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Abstract

Monitoring and retro�tting of large-scale infrastructure is of paramount importance spe-

cially when they are subjected to natural hazards like strong wind, severe earthquakes or

man-made excitation. Once the rich vibration data is collected from the structures, a ro-

bust system identi�cation method is required to extract the hidden structural information,

and undertake necessary condition assessment and rehabilitation. Most of the traditional

modal identi�cation methods are reliant on stationarity assumption of the vibration re-

sponse and posed di�culty while analyzing nonstationary vibration occurred due to natural

hazards. Apart from the excitation-induced nonstationarity, the inherent damages in the

structure also cause frequency-dependent nonstationarity in the response. With such com-

bination of both amplitude and frequency-dependent nonstationary response, the modal

identi�cation becomes a signi�cantly challenging task.

Recently tensor decomposition based methods are emerged as powerful and yet generic

blind (i.e. without requiring a knowledge of input characteristics) signal decomposition

tool for structural modal identi�cation. In this thesis, a tensor decomposition based system

identi�cation method is further explored to estimate modal parameters using amplitude-

dependent nonstationary vibration generated due to either earthquake or pedestrian in-

duced excitation in a structure. The e�ects of lag parameters and sensor densities on tensor

decomposition are studied with respect to the extent of nonstationarity of the responses

characterized by the stationary duration and peak ground acceleration of the earthquake.

A suite of more than 1400 earthquakes is used to investigate the performance of the pro-

posed method under a wide variety of ground motions utilizing both complete and partial

measurements of a high-rise building model. Apart from the earthquake, human-induced

nonstationary vibration of a real-life pedestrian bridge is also used to verify the accuracy

of the proposed method.
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Once the method is veri�ed using amplitude-based nonstationary response, Cauchy

continuous wavelet transform is integrated with the tensor decomposition to track time-

varying characteristics of each modal responses and detect the progressive damage. With

such an integrated framework, the proposed method is able to identify both amplitude and

frequency-dependent nonstationary responses. The proposed technique is validated using a

suite of numerical studies as well as a laboratory experiment where the progressive damage

is simulated in the structural component with a heating torch.
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Chapter 1

Introduction

1.1 Overview

As buildings, bridges and many other large civil infrastructure age, they undergo a wide

range of excitation including strong winds, earthquake or man-made hazard. Such time-

varying and nonstationary external loads cause signi�cant deterioration in civil structures.

A structure that experiences minor damage under operational load may still be considered

structurally sound. However, initial damage may progressively worsen over time that

increases the possibility of catastrophic failure in the near future. Therefore, continuous

monitoring and inspection of the structure is important to prevent any major failure later.

The motivation of this thesis is to develop a vibration-based damage detection technique

capable of identifying progressive damage in structures under nonstationary excitation.

In general, monitoring large structures using manual and visual inspection are costly,

time consuming and inaccurate. The emergence of Structural health monitoring (SHM)

provides an e�ective method of damage detection through the collection of output measure-
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Figure 1.1: Idealized modal parameters of a three-story building

ments. Vibration-based SHM methods [5] are very powerful to detect local as well as global

damage that cannot be identi�ed using traditional methods. Modal identi�cation [35] is

one of the key components of SHM where modal parameters (i.e, damping, frequency, and

modeshapes as shown in Fig. 1.1) are extracted directly from vibration measurements. The

central idea of these techniques is that structural damage causes changes in these modal

parameters and the proposed method should be able to track these changes. Development

of modal identi�cation techniques was initiated as input-output methods in the 1970s.

However, due to the lack of input measurements and the associated cost, \output-only"

methods (i.e. blind identi�cation) are more suitable to large-scale civil structures.

While many SHM techniques have been studied considering detection of discrete dam-

2



age, there has been a limited amount of research towards detection of progressive damage

of structures that may occur due to natural hazards such as strong winds and earthquakes

that are nonstationary in nature. This research is intended to explore a robust damage

detection technique for structures with progressive damage resulting due to such nonsta-

tionary excitation.

1.2 Literature Review

The SHM is primarily consisted of four key elements: data sensing, data acquisition, system

identi�cation and decision making. Over past few decades, the topic of SHM has seen

signi�cant advancement in newer system identi�cation techniques addressing a wide range

of challenging situations of large-scale structures. However, despite all the advancements

in signal processing, progressive damage detection of structures remains a challenge. In

this section, a detailed literature review on recent damage detection methods is presented.

Since 1970, di�erent modal identi�cation techniques have been developed towards var-

ious SHM applications. These techniques fall under �ve categories; time or frequency

domain, time-frequency domain, pattern recognition or hybrid methods. A current review

paper [5] of signal processing techniques provides an excellent summary of advantages and

disadvantages of di�erent signal processing techniques.

1.2.1 Time-domain Methods

Time domain methods were among the preliminary methods of the SHM techniques. Ma

et. al. [34] used vibration data to track the changes in sti�ness. However, they concluded

that noise contamination, as well as environmental changes a�ect the performance of the

3



method to detect small variations in sti�ness. Jang et al. [23] employed stochastic dynamic

damage locating vector (SDDLV) method that tracks the dynamic 
exibility matrices. [6]

investigated normalized curvature di�erence of waveform jerk energy [6] and the curvature

di�erence to �nd the location. In a di�erent study, an autoregressive model [38] with

a hidden Markov model was used to determine the probabilistic progressive damage of

a structure. In [10], an optimization approach was adopted that minimized the error

between the moment generating function and a numerical modal of the structure to identify

damage. This method can be applied using limited sensors, but required signi�cant user

intervention. Zhong and Chang [59] applied recursive subspace identi�cation to recognize

structural changes under non-stationary excitation. Liu et al. [33] extended the random

decrement technique under non-stationary structural response. In summary, time domain

methods are easier to implement, however most of them require input data which is di�cult

to obtain in large structures and have shown poor performance towards progressive damage

detection.

1.2.2 Frequency-domain Methods

Frequency domain analysis converts a time history into its frequency spectrum which al-

lows the user to see the frequencies that are present within the system. Valdes-Gonzalez et

al. [55] used to detect changes in sti�ness of the structure using the power spectral density

functions of the dynamic strain measurements [52]. Based on frequency domain decompo-

sition [19], the Bayesian approach employing the Markov-chain Monte Carlo method was

used to estimate the modal parameters. In [21], l1-norm of the algebric di�erence between

damaged and undamaged structures was used to localize and quantify damage. In another

study, the problem of system identi�cation with incomplete structural information was

4



addressed by [16]. One of the major drawbacks of frequency domain analysis is that it

is not possible to determine the span of time in which frequency changes occur, which is

critical to detect progressive damage correctly.

1.2.3 Time-frequency Methods

Time-frequency analysis gives a better picture of the frequency change within a system in

conjunction with time. A statistical method based on wavelet packet transform [51] was

developed for SHM under pulse loading. This method analyzed acceleration time histories

which were decomposed into wavelet coe�cients and subsequently the dominant energies

are extracted and quanti�ed. Sadhu and Hazra [44] combined blind source separation

(BSS) with time-series model that estimated the modal response through the BSS and

then the time-series model predicted the next measurement step. Consequently, damage

location, severity and damage instant were identi�ed. A recursive least squares (RLS)

algorithm [26] in combination with adaptive wavelet �ltration was used for non-stationary

systems as it adjusted the wavelet to re
ect the changes in the system. Adaptive wavelet

�ltration matched the wavelet �lter characteristics to the frequency at the time, allow-

ing for better tracking of damage. This technique reduced the computation time and

increased the convergence speed of the RLS algorithm. Using spectrogram representation

of short-time-Fourier transform, [3] came up with an optimal bias-compensated estimator

to remove some of the time-frequency distortions through correction curves developed via

Monte Carlo simulations. Musafere et al. [40] proposed an integrated second-order blind

separation (SOBI) with time-variant auto-regressive (TVAR) model to conduct discrete

damage detection. In this method, the SOBI was used to identify the modal responses and

then TVAR model tracked the modal changes to identify severity and instant of discrete

5



damage.

Wavelet-based [17] based frequency response function was developed to detect abrupt

changes in a time-variant system. [54] used two signal processing steps where the signal

was �rst processed through continuous wavelet transformation (CWT) followed by the gen-

eralized discrete Teager-Kaiser energy operator that localized and magni�ed the damaged

modeshapes. A recent method [12] applying joint approximate diagonalization of the power

spectral density matrices also yielded the operational de
ection shapes of the structure.

This method was then compared with several dominant characteristic de
ection shapes

at di�erent natural frequencies to create a damage index. In summary, time-frequency

methods are promising for detecting progressive damage owing to their time-varying fre-

quency decomposition capability. However, these methods have not been explored under

nonstationary excitation.

1.2.4 Pattern Recognition Methods

Pattern recognition methods employ statistical analysis and novelty detection approaches

to distinguish changes in the system parameters of the structure. For example, the AR-

Markov models [15] are designed from input/output measurement of the system and at-

tempted to determine the extent of damage within a member. Panigrahi et al. [41] used

residual force vector analysis along with genetic algorithm to detect the location and extent

of damage in multi-storied structure. Research by Khoa et al. [24] tested three methods

of dimensional reduction: random projection, principal component analysis, and support

vector machine. On the other hand, Link and Zimmerman [32] explored orthogonal match-

ing pursuit to �nd the level of damage from frequency response functions. In [49], three

dynamic signatures including modeshape curvature, modal strain energy and modal 
exi-

6



bility matrix were extracted to assess structural damage. Using a curve �tting technique,

the aforementioned dynamic signatures were compared to a baseline structure for proba-

bilistic damage identi�cation. Another novelty detection method, namely self-organizing

maps [4], was able to quantify and locate reduction in member sti�ness. They found this

method to be e�ective with up to 10% measurement noise.

1.2.5 Hybrid Methods

This class of techniques uses a combination of several signal decomposition techniques.

For example, [25] combined discrete wavelet transform (DWT) with autoregressive moving

average models and support vector machines (SVM) to perform global damage detection in

smart structures equipped with magnetorheological damper under earthquake excitation.

Arsava et al. [9] also used the DWT with relevance vector machine (RVM), a Bayesian

extension of SVM, and found that the RVM had a faster training process with similar

accuracy to the SVM. Multi-class non-linear RVM was developed for damage detection

of non-linear systems with random excitation. A method combining [58] structural dam-

age prognosis with fuzzy C-means clustering was used to identify the type of linear and

nonlinear damage of structures. In another study, a new recursive stochastic subspace

identi�cation [57] was developed where the Hankel matrix of the data was continuously

updated with new data. Recently, Su et al. [50] developed a two-step process for identi-

fying the location of damage. The method used continuous Cauchy wavelet transform for

modal identi�cation followed by damage locating vectors applied to the identi�ed 
exibility

matrix.
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1.3 Gap Areas

With above review of the existing literature, the following gap areas are identi�ed that

could be considered to improve the state-of-the-art damage detection methods.

� Time-frequency methods have better potential to perform modal identi�cation of

time-varying systems. However, there has been limited research in this area when

the structure is excited by nonstationary excitation. Such amplitude-dependent non-

stationarity is an important factor to be considered in the system identi�cation stage

due to the presence of strong winds and severe earthquakes a�ecting the structures.

� There has been signi�cant research in identifying discrete damage. However, very

few research has been conducted in the area of progressive damage to address the

frequency-dependent nonstationary.

� Adequate and realistic validation of the damage detection method is also very critical

while developing a new method. Moreover, it would be worth to investigate the e�ect

of limited number of sensors.

1.4 Thesis Objectives

Based on the above gap areas, the following objectives are considered in this thesis.

1. Explore a newer time-frequency system identi�cation method that can identify modal

parameters using amplitude-dependent nonstationary response of the structures.

(a) Investigate the e�ect of user-de�ned parameters of the proposed method.

8



(b) Evaluate the performance of tensor decomposition using a suite of nonstationary

excitation including earthquake as well human-induced vibration.

(c) Evaluate the e�ect of limited number of sensors.

2. Once the above methodology is successfully explored, develop a robust damage de-

tection technique that can accurately identify the progressive damage in a structure

subjected to nonstatioary excitation.

3. Validate the proposed method using a suite of numerical and experimental studies.
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Chapter 2

Tensor Decomposition Method

In this chapter a new time-frequency method, called tensor decomposition, is explored

to estimate modal parameters of structures using nonstationary vibration response. Ten-

sor decomposition is a powerful blind system identi�cation method that does not require

knowledge of input data. This method involves several factors including lag parameters and

limited number of sensors that will be studied in the context of stationary and amplitude-

dependent nonstationary excitation.

2.1 Introduction

In recent years, PARAllel FACtor (also known as Parallel factor (PARAFAC) decompo-

sition) or tensor decomposition method has emerged as a powerful modal identi�cation

technique [45]. In this chapter, the performance of PARAFAC decomposition is explored

under a wide range of earthquake-induced vibration that are associated with amplitude-

dependent nonstationary.
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In this method, a tensor is built from the covariance matrix of sensor vibration data

under a set of multiple lags. This covariance tensor is decomposed into covariances of the

modal responces using a multi-linear algebra method known as alternating least squares

(ALS) [48, 37]. Using canonical decomposition [13] and parallel factor analysis [20], the

matricization operation perform signal decomposition using both complete as well as partial

measurement cases. Antoni and Chauhan [7] used alternating least squares (ALS) to solve

tensor decomposition associated with modal identi�cation using a limited number of sensors

[42]. The underdetermined signal separation capability of PARAFAC decomposition was

recently explored to identify the modal parameters of high-rise building [1, 36, 2] and a

structure equipped with tuned-mass damper [46] using limited sensor measurements.

In the case of complete measurement case, the modal responses can be obtained directly

from the raw vibration measurements without any post-processing. On the other hand,

when only limited sensor measurements are available, PARAFAC decomposition results in

the covariance of modal responses from which frequencies and damping are subsequently

estimated. Recently, PARAFAC decomposition was integrated with wavelet packet trans-

form (WPT) to improve the source separation capability where mode-mixing in the WPT

coe�cients was alleviated using PARAFAC decomposition [45, 47]. The rank order selec-

tion is one of the prerequisite in this method, which is an impediment for automated system

identi�cation. In order to alleviate this, a cluster diagram of modal frequencies is proposed

under a suite of multiple rank orders [43] from which the optimal rank order is chosen based

on clustered densities of modal parameters. In this process, the e�ect of spurious modes is

also circumvented and the modal frequencies are delineated from the excitation frequencies.

However, none of the above studies investigates the performances of PARAFAC decom-

position under nonstationary excitation. In this chapter, the PARAFAC decomposition

is studied under a wide range of nonstationary vibration due to earthquakes as well as

11



human-induced excitations. The e�ect of lag parameters is investigated with respect to

the extent of nonstationarity in the data. The performance of this method under limited

sensor densities is also explored in a high-rise building model and a full-scale pedestrian

bridge located in the campus of Lakehead University, Canada.

This chapter is organized as follows. First, the brief literature of PARAFAC decomposi-

tion is presented in the introduction section. The background of PARAFAC decomposition

is discussed next followed by the mathematical equivalence of tensor decomposition with

modal identi�cation. The PARAFAC method is then validated using numerical and real-

life case studies in the results section followed by key conclusions.

2.2 Background

A signal may be expressed through a multi-dimensional array. This allows tensor represen-

tation and use of multi-liner algebra tool which is more e�ective than linear algebra tool

(e.g. principal component analysis [11, 48]). A vector s = si 2 <n1 is a �rst-order tensor,

whereas a matrix S = sij 2 <n1�n2 is a second-order tensor. It follows, a zth order tensor

is written as:
�S = sijk:::z 2 <n1�n2�n3�::::�nz : (2.1)

To better understand tensors, �rst take a simple 2x2x2 tensor as shown in Fig. 2.1.

Each tensor is comprised of higher order �bres, mode-1 (t:jk), mode-2 (ti:k), and mode-3

(tij:) �bres. A three-dimensional tensor, separated into three matrices representing each

dimension (horizontal, lateral, and in plane) this is known as matricization. A third-order

tensor is �rst seperated into a sum of outer products of triple vectors as seen in Fig. 2.2

[11]:
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Figure 2.1: Block representation of a 2 x 2 x 2 tensor �bres, tijk
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Figure 2.2: Tensor decomposition
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�S =
RX

r=1

�r � �r � r () �Sijk =
RX

r=1

�ir�jr kr (2.2)

where \�" denotes outer product with i 2 [1 I], j 2 [1 J] and k 2 [1 K]. In Eq. (2.2), R

is the number of rank-1 tensors present in �S. This is also de�ned as trilinear model of �S,
�S = [�;�;	], where the matrices are given by � = (�1;�2; ::::;�R), � = (�1;�2; ::::;�R),

and 	 = ( 1; 2; ::::; R). As shown in Eq. (2.2), each triple vector product is a rank-1

tensor, namely PARAFAC component. Eq. (2.2) represents the summation of R such

PARAFAC components that �t the higher order tensor �S [11, 28]. The fundamental

technique was developed by two di�erent independent research: canonical decomposition

(CANDECOMP) [13] and PARAllel FACtor (PARAFAC) analysis [20]. The algorithms

can be categorized in three main groups, namely (a) alternating least squares (ALS) (b)

derivative-based methods and (c) direct or non-iterative approaches [11]. Out of three

methods, the ALS method is the most popular method because of an easier implementa-

tion, smooth convergence and robust handling for higher order tensors. The key steps of

the ALS are brie
y presented in Appendix A. The details of tensor decomposition can be

found in the literature [11] and are not repeated for brevity.

A simple demonstration of the signal separation capability of PARAFAC decomposi-

tion is considered next. Consider a linear mixtures of three harmonics (sources, s) with

frequencies 1:0, 2:5 and 1:2 Hz containing a measurement noise of 20% shown in the �rst

two rows of Fig. 2.3:
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ŝ 3

33 = [1:0; 0:79; 0:95]T

Figure 2.3: Simulated mixtures and corresponding signal separations using the PARAFAC

decomposition
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3

7775

x = �s (2.3)

Since the mixtures contain three sources, rank-3 PARAFAC decomposition (i.e., R =

3) is performed over these mixtures to extract three hidden sources. The PARAFAC

decomposition yields �̂1, �̂2 and �̂3 as shown in the last row of Fig. 2.3. This yields the

mixing matrix by concatenating successive normalized (w.r.t. x1) �̂ that is approximately

equal to Eq. (2.3):
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�̂ =
h
�̂1 �̂2 �̂3

i
=

2

6664

0:93 0:81 �0:97

0:92 1:22 �0:77

1:82 1:79 �0:92

3

7775
, �̂ =

2

6664

1:0 1:0 1:0

0:99 1:5 0:79

1:95 2:2 0:95

3

7775
(2.4)

2.3 Tensor decomposition-based Modal Identi�cation

In this section, tensor decomposition method is explored for modal identi�cation. A linear,

proportionally damped, and discrete lumped-mass system with nd Degrees of freedom

(DOF) when subjected to an excitation force, P(t) can be expressed as:

M�y(t) + C_y(t) + Ky(t) = P(t) (2.5)

where, y(t) is the displacement vector at the lumped masses. M, C, and K are the

mass, damping and sti�ness matrices of the multi-degree-of-freedom system. For example,

P = MI�ug where ground motion (i.e., �ug(t)) is applied at the base. The solution of

Eq. (2.5) can be expressed in terms of modal superposition of vibration modes with the

following matrix form:

y = �q (2.6)

where, y 2 <ny�N is a matrix consisting of measurements y, q 2 <nd�N is a matrix of the

corresponding modal responses, �ny�nd is the mode shape matrix, and N is the number of

data points in the measurement. ny is the number of measurement channels.

The covariance matrix Zy(�k) of vibration measurements (y) evaluated at time-lag �k

can be written as:

Zy(�k) = E
�
y(n)yT (n� �k)

	
= �Zq(�k)�T (2.7)
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where,

Zq(�k) = E
�
q(n)qT (n� �k)

	
: (2.8)

and q are the hidden sources. Let us consider the following annotations to simplify the

mathematical notations of successive derivations,

Zy1y2(�k) = Zy
12k () Zyiyj(�k) = Zy

ijk

Zq1(�k) = Zq
k1 () Zql(�k) = Zq

kl: (2.9)

Considering a case with three available measurements where y = fy1; y2; y3g, Eq. (2.7)

with above simpli�ed notations can be represented as follows:

2

6664

Zy
11k Zy

12k Zy
13k

Zy
21k Zy

22k Zy
23k

Zy
31k Zy

32k Zy
33k

3

7775
=

2

6664

�11 �12 �13

�21 �22 �23

�31 �32 �33

3

7775

2

6664

Zq
k1 0 0

0 Zq
k2 0

0 0 Zq
k3

3

7775

2

6664

�11 �21 �31

�12 �22 �32

�13 �23 �33

3

7775
:

(2.10)

Eq. (2.10) can now be expressed as:

Zy
12k = �11�21Zq

k1 + �12�22Zq
k2 + �13�23Zq

k3 (2.11)

which can be generalized for Zy
ijk of Eq. (2.10) as:

Zy
ijk = �i1�j1Zq

k1 + �i2�j2Zq
k2 + �i3�j3Zq

k3 =
3X

r=1

�ir�jrZq
kr i; j = 1 : 3; k = 1 : K: (2.12)
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For any general nd-DOF dynamical system, Eq. (2.12) can be simpli�ed as:

Zy
ijk =

ndX

r=1

�ir�jrZq
kr () Zy =

ndX

r=1

�r � �r � Zq
r : (2.13)

Considering the similarity between Eq. (2.2) and Eq. (2.13), it is observed that by

decomposing the third order tensor Zy into nd number of PARAFAC components (i.e.,

modal responses), the mixing matrix (i.e., �) can be estimated. By using PARAFAC

decomposition of Zy, the resulting solutions yield the mixing matrix (i.e., modeshape

matrix) � = [�1;�2;�3; :::;�nd ] and the auto-correlation function Zq
r for r = 1; 2; 3; :::; nd

from which the natural frequencies and damping of the individual modal responses can be

estimated. In this way, the mathematical equivalence of PARAFAC decomposition and

modal identi�cation is established [45].

However, the performance of PARAFAC decomposition has not been yet studied un-

der nonstationary vibration. It may be noted that the lag parameter (i.e., K) plays an

important role in separating the PARAFAC components. In this chapter, the e�ect of K

is studied under a wide range of nonstationary measurements obtained using more than

1400 ground motions and human-induced vibrations.

One of the most attractive features of PARAFAC decomposition is that it has the

ability to perform separation when the rank is higher than the smallest dimension of

the tensor [28]. This property of the PARAFAC decomposition can be utilized to solve

underdetermined modal identi�cation problems in SHM, where a limited number of sensors

is used or there is malfunctioning of the sensors. Comparing Eq. (2.2) and Eq. (2.13), it is

observed that Eq. (2.13) is a special case of PARAFAC tensor model with � = �. Hence,

a more relaxed uniqueness condition is proposed where the following inequality is satis�ed

[28]:
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nd(nd � 1)
2

=
ny(ny � 1)

4
[
ny(ny � 1)

2
+ 1]�

ny!
(ny � 4)!4!

(ny)fny�4g (2.14)

where,

(ny)fny�4g = 0 ny < 4

(ny)fny�4g = 1 ny � 4: (2.15)

For a given number of measurements (ny), an upper bound of source separability for

PARAFAC decomposition can be computed using Eq. (2.14) which is tabulated in Table

2.1 where nud is the highest number of PARAFAC components (i.e., modal responses) that

can be extracted from ny measurements.

Table 2.1: Upper bound of source separation capability of PARAFAC decomposition

ny 2 3 4 5 6 7 8 9 10

nud 2 4 6 10 15 20 26 33 41

Table 2.1 shows that with rank-nd PARAFAC decompositions of Eq. (2.13), nd number

of sources can be extracted from ny measurements, when 2 � nd � nud . In this way, one

can undertake a straight-forward approach to solve underdetermined modal identi�cation

problems, where nd sources are identi�ed from ny vibration measurements even when

ny � nd. In this chapter, the e�ect of fewer number sensors (i.e ny) and their locations are

also studied under a wide range of nonstationary measurements.

The main focus of this chapter is to investigate the performance of PARAFAC decompo-

sition under nonstationary vibration. The PARAFAC decomposition technique is validated

using a suite of more than 1400 ground motions and human induced vibration character-

ized by stationary duration. The e�ect of lag parameter is studied with respect to the
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severity of nonstationarity and the performance of the proposed method is evaluated using

fewer number of sensors. Subsequently, the uncertainties associated with the accuracy of

the PARAFAC decomposition using optimal sensor locations are also investigated.

2.4 Numerical Simulation

The e�ectiveness of PARAFAC method depends on the lag parameter and the number

of sensors used. In order to investigate the e�ects of lag parameter (i.e., K) and sensor

densities (i.e., ny) on modal identi�cation, two di�erent building models (5-storey and

10-storey models) and a wide range of earthquakes are considered.

2.4.1 5-DOF model

A 5-DOF system [31] as shown in Fig. 2.4 is used to demonstrate the performance of

PARAFAC method under base excitation. The natural frequencies of the model are 0.9,

3.4, 7.1, 10.7 and 12.7 Hz, respectively. Further details of the model parameters can be

found in Appendix B. The model underwent a suite of over 1400 ground motions. Resulting

vibration responses from the model are processed with the PARAFAC method to extract

the modal parameters under a wide range of nonstationary excitation.

Table 2.2 shows six typical ground motions selected as input base excitations in the

5-DOF model along with the detailed information of peak ground acceleration (PGA)

and ground motion duration (T ). The sampling frequencies of all earthquakes are 50 Hz.

The extent of nonstationarity is characterized by the ratio of stationary duration (Ts) [53]

and T . Ts [53] may be computed using the time interval containing the energy envelope

between 5 and 95 percent of the total energy of an earthquake as shown in Fig. 2.5. An

20



Sensor 5

Sensor 4

Sensor 3

Sensor 2

Sensor 1

t

y

Figure 2.4: Dynamical system subjected to a ground motion

earthquake is considered stationary when the fraction of time between 5 and 95 percent

energy is close to 1. On the other hand, when this ratio attains lower value say, � 0:3, the

earthquake (i.e., NR and PF) can be considered to be nonstationary. Fig. 2.6 shows the

Fourier spectra of the excitation revealing both wideband and narrowband characteristics

with respect to the modal frequencies of the model (i.e., 0.9 � 12.7 Hz). For example,

other than EC and KC earthquakes, the energies of the ground motions are distributed in

a very narrow frequency range. Furthermore, the example excitation covers a broad range

of PGA values with 0:01� 0:37g. Therefore, these ground motions form a perfect test-bed

to validate the PARAFAC method.

Fig. 2.7 shows the Fourier spectra of top 
oor measurements of the building under

example ground motions. As evident from Fig. 2.6 that most of the energies of the

earthquakes are distributed within 0 � 8 Hz, the �rst three modes (i.e., 0.91, 3.4 and 7.1
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Figure 2.5: Stationary duration of an earthquake
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Table 2.2: Details of example ground motions

Earthquake PGA (g) T (s) Ts
T

El Centro (EC), 1940 0.004 50.0 0.50
Northridge (NR), 1994 0.009 60.0 0.12

Imperial Valley (IV), 1940 0.36 53.8 0.47
Kern County (KC), 1952 0.16 54.4 0.63

Park�eld (PF), 1966 0.37 44.0 0.21
San Fernando (SF), 1971 0.02 68.7 0.67

Hz) of the 5-DOF building model fall into this range and are mainly excited as seen in

the vibration spectra Fig. 2.7. Therefore, the modal identi�cation of 5-DOF model is

restricted to only �rst three modes.

The response from the typical earthquakes are processed through PARAFAC to present

the performance of the proposed method under nonstationary loading. In this section all


oor measurements are used with lag of 15 seconds. The resulting Fast Fourier transform

(FFT) obtained from PARAFAC are seen in Fig. 2.8, 2.9 and 2.10 for the typical earth-

quakes. PARAFAC separated out target modes, except for SF. As shown in Fig. 2.10. SF

is extremely narrow band with most energy released below 3 Hz leading to its di�cultly

in exciting higher modes and poor performance.

E�ect of Lags

This section will address how the length of lag a�ects the ability of PARAFAC to separate

modal parameters. In order to evaluate the performance of PARAFAC under di�erent lag

parameters, lags of 500, 1500, and 3000 (or 2.5, 7.3, and 15 seconds with a sample rate of

200Hz) are undertaken.
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Figure 2.6: Normalized Fourier spectra of example earthquakes
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Figure 2.7: Normalized Fourier spectra of top 
oor response of the 5-DOF model under

six example earthquakes

The results from simulations tests reveal the insensitivity towards the choice of lag

parameters even under nonstationary vibration. Fig. 2.11 shows the performance of the

identi�ed modal parameters using three di�erent lags excited using IV earthquake. Sim-

ilar results are found for NR and KC earthquakes and the results are shown in Fig. 2.12

and 2.13 respectively. As seen in all three �gures PARAFAC is capable of attaining the

same modal parameters regardless of the lag chosen. As shown in Table 2.2, NR and

KC have extreme Ts
T values ranging between 0.12 to 0.63, even though the PARAFAC

method is successful in separating key modal frequencies under any choice of K. Due to

tensor representation of covariance matrices under multiple discrete lags and its succes-

sive decomposition, the PARAFAC method shows excellent signal separation capabilities

in response to nonstationary excitations. Also, it may be noticed that there is sharper

resolution associated with a longer lag. It further corroborates its suitability as a possible
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Figure 2.8: Normalized Fourier spectra of identi�ed modal responses under (a) EC and (b)

NR earthquake
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Figure 2.9: Normalized Fourier spectra of identi�ed modal responses under (a) IV and (b)

KC earthquake
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Figure 2.10: Normalized Fourier spectra of identi�ed modal responses under (a) PF and

(b) SF earthquake
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Figure 2.11: Normalized Fourier spectra of identi�ed modal responses under IV earthquake

using a lag of (a) 2.5 (b) 7.5 and (c) 15 seconds

modal identi�cation tool to any nonstationary response.

Performance under fewer sensors

A key feature of PARAFAC is its ability to separate signals using a limited number of

sensors. Such situations occur due to cost saving, inaccessibility, corrupted data, or mal-

functioning of the sensors.

Initial validation removing a number of sensors from a structure is done using the

previous 5-DOF model with the six typical earthquakes. Performance of PARAFAC with

limited sensors is shown in Fig. 2.14 and 2.15 for NR and KC earthquakes respectively.

Results show that removing a sensor does not have a signi�cant impact to the performance

of method for low-rise buildings.
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Figure 2.12: Normalized Fourier spectra of identi�ed modal responses under NR earthquake

using a lag of (a) 2.5, (b) 7.5 and (c) 15 seconds
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Figure 2.13: Normalized Fourier spectra of identi�ed modal responses under KC earthquake

using a lag of (a) 2.5, (b) 7.5 and (c) 15 seconds

30



�� �� ����
��

������

��
(a)

�� �� ����
��

������

��

X
(!

)

�� �� ����
��

������

��

�� �� ����
��

������

��
(b)

�� �� ����
��

������

��

�� �� ����

! , Hz

��

������

��

�� �� ����
��

������

��
(c)

�� �� ����
��

������

��

�� �� ����
��

������

��

Figure 2.14: Normalized Fourier spectra of identi�ed modal responses under NR earthquake

with lag of 2.5 seconds ignoring sensor (a) 2, (b) 4 and (c) 5
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Figure 2.15: Normalized Fourier spectra of identi�ed modal responses under KC earthquake

with lag of 2.5 seconds ignoring sensor (a) 2, (b) 4 and (c) 5
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A database of 1443 accelerograms is now considered to validate the performance of

PARAFAC under a wide range of nonstationarity and sensor combinations. The accelero-

grams considered in the database were recorded during 14 earthquake events in western

U.S.A between 1931 and 1984 [53] and during the 1994 Northridge earthquake. Table 2.4

gives the names of these events along with their magnitudes and the number of records

chosen from each event. The 1443 records have been chosen in such a way that the suite

has a balanced distribution of records in terms of magnitude, epicentral distance, strong

motion duration, and geologic site conditions. All records have PGAs greater than 0.1g,

and have magnitude M ranging from 4.5 to 6.9, epicentral distance R from 4 to 62 km,

strong motion duration Ts from 1.8 to 42 s, and site conditions from alluvium to rock.

Table 2.3: Details of the suite of ground motion records used

No. Event Magnitude % of records
1 Imperial Valley, 1940 6.9 8.4
2 Santa Barbara, 1941 5.0 6.2
3 Eureka, 1954 4.5 6.7
4 San Francisco, 1957 5.3 6.2
5 Borrego Mountain, 1968 6.2 5.3
6 San Fernando, 1971 6.6 7.6
7 Oroville, 1975 5.7 6.7
8 Northern California, 1975 5.2 6.2
9 Coyote Lake, 1979 5.9 6.2
10 Imperial Valley, 1979 6.0 9.3
11 Mammoth Lakes, 1980 5.3 5.3
12 Livermore, 1980 5.5 7.6
13 Coalinga, 1983 6.5 4.4
14 Morgan Hill, 1984 6.1 7.1
15 Northridge, 1994 6.7 6.7

Fig. 2.16 and 2.17 show the distribution of PGA and Ts
T ratios of the suite of ground
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Figure 2.16: Histogram of PGA of ground motion database
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Figure 2.17: Histogram of Ts
T of the ground motion database
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Figure 2.18: Identi�cation results of 5-DOF model w.r.t PGA values under di�erent sensor

combinations
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Figure 2.19: Identi�cation results of 5-DOF model w.r.t Ts
T values under di�erent sensor

combinations

35


















































































































