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Abstract

Monitoring and retrofitting of large-scale infrastructure is of paramount importance spe-

cially when they are subjected to natural hazards like strong wind, severe earthquakes or

man-made excitation. Once the rich vibration data is collected from the structures, a ro-

bust system identification method is required to extract the hidden structural information,

and undertake necessary condition assessment and rehabilitation. Most of the traditional

modal identification methods are reliant on stationarity assumption of the vibration re-

sponse and posed difficulty while analyzing nonstationary vibration occurred due to natural

hazards. Apart from the excitation-induced nonstationarity, the inherent damages in the

structure also cause frequency-dependent nonstationarity in the response. With such com-

bination of both amplitude and frequency-dependent nonstationary response, the modal

identification becomes a significantly challenging task.

Recently tensor decomposition based methods are emerged as powerful and yet generic

blind (i.e. without requiring a knowledge of input characteristics) signal decomposition

tool for structural modal identification. In this thesis, a tensor decomposition based system

identification method is further explored to estimate modal parameters using amplitude-

dependent nonstationary vibration generated due to either earthquake or pedestrian in-

duced excitation in a structure. The effects of lag parameters and sensor densities on tensor

decomposition are studied with respect to the extent of nonstationarity of the responses

characterized by the stationary duration and peak ground acceleration of the earthquake.

A suite of more than 1400 earthquakes is used to investigate the performance of the pro-

posed method under a wide variety of ground motions utilizing both complete and partial

measurements of a high-rise building model. Apart from the earthquake, human-induced

nonstationary vibration of a real-life pedestrian bridge is also used to verify the accuracy

of the proposed method.
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Once the method is verified using amplitude-based nonstationary response, Cauchy

continuous wavelet transform is integrated with the tensor decomposition to track time-

varying characteristics of each modal responses and detect the progressive damage. With

such an integrated framework, the proposed method is able to identify both amplitude and

frequency-dependent nonstationary responses. The proposed technique is validated using a

suite of numerical studies as well as a laboratory experiment where the progressive damage

is simulated in the structural component with a heating torch.
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Chapter 1

Introduction

1.1 Overview

As buildings, bridges and many other large civil infrastructure age, they undergo a wide

range of excitation including strong winds, earthquake or man-made hazard. Such time-

varying and nonstationary external loads cause significant deterioration in civil structures.

A structure that experiences minor damage under operational load may still be considered

structurally sound. However, initial damage may progressively worsen over time that

increases the possibility of catastrophic failure in the near future. Therefore, continuous

monitoring and inspection of the structure is important to prevent any major failure later.

The motivation of this thesis is to develop a vibration-based damage detection technique

capable of identifying progressive damage in structures under nonstationary excitation.

In general, monitoring large structures using manual and visual inspection are costly,

time consuming and inaccurate. The emergence of Structural health monitoring (SHM)

provides an effective method of damage detection through the collection of output measure-
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Figure 1.1: Idealized modal parameters of a three-story building

ments. Vibration-based SHM methods [5] are very powerful to detect local as well as global

damage that cannot be identified using traditional methods. Modal identification [35] is

one of the key components of SHM where modal parameters (i.e, damping, frequency, and

modeshapes as shown in Fig. 1.1) are extracted directly from vibration measurements. The

central idea of these techniques is that structural damage causes changes in these modal

parameters and the proposed method should be able to track these changes. Development

of modal identification techniques was initiated as input-output methods in the 1970s.

However, due to the lack of input measurements and the associated cost, “output-only”

methods (i.e. blind identification) are more suitable to large-scale civil structures.

While many SHM techniques have been studied considering detection of discrete dam-
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age, there has been a limited amount of research towards detection of progressive damage

of structures that may occur due to natural hazards such as strong winds and earthquakes

that are nonstationary in nature. This research is intended to explore a robust damage

detection technique for structures with progressive damage resulting due to such nonsta-

tionary excitation.

1.2 Literature Review

The SHM is primarily consisted of four key elements: data sensing, data acquisition, system

identification and decision making. Over past few decades, the topic of SHM has seen

significant advancement in newer system identification techniques addressing a wide range

of challenging situations of large-scale structures. However, despite all the advancements

in signal processing, progressive damage detection of structures remains a challenge. In

this section, a detailed literature review on recent damage detection methods is presented.

Since 1970, different modal identification techniques have been developed towards var-

ious SHM applications. These techniques fall under five categories; time or frequency

domain, time-frequency domain, pattern recognition or hybrid methods. A current review

paper [5] of signal processing techniques provides an excellent summary of advantages and

disadvantages of different signal processing techniques.

1.2.1 Time-domain Methods

Time domain methods were among the preliminary methods of the SHM techniques. Ma

et. al. [34] used vibration data to track the changes in stiffness. However, they concluded

that noise contamination, as well as environmental changes affect the performance of the

3



method to detect small variations in stiffness. Jang et al. [23] employed stochastic dynamic

damage locating vector (SDDLV) method that tracks the dynamic flexibility matrices. [6]

investigated normalized curvature difference of waveform jerk energy [6] and the curvature

difference to find the location. In a different study, an autoregressive model [38] with

a hidden Markov model was used to determine the probabilistic progressive damage of

a structure. In [10], an optimization approach was adopted that minimized the error

between the moment generating function and a numerical modal of the structure to identify

damage. This method can be applied using limited sensors, but required significant user

intervention. Zhong and Chang [59] applied recursive subspace identification to recognize

structural changes under non-stationary excitation. Liu et al. [33] extended the random

decrement technique under non-stationary structural response. In summary, time domain

methods are easier to implement, however most of them require input data which is difficult

to obtain in large structures and have shown poor performance towards progressive damage

detection.

1.2.2 Frequency-domain Methods

Frequency domain analysis converts a time history into its frequency spectrum which al-

lows the user to see the frequencies that are present within the system. Valdes-Gonzalez et

al. [55] used to detect changes in stiffness of the structure using the power spectral density

functions of the dynamic strain measurements [52]. Based on frequency domain decompo-

sition [19], the Bayesian approach employing the Markov-chain Monte Carlo method was

used to estimate the modal parameters. In [21], l1-norm of the algebric difference between

damaged and undamaged structures was used to localize and quantify damage. In another

study, the problem of system identification with incomplete structural information was
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addressed by [16]. One of the major drawbacks of frequency domain analysis is that it

is not possible to determine the span of time in which frequency changes occur, which is

critical to detect progressive damage correctly.

1.2.3 Time-frequency Methods

Time-frequency analysis gives a better picture of the frequency change within a system in

conjunction with time. A statistical method based on wavelet packet transform [51] was

developed for SHM under pulse loading. This method analyzed acceleration time histories

which were decomposed into wavelet coefficients and subsequently the dominant energies

are extracted and quantified. Sadhu and Hazra [44] combined blind source separation

(BSS) with time-series model that estimated the modal response through the BSS and

then the time-series model predicted the next measurement step. Consequently, damage

location, severity and damage instant were identified. A recursive least squares (RLS)

algorithm [26] in combination with adaptive wavelet filtration was used for non-stationary

systems as it adjusted the wavelet to reflect the changes in the system. Adaptive wavelet

filtration matched the wavelet filter characteristics to the frequency at the time, allow-

ing for better tracking of damage. This technique reduced the computation time and

increased the convergence speed of the RLS algorithm. Using spectrogram representation

of short-time-Fourier transform, [3] came up with an optimal bias-compensated estimator

to remove some of the time-frequency distortions through correction curves developed via

Monte Carlo simulations. Musafere et al. [40] proposed an integrated second-order blind

separation (SOBI) with time-variant auto-regressive (TVAR) model to conduct discrete

damage detection. In this method, the SOBI was used to identify the modal responses and

then TVAR model tracked the modal changes to identify severity and instant of discrete
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damage.

Wavelet-based [17] based frequency response function was developed to detect abrupt

changes in a time-variant system. [54] used two signal processing steps where the signal

was first processed through continuous wavelet transformation (CWT) followed by the gen-

eralized discrete Teager-Kaiser energy operator that localized and magnified the damaged

modeshapes. A recent method [12] applying joint approximate diagonalization of the power

spectral density matrices also yielded the operational deflection shapes of the structure.

This method was then compared with several dominant characteristic deflection shapes

at different natural frequencies to create a damage index. In summary, time-frequency

methods are promising for detecting progressive damage owing to their time-varying fre-

quency decomposition capability. However, these methods have not been explored under

nonstationary excitation.

1.2.4 Pattern Recognition Methods

Pattern recognition methods employ statistical analysis and novelty detection approaches

to distinguish changes in the system parameters of the structure. For example, the AR-

Markov models [15] are designed from input/output measurement of the system and at-

tempted to determine the extent of damage within a member. Panigrahi et al. [41] used

residual force vector analysis along with genetic algorithm to detect the location and extent

of damage in multi-storied structure. Research by Khoa et al. [24] tested three methods

of dimensional reduction: random projection, principal component analysis, and support

vector machine. On the other hand, Link and Zimmerman [32] explored orthogonal match-

ing pursuit to find the level of damage from frequency response functions. In [49], three

dynamic signatures including modeshape curvature, modal strain energy and modal flexi-
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bility matrix were extracted to assess structural damage. Using a curve fitting technique,

the aforementioned dynamic signatures were compared to a baseline structure for proba-

bilistic damage identification. Another novelty detection method, namely self-organizing

maps [4], was able to quantify and locate reduction in member stiffness. They found this

method to be effective with up to 10% measurement noise.

1.2.5 Hybrid Methods

This class of techniques uses a combination of several signal decomposition techniques.

For example, [25] combined discrete wavelet transform (DWT) with autoregressive moving

average models and support vector machines (SVM) to perform global damage detection in

smart structures equipped with magnetorheological damper under earthquake excitation.

Arsava et al. [9] also used the DWT with relevance vector machine (RVM), a Bayesian

extension of SVM, and found that the RVM had a faster training process with similar

accuracy to the SVM. Multi-class non-linear RVM was developed for damage detection

of non-linear systems with random excitation. A method combining [58] structural dam-

age prognosis with fuzzy C-means clustering was used to identify the type of linear and

nonlinear damage of structures. In another study, a new recursive stochastic subspace

identification [57] was developed where the Hankel matrix of the data was continuously

updated with new data. Recently, Su et al. [50] developed a two-step process for identi-

fying the location of damage. The method used continuous Cauchy wavelet transform for

modal identification followed by damage locating vectors applied to the identified flexibility

matrix.
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1.3 Gap Areas

With above review of the existing literature, the following gap areas are identified that

could be considered to improve the state-of-the-art damage detection methods.

• Time-frequency methods have better potential to perform modal identification of

time-varying systems. However, there has been limited research in this area when

the structure is excited by nonstationary excitation. Such amplitude-dependent non-

stationarity is an important factor to be considered in the system identification stage

due to the presence of strong winds and severe earthquakes affecting the structures.

• There has been significant research in identifying discrete damage. However, very

few research has been conducted in the area of progressive damage to address the

frequency-dependent nonstationary.

• Adequate and realistic validation of the damage detection method is also very critical

while developing a new method. Moreover, it would be worth to investigate the effect

of limited number of sensors.

1.4 Thesis Objectives

Based on the above gap areas, the following objectives are considered in this thesis.

1. Explore a newer time-frequency system identification method that can identify modal

parameters using amplitude-dependent nonstationary response of the structures.

(a) Investigate the effect of user-defined parameters of the proposed method.
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(b) Evaluate the performance of tensor decomposition using a suite of nonstationary

excitation including earthquake as well human-induced vibration.

(c) Evaluate the effect of limited number of sensors.

2. Once the above methodology is successfully explored, develop a robust damage de-

tection technique that can accurately identify the progressive damage in a structure

subjected to nonstatioary excitation.

3. Validate the proposed method using a suite of numerical and experimental studies.
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Chapter 2

Tensor Decomposition Method

In this chapter a new time-frequency method, called tensor decomposition, is explored

to estimate modal parameters of structures using nonstationary vibration response. Ten-

sor decomposition is a powerful blind system identification method that does not require

knowledge of input data. This method involves several factors including lag parameters and

limited number of sensors that will be studied in the context of stationary and amplitude-

dependent nonstationary excitation.

2.1 Introduction

In recent years, PARAllel FACtor (also known as Parallel factor (PARAFAC) decompo-

sition) or tensor decomposition method has emerged as a powerful modal identification

technique [45]. In this chapter, the performance of PARAFAC decomposition is explored

under a wide range of earthquake-induced vibration that are associated with amplitude-

dependent nonstationary.

10



In this method, a tensor is built from the covariance matrix of sensor vibration data

under a set of multiple lags. This covariance tensor is decomposed into covariances of the

modal responces using a multi-linear algebra method known as alternating least squares

(ALS) [48, 37]. Using canonical decomposition [13] and parallel factor analysis [20], the

matricization operation perform signal decomposition using both complete as well as partial

measurement cases. Antoni and Chauhan [7] used alternating least squares (ALS) to solve

tensor decomposition associated with modal identification using a limited number of sensors

[42]. The underdetermined signal separation capability of PARAFAC decomposition was

recently explored to identify the modal parameters of high-rise building [1, 36, 2] and a

structure equipped with tuned-mass damper [46] using limited sensor measurements.

In the case of complete measurement case, the modal responses can be obtained directly

from the raw vibration measurements without any post-processing. On the other hand,

when only limited sensor measurements are available, PARAFAC decomposition results in

the covariance of modal responses from which frequencies and damping are subsequently

estimated. Recently, PARAFAC decomposition was integrated with wavelet packet trans-

form (WPT) to improve the source separation capability where mode-mixing in the WPT

coefficients was alleviated using PARAFAC decomposition [45, 47]. The rank order selec-

tion is one of the prerequisite in this method, which is an impediment for automated system

identification. In order to alleviate this, a cluster diagram of modal frequencies is proposed

under a suite of multiple rank orders [43] from which the optimal rank order is chosen based

on clustered densities of modal parameters. In this process, the effect of spurious modes is

also circumvented and the modal frequencies are delineated from the excitation frequencies.

However, none of the above studies investigates the performances of PARAFAC decom-

position under nonstationary excitation. In this chapter, the PARAFAC decomposition

is studied under a wide range of nonstationary vibration due to earthquakes as well as
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human-induced excitations. The effect of lag parameters is investigated with respect to

the extent of nonstationarity in the data. The performance of this method under limited

sensor densities is also explored in a high-rise building model and a full-scale pedestrian

bridge located in the campus of Lakehead University, Canada.

This chapter is organized as follows. First, the brief literature of PARAFAC decomposi-

tion is presented in the introduction section. The background of PARAFAC decomposition

is discussed next followed by the mathematical equivalence of tensor decomposition with

modal identification. The PARAFAC method is then validated using numerical and real-

life case studies in the results section followed by key conclusions.

2.2 Background

A signal may be expressed through a multi-dimensional array. This allows tensor represen-

tation and use of multi-liner algebra tool which is more effective than linear algebra tool

(e.g. principal component analysis [11, 48]). A vector s = si ∈ <n1 is a first-order tensor,

whereas a matrix S = sij ∈ <n1×n2 is a second-order tensor. It follows, a zth order tensor

is written as:

S̄ = sijk...z ∈ <n1×n2×n3×....×nz . (2.1)

To better understand tensors, first take a simple 2x2x2 tensor as shown in Fig. 2.1.

Each tensor is comprised of higher order fibres, mode-1 (t:jk), mode-2 (ti:k), and mode-3

(tij:) fibres. A three-dimensional tensor, separated into three matrices representing each

dimension (horizontal, lateral, and in plane) this is known as matricization. A third-order

tensor is first seperated into a sum of outer products of triple vectors as seen in Fig. 2.2

[11]:
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Figure 2.2: Tensor decomposition
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S̄ =
R∑
r=1

θr ◦ φr ◦ψr ⇐⇒ S̄ijk =
R∑
r=1

θirφjrψkr (2.2)

where “◦” denotes outer product with i ∈ [1 I], j ∈ [1 J] and k ∈ [1 K]. In Eq. (2.2), R

is the number of rank-1 tensors present in S̄. This is also defined as trilinear model of S̄,

S̄ = [Θ,Φ,Ψ], where the matrices are given by Θ = (θ1,θ2, ....,θR), Φ = (φ1,φ2, ....,φR),

and Ψ = (ψ1,ψ2, ....,ψR). As shown in Eq. (2.2), each triple vector product is a rank-1

tensor, namely PARAFAC component. Eq. (2.2) represents the summation of R such

PARAFAC components that fit the higher order tensor S̄ [11, 28]. The fundamental

technique was developed by two different independent research: canonical decomposition

(CANDECOMP) [13] and PARAllel FACtor (PARAFAC) analysis [20]. The algorithms

can be categorized in three main groups, namely (a) alternating least squares (ALS) (b)

derivative-based methods and (c) direct or non-iterative approaches [11]. Out of three

methods, the ALS method is the most popular method because of an easier implementa-

tion, smooth convergence and robust handling for higher order tensors. The key steps of

the ALS are briefly presented in Appendix A. The details of tensor decomposition can be

found in the literature [11] and are not repeated for brevity.

A simple demonstration of the signal separation capability of PARAFAC decomposi-

tion is considered next. Consider a linear mixtures of three harmonics (sources, s) with

frequencies 1.0, 2.5 and 1.2 Hz containing a measurement noise of 20% shown in the first

two rows of Fig. 2.3:
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s3


x = θs (2.3)

Since the mixtures contain three sources, rank-3 PARAFAC decomposition (i.e., R =

3) is performed over these mixtures to extract three hidden sources. The PARAFAC

decomposition yields θ̂1, θ̂2 and θ̂3 as shown in the last row of Fig. 2.3. This yields the

mixing matrix by concatenating successive normalized (w.r.t. x1) θ̂ that is approximately

equal to Eq. (2.3):
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θ̂ =
[
θ̂1 θ̂2 θ̂3

]
=


0.93 0.81 −0.97

0.92 1.22 −0.77

1.82 1.79 −0.92

⇔ θ̂ =


1.0 1.0 1.0

0.99 1.5 0.79

1.95 2.2 0.95

 (2.4)

2.3 Tensor decomposition-based Modal Identification

In this section, tensor decomposition method is explored for modal identification. A linear,

proportionally damped, and discrete lumped-mass system with nd Degrees of freedom

(DOF) when subjected to an excitation force, P(t) can be expressed as:

Mÿ(t) + Cẏ(t) + Ky(t) = P(t) (2.5)

where, y(t) is the displacement vector at the lumped masses. M, C, and K are the

mass, damping and stiffness matrices of the multi-degree-of-freedom system. For example,

P = MIüg where ground motion (i.e., üg(t)) is applied at the base. The solution of

Eq. (2.5) can be expressed in terms of modal superposition of vibration modes with the

following matrix form:

y = Γq (2.6)

where, y ∈ <ny×N is a matrix consisting of measurements y, q ∈ <nd×N is a matrix of the

corresponding modal responses, Γny×nd is the mode shape matrix, and N is the number of

data points in the measurement. ny is the number of measurement channels.

The covariance matrix Zy(τk) of vibration measurements (y) evaluated at time-lag τk

can be written as:

Zy(τk) = E
{
y(n)yT (n− τk)

}
= ΓZq(τk)Γ

T (2.7)
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where,

Zq(τk) = E
{
q(n)qT (n− τk)

}
. (2.8)

and q are the hidden sources. Let us consider the following annotations to simplify the

mathematical notations of successive derivations,

Zy1y2(τk) = Zy
12k ⇐⇒ Zyiyj(τk) = Zy

ijk

Zq1(τk) = Zq
k1 ⇐⇒ Zql(τk) = Zq

kl. (2.9)

Considering a case with three available measurements where y = {y1, y2, y3}, Eq. (2.7)

with above simplified notations can be represented as follows:


Zy

11k Zy
12k Zy

13k

Zy
21k Zy

22k Zy
23k

Zy
31k Zy

32k Zy
33k

 =


Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33



Zq
k1 0 0

0 Zq
k2 0

0 0 Zq
k3




Γ11 Γ21 Γ31

Γ12 Γ22 Γ32

Γ13 Γ23 Γ33

 .
(2.10)

Eq. (2.10) can now be expressed as:

Zy
12k = Γ11Γ21Z

q
k1 + Γ12Γ22Z

q
k2 + Γ13Γ23Z

q
k3 (2.11)

which can be generalized for Zy
ijk of Eq. (2.10) as:

Zy
ijk = Γi1Γj1Z

q
k1 + Γi2Γj2Z

q
k2 + Γi3Γj3Z

q
k3 =

3∑
r=1

ΓirΓjrZ
q
kr i, j = 1 : 3; k = 1 : K. (2.12)
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For any general nd-DOF dynamical system, Eq. (2.12) can be simplified as:

Zy
ijk =

nd∑
r=1

ΓirΓjrZ
q
kr ⇐⇒ Zy =

nd∑
r=1

Γr ◦ Γr ◦ Zq
r . (2.13)

Considering the similarity between Eq. (2.2) and Eq. (2.13), it is observed that by

decomposing the third order tensor Zy into nd number of PARAFAC components (i.e.,

modal responses), the mixing matrix (i.e., Γ) can be estimated. By using PARAFAC

decomposition of Zy, the resulting solutions yield the mixing matrix (i.e., modeshape

matrix) Γ = [Γ1,Γ2,Γ3, ...,Γnd
] and the auto-correlation function Zq

r for r = 1, 2, 3, ..., nd

from which the natural frequencies and damping of the individual modal responses can be

estimated. In this way, the mathematical equivalence of PARAFAC decomposition and

modal identification is established [45].

However, the performance of PARAFAC decomposition has not been yet studied un-

der nonstationary vibration. It may be noted that the lag parameter (i.e., K) plays an

important role in separating the PARAFAC components. In this chapter, the effect of K

is studied under a wide range of nonstationary measurements obtained using more than

1400 ground motions and human-induced vibrations.

One of the most attractive features of PARAFAC decomposition is that it has the

ability to perform separation when the rank is higher than the smallest dimension of

the tensor [28]. This property of the PARAFAC decomposition can be utilized to solve

underdetermined modal identification problems in SHM, where a limited number of sensors

is used or there is malfunctioning of the sensors. Comparing Eq. (2.2) and Eq. (2.13), it is

observed that Eq. (2.13) is a special case of PARAFAC tensor model with φ = θ. Hence,

a more relaxed uniqueness condition is proposed where the following inequality is satisfied

[28]:
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nd(nd − 1)

2
=
ny(ny − 1)

4
[
ny(ny − 1)

2
+ 1]− ny!

(ny − 4)!4!
(ny){ny≥4} (2.14)

where,

(ny){ny≥4} = 0 ny < 4

(ny){ny≥4} = 1 ny ≥ 4. (2.15)

For a given number of measurements (ny), an upper bound of source separability for

PARAFAC decomposition can be computed using Eq. (2.14) which is tabulated in Table

2.1 where nud is the highest number of PARAFAC components (i.e., modal responses) that

can be extracted from ny measurements.

Table 2.1: Upper bound of source separation capability of PARAFAC decomposition

ny 2 3 4 5 6 7 8 9 10

nud 2 4 6 10 15 20 26 33 41

Table 2.1 shows that with rank-nd PARAFAC decompositions of Eq. (2.13), nd number

of sources can be extracted from ny measurements, when 2 ≤ nd ≤ nud . In this way, one

can undertake a straight-forward approach to solve underdetermined modal identification

problems, where nd sources are identified from ny vibration measurements even when

ny ≤ nd. In this chapter, the effect of fewer number sensors (i.e ny) and their locations are

also studied under a wide range of nonstationary measurements.

The main focus of this chapter is to investigate the performance of PARAFAC decompo-

sition under nonstationary vibration. The PARAFAC decomposition technique is validated

using a suite of more than 1400 ground motions and human induced vibration character-

ized by stationary duration. The effect of lag parameter is studied with respect to the
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severity of nonstationarity and the performance of the proposed method is evaluated using

fewer number of sensors. Subsequently, the uncertainties associated with the accuracy of

the PARAFAC decomposition using optimal sensor locations are also investigated.

2.4 Numerical Simulation

The effectiveness of PARAFAC method depends on the lag parameter and the number

of sensors used. In order to investigate the effects of lag parameter (i.e., K) and sensor

densities (i.e., ny) on modal identification, two different building models (5-storey and

10-storey models) and a wide range of earthquakes are considered.

2.4.1 5-DOF model

A 5-DOF system [31] as shown in Fig. 2.4 is used to demonstrate the performance of

PARAFAC method under base excitation. The natural frequencies of the model are 0.9,

3.4, 7.1, 10.7 and 12.7 Hz, respectively. Further details of the model parameters can be

found in Appendix B. The model underwent a suite of over 1400 ground motions. Resulting

vibration responses from the model are processed with the PARAFAC method to extract

the modal parameters under a wide range of nonstationary excitation.

Table 2.2 shows six typical ground motions selected as input base excitations in the

5-DOF model along with the detailed information of peak ground acceleration (PGA)

and ground motion duration (T ). The sampling frequencies of all earthquakes are 50 Hz.

The extent of nonstationarity is characterized by the ratio of stationary duration (Ts) [53]

and T . Ts [53] may be computed using the time interval containing the energy envelope

between 5 and 95 percent of the total energy of an earthquake as shown in Fig. 2.5. An
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Figure 2.4: Dynamical system subjected to a ground motion

earthquake is considered stationary when the fraction of time between 5 and 95 percent

energy is close to 1. On the other hand, when this ratio attains lower value say, ≤ 0.3, the

earthquake (i.e., NR and PF) can be considered to be nonstationary. Fig. 2.6 shows the

Fourier spectra of the excitation revealing both wideband and narrowband characteristics

with respect to the modal frequencies of the model (i.e., 0.9 − 12.7 Hz). For example,

other than EC and KC earthquakes, the energies of the ground motions are distributed in

a very narrow frequency range. Furthermore, the example excitation covers a broad range

of PGA values with 0.01− 0.37g. Therefore, these ground motions form a perfect test-bed

to validate the PARAFAC method.

Fig. 2.7 shows the Fourier spectra of top floor measurements of the building under

example ground motions. As evident from Fig. 2.6 that most of the energies of the

earthquakes are distributed within 0 − 8 Hz, the first three modes (i.e., 0.91, 3.4 and 7.1
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Table 2.2: Details of example ground motions

Earthquake PGA (g) T (s) Ts
T

El Centro (EC), 1940 0.004 50.0 0.50

Northridge (NR), 1994 0.009 60.0 0.12

Imperial Valley (IV), 1940 0.36 53.8 0.47

Kern County (KC), 1952 0.16 54.4 0.63

Parkfield (PF), 1966 0.37 44.0 0.21

San Fernando (SF), 1971 0.02 68.7 0.67

Hz) of the 5-DOF building model fall into this range and are mainly excited as seen in

the vibration spectra Fig. 2.7. Therefore, the modal identification of 5-DOF model is

restricted to only first three modes.

The response from the typical earthquakes are processed through PARAFAC to present

the performance of the proposed method under nonstationary loading. In this section all

floor measurements are used with lag of 15 seconds. The resulting Fast Fourier transform

(FFT) obtained from PARAFAC are seen in Fig. 2.8, 2.9 and 2.10 for the typical earth-

quakes. PARAFAC separated out target modes, except for SF. As shown in Fig. 2.10. SF

is extremely narrow band with most energy released below 3 Hz leading to its difficultly

in exciting higher modes and poor performance.

Effect of Lags

This section will address how the length of lag affects the ability of PARAFAC to separate

modal parameters. In order to evaluate the performance of PARAFAC under different lag

parameters, lags of 500, 1500, and 3000 (or 2.5, 7.3, and 15 seconds with a sample rate of

200Hz) are undertaken.
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The results from simulations tests reveal the insensitivity towards the choice of lag

parameters even under nonstationary vibration. Fig. 2.11 shows the performance of the

identified modal parameters using three different lags excited using IV earthquake. Sim-

ilar results are found for NR and KC earthquakes and the results are shown in Fig. 2.12

and 2.13 respectively. As seen in all three figures PARAFAC is capable of attaining the

same modal parameters regardless of the lag chosen. As shown in Table 2.2, NR and

KC have extreme Ts
T

values ranging between 0.12 to 0.63, even though the PARAFAC

method is successful in separating key modal frequencies under any choice of K. Due to

tensor representation of covariance matrices under multiple discrete lags and its succes-

sive decomposition, the PARAFAC method shows excellent signal separation capabilities

in response to nonstationary excitations. Also, it may be noticed that there is sharper

resolution associated with a longer lag. It further corroborates its suitability as a possible
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26



0

0.5

1
(a)

0

0.5

1
(b)

0

0.5

1

ω, Hz

X
(ω

)

0

0.5

1

0 2 4 6 8 10 12
0

0.5

1

ω, Hz
0 2 4 6 8 10 12

0

0.5

1

ω, Hz

Figure 2.9: Normalized Fourier spectra of identified modal responses under (a) IV and (b)

KC earthquake

27



0 2 4 6 8 10 12
0

0.5

1
(a)

0 2 4 6 8 10 12
0

0.5

1
(b)

0 2 4 6 8 10 12
0

0.5

1

X
(ω

)

0 2 4 6 8 10 12
0

0.5

1

0 2 4 6 8 10 12
0

0.5

1

ω, Hz
0 2 4 6 8 10 12

0

0.5

1

ω, Hz

Figure 2.10: Normalized Fourier spectra of identified modal responses under (a) PF and

(b) SF earthquake

28



0

0.5

1
(a)

0

0.5

1
(b)

0

0.5

1
(c)

0

0.5

1

X
(ω

)

0

0.5

1

0

0.5

1

0 5 10
0

0.5

1

0 5 10
ω, Hz

0

0.5

1

0 5 10
0

0.5

1

Figure 2.11: Normalized Fourier spectra of identified modal responses under IV earthquake

using a lag of (a) 2.5 (b) 7.5 and (c) 15 seconds

modal identification tool to any nonstationary response.

Performance under fewer sensors

A key feature of PARAFAC is its ability to separate signals using a limited number of

sensors. Such situations occur due to cost saving, inaccessibility, corrupted data, or mal-

functioning of the sensors.

Initial validation removing a number of sensors from a structure is done using the

previous 5-DOF model with the six typical earthquakes. Performance of PARAFAC with

limited sensors is shown in Fig. 2.14 and 2.15 for NR and KC earthquakes respectively.

Results show that removing a sensor does not have a significant impact to the performance

of method for low-rise buildings.
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A database of 1443 accelerograms is now considered to validate the performance of

PARAFAC under a wide range of nonstationarity and sensor combinations. The accelero-

grams considered in the database were recorded during 14 earthquake events in western

U.S.A between 1931 and 1984 [53] and during the 1994 Northridge earthquake. Table 2.4

gives the names of these events along with their magnitudes and the number of records

chosen from each event. The 1443 records have been chosen in such a way that the suite

has a balanced distribution of records in terms of magnitude, epicentral distance, strong

motion duration, and geologic site conditions. All records have PGAs greater than 0.1g,

and have magnitude M ranging from 4.5 to 6.9, epicentral distance R from 4 to 62 km,

strong motion duration Ts from 1.8 to 42 s, and site conditions from alluvium to rock.

Table 2.3: Details of the suite of ground motion records used

No. Event Magnitude % of records

1 Imperial Valley, 1940 6.9 8.4

2 Santa Barbara, 1941 5.0 6.2

3 Eureka, 1954 4.5 6.7

4 San Francisco, 1957 5.3 6.2

5 Borrego Mountain, 1968 6.2 5.3

6 San Fernando, 1971 6.6 7.6

7 Oroville, 1975 5.7 6.7

8 Northern California, 1975 5.2 6.2

9 Coyote Lake, 1979 5.9 6.2

10 Imperial Valley, 1979 6.0 9.3

11 Mammoth Lakes, 1980 5.3 5.3

12 Livermore, 1980 5.5 7.6

13 Coalinga, 1983 6.5 4.4

14 Morgan Hill, 1984 6.1 7.1

15 Northridge, 1994 6.7 6.7

Fig. 2.16 and 2.17 show the distribution of PGA and Ts
T

ratios of the suite of ground
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Figure 2.18: Identification results of 5-DOF model w.r.t PGA values under different sensor

combinations
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Figure 2.19: Identification results of 5-DOF model w.r.t Ts
T

values under different sensor

combinations
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motions. It reveals that the ground motions form a perfect test bed for the validation pur-

pose with respect to two nonstationary measures (i.e., PGA and Ts
T

). Fig. 2.18 shows the

identification results of the PARAFAC method with the PGA values of earthquake under

full sensor (i.e., nx = 5) and fewer sensor (i.e., nx = 4) case using five different sensor

combinations (i.e., resulting C5
4 = 5 sensor combinations), while Fig. 2.19 shows similar

results w.r.t. Ts
T

ratio. In both these figures, solid lines represent exact values of natural

frequencies. It is seen that the identified frequencies are nearly clustered with the actual

values even under multiple sensor combinations using fewer sensors. These results reveal

that the performance of PARAFAC method is insensitive to the location of partial sensors.

However it is observed that when Ts
T

is more than 0.4 (i.e, with increasing stationarity of

earthquake), the clusters of identification results are relatively sparse and associated with

less uncertainties. Similar conclusions can be drawn under partial measurement combina-

tions. Therefore, the PARAFAC method can be treated as a robust method under wide

range of nonstationary excitations even with complete and partial measurements.

2.4.2 10-DOF model

To further show the effectiveness of limited sensors in the PARAFAC method, a 10 DOF

model [56] is now utilized. The natural frequencies of the 10-DOF model are 0.8, 1.8, 2.8,

3.9, 5.0, 6.1, 7.2, 8.5, 9.9 and 11.5 Hz respectively. Using EC, KC, PF and NR earthquakes

as the base excitations, the performance of PARAFAC method in 10-DOF model is studied

under a wide range of nonstationarities. As shown in Table 2.1, the minimum number of

sensors that can be used for a 10-DOF model is 6. Therefore, unlike 5-DOF model (as in

section 4.1), 10-DOF model can be effectively used to demonstrate the proposed method

under fewer sensors cases owing to their various combinations.

36



5 6 7 8 9 10 11
Numbers of limited sensors

0

2

4

6

8

10

N
u
m
b
er

of
fr
eq
u
en
ci
es

id
en
ti
fi
ed

5 6 7 8 9 10 11
Numbers of limited sensors

0

2

4

6

8

10

N
u
m
b
er

of
fr
eq
u
en
ci
es

id
en
ti
fi
ed

Figure 2.20: Uncertainties in the identification results of 10-DOF model with different

sensor configurations for (a) EC and (b) KC earthquake

Table 2.4 shows the number of sensor combinations for the number of limited sensors

used. For example, the total number of sensor combinations using 6 sensors is 210. For a

specific earthquake and given number of sensors, PARAFAC decomposition is performed

for all possible sensor combinations and then the total number of target frequencies are

identified. The statistics of the number of identified frequencies are shown in Figs. 2.20

and 2.21 under above mentioned 4 different earthquakes, respectively. The circle represents

the average number of frequencies detected. The top and bottom solid lines indicate

the standard deviations (±σ), whereas the dotted lines show the range of the number of

frequencies identified.

The results reveal that the average number of identified frequencies remains approx-

imately the same irrespective of the number of fewer sensors, however the uncertainties

associated with the identification become larger with reduced number of sensor cases. Fig.

2.22 shows the coefficient of variation of the mean number of frequencies of Figs. 2.20 and

2.21 revealing significant accuracy even with fewer number of sensors. With these results,
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Figure 2.21: Uncertainties in the identification results of the 10-DOF model with different

sensor configurations for (a) PF and (b) NR earthquake

it can be concluded that the selection of optimal number of sensors will play a key role

to identify the maximum number of target frequencies which however is beyond the scope

of present study. Finally, Fig. 2.23 shows the Fourier spectra of identified frequencies

using 9 sensors under EC earthquake. The results of the identified frequencies under EC

earthquake using 9 sensors are compared with the FE frequencies as well as identified fre-

quencies obtained from the Stochastic subspace identification (SSI) method in Table 2.5.

It can be observed that the performance of PARAFAC method is relatively better than

the SSI method.

Table 2.4: Number of combinations for different number of limited sensors

No. of sensors 6 7 8 9 10
No. of sensor combinations 210 120 45 10 1
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Figure 2.23: Frequencies detected using 9 sensors for EC earthquake (with 1st floor sensor

being ignored)
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Table 2.5: Identification results of the 10-DOF model under EC earthquake

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Exact 0.8 1.8 2.8 3.9 5.0 6.1 7.2 8.5 9.9 11.5
PARAFAC 0.8 1.8 2.8 3.8 5.0 6.0 7.3 - 9.9 -

SSI 0.65 1.8 3.2 4.1 5.0 5.5 - - 8.5 -

2.5 Full-scale Validation

In order to illustrate the proposed method, a footbridge (as shown in Fig. 2.24) crossing

the Mcintyre River located in the campus of Lakehead University is utilized under a wide

range of pedestrian-induced nonstationary excitations. Designed in 1967, it is composed

of two main girders fixed into concrete abutments on both ends with steel struts spaced

evenly along the length of the bridge and wooden lumber for decking as shown in Fig. 2.25.

This bridge is instrumented with the accelerometers along the deck to measure the

pedestrian-induced vibration. Fig. 2.26(a) shows the layout of the sensor nodes used in

this test. A total of eight sensors with a sensitivity of 1V/g are used with 4 distributed

evenly on each side of the bridge. The sensors were attached to a data acquisition system

operated in a portable computer as shown in Fig. 2.26(b). The sampling frequency was set

to 200 Hz. The footbridge was subjected to excitation through a variety of activities such

as walking, running, jogging and cycling. The different excitations used during the test are

intended to represent the normal operational conditions of the bridge. This bridge mostly

sees only light traffic but occasionally is subjected to periods of higher traffic specially

during class hours. The excitation tests conducted are described in Table 2.6 including the

test duration and Ts/T at the mid span. As listed in the table, Ts/T indicates the extent

of nonstationarity present in the vibration data with Ts/T ratio ranging between 0.5-0.8.

Figs. 2.27 and 2.28 show the vibration response of the bridge under single and group
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Figure 2.24: Footbridge located in the campus of Lakehead University
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Figure 2.25: Top and bottom view of the bridge
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Figure 2.26: (a) Sensor location of the pedestrian bridge, (b) data acquisition system
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Figure 2.27: Acceleration response of a single person walking

walking as listed in Table 2.6. Due to the nature of transient and spatial excitation over the

bridge, it can be seen that the responses are nonstationary which are also reflected through

the Ts
T

ratio of Table 2.6. For example, sudden jumping is always more nonstatioanry than

the gentle walking which is revealed by smaller TS
T

ratio in the jumping data. Therefore, the

entire data forms a perfect test bed of the proposed algorithm. In this paper, the vibration

data under single running is utilized to validate the performance of the proposed algorithm.

The acceleration data is first processed through the PARAFAC method and the resulting

modal responses for single run and group walk data are shown in Fig. 2.29. In order to

validate the accuracy of the results, a finite element (FE) model of the pedestrian bridge

is developed using S-frame software as shown in Fig. 2.30. The identified frequencies (4.2,

11.8 and 28.5 Hz) are reasonably matching with the FE frequencies. Slight discrepancies

may be observed due to inexact modeling and lack of structural details of the pedestrian

bridge.
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Figure 2.28: Acceleration response of group walking
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Figure 2.29: Normalized Fourier spectra of identified modal responses under (a) single

running test and (b) group walking test
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Figure 2.30: FE model and its modeshapes
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Table 2.6: Details of vibration testing in the footbridge

Test Details T (s) Ts
T

Single walking A single person walked at a normal 10.9 0.62
pace across the bridge

Group walking A group of four people walked at a 20.1 0.61
normal pace across the bridge

Single running A single person ran at a jogging 7.2 0.53
pace across the bridge

Group running A group of four people ran at a jogging 12.9 0.54
pace across the bridge

Single jumping A single person jumped at the center 12.5 0.52
of the bridge

Group jumping A group of four people jumped at the 7.7 0.6
center of the bridge

Biking A single person rode a bicycle at 10.1 0.79
a normal pace over the bridge
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Chapter 3

Proposed Method

In this chapter, tensor decomposition is integrated with continuous wavelet transform to

undertake modal identification of time-varying systems or progressively damaged structure.

The proposed method is validated using several numerical models and an experimental

model where time-varying characteristic is simulated using a heating torch.

3.1 Introduction

As discussed in section-1.3, there has been a limited amount of research related to the

topic of progressive structural damage. This work seeks to develop a method capable of

separating structural modes and tracking progressive changes in modal parameters over

time. With the improved performance of PARAFAC decomposition under amplitude-

dependent nonstationary response, an attempt is made to identify frequency-dependent

nonstationarity next. In this chapter, PARAFAC decomposition is integrated with Cauchy

continuous wavelet transform (CCWT), a special type of Continuous wavelet transform
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(CWT). PARAFAC is first used to separate the signals into modal responses which are

tracked in the time-frequency domain with CCWT.

3.2 Background

The Fourier transform (FT) is one of the classical tools for determining the frequency

content of a time-invariant system. A major shortcoming of Fourier transform is the lack

of its time information that is essential to detect progressive damage or time-varying sys-

tem. Unlike FT, short-time Fourier transform (STFT) decomposes a signal into smaller

windows and performs frequency domain analysis in each time window. The WT is pri-

marily categorized into two different classes: discrete and continuous wavelet transforms.

With appropriate basis function, the wavelet transform (WT) offers excellent flexibility to

achieve better time and frequency resolutions together.

The CWT is a highly adaptable [5, 4] signal processing technique that is used for

many applications such as signal noise filtering, image compression, and medical signal

processing. The CWT is used to separate mixed signals into their components as well as

filtering out noise and it is given by:

Wf (s, τ) =

∫ ∞
−∞

f(t)
1√
s
ψ∗
(
t− τ
s

)
dt (3.1)

The inverse continuous wavelet transform is defined as,

f(t) =
1

Cφ

∫ ∞
0

∫ ∞
−∞

Wf (s, τ)
1√
s
ψ

(
t− τ
s

)
dτ
ds

s2
, (3.2)

Where Cφ is defined as

Cφ =

∫ ∞
0

|Φ(ω)|2

ω
dω <∞ (3.3)
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Where, s and τ represent scale and translation of the mother wavelet, respectively. s

relates to frequency scale, where a larger value of s relates to low frequency signal and

smaller s relates to a high frequency signal. At a location where the signal’s spectral

component is similar in scale to the value s, the product between the wavelet and signal

will be higher. The wavelet shifts along the signal to locate the frequencies within the time

domain. The basis function is called mother wavelet ψ(t). The superscript denotes its

complex conjugate. With the appropriate choice of a and b, the CWT utilizes the shifted

and scaled versions of ψ and subsequently forms its inner product with f(t).

Le and Argoul [30] implemented CWT for system identification of linear multi-DOF

systems and tested the performance of different mother wavelets. The work found that

the Morlet and Cauchy mother wavelet can be employed to extract frequencies, modal

damping and modeshapes from a free vibration response. The Cauchy CWT (CCWT) has

the benefit of its ability to processes acceleration, velocity or displacement data. In another

study, CCWT was further used to identify the damping ratios and modeshapes from the free

response of linear systems with non-proportional damping [18]. This work also addressed

the selection of optimal Q-factor to reduce errors in the damping estimation. Argoul and

Le [8] used the CCWT to detect non-linearity in the beam under an impact force. Recently,

the CCWT has been further used with autoregressive methods to determine the location

of damage in nonlinear systems [29, 50] and time variant systems [22]. They showed that

the CCWT can be a valuable tool for SHM.

In this paper, the CCWT is explored as a method to detect time-varying progressive

damage in structural systems owing to its strong detection capability under frequency-

modulated signals [39]. Fig. 3.1 shows the Cauchy mother wavelet where the single peak

is well suited to signals with non-stationarity in frequency. Fig. 3.2 shows the CCWT

of a sine signal that undergoes an instantaneous change in frequency from 8 to 10 Hz.
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Figure 3.1: Cauchy mother wavelet

Fig. 3.3 shows the CCWT of a sine sweep signal where the frequency is changing between

3.0 and 8.0 Hz with 20% noise contamination. The results show that the CCWT tracks

the signal quite well with the exception of distortion in boundary that cause end-effects

similar to previous studies [14]. It is also seen how the CCWT provides better resolution for

lower frequencies. These abilities makes it well suited for identifying progressive damage

in structural systems with low frequencies.
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Figure 3.2: The CCWT of sine signal where the frequency is discretely changed from 8 to

10 Hz
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Figure 3.3: The CCWT of sine sweep signal having variation in frequency from 3 to 8 Hz

with 20% noise
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3.3 Formulation

In previous chapter, it is verified that the PARAFAC-based tensor decomposition method

is suitable to undertake modal identification under amplitude-dependent nonstationary

excitation caused by the natural hazard. However when there is a damage in structure, it

further introduces frequency-dependent nonstationary in the response due to progressive

time-varying nature of natural frequencies of the structures. With unique time-varying

characteristics and subsequent frequency resolution of the CCWT, the CCWT is now

integrated with the PARAFAC decomposition to perform modal identification using both

amplitude and frequency-dependent nonstationary response.

In CCWT, ψ(t) is defined as follows [8]:

ψ (t) = ψβ,n (t) =

(
i

βt+ i

)n+1

(3.4)

where, n is a non-dimensional positive parameter (n > 1) and adjusts the frequency resolu-

tion of the signal. β is a positive parameter whose dimension is the inverse of the dimension

of the variable t. Fourier transform of ψ(t) is derived as [8]:

ψ̂ (ω) = ψ̂β,n (ω) = 2π

(
ω

β

)n
e−

ω
β

n!
H (ω) (3.5)

where H(·) is the Heaviside step function. Due to the choice of the Heaviside function,

the CCWT has time-varying properties where its Fourier transform vanishes rapidly. This

property is utilized here to track the progressive change in the natural frequencies of

structures. The CCWT is then utilized over the PARAFAC components to track the

frequency changes over time.

As derived in Eq. (3.6), for any general nd-DOF dynamical system, the tensor decom-

position of the covariance tensor of vibration measurements yield,
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Zy
ijk =

nd∑
r=1

ΓirΓjrZ
q
kr ⇐⇒ Zy =

nd∑
r=1

Γr ◦ Γr ◦ Zq
r . (3.6)

where Zq
r represents the r-th modal responses of the structure. With progressive damage,

it is anticipated that the natural frequency of each modal responses will be time-varying

in nature. Therefore, the CCWT is applied to each Zq
r separately to track the changes in

the frequencies. Using Eq. (3.1), the CCWT of Zq
r can be obtained as,

WZ
f (s, τ) =

∫ ∞
−∞

Zq
r (t)

1√
s
ψ∗
(
t− τ
s

)
dt (3.7)

where ψ is given by Eq. (3.4) and the superscript denotes its complex conjugate.
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Chapter 4

Results and Discussions

In this section, the proposed method is validated through a wide range of numerical sim-

ulations and experimental studies. In order to illustrate the application of the CCWT in

a dynamical system, the CCWT is directly applied in a SDOF system first. The proposed

method is then illustrated using two simulation models: (a) 2-DOF model and (b) 4-DOF

model. Finally, an experimental model is used to identify progressive damage using the

proposed method.

4.1 SDOF Model

A single DOF system is first selected to test the performance of the CCWT. A 10 kg model

with a progressive stiffness reduction from 5000 to 1000 N/m between 20-30 seconds is used

for the illustration. The model has undamaged and damaged natural frequency of 3.6 Hz

and 1.6 Hz, respectively. The performance of the CCWT using the vibration response of

the SDOF model subjected to a harmonic frequency of 2.6 Hz and 5 Hz are shown in Fig.
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a) b)

Figure 4.1: The CCWT of the response of SDOF system subjected to harmonic excitation

with a frequency of (a) 2.6 Hz and (b) 5 Hz

4.1, respectively. In Fig. 4.1(a) an increase in amplitude can be seen since the system’s

natural frequency matches with the forcing frequency (i.e., 2.6 Hz) at 65 seconds. Whereas

Fig. 4.1(b) shows a separate frequency of 5 Hz along with accurately tracking of progressive

changes of natural frequencies. Therefore, the CCWT provides a better picture of what is

happening to the system than any other frequency or time-domain methods.

In order to test the performance of the CCWT under nonstationary vibrations, the

SDOF is excited using El Centro earthquake. Validation is conducted using both displace-

ment and acceleration data. As shown in Fig. 4.2(a), the CCWT of the displacement data

clearly shows the change in frequency. Fig. 4.2(b) shows the CCWT of the acceleration

data. The changes in frequency are visible, however it is harder to follow after 30 seconds

due to low amplitude. Bot h figures show the progressive damage that starts at 20 seconds

and ends near 30 seconds, thereby they correctly match with actual damage instants.
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a) b)

Figure 4.2: The CCWT of the response of SDOF system subject to El Centro earthquake

using (a) displacement and (b) acceleration data

4.2 2-DOF Model

As shown in Fig. 4.3, a 2-DOF simulated model is developed to validate the proposed

method. The model has natural frequencies as 1.9 and 3.9 Hz, respectively where the

damage is simulated with a linear stiffness degradation introduced at 10th seconds and

continued till 30th seconds. The resulting acceleration response of the model subjected to

El Centro earthquake is shown in Fig. 4.4. Fig. 4.4(b) shows the Fourier spectrum of the

floor responses, respectively. The PARAFAC is first implemented over the responses and

the resulting Fourier spectra of the separated sources are shown in Fig. 4.5. The figure

shows that the PARAFAC clearly separated both its modal responses.

The CCWT is then applied on the separated sources and tracked the frequency of the

modal responses over time. The results are shown in Fig. 4.6 that confirms the change in

frequency due to damage between 10 and 30 seconds. Therefore, the algorithm is able to
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Figure 4.3: 2-DOF Model

a) b)

Figure 4.4: System response of the 2-DOF model under El Centro earthquake and the

corresponding Fourier spectra of the response

58



0 2 4 6 8 10 12
0

0.5

1

0 2 4 6 8 10 12
0

0.5

1

Figure 4.5: Fourier spectra of the separated modal responses using the CCWT
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a) b)

Figure 4.6: The CCWT of the (a) 1st and (b) 2nd modal responses

separate and track the change in frequency.

4.3 4-DOF Model

In this section, a 4-DOF modal is used as shown in Fig. 4.7. Various different damage

scenarios are conducted as listed in Table 4.1 to check the sensitivity and accuracy of the

proposed method. For example, Case 1 represents 50% damage in the first floor and no

other damages in the subsequent floors. All the damages are simulated through a linearly

stiffness reduction between 50th and 80th seconds. The frequencies for the undamaged

and damage cases are shown in Table 4.2

Fig. 4.8 shows the floor vibration data and the corresponding Fourier spectra of the

data under Case 1. Fig. 4.9 shows clear separation of all four modes of the 4-DOF model

once PARAFAC is applied on the vibration response. The results of CCWT for Case 1

are shown in Fig. 4.10. There is a clear frequency shift in the first (a) and second (b)

modes, respectively. For example, the first mode has a frequency change from 0.68 to 0.60

Hz between 58 and 80 seconds. For the higher modes, the changes in frequencies are very
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Figure 4.7: 4-DOF Model
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Table 4.1: Damage scenarios

Cases 1st Floor 2nd Floor 3rd Floor 4th Floor

1 50% 0 0 0

2 50% 40% 0 0

3 50% 40% 30% 0

4 30% 30% 30% 30%

minor which are not reflected in the data.

As the damage increases for cases 2, 3, and 4, the frequency separation becomes wider

and more distinct. Figs. 4.11, 4.12, and 4.13 show the CCWT of damage cases 2, 3,

and 4, respectively. The results for the Case 4 as shown in Fig. 4.13 clearly identify the

progressive damage in all four modes.

4.4 Experimental Validation

4.4.1 Experimental Setup

In order to validate the proposed method, an experimental model as shown in Fig. 4.14

is developed where progressive damage is artificially simulated in the bracing through a

heating torch. The structure is comprised of four aluminium columns with a width of 25.5

mm and thickness of 1.5 mm. The floors are made of steel rectangular plates. The lower
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Figure 4.8: Case 1: (a) response data and b) Fourier spectra
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Figure 4.9: Fourier Spectra of separated modal responses under Case 1
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a)

c)
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d)

Figure 4.10: The CCWT of (a) 1st, (b) 2nd, (c) 3rd, and (d) 4th modes under Case 1
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Figure 4.11: The CCWT of (a) 1st, (b) 2nd, (c) 3rd, and (d) 4th modes under Case 2
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Figure 4.12: The CCWT of (a) 1st, (b) 2nd, (c) 3rd, and (d) 4th modes under Case 3
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Figure 4.13: The CCWT of (a) 1st, (b) 2nd, (c) 3rd, and (d) 4th modes under Case 4
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Figure 4.14: Experimental model
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Table 4.2: Changes of frequencies under different damage scenarios

Mode Undamaged Case 1 Case 2 Case 3 Case 4

1 0.67 0.58 0.58 0.57 0.56

2 1.14 1.07 1.03 0.99 0.95

3 1.53 1.47 1.33 1.31 1.28

4 1.88 1.86 1.77 1.63 1.68

three floors have a width of 96.3 mm, length of 205 mm and thickness of 16 mm. The

upper three floors have a width of 95.5 mm, length of 205 mm and thickness of 8.3 mm.

Diagonal bracing is placed between the lower three floors to increase the stiffness of the

model. The braces are made from a high-density polyethylene (HDPE) with aluminum on

front and back. To simulate progressive damage, a butane torch is directed toward the

bracing to heat up the bracing slowly to reduce the material strength.

The model is mounted over a shaking table operated by a modal shaker. The modal

shaker is an electrodynamic shaker system (model 2100E11) with a frequency range between

2-5400 Hz, max random force of 310 N and a stroke length of 25.4 mm. The shaker

is attached to the shake table by a steel stinger. The control system is a closed loop

system where the desired signal is sent from the computer through the control system

(Spider 81B by Crystal Instruments) and amplifier to the shaker. To close the loop, an

accelerometer is attached to the shake table base to provide feedback to the control system.

The feedback signal is compared to the desired shaker drive. The control system learns

from the feedback and adjusts so the shaker best follows the desired signal. Such a closed
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a) b)

Figure 4.15: Heating of the bracing on second floor (a) before and (b) after damage

loop system improves the shaker performance and facilitates in collecting good quality of

data. The vibration data is collected with ICP model 333B50 accelerometers where the

sensors can measure a frequency range from 0.5 to 3000 Hz and sensitivity of 100 mV/g.

4.4.2 Test Results

During the tests, a butane torch is placed at a distance of 5 inches from the brace. It is

found that a time period of approximately 50 seconds is taken for the brace to gradually

loss all strength at this distance. The heat from the torch reduces the brace stiffness as

the material heats up shown in Fig. 4.15. The damaged area of the braces are shown in

Fig. 4.16 with a closer view.

Figure 4.17 shows the CCWT results for damage in the first floor. The results show a

slight progressive frequency reduction from 40.3 Hz to 39.4 Hz starting at 38 seconds and
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Figure 4.16: Closer view of damaged bracing
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Figure 4.17: Identification results of the proposed method
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continuing till 82 seconds.

73



Chapter 5

Conclusions and Recommendations

In this chapter, all relevant conclusions of the thesis are presented followed by the major

research contributions. The potential future work are outlined next.

5.1 Key Conclusions

• The tensor decomposition-based method is explored as a robust modal identification

technique under amplitude-dependent nonstationary responses. The method is vali-

dated using a suite of more than 1400 ground motions and human-induced vibrations.

Such excitation covers a wide range amplitude-dependent nonstationary excitation

quantified by stationary duration showing its suitability for amplitude dependent

excitations. It is also observed that, with relatively moderate nonstationary data

(having Ts
T
> 0.4), the performance of the proposed method is accurate with least

uncertainties.

• The tensor decomposition-based method is shown to perform well under various lag
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parameters. This is validated with various seismic excitations. It is also shown that

resolution is improved with an increase in the lag parameter.

• The tensor decomposition is found to provide accurate modal identification using

a limited number of sensors. The performance of the proposed method and the

associated uncertainties are discussed using limited number of sensors compared to

full sensor densities. This method is validated using several numerical models and a

full-scale footbridge subjected to pedestrian-induced vibration.

• A new time-frequency method is proposed by integrating the tensor decomposition

with the CCWT to track the progressive changes in the structure. The proposed

method is shown to have capability of separating modal responses and subsequently

identifies the progressive changes in the modal parameters. This is validated using

several simulation models and an experimental study where progressive damage is

simulated in the bracing through a heating torch.

5.2 Contributions

The proposed research involves a combination of analytical, experimental as well as full-

scale studies. This research resulted in one journal paper and two conference papers that

are already published.

1. P. Friesen and A. Sadhu (2017). “Performance of tensor decomposition based modal

identification under nonstationary vibration”, Smart Materials and Structures, IOP, 26(3):

035024.

2. P. Friesen and A. Sadhu (2017). “Detection of progressive deterioration of struc-

tures using wavelet transform”, 6th International Conference on Engineering Mechanics
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and Materials, CSCE Conference, Vancouver, Canada.

3. P. Friesen and A. Sadhu (2016). “Addressing issues of modal identification using

tensor decomposition”, 5th International Structural Specialty CSCE Conference, London,

Canada.

5.3 Future Work

In this thesis, an attempt is made to develop progressive damage detection method for

structures. There are several areas where the current work can be further improved to

make the proposed research more robust.

1. Validate the proposed method with further experiments using different damage sce-

narios at different locations and check the sensitivity of the method towards damage

detection.

2. Incorporate damage index to identify the location of damage by utilizing the mode-

shapes.

3. Achieve finer frequency resolution to capture very minor damage in the structure

such that the environmental effects can be delineated.

4. The current method is able to identify the modal parameters only. It will be expanded

further to identify the physical parameters (i.e., stiffness or mass) of the structures.

5. Investigate the current experimental studies with a bigger model or steel bridge under

a high-capacity actuator.
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6. Conduct real-time implementation of the proposed approach such that it can be

applied remotely.

7. Implement the proposed methodology in several full-scale structures including bridges,

dams and wind turbines.
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Appendix A

Alternating least square

Alternating least square (ALS) is mainly comprised of the following key steps to undertake

simultaneous unfolding of three model matrices [11]:

1. Keeping θ and φ same, ψ is solved using:

min
ψ
‖S̄− [[θ,φ,ψ]]‖2 ≡ min

ψ
‖S̄(3) −ψ(φ� θ)T‖2 (A.1)

where � represents Khatri-Rao product. Given θε<I×R and φε<J×R, then θ � φ is

87



a matrix with IJ rows and R columns and is expressed as:

θ � φ =


θ11 θ12 · · · · · · θ1R

θ21 θ22 · · · · · · θ2R
...

... · · · · · · ...

θI1 θI2 · · · · · · θIR

�

φ11 φ12 · · · · · · φ1R

φ21 φ22 · · · · · · φ2R

...
...

...
...

φJ1 φJ2 · · · · · · φJR



=


θ11φ:1 θ12φ:2 · · · · · · θ1Rφ:R

θ21φ:1 θ22φ:2 · · · · · · θ2Rφ:R

...
...

...
...

θI1φ:1 θI2φ:2 · · · · · · θIRφ:R


where φ:k represents k-th column of φ.

2. Optimal ψ is the least square solution which can be obtained using:

ψ = S̄(3)(φ� θ)(φTφ ∗ θTθ)†. (A.2)

3. Then each component of θ, φ and ψ are solved until the desired convergence is

achieved:

θ ←− S̄(1)(ψ � φ)(ψTψ ∗ φTφ)†

φ←− S̄(2)(ψ � θ)(ψTψ ∗ θTθ)†

ψ ←− S̄(3)(φ� θ)(φTφ ∗ θTθ)†. (A.3)

Finally, the ALS estimates a tensor ˆ̄S =
∑R

r=1 θr ◦φr ◦ψr such that the following objective

function is minimized:

f(θ,φ,ψ) = ‖S̄− ˆ̄S‖2. (A.4)

A unique decomposition can be obtained if the Kruskal condition [27] is satisfied:

lθ + lφ + lψ ≥ 2R + 2 (A.5)
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where lθ, lφ and lψ are l-rank of the matrices θ, φ and ψ respectively, where l-rank is

defined as maximum number l such that each set of l columns of the matrix is linearly

independent.
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Appendix B

Details of the 5-DOF model

The 5-DOF model used in this paper is taken from [31]. Following are the mass, damping,

and stiffness matrices of the 5-DOF model.

M(Ns2/cm) =



19.57 0 0 0 0

0 19.57 0 0 0

0 0 19.57 0 0

0 0 0 19.57 0

0 0 0 0 19.57


(B.1)

C(Ns/cm) =



47.19 −13.67 −0.79 0.30 0.06

37.46 −15.61 −1.04 0.46

36.22 −16.46 0.11

sym. 34.26 −14.28

15.93


(B.2)
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K(N/cm) =



77108 −36564 4549 1612 −211

58596 −35825 5481 1169

58344 −36587 7463

sym. 52688 −22962

14621


(B.3)
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