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ABSTRACT

In this thesis we describe a squeezing for S U(3) systems and compare squeezing in the phase
space in the semiclassical approximation with squeezing obtained by the full quantum me-
chanical calculation. We show that the equations of motion in phase space for S U(3) Wigner
function are given in terms of the Poisson bracket plus quantum correction terms which depend
on the inverse dimension of the system. In the semiclassical approximation, for large values
of the S U(3) representation label λ, we can ignore the quantum correction terms and use the
truncated Liouville equation; squeezing in S U(3) systems is well described by this truncated
Liouville equation. Finally, we find some scaling behaviors associated with squeezing in S U(3)
and compare these with the corresponding S U(2) calculations.
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1. INTRODUCTION AND MOTIVATION

The idea of developing a quantum theory that could easily be understood using the tools of
classical mechanics has attracted significant attention since the early days of quantum mechan-
ics. A very important development came with the work of Moyal [1], who realized that Weyl
quantization [2] could be inverted by the Wigner transform [3] from an operator on the Hilbert
space to a function on the phase space. The quantum expectation value of an operator can then
be represented by the statistical like average of the corresponding phase space function with
the statistical density given by the Wigner function. This formal resemblance of quantum me-
chanics in the phase space formulation to classical mechanics provides deeper understanding of
differences between the quantum and classical phenomena.

The objective of this thesis is to investigate squeezing properties of S U(3) states using fully
quantum and semiclassical methods. The basic ingredients of the thesis are the quantum evo-
lution equation and its semiclassical counterpart, the concept of coherent states, the concept of
squeezing, and some notions regarding the group S U(3).

In this introduction, we will use the example of position and momentum space to illustrate
the basic principle and terminology of the phase space approach to quantum mechanics, and
some of the resulting surprises of this approach. One such surprise is that quantum probability
distributions in phase space can be locally negative. We will also review coherent states for the
harmonic oscillator and illustrate squeezing of such a coherent state. In the later chapters , these
notions will be generalized to S U(2) and S U(3) systems, which describe 2-level and 3-level
atoms. The chapter on S U(2) is a bridge between the more familiar position-momentum space
and the more abstract setting of the su(3) algebra. The new and main results of this thesis are
found in Chapter 5, which deals with squeezing in S U(3) system.

1.1 Quantum versus classical

The structure of quantum mechanics seems to present a radical departure from that of classical
mechanics. In classical mechanics the state of a system with 2 degrees of freedom is described
by a point in 2 dimensional phase space with coordinates (q, p). The generalized coordinate q
describes the configuration of the system in 1 dimensional configuration space and the coordi-
nate p is the canonical conjugate momentum. The time evolution of this system is generated by
the Hamiltonian H (q, p). The system point (q, p) moves on the phase space along a particular
trajectory according to Hamilton’s equations of motion

dp
dt

= {p,H} ,
dq
dt

= {q,H} , (1.1)

where { f , g} is the Poisson bracket of any two functions f and g. Moreover the classical phase
space distribution ρcl evolves according to Liouville’s equation

∂

∂t
ρcl = − {ρcl,H} . (1.2)
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By contrast, in quantum mechanics the state of a system is not represented by a point in
the 2 dimensional phase space. For a pure state it is represented by a state vector |ψ〉 in a
complex Hilbert space �. The unitary time evolution of this state vector is generated by a
hermitian Hamiltonian operator Ĥ acting in this space and the state vector evolves according to
the Schrödinger equation:

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 . (1.3)

These differences between Hilbert space formulation of quantum mechanics and classical
mechanics have inspired a large amount of efforts since the early days of quantum mechanics
to bridge the gap between the quantum and classical description of the world.

One notable effort in this direction is the formulation of quantum mechanics in phase space.
The foundations of this remarkable formulation were laid out by H Weyl [2] and E Wigner
[3]. In the phase space formulation every quantum observable f̂ is mapped, using the so-called
Wigner transform, to a real-valued function W f (q, p) in phase space. Conversely, one can go
in the reverse direction using the so-called Weyl quantization: to every phase space function
W f (q, p) one can associate a quantum observable f̂ acting in the Hilbert space for the quantum
system. The Wigner transform of the density operator ρ̂ = |ψ〉 〈ψ| is called the Wigner quasi
distribution function of the quantum system. All the predictions of quantum dynamics can be
extracted from the Wigner function. Moreover since the Wigner function is defined on phase
space we can easily compare its time evolution to that of the classical phase space distribution.

1.2 Phase space formulation: an overview

Let us introduce position eigenstates {|q〉 ,−∞ < q < ∞} for which q̂ |q〉 = q |q〉. This basis is
complete so we may expand any ket |ψ〉 as

|ψ〉 =

∫
dq |q〉 〈q| ψ〉 (1.4)

with 〈q| ψ〉 = ψ (q) the wave function of the system evaluated at position q. From a wave
function ψ(q) associated to the ket |ψ〉 one constructs the Wigner function Wρ defined on phase
space:

Wρ (q, p) = 2
∫ ∞

−∞

dz e2ipz/~ ψ∗ (q + z)ψ (q − z) , (1.5)

with ρ̂ the density operator |ψ〉〈ψ|. For later convenience we have introduced the Wigner func-
tion in Eq. (1.5) in such a way that is proportional to the function introduced by Wigner in
a somewhat ad hoc manner. To find the position probability density we integrate the Wigner
function over the momentum

|ψ (q)|2 =
1

2π~

∫ ∞

−∞

dpWρ (q, p) , (1.6)

and to find the momentum distribution we integrate over the position

|ψ (p)|2 =
1

2π~

∫ ∞

−∞

dqWρ (q, p) . (1.7)

A direct result of these two equations is that the Wigner distribution satisfies∫ ∞

−∞

∫ ∞

−∞

dqdp Wρ (q, p) =
1

2π~
. (1.8)
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Fig. 1.1: Wigner function of the number state |1〉. Left: calculated. Right: as obtained experimentally by

Wineland et. al.[4].

The Wigner function is thus a probability distribution in phase space. However, even though

it is real, it is not everywhere non negative, so it is not a true probability density. For instance

the Wigner function of the harmonic oscillator number state |1〉 is found to be

W|1〉 (q, p) = 2

(
2p2

�mω
+

2q2mω
�
− 1

)
exp

(
−q2mω
�
− p2

mω�

)
(1.9)

and is plotted in Fig. 1.1. Although Wigner functions can acquire negative values one still

obtains the correct marginal distribution if the function is integrated over the entire range of the

complementary variable and multiplied by 2π� . Thus, we usually refer to the Wigner function

as a quasi probability distribution.

To prove that the Wigner function cannot be everywhere positive consider two orthogonal

states |ψ1〉 and |ψ2〉: 〈ψ1| ψ2〉 = 0. For the density operators ρ̂1 = |ψ1〉 〈ψ1| and ρ̂2 = |ψ2〉 〈ψ2| one

can show

| 〈ψ1| ψ2〉 |2 = Tr (ρ̂1ρ̂2) =
1

2π�

∫ ∞

−∞

∫ ∞

−∞
dqdp Wρ1

(q, p) Wρ2
(q, p) = 0 . (1.10)

Thus Wρ1
(q, p) and Wρ2

(q, p) cannot both be positive everywhere.

Now let us have a look at the time evolution of the Wigner function. The Wigner function

inherits its time dependence through the time dependence of the wave function as governed by

the Schrödinger equation:

i�
∂

∂t
ψ (q, t) = − �

2

2m
∂2

∂q2
ψ (q, t) + V(q)ψ (q, t) . (1.11)

This can be substituted into

∂Wρ (q, p, t)
∂t

= 2

∫ ∞

−∞
dz

[
ψ (q − z, t)

∂ψ∗ (q + z, t)
∂t

+ ψ∗ (q + z, t)
∂ψ (q − z, t)
∂t

]
e2ipz/� , (1.12)

to get, after straightforward but tedious manipulations, the so-called quantum Liouville equation

∂Wρ (q, p, t)
∂t

= −
{
Wρ,WH

}
− �

2

24

∂3V
∂q3

∂3Wρ (q, p, t)
∂p3

+ ... . (1.13)
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The above equation is the classical Liouville equation (1.2) with the addition of extra correction
terms that depend on powers of ~ and higher order derivatives of potential. Thus for systems
with vanishing third and higher order derivatives of the potential, like the harmonic oscillator,
the evolution of the system is classical. Moreover the quantum Liouville equation shows a
quantum-classical correspondence: for ~ → 0 the higher order corrections vanish and we are
left with the classical Liouville equation.

The Wigner function is only one of an infinite number of possible quasi probability distri-
butions. A serious obstacle in associating a quantum observable f̂ to the phase space function
W f (q, p) is that, although the classical variables q and p commute, the quantum operators q̂ and
p̂ do not commute: [

q̂, p̂
]

= q̂p̂ − p̂q̂ = i~ 1l . (1.14)

For instance for the classical phase space function q2 p2 we cannot simply replace q and p with
the operators q̂ and p̂ since there are many possible ways to order the operators. For instance
two of the possible quantized versions of q2 p2 are q̂p̂2q̂ and 1

2

(
q̂2 p̂2 + p̂2q̂2

)
which are not equal.

In order to overcome this problem an ordering rule must be considered in any quantization
scheme. In this thesis, we will work exclusively with the so-called Weyl ordering. According
to the Weyl rule the quantized form of the polynomial q2 p2, is 1

4

(
q̂2 p̂2 + 2q̂p̂2q̂ + p̂2q̂2

)
. This

ordering produces the Wigner function given in Eq. (1.5). Other common orderings are the
normal and anti-normal orderings, which correspond respectively to the Husimi Q-function and
to the Glauber-Sudarshan P function.

In general, the phase space symbol W f (q, p) of a given symmetric-ordered operator f̂ is most
conveniently related to the trace of the operator by the so-called quantization kernel ŵ(q, p):

W f (p, q) = 2Tr
(
ŵ(q, p) f̂

)
. (1.15)

The Wigner function of Eq.(1.5) is then written as

Wρ (q, p) = 2Tr (ŵ(q, p)ρ̂) = 2 〈ψ| ŵ (q, p) |ψ〉 . (1.16)

The quantization kernel is different for different orderings, and different for different physical
systems. For the symmetric ordering in position-momentum space, the kernel is conveniently
given in the form [5]

ŵ (q, p) = D̂ (q, p) P̂ D̂† (q, p) , (1.17)

where
D̂ (q, p) = exp

[
i (pq̂ − qp̂)/~

]
(1.18)

is a unitary displacement operator and P̂ is a parity operator

P̂ =

∫
dq |−q〉 〈q| =

∫
dp |−p〉 〈p| . (1.19)

The quantization kernel also allows us to go from phase space to operators. In general, for
a given function W f (q, p), the corresponding symmetric-ordered operator is given by the Weyl
quantization as

f̂ =
1
π~

∫
dqdp ŵ (q, p) W f (q, p) . (1.20)

The Wigner transform of Eq. (1.15) and Weyl quantization are inverse of each other.
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One can show

ŵ (q, p) |q′〉 = e2ip(q−q′)/~ |2q − q′〉 , ŵ (q, p) |p′〉 = e−2iq(p−p′)/~ |2p − p′〉 . (1.21)

Thus Tr (ŵ (q, p)) = 1
2 and

Tr
(
ŵ (q, p) ŵ

(
q′, p′

))
= π~δ

(
2q − 2q′

)
δ
(
p − p′

)
. (1.22)

Therefore for an operator f̂ , one can write the trace as:

Tr
(

f̂
)

=

∫
dq′ 〈q′| f̂ |q′〉 =

1
2π~

∫
dq dp W f (q, p) . (1.23)

This corresponds to integrating the corresponding function in phase space over the entire phase
space. For Â = f̂ ĝ one can show

Tr
(
Â
)

= Tr
(

f̂ ĝ
)

=
1

2π~

∫
dq dp W f (q, p) Wg (q, p). (1.24)

Now let us show how the phase space formulation of quantum mechanics resembles the
Hamiltonian formulation of classical mechanics. In quantum mechanics the expectation value
of an operator f̂ is calculated by

〈 f̂ 〉 = Tr
(

f̂ ρ̂
)
. (1.25)

Eq. (1.24) then gives

〈 f̂ 〉 =
1

2π~

∫
dqdpW f (q, p) Wρ (q, p) . (1.26)

Therefore the expectation value of a quantum observable f̂ can be expressed as the average
of a classical function W f (q, p) over the phase space with Wigner quasi distribution function
as the distribution function, and is similar to the calculation of expectation values in classical
mechanics.

1.3 Harmonic oscillator coherent states

Coherent states are of central importance to quantum mechanics. The concept of what is now
called coherent states was proposed by Schrödinger [6] in connection with the classical states
of the quantum harmonic oscillator. It was Glauber [7] who first used the term coherent states
for the eigenstates of the annihilation operator â. He used the coherent states to study the
electromagnetic correlation functions, which are of great importance in quantum optics.

For the harmonic oscillator coherent state |α〉 we have

â |α〉 = α |α〉 , (1.27)

where α is an arbitrary complex number. As always the annihilation and creation operators, â
and â†, have the property that

â |n〉 =
√

n |n − 1〉 , â† |n〉 =
√

n + 1 |n + 1〉 , (1.28)

where |n〉 is the number state, that is, â†â |n〉 = n |n〉. They satisfy the commutation relations[
â, â†

]
= 1l ,

[
â†, â†

]
= [â, â] = 0 . (1.29)
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Fig. 1.2: Wigner function of the vacuum state |0〉 (left), and harmonic oscillator coherent state |α〉 for
x̄ = p̄ = 2

One other way to define the coherent state of the harmonic oscillator which is the one we
will use and generalize, is as a displaced vacuum state i.e. as resulting from the action of the
displacement operator D̂ (α) on the vacuum state |0〉,

|α〉 = D̂ (α) |0〉 , D̂ (α) = eαâ†−α∗â , (1.30)

where D̂ (α) is a unitary transformation, D̂−1 (α) = D̂† (α). When expressed in terms of p and q,
D̂(α) is exactly given in Eq. (1.18). Physically D̂ (α) is a translation operator: for x̂ and p̂ the
dimensionless operators defined as

x̂ =
1
2

(
â + â†

)
, p̂ =

1
2i

(
â − â†

)
, (1.31)

we have

D̂−1 (α) x̂D̂ (α) = x̂ + Re (α) ,
D̂−1 (α) p̂D̂ (α) = p̂ + Im (α) . (1.32)

As a result
x̄ = 〈α| x̂ |α〉 = Re (α) , p̄ = 〈α| p̂ |α〉 = Im (α) . (1.33)

One can obtain the Wigner function of the coherent state |α〉 as

W|α〉 (α) = 2 exp
(
−2(x − x̄)2

− 2(p − p̄)2
)
. (1.34)

Comparing with the Wigner function of the vacuum state |0〉, given by

W|0〉 (α) = 2 exp
(
−2x2 − 2p2

)
, (1.35)

it is clear that the coherent state is a displaced vacuum state, as illustrated in Fig. 1.2. This
figure shows the Wigner functions of the vacuum state |0〉 and coherent state |α〉. For both of
these cases the Wigner function is positive.
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1.4 Harmonic oscillator squeezed states

The uncertainty relation for the operators x̂ and p̂, with
[
x̂, p̂

]
= i

2 1l, is

(∆x̂)2(∆ p̂)2
≥

1
16

. (1.36)

For coherent states |α〉 the variances of position and momentum are equal,

(∆x̂)2 = (∆ p̂)2 =
1
4
. (1.37)

However, there exists a set of states for which (∆x̂)2 or (∆p̂)2 is smaller than 1
4 . States for

which this occurs will have less uncertainty in position or momentum than a coherent state.
These states are called squeezed states. Of course, the fluctuations in the other variable must be
enhanced so as to not violate the uncertainty relation.

Generally, squeezing occurs when the variance is less than 1
4 along any direction in the x− p

plane. We now introduce the operator x̂θ in the x − p plane [8]

x̂θ = eiθâ†â x̂e−iθâ†â = x̂ cos θ + p̂ sin θ , (1.38)

where 0 ≤ θ ≤ 2π. Special cases are x̂0 = x̂ and x̂π/2 = p̂. The squeezing parameter is then
defined as

ξ = min (∆x̂θ)2 , (1.39)

which is the minimum value of (∆x̂θ)2 with respect to θ. If ξ < 1
4 the state for which the variance

is calculated is squeezed.
One of the ways to generate a squeezed state is through the action of the so-called squeezing

operator Ŝ (r) on the vacuum state |0〉,

|r〉 = Ŝ (r) |0〉 , Ŝ (r) = exp
[ r
2

(
â2 − â†2

)]
(1.40)

where r is a real parameter.
One can show

Ŝ † (r) âŜ (r) = â cosh r − â† sinh r, Ŝ † (r) â†Ŝ (r) = â† cosh r − â sinh r . (1.41)

This leads to
(∆x̂)2 =

1
4

e−2r, (∆p̂)2 =
1
4

e2r . (1.42)

Thus for r > 0 ( resp. r < 0) the operator x̂ (resp. p̂) is squeezed.
The Wigner function of the squeezed vacuum state is calculated to be

W|r〉 (x, p) = 2 exp
(
−

x2

2(∆x)2 −
p2

2(∆p)2

)
, (1.43)

and is plotted in Fig. 1.3(left) for r = 1
2 . It is a Gaussian, narrowed in the direction of squeezing

and expanded in the orthogonal direction. Note that for the squeezed vacuum state the Wigner
function is non negative.
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Fig. 1.3: Wigner function of the squeezed state |r〉 for r = 1
2 (left) and the Wigner function of the dis-

placed squeezed state |r, α〉 for r = 1
2 and x̄ = p̄ = 2 (right).

A more general squeezed state can be obtained by applying the displacement operator D̂ (α)
on the vacuum squeezed state |r〉,

|α, r〉 = D̂ (α) Ŝ (r) |0〉 . (1.44)

This is called displaced squeezed state. The Wigner function of the x-squeezed state displaced
by x̄ = p̄ = 2 is plotted in Fig. 1.3 (right).

As we have already mentioned squeezing can occur in any direction in the x − p plane. Fig.
1.4 shows the Wigner function of the rotated squeezed state

|r, α;ϕ〉 = T̂ (ϕ) |r, α〉 , T̂ (ϕ) = eiϕâ†â , (1.45)

for r = 1
2 , ϕ = 1

4π and x̄ = p̄ = 0 for the plot on the left and x̄ = p̄ = 2 for the right plot. The
Wigner function for this state is

W|r,α;ϕ〉 (x, p) = 2 exp

−
(
xϕ − x̄

)2

2(∆x)2 −

(
pϕ − p̄

)2

2(∆p)2

 (1.46)

where
xϕ = x cosϕ + p sinϕ, pϕ = p cosϕ − x sinϕ . (1.47)

Squeezing can also be produced experimentally using a nonlinear transformation, for in-
stance generated by the so-called Kerr Hamiltonian [9]

Ĥ = κâ†2â2 . (1.48)

This Hamiltonian is not of the form of squeezing operator given in Eq. (1.40) but still produces
squeezing.
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Fig. 1.4: Wigner function of the rotated squeezed state |r, α;ϕ〉 for r = 1
2 , ϕ = 1

4π and x̄ = p̄ = 0 (left)
and x̄ = p̄ = 2 (right)

Squeezed states of light have lots of applications; aside from its intrinsic usefulness in car-
rying out fundamental experiments in optical physics, there are a number of general areas in
which the use of squeezed light are advantageous. These include spectroscopy [10], interfer-
ometry [11], precision measurement [12], optical communications [13] and enhancement the
sensitivity of gravity-wave detectors [14]. The LIGO gravitational wave detector uses interfer-
ometry and squeezed states and is sufficiently sensitive to detect movements as small as 10−18m,
i.e., one thousandth the diameter of a proton.

1.5 Motivation and organization of the thesis

The original work of [2] and [3] has been expanded well beyond semiclassical dynamics to
include quantum optics [15], [16], [17], [18], quantum chemistry [19], classical optics [20],
[21], signal analysis [22], [23], speech analysis [24],[25], data analysis [26]and other areas:
there is now a huge literature on Wigner function that uses Eq. (1.5) as a starting point. Various
types of Wigner functions have been derived, each suited to the particular need of a problem
[27], [28]. Some applications to quantum mechanics in phase space are reviewed in [29], [30],
[31]. A collection of original papers can be found in [32]. This list of reference is by no means
exhaustive: more than 4800 papers can be found on Web of Science on this topic in the last 20
years.

In this thesis we use phase space methods in the semiclassical limit to describe squeezing in
S U(2) and S U(3) systems. The semiclassical calculations for the evolution of S U(3) Wigner
functions under a non-linear su(3) Hamiltonian were published in [33] and represent the first
calculations of this kind in S U(3) systems.

The S U(3) evolution depends on a Poisson bracket obtained by Medendorp and de Guise
shortly before I arrived. I have verified their expression, starting from scratch and by verifying
that the bracket of two symbols of generators is proportional to the symbol of the commutator.
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The symbols are obtained from a quantization kernel, found in [34]. These were published in
[33] but are otherwise original.

The time evolutions that we consider result in a deformed Wigner function (deformed in a
sense to be explained later). The original results included in this thesis also include the evalu-
ation of a squeezing parameter as a function of time. One example of this kind of calculation
was included in [33]. The thesis also includes an additional case that will be included in a
forthcoming paper.

Many of the results on S U(3) were strongly inspired by similar results obtained by Klimov
and collaborators for spin (or S U(2)) systems. Going from S U(2) to S U(3) is an interesting
technical challenge; the thesis is constructed by first presenting results for S U(2) and then
(sometimes in parallel with S U(2)) results for S U(3). Presenting the material in this way often
clarifies and motivates definitions initially suggested in the context of the harmonic oscillator or
S U(2) systems. Although the results on S U(2) are not original, many of them were re-derived
separately to gain experience in preparation for challenging S U(3) calculations, to illustrate
some basic ideas or to complement the work on S U(3). Finally, harmonic oscillator and S U(2)
Wigner functions are easily plotted, which makes some of the more abstract concepts easier to
grasp.

The remainder of the thesis is organized in two parts. In the first part, we obtain the Wigner
functions and required phase space functions for each of S U(2) and S U(3) systems, and derive
the Liouville-like equation for the appropriate Wigner functions in the semiclassical limit.

Much like mentioned for the general potential V(q) in section 1.2, the equations of motion
for the density matrix usually contain the Poisson bracket as leading term, plus some correction
terms. For S U(2) and S U(3) systems, these correction terms are respectively inverse powers
of j, the angular momentum of the S U(2) system and of inverse powers of λ, the number of
excitation in the 3 dimensional system. For sufficiently large j and λ the equations of motion
truncated at the Poisson bracket are a good approximation to the exact evolution for short times.

In the second part we show that squeezing can be described in the semiclassical limit i.e.
by ignoring quantum correction terms in the equation of motion of the Wigner function. For
squeezing in S U(2) systems several criteria has been defined so far. We choose a well known
criterion suggested in [35], similar to the definition of squeezing we presented here in this
chapter for harmonic oscillator systems. We define our squeezing criterion for S U(3) systems
in the similar manner.



2. A CLOSER LOOK AT THE GENERAL PHASE SPACE
FORMULATION OF QUANTUM MECHANICS

In this chapter at first we use coherent states to define the phase space of the system. We then
discuss general formulation of phase space functions and their properties via the Stratonovich-
Weyl correspondence. To make the phase space formulation of quantum mechanics an au-
tonomous formulation a new product called star product must be defined between the phase
space functions which will be discussed in the last section of this chapter.

2.1 Generalized coherent states and the definition of quantum phase space

It was Perelomov [36] who proposed the most useful generalization of coherent states for ar-
bitrary Lie groups. His approach preserves important features of harmonic oscillator coherent
states but also allows generalization to finite dimensional Hilbert spaces and emphasizes the
role of group transformations and associated geometry in the construction of coherent states.
The basic theme of this development was to intimately connect the coherent states with the
dynamical group for each physical problem.

For instance, the commutation relations of â, â† and 1l define the Heisenberg-Weyl Lie alge-
bra hw(1). Transformations generated by exponentiation of these elements form Heisenberg-
Weyl group, HW(1). The next ingredient of Perelomov’s construction is a special state, the
vacuum state |0〉. The HW(1) group transformation D(α), introduced in chapter 1, acts on |0〉
produces the coherent state.

This is generalized as follows for spin system. The algebra is the su(2) algebra, with elements
Ŝ x, Ŝ y and Ŝ z satisfying the usual commutation relations[

Ŝ x, Ŝ y

]
= iŜ z,

[
Ŝ y, Ŝ z

]
= iŜ x,

[
Ŝ z, Ŝ x

]
= iŜ y . (2.1)

The exponentiation of a general element of the algebra produces a group transformation. When
this group transformation acts on the spin state | j, j〉, we obtain an S U(2) coherent state. An
S U(2) transformation can always be written in the factored form Rz (ϕ) Ry (θ) Rz (γ) where
Rk (ϕ) = e−iŜ kϕ denotes a rotation about the k axis through the angle ϕ. Because Rz (γ) | j, j〉
is just | j, j〉 multiplied by a constant phase factor, we can eliminate this phase so that an S U(2)
coherent state depends on only two angles and can be written as:

|ϕ, θ〉 = Rz (ϕ) Ry (θ) | j, j〉 . (2.2)

Thus, the role of the displacement operator D̂(α) of the harmonic oscillator problem is played
by the transformation Rz(ϕ)Ry(θ) in S U(2) and the role of the vacuum state |0〉 is played by the
angular momentum state | j, j〉.

As shown in [37], this definition of a coherent state can be extended to any group. The
construction is straightforward. The coherent state is simply obtained by applying a unitary
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transformation to an extremal state, a state which is killed by every raising or every lowering
operator.

Now let us show how we can determine the phase space of a physical system using the
concept of coherent states. The coherent state approach is not just a convenient mathematical
tool, but it also helps to understand how physical properties of the system are reflected by the
geometrical structure of the related phase space [38].

Imagine the Hamiltonian for a system is expressed as a polynomial in elements of an algebra
g. As an example for su(2) the algebra elements are Ŝ x, Ŝ y and Ŝ z so a possible Hamiltonian
might be S 2

z or some other polynomial. Then we say that g is the dynamical algebra of the
system and G is the dynamical group of the system. Suppose now that T (g) is a k × k matrix
representing the element g in the abstract group. For simplicity, we suppose that it is not possible
to make a change of basis in the k-dimensional space so that T (g) becomes block diagonal, i.e.
it is not possible to find a new basis where

T (g) =

(
T1 (g) 0

0 T2 (g)

)
. (2.3)

This is not a big assumption: if T (g) can be written as block diagonal for every element g, then
we work in T1(g) and T2(g) separately. When T (g) cannot be brought to block diagonal form, it
is said to be irreducible. A coherent state is then defined by picking an element g in the group
and acting with its matrix representation T (g) on a special state |ψ0〉

|ψg〉 = T (g) |ψ0〉 , g ∈ G . (2.4)

The state |ψ0〉 is chosen so it is killed either by every lowering operator or every raising operator.
Thus, for the harmonic oscillator, one chooses |ψ0〉 to be the vacuum state, killed by â. For spin
systems, one chooses |ψ0〉 to be the m = j state | j, j〉 which is killed by the raising operator
Ŝ + = Ŝ x + iŜ y.

In practice, Eq. (2.4) can be simplified. Within the set of group elements, there is a subset
with the property that T (h) |ψ0〉 returns |ψ0〉 up to a phase:

T (h) |ψ0〉 = eiφ(h)
|ψ0〉 . (2.5)

This subset of elements forms a subgroup H of the groupG. For instance the subset of elements
of the form Rz(γ) form a subgroup of S U(2); elements in the subset have the property that

Rz (γ) | j, j〉 = e−iŜ zγ | j, j〉 = e−iγ j | j, j〉 . (2.6)

As we mentioned before an element of S U(2) can be factorized in the form Rz (ϕ) Ry (θ) Rz (γ).
Since Rz (γ) | j, j〉 ∝ | j, j〉, we can eliminate this part in the factorization and see that a coherent
state for S U(2) can be written more simply as Rz (ϕ) Ry (θ) | j, j〉. Thus, for S U(2), H = U(1)
and S U(2) coherent states are given by Eq. (2.2).

Every element g ∈ G can be written as a product g = Ω · h where h is in H and Ω is the group
element g · h−1 which is in the coset spaceM = G/H. Using this factorization of g, we see that
two elements g1 = Ω1 · h1 and g2 = Ω2 · h2 will produce the same coherent state (up to a phase),
if Ω1 = Ω2. Thus, distinct coherent states are really labeled by Ω’s, not g’s.

Using notions of geometry beyond the scope of this thesis, one can show that the cosets M
can be considered as a geometrical space (called the coset space) with properties of a classical
phase space [38]. For the case of S U(2) we have g = Rz(ϕ)Ry(θ)Rz(γ), Ω = Rz (ϕ) Ry (θ) and
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h = Rz (γ). Thus the S U(2) coherent states |ϕ, θ〉 are determined by ϕ and θ in the cosetM. The
phase space of S U(2) system is S U(2)/U(1); one can show that this is geometrically identical to
the 2-dimensional sphere [39], with θ the polar angle and ϕ the azymuthal angle on the sphere.

The two other examples that are given in this thesis are the harmonic oscillator coherent
states, defined on the complex plane C = HW(1)/U(1), and the S U(3) coherent states, defined
on the 4-dimensional sphere S 4 = S U(3)/U(2).

2.2 Stratonovich Weyl correspondence

According to the Stratonovich Weyl correspondence [40] an operator f̂ in the Hilbert space �
is mapped to a family of functions W (s)

f (Ω), called phase space symbols, on the phase spaceM.
The index s here is related to the ordering of the operators. In this thesis we always consider the
symmetric ordering of the operators which for historical and convenience reasons is denoted by
the index s = 0. With this blanket assumption we will no longer use the index s to lighten the
notation.

It is desirable for the symbol W f (Ω) to possess the following physically motivated properties
[41]:
1. Linearity. The Hilbert space of a quantum mechanical system is linear. To preserve this the
symbol for the sum of two operators should be the sum of the individual symbols:

W f +g (Ω) = W f (Ω) + Wg (Ω) . (2.7)

2. Reality. In order to guarantee that the symbol of an observable (i.e. a hermitian operator) be
a real function, one requires

W f † (Ω) =
(
W f (Ω)

)∗
. (2.8)

3. Normalization. This results in the constant function 1 as the symbol of the identity operator
1l ∫

dµ (Ω) W f (Ω) = Tr
(

f̂
)

(2.9)

where dµ (Ω) is the invariant measure on the coset.
4. Covariance. This means that the phase space symbol of a transformed operator is the same
as the symbol of the original operator but at the transformed point

WT (g) f̂ T (g)† (Ω) = W f (g ·Ω) . (2.10)

This property has been used in chapter 1 to find the Wigner function of the rotated squeezed
state.
5. Traciality. The tracing condition assures that the statistical average of the phase space symbol
W f (Ω) coincides with the quantum expectation value of the operator f̂∫

dµ (Ω) W f (Ω) Wg (Ω) = Tr
(

f̂ ĝ
)
. (2.11)

The linearity is taken into account if we implement the map by

W f (Ω) = Tr
(

f̂ ŵ (Ω)
)
, (2.12)
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where ŵ (Ω) is an operator-valued function on the phase space M called quantization kernel.
The traciality condition (2.11) is then taken in to account if

f̂ =

∫
dµ (Ω) W f (Ω) ŵ (Ω) (2.13)

and conditions (2.8) to (2.10) are satisfied by the following constraints on the quantization
kernel

ŵ (Ω) = (ŵ (Ω))† , (2.14)

Tr [ŵ (Ω)] = 1 , (2.15)

T (g)ŵ (Ω) T (g)† = ŵ
(
g−1 ·Ω

)
. (2.16)

Substituting f̂ and ĝ from Eq. (2.13) into (2.11) we obtain the following condition on the
quantization kernel,

Tr
[
ŵ (Ω) ŵ

(
Ω′

)]
= ∆

(
Ω,Ω′

)
(2.17)

where ∆ (Ω,Ω′) is called reproductive kernel and behaves like a δ function onM:

ŵ
(
Ω′

)
=

∫
dµ (Ω) ∆

(
Ω,Ω′

)
ŵ (Ω). (2.18)

Eq. (2.17) is the generalization of Eq. (1.22) in chapter 1. Within this framework, the quantiza-
tion kernel for S U(2) and S U(3) systems were constructed in [34].

2.3 Star product and Moyal bracket

A final feature of the phase space formulation is the need to introduce a new kind of product
rule, called the star product. In ordinary quantum mechanics, operators do not necessarily
commute. On the other hand, operators are mapped to phase space functions of commuting
variables. Thus, to preserve features related to the non-commutative nature of the operators,
one must redefine the combination rules for the phase space functions. The star product of two
symbols, WX (Ω) ? WY (Ω), is defined as

WXY (Ω) = WX (Ω) ? WY (Ω) (2.19)

The star product is associative,

WX (Ω) ?
(
WY (Ω) ? WZ (Ω)

)
=

(
WX (Ω) ? WY (Ω)

)
? WZ (Ω) , (2.20)

but noncommutative,
WX (Ω) ? WY (Ω) , WY (Ω) ? WX (Ω) . (2.21)

The so-called Moyal bracket, defined as the symbol of the commutator, W[X̂,Ŷ], is written{
WX,WY

}
M ≡ W[X̂,Ŷ] = WX ? WY −WY ? WX. (2.22)

The von Neumann equation,

i~
∂ρ̂

∂t
=

[
Ĥ, ρ̂

]
, (2.23)
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in which Ĥ is the Hamiltonian of the system and ρ̂ is the density matrix, becomes a Liouville-
like equation in the Moyal bracket for the Wigner quasi distribution function, the phase space
symbol of the density operator,

i~
∂

∂t
Wρ (Ω) =

{
WH (Ω) ,Wρ (Ω)

}
M

= W[Ĥ,ρ̂]. (2.24)

In the next chapters, where the semiclassical dynamics of S U(2) and S U(3) systems will be
discussed, this classical-like equation will be used. In particular, we will see that, under some
assumptions that are reasonable for the physics of squeezing, the Moyal bracket can be approx-
imated by the Poisson bracket, with correction terms going to zero in the ”classical limit” of
large representations, much like the correction terms of Eq.(1.13) go to zero in the limit where
~ goes to zero.



3. S U(2) SEMICLASSICAL DYNAMICS

In this chapter we discuss dynamics of spin systems in the semiclassical regime. In spin systems
the observables are spin operators Ŝ x, Ŝ y, Ŝ z and their powers. The spin operators have the
commutation relations of su(2) algebra; hence the dynamical group of spin systems is the S U(2)
group. Systems of two level atoms and linear lossless passive device having two input ports and
two output ports like beam splitters can be described by the group S U(2). After giving some
details on the su(2) algebra, S U(2) group and S U(2) coherent states, the phase space symbol of
su(2) generators will be obtained. We write the quantum Liouville equation in terms of Poisson
bracket and show that for large spin numbers j we can ignore quantum correction terms. Finally
the semiclassical dynamics of spin systems under a linear and a nonlinear Hamiltonian will be
discussed.

The results of this chapter are fully compatible with [42] in which discrete optical systems
has been investigated using S U(2) from a different perspective without using tensor operators
on the group but functions. The fact that the two points of view are equivalent is discussed in
[43].

3.1 su(2) algebra and S U(2) group

The su(2) algebra is spanned by 2 × 2 traceless hermitian matrices. The su(2) algebra is con-
structed from spin operators Ŝ x, Ŝ y and Ŝ z with 2 × 2 matrix representation

Ŝ x =
1
2

(
0 1
1 0

)
, Ŝ y =

1
2

(
0 −i
i 0

)
, Ŝ z =

1
2

(
1 0
0 −1

)
. (3.1)

These operators and any real combination of them are called generators of the su(2) algebra.
The su(2) operators in Eq. (3.1) have the following commutation relations[

Ŝ x, Ŝ y

]
= iŜ z,

[
Ŝ y, Ŝ z

]
= iŜ x,

[
Ŝ z, Ŝ x

]
= iŜ y . (3.2)

The commutator of any two arbitrary generators is another linear generator. It is convenient to
introduce su(2) ladder operators

Ŝ ± = Ŝ x ± iŜ y , (3.3)

which have the commutation relations:[
Ŝ z, Ŝ ±

]
= ±Ŝ ±,

[
Ŝ +, Ŝ −

]
= 2Ŝ z. (3.4)

The action of the ladder operators Ŝ ± on the states | j,m〉 is as follows:

Ŝ ± | j,m〉 =
√

( j ∓ m) ( j ± m + 1) | j,m ± 1〉 . (3.5)
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By exponentiating the generators of the su(2) algebra we obtain the elements of the S U(2)
group. The set of 2× 2 unitary matrices with determinant 1 forms the group S U(2). The matrix
multiplication is the group operation. In general any S U(2) element can be written as

g =

(
a −b
b∗ a∗

)
, |a|2 + |b|2 = 1 , (3.6)

where a and b are complex numbers. In particular by writing

a = |a| e−iξa , b = |b| e−iξb , (3.7)

and defining,
|a| = cos (θ/2) , |b| = sin (θ/2) , (3.8)

then

g =

(
cos (θ/2) e−iξa − sin (θ/2) e−iξb

sin (θ/2) eiξb cos (θ/2) e−iξa

)
=

(
e−iϕ/2 0

0 eiϕ/2

) (
cos (θ/2) − sin (θ/2)
sin (θ/2) cos (θ/2)

) (
e−iγ/2 0

0 eiγ/2

)
, (3.9)

where ξa = 1
2 (ϕ + γ), ξb = 1

2 (ϕ − γ). From Eq. (3.1) one can verify that(
e−iϕ/2 0

0 eiϕ/2

)
= e−iϕŜ z ,

(
cos (θ/2) − sin (θ/2)
sin (θ/2) cos (θ/2)

)
= e−iθŜ y . (3.10)

Therefore a general element of the S U(2) group can be written as

R (ϕ, θ, γ) = Rz (ϕ) Ry (θ) Rz (γ) , (3.11)

with
Rz (ϕ) = e−iϕŜ z , Ry (θ) = e−iθŜ y . (3.12)

There exists a very interesting connection between the algebra of spin systems and the al-
gebra of two dimensional harmonic oscillator [44]. Using creation and destruction operators
â1, â

†

1, â2 and â†2 and the number operators n̂1 = â†1â1 and n̂2 = â†2â2 for the 2 dimensional har-
monic oscillator we note the commutation relations in Eq. (3.4) are reproduced if one identifies

Ŝ + ≡ â†1â2 , (3.13)

Ŝ − ≡ â†2â1 , (3.14)

Ŝ z ≡
1
2

(
â†1â1 − â†2â2

)
= 1

2 (n̂1 − n̂2) . (3.15)

Using this harmonic oscillator realization the states | j,m〉 can be written as |n1, n2〉 with

Ŝ + |n1, n2〉 =
√

(n1 + 1) n2 |n1 + 1, n2 − 1〉 , (3.16)

Ŝ − |n1, n2〉 =
√

n1 (n2 + 1) |n1 − 1, n2 + 1〉 , (3.17)
Ŝ z |n1, n2〉 = 1

2 (n1 − n2) |n1, n2〉 . (3.18)

The ladder operators Ŝ ± keep the total number n = n1 + n2 constant. From Eq. (3.18) it is clear
that m = 1

2 (n1 − n2). On the other hand we know that, for the state | j, j〉 ( killed by the raising
operator Ŝ + ) we have j = m. In terms of harmonic oscillator kets, the state killed by Ŝ + is |n, 0〉
with n = n1 + n2. For this state Ŝ z |n, 0〉 = 1

2n |n, 0〉 therefore j = 1
2 (n1 + n2).

For a spin 1
2 system, n1 and n2 specifies the number of particles with spin up or down,

respectively. Ŝ ± destroys one unit of spin down(resp. up) and creates one unit of spin up(resp.
down).
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3.2 S U(2) or spin coherent states

S U(2) coherent states are constructed by the action of the rotation operator of Eq. (3.11) on the
extremal state | j, j〉 [45]. Ignoring the phase factor that results from the action of Rz(γ) on | j, j〉,
the S U(2) coherent states can be written as

|ϕ, θ〉 = Rz (ϕ) Ry (θ) | j, j〉 (3.19)

=

j∑
m=− j

| j,m〉 〈 j,m|Rz (ϕ) Ry (θ) | j, j〉

=

j∑
m=− j

| j,m〉D j
m, j (ϕ, θ, 0) , (3.20)

where D j
m, j (ϕ, θ, γ) is the S U(2) Wigner D function [46] which is defined by

D j
m, j (ϕ, θ, γ) ≡ 〈 j,m|Rz (ϕ) Ry (θ) Rz (γ) | j, j〉

= e−i(mϕ+ jγ)

√
(2 j)!

( j + m)! ( j − m)!
cos j+m

(
θ

2

)
sin j−m

(
θ

2

)
. (3.21)

The physical meaning of ϕ and θ angles is made clear by writing the spin coherent state of
Eq. (3.19) as a product of 2 j states |ϕ, θ〉i which are superposition of states of a two level system
like spin up and spin down for a spin 1

2 particle,

|ϕ, θ〉 ∝ |ϕ, θ〉1 ⊗ |ϕ, θ〉2 ⊗ ... ⊗ |ϕ, θ〉2 j , (3.22)

|ϕ, θ〉i ≡ eiϕ/2 cos
(

1
2θ

) ∣∣∣+1
2

〉
i
+ e−iϕ/2 sin

(
1
2θ

) ∣∣∣−1
2

〉
i
. (3.23)

3.3 Phase space symbols

As mentioned in previous chapter the reference state | j, j〉 is invariant under the U(1) subgroup
generated by e−iγŜ z . The resulting phase space for spin systems is the 2-dimensional sphere
S 2 = S U(2)/U(1), also called Bloch sphere. In this section we obtain phase space symbols of
S U(2) operators.

Following the prescription given in Chapter 2, the phase space symbol, WX of an operator X̂
is

WX (ϕ, θ) = Tr
(
X̂ŵ (ϕ, θ)

)
. (3.24)

For S U(2), the quantization kernel can be written as

ŵ (ϕ, θ) = Λ (ϕ, θ) P̂Λ† (ϕ, θ) , (3.25)

where Λ (ϕ, θ) ≡ Rz (ϕ) Ry (θ) and [34]

P̂ =

∫ 2π

0
dωeiωŜ z f (ω) , (3.26)

where f (ω) is a scalar function and is constructed in such a way that the quantization kernel
satisfies all the requirements we mentioned in chapter 2.
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Notice how the general form of this kernel is similar to the kernel for the harmonic oscillator
in Eq. (1.17): it is a diagonal operator P̂ that has been ”displaced” by the rotation Λ(θ, ϕ).
The operator P̂ commutes with Ŝ z so the displacement can be limited to element of the form
Rz(ϕ)Ry(θ).

Since eiωŜ z is a diagonal operator, P̂ can be expanded as

P̂ =
∑

m

c j,m | j,m〉 〈 j,m| , (3.27)

where c j,m is a factor that must be determined. An alternative, more convenient form to obtain
the result of the displacement of P̂ is to write P̂ in terms of tensor operators T̂ j

L,M. These
operators are defined as

T̂ j
L,M =

j∑
m,m′=− j

| j,m〉 〈 j,m′|CL,M
j,m; j,−m′(−1) j−m , (3.28)

where CL,M
j,m; j,−m′ is the Clebsch Gordan coefficient for S U(2),

CL,M
j,m; j,−m′ = 〈 j,m; j,−m′ | L,M〉 . (3.29)

The tensors cleanly transform as

Λ (ϕ, θ) T̂ j
L,MΛ−1 (ϕ, θ) =

L∑
M′=−L

T̂ j
L,M′D

L
M′,M (ϕ, θ, 0) . (3.30)

Technical manipulations eventually give

P̂ =

2 j∑
L=0

√
2L + 1
2 j + 1

T̂ j
L0 . (3.31)

The displacement of P̂ yields a useful form of the quantization kernel as

ŵ(ϕ, θ) =

2 j∑
L=0

√
2L + 1
2 j + 1

L∑
M=−L

DL
M0(ϕ, θ, 0)T̂ j

L,M . (3.32)

To obtain the phase space symbol of su(2) generators one conveniently expresses the gener-
ators in terms of tensor operators:

Ŝ z = N T̂10 , (3.33)
Ŝ + = −

√
2 N T̂1,1 , (3.34)

Ŝ − =
√

2 N T̂1,−1 , (3.35)

where N =

√
1
3 j ( j + 1) (2 j + 1) . Using Eqs. (3.24), (3.28), (3.32) and using the orthogonality

of tensors under trace:
Tr

(
T̂ j

L,MT̂ j′

L′,M′

)
= δ j, j′δL,L′δM,M′ (3.36)

one obtains
WS k (ϕ, θ) =

√
j ( j + 1) nk, k = x, y, z , (3.37)
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where nk are components of the unit vector

~n = (sin θ cosϕ, sin θ sinϕ, cos θ) . (3.38)

A diagonal operator like Ŝ 2
z can be written as a sum of diagonal tensors:

Ŝ 2
z = c0T̂0,0 + c2T̂2,0 , (3.39)

where

c0 =
1
3

j( j + 1)
√

2 j + 1, c2 =

√
5

15

√
(2 j + 1) (2 j − 1) (2 j + 3) j ( j + 1) . (3.40)

From these and the quantization kernel we find:

WS 2
z

(ϕ, θ) =
j ( j + 1)

3
+

1
2

√
(2 j − 1) (2 j + 3) j ( j + 1)

(
cos2θ −

1
3

)
. (3.41)

It is clear that WS 2
z

is not equal to
(
WS z

)2
.For later use, we note that similar manipulations

produce

WS 2
x
(ϕ, θ) =

j ( j + 1)
3

+
1
2

√
(2 j − 1) (2 j + 3) j ( j + 1)

(
sin2θcos2ϕ −

1
3

)
, (3.42)

which again is not the square of WS x .

3.4 Semiclassical dynamics

In this section we discuss the dynamics of S U(2) systems in phase space in the semiclassical
approximation. We use Eq. (2.24) to expand the symbol of a commutator and express this to
leading order as a Poisson bracket, ignoring quantum correction terms that occur in expansion.
Thus we need to find the relation between the symbol of a commutator and the Poisson bracket
of the symbols.

The Poisson bracket on the two-dimensional sphere S 2 can be deduced from the parametriza-
tion of S U(2) coherent states. The final result for the bracket is [47]:

{ f , g} =
1

sin θ

(
∂ f
∂ϕ

∂g
∂θ
−
∂ f
∂θ

∂g
∂ϕ

)
, (3.43)

where f and g are two functions on S 2.
If f and g are the symbols of two generators, the Poisson bracket is proportional to the

symbol of the commutator. For instance{
WS z ,WS x

}
= i

√
j( j + 1) WS y = εW[S z,S x] , (3.44)

where the proportionality factor, ε = i
√

j( j + 1), is called the semiclassical parameter. Like-
wise, if f is a polynomial in the generators and g is a generator, the Poisson bracket of the
symbols is proportional to the symbol of the commutator. For instance:{

WS 2
z
,WS x

}
= εW[S 2

z ,S x] , (3.45)
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where
W[Ŝ 2

z ,Ŝ y] =
√

(2 j − 1) (2 j + 3) j ( j + 1) cos θ sin θ sinϕ . (3.46)

However for two polynomials of degree 2 or greater in the generators, correction terms ap-
pear. For instance: {

WS 2
z
,WS 2

x

}
= εW[Ŝ 2

z ,Ŝ 2
x] + O

(
ε−2

)
. (3.47)

Operators and observables in this thesis will be expanded in terms of tensors, introduced for
su(2) in Eq. (3.28). It is thus convenient to reformulate the results of Eqs. (3.45) and (3.47)
in terms of tensors. Constant terms are proportional to the tensor with L = 0. Generators
are always proportional to tensors with L = 1, as illustrated explicitly in Eqs. (3.33)-(3.35).
Powers of generators will usually contain tensors with L > 1. Vice versa, tensors with L > 1
are proportional to linear combinations of powers of generators. Thus, Eq. (3.45) expresses the
general rule that the Poisson bracket of the symbols of a tensor with L = 1 and any other symbol
is exactly the symbol of the commutator of the tensors, while Eq. (3.47) expresses the general
rule that the Poisson bracket of the symbol of two tensors, both with L > 1, contains correction
terms.

Therefore if the Hamiltonian is linear in generators and so proportional to a combination of
L = 1 tensors, the equations of motion for the Wigner function is given exactly by the Poisson
bracket (~ = 1):

i
∂Wρ

∂t
= W[H,ρ] = ε−1

{
WH,Wρ

}
. (3.48)

If, on the other hand, the Hamiltonian is non-linear in the generators, it will generally contain
terms with L > 1. As the density operator is expected to also contain terms with L > 1,
correction terms will appear in the evolution:

i
∂Wρ

∂t
= ε−1

{
WH,Wρ

}
+ O

(
ε−3

)
, (3.49)

where the second term is a quantum correction to the classical dynamics and is of the order of
ε−3. In the semiclassical limit, ε−1 → 0 or j � 1; we can ignore the corrections beyond the
Poisson bracket and obtain a truncated Liouville evolution.

3.4.1 Linear dynamics

Equipped with the necessary tools we first investigate the dynamics of the S U(2) system for the
simplest case: the evolution of the system under linear Hamiltonian.

As an initial state we consider the atomic coherent state located along the x̂ direction,
|ϕ = 0, θ = π/2 〉. This choice of initial state will be justified on physical grounds when we
later consider the evolution under a quadratic Hamiltonian. Using Eq. (3.19) we can write

|0,
π

2
〉 =

1
2 j

j∑
k=− j

√
(2 j)!

( j + k)! ( j − k)!
| j, k〉 . (3.50)

Using Eqs (3.24), (3.28) and (3.32) the Wigner function Wρ (ϕ, θ) of the initial density operator,
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Fig. 3.1: Time evolved Wigner function in Eq. (3.51) under linear Hamiltonian Ĥ = Ŝ z at t = 0, 1 and
t = 4 for j = 5.

ρ = |0, π/2 〉 〈0, π/2 |, is obtained as

Wρ (ϕ, θ) =
(2 j)!

22 j (2 j + 1)

2 j∑
L=0

(2L + 1)
L∑

M=−L

DL
M,0 (ϕ, θ, 0)

×

j∑
m,m′=− j

C j,m′

j,m;L,M√
( j + m)! ( j − m)! ( j + m′)! ( j − m′)!

. (3.51)

Now let us see how this Wigner function evolves under a general linear Hamiltonian

Ĥ = ωzŜ z + ωxŜ x + ωyŜ y . (3.52)

This Hamiltonian can be reduced to a diagonal Hamiltonian by a transformation U,

Ĥd = U†ĤU = ωŜ z, ω =

√
ω2

x + ω2
y + ω2

z . (3.53)

Here we work with Hd and set ω = 1.
Using Eq. (3.48) we obtain

∂tWρ (θ, ϕ) = ε−1
{
WH,Wρ

}
= −

∂

∂ϕ
Wρ (θ, ϕ) . (3.54)

By the method of characteristics this partial differential equation is transformed into an ordinary
differential equation along the appropriate curve, i.e., something of the form

d
ds

Wρ (ϕ (s) , t (s)) = F
(
Wρ, ϕ (s) , t (s)

)
, (3.55)
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where (ϕ (s) , t (s)) is the characteristic. By the chain rule we have

dWρ
ds
=
∂Wρ
∂ϕ

dϕ
ds
+
∂Wρ
∂t

dt
ds
. (3.56)

Now if we set dt/ds = 1, dϕ/ds = 1 we obtain ∂Wρ/∂t + ∂Wρ/∂ϕ which, according to Eq.

(3.54), equals to zero. Thus, along the characteristic the original partial differential equation

becomes the ordinary differential equation dWρ/ds = F
(
Wρ, ϕ (s) , t (s)

)
= 0. That is to say:

along the characteristics, the solution is constant. Therefore if we set t (0) = 0 we have t = s
and ϕ (t) = t + ϕ (0). This means that if Wρ (0) = f (ϕ (0)) then Wρ (ϕ (t) , t) = f (ϕ − t). In other

words the evolved Wigner function is obtained by replacing ϕ with ϕ − t. This corresponds to a

rotation of Wigner function around ẑ axis as illustrated in Fig. 3.1.

To check the validity of our solution one can compare, for example, the variance (as a func-

tion of time) of the observable Ŝ x,

(ΔS x)
2 = 〈S 2

x〉 − 〈S x〉2 , (3.57)

calculated using the usual quantum mechanical evolution

〈Ŝ x〉 = 〈0, π
2
|eiĤtŜ xe−iĤt|0, π

2
〉 , (3.58)

and calculated using the phase space formulation,

〈Ŝ x〉 = 2 j + 1

4π

∫ π

0

sin θdθ
∫ 2π

0

dϕWS x (ϕ, θ) Wρ (ϕ − t, θ) . (3.59)

This is done on the left of Fig. 3.2. Since the classical evolution in phase space is exact for linear

Hamiltonians, both semiclassical and quantum mechanical evolutions give the same result: the

two curves on the left of Fig. 3.2 cannot be distinguished.

Fig. 3.2: Time evolution of the variance of Ŝ x,
(
ΔŜ x

)2
, calculated semiclassically using Eq. (3.59)

(dashed line) and quantum mechanically using Eq. (3.58) (solid line) for j = 5. Left plot

is the time evolution under linear Hamiltonian Ĥ = Ŝ z and right plot is the time evolution under

nonlinear Hamiltonian Ĥ = Ŝ 2
z
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3.4.2 Nonlinear dynamics

Now let us consider the simplest nonlinear Hamiltonian

Ĥ = Ŝ 2
z , (3.60)

which, in spite of its simplicity, leads to a number of interesting features such as generation of
atomic squeezed states (see chapter 5) and atomic Schrödinger cats [48], [49]. This is also the
simplest Hamiltonian for which quantum dynamics differs from semiclassical dynamics.

The semiclassical approximation is expected to work well for localized states located near
the classical minimum (in phase space) of the Hamiltonian. The symbol for WS 2

z
is given in Eq.

(3.41); its minimum is located at θ = 1
2π and ϕ = 0. One can show that for this choice of initial

states the influence of quantum corrections to the classical evolution is small [50].
For nonlinear Hamiltonians in the semiclassical limit, j � 1, we ignore quantum correction

terms in the equation of motion of the Wigner function, (3.49), and write

∂Wρ (ϕ, θ)
∂t

≈ ε−1
{
WH,Wρ

}
= −

√
(2 j + 3) (2 j − 1) cos θ

∂Wρ

∂ϕ
. (3.61)

Using the method of characteristics the time-evolved Wigner function will be obtained as

Wρ (Ω (t)) = Wρ

(
ϕ −

√
(2 j + 3) (2 j − 1) cos (θ) t, θ

)
, (3.62)

which basically means that the spherical angles evolve along classical trajectories.
The interpretation of this solution is that points located at different positions rotate about the

ẑ axis of the sphere at velocities which depend on cos θ. This leads to deformation of initial
distribution and eventually to spin squeezing as shown in Fig. 3.4. This will be discussed at
greater length in chapter 5. In Fig. 3.3 the exact quantum mechanical evolution of the Wigner
function has been plotted. The details of the calculations of the exact quantum mechanical
evolution of the Wigner function is given in appendix C.1. As can be seen from Figs. 3.4 and 3.3
at t = 0.1 the agreement between semiclassical approximation and exact quantum mechanical
is good. For larger values of t, the phase spread exceeds 2π and the front of the distribution
interferes with its tail [49]. This self-interference is a quantum effect and cannot be described
by the semiclassical approximation. As it can be seen from Fig. 3.3 at t = 0.3 several dips and
peaks appear which cannot be reproduced by the semiclassical approximation; the later dips
and peaks are due to self interference.

On the right of Fig. 3.2, the variance
(
∆Ŝ x

)2
computed using the semiclassical evolution and

using the exact quantum evolution are plotted. The semiclassical approximation describes the
evolution of the variance to a good proportion; for larger values of j the agreement between
the semiclassical and quantum evolution increases. The peak in the quantum mechanical curve
is the result of the appearance of Schrödinger’s cat states which cannot be obtained by the
semiclassical method. The semiclassical curve is able to catch the quantum mechanical curve
up to some time but after that it remains constant. It is remained constant because the evolution
of the Wigner function in the semiclassical approximation remains uniform.



3. S U(2) Semiclassical Dynamics 30

Fig. 3.3: Exact quantum mechanical evolution of the Wigner function of the initial state in Eq.(3.19) with
ϕ = 0, θ = π

2 under nonlinear Hamiltonian Ĥ = Ŝ 2
z at t = 0, 0.1 and t = 0.3 for j = 5.

Fig. 3.4: Semiclassical evolution of the Wigner function in Eq.(3.51) under nonlinear Hamiltonian Ĥ =

Ŝ 2
z at t = 0, 0.1 and t = 0.3 for j = 5.



4. S U(3) SEMICLASSICAL DYNAMICS

In this chapter we investigate dynamics of S U(3) systems under the evolution of a linear and
a nonlinear Hamiltonian in the semiclassical regime. As examples of S U(3) systems one can
consider systems of three-level atoms or three-well Bose Einstein condensate systems. The ap-
proach is a generalization of the procedure given for S U(2) in the previous chapter. The possible
dynamics of S U(3) systems is considerably richer than the corresponding S U(2) dynamics: for
instance in three-level atoms transitions between levels 1-2, 2-3 and 1-3 are possible, may or
may not be simultaneously resonant, may be restricted to pairs of levels or occur simultaneously.
The mathematical structure of S U(3) is more complicated than S U(2): S U(3) transformations
need to model the richness of the underlying possible physical processes such as those given
above.

After giving some details about the su(3) algebra, the S U(3) group and S U(3) coherent states
we use the Liouville equation written in terms of Poisson bracket to investigate the dynamics of
the system.

4.1 S U(3) group and su(3) algebra

S U(3) like S U(2), is a group. Its elements can be represented as 3 × 3 unitary matrices with
determinant 1. The group elements are constructed by exponentiating a set of 8 generators of
su(3) algebra.

4.1.1 The algebra su(3) and its generators

In the defining form the generators of su(3) algebra are 3 × 3 traceless hermitian matrices

T1 =

1 0 0
0 −1 0
0 0 0

 , T2 =

0 0 0
0 1 0
0 0 −1

 ,
T3 =

0 1 0
1 0 0
0 0 0

 , T4 =

0 −i 0
i 0 0
0 0 0

 , T5 =

0 0 1
0 0 0
1 0 0

 ,
T6 =

0 0 −i
0 0 0
i 0 0

 , T7 =

0 0 0
0 0 1
0 1 0

 , T8 =

0 0 0
0 0 −i
0 i 0

 . (4.1)

To better understand the structure of the operators it is convenient to define, much like what
was done for the operators Ŝ ± of su(2), complex linear combinations of su(3) generators that
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function as ladder operators:

E(2,−1) =
1
2

(T3 + iT4) , E(−2,1) =
1
2

(T3 − iT4) ,

E(1,1) =
1
2

(T5 + iT6) , E(−1,−1) =
1
2

(T5 − iT6) ,

E(−1,2) =
1
2

(T7 + iT8) , E(1,−2) =
1
2

(T7 − iT8) . (4.2)

Here, the indices α1 and α2 in E(α1,α2) are specified from the commutation relations of E(α1,α2)

with T1 and T2 respectively: [
Ti, E(α1,α2)

]
= αiE(α1,α2), i = 1, 2 . (4.3)

The remaining commutation relations are

[T1,T2] = 0,
[
Eα, Eβ

]
= Nα,βEα+β . (4.4)

The pair (α1, α2) ≡ α is called the root vector; the constant Nα,β is zero if α + β is not a root
vector.

Using the creation and destruction operators of the three-dimensional harmonic oscillator, âi

and â†i with i = 1, 2, 3, the abstract commutation relations of su(3) algebra can be implemented
by defining

Ĉi j = â†i â j, i, j = 1, 2, 3, i , j ,

T̂1 = â†1â1 − â†2â2, T̂2 = â†2â2 − â†3â3 . (4.5)

Using the usual commutation relation for harmonic oscillator creation and destruction operators,
we find [

Ĉi j, Ĉkl

]
= Ĉilδ jk − Ĉk jδil . (4.6)

The root vectors of Ĉi j operators are then obtained by the commutation relation of these opera-
tors with the T̂1 and T̂2 operators.

From Eq. (4.5), we see that the abstract su(3) operators are closely related to the action
of creation and destruction operators acting on the states |n1, n2, n3〉 of a three dimensional
harmonic oscillator. We see that the operator Ĉi j transfers one quantum from level j to level i,
i.e. it generates transition between levels j and i. For example, with reference to Fig. 4.1, we
see that Ĉ12 |110〉 is proportional to |200〉. It is obvious that the ladder operators Ĉi j keep the
total number N = n1 + n2 + n3 constant.

The formal correspondence between the abstract E(α1,α2) and Ĉi j operators is given in the
following table. For convenience, we call raising operators the set Ĉ12, Ĉ13, Ĉ23. The state |λ00〉
cannot be raised any more (it is killed by all raising operators) and is thus called the highest
weight state.

root vector E(2,−1) E(1,1) E(−1,2) E(−2,1) E(−1,−1) E(1,−2)

Ĉi j Ĉ12 Ĉ13 Ĉ23 Ĉ21 Ĉ31 Ĉ32

action raising raising raising lowering lowering lowering
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The root diagram in terms of Ĉi j operators is shown on the left of Fig. 4.1. The operator
associated with a specific root vector is indicated next to the root vector. The circled dot at the
center indicates that two operators, T̂1 and T̂2, should be considered as lying at the center of the
root diagram. Anticipating future discussion, we note that the subset of operators Ĉ23, Ĉ32 and
ĥ2 ≡

1
2 T̂2 have the commutation relations of su(2) thus make an su(2) subalgebra of su(3). We

denote this subalgebra by su(2)23.

Fig. 4.1: The su(3) root diagram (left) and the weight diagram of (2, 0) irrep (right). The geometry of
(λ, 0) irreps is a triangular lattice.

4.1.2 Representations of su(3)

The realization of abstract su(3) operators in terms of creation and destruction operators acting
on states of a three dimensional harmonic oscillator is a direct generalization of a similar real-
ization of su(2), described in the previous chapter. Recall that the two-dimensional harmonic
oscillator states |n1, n2〉 is equivalent to | j,m〉 where j = 1

2 (n1 + n2) specifies the representation
and m which is called the weight of the state is 1

2 (n1 − n2).
In su(3) things are more complicated. There are two diagonal operators T̂1 and T̂2, so states

are labeled by the eigenvalues of these diagonal operators called weights. These weights are
related to the harmonic oscillator excitation numbers by w1 = n1 − n2, w2 = n2 − n3. In su(2),
the representation label j is the eigenvalue of the diagonal operator Ŝ z for the state killed by Ŝ +.
In su(3), the representation labels are the eigenvalues of the diagonal operators T̂1 and T̂2 acting
on the highest weight state, the state killed by all the raising operators. For the representation
with |λ, 0, 0〉 as the highest weight state, the representation label is thus (λ, 0).

Irreps of the type (λ, 0)

As an example, we consider the irreducible representation (irrep) (1, 0). The highest weight
state is |1, 0, 0〉. The other states are obtained by the action of lowering operators on the highest
weight state; they are |0, 1, 0〉 = Ĉ21 |1, 0, 0〉 and |0, 0, 1〉 = Ĉ32 |1, 0, 0〉. As another example
consider the (2, 0) irrep. The highest weight state for this irrep is |2, 0, 0〉 and the other states
are shown on the right of Fig. 4.1.
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Irreps of the type (0, µ)

Representations of su(3) are not limited to those of the (λ, 0) type. The simplest illustration of
this comes from looking at the possible states obtained by considering two copies of the (1, 0)
representation of su(3). The nine resulting states are of the form |n1+, n2+, n3+〉+|n1−, n2−, n3−〉−,
where the indices + and − are introduced to distinguish the copies and later convenience. Defin-
ing

Ĉi j = Ĉi j+ + Ĉi j− = â†i+â j+ + â†i−â j− , (4.7)

with the ”+” operators commuting with the ”-” operators, we see that the resulting commutation
relations for the total operators Ĉi j are still those of su(3). Moreover, the state |100〉+|100〉− has
weight (2, 0) and is killed by all raising operators. It is therefore the highest weight for the
representation (2, 0). Other states in (2, 0) are obtained by acting on this highest weight with
the lowering operators. As an example consider

Ĉ21|1, 0, 0〉+|1, 0, 0〉− = |0, 1, 0〉+|1, 0, 0〉− + |1, 0, 0〉+|0, 1, 0〉− . (4.8)

All the states in (2, 0) are symmetric under interchange of the + and - index and there are 6 such
states.

In addition to the six symmetric states, one also observes that the combination |100〉+|010〉−−
|010〉+|100〉− has weight (0, 1) and is killed by all raising operators. It is thus the highest weight
for the irrep (0, 1). This state can be constructed by the creation operators â†i+ and â†i− with
i = 1, 2 as follows:

|ψ〉 =

∣∣∣∣∣∣â†2+
â†1+

â†2− â†1−

∣∣∣∣∣∣ |0〉 =
(
â†2+

â†1− − â†2−â
†

1+

)
|0〉

= |0, 1, 0〉+|1, 0, 0〉− − |1, 0, 0〉+|0, 1, 0〉− . (4.9)

There are two other states that can be reached from the above state by acting the lowering
operators:

Ĉ32 |ψ〉 = |0, 0, 1〉+|1, 0, 0〉− − |1, 0, 0〉+|0, 0, 1〉− , (4.10)
Ĉ31 |ψ〉 = |0, 1, 0〉+|0, 0, 1〉− − |0, 0, 1〉+|0, 1, 0〉− . (4.11)

The three states in (0, 1) are antisymmetric under interchange of the + and - index. Note that
although there are three states in (0, 1) irrep just like there are three states in (1, 0) irrep, the
(0, 1) is really a representation distinct from (1, 0). The set of weights for the (0, 1) irrep are
(0, 1), (−1, 0) and (1,−1) while the weights of states in (1, 0) irrep are (1, 0), (0,−1) and (−1, 1).
Since the weights are eigenvalues of the diagonal operators T̂1 and T̂2, and because eigenvalues
do not depend on the choice of basis, we see there cannot be a choice of basis that will transform
the states of (0, 1) into the states of (1, 0).

Irreps of (λ, µ) type

Finally, there is a third type of su(3) irreps. Consider the coupling of two irreps (1, 0) and (0, 1)
which is denoted by (1, 0) ⊗ (0, 1). The highest weight of the coupling can be written as

|ψ〉 = a†1+

∣∣∣∣∣∣â†2+
â†1+

â†2− â†1−

∣∣∣∣∣∣ |0〉 = a†1+

(
â†2+

â†1− − â†2−â
†

1+

)
|0〉

= |(11)1(10)2(00)3〉 − |(20)1(01)2(00)3〉 (4.12)
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where the states are denoted by |(n1+n1−)1 , (n2+n2−)2, (n3+n3−)3〉. This state is killed by all raising
operators and its weight is (1, 1). Thus it is the highest weight of the irrep (1, 1). All the other
states can be obtained by using the lowering operators of Eq. (4.7).

Fig. 4.2: Weight diagram for (1, 1) irrep of su(3). The weights are labeled by the corresponding states.
There are two different states at the center with the same weight. These states are specified by
the I label. The one that is killed by Ĉ23 has I = 0 and the other one that is obtained by the
action of Ĉ32 on the |120; 1〉 has I = 1. The geometry of (σ,σ) irreps is a hexagonal lattice.

For the irrep (1, 1) there is a feature that does not occur for (1, 0) and (0, 1). If we crank down
using Ĉ31 from the highest weight state |ψ〉 in Eq. (4.12), and crank down from |ψ〉 separately
using Ĉ32Ĉ21 we find that Ĉ31 |ψ〉 is not proportional to Ĉ32Ĉ21 |ψ〉 although both states have
identical weight (0, 0). The two states are not orthogonal either.

This is where we need another label to distinguish the states; we call it I (this label is called
the isospin in particle physics). This label is determined by the eigenvalue of ĥ2 of the highest
weight state of the su(2)23 subalgebra and is the same for all the states in that su(2)23 subalgebra.
The highest weight state of su(2)23 subalgebra is the state that is killed by Ĉ23 operator.

Thus we can label the states in (1, 1) irrep as |n1, n2, n3; I〉 in which ni = ni+ + ni−. In this
notation the highest weight state of (1, 1) is

∣∣∣210; 1
2

〉
. One can also verify that Ĉ21

∣∣∣210; 1
2

〉
is

killed by Ĉ23 and has h2 = 1 thus it is proportional to a state with I = 1. We label this state
by |120; 1〉; the state Ĉ32 |120; 1〉 must have the same value for I. Its normalized version is thus
|111; 1〉.

On the other hand the state Ĉ31

∣∣∣210; 1
2

〉
is not orthogonal to |111; 1〉; it can be written as a

linear combination of |111; 1〉 and another state ,|111; 0〉, which is killed by Ĉ23 has eigenvalue
h2 = 0 and is orthogonal to |111; 1〉. In terms of two coupled harmonic oscillator states, we have

|111; 1〉 =

√
2
3
|(01)1(10)2(10)3〉 −

1
√

6
|(10)1(10)2(01)3〉 −

1
√

6
|(10)1(01)2(10)3〉 ,(4.13)

|111; 0〉 = −
1
√

2
|(10)1(10)2(01)3〉 +

1
√

2
|(10)1(01)2(10)3〉 . (4.14)

In general an su(3) representation is of the form of (λ, µ) in which λ and µ are determined by
the highest weight state. We denote su(3) states by |(λ, µ) n1n2n3, I〉 where n1 + n2 + n3 = λ+ 2µ.
Unless we have to, we will not indicate the representation labels λ and µ, as those will usually be
clear from the context. In irreps (λ, 0) or (0, µ) the I label is redundant because the eigenvalues
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are enough to identify the states; thus the label I is not indicated. In terms of coupled harmonic
oscillator states the general state |n1n2n3, I〉 can be written as [51]

|n1n2n3, I〉 =
∑

M1,M2,M3

CI,N
1
2 ν3,M3; 1

2 ν2,M2
C

1
2λ,

1
2λ

I,N; 1
2 ν1,M1

|(n1+n1−)1, (n2+n2−)2, (n3+n3−)3〉 , (4.15)

where CJ,M
j1,m1; j2,m2

is an S U(2) Clebsch Gordan coefficient, νi = ni+ + ni− and Mi = 1
2 (ni+ − ni−)

and N = n1 + n2 + n3. For the highest weight state this turns out to be∣∣∣λ + µ, µ, 0, 1
2µ

〉
=

∑
M1,M2

C
1
2λ,

1
2λ

1
2µ,M2; 1

2 ν1,M1
|(n1+n1−)1, (n2+n2−)2, (n3+n3−)3〉 . (4.16)

4.1.3 The group S U(3) and the coherent states for (λ, 0) irreps

One can show that any S U(3) transformation R (Ω′) can be parameterized as [52]

R
(
Ω′

)
= R23

(
α1
′, β1

′,−α1
′) R12

(
α2
′, β2

′,−α2
′) R23

(
α3
′, β3

′,−α3
′) e−iγ1

′ĥ1e−iγ2
′ĥ2 , (4.17)

where ĥ1 ≡ 2T̂1 + T̂2 = 2Ĉ11 − Ĉ22 − Ĉ33 , ĥ2 ≡
1
2 T̂2 = 1

2 (Ĉ22 − Ĉ33) and Ri j transformations are
block S U(2) transformations i.e.

Ri j
(
α′, β′,−α′

)
= Ri j

z
(
α′

)
Ri j

y
(
β′

)
Ri j

z
(
−α′

)
. (4.18)

S U(3) coherent states are, as always, defined as the unitary transformation of the highest
weight state. For (λ, 0) irrep, with highest weight |λ, 0, 0〉, we therefore have

|Ω′〉 = R
(
Ω′

)
|λ, 0, 0〉 . (4.19)

In Eq. (4.19) we have

R23
(
α3
′, β3

′,−α′3
)

e−iγ1
′ĥ1e−iγ2

′ĥ2 |λ, 0, 0〉 = e−2iγ1
′λ |λ, 0, 0〉 . (4.20)

Ignoring the above phase factor, and using the completeness relation

λ,∑
n1=0,

λ−n1∑
n2=0

|n1, n2, n3〉 〈n1, n2, n3| = 1, n3 = λ − n1 − n2 , (4.21)

the S U(3) coherent states can be written as

|Ω′〉 = R23
(
α1
′, β1

′,−α1
′) R12

(
α2
′, β2

′,−α2
′) |λ, 0, 0〉

=

λ∑
n2=0

n2∑
n3=0

|λ − n2, n2 − n3, n3〉D
1
2λ
1
2λ − n2,

1
2λ

(
α2
′, β2

′,−α2
′) D

1
2n2
1
2n2 − n3,

1
2n2

(
α1
′, β1

′,−α1
′) ,

(4.22)

where D j
m,m′ functions are S U(2) Wigner D functions given in Eq. (3.21).

The S U(3) coherent states of Eq. (4.22) can be written as the product of λ states |Ω′〉i which
are the superposition of states of a three level system;

|Ω′〉 ∝ |Ω′〉1 ⊗ |Ω
′〉2 ⊗ ... ⊗ |Ω

′〉λ , (4.23)
|Ω′〉i ≡ cos

(
1
2β2

′
)
|100〉i + eiα2

′

cos
(

1
2β1

′
)

sin
(

1
2β2

′
)
|010〉i + ei(α1

′+α2
′) sin

(
1
2β1

′
)

sin
(

1
2β2

′
)
|001〉i .
(4.24)



4. S U(3) Semiclassical Dynamics 37

4.2 Phase space symbols

The highest weight state for (λ, 0) irreps of S U(3) , |λ, 0, 0〉, is invariant under transformation
of the subgroup H = U23(2). Following the discussion in chapter 2, the phase space of (λ, 0)
irreps is thusM = S U (3)/U23 (2) ∼ S 4 which is a four dimensional sphere [39]. The location
of points on this sphere is specified by the angles α1, β1, α2 and β2.

In this section we obtain the phase space symbol of su(3) generators and some other operators
needed to investigate the semiclassical dynamics later. As was done in chapter 2, the Wigner
symbol, WX, of an su(3) operator X̂, is constructed as

WX (Ω) = Tr
(
X̂ŵ (Ω)

)
, (4.25)

where ŵ(Ω) is the quantization kernel. The construction of this kernel starts with a diagonal
operator P̂, given by

P̂ =

∫ 2π

0
dωe−iωĥ1 f ′ (ω) , (4.26)

where f ′(ω) is a scalar function which, like the function f (ω) in the S U(2) kernel, is constructed
in such a way that the quantization kernel satisfies all the required conditions listed in chapter
2. Since ĥ1 is diagonal and commutes with elements in U23(2), the full S U(3) transformation
can be reduced to Λ(Ω) = R23 (α1, β1,−α1) R12 (α2, β2,−α2) so the translation of the operator P̂
can be ultimately written as

ŵ (Ω) = Λ (Ω) P̂Λ† (Ω) , Ω ∈ S U (3)/U23 (2) . (4.27)

A more practical expression is obtained by first expanding the operator P̂ in terms of su(3)
tensor operators, as was done for su(2). These are defined in a manner analogous to the su(2)
tensors of Eq. (3.28). Explicitly, an su(3) tensor labeled by (n1, n2, n3); I in the irrep (σ,σ) can
be written in terms of kets and bras in (λ, 0) irrep as

T̂ λ
(σ,σ);(ν1,ν2,ν3),Iν =

∑
n1,n2,m1,m2

|n1, n2, n3〉 〈m1,m2,m3| C̃λ(σ,σ)(ν1,ν2,ν3)Iν
n1n2n3;m1m2m3

, (4.28)

where C̃λ(σ,σ)(ν1,ν2,ν3)Iν
n1n2n3;m1m2m3 is a coefficient related to the su(3) Clebsch Gordan coefficient occurring

in the decomposition of (λ, 0) ⊗ (0, λ) into (σ,σ) [53],

(λ, 0) ⊗ (0, λ) = (0, 0) ⊕ (1, 1) ⊕ ... ⊕ (λ, λ) =

λ∑
σ=0

(σ,σ) . (4.29)

The operator P̂ is diagonal, and it commutes with ĥ1 and ĥ2. Thus, P̂ as an operator has
weight (0, 0) and also I = 0. The expansion of P̂ in terms of weight (0, 0), I = 0 tensors is
shown to be [34]:

P̂ =

λ∑
σ=0

√
dim (σ,σ)
dim (λ, 0)

T̂ λ
(σ,σ);(σ,σ,σ),0 , (4.30)

where dim(λ, 0) = 1
2 (λ + 1)(λ + 2) and dim(σ,σ) = (σ + 1)3 are the dimension of the irreps

(λ, 0) and (σ,σ) respectively.
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After translations by Λ(Ω), the kernel takes the more convenient form

ŵ(Ω) =

λ∑
σ=0

√
dim(σ,σ)
dim(λ, 0)

∑
ν1,ν2

D(σ,σ)
(ν1,ν2,ν3),Iν;(σ,σ,σ),0(Ω)T̂ λ

(σ,σ);(ν1,ν2,ν3),Iν , (4.31)

in which D(σ,σ)
(ν1,ν2,ν3),Iν;(σ,σ,σ),0(Ω) is S U(3) Wigner D-function defined as the overlap of the S U(3)

transformation Λ(Ω) between the S U(3) states |(ν1, ν2, ν3) , Iν〉 and |(σ,σ, σ) , 0〉 of the irrep
(σ,σ):

D(σ,σ)
(ν1,ν2,ν3),Iν;(σ,σ,σ),0(Ω) ≡ 〈(ν1, ν2, ν3) , Iν|R23 (α1, β1,−α1) R12 (α2, β2,−α2) |(σ,σ, σ), 0〉 . (4.32)

To obtain phase space symbols of su(3) generators we express the generators as tensor oper-
ators. One can find

Ĉ12 =

λ∑
n1=0

λ−n1∑
n2=0

√
(n1 + 1) n2 |n1 + 1, n2 − 1, n3〉 〈n1, n2, n3| = −

N

2
√

6
T̂ λ

(1,1);(2,0,1), 1
2
, (4.33)

Ĉ13 =

λ∑
n1=0

λ−n1∑
n2=0

√
(n1 + 1) n3 |n1 + 1, n2, n3 − 1〉 〈n1, n2, n3| =

N

2
√

6
T̂ λ

(1,1);(2,1,0), 1
2
, (4.34)

Ĉ23 =

λ∑
n1=0

λ−n1∑
n2=0

√
(n2 + 1) n3 |n1, n2 + 1, n3 − 1〉 〈n1, n2, n3| =

N

2
√

6
T̂ λ

(1,1);(1,2,0),1 (4.35)

ĥ1 =

λ∑
n1=0

λ−n1∑
n2=0

(2n1 − n2 − n3) |n1, n2, n3〉 〈n1, n2, n3| =
N
2

T̂ λ
(1,1);(1,1,1),0 , (4.36)

ĥ2 =

λ∑
n1=0

λ−n1∑
n2=0

1
2

(n2 − n3) |n1, n2, n3〉 〈n1, n2, n3| = −
N

4
√

3
T̂ λ

(1,1);(1,1,1),1 , (4.37)

with N =
√
λ (λ + 1) (λ + 2) (λ + 3). Using the trace orthogonality of tensors,

Tr
((

T̂ λ
(σ,σ);(ν1,ν2,ν3),Iν

)†
T̂ λ′

(σ′,σ′);(ν1′,ν2′,ν3′),Iν′

)
= δλ,λ′δσ,σ′δν1,ν1′δν2,ν2′δν3,ν3′δIν,Iν′ (4.38)

and Eqs. (4.25) and (4.31) we obtain

WC12 =
1
2

√
λ (λ + 3)e−iα2 cos

(
β1

2

)
sin (β2) , (4.39)

WC13 =
1
2

√
λ (λ + 3)e−i(α1+α2) sin

(
β1

2

)
sin (β2) , (4.40)

WC23 =
1
2

√
λ (λ + 3)e−iα1 sin (β1) sin2

(
β2

2

)
, (4.41)

Wh1 =
1
2

√
λ (λ + 3) (1 + 3 cos (β2)) , (4.42)

Wh2 =
1
2

√
λ (λ + 3) cos (β1) sin2

(
β2

2

)
. (4.43)

Since Ĉi j = Ĉ†ji and for an operator X̂ we have WX† = (WX)∗, the phase space symbol of other
su(3) generators can be obtained easily.
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For later purposes we give the phase space symbols of the operators ĥ2
1 and ĥ2

2. In terms of
tensors they can be written as

ĥ2
1 =

λ∑
n1=0

λ−n1∑
n2=0

(2n1 − n2 − n3)2
|n1, n2, n3〉 〈n1, n2, n3|

= α0T̂ λ
(0,0);(0,0,0),0 + α1T̂ λ

(1,1);(1,1,1),0 + α2T̂ λ
(2,2);(2,2,2),0 , (4.44)

ĥ2
2 =

λ∑
n1=0

λ−n1∑
n2=0

1
4

(n2 − n3)2
|n1, n2, n3〉 〈n1, n2, n3|

= β0T̂ λ
(0,0);(0,0,0),0 + β1T̂ λ

(1,1);(1,1,1),0 + β20T̂ λ
(2,2);(2,2,2),0 + β22T̂ λ

(2,2);(2,2,2),2 . (4.45)

Using the explicit forms of tensors T̂ λ
(2,2);(2,2,2),I for I = 0, 1, 2 given in appendix B, we obtain

α0 =
λ (λ + 3)

2
√

2

√
(λ + 1) (λ + 2) ,

α1 =
2λ + 3

10

√
λ (λ + 1) (λ + 2) (λ + 3) ,

α2 =
3

10
√

2

√
3 (λ − 1) λ (λ + 1) (λ + 2) (λ + 3) (λ + 4) , (4.46)

and

β0 =
1

6
√

2
λ (λ + 3)

√
(λ + 1) (λ + 2) ,

β1 =
−1
30

(2λ + 3)
√
λ (λ + 1) (λ + 2) (λ + 3) ,

β20 =
1

30
√

6

√
(λ − 1) λ (λ + 1) (λ + 2) (λ + 3) (λ + 4) ,

β22 =
1
3

√
2

15

√
(λ − 1) λ (λ + 1) (λ + 2) (λ + 3) (λ + 4) . (4.47)

The symbols are then given by

Wh2
1

=
1
2
λ (λ + 3) +

1
10

√
λ (λ + 3) (2λ + 3) (1 + 3 cos (β2))

+
9
40

√
(λ − 1) λ (λ + 3) (λ + 4) (3 + 4 cos (β2) + 5 cos (2β2)) , (4.48)

Wh2
2

=
1

24
λ (λ + 3) −

1
120

√
λ (λ + 3) (2λ + 3) (1 + 3 cos (β2))

+
1
24

√
(λ − 1) λ (λ + 3) (λ + 4)

[
1
20

(3 + 4 cos (β2) + 5 cos (2β2)) + (1 + 3 cos (2β1)) sin4
(
β2

2

)]
.

(4.49)

4.3 Semiclassical dynamics

In this section, we first find the relation between the Poisson bracket of the symbol of su(3)
observables and the symbol of the commutator of observables. We then investigate the dynamics
of su(3) systems in the semiclassical limit for a linear and a nonlinear Hamiltonian.
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Using the S U(3) coherent states of Eq. A.1, and the calculations given in appendix A, we
find the Poisson bracket for S U(3) systems of the type (λ, 0) in terms of the coordinates on the
4-dimensional sphere to be

{ f , g} =
4

sin β1 sin2
(
β2
2

) (
∂ f
∂α1

∂g
∂β1
−
∂ f
∂β1

∂g
∂α1

)
+

2 tan
(
β1
2

)
sin2

(
β2
2

) (
∂ f
∂β1

∂g
∂α2
−
∂ f
∂α2

∂g
∂β1

)
+

4
sin β2

(
∂ f
∂α2

∂g
∂β2
−
∂ f
∂β2

∂g
∂α2

)
, (4.50)

where f and g are two functions on S 4.
Now let us first find the semiclassical parameter for S U(3) systems. For two su(3) generators

such as ĥ1 and Ĉ13 the Poisson bracket is

{
Wh1 ,WC13

}
= −

4
sin β2

∂Wh1

∂β2

∂WC13

∂α2
= −6i

√
λ (λ + 3)WC13 . (4.51)

Since
[
ĥ1, Ĉ13

]
= 3Ĉ13 we have{

Wh1 ,WC13

}
= εW[ĥ1,Ĉ13], ε = −2i

√
λ (λ + 3) , (4.52)

where ε is the semiclassical parameter.
Similar to the S U(2) case, for a polynomial in the generators and an su(3) generator, the

Poisson bracket of the symbols is proportional to the symbol of the commutator. For instance,
we find that for ĥ2

1 and Ĉ13, we have [ĥ2
1, Ĉ13] = 3

(
Ĉ13ĥ1 + ĥ1Ĉ13

)
and therefore W[ĥ2

1,Ĉ13] =

3
(
WĈ13ĥ1

+ Wĥ1Ĉ13

)
. Since Ĉ13ĥ1 =

[
Ĉ13, ĥ1

]
+ ĥ1Ĉ13 and

[
Ĉ13, ĥ1

]
= −3Ĉ13, we have WĈ13ĥ1

=

−3WC13 + Wĥ1Ĉ13
. Thus we just need to find the symbol of ĥ1Ĉ13. In terms of tensors it can be

written as

ĥ1Ĉ13 = η1T̂ λ

(1,1);(2,1,0),12

+ η2T̂ λ

(2,2);(3,2,1),12

, (4.53)

with

η1 =
1

10
√

6

√
λ (λ + 1) (λ + 2) (λ + 3) (λ + 9) ,

η2 =
1

10
√

2

√
3 (λ − 1) λ (λ + 1) (λ + 2) (λ + 3) (λ + 4) . (4.54)

This gives

Wĥ1Ĉ13
=

1
10

√
λ (λ + 3) (λ + 9) e−i(α1+α2) sin

(
β1

2

)
sin (β2)

+
3

20

√
(λ − 1) λ (λ + 3) (λ + 4)e−i(α1+α2) (1 + 5 cos β2) sin

(
β1

2

)
sin (β2) . (4.55)

One can then verify, using Eq. (4.50), that{
Wh2

1
,WC13

}
= εW[ĥ2

1,Ĉ13] , (4.56)

where ε is given in Eq. (4.52).
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Finally, we find once again that for two polynomials of degree 2 or greater in the generators
of su(3) like ĥ2

1 and Ĉ2
13 we have correction terms:{

Wh2
1
,WC2

13

}
= εW[ĥ2

1,Ĉ
2
13] + O

(
ε−2

)
. (4.57)

Thus for a Hamiltonian linear in the generators of su(3) the equation of motion of the Wigner
function, (2.24), turns out to be (~ = 1)

i
∂Wρ

∂t
= W[H,ρ] = ε−1

{
WH,Wρ

}
. (4.58)

For a nonlinear Hamiltonian since the density matrix is written as an expansion of tensors of
the type (σ,σ) with σ > 2, the evolution is thus

i
∂Wρ

∂t
= ε−1

{
WH,Wρ

}
+ O

(
ε−3

)
, (4.59)

where the second term on the right is a quantum correction to the classical dynamics and is of
the order of ε−3. In the semiclassical limit, λ � 1 thus ε−1 → 0, we will ignore the correction
terms to work with the truncated Liouville equation.

As we can now write the time evolution of Wigner function in terms of Poisson bracket we
investigate the dynamics of an S U(3) system under a linear and a simple nonlinear Hamiltonian.
Our initial state will be an S U(3) coherent state. We will obtain time-evolved Wigner function
and use it to calculate the evolution of the fluctuations of an observable. We then compare this
with the quantum mechanical calculation.

4.3.1 Linear dynamics

For the linear case we consider the Hamiltonian Ĥ = ĥ1. As an initial state we choose an S U(3)
coherent state located on S 4 at the minimum of Wh1 i.e.

|ψ(0)〉 = Λ
(
Ω′

)
|λ, 0, 0〉 = R23

(
α1
′, β1

′,−α1
′) R12

(
α2
′, β2

′,−α2
′) |λ, 0, 0〉 , (4.60)

where α1
′ = α2

′ = β1
′ = 0 and β2

′ = 1
2π. Now let us obtain the initial Wigner function for the

density operator ρ̂ = Λ (Ω′) |λ, 0, 0〉 〈λ, 0, 0|Λ† (Ω′). We can write

Wρ (Ω) = Tr
(
ρ̂Λ (Ω) P̂Λ† (Ω)

)
= 〈λ, 0, 0|Λ†

(
Ω′

)
R23 (α1, β1,−α1) R12 (α2, β2,−α2) P̂

×(R23 (α1, β1,−α1) R12 (α2, β2,−α2))†Λ
(
Ω′

)
|λ, 0, 0〉

= W|λ,0,0〉〈λ,0,0|
(
Ω′
−1
·Ω

)
= W|λ,0,0〉〈λ,0,0|

(
Ω̃
)
, (4.61)

where

Λ†
(
Ω′

)
R23 (α1, β1,−α1) R12 (α2, β2,−α2) ≡ R

(
Ω̃
)

= R
(
α̃1, β̃1, α̃2, β̃2, α̃3, β̃3, γ̃1, γ̃2

)
. (4.62)

In fact to obtain the tilde angles in terms of the initial parameters αi
′, βi

′, i = 1, 2, and the
original coordinates on the sphere αi, βi we multiply the corresponding 3 × 3 matrices, Λ† (Ω′)
and Λ (Ω), and decompose the result following the algorithm in [52]. Since P̂ commutes with
R23

(
α̃3, β̃3,−α̃3

)
eiγ̃1h1eiγ̃2h2 Eq. (4.61) can then be written as

W|λ,0,0〉〈λ,0,0|
(
Ω̃
)

= 〈λ, 0, 0|R23

(
α̃1, β̃1,−α̃1

)
R12

(
α̃2, β̃2,−α̃2

)
P̂

×
(
R23

(
α̃1, β̃1,−α̃1

)
R12

(
α̃2, β̃2,−α̃2

))†
|λ, 0, 0〉 . (4.63)
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Fig. 4.3: Time evolution of the slices of the Wigner function of the initial state, Eq. (4.66), under the
linear Hamiltonian Ĥ = ĥ1 for λ = 20 at t = 0, 0.35, 0.7. The slices are taken at α1 = 0 and
β1 = 0.

Thus from Eqs. (4.25),(4.28) and (4.31) we obtain

W|λ,0,0〉〈λ,0,0|
(
Ω̃
)

=

λ∑
σ=0

√
2 (σ + 1)

(λ + 1) (λ + 2)
C̃λ(σσ)(σσσ)0
λ00;λ00 D(σ,σ)

(σ,σ,σ),0;(σ,σ,σ),0

(
Ω̃
)
. (4.64)

The S U(3) Wigner D-function turns out to depend only on the angle, β̃2. The explicit expression
given in [52] for this D-function collapses to a sum of Legendre polynomials as

D(σ,σ)
(σ,σ,σ),0;(σ,σ,σ),0

(
α̃1, β̃1, α̃2, β̃2, 0, 0, 0, 0

)
=

1(
cos β̃2 − 1

)
(σ + 1)

(
Pσ+1

(
cos β̃2

)
− Pσ

(
cos β̃2

))
,

(4.65)
in which Pk(x) is the kth Legendre polynomial. Therefore we have

W|λ,0,0〉〈λ,0,0|
(
Ω̃
)

=

λ∑
σ=0

C̃λ(σσ)(σσσ)0
λ00;λ00

√
2 (σ + 1)

(λ + 1) (λ + 2)

Pσ+1

(
cos β̃2

)
− Pσ

(
cos β̃2

)
cos β̃2 − 1


≡ W|λ,0,0〉〈λ,0,0|

(
β̃2

)
, (4.66)

For our choice of initial state, we find β̃2 as

cos β̃2 = sin β2 cosα2 cos
(
β1

2

)
− sin2

(
β1

2

)
sin2

(
β2

2

)
. (4.67)

The time-evolved Wigner function is given exactly by

∂tWρ = ε−1
{
Wh1 ,Wρ

}
= −

1
2
√
λ (λ + 3)

4
sin β2

∂Wh1

∂β2

∂Wρ

∂α2
= 3

∂Wρ

∂α2
(4.68)
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Fig. 4.4: The time evolution of the variance of Ĉ12+Ĉ21 calculated using phase space method, Eq. (4.69)

(dashed line) and Hilbert space quantum mechanical method, (4.71) (solid line) for λ = 4. Since

we haven’t used any approximation in the phase space calculations both methods give the same

result.

and is obtained by substituting α2 with α2 (t) = α2 − 3t in Eq. (4.67).

In Fig 4.3 slices of the Wigner function are plotted for λ = 20 at t = 0, t = 0.35 and t = 0.7.

The figure shows the projection of the Wigner functions in the (α2, β2) plane, with slices taken

at (α1 = 0, β1 = 0). It is clear from figure that Wigner function is just translated without any

deformation.

Knowing the time-evolution of the Wigner function, we can calculate the time evolution of

the expectation value of an operator X̂ by

〈X̂ (t)〉 = (λ + 1) (λ + 2)

8π2

∫
dΩWX (Ω)Wρ (Ω (t)) , (4.69)

where ∫
dΩ =

∫ 2π

0

dα1

∫ 2π

0

dα2

∫ π

0

dβ1 sin β1

∫ π

0

dβ2 sin β2

(
1 − cos β2

4

)
. (4.70)

This will be compared to the expectation value computed from the quantum mechanical evolu-

tion:

〈X̂ (t)〉 = 〈λ, 0, 0|Λ† (
Ω′

)
eiĤtX̂e−iĤtΛ

(
Ω′

) |λ, 0, 0〉 . (4.71)

Fig. 4.4 shows the variance of X̂,
(
ΔX̂

)2
= 〈X̂2〉 − 〈X̂〉2, for X̂ = Ĉ12 + Ĉ21. The dashed

line has been plotted using Eq. (4.69) and the solid line has been plotted using Eq. (4.71); as

expected both methods give the same result. For calculating the variance by using Eq. (4.69)

we need the phase space symbol of Ĉ12 + Ĉ21 which is Eq. (4.39) plus its complex conjugate.

We also need the symbol of
(
Ĉ12 + Ĉ21

)2
given in Eqs. (B.8) to (B.11).

4.3.2 Nonlinear dynamics

Now let us consider the evolution generated by a simple non-linear Hamiltonian like ĥ2
1. From

Eq. (4.44), we see that ĥ2
1 decomposes into a sum of tensors, including a tensor in the (1, 1)

representation, and a constant term in the (0, 0) representation. The constant term can be safely
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Fig. 4.5: Time evolution of the variance of Ĉ12 + Ĉ21 under the Hamiltonian H = ĥ2
1
− 2λ+3

5
ĥ1 plotted

using semiclassical method using Eq. (4.69) (dashed line) and quantum mechanical method

using (4.71) (solid line) for λ = 20.

ignored as it plays no role in the evolution (its bracket with any other function is zero). The

part proportional to (1, 1) is in fact a multiple of the generator ĥ1. As we have just seen, the

evolution generated by ĥ1 simply produces a rigid displacement of the Wigner function. The

new effects arise out of the (2, 2) term in ĥ2
1. We can highlight this by removing the linear terms

and look instead at the Hamitonian Ĥ = ĥ2
1 − 2λ+3

5
ĥ1, which produces no rigid displacement of

the distribution but will generate the same deformation as ĥ2
1. The symbol for this Hamiltonian

is

WH =
1

2
λ (λ + 3) +

9

40

√
(λ − 1) λ (λ + 3) (λ + 4) (3 + 4 cos (β2) + 5 cos (2β2)) . (4.72)

Using Eq. (4.59) and ignoring the quantum correction term we obtain

∂tWρ =
1

2
√
λ (λ + 3)

{
WH,Wρ

}
=

9

5

√
(λ − 1) (λ + 4) (1 + 5 cos (β2))

∂Wρ
∂α2

, (4.73)

with solution

α2 (t) = α2 − 9

5

√
(λ − 1) (λ + 4) (1 + 5 cos (β2)) t. (4.74)

Here again we choose our initial state to be a coherent state located above the minimum of the

symbol of the Hamiltonian. WH is minimized by α1
′ = α2

′ = β1
′ = 0 and β2

′ = arccos (−1/5).

This set of angles leads to an expression for cos
(
β̃2

)
given by

cos
(
β̃2

)
= −1 + 2cos2

(
1
2
β2
′) cos2

(
1
2
β2

)
+ 2cos2

(
1
2
β1

)
sin2

(
1
2
β2

)
sin2

(
1
2
β2
′)

+ cos (α2) cos
(

1
2
β1

)
sin (β2) sin

(
β2
′) . (4.75)

By substituting this into Eq. (4.66) we get the initial Wigner function and by replacing α2 with

α2(t) given in Eq. (4.74), we obtain the time-evolved Wigner function.

We can now compare the quantum mechanical evolution and the truncated semiclassical

evolution of the variance of an observable as a function of time. The variance of Ĉ12 + Ĉ21
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Fig. 4.6: Slices of the full quantum mechanical time evolution of the Wigner function of the initial state
given in Eq. (4.60) at α1

′ = α2
′ = β1

′ = 0 and β2
′ = arccos (−1/5 ) for λ = 20 at t =

0, 0.01, 0.03. The slices are taken at α1 = β1 = 0.

Fig. 4.7: Slices of the semiclassically evolved Wigner function in Eq. (4.66) with cos
(
β̃2

)
given in Eq.

(4.75) for λ = 20 at t = 0, 0.01, 0.03. The slices are taken at α1 = β1 = 0.
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has been plotted in Fig. 4.5 calculated both semiclassically, using Eq. (4.69) and the required
symbols, and quantum mechanically, using Eq. (4.71).

As it can be seen from the Fig. 4.5 the semiclassical calculation predicts the evolution of the
system for a good proportion. Similar to the S U(2) case peaks and dips are not reproducible
by the semiclassical method. It must be noted that by increasing λ the difference between the
quantum and semiclassical calculation decreases but the time over which the two calculations
remain close does not change very much. The explanation of the behavior of the curves is
similar to the S U(2) case given in section 3.4.2.

Fig. 4.6 shows 3D plots and contour plots of the Wigner function for the initial state (4.66),
time-evolved using the full quantum mechanical evolution equation. The details of the calcu-
lations is given in appendix C.2. The slices are taken at α1 = β1 = 0 and at specific values of
t = 0, 0.01 and t = 0.03. One observes that the initial coherent state is rapidly deformed from
its nearly Gaussian shape in S 4. In particular, small negative regions are generated rapidly in
the vicinity of the main peak.

Fig. 4.7 illustrates the 3D and contour plots of slices of the Wigner function time-evolved
using this time, semiclassical evolution of the initial state. Although we cannot observe negative
regions in Fig. 4.7 at t = 0.01, the agreement between semiclassical evolution and full quantum
mechanical evolution is good. For longer times, for instance t = 0.03, as can be seen from
Fig. 4.6, several other dips and peaks appear in the exact quantum mechanical evolution of the
Wigner function which is the result of self-interference effect. Fig. 4.7 shows that this cannot
be predicted by the semiclassical method.



5. SQUEEZING VIA SEMICLASSICAL EVOLUTION

We talked about squeezed states of harmonic oscillator in chapter 1. The notion of squeezing
has propagated to other systems and has attracted significant attention in atomic systems with
spin 1

2 and higher.
Squeezing in atomic systems would allow standard quantum noise limits in atomic clocks

and magnetometers to be overcome, and could also have their uses for the teleportation of
atomic systems and for memory stores in quantum communication and quantum computing
[54].

Moreover squeezing intrinsically reflects the existence of some particular correlations be-
tween basis states in the Hilbert space of a quantum system. This entails successful application
of squeezing criteria to detect quantum entanglement [55].

In this chapter we investigate squeezing in S U(2) and S U(3) systems using phase space
method in the semiclassical approximation and compare the generation and time evolution of
squeezing predicted by this approximation with the exact quantum calculation.

5.1 S U(2) squeezing

In spin-like systems several approaches have been used to define the squeezing parameter [8].
Squeezing parameters can be defined as fluctuations of a suitably chosen observable compared
to a threshold given by fluctuations in the coherent states of the corresponding quantum sys-
tem. Following the approach of [35] we define the S U(2) squeezing parameter similar to the
squeezing parameter ξ for harmonic oscillator systems defined in Eq. (1.39).

We first define the observable Ŝ (δ):

Ŝ (δ) ≡ T (δ) Ŝ xT−1 (δ) = Ŝ x cos δ + Ŝ y sin δ , (5.1)

where T (δ) = e−iδŜ z is an element of the subgroup of transformations that leaves the highest
weight state invariant. Geometrically the operator Ŝ (δ) is located on a plane tangent to the
sphere, perpendicular to the ẑ axis; this plane is shown on the left of Fig. 5.2.

The variance of Ŝ (δ) for the highest weight state | j, j〉 is(
∆Ŝ (δ)

)2
= 〈 j, j| Ŝ (δ)2

| j, j〉 − 〈 j, j| Ŝ (δ) | j, j〉2 =
1
2

j , (5.2)

and is independent of the angle δ. This feature is also clear from Fig. 5.2: the Wigner function of
the density operator ρ̂ = | j, j〉 〈 j, j| has a Gaussian shape so the projection of Wρ on the tangent
plane is invariant under rotation about ẑ axis. As a result the variance of Ŝ (δ) is independent of
the angle δ.

As we mentioned in chapter 3, the S U(2) coherent states |ϕ′, θ′〉, are defined by rotating
the reference state | j, j〉, i.e. Λ (ϕ′, θ′) | j, j〉 = Rz (ϕ′) Ry (θ′) | j, j〉. If we similarly rotate the
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Fig. 5.1: Wigner function of the highest weight state, | j, j〉 and the tangent plane to the sphere. The
operator Ŝ (δ) is located on the tangent plane.

observable Ŝ (δ) of (5.1) we obtain

Ŝ ⊥
(
ϕ′, θ′, δ

)
≡ Λ

(
ϕ′, θ′

)
Ŝ (δ) Λ−1 (

ϕ′, θ′
)

= Λ
(
ϕ′, θ′

)
T (δ) Ŝ xT−1 (δ) Λ−1 (

ϕ′, θ′
)
, (5.3)

located on the tangent plane to the sphere, perpendicular to the direction ~n =
(
nx, ny, nz

)
defined

by the coherent state |ϕ′, θ′〉 via

nx = sin θ′ cosϕ′ = 〈ϕ′, θ′| Ŝ x |ϕ
′, θ′〉/ j ,

ny = sin θ′ sinϕ′ = 〈ϕ′, θ′| Ŝ y |ϕ
′, θ′〉/ j ,

nz = cos θ′ = 〈ϕ′, θ′| Ŝ z |ϕ
′, θ′〉/ j . (5.4)

By construction, the fluctuations of Ŝ ⊥ (ϕ′, θ′, δ), when evaluated in the coherent state |ϕ′, θ′〉,
are again independent of the angles ϕ′, θ′ and δ. Explicitly, one can verify that for the coherent
state |ϕ′, θ′〉 (

∆Ŝ ⊥
(
ϕ′, θ′, δ

))2
=

1
2

j . (5.5)

We will use the condition (5.5) to define spin squeezing. A state of angular momentum j is
squeezed if there is an operator Ŝ ⊥ (ϕ′, θ′, δ∗) in the tangent plane, for which(

∆Ŝ ⊥
(
ϕ′, θ′, δ∗

))2
<

1
2

j , (5.6)

5.1.1 Semiclassical squeezing

Spin-squeezed states, like position-squeezed or momentum-squeezed states for the harmonic
oscillator, can be obtained from the evolution generated by a nonlinear Hamiltonian. The uni-
tary transformation U (t) = exp

(
−iĤt

)
generated by the nonlinear Hamiltonian Ĥ deforms the

initial coherent state to a squeezed state. A simple non-linear Hamiltonian, inspired by the Kerr
Hamiltonian in Eq. (1.48), is Ĥ = Ŝ 2

z .
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Fig. 5.2: Wigner function of the coherent state |ϕ′, θ′〉 (left), Wigner function of a squeezed state (right)
and the tangent plane to the sphere perpendicular to the direction n̂. The operator Ŝ⊥ (ϕ′, θ′, δ)
is located on the tangent plane

The semiclassical squeezing of S U(2) systems has been investigated in [56]. We discussed
the semiclassical evolution generated by Ĥ = Ŝ 2

z in chapter 3. As initial state we consider the
coherent state |ϕ′ = 0, θ′ = π/2 〉. The Wigner function for this state at time t is given by Eqs.
(3.51) and (3.62). This Wigner function can be approximated by

Wρ (ϕ, θ) ≈ (sin θ cosϕ(t))2 j−1 (1 + sin θ cosϕ(t)) , (5.7)

where
ϕ (t) = ϕ −

√
(2 j − 1) (2 j + 3) cos (θ) t . (5.8)

This approximation is very useful in calculations especially for large values of j when numerical
calculations take a very long time. Using this approximate form of the Wigner function one can
calculate the variance of Ŝ ⊥ (ϕ′, θ′, δ) analytically.

For angles ϕ′ = 0 and θ′ = π/2 the operator Ŝ ⊥ (ϕ′, θ′, δ) in Eq. (5.3) turns out to be

Ŝ ⊥
(
ϕ′, θ′, δ

)
= Ŝ y sin δ − Ŝ z cos δ . (5.9)

The resulting variance depends on the angle δ. We calculated the minimization of this variance
with respect to the angle δ semiclassically using the approximate Wigner function in Eq. (5.7)
and the phase space symbols of the required su(2) operators from chapter 3.

In Fig. 5.3 we present plots of the minimum of (∆Ŝ ⊥ (ϕ′, θ′, δ))
2

with respect to δ as a func-
tion of time, calculated quantum mechanically and semiclassically for j = 30. The agreement
between semiclassical (dashed line) and quantum mechanical calculations (solid line) is very
good for the values of t of order 1. This agreement gets better for larger values of j. How-
ever for longer times there are other dips in the quantum mechanical graph which cannot be
reproduced by the semiclassical method. In fact the semiclassical approximation is just able to
reproduce the first dip and after that it remains constant. This can also be seen from the Wigner
function graphs in Figs. 3.4 and 3.3. For longer times the Wigner function in the semiclassical
approximation is no longer reliable. Moreover for longer times, the very oscillatory behavior of
the integrals that appear in the semiclassical calculations, leads to numerical issues; as a result
we have decided to plot the graphs in a region where quantum mechanical and semiclassical
methods are in agreement.
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Fig. 5.3: The time evolution of the minimum of (ΔŜ⊥ (ϕ′, θ′, δ))2
at ϕ′ = 0 and θ′ = π/2 for j = 30. The

solid line is plotted using quantum mechanical calculations and the dashed line is plotted using

the approximate form of the Wigner function in Eq. (5.7).

The log-log graph on the left side of Fig. (5.4) shows that the time location of the minimum

of (ΔŜ ⊥ (ϕ′ = 0, θ′ = π/2 , δ))2 scales as tmin ≈ j−0.65 and the log-log graph on the right side of

the Fig. (5.4) shows that the minimum of (ΔŜ ⊥ (ϕ′ = 0, θ′ = π/2 , δ))2 scales like j+0.35. This

scaling behavior will be compared with the similar behaviors in S U(3) case.

Fig. 5.4: log-log plots of the time location of the minimum of the S U(2) squeezing versus j (left) and

the minimum versus j

5.1.2 Experimental implementation

An example of a spin squeezing experiment using condensates of 87Rb atoms has been reported

in [57]. The hyperfine states |+〉 ≡ | f = 2,mf = 1〉 and |−〉 ≡ | f = 1,mf = −1〉 of 87Rb form a

two level system. The Hamiltonian of the interaction of these levels with a microwave radiation

can be expressed in terms of spin operators as

Ĥ = ω0Ŝ z + ΩŜ (δ) + χŜ 2
z (5.10)
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where Ŝ z = (N+−N−)/2 is half the atom number difference between the states and directly mea-
surable. The first term in the above equation describes spin precession around z at the detuning
ω0. The second term describes spin rotations around an axis Ŝ (δ) = Ŝ x cos δ + Ŝ y sin δ with
frequency Ω. The third, nonlinear term of strength χ arises from elastic collisional interactions
in the Bose Einstein Condensate. It deforms the state on the Bloch sphere which results in spin
squeezing.

The initial state of this experiment is all individual atoms in |−〉. This is just the highest
weight state | j, j〉 with j = N/2, N = N+ + N−. A π/2 pulse rotates this state and prepares a spin
coherent state along x axis and isotropic quantum noise in the y − z plane, (∆Ŝ y)2 = (∆Ŝ z)2 =

N/4. Subsequent nonlinear evolution with χS 2
z for the time of best squeezing deforms the noise

circle into an ellipse, creating a spin squeezed state with reduced noise at an angle δmin. The
observable Ŝ ⊥ (δ) = Ŝ y sin δ − Ŝ z cos δ is measured by rotating the state around x axis by a
variable angle δ, before detecting Ŝ z. The normalized variance (∆nŜ ⊥ (δ))2 = 4(∆Ŝ ⊥ (δ))2/ 〈N〉
has been measured. For the squeezed state the spin noise falls significantly below the standard
quantum limit, (∆nŜ ⊥ (δ))2 = 0dB, reaching a minimum of (∆nŜ ⊥ (δ))2 = −3.7 ± 0.4dB at
δmin = 6◦. For more details see [57].

5.2 S U(3) squeezing

There is renewed interest in squeezing in systems of higher symmetry, spin-1 [58]-[60] and also
arbitrary spin particles [61].

In this section we define a new criterion for squeezing in S U(3) systems [33]. We define the
squeezing criterion in a manner similar to S U(2) criterion of Eq. (5.6). The main idea consists
in defining the family of collective operators K̂ (which in practice are some linear combinations
of generators of the su(3) algebra) for which the fluctuations evaluated using S U(3) coherent
states are invariant under the same group transformation

T (α3, β3, γ1, γ2) ≡ R23 (α3, β3,−α3) e−iγ1ĥ1e−iγ2ĥ2 (5.11)

that leaves invariant the reference state used to construct the set of coherent states.
We define the family of operators K̂ (α3, β3, χ) as

K̂ (α3, β3, χ) = T (α3, β3, γ1, γ2)
(
Ĉ13 + Ĉ31

)
T−1 (α3, β3, γ1, γ2) , (5.12)

where χ = 6γ1 + γ2. The explicit expansion of K̂ (α3, β3, χ) in terms of generators is obtained
by multiplying the 3 × 3 matrices for T and

(
Ĉ13 + Ĉ31

)
, and expanding the results in terms

of the 3 × 3 matrices for the generators. Because the transformation is linear, the expansion
coefficients do not depend on the size of the matrices. The final result can therefore be written
for any representation as:

K̂ (α3, β3, χ) =

−
(
Ĉ12 + Ĉ21

)
sin

(
1
2β3

)
cos

(
α3 −

1
2χ

)
− i

(
Ĉ12 − Ĉ21

)
sin

(
1
2β3

)
sin

(
α3 −

1
2χ

)
+

(
Ĉ13 + Ĉ31

)
cos

(
1
2β3

)
cos

(
1
2χ

)
− i

(
Ĉ13 − Ĉ31

)
cos

(
1
2β3

)
sin

(
1
2χ

)
. (5.13)

It is easy to verify that the variance
(
∆K̂ (α3, β3, χ)

)2
when evaluated using the highest weight

state |λ, 0, 0〉 is λ and independent of the angles α3, β3, χ. Hence, the variance of

K̂⊥
(
ω′;α3, β3, χ

)
= D

(
ω′

)
K̂ (α3, β3, χ) D−1 (

ω′
)
, (5.14)
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when evaluated using the coherent state |ω′〉,

|ω′〉 = D
(
ω′

)
|λ, 0, 0〉 = R23

(
α1
′, β1

′,−α1
′) R12

(
α2
′, β2

′,−α2
′) |λ, 0, 0〉 , (5.15)

is also independent of the direction (α3, β3, χ) in the tangent hyperplane perpendicular to ~n, and
equals to λ. Here ~n is the mean vector with complex components

~n =
(
〈Ĉ23〉, 〈Ĉ32〉, 〈Ĉ12〉, 〈Ĉ21〉, 〈Ĉ13〉, 〈Ĉ31〉, 〈ĥ1〉, 〈ĥ2〉

)
. (5.16)

Thus, we will use (∆K̂⊥ (ω′;α3, β3, χ))2 = λ as our squeezing threshold and define an S U(3)
state |ψ〉 as squeezed if there is an observable of the form K̂⊥

(
ω′;α∗3, β

∗
3, χ

∗
)

for which(
∆K̂⊥

(
ω′;α∗3, β

∗
3, χ

∗))2
< λ , (5.17)

when evaluated in |ψ〉.
In a very recent experiment [62] squeezing in an S U(3) system which consists of spin-1

atomic Bose-Einstein condensates have been realized using the f = 1 hyperfine manifold of
87Rb. This system can be described in terms of creation and destruction operators of three Zee-
man states m f = −1, 0, 1, âm f and â†m f , in the single-mode approximation. These destruction
and creation operators correspond to the ones that we used in chapter 4 to construct ladder
operators Ĉi j. In the experiment they prepared condensate of N = 45, 000, 87Rb atoms in the
| f = 1,m f = 0〉 hyperfine state in a 2G magnetic field. The Hamiltonian describing the colli-
sionally induced spin dynamics of the condensate and the effects of an applied magnetic field
B along z axis is a nonlinear Hamiltonian contains terms Ĥsq = 2λ

(
â†20 â1â−1 + â†1â†

−1â2
0

)
which

generates squeezing. λ characterize the inter-spin energy. They used a squeezing parameter
which is different from what we defined here and they observed squeezing of −8.3+0.6

−0.7dB. For
more details see [62].

5.2.1 Semiclassical squeezing

Squeezing reflects correlations between components of a basis. As mentioned before, group
transformations generated by exponentiating linear combinations of elements of the su(3) alge-
bra, produce rigid displacements of the basis states. Correlations between basis states cannot
as a matter of definition be induced by such group transformations. Rather, correlations are
obtained as a result of non-linear (in terms of the algebra of observables) transformations, usu-
ally from non-linear Hamiltonian evolution. Here we consider the following simple non-linear
Hamiltonians that lead to squeezing,

Ĥ1 = ĥ2
1 −

2λ + 3
5

ĥ1, Ĥ2 = ĥ2
2 +

2λ + 3
60

ĥ1 . (5.18)

We remind the reader that the decomposition of ĥ2
1 and ĥ2

2 in terms of tensor operators contains
terms that transform by representations (2, 2), (1, 1) and (0, 0). The (1, 1) terms are proportional
to generators and so produce rigid displacements. We remove displacements by adding a term
proportional to ĥ1 which transform by (1, 1).

Squeezing generated by Ĥ1

We discussed the semiclassical evolution of S U(3) systems under Ĥ1 Hamiltonian in chapter 4.
For semiclassical squeezing we have to find the phase space symbol of the observables K̂⊥ and
K̂2
⊥.
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We write the explicit expansion of K̂⊥ in terms of generators by multiplying the 3×3 matrices
for D(ω′) and K̂ and expanding the result in terms of the 3 × 3 matrices for the generators. The
final result, which is true for any representation, is:

K̂⊥ (ω;α3, β3, χ) =

+
(
Ĉ13 + Ĉ31

)
cos

(
1
2χ

)
cos

(
1
2β3

)
cos

(
1
2β2

′
)

+ i
(
Ĉ31 − Ĉ13

)
cos

(
1
2β3

)
cos

(
1
2β2

′
)

sin
(

1
2χ

)
+

(
Ĉ32 + Ĉ23

)
cos

(
1
2χ

)
cos

(
1
2β3

)
sin

(
1
2β2

′
)

+ i
(
Ĉ32 − Ĉ23

)
sin

(
1
2χ

)
cos

(
1
2β3

)
sin

(
1
2β2

′
)

−
(
Ĉ12 + Ĉ21

)
cos

(
α3 −

1
2χ

)
cos

(
β2
′) sin

(
1
2β3

)
+ i

(
Ĉ21 − Ĉ12

)
sin

(
α3 −

1
2χ

)
sin

(
1
2β3

)
+1

2

(
ĥ1 − ĥ2

)
cos

(
α3 −

1
2χ

)
sin (β2

′) sin
(

1
2β3

)
, (5.19)

Using the phase space symbol of su(3) generators from chapter 4, WK⊥ can be written easily.
We also need the symbol for (Ĉ13 + Ĉ31)2 to obtain the variance of K̂⊥ (ω′;α3, β3, χ) using the

semiclassical evolution. The expression is complicated but can be written as:(
Ĉ13 + Ĉ31

)2
= Ĉ2

13 + Ĉ2
31 + Ĉ31Ĉ13 + Ĉ13Ĉ31

=

2∑
σ=0

∑
µ1,µ2,Iµ

gσµIµT
λ
(σ,σ);(µ1,µ2,µ3),Iµ , (5.20)

where coefficients gσµIµ
are given in Eqs.(B.1) and (B.7). Transforming Eq. (5.20) gives

K̂2
⊥ = D

(
ω′

)
T (α3, β3, γ1, γ2)

(
Ĉ13 + Ĉ31

)2
T−1 (α3, β3, γ1, γ2)D−1 (

ω′
)

=

2∑
σ=0

∑
µ1,µ2,Iµ

∑
ν1,ν2,Iν

gσµIµT
λ
(σ,σ);(µ1,µ2,µ3),IµD

(σ,σ)
(ν1,ν2,ν3)Iν,(µ1,µ2,µ3)Iµ

(
α1
′, β1

′, α2
′, β2

′, α3, β3, γ1, γ2
)
,

(5.21)

where
D(σ,σ)

(ν1,ν2,ν3)Iv,(µ1,µ2,µ3)Iµ
(Ω) = 〈(ν1, ν2, ν3) Iv|R (Ω)

∣∣∣(µ1, µ2, µ3) Iµ
〉

(5.22)

with R (Ω) given in Eq. (4.17). The symbol for K̂2
⊥ of Eq. (5.21) is found to be

WK2
⊥

=
∑

σµ1µ2Iµν1ν2Iν

gσµIµD
(σ,σ)
(ν1,ν2,ν3)Iv,(µ1,µ2,µ3)Iµ

(
α1
′, β1

′, α2
′, β2

′, α3, β3, γ1, γ2
)

WT (σ,σ)
(µ1 ,µ2 ,µ3)I

(Ω) , (5.23)

where WT (σ,σ)
(µ1 ,µ2 ,µ3)I

, the phase space symbol of T (σ,σ)
(µ1,µ2,µ3)I , can be obtained from Eq. (4.25):

WT (σ,σ)
(µ1 ,µ2 ,µ3)I

(Ω) =

√
2(σ + 1)3

(λ + 1) (λ + 2)
D(σ,σ)

(µ1,µ2,µ3)I;(σ,σ,σ)0 (Ω) . (5.24)

We choose once again the initial state as a coherent state that sits above the minimum of WH1 .
This minimum is located at α1

′ = β1
′ = α2

′ = 0 , β2
′ = arccos (−1/5 ). The time-evolved

Wigner function, neglecting correction terms of order ε−3, is given by Eqs. (4.66), (4.74) and
(4.75).

For λ � 1 we have found, with much similarity to the S U(2) case, that W|λ,0,0〉〈λ,0,0| (β2) is
well approximated by

W|λ,0,0〉〈λ,0,0| (β2) ≈ Aeλ(cos β2−1), A =
4λ2

(λ + 1) (λ + 2)
, (5.25)
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Fig. 5.5: The time evolution of the minimum of (ΔK̂⊥ (ω′;α3, β3, χ))
2

under the Hamiltonian Ĥ1 for

α1
′ = β1

′ = α2
′ = 0 , β2

′ = arccos (−1/5 ) and λ = 20. The dotted line is plotted using

approximate Wigner function in Eq. (5.25), the dashed line is obtained using the exact Wigner

functions of Eqs. (4.66), (4.74) and (4.75) and the solid line shows the quantum mechanical

calculations.

where A is the normalization factor. This approximation is useful in calculating the variance of

K̂⊥ specially for large values of λ.

Fluctuations of K̂⊥(ω′;α3, β3, χ), when evaluated using the initial coherent state evolved un-

der Hamiltonian Ĥ1, depend on the parameters α3, β3, χ = 6γ1+γ2 in such a way that there exist

directions, parameterized by α∗3, β
∗
3, χ

∗ in the tangent hyperplane, where the fluctuations are

smaller than the fluctuations in the corresponding coherent state |ω′〉. It remains to select from

those directions the one along which the fluctuations are smallest to complete our definition of

squeezing.

We analytically calculated the fluctuations (ΔK̂⊥ (ω′;α3, β3, χ))
2

using the standard phase

space techniques, i.e. integrating the symbols of K̂⊥(ω′;α3, β3, χ) and its square using the time-

evolved Wigner function. A sample of the analytical calculations is given in appendix D.

Fig. 5.5 shows the time evolution of the smallest fluctuations of K̂⊥(ω′;α3, β3, χ) with respect

to α3, β3 and χ for the initial Wigner function of Eq. (4.66) and its approximation in Eq.

(5.25) for λ = 20. The best squeezing direction (α∗3, β
∗
3, χ

∗) has been found through numerical

minimization. The results are illustrative of a number of calculations performed for irreps of

the type (λ, 0) with λ ranging between 10 and 30. It is clear from the figure that semiclassical

calculations using both the exact Wigner function and its approximate form are able to describe

the squeezing up to the first minimum with a good approximation; for longer times the quantum

mechanical plot has other dips that are not reproducible with the semiclassical method. This is

because for longer times the Wigner function in the semiclassical approximation is not reliable

as can be seen in Figs. 4.6 and 4.7. Again similar to the S U(2) case, because of the numerical

issues for longer times in the semiclassical approximation we have plotted the graphs in the

region that both methods are in agreement.

From Fig. 5.6 we see that the time location of the minimum of (ΔK̂⊥(ω;α∗3, β
∗
3, χ

∗)(t))
2

scales

like tmin ≈ λ−0.81 (right) and the minimum of (ΔK̂⊥(ω;α∗3, β
∗
3, χ

∗)(t))
2

scales like λ+0.67 (left). The

values are different from the S U(2) case, indicating that the squeezing is different in nature.
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Fig. 5.6: log-log plots of the time location of the minimum of the squeezing versus λ (left) and the
minimum versus λ for squeezing generated by the Hamiltonian Ĥ1

Squeezing generated by Ĥ2

Now we investigate squeezing under Ĥ2 Hamiltonian in Eq. (5.18). The symbol for Ĥ2 is
obtained using Wh2

2
and Wh1 from chapter 4,

WH2 =
1

24
λ (λ + 3) +

1
480

√
(λ − 1) λ (λ + 3) (λ + 4) (3 + 4 cos β2 + 5 cos (2β2))

+
1

24

√
(λ − 1) λ (λ + 3) (λ + 4) (1 + 3 cos (2β1)) sin4

(
β2

2

)
. (5.26)

The equation of motion of the Wigner function under this Hamiltonian is

∂Wρ

∂t
=

1
2
√
λ(λ + 3)

{
WH2 ,Wρ

}
=

√
(λ − 1) (λ + 4)

(
1

20
(2 + 5 cos β1 (cos β2 − 1))

∂Wρ

∂α2

+ cos β1sin2
(
β2

2

) ∂Wρ

∂α1

)
, (5.27)

which results in

α1 (t) = α1 −
√

(λ − 1) (λ + 4) cos β1sin2
(
β2

2

)
t , (5.28)

α2 (t) = α2 −
1

20

√
(λ − 1) (λ + 4) (2 + 5 cos β1 (cos β2 − 1)) t . (5.29)

In comparison with the Ĥ1 Hamiltonian, two angles α1 and α2 are time dependent but the evo-
lution still remains solvable.

As before we choose the initial state to sit above the minimum of WH2 which occurs at
α1
′ = α2

′ = 0, β1
′ = 1

2π , β2
′ = π. Thus the initial state is:

|ω′〉 = D
(
ω′

)
|λ, 0, 0〉 = R23

(
0, 1

2π, 0
)

R12 (0, π, 0) |λ, 0, 0〉 , (5.30)
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Fig. 5.7: The time evolution of the minimum of (ΔK̂⊥ (ω′;α3, β3, χ))
2

under the Hamiltonian Ĥ2 for

α1
′ = α2

′ = 0 , β1
′ = 1

2
π, β2

′ = π and λ = 20. The dotted line is plotted using approximate

Wigner function in Eq. (5.25), the dashed line is obtained using the exact Wigner functions of

Eqs. (4.66), (4.74) and (4.75) and the solid line shows the quantum mechanical calculations.

from which we obtain

cos β̃2 = sin2
(
β2

2

)
+ cosα1 sin β1sin2

(
β2

2

)
− 1 . (5.31)

Thus for this choice of initial state there is no α2 dependence in the Wigner function. The

evolved Wigner function is then obtained by substituting Eq. (5.31) in Eq. (4.66) where in Eq.

(5.31) one must use α1(t) from Eq. (5.28) instead of α1.

For the observable in the tangent plane, K̂⊥ we have

K̂⊥
(
ω′;α3, β3, χ

)
= D

(
ω′

)
T (α3, β3, γ1, γ2)

(
Ĉ13 + Ĉ31

)
T−1 (α3, β3, γ1, γ2) D−1 (

ω′
)

=
1√
2

(
Ĉ12 + Ĉ21

)
cos

(
α3 − 1

2
χ

)
sin

(
1
2
β3

)
+

i√
2

(
Ĉ21 − Ĉ12

)
sin

(
α3 − 1

2
χ

)
sin

(
1
2
β3

)
+

1√
2

(
Ĉ13 + Ĉ31

)
cos

(
α3 − 1

2
χ

)
sin

(
1
2
β3

)
+ i

(
Ĉ31 − Ĉ13

)
sin

(
1
2
β3

)
sin

(
α3 − 1

2
χ

)
+i

(
Ĉ32 − Ĉ23

)
sin

(
1
2
χ

)
cos

(
1
2
β3

)
− 2ĥ2 cos

(
1
2
χ

)
cos

(
1
2
β3

)
. (5.32)

Thus WK⊥ can be written easily using the symbols of su(3) generators. The Wigner symbol of

K̂2
⊥ is given in Eq. (5.23) wherein one must use α1

′ = α2
′ = 0, β1

′ = 1
2
π, β2

′ = π.
Fig. 5.7 shows the time evolution of the smallest fluctuations of K̂⊥(ω′;α3, β3, χ) for the

initial coherent state of Eq. (5.30) for λ = 20. The solid line is the quantum mechanical calcu-

lations, the dashed line is truncated semiclassical calculation using the exact Wigner function in

Eq. (4.66) and the dotted line is plotted using the approximate Wigner function in Eq. (5.25).

In comparison to Fig. 5.5 we see that the minimum is lower than the Ĥ1 case. This means we

get more squeezing with the Ĥ2 Hamiltonian. Moreover the minimum occurs at a later time

than the Ĥ1 case. Here again for the first dip in the squeezing graph the agreement between the
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Fig. 5.8: log-log plots of the time location of the minimum of the squeezing versus λ (left) and the
minimum versus λ for squeezing generated by the Hamiltonian Ĥ2

semiclassical method and the quantum mechanical is good but other dips are not reproducible
in the semiclassical plots.

We have also found the time location and the minimum of (∆K̂⊥(ω;α∗3, β
∗
3, χ

∗)(t))
2

for λ = 20
to λ = 70 which is plotted in Fig. 5.8. The time location of the minimum scales as tmin ≈ λ

−0.65

and the minimum of the variance of K̂⊥(ω′;α3, β3, χ) scales as λ0.37. This is almost the same
as the scalings for the S U(2) squeezing, Fig 5.4. This is because ĥ2 is the diagonal operator of
su(3) that corresponds to Ŝ z and also the initial state we chose here is an S U(2) coherent state.



6. CONCLUSION

The objective of this thesis was to investigate squeezing in S U(3) systems in phase space using
semiclassical methods. We obtained the corresponding phase space functions of the quantum
mechanical observables and also the Poisson bracket on the phase space of the system. These
are our main tools to investigate the dynamics in the phase space.

We showed that for S U(3) systems, similar to the previously discussed position-momentum
and S U(2) systems, the quantum Liouville equation of the Wigner function for Hamiltonians
linear in the generators of the algebra is exactly the classical Liouville equation; for nonlinear
Hamiltonians it can be written as Poisson bracket plus other terms which are in fact quantum
correction terms.

The quantum correction terms in the case of position-momentum are proportional to ~ and in
the case of S U(2) and S U(3) are inversely proportional to j and λ respectively. For large values
of j and λ the quantum correction terms are small and we were able to truncate the Liouville
equation to the Poisson bracket and therefore using the classical Liouville equation to discuss
the quantum system.

We checked the validity of this approximation by calculating the time evolution of the vari-
ance of an observable and comparing the semiclassical plots with the quantum mechanical plots.
We showed that the semiclassical plot agrees with the quantum mechanical one for almost half
of the full cycle of the evolution.

In the last chapter we showed that squeezing, which is a quantum mechanical effect, can
be described in the semiclassical approximation. Squeezed states can be obtained by evolving
coherent states of the system under non-linear Hamiltonians. We generalized the squeezing
criterion for S U(2) systems to S U(3) systems. We called a state squeezed if the variance of an
observable which is a combination of su(3) generators and geometrically lies on the hyperplane
tangent to the phase space of the system, perpendicular to the direction of the initial coherent
state, be less than the variance of this operator for the coherent state; for the coherent state this
variance is λ.

We chose as initial state a su(3) coherent state which sits above the minimum of the phase
space symbol of the Hamiltonian. The semiclassical approximation gives better result for this
choice of initial state. We then investigated the evolution of the initial state under two nonlinear
Hamiltonians: Ĥ1 = ĥ2

1 −
2λ+3

5 ĥ1 and Ĥ2 = ĥ2
2 + 2λ+3

60 ĥ1. We showed that although the shape
of squeezing for each of these cases is qualitatively similar, the two types of squeezing are
different, as can be quantitatively determined by the scaling properties of the time of maximum
squeezing and of the actual maximum squeezing as a function of the representation λ. By the
evolution under Ĥ2 Hamiltonian we get more squeezing than what is generated using Ĥ1, and
the time of best squeezing occurs later than the corresponding time in Ĥ1.

The scaling properties also shows that the squeezing obtained by Ĥ2 Hamiltonian is almost
the same as the S U(2) squeezing. This was not unexpected because ĥ2 is the diagonal operator
of the su(2)23 subalgebra of su(3) and also the initial state that sits above the minimum of WH2

is a S U(2) coherent state.
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We have also worked out the generation of squeezing under the Hamiltonian Ĥ = Ĥ1 + Ĥ2.
These result have not presented in this thesis but the quantum mechanical investigation shows
that, although our initial state for this case is a true S U(3) coherent state (in contrast with the
Ĥ1 and Ĥ2 Hamiltonians that we had S U(2) coherent states as initial states) we can’t get better
squeezing than the Ĥ2 case. The semiclassical approximation is again able to produce only
the first dip in the quantum mechanical curve but it also grasps the main trend of the quantum
mechanical curve [63]. The results presented in this thesis could be generalized to other systems
of the S U(n) type but the technical challenge of evaluating some integrals will not be easy to
manage. Nevertheless, because the qualitative features of squeezing are expected to be well
reproduced using a semiclassical evolution, the phase space approach will remain useful in
investigating squeezing in S U(n) systems.

At the end we can say that the semiclassical approximation give the qualitative behavior of
the system in terms of classical physics. Moreover by comparing semiclassical and quantum
mechanical calculations we can identify what part of the problem is really quantum and cannot
be understood as a classical effect.
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A. S U(3) POISSON BRACKET

In this appendix we obtain the Poisson bracket on the phase space for (λ, 0) irrep of S U(3)
which is a four dimensional sphere.

One can show that coherent states for irreps of the type (λ, 0), defined in Eq. (4.19), can be
written as

|Ω〉 = Ne−τ1Ĉ31e−τ2Ĉ21 |λ, 0, 0〉 , (A.1)

where N, τ1 and τ2 can be obtained by expanding the exponentials e−τ1Ĉ31 and e−τ2Ĉ21 and com-
paring the result with Eq. (4.22). We have

τ1 = ei(α1+α2) sin
(
β1

2

)
tan

(
β2

2

)
,

τ2 = eiα2 cos
(
β1

2

)
tan

(
β2

2

)
,

N = cos
(
β2

2

)
. (A.2)

Using Eq. (A.1) we can write the so-called symplectic 2-form as[37]

ω = i
∑
k,l

gkldτk ∧ dτ∗l , (A.3)

where

gkl =
∂2F
∂τk∂τ

∗
l

, F = ln
(
1 + |τ1|

2 + |τ2|
2
)
. (A.4)

Defining the following variables:

η1 = τ1, η2 = τ∗1, η3 = τ2, η4 = τ∗2 ,

ξ1 = α1, ξ2 = α2, ξ3 = β1, ξ4 = β2 , (A.5)

the 2-form can be written as
ω = i

∑
α,β

Gαβdηα ∧ dηβ , (A.6)

where

Gαβ =
1
2


0 g11 0 g12

−g11 0 −g21 0
0 g21 0 g22

−g12 0 −g22 0

 . (A.7)
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The matrix G is antisymmetric. One can easily work out

g11 =
1 + |τ2|

2(
1 + |τ1|

2 + |τ2|
2
)2 = cos4

(
β2

2

) (
1 + cos2

(
β1

2

)
tan2

(
β2

2

))
,

g12 = g∗21 = −
τ∗1τ2(

1 + |τ1|
2 + |τ2|

2
)2 = −e−iα1 sin

(
β1

2

)
cos

(
β1

2

)
sin2

(
β2

2

)
cos2

(
β2

2

)
,

g22 =
1 + |τ1|

2(
1 + |τ1|

2 + |τ2|
2
)2 = cos4

(
β2

2

) (
1 + sin2

(
β1

2

)
tan2

(
β2

2

))
. (A.8)

The Poisson bracket given in [37] as

{ f , g} = −i
∑

i, j

gi j

 ∂ f
∂τi

∂g
∂τ∗j
−
∂g
∂τi

∂ f
∂τ∗j

 , (A.9)

can be written in the new variables as

{ f , g} = −i
∑
α,β

Gαβ ∂ f
∂ηα

∂g
∂ηβ

= −i
∑

i, j

∂ f
∂ξi

∑
α,β

∂ξi

∂ηα
Gαβ

∂ξ j

∂ηβ

 ∂g
∂ξ j

= −i
∑

i, j

∂ f
∂ξi

Gi j ∂g
∂ξ j

. (A.10)

Introducing Uiα =
∂ξi
∂ηα

we have Gi j = UiαGαβU jβ =
(
UGUT

)i j
. Note that Gαβ is the inverse of

Gαβ and Uiα is the inverse of U iα =
∂ηα
∂ξi

. Thus we have

U iα =



− i
2e−i(α1+α2) csc β1

2 cot β2
2

i
2ei(α1+α2) csc β1

2 cot β2
2

i
2e−iα2 sec β1

2 cot β2
2

−i
2 eiα2 sec β1

2 cot β2
2

0 0 −i
2 e−iα2 sec β1

2 cot β2
2

i
2eiα2 sec β1

2 cot β2
2

e−i(α1+α2) cos β1
2 cot β2

2 ei(α1+α2) cos β1
2 cot β2

2 −e−iα2 sin β1
2 cot β2

2 −eiα2 sin β1
2 cot β2

2

e−i(α1+α2) sin β1
2 cos2 β2

2 ei(α1+α2) sin β1
2 cos2 β2

2 e−iα2 sin β1
2 cos2 β2

2 eiα2 sin β1
2 cos2 β2

2


(A.11)

and

Gi j =



0 0 4i csc β1csc2
(
β2
2

)
0

0 0 −2i tan β1
2 csc2

(
β2
2

)
4i csc β2

−4i csc β1csc2
(
β2
2

)
2i tan β1

2 csc2
(
β2
2

)
0 0

0 −4i csc β2 0 0


, (A.12)

from which we obtain Poisson bracket

{ f , g} =
4

sin β1 sin2
(
β2
2

) (
∂ f
∂α1

∂g
∂β1
−
∂ f
∂β1

∂g
∂α1

)
+

2 tan
(
β1
2

)
sin2

(
β2
2

) (
∂ f
∂β1

∂g
∂α2
−
∂ f
∂α2

∂g
∂β1

)
+

4
sin β2

(
∂ f
∂α2

∂g
∂β2
−
∂ f
∂β2

∂g
∂α2

)
. (A.13)



B. SOME USEFUL SYMBOLS OF S U(3) OBSERVABLES

In this appendix we obtain the phase space symbol of
(
Ĉ12 + Ĉ21

)2
which is needed in chapter

4 and we also obtain the symbol of
(
Ĉ13 + Ĉ31

)2
needed in chapter 5.

We have
(
Ĉ12 + Ĉ21

)2
= Ĉ2

12 + Ĉ2
21 + Ĉ12Ĉ21 + Ĉ21Ĉ21. It is easier to obtain the symbols of

each of the terms in the expansion. We start by writing each term in terms of tensors. For Ĉ2
12

and Ĉ2
21 we have

Ĉ2
12 = N T̂ λ

(2,2),(4,0,2);1,

Ĉ2
21 = N T̂ λ

(2,2),(0,4,2);1,

N =
1

6
√

5

√
(λ − 1) λ (λ + 1) (λ + 2) (λ + 3) (λ + 4) , (B.1)

and the other two terms can be written as

Ĉ12Ĉ21 = γ0T̂ λ
(0,0);(0,0,0),0 + γ10T̂ λ

(1,1);(1,1,1),0 + γ11T̂ λ
(1,1);(1,1,1),1 + γ20T̂ λ

(2,2);(2,2,2),0 + γ21T̂ λ
(2,2);(2,2,2),1 ,

Ĉ21Ĉ12 = η0T̂ λ
(0,0);(0,0,0),0 + η10T̂ λ

(1,1);(1,1,1),0 + η11T̂ λ
(1,1);(1,1,1),1 + η20T̂ λ

(2,2);(2,2,2),0 + η21T̂ λ
(2,2);(2,2,2),1 .

(B.2)

To obtain the factors we need to know how tensors T̂ λ
(2,2),(2,2,2);I , I = 0, 1, 2 can be written in

terms of states. We have the following expressions for them,

T̂ λ
(2,2);(2,2,2),0 =

N2
√

30

λ∑
n1=0

λ−n1∑
n2=0

(
3n2

1 + (n2 + n3) (n2 + n3 − 1) − 3n1 (2n2 + 2n3 + 1)
)

× |n1, n2, n3〉 〈n1, n2, n3| (B.3)

T̂ λ
(2,2);(2,2,2),1 =

N2
√

10

λ∑
n1=0

λ−n1∑
n2=0

(4n1 − n2 − n3 + 1) (n3 − n2) |n1, n2, n3〉 〈n1, n2, n3| (B.4)

T̂ λ
(2,2);(2,2,2),2 =

N2
√

6

λ∑
n1=0

λ−n1∑
n2=0

(
n2

2 − 4n3n2 − n2 + n2
3 − n3

)
|n1, n2, n3〉 〈n1, n2, n3| (B.5)

N2 =

√
180

(λ − 1) λ (λ + 1) (λ + 2) (λ + 3) (λ + 4)
(B.6)
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where

γ0 = η0 =

√
2

24
λ (λ + 3)

√
(λ + 1) (λ + 2) ,

γ10 =
1

60
(λ + 9)

√
λ (λ + 1) (λ + 2) (λ + 3) ,

η10 =
1

60
(λ − 6)

√
λ (λ + 1) (λ + 2) (λ + 3) ,

γ11 = −

√
3

60
(λ − 1)

√
λ (λ + 1) (λ + 2) (λ + 3) ,

η11 = −

√
3

60
(λ + 4)

√
λ (λ + 1) (λ + 2) (λ + 3) ,

γ20 = η20 = −

√
6

120

√
(λ − 1) λ (λ + 1) (λ + 2) (λ + 3) (λ + 4) ,

γ21 = η21 = −

√
2

60

√
(λ − 1) λ (λ + 1) (λ + 2) (λ + 3) (λ + 4) . (B.7)

The symbols are then obtained as:

WĈ2
12

=
1
4

√
(λ − 1) λ (λ + 3) (λ + 4) e−2iα2cos2

(
β1

2

)
sin2 (β2) , (B.8)

WĈ2
21

=
1
4

√
(λ − 1) λ (λ + 3) (λ + 4) e2iα2cos2

(
β1

2

)
sin2 (β2) , (B.9)

WĈ12Ĉ21
=

1
12
λ (λ + 3) +

1
60

(λ + 9)
√
λ (λ + 3) (1 + 3 cos (β2))

+
1

10
(λ − 1)

√
λ (λ + 3) cos (β1) sin2

(
β2

2

)
−

1
80

√
(λ − 1) λ (λ + 3) (λ + 4) (3 + 4 cos (β2) + 5 cos (2β2))

+
1

20

√
(λ − 1) λ (λ + 3) (λ + 4) cos β1 (3 + 5 cos β2) sin2

(
β2

2

)
, (B.10)

WĈ21Ĉ12
=

1
12
λ (λ + 3) +

1
60

(λ − 6)
√
λ (λ + 3) (1 + 3 cos (β2))

+
1

10
(λ + 4)

√
λ (λ + 3) cos (β1) sin2

(
β2

2

)
−

1
80

√
(λ − 1) λ (λ + 3) (λ + 4) (3 + 4 cos (β2) + 5 cos (2β2))

+
1

20

√
(λ − 1) λ (λ + 3) (λ + 4) cos β1 (3 + 5 cos β2) sin2

(
β2

2

)
. (B.11)

To obtain the phase space symbol of
(
Ĉ13 + Ĉ31

)2
we write

(
Ĉ13 + Ĉ31

)2
= Ĉ2

13+Ĉ2
31+Ĉ13Ĉ31+
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Ĉ31Ĉ13 and find the symbol of each term. These terms can be written in terms of tensors as

Ĉ2
13 = NT̂ λ

(2,2);(4,2,0),1,

Ĉ2
31 = NT̂ λ

(2,2);(0,2,4),1,

Ĉ13Ĉ31 = γ0T̂ λ
(0,0);(0,0,0),0 + γ10T̂ λ

(1,1);(1,1,1),0 − γ11T̂ λ
(1,1);(1,1,1),1 + γ20T̂ λ

(2,2);(2,2,2),0 − γ21T̂ λ
(2,2);(2,2,2),1 ,

Ĉ31Ĉ13 = η0T̂ λ
(0,0);(0,0,0),0 + η10T̂ λ

(1,1);(1,1,1),0 − η11T̂ λ
(1,1);(1,1,1),1 + η20T̂ λ

(2,2);(2,2,2),0 − η21T̂ λ
(2,2);(2,2,2),1 ,

(B.12)

where the factors γ, η and N are given in Eqs.(B.1) and (B.7). The symbols are then as follows:

WĈ2
13

=
1
4

√
(λ − 1) λ (λ + 3) (λ + 4) e−2i(α1+α2)sin2

(
β1

2

)
sin2 (β2) , (B.13)

WĈ2
31

=
1
4

√
(λ − 1) λ (λ + 3) (λ + 4) e2i(α1+α2)sin2

(
β1

2

)
sin2 (β2) , (B.14)

WĈ13Ĉ31
=

1
12
λ (λ + 3) +

1
60

(λ + 9)
√
λ (λ + 3) (1 + 3 cos (β2))

−
1

10
(λ − 1)

√
λ (λ + 3) cos (β1) sin2

(
β2

2

)
−

1
80

√
(λ − 1) λ (λ + 3) (λ + 4) (3 + 4 cos (β2) + 54 cos (2β2))

−
1

20

√
(λ − 1) λ (λ + 3) (λ + 4) cos β1 (3 + 5 cos β2) sin2

(
β2

2

)
, (B.15)

WĈ31Ĉ13
=

1
12
λ (λ + 3) +

1
60

(λ − 6)
√
λ (λ + 3) (1 + 3 cos (β2))

−
1

10
(λ + 4)

√
λ (λ + 3) cos (β1) sin2

(
β2

2

)
−

1
80

√
(λ − 1) λ (λ + 3) (λ + 4) (3 + 4 cos (β2) + 5 cos (2β2))

−
1

20

√
(λ − 1) λ (λ + 3) (λ + 4) cos β1 (3 + 5 cos β2) sin2

(
β2

2

)
. (B.16)



C. QUANTUM MECHANICAL TIME EVOLUTION OF THE WIGNER
FUNCTION

In this appendix we obtain the quantum mechanical evolution of the S U(2) and S U(3) Wigner
function.

C.1 S U(2)

Our initial state is the S U(2) coherent state |ϕ′, θ′〉 which we write as

|ϕ′, θ′〉 =

j∑
m=− j

D j
m, j

(
ϕ′, θ′, 0

)
| j,m〉 . (C.1)

The time evolution of the initial density operator ρ̂ = |ϕ′, θ′〉 〈ϕ′, θ′| under the Hamiltonian
Ĥ = Ŝ 2

z ,
ρ̂ (t) = e−iHt |ϕ′, θ′〉 〈ϕ′, θ′| eiHt , (C.2)

thus can be written as

ρ̂ (t) =

j∑
m,m′=− j

D j
m, j

(
ϕ′, θ′, 0

) (
D j

m′, j
(
ϕ′, θ′, 0

))∗
ei(m′2−m2)t | j,m〉 〈 j,m′| . (C.3)

The Wigner function of the evolved density operator ρ̂ (t) can be written using Eqs. (3.24),
(3.25) and (C.3):

Wρ (ϕ, θ, t) = Tr (ρ̂ (t) ŵ (ϕ, θ))

=

j∑
m,m′=− j

D j
m, j

(
ϕ′, θ′, 0

) (
D j

m′, j
(
ϕ′, θ′, 0

))∗
ei(m′2−m2)t 〈 j,m′|Λ (ϕ, θ) P̂Λ−1 (ϕ, θ) | j,m〉 ,

(C.4)

where we write

〈 j,m′|Λ (ϕ, θ) P̂Λ−1 (ϕ, θ) | j,m〉 =

j∑
n,n′=− j

〈 j,m′|Λ (ϕ, θ) | j, n〉 〈 j, n| P̂ | j, n′〉 〈 j, n′|Λ−1 (ϕ, θ) | j,m〉 .

(C.5)
Using Eqs. (3.28) and (3.31) we have

P̂ =

2 j∑
L=0

√
2L + 1
2 j + 1

T j
L0 =

2 j∑
L=0

√
2L + 1
2 j + 1

j∑
m′′=− j

CL,0
j,m′′; j,−m′′(−1) j−m′′

| j,m′′〉 〈 j,m′′| . (C.6)
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Thus

Wρ (ϕ, θ, t) =

j∑
m,m′=− j

D j
m, j

(
ϕ′, θ′, 0

) (
D j

m′, j
(
ϕ′, θ′, 0

))∗
ei(m′2−m2)t

×

j∑
m′′=− j

D j
m′,m′′ (ϕ, θ, 0)

(
D j

m,m′′ (ϕ, θ, 0)
)∗ 2 j∑

L=0

√
2L + 1
2 j + 1

(−1) j−m′′CL,0
j,m′′; j,−m′′ ,

(C.7)

where for the case of the initial state of chapter 3, ϕ′ = 0, θ′ = π/2 , we can use

D j
m, j

(
ϕ′ = 0, θ′ =

π

2
, 0

)
=

1
2 j

√
(2 j)!

( j + m)! ( j − m)!
. (C.8)

C.2 S U(3)

Now let us calculate the time evolution of the S U(3) Wigner function under the Hamiltonian
Ĥ = ĥ2

1 −
2λ+3

5 ĥ1. Our initial state is the S U(3) coherent state R12
(
0, β′2, 0

)
|λ, 0, 0〉,

|ψ (0)〉 = R12
(
0, β′2, 0

)
|λ, 0, 0〉 (C.9)

=

λ∑
p=0

|λ − p, p, 0〉 〈λ − p, p, 0|R12
(
0, β′2, 0

)
|λ, 0, 0〉

=

λ∑
p=0

D
1
2λ
1
2 (λ−2p), 1

2λ

(
0, β2

′, 0
)
|λ − p, p, 0〉 , (C.10)

where we can use

DJ
M,J (α, β, γ) =

√
(2J)!

(J + M)! (J − M)!

(
cos

β

2

)J+M(
sin

β

2

)J−M

e−i(Mα+Jγ) . (C.11)

The time-evolved state, |ψ (t)〉 = e−iĤt |ψ (0)〉, is

|ψ (t)〉 =

λ∑
p=0

√
λ!

(λ − p)!p!
cosλ−p

(
β′2
2

)
sinp

(
β′2
2

)
e−it[(2λ−3p)2− 2λ+3

5 (2λ−3p)] |λ − p, p, 0〉

=

λ∑
p=0

Cp(t) |λ − p, p, 0〉 . (C.12)

Thus the Wigner function of the time-evolved density operator,

ρ̂ (t) =

λ∑
p, r=0

Cp(t)C∗r (t) |λ − p, p, 0〉 〈λ − r, r, 0| , (C.13)

is

Wρ (ω, t) =

λ∑
p, r=0

Cp(t)C∗r (t) 〈λ − r, r, 0|Λ (ω) P̂Λ−1 (ω) |λ − p, p, 0〉 (C.14)
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with Λ (ω) = R23 (ω1) R12 (ω2). The operator P̂ is

P̂ =
∑
σ

√
dim (σ,σ)
dim (λ, 0)

∑
µ,ν

|λ − µ, µ − ν, ν〉 〈λ − µ, µ − ν, ν|C̃λ(σ,σ)(σ,σ,σ)0
(λ−µ,µ−ν,ν)(λ−µ,µ−ν,ν) . (C.15)

Inserting Eq. (C.15) into Eq. (C.14) we obtain 〈λ − r, r, 0|Λ (ω) |λ − µ, µ − ν, ν〉, which can be
written as∑

η

〈λ − r, r, 0|R23 (ω1) |λ − r, r − η, η〉 〈λ − r, r − η, η|R12 (ω2) |λ − µ, µ − ν, ν〉 . (C.16)

In terms of S U(2) D-functions we have

〈λ − r, r, 0|R23 (ω1) |λ − r, r − η, η〉 = D
1
2 r
1
2 r, 1

2 (r−2ν)
(α1, β1,−α1) (C.17)

and

〈λ − r, r − η, η|R12 (ω2) |λ − µ, µ − ν, ν〉 = D
1
2 (λ−ν)
1
2 (λ−2r+ν), 1

2 (λ−2µ+ν)
(α2, β2,−α2) . (C.18)

Thus

Wρ (ω, t) =
∑
p,r

Cp(t)C∗r (t)
∑
σ

√
dim (σ,σ)
dim (λ, 0)

∑
µ,ν

C̃λ(σ,σ)(σ,σ,σ)0
(λ−µ,µ−ν,ν)(λ−µ,µ−ν,ν)D

1
2 r
1
2 r, 1

2 (r−2ν)
(ω1)

(
D

1
2 p
1
2 p, 1

2 (p−2ν)
(ω1)

)∗
×D

1
2 (λ−ν)
1
2 (λ−2r+ν), 1

2 (λ−2µ+ν)
(ω2)

(
D

1
2 (λ−ν)
1
2 (λ−2p+ν), 1

2 (λ−2µ+ν)
(ω2)

)∗
. (C.19)

Finally, one can additionally use the closed form expression

DJ
J,M (α, β, γ) =

√
(2J)!

(J + M)! (J − M)!

(
cos

β

2

)J+M(
− sin

β

2

)J−M

e−i(Jα+Mγ) , (C.20)

to produce a slightly more explicit form of the final Wigner function.



D. ANALYTICAL CALCULATIONS OF SEMICLASSICAL VARIANCE
OF K̂⊥

In this appendix we show a sample calculation of one of the integrals that appears in calculating
the variance of K̂⊥ in chapter 5. Specifically here we show how we analytically calculated the
following integral

〈
Ĉ12 + Ĉ21

〉
=

dim (λ, 0)
4π2

∫ 2π

0
dα1

∫ 2π

0
dα2

∫ π

0
dβ1 sin β1

×

∫ π

0
dβ2

1 − cos β2

4
sin β2WĈ12+Ĉ21

Wρ (Ω (t)) (D.1)

where
WĈ12+Ĉ21

=
√
λ (λ + 3) cosα2 cos

(
β1

2

)
sin β2 (D.2)

and Wρ (Ω (t)) is the time evolved Wigner function given in Eq. (4.64)

Wρ (Ω (t)) = W|λ,0,0〉〈λ,0,0|
(
Ω̃ (t)

)
=

λ∑
σ=0

√
dim (σ,σ)
dim (λ, 0)

C̃λ(σ,σ)(σ,σ,σ)0
λ00;λ00 D(σ,σ)

(σ,σ,σ)0;(σ,σ,σ)0

(
Ω̃ (t)

)
. (D.3)

The S U(3) D-function, D(σ,σ)
(σ,σ,σ)0;(σ,σ,σ)0

(
Ω̃
)
, can be written in terms of Legendre polynomials as

D(σ,σ)
(σ,σ,σ)0;(σ,σ,σ)0

(
Ω̃
)

=
1

(σ + 1)2

σ∑
p=0

(2p + 1) Pp

(
cos β̃2

)
=

1(
cos β̃2 − 1

)
(σ + 1)

(
Pσ+1

(
cos β̃2

)
− Pσ

(
cos β̃2

))
(D.4)

and the Legendre polynomial Pp(x) is given explicitly by

Pp (x) =

p∑
k=0

(−1)k
(

p
k

) (
−p − 1

k

) (
1 − x

2

)k

. (D.5)

Thus we can write the Wigner function as

Wρ

(
Ω̃ (t)

)
=

λ∑
σ=0

√
dim (σ,σ)
dim (λ, 0)

C̃λ(σ,σ)(σ,σ,σ)0
λ00;λ00

1
(σ + 1)2

×

σ∑
n1=0

n1∑
n2=0

n2∑
n3=0

(2n1 + 1)
(
1
2

)n2
(

n1

n2

) (
−n1 − 1

n2

) (
n2

n3

)
(−1)n3

(
cos β̃2

)n3
,

(D.6)
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or, more compactly, as

Wρ

(
Ω̃ (t)

)
=

λ∑
q=0

Aλ
q

(
cos β̃2

)q
. (D.7)

As discussed in chapter 4, for Ĥ1 = ĥ2
1 −

2λ+3
5 ĥ1 we have

cos β̃2 = −sin2
(

1
2β2

′
)

sin2
(

1
2β1

)
+ cos β2

(
cos2

(
1
2β2

′
)
− cos2

(
1
2β1

)
sin2

(
1
2β2

′
))

+
(
cos

(
1
2β1

)
sin β2

′ sin β2

)
cos (α2 (t))

= C + B cos (α2 (t)) , (D.8)

where

α2 (t) = α2 −
9
5

√
(λ − 1) (λ + 4) (1 + 5 cos β2) t

= α2 + At + Āt cos β2 = α2 + R . (D.9)

Writing (
cos β̃2

)q
=

q∑
n4=0

(
q
n4

)
Cq−n4 Bn4cosn4 (α2 + R) , (D.10)

we get〈
Ĉ12 + Ĉ21

〉
=

dim (λ, 0)
4π2 2 π

√
λ (λ + 3)

×

λ∑
q=0

Aλ
q

∫
dβ1

∫
dβ2 cos

(
1
2β1

)
sin β2 sin β1 cos

(
1
2β2

)
sin3

(
1
2β2

)
×

(q−1)/2∑
n4=0

(
q

2n4 + 1

)
Cq−(2n4+1)B2n4+1

∫ 2π

0
dα2cos2n4+1 (α2 + R) cosα2 ,

(D.11)

where the integration over α1 yields 2π since there is no α1 dependence in the integrand.
Writing cosα2 = cos (α2 + R − R) the integral on α2 turns out to be

cos R
∫ 2π

0
dα2cos2n4+2 (α2 + R) =

(2n4 + 1)!!2π
(n4 + 1)!2n4+1 cos R . (D.12)

Using trigonometric identities we can write

C = 1
2sin2

(
1
2β2

′
)

+ cos β2

(
cos2

(
1
2β2

′
)
− 1

2sin2
(

1
2β2

′
))

+
(

1
2sin2

(
1
2β2

′
)

(1 − cos β2)
)

cos β1

= X + Y cos β1 . (D.13)

Thus

Cq−(2n4+1) =

q−2n4−1∑
n5=0

(
q − 2n4 − 1

n5

)
Yn5cosn5 (β1) Xq−2n4−1−n5 (D.14)

and the β1 integral in fact is∫ π

0
dβ1cos2n4+2

(
β1

2

)
cosn5 (β1) sin (β1) =

(
1
2

)n4+1
n4+1∑
n6=0

(
n4 + 1

n6

)
(−1)n5+n6 + 1
n5 + n6 + 1

, (D.15)
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Hence〈
Ĉ12 + Ĉ21

〉
=

√
λ (λ + 3)

dim (λ, 0)
4π2 2 π

×

λ∑
q=0

Aλ
q

∫ π

0
dβ2 sin (β2) cos

(
1
2
β2

)
sin3

(
1
2
β2

)
cos (R)

×

(q−1)/2∑
n4=0

(
q

2n4 + 1

)
sin2n4+1 (

β′2
) (1

2

)n4+1 (2n4 + 1)!!2π
(n4 + 1)!2n4+1

q−2n4−1∑
n5=0

(
q − 2n4 − 1

n5

)

×Yn5 Xq−2n4−1−n5

(
1
2

)n5

sin2n5

(
1
2
β′2

)
1
4

n4+1∑
n6=0

(
n4 + 1

n6

)
(−1)n5+n6 + 1
n5 + n6 + 1

(D.16)

The β2 integral is then

1
4

∫ 1

−1
dξ

(
1 − ξ2

)n4+1
(1 − ξ)n5+1(F + Gξ)q−2n4−n5−1 cos

(
At + Ātξ

)
, (D.17)

where we have used ξ = cos β2. We now expand,

(F + Gξ)q−2n4−n5−1 =

q−2n4−n5−1∑
n7=0

(
q − 2n4 − n5 − 1

n7

)
Gn7 Fq−2n4−n5−1−n7ξn7 , (D.18)

(
1 − ξ2

)n4+1
=

n4+1∑
n8=0

(
n4 + 1

n8

)
ξ2n8(−1)n8 , (D.19)

(1 − ξ)n5+1 =

n5+1∑
n9=0

(
n5 + 1

n9

)
ξn9(−1)n9 , (D.20)

The integral on ξ is then

cos (At)
∫ 1

−1
dξ cos

(
Ātξ

)
ξ2n8+n9+n7︸                           ︷︷                           ︸

κc

− sin (At)
∫ 1

−1
dξ sin

(
Ātξ

)
ξ2n8+n9+n7︸                          ︷︷                          ︸

κs

, (D.21)

where

κc = (2n8 + n9 + n7)!
2n8+n9+n7∑

n10=0

sin
(
Āt + 1

2n10π
)

+ (−1)2n8+n9+n7−n10 sin
(
Āt − 1

2n10π
)

(2n8 + n9 + n7 − n10)!
(
Āt

)n10+1 (D.22)

and

κs = − (2n8 + n9 + n7)!
2n8+n9+n7∑

n10=0

sin
(
Āt + 1

2n10π
)
− (−1)2n8+n9+n7−n10 cos

(
Āt − 1

2n10π
)

(2n8 + n9 + n7 − n10)!
(
Āt

)n10+1 . (D.23)



D. Analytical calculations of semiclassical variance of K̂⊥ 72

Finally we obtain〈
Ĉ12 + Ĉ21

〉
=

√
λ (λ + 3)

dim (λ, 0)
4π2 2 π

×

λ∑
q=0

Aλ
q

(q−1)/2∑
n4=0

(
q

2n4 + 1

)
sin2n4+1 (

β′2
) (1

2

)n4+1 (2n4 + 1)!!2π
(n4 + 1)!2n4+1

×

q−2n4−1∑
n5=0

(
q − 2n4 − 1

n5

)(
1
2

)n5
sin2n5

(
1
2β
′
2

) 1
4

n4+1∑
n6=0

(
n4 + 1

n6

)
(−1)n5+n6+1

− 1
n5 + n6 + 1

×

q−2n4−n5−1∑
n7=0

(
q − 2n4 − n5 − 1

n7

)
Gn7 Fq−2n4−n5−1−n7

n4+1∑
n8=0

(
n4 + 1

n8

)
(−1)n8

×

n5+1∑
n9=0

(
n5 + 1

n9

)
(−1)n9 (cos (At) κc − sin (At) κs) . (D.24)
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