). 
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Table 2.2:  Relative expression, via gene array analysis, of genes involved with cellular stress 
and toxicity in cells pre-treated with control media or NAC- or L-NAC-containing media prior to 
0.25 mM PQ challenge for 4 h.  Fold change is expressed relative to control using the 
housekeeping genes B2M, HPRT1, RPL13A, and GAPDH. 
 
Table 2.2.1:  Oxidative or metabolic stress-related genes. 

Gene No Pre-treatment NAC Pre-treatment L-NAC Pre-treatment 
CAT -1.02 ± 0.11 -1.26 ± 0.25 -1.15 ± 0.13 

CRYAB 1.22 ± 0.17 1.50 ± 0.20 1.35 ± 0.05 
CYP1A1 -1.38 ± 0.14 1.11 ± 0.11 4.65 ± 0.93 
CYP2E1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
CYP7A1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

EPHX2 -1.86 ± 0.60 -1.01 ± 0.35 -1.53 ± 0.34 
FMO1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
FMO5 -1.27 ± 0.09 -1.52 ± 0.13 -1.60 ± 0.06 
GPX1 -1.04 ± 0.07 -1.00 ± 0.07 -1.01 ± 0.00 
GSR -1.07 ± 0.12 -1.54 ± 0.23 -1.44 ± 0.14 

GSTM3 -1.18 ± 0.07 -1.16 ± 0.12 -1.24 ± 0.13 
HMOX1 1.16 ± 0.14 1.36 ± 0.20 -1.15 ± 0.10 

MT2A 1.02 ± 0.04 -1.09 ± 0.13 -1.15 ± 0.28 
POR -1.74 ± 0.58 2.19 ± 0.53 -2.19 ± 1.02 

PRDX1 1.07 ± 0.05 1.02 ± 0.06 1.05 ± 0.07 
PRDX2 -1.10 ± 0.14 1.06 ± 0.28 -1.26 ± 0.07 
PTGS1 -1.37 ± 0.06 1.03 ± 0.08 1.53 ± 0.23 
SOD1 1.04 ± 0.01 1.00 ± 0.07 -1.10 ± 0.04 
SOD2 1.18 ± 0.06 -1.07 ± 0.10 1.29 ± 0.05 

 

Table 2.2.2:  Heat shock genes. 
Gene No Pre-treatment NAC Pre-treatment L-NAC Pre-treatment 

DNAJA1 1.63 ± 0.23 1.37 ± 0.09 -1.07 ± 0.10 
DNAJB4 1.69 ± 0.23 1.47 ± 0.14 -1.02 ± 0.09 

HSF1 1.10 ± 0.05 1.08 ± 0.04 1.13 ± 0.07 
HSPA1A -1.15 ± 0.08 -1.32 ± 0.18 1.02 ± 0.14 
HSPA1L -1.26 ± 0.19 -1.57 ± 0.37 -1.40 ± 0.17 

HSPA2 -1.01 ± 0.05 -1.40 ± 0.05 -1.41 ± 0.06 
HSPA4 -1.05 ± 0.10 -1.43 ± 0.24 -1.69 ± 0.15 
HSPA5 1.35 ± 0.03 1.24 ± 0.10 -1.00 ± 0.03 
HSPA6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
HSPA8 1.04 ± 0.16 -1.05 ± 0.22 -1.32 ± 0.14 
HSPB1 -1.23 ± 0.08 1.10 ± 0.12 -1.26 ± 0.18 

HSP90AA2 1.02 ± 0.08 1.14 ± 0.03 1.10 ± 0.09 
HSP90AB1 -1.06 ± 0.11 1.34 ± 0.19 -1.58 ± 0.21 

HSPD1 1.06 ± 0.04 -1.12 ± 0.19 -1.03 ± 0.09 
HSPE1 1.07 ± 0.02 -1.09 ± 0.06 -1.07 ± 0.02 
HSPH1 1.03 ± 0.03 1.13 ± 0.04 1.01 ± 0.06 
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Table 2.2.3:  Proliferation / carcinogenesis related genes. 
Gene No Pre-treatment NAC Pre-treatment L-NAC Pre-treatment 
ACTB 1.57 ± 0.23 -1.27 ± 0.00 1.25 ± 0.17 
CCNC 1.02 ± 0.06 -1.18 ± 0.10 1.21 ± 0.20 

CCND1 -1.03 ± 0.03 -1.22 ± 0.28 1.05 ± 0.10 
CCNG1 -1.00 ± 0.05 1.04 ± 0.06 1.17 ± 0.05 

E2F1 -1.45 ± 0.18 -1.07 ± 0.32 -2.61 ± 0.58 
EGR1 2.78 ± 0.65 2.23 ± 0.36 -1.24 ± 0.08 
PCNA 1.16 ± 0.14 -1.07 ± 0.13 -1.03 ± 0.08 

 

Table 2.2.4:  Growth arrest and senescence related genes. 
Gene No Pre-treatment NAC Pre-treatment L-NAC Pre-treatment 

CDKN1A 1.44 ± 0.10 1.73 ± 0.11 1.88 ± 0.08 
DDIT3 1.88 ± 0.09 2.17 ± 0.11 1.72 ± 0.14 

GADD45A 1.31 ± 0.17 1.38 ± 0.16 1.01 ± 0.11 
GDF15 1.91 ± 0.13 1.96 ± 0.11 1.53 ± 0.02 

IGFBP6 -1.04 ± 0.05 1.07 ± 0.20 -1.52 ± 0.29 
MDM2 1.30 ± 0.23 1.04 ± 0.23 1.51 ± 0.27 
TP53 1.15 ± 0.12 -1.06 ± 0.21 -1.02 ± 0.09 

 

Table 2.2.5:  Inflammatory genes. 
Gene No Pre-treatment NAC Pre-treatment L-NAC Pre-treatment 

CCL21 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
CCL3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
CCL4 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
CSF2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

CXCL10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
IL18 1.67 ± 0.19 1.54 ± 0.11 1.29 ± 0.11 
IL1A 1.66 ± 0.29 1.83 ± 0.16 1.92 ± 0.26 
IL1B 1.00 ± 0.13 -1.87 ± 0.52 -1.34 ± 0.33 

IL6 3.20 ± 0.62 3.63 ± 0.59 4.88 ± 0.20 
LTA 1.34 ± 0.43 1.45 ± 0.33 -2.27 ± 0.16 
MIF 1.02 ± 0.01 1.08 ± 0.06 -1.09 ± 0.03 

NFKB1 1.22 ± 0.03 1.12 ± 0.06 1.36 ± 0.02 
NOS2A 2.90 ± 0.39 1.94 ± 0.28 2.30 ± 0.65 

SERPINE1 1.40 ± 0.16 1.39 ± 0.27 1.02 ± 0.08 
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Table 2.2.6:  DNA damage and repair genes. 
Gene No Pre-treatment NAC Pre-treatment L-NAC Pre-treatment 
ATM 2.26 ± 0.83 -1.26 ± 0.39 1.20 ± 0.28 

CHEK2 1.03 ± 0.10 -1.29 ± 0.21 -1.21 ± 0.14 
DDB1 -1.10 ± 0.09 -1.19 ± 0.29 -1.54 ± 0.06 

ERCC1 -1.14 ± 0.13 1.17 ± 0.33 -1.41 ± 0.32 
ERCC3 1.09 ± 0.12 1.07 ± 0.27 -1.19 ± 0.06 

RAD23A 1.06 ± 0.15 1.07 ± 0.29 -1.17 ± 0.24 
RAD50 -1.27 ± 0.10 -1.01 ± 0.38 -1.87 ± 0.17 

UGT1A4 -1.26 ± 0.21 -1.92 ± 0.49 -1.76 ± 0.02 
UNG 1.12 ± 0.07 -1.00 ± 0.10 -1.01 ± 0.03 

XRCC1 -1.24 ± 0.11 -1.24 ± 0.26 -1.64 ± 0.05 
XRCC2 1.21 ± 0.12 -1.23 ± 0.22 1.11 ± 0.11 

 

Table 2.2.7:  Apoptosis signalling genes. 
Gene No Pre-treatment NAC Pre-treatment L-NAC Pre-treatment 

ANXA5 1.44 ± 0.14 1.25 ± 0.03 1.43 ± 0.07 
BAX -1.02 ± 0.12 -1.08 ± 0.20 -1.29 ± 0.08 

BCL2L1 -1.44 ± 0.14 -1.26 ± 0.37 -1.33 ± 0.34 
CASP1 -1.20 ± 0.22 -1.46 ± 0.13 -1.76 ± 0.27 

CASP10 1.93 ± 0.22 1.60 ± 0.22 1.35 ± 0.08 
CASP8 1.15 ± 0.07 -1.08 ± 0.06 1.37 ± 0.12 
FASLG 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

NFKBIA 1.20 ± 0.04 1.35 ± 0.07 1.47 ± 0.06 
TNF -1.03 ± 0.16 -1.32 ± 0.11 1.22 ± 0.03 

TNFRSF1A -1.29 ± 0.10 -1.07 ± 0.29 -1.62 ± 0.16 
TNFSF10 -1.36 ± 0.23 -1.28 ± 0.04 -2.25 ± 0.56 

Values represent mean ± SEM of 3 independent experiments. 
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Table 2.3:  Relative expression of selected genes in cells pre-treated with control media or 
NAC-, L-NAC-, or empty liposome (EL)-containing media prior to 0.25 mM PQ challenge for 4 h.  
Data was obtained using individual primer assays.  Fold change is expressed relative to 
untreated control using the housekeeping gene RPL13A. 

Gene No Pre-treatment NAC Pre-treatment L-NAC Pre-treatment EL Pre-treatment 
CAT -1.11 ± 0.11 -1.13 ± 0.29 -1.26 ± 0.23 -1.24 ± 0.09 

CYP1A1 1.88 ± 0.83 2.18 ± 0.61 3.79 ± 1.33 3.35 ± 1.66 
IL1A 1.09 ± 0.07 1.49 ± 0.14 1.66 ± 0.12 1.40 ± 0.23 
IL1B 1.03 ± 0.13 1.95 ± 0.09 2.63 ± 0.59 1.42 ± 0.15 

IL6 1.45 ± 0.30 1.23 ± 0.28 1.23 ± 0.03 1.08 ± 0.22 
NFKB1 -1.05 ± 0.20 1.33 ± 0.04 1.17 ± 0.06 1.08 ± 0.20 

NFKBIA 1.34 ± 0.18 1.46 ± 0.11 1.73 ± 0.24 1.57 ± 0.17 
SOD1 1.01 ± 0.21 1.08 ± 0.23 -1.30 ± 0.41 -1.22 ± 0.14 

TNF -1.15 ± 0.22 -1.37 ± 0.45 1.35 ± 0.20 -1.85 ± 1.02 
Values represent mean ± SEM of 3 independent experiments. 

 
 
Table 2.4:  Relative expression of selected genes in cells pre-treated with control media or 
NAC-, L-NAC-, or empty liposome (EL)-containing media prior to 0.25 mM PQ challenge for 4 h.  
Data was obtained using individual primer assays.  Fold change is expressed relative to 
untreated control using the housekeeping gene RPL13A. 

Gene No Pre-treatment NAC Pre-treatment L-NAC Pre-treatment EL Pre-treatment 
FOS 1.05 ± 0.19 2.22 ± 0.51 1.14 ± 0.25 1.09 ± 0.22 

IL8 2.68 ± 0.32 1.84 ± 0.09 1.53 ± 0.23 1.80 ± 0.30 
IL10 -3.03 ± 0.88 -1.73 ± 0.38 1.13 ± 0.22 -2.45 ± 0.62 
ILK -1.25 ± 0.05 -1.53 ± 0.05 -1.92 ± 0.38 -1.50 ± 0.17 

ITGB1 1.24 ± 0.06 1.38 ± 0.11 1.33 ± 0.08 1.26 ± 0.12 
JUN 1.41 ± 0.13 1.63 ± 0.08 1.53 ± 0.23 1.49 ± 0.24 

MAPK3 1.48 ± 0.13 1.90 ± 0.32 1.42 ± 0.02 2.06 ± 0.21 
MAPK8 1.20 ± 0.13 1.45 ± 0.08 1.06 ± 0.15 -1.05 ± 0.16 

MAPK14 -1.26 ± 0.04 1.32 ± 0.35 -1.00 ± 0.10 -1.02 ± 0.45 
NFE2L2 3.17 ± 0.31 2.55 ± 0.61 2.25 ± 0.29 1.67 ± 0.48 
TGFB1 1.15 ± 0.15 1.34 ± 0.08 1.27 ± 0.09 1.35 ± 0.21 

Values represent mean ± SEM of 3 independent experiments. 
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Figure 2.11:  Validation of RNA integrity.  Aliquots of extracted RNA from control or PQ-

challenged A549 cells with or without pre-treatment were assessed for RNA concentration and 

integrity using the Experion Automated Electrophoresis Station.  Representative gels artificially 

depict 18 and 28 S rRNA banding (A; L: ladder; 1 - 12: extracted RNA samples) using data 

obtained from electropherograms.  Representative electropherograms of samples 1 - 4 display 18 

and 28 S rRNA peaks (B-E, respectively).   
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Figure 2.12:  Assessment of PCR gene product quality.  Representative first-derivative 

dissociation curves of amplified PCR product of IL1A were obtained via individual primer 

assays.  Depicted samples are from 4 h control and PQ-challenged cells pre-treated with control 

media or NAC- or L-NAC-containing media.    
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Figure 2.13: Effect of NAC or L-NAC pre-treatment on inflammatory cytokine levels post-

PQ exposure.  Cells pre-treated for 4 h with control media or 5.0 mM NAC- (N) or L-NAC-

containing media (L) were challenged with 0, 0.25, or 1.0 mM PQ for 4 h.  Cell culture 

supernatants were collected immediately following challenge and concomitantly analyzed for IL-

8 (A), IL-6 (B), and other cytokines (IL-1β, IL-10, IL-15, TNF-α, and eotaxin; data not shown) 

using Bio-Plex technology.  Bars represent mean ± S.E.M. of 3 independent experiments.  * 

denotes significant difference relative to cells with no pre-treatment (p < 0.05). 
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Figure 2.14: Effect of NAC or L-NAC pre-treatment on IL-8 levels following PQ challenge.  

Cells pre-treated for 4 h with control media or 5.0 mM NAC- (N) or L-NAC-containing media 

(L) were challenged with 0 or 0.25 mM PQ for 24 h.  Cell culture supernatants were collected 

immediately post-challenge and analyzed for IL-8 using a quantitative sandwich enzyme 

immunoassay technique.  Absorbance was measured at 450 nm (570 nm wavelength correction) 

and converted to IL-8 concentrations based on a standard curve of known values.  Bars represent 

values of 1 independent experiment. 
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Conclusion 

 

Paraquat is a chemical that induces its toxicity in biological systems via the generation of ROS.  

The results of this in vitro study demonstrated that PQ exhibits concentration- and time-

dependent toxicity in A549 cells, primarily via dysregulation of cellular redox balance, resulting 

in necrotic, but not apoptotic, cell death.  PQ also increased the expression of pro-inflammatory 

mediators at both the gene and protein level, suggesting alveolar type II epithelial cells 

contribute to the inflammatory response associated with PQ lung toxicity.  The antioxidant NAC, 

delivered to A549 cells both in its free and liposomal form, conferred protection against PQ-

induced cytotoxicity primarily through the maintenance of cellular redox status and independent 

of PQ uptake, and played a role in regulating the immune response of alveolar cells to this 

challenge, as indicated by gene and protein expression of inflammatory mediators.  These 

protective effects were more evident in cells pre-treated with L-NAC, which is attributed to the 

greater cellular NAC levels achieved via liposomal administration.  These data suggest that 

studies examining the protective effects of L-NAC in vivo are warranted in order to further 

explore the use of liposomal antioxidants for the treatment of conditions associated with 

oxidative stress. 
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