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ABSTRACT

Real-time online data processing is quickly becoming an essential tool in the

analysis of social media for political trends, advertising, public health awareness

programs and policy making. Traditionally, processes associated with offline anal-

ysis are productive and efficient only when the data collection is a one-time pro-

cess. Currently, cutting edge research requires real-time data analysis that comes

with a set of challenges, particularly the efficiency of continuous data fetching

within the context of present NoSQL and relational databases. In this thesis, I

demonstrate a solution to effectively address the challenges of real-time analy-

sis using a configurable Elasticsearch search engine. We are using a distributed

database architecture, pre-build indexing and standardizing the Elasticsearch frame-

work for large scale text mining. The results from the Elasticsearch engine is visu-

alized in almost real-time.

We focused on taking our solution to the challenges of real-time data processing

is to apply it on social media to conduct a large scale health analaysis in Canada.

Social media a crucial database that provides information on a variety of topics

such as health, food, feedback on products, and many others. At present, peo-

ple utilize social media to share their daily lifestyles, for example, where they are

going, what exercise are they doing, or what are they eating. By analyzing the

information, collected from these individuals, the health of the population can be

gauged. This analysis can become an integral part of the government’s efforts to

study the health of people on a large scale. This is because public health is be-

coming the primary concern for many governments around the world, and they

believe it is necessary to analyze the present scenario within the population before

creating any new policies. Traditionally, governments use a door to door survey,

for example, a census, or hospital information to decide their health policies. This
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information is limited and sometimes takes a long time to collect and analyze suf-

ficiently enough to aid in decision making. Our approach is to try to solve such

problems through the advancement of natural language processing algorithms and

large scale data analysis. Results show, the proposed method provides the solution

in less time with the same accuracy when compared to the traditional one.
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CHAPTER 1

INTRODUCTION

1.1 Overview

When conducting health analysis there are many factors which affect the quality

of life, which are complicated to measure. Presently, the techniques used to mea-

sure the quality of life are traditional surveys [1]. However, the problem with this

techniques is the type of data, collection of data, cost, the degree of randomness

and time involved with the surveys. Due to this method, the chances of errors

are increased and causes an inaccurate view of the state of health in Canada. This

therefore has an impact on health policies and programs that lead to major health

issues not being addressed with efficient and cost-effective solutions. Due to this

new method of analysis are needed and new tools that conduct this type of analy-

sis need to be created. One unique solution is to use social media to conduct data

analysis. This is effective because the yearly growth of social media users is 13%

on average in Canada. Canada is a good representation with regards to the rest

of the world [2] because Canada had a population of 36.79 million in 2018, and

among them, 33.05 million were internet users. From 2017-2018 alone Canadian’s

social media penetration has reached 68% of the total population with 25.56 mil-

lion people. An average Canadian spends approximate 6 hours of there time per

day on the internet. This naturally generates an enormous amount of data and

information which can be cultivated to form trends using an analytical engine like

Elasticsearch. Out of all the social media platforms, Twitter has the most signifi-

cant amount of activity with 7.2 million monthly active users all over Canada [2],

and the raw data collected includes all types of information from an account of
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daily activities to political views. Twitter also provides a qualitative source of in-

formation that is a good measure of all social media platforms, that is why we are

considering Twitter for analysis of public health [3].

Pertaining to the sheer amount of data generated by social media like Twitter,

their is a significant challenge when converting this data into tangible results [4]

[5]. Preprocessing in real-time makes this much more difficult, especially when the

data is textual and unstructured [6] or crowd sourced [7]. Solutions in the fields

of cloud computing and storage are growing at rapid speed, but when [8] cloud-

based analytics is limited by network inefficiencies, and recurring costs for the

computational resources that are required to perform analysis in real-time pick-

ing, the right text analysis tool to sort through 100M tweets are crucial [9]. For

our research we used Elasticsearch which is a distributed search and analytical

engine. This engine allows for real-time data transformations, search queries,

document stream processing and indexing at a relatively high speed. Addition-

ally, Elasticsearch can index numbers, geographical coordinates, dates and almost

any datatype while supporting multiple languages (i.e., Python, Java, Ruby). The

speed of the Elasticsearch engine is based on its ability to perform aggregation,

searching and processing the index of the data [10]. This tool helps us to pre-

form an accurate and concrete analysis on the 100M tweets. We also used Hadoop

which is a distributed batch computing platform, using the MapReduce algorithm,

that includes data extraction and transformation capabilities. While the platform

is based on NoSQL technology that makes uploading unstructured data easy, its

query processing HBASE does not have advanced analytical search capabilities

like Elasticsearch. Elasticsearch is a text search and analytics tool with a visual-

ization plugin for real-time analysis with an open source license. Furthermore,

Elasticsearch hosts plugins for Hadoop and Spark to reduce the distance between

the two different technologies and allows for a hybrid system to be implemented
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[11]. By using Elasticsearch and Hadoop we were able to analyze 100M tweets and

process them with a great amount of efficiency and accuracy creating results that

were on par with the Canadian governments’ health analysis research.

1.2 Motivation

Public health is becoming the primary concern for many governments around the

world, and they believe it is necessary to analyze the current scenario within the

population before creating any new policies. Traditionally, governments use a door

to door survey, for example, a census, or hospital information to decide their health

policies. This information is limited and sometimes takes a long time to collect

and analyze sufficiently enough to aid in decision making. Our approach is to try

to solve such problems through the advancement of natural language processing

algorithms and large scale data analysis. To do all complex analysis we also need

basic overview of the data in real-time for large scale scoial-media data.

1.3 Contribution

This thesis introduces a solution to host the large social-media dataset on Elas-

ticsearch framework and then perform health analysis for Canadian’s perspective.

Part one is about efficiently implementing real-time analytical tool for social-media

data using Elasticsearch. It also gives a light on the current limitation of most com-

mon database used for large-scale real-time analysis and how Elasticsearch can be-

come a solution for this problem. Locally implemented and configured distributed

Elasticsearch for Twitter data analysis in LUHPCC (Lakehead University High Per-

formance Computing Center) helped us to do basic analysis of Twitter data in real-

time. It also helped to get and store large scale of social-media data efficiently for

more complex research in our case Health analysis of Canadian Population. In

second part of thesis we demonstrate the limitation of current social-media health
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analysis system in detail and solution to overcome from that problem using NLP

(Natural Language Processing).
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CHAPTER 2

A FRAMEWORK FOR SOCIAL MEDIA DATA ANALYTICS USING

ELASTICSEARCH AND KIBANA

2.1 Introduction

The exponential growth of online data poses a significant challenge in the process

of fetching a representative data set that can be translated into tangible results [4,

5]. Pre-processing in real-time adds another layer of complexity, especially when

the data is textual and unstructured [6] or crowd sourced [7]. Solutions to pro-

cessing big data sets in the fields of cloud computing and storage are growing

at rapid speed, but when we consider big data on a scale of petabytes [8], cloud

based analytics are limited by network inefficiencies for transporting the data; and

recurring costs for the computational resources required to perform analysis in

real-time [9]. Access and privacy also pose a challenge in cloud based storage as

server administrators maintain the rights to view both the data and its flow. Se-

curity solutions such as encrypted searching are not feasible to implement specific

to real-time analysis because of computational limitations [12]. Currently, the top

three tools used for analyzing large databases are Elasticsearch, Hadoop and Spark

[13]. Elasticsearch is a distributed search and analytical engine which allows for

real-time data transformations, search queries, document stream processing and

indexing at a relatively high speed. Additionally, Elasticsearch can index num-

bers, geographical coordinates, dates and almost any datatype while supporting

multiple languages (i.e., Python, Java, Ruby). The speed of the Elasticsearch en-

gine is founded on its ability to perform aggregation, searching and processing the

index of the data [10]. Hadoop is a distributed batch computing platform, using
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the MapReduce algorithm, that includes data extraction and transformation capa-

bilities. While the platform is based on NoSQL technology that makes uploading

unstructured data easy, its query processing HBASE does not have advanced an-

alytical search capabilities like Elasticsearch. Elasticsearch is a text search and an-

alytics tool with a visualization plugin for real-time analysis with an open source

license. Finally, Elasticsearch hosts plugins for Hadoop and Spark to reduce the

distance between the two different technologies and allows for a hybrid system to

be implemented [11].

Tools that support the management of large data sets and real-time data fetch-

ing include relational (MySQL, Oracle Database, SQLite), Graph(Neo4j, Oracle Spa-

tial) and NoSQL (MongoDB, IBM Domino, Apache CouchDB). Limiting factors re-

lated to all types of databases include lack of support for full-text searches in real-

time. While NoSQL is functional for full text searching it lacks reliability when

compared to relational database models [6]. Traditional databases require that the

data is first uploaded and then the administrator must actively decide which data

should be indexed which adds one more layer of processing making it infeasible

for real-time analysis. Elasticsearch provides a solution to these limiting factors [6]

by providing a highly efficient data fetching and real-time analysis system that:

• performs pre-indexing before storing the data to avoid the need to fetch and

query specific data in real-time;

• requires limited resources and computing power in relation to traditional

solutions; and

• provides a system that is distributed and easy to scale.

The capacity for Elasticsearch to contribute to high efficiency, real-time data anal-

ysis is enhanced through a standardized configuration process, shard size man-

agement and standardizing the data before upload into Elasticsearch and demon-
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strated through a discussion of both the working architecture as well as a real-time

visualization of social media data collected during December 2017 and May 2018,

a repository of over 1 billion twitter data points.

This chapter gives an introduction about the how social-media is utilized on

large in real-time. We then discuss related works about the similar current re-

search being done in our field of social-media data-analysis in real-time. We use

these related works to discuss limitations in most common used databases and

how we can overcome them. We then go into our methodology which includes: ba-

sic overview of Elasticsearch, implemented distributed Elasticseach in LUHPCC,

optimize configuration ,and updated data format for storing data. We analyze our

final results and form a detailed health analysis for Canada. We finally conclude by

summarising our results and discuss future possibilities for Elasticsearch system.

2.2 Related Work

Marcos [9] suggests that cloud computing is elastic in nature as the user can ad-

just it as per his/her data needs from processing power to storage. While it does

seem ideal in theory, cloud computing comes with several challenges including

both network inefficiency in data transport as well as issues related to data pri-

vacy and access control. Additionally, Hashem refers to ‘data stabbing’, which are

problems associated with storing and analyzing the heterogenous and complex

structure of big datasets [14]. As a solution, other authors such as Oleksii [6] sup-

port and highlight the benefits of Elasticsearch as a tool for real-time analysis in

modern data mining repositories. In this research we attempted to address and

resolve problems associated with data preprocessing and efficiency while also dis-

cussing the elastic cluster framework in more depth. Currently there are very few

research studies on frameworks for big data analysis in real-time although several

discuss the application of practices in manufacturing [15] and gene coding [16].
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Some researchers have used Elasticsearch cluster via a logstash plugin and MySQL

databases for heterogenous accounting information system [17]. In these research

data is monitored using MySQL server before inserting it into Elasticsearch. The

researchers observed that there might be an issue of duplication of data and stor-

age space, but the architecture ensures flexibility and modularity for the monitor-

ing the system. They choose Elasticsearch as text search engine in real-time which

allows them to search historical data [17]. Mayo Clinic healthcare system [18] de-

veloped a big data hybrid system using Hadoop and Elasticsearch technology. In

healthcare, real-time result is essential for effective decision making. Before that,

they used traditional RDBMS database to store and process data. But, it lacks in-

tegration between different platforms and inability to query/ingest of healthcare

data in a real-time or near real-time. In Mayo Clinic system [18] Hadoop is used

as a distributed file system and on top of it Elasticsearch works as a real-time text

search engine. When there is a need for raw data Hadoop is used, and for real-

time analysis Elasticsearch is used. Their experimentation showed very promising

results, like searching 25.2 million HL7 records took just 0.21 second [18].

Designsafe web portal by Natural Hazards Engineering Research(NHER) [19]

analyze and share experimental data in real-time with researchers across the world.

The user of their system sends the large amount of data which is stored in dis-

tributed NFS. During the preprocessing of the data, which includes analysis of

string and basic cleaning, indexing the data and make it compatible for Elastic-

search. This model allows users in a different location to query the same exper-

imental data which is computed in different part of the world in real-time. All

present environments needs to be correctly configured as per the data and the re-

quirements [19].
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2.3 Limitation

As Elasticsearch is designed to be used for real-time analysis, there are databases

which provide functions that perform better in offline mass data analysis such

as NoSQL databases (e.g., MongoDB) that support MapReduce [6]. Elasticsearch

does not support MapReduce as it instead relies on the inverted index [20]. Addi-

tionally, Elasticsearch can be slow when new data is added to the index and it cur-

rently lacks support for more popular data formats (e.g., XML, CSV) and only sup-

ports JSON format which can be challenging for users unfamiliar with JSON [21].

The important challenge is to implement present Elasticsearch database server ef-

ficiently on locally to get overall view of large scale Twitter data in real-time. Next

section will give details explanation of Elasticsearch and implemented system in

LUHPCC.

2.4 Methodology and Implementation of Distributed Elasticsearch

2.4.1 Elasticsearch

Elasticsearch is a database manager that is crucial to my research because it is one

of the fastest real-time text search engine which will be able to easily analyze tweets

for health analysis. The following is a bit more on the history of Elasticsearch.

Elasticsearch was started in 2004 as an open source project called compass, which

was based on Apache Lucene [22]. Elasticsearch is a distributed and scalable full-

text search engine written in Java that is stable and platform independent. These

features combined with requirement specific flexibility and easy expansion options

are helpful for real-time big data analysis [23]. We use this database manager as a

base for our twitter analysis but configured it in order to be optimize is results and

improve accuracy. We will discuss some of the general functions of Elasticsearch to

provide context for the Elasticsearch configuration and data standardization and
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shard management procedure resulting from this research.

2.4.2 System Overview

Elasticsearch is the database manager of choice for this article. The following sec-

tion explains how it was implemented in our system. Figure 2.1 illustrates the

framework for real-time analysis of very large scale data based on Elasticsearch

and Kibana [24]. In the first step, the Twitter API is used for scraping twitter data

(approximately 1400 tweets per minute) that is stored in a MongoDB database,

which is installed on a Network Attached Storage (NAS) with a capacity of 16TB.

The twitter data is transferred to preprocssing units which handle the data and

transfer it to High Performance Computing (HPC) infrastructure in almost real-

time. As traditional databases, including MongoDB, are not efficient enough to

handle real-time query, we transfer the processing and analysis of data to Elastic-

search, which is implemented via HPC lab resources. Before uploading the data,

we standardize the twitter object for Elasticsearch and use multithreading to up-

load the data for better real-time performance and to shorten the gap between

receiving and processing data. When a user needs any data, a query will be sent to

Elasticsearch using the Kibana front-end. Elasticsearch processes that query and

sends the query result object (JSON format) to Kibana, where Kibana shows the

query object to the user.

Within the general functioning of the search engine, Elasticsearch uses a run-

ning instance called a node which can take on one or more roles including a master

or a data node (see section 2.4.1, Figure 2.2). Data-set clusters within Elasticsearch

require at least one master and one data node, however it is possible that a cluster

can consist of a single node since a node may take on multiple roles. The only

data storage format compatible with Elasticsearch is JSON and therefore requires

data mapping for producing functional analysis and visualizations due to the un-
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Figure 2.1: Framework for real-time analysis using Elasticsearch
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structured format of the twitter data. We observed that reliance on the JSON for-

mat makes the system more flexible than MySQL and other RDBMS, but less than

MongoDB. While a traditional database such as RDBMS use tables to store the

data, MongoDB uses BSON (like JSON) format, and Elasticsearch uses an inverted

index via the Apache Lucene architecture to store the data [22]. A typical index

in Elasticsearch is a collection of documents with different properties that have

been organized through user defined mapping that outlines document types and

fields for different data sources; similar to a table in an SQL database. The index

is then split into shards housed in multiple nodes where a shard is part of an index

distributed on different nodes. Within the Elasticsearch framework, the inverted

index allows a more categorical storage of big data sets within nodes and shards so

that real-time search queries are more efficient. Elasticsearch uses RESTfull API to

communicate with users, see Table 2.1 for a basic architecture comparison. Addi-

tionally, there are different libraries such as Elasticsearch in Python [25] and Java

[26] for better integration.

Table 2.1: Comparison between Elasticsearch and RDBMS basic architecture

Elasticsearch RDBMS
Index Database

Mapping Table
Document Tuple

Backbone:

While Elasticsearch is a powerful tool, a model is required to optimize functional-

ity for the purpose of real-time big data analysis specific to social media. The pur-

pose of this research is to provide (i) a specific configuration file to optimize the

organization of the data set, (ii) an optimized shard size for maximum efficiency

in storage and processing, and (iii) a standardized structure for data fields present

within Twitter to eliminate over-processing of irrelevant information When the
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data is stored in Elasticsearch, it stores the data in an index first, and then the index

data is stored as an inverted-index using an automatic tokenizer. When we search

in Elasticsearch, we get a ‘snapshot’ of the data, which means that Elasticsearch

does not require the hosting of actual content but instead links to documents stored

within a node to provide a result through the inverted index. These results are not

real data but a representation of the query’s linkages to all associated documents

stored in each node. As a component of this project, the following configuration

file was developed and can be replicated in Elasticsearch on any HPC by editing

the configuration files as per number of nodes and capacity of server. Table 2.2

describes the basic configuration file for Elasticsearch.

Table 2.2: Master and Data node configuration file

Master node config file Data node config file
cluster.name: dsla cluster.name: dslab
node.name: m1 node.name: d1
node.master: true node.master: false
node.data: true node.data: true
path.data: /data/nshah5/dataset path.data: /data/nshah5/dataset
path.logs: /data/nshah5/log path.logs: /data/nshah5/log
network.host: x.x.x.x network.host: x.x.x.x
network.bind host: 0 network.bind host: 0
network.publish host: x.x.x.x network.publish host: x.x.x.x
discovery.zen.ping.unicast.hosts: [“x.x.x.x”] discovery.zen.ping.unicast.hosts: [“x.x.x.x”]
bootstrap.system call filter: false bootstrap.system call filter: false

Here, the name of a cluster is dslab and a cluster name is necessary, even if only

a single node is present. As the Elasticsearch is a scattered database, where one

or many nodes work as heads and others as data, this parameter is used to in-

terconnect all the nodes in the cluster. We can create numerous clusters with the

same hardware using different instances of Elasticsearch and different configura-

tion files.

Table 2.3 is an example of a configuration file features for any Elasticsearch

node. In every node for the distributed Elasticsearch we have to configure the
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Table 2.3: Elasticsearch node configuration file features

Config file properties Explanation
cluster.name It is the name of cluster where present node will

join.
node.name It gives the name of your current node
node.master The role of master-eligible is decided based on

true or false function (Boolean function). The
master node manages the overall state of the
cluster including node monitoring, index cre-
ation and deletion, and shard to node assign-
ments.

node.data The role of data is decided based on true or false
function (Boolean function). It stores the physi-
cal data shards, performs reads, writes, searches
and aggregations. Any node can be master and
data, both or individual.

path.data The location of the actual data in present node is
represented.

path.logs Location where the logs of the present nodes are
stored. Logs are important to diagnose problems
and monitor working status.

network.host It’s an address of the present node which is
unique for the individual node in the cluster.

network.publish host It’s a public address where other nodes commu-
nicate with the present node.
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same file in each and every instance. When the data is stored we use the index to

store a specific type of data similar to a data-set in MySQL. The performance of

Elasticsearch is based on the mapping of the index and how we size the shards of

the data set. The formula to decide the size of the shards is given in Equation 2.1.

Number o f shards = (S ize o f index in GB)/50 (2.1)

The reason behind the consideration of using 50 GB as a shard size is due to

the architecture in Elasticsearch. The architecture supports 32 GB index size and

32 GB cache memory so ideally the shard’s memory should be less than 64 GB and

through experimentation we observed that the best results are achieved at shard

size of 50 GB.

2.4.3 Updated Data Structure

Table 2.4: Difference between normal and updated structure

Original tweet structure Updated structure
{ {
“??Tweet”:{ “Id”:
“User”??:{ “Name”:
“Id”??: ...
“Name”??: }
}
},
...
}

We used Elasticsearch to analyze 250+ million out of 1 billion tweets scraped

between December 2017 and May 2018 using the Twitter API. Since the Twitter

API response is in JSON format and contains unstructured and inconsistent data

the sequential collection of all data fields within the tweet JSON object is not guar-

anteed. Standardization of the data and conversion into a structured format is

therefore necessary for Elasticsearch mapping so that each field of data is present
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when loaded into the index. To optimize the Elasticsearch we changed the storage

format of the tweet so that all the data is required to be at depth level one in JSON

format. Table 2.4 depicts the basic example of restructured data in Elasticsearch.

2.4.4 Configuration of the Elasticsearch

Live social media streaming data is stored in elastic clusters. Each elastic cluster

contains 6 nodes, with each node having 2 threads and 12GB of memory. Within

these 6 nodes one node works as a master and the remaining 5 work as data nodes.

Architecture of the elastic cluster is shown in Figure 2.2.

2.5 Analysis and Results

2.5.1 Elasticsearch results

Table 2.5: Search query result of “pizza” keyword

Result of keyword “pizza” from all tweets from database
{
“took”: 4060,
“timed out”: false,
“shards”: {
“total”: 106,
“successful”: 106,
“skipped”: 0,
“failed”: 0
}

“hits”: {
“total”: 192118,
“max score”: 15.110959,
”hits”: [???]
}

As we mentioned previously, the data is stored as an inverted index that is op-

timized for text searches and therefore very efficient. For example, if we search

for the keyword “pizza” within the context of all tweets (250+ millions) in Elastic-
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Figure 2.2: Elasticsearch cluster architecture hosted on the HPC at Lakehead Uni-
versity

17



search, the time taken is 4060 milliseconds (4.06 seconds) to find a total of 192,118

tweets where the “pizza” keyword is present in tweet text. Table 2.5 shows the

example of the keyword “pizza” text search query response from Elasticsearch.

Figure 2.3 shows a pie chart of tweets mapping the geographical distribution by

nation of “pizza” tweets where the United States alone is responsible for 47% of

total tweets and other countries excluding the top five are 30%, which is 77% of

total tweets. Additionally, the visualization shows the time taken to perform the

query is 13ms (0.013 second). Figure 2.4 shows five most used languages in the

tweet text related to “pizza” where the English language is used in more than 77%

tweets while Spanish is used 12%, Portuguese at third spot with 6%, French at

3% and Japanese at 2% tweets. In this instance Elasticsearch took 17ms for query

processing.

Figure 2.5 shows the devices used to tweet with 38% of tweets coming from the

iPhone twitter app, the Android twitter app was used for 29%, twitter web clients

were used for only 11% and Twitter lite and Tweetdeck combined were used for

around 7%. Other sources were indicated for the remaining 15% tweets. This query

took 11ms to execute, which is quite reasonable given the structure and amount of

data.

The above results demonstrate the efficiency of this data analysis system in

that all three tasks (fetching the data, performing descriptive analysis and creating

graphs), were accomplished in less than 15 seconds from a database size of 250+

million tweets. Clearly, this framework has proven suitable for the analysis of

large text data in real-time without losing accuracy. It also shows that the restruc-

turing and standardization procedures used on the data assisted in optimizing the

accuracy of the results and efficiency of the processes in a context with limited

resources.

18



Figure 2.3: Location: Real-time analysis of Twitter data for the term “pizza”

Figure 2.4: Language: Real-time analysis of Twitter data for the term “pizza”
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Figure 2.5: Source: Real-time analysis of Twitter data for the term “pizza”

2.5.2 Kibana- Visualization Dashboard

In addition to Elasticsearch being efficient for real-time analysis, extended plugins

such as Kibana [24] and logstash [27] make it convenient for functional representa-

tions of big data in real-time. It is part of the elastic stack and is freely available un-

der open source license. Kibana has multiple standard visualizations available by

default and simplifies the process of developing visualizations for end users with

a drag and drop feature. As Kibana is backed by the Elasticsearch architecture, it

functions quickly and is efficient enough for real-time analysis. Finally it provides

the opportunity for graphical interaction in the process of building and handling

queries with an accessible visualization of the cluster health and properties within

the database.

At present, the monitoring framework described in this paper is used to display

data coming from Twitter stream. For example, in Figure 2.6 we show a snapshot

of the Kibana dashboard. The top-most plot is a pie chart of tweet source, which
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Figure 2.6: Partial view of the Kibana dashboard for the twitter Analysis
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displays the results from which device they use to tweet, such as iPhone, web

browser etc. The second top-most plot is pie chart of the languages used to tweet.

In the middle, first histogram shows the the time and amount of twitter data flow.

And, the second shows the word cloud and the bottom left shows the top ten users

who are actively twitting. Similar dynamic dashboard creation is possible in min-

utes without knowledge of any programming knowledge and back-end system

understanding.

2.6 Key contributions

The key contribution to Elasticsearch system is to implement it on locally on LUH-

PCC. We also standardized the data format for Twitter data for more optimize

indexing in Elasticsearch. We presented the optimal way to configure the Elastic-

search through shards equation for getting maximum output from present infras-

tructure. Also, we assembled the Kibana visualization plugin with Elasticsearch

for real-time visualization of Twitter data at large scale as shows in results.
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CHAPTER 3

CANADIAN’S HEALTH ANALYSIS THROUGH SOCIAL MEDIA

3.1 Introduction

Every year internet access is increasing at 7% rate around the world [2]. The yearly

growth of social media users in Canada is almost twice the growth of internet ac-

cess with 13% on average. Canada is a good representation with regards to the rest

of the world as Canada had 36.79 million population in 2018, and among them,

33.05 million were internet users. This is almost 90% of total population. This

shows how deeply social media and internet has penetrated the Canadian soci-

ety. As internet access and quality increases, it creates an ideal condition for the

growth of social media and other online activity. From 2017-2018 alone, Cana-

dian’s social media penetration has reached 68% of the total population with 25.56

million people and reasons behind the exponential growth of social media users

is mainly due to the technological advancement of smartphones and qualitative

internet services (with an average speed of internet 45.64 Mbps) [2]. An average

Canadian spends approximately 6 hours of their time every day on the internet.

89% of the total population use the internet daily for various activities [2]. Smart-

phones are essential for social media, as they enable users to share their activities

with ease of accessibility when compared to traditional social media devices such

as computers. An example of this is a camera integrated into the social media app

to upload content without the hassle of the conventional equipment instantly. In

Canada, smart-phone users are growing with the rate of 6% every year which will

increase the consumption of social media, internet and different online services

[2]. This naturally generates an enormous amount of data and information which
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can be cultivated to form trends. Twitter has the most significant amount of ac-

tivity at 7.2 million monthly active users all over Canada [2], and the raw data

collected includes all types of information from a review of restaurant or product,

political views, user’s like-dislike, daily routine, or other data [4]. Since Twitter

provides a qualitative source of information that is a good measure of all social

media platforms, we are considering Twitter for analysis of public health [3].There

are many factors which affect the quality of life, which are complicated to measure.

Presently, the techniques used to measure the quality of life are traditional surveys

[1]. However, the problem with these techniques is types of data, a collection of

data, cost, the degree of randomness and time involved with the survey. Due to

this method, the chances of errors are increased. This will affect the decision of

health policies and monitoring as it is not a proper representation but a skim of the

actual state of health due to the reason above.

By studying the health of the population, trends can be formed with regards

to prevalent health conditions. For example diabetes, cancer, heart conditions [28,

29]. Many of these health conditions are correlated with nutrition and level of

daily physical activity. The government knows this and conducts surveys, and

programs to analyze the current health of the nation [30]. By doing so they can put

in appropriate policies and programs in order to help the population stay healthy

and active.

This chapter is constructed firstly with an introduction to give a general idea of

social media and how it is utilized for large scale data analysis. We then discuss

related works to get an idea of the similar current research being done in our field

of health analysis. We use these related works to discuss limitations in data anal-

ysis and how we can overcome them. We then go into our methodology which

includes: data cleaning, creating a database, phrase detection,and model training.

We analyze our final results and form a detailed health analysis for Canada. We
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finally conclude by summarising our results and discuss future possibilities.

3.2 Related Work

Google Flu Trends was real-time flu detection tool based on Google search query

[31]. If people searched for a solution to cure the flu or about any medical in-

formation related to the flu, the algorithm takes that information and considers

their location as a flu affected area [31]. But that algorithm was proven imperfect

and needed a more sophisticated approach to solving it. In Paul and Drendze’s

health analysis article [32], there is a correlation when comparing cancer tweets,

with higher obesity and smoking tweets. They also found a negative relationship

between health care coverage and tweets posted about diseases [32]. With more

sophisticated algorithms, the accuracy of the data increases and this can be used

to discover more true trends when looking at Twitter for health analysis.

In [33], Shawndra found that people who search about the sodium content per

recipe is correlated with the number of people admitted in the emergency room of

a major urban Washington hospital for congestive heart failure [33]. J Eichstaedt’s

found the sentiment analysis of tweet language, which outperforms the traditional

socioeconomic surveys for predicting heart disease at the country level [34] They

correlated the growth of negative emotions in Twitter with the risk factor of heart

disease on a large scale [34]. This shows that social media analysis can be more

effective than traditional surveys and may be the next step of methodology for

future analysis done by the government.

Culotta [35] analyzed tweets which contain the daily habits of the account hold-

ers. The results were a ”deep representation” of the US community in regards to

their daily negative engagement concerning their routine such as watching tele-

vision, playing or reading [35]. Abbar also did an analysis of data on Twitter

for caloric analysis at the country level. They classified food-related tweets and
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found the caloric value of such food. This analysis gave a brief understanding of

the food habits of the people in different demographic areas [36]. Subsequently,

Lexicocalorimeter is one of the most sophisticated approaches towards the health

analysis of people country level. This is done by utilizing social media. Lexic-

ocalorimeter is an online instrument that is designed for measuring social, physi-

cal and psychological examination at a large scale. Sharon et al. developed it for

public health monitoring and to create health policies through data-centric com-

parison of communities at all scales. Oversimplification exists in data analysis and

basically means that the data is being classified in basic categories. by doing this

only look at what the data presents instead of looking deeper into the meaning or

relevance of said data. This can cause bias as one bit of data and show one thing

but mean another thing. And example of this is a piece of data from a Twitter ac-

count that says ”the test was a piece of cake”. This is an idiomatic expression that

has very little to do with food. Instruments like the Lexciocalorimeter will take this

data as a food tweet and at it to is trends. This causes error and inaccurate trends

and due to our models need have a resistance to oversimplification in order to get

more accurate results.

Lexicocalormeter extracts text related to caloric input and caloric output and

calculates their caloric content [37] [38]. They also use food phrases from a 450-

plus database and physical activity phrases for a 550-plus database. The second

step is to group categorically similar words and phrases into small pieces called

lemmas. They then assign caloric values to it, based on the food and physical

activity. To get these lemmas, they use a greedy selection algorithm [39].

Food caloric value is represented as Cin and activity caloric value is represented

as Cout. Crat [39] is calculated as shown in Equation 3.1.

Crat =
Cin

Cout
(3.1)
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And to find out the average caloric value of the different provinces or countries,

they count the frequency of all food and activity related words and then assign

caloric values to all words. Then, the standard Crat formula is used to compute the

caloric ratio of each place. In this paper, they consider 80.7 kilograms as the aver-

age weight for metabolism equivalent of tasks; this is subtracted from the calorie’s

physical activity value. More details can be found in [39].

3.3 Limitation

For simplicity, the Lexicocalorimeter [39] didn’t use any filter for tweets beyond

their geographic locations [39]. This causes bias in the dataset because the user

may live and eat in different locations. This causes the users eating habits to affect

another location’s dataset instead of affecting there home locations dataset. For ex-

ample the user might be from Thunder Bay and go on a trip to eat in Toronto. With

Lexicocalorimeter’s current filter the user’s data will affect the dataset gathered

from two separate locations instead just Thunder Bay like it should. This causes a

loophole in the dataset that will cause inaccuracy.

Lexicoclaorimeter’s dataset is quite limited with 451 food phrases [40]. Since

this 451 food phrases only has the most common food names it is not a good

database of the food itself. But when people talk about the food, it can be called

anything such as the name of special food in certain restaurant [40]. Different cul-

tures have different foods and this is very important in a country as diverse as

Canada. So the database of food phrases in our model must be large in order to

accommodate for all possibilities in order to be accurate.

Another limitation is that the Twitter account may talk about food or an activ-

ity in a metaphorical perspective. Food words are commonly used in idiomatic

expressions in the English language. Some examples include: ”Bring home the Ba-

con”, ”Cry over spilt milk” and ”Cup of tea.” Lexicoloricmeter will still consider
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these phrases as food items in their systems and then assign values to them. The

instruments approach cannot solve that problem, and this creates bias data in the

system. An example of this includes if a person tweets the phrase ”you are the

apple of my eye,” the present algorithm will consider apple as a food. But in this

case, it is not related to food. Also, a lack of NLP understanding of approach cre-

ates higher chances for the bias output [41]. Due to this, unnecessary data will

enter the dataset and create false trends, over-fitting and decrease accuracy of the

overall analysis.

3.4 Methodology

In the design of our system, I focused on the system for the large scale analysis

of social media data with regards to health analysis. The focus of the system is

on training NLP model based on a large amount of data that is processed to get

factual information about the health of Canadians. Figure 3.1 shows the architec-

ture of a health analysis system. It is divided into two subsections, training part

(offline mode) and analysis component (active system). As shown in the Figure 3.1

the first step is to collect raw data. To manage and process this data, I use an Elas-

ticsearch system which is designed and developed through Elasticsearch locally

at Lakehead University’s High-performance computing facility [42]. It can handle

and analyze Terabytes of text data within a few seconds. This helped us to get the

necessary data very efficiently from the pool of data. Once this is done, our next

step is data cleaning.
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Figure 3.1: Architecture of analysis system
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3.4.1 Data Cleaning

Data cleaning is crucial when I deal with a user’s raw data such as tweets, feeds

or chats. This raw data is not structured or cleaned unlike typical formats such

as blogs or essays. When tweets are written, it includes hashtags, slang words,

emojis, emoticons and unstructured data. Because of that, such data is used as a

feature in the model as an input; to make this data more sensible and more reliable

for the model.

In the first step of data cleaning, I convert all Emojis or Emoticons to there

respective meaning through the ”emot” open source library [43]. It helps to un-

derstand the text when we have a name that is not in the database. When we have

emojis that are related to food, it will be easy to understand that tweet is related

to food. In the next step, I convert all text into the lower case which makes word

matching and processing easy in further processes. Step 3 is removing stop words

which help to eliminate unnecessary features in our model such as the, a, an, when,

what etc. Next step is to remove special characters. In the last step, I remove the

numbers. This is because numbers are not useful for identifying whether the text

is related to food or not and it also not source information for our analysis. And

removing all unnecessary text or data will limit the size of the feature matrix and

speed up the training and classification task.
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Step 1: Emoji or Emoticons gave there respective meaning

Original text: ”I am getting 2 old to be mango Gonna retire soon and be joesh

#ROFL :-)”

Processed text: ”i am getting 2 old to be mango gonna retire soon and be joesh

#ROFL Happy face smiley”

Step 2: Covert all text in lower-case characters

Original text: ”I am getting 2 old to be mango Gonna retire soon and be joesh

#ROFL”

Processed text: ”i am getting 2 old to be mango gonna retire soon and be joesh

#rofl happy face smiley”

Step 3: Removing stop words

Original text: ”i am getting 2 old to be mango gonna retire soon and be joesh

#rofl”

Processed text: ”getting 2 old mango gon na retire soon joesh #rofl happy face

smiley”

Step 4: Removing special characters

Original text: ”getting 2 old mango gon na retire soon joesh #rofl”

Processed text: ”getting 2 old mango gon na retire soon joesh rofl happy face

smiley”

Step 5: Removing numbers

Original text: ”getting 2 old mango gon na retire soon joesh rofl”

Processed text: ”getting old mango gon na retire soon joesh rofl happy face

smiley”
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As some features are directly propositional to the speed of model training. So

as the feature increases the speed of the model, training is also increased [44]. Here,

I am not removing hashtags because it gives valuable information. For example,

when users talk about specific foods which are not common but hashtags will in-

clude #burger#delicious than I can quickly identify that the user is talking about a

burger or some other food. So, I just removed the special characters while keeping

the hashtagged text.

3.4.2 Database

To calculate the caloric value, we need two types of datasets: first for food and

its caloric values and second for activity and its caloric-burn value. When I try

to gather a dataset for food, I find out there is not even a single dataset avail-

able which includes the different types of food items and their nutrition values. At

present, Canadian Food Nutrient Database and USDA Food Composition Databases

are the main sources of information related to food and nutrition facts of the food

in Canada. But the limitation with these databases is the lack of data in terms

of cuisines such as ”Chicken masala” or ”Penne arrabiata.” Usually, people tweet

about cuisines or dishes they eat during lunch or dinner at a restaurant or any other

place. It means the present dataset is very domain-oriented for things such as fast

food, vegetables or frozen foods, but they will not contain all the major types of

food that people talk about on social media as shown before. Now, there are two

more problems after getting the dataset: to find what food the users talk about and

to find the caloric value of that specific food. To solve this problem, we need a new

dataset that combined different food domains which contain all major foods and

their different nutrition values. That is why, I created a new dataset called ”Food

in one” which includes a combination of all open source datasets such as the Open

Food Facts which is a major source of food names, Canadian Nutrient File and
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USDA Food Composition Databases. Table 1 shows the structure of current food

dataset:

Table 3.1: Food database

Name Data

food name Name of the food

food ingredients Ingredients use to make the food

fat 100g Fat per 100g of food

energy 100g Energy value per 100g of the food

carbohydrate 100g carbohydrate value of that food at 100g

Our newly created dataset contains 338,889 foods with all there information.This

is an open source database at datalab.science. This includes all different types

of major food sources like fruits, vegetables, fast food and regular food. In our

dataset, more than 70% food items are from the US, Canada, and France. This is

because our focus is mainly on Canada’s health situations.

To understand the nutrition value of all food items in the database I used a

normalized KDE. Figure 3.2 is the Normalized Kernel Density Estimation(KDE)

diagram of all the food that is present in the dataset. This is along with their nutri-

tion values including fat, carbohydrate and energy per 100 grams. As we can see in

the second bar chart energy values mostly lie between mid-range while the fat bar

chart has diverse values from an extreme high to an extreme low. This represents

the diverse nature of our dataset that includes various type of foods.
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Figure 3.2: Nutrition value of all food in database
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Figure 3.3: Nutrition values of vegan vs non-vegan food in database

Figure 3.3 shows the normalized KDE graph of nutrition values of vegan and

non-vegan food. Orange represents the vegan food, and blue represents the non-

vegan food. The results show that the distribution is quite similar for products

with ”Vegan” labels. As shown in the Figure 3.3 non-vegan food has high fat and

energy values when compared to vegan foods on average. While the scatter graph,

between carbohydrates and fat, shows a vegan diet has a lower energy value when

compared to non-vegan foods with regards to the same amount of carbohydrate.

The last raw scatter graph shows that all our food is categorized as vegan or non-

vegan food.
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Input: List of food name in dataset

Result: Food is Vegan or Non-Vegan

FoodDataset;

while Food in FoodList do

name = Food;

if name contains ”vegan” then

flag = True;

else

flag = False;

end

end

Algorithm 1: Identifying food is vegan or non-vegan

To differentiate between vegan and non-vegan food, we first find out if the

word ”vegan” is present beside the name of the food in the database as shows in

Algorithm 1. Then we also add vegetables and fruits as well as juice in the vegan

food category. Any other foods are considered as non-vegan food.

Figure 3.4: KDE of carbohydrates per 100g
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Figure 3.4 shows the KDE graph of carbohydrates per 100g concerning the dis-

tribution between vegan and non-vegan foods. It also shows that some non-vegan

food has high carbohydrate content than vegan foods. While, in other aspects of

nutrition, the gap between vegan and non-vegan food is not as big.

Figure 3.5: KDE of fat per 100g

Figure 3.5 shows the KDE graph of fat per 100g distribution between vegan and

non-vegan foods. It also shows that some non-vegan foods have sharply high-fat

content than vegan products. In other aspects, there is not much of a big difference

between vegan and non-vegan foods, for example, fat content.

Figure 3.6 shows the KDE graph of energy per 100g distribution between vegan

and non-vegan food.

In order to analyze public health, the second database we need is an activity

database [39]. Where we can take the average activity time and relate it to caloric

values. I chose to go with most common activities that are done and that are posted

by people on social media. It now contains 1400 different activities and their caloric

values that are available. To calculate the average caloric value, I fixed weight
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Figure 3.6: KDE of energy per 100g

and metabolism with average Canadian weight that is 80.3 kg. Table 2 shows the

attributes of the activity dataset:

Table 3.2: Activity database

Name Data

activity name Activity name

caloric value Caloric value of the activity

To analyze public health on a large scale, I am considering the Twitter dataset

as the primary source for data. This will be used to do basic querying and analysis

of the system at a large scale; I have developed an Elasticsearch based analysis

system for real-time querying and searching of Twitter data [42]. From that system,

we have taken 99,999,986 tweets between 2018 and 2019 for this paper.

3.4.3 Phrase Detection

In social media, a text data phrase gives more information than a single word. In

the algorithm presented previously [39], one of the limitations is the inability to
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understand the phrases of multi-words. For example, when anyone tweets ”You

are the apple of my eye”, it considers apple as food. In our system apple of my eye

is considered as a single phrase, which has a specific meaning. One common exam-

ple is ”you are a smart cookie,” where ”smart cookie” has meaning as a phrase. To

overcome this limitation I have added new features during the training of the NLP

algorithm. This algorithm is developed by Jake Ryland, and it is based on the dis-

tance between two words. This text partitioning algorithm is based on William’s

fine-grained text segmentation algorithm. It considers the whole text as two parts:

word and non-word tokens. The important feature of this algorithm is that it con-

siders non-word tokens as a linker between two words. For example, in the phrase

”apple of my eye,” ”of” and ”my” non-words works as a joiner of the single phrase

with singular meaning.

Input: List of words of the text - tokens
Result: List of tokens as Phrase - lexemes

phrase detection(tokens):
lexemes[]
N = length(tokens)
while N do

index = (N+1):1
foreach i in index do

form = join(token[0:i])
remaining = tokens[i:N]
if form related lex then

lesemes = lexemes.add(form)
if length(tokens)=1 then

pass
else

tokens = reamining
end

end
break

end
end
return lexemes

Algorithm 2: Phrase detection algorithm
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Algorithm 2 is a phrase detection algorithm that uses a concatenation opera-

tion. That links tokens together to create forms and then finds out how related

the form is to the lexicon. If the form not correlated with the lexicon then the next

possible form is analysed. If the form is related to the lexicon it is considered as a

phrase.

Algorithm 2 is based on Boundary-based multi-word expression segmentation

with text partitioning by J. Williams [45]. This algorithm focuses on the next pos-

sible word pair, which means a lower precision and efficiency for complex bound

phrases. But the phrase information will be derived from a gold standard dataset.

For example, Supersense-tagged Repository of English with Unified Semantic [45]

and Riter and Lowlands dataset of superscience-annotated tweets for the SemEval

[45]. Due to that pre-information of the phrases finding, results with simple and

common phrases are easy. Below is the result of the phrase extraction algorithm I

used:

text: ”I saw the sweet potatoes.”

phrase:”[’sweet’, ’potatoes’]”

text: ”My daughter is an apple of my eyes.”

phrase: ”[’apple’, ’eyes’, ’daughter’]”

Our results show that, the phrase detection algorithm will analyze the text and

predict phrases for example the phrases ”sweet potatoes” and ”apple eyes daugh-

ter” are a single phrase. Even though our data cleaning process removes stop

words the phrase detection algorithm can still detect a complicated sentence like

”my daughter is the apple of my eye” as the phrase ”apple eyes daughter”.

40



3.4.4 Model Training

Figure 3.7: Processing pipeline of system
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In the next step, I train the machine learning model for classification of the tweet.

As shown in Figure 3.7, our first step is to take the raw data and clean it (explained

in data cleaning subsection under methodology section). After cleaning the data, I

then perform feature engineering. In feature engineering, I create tf-idf and phrase

extraction. Here, I was using phrases as a single word and used it as a feature in

tf-idf. After that, I have trained the model and then used that pre-trained model

for binary classification of the tweet for food and non-food tweets.

I use two types of features: tf-idf with phrases and word embedding (2-D fea-

ture space) with 2-gram. Tf-idf is used for Naive Bayes, Logistic regression, and

Random forest. But to use a complex deep-learning model, such as LSTM, BART

or R-LSTM, I need large amount of training data. At present, not a single large

scale training data is available for food classification which limits us to use basic

deep-learning model CNN, Shallow neural network or RNN. Furthermore, I can

not use 1-dimensional feature for the neural network. Instead I use word embed-

ding as a feature in neural network. The word embeddings and phrases are se-

lected as features for Shallow neural network, Convolutional neural network and

Reinforcement neural network.

3.5 Analysis and Results

In previous papers, researchers tried to find the caloric value through non-NLP

or basic NLP algorithms. Because of that, the false positive rate of data is high,

and this will decrease the accuracy of the result. False positive errors will start to

increase as the data amount increases. This affects the accuracy and accountability

of the system. Many models are available for the classification of text, but in our

case, the binary form of classification is much easier than multi-class classification.

It also removes the necessity of advance deep learning algorithms.

The first algorithm that I have tested is Logistic Regression(LR). This measures
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the relationship between one or more categorical dependent and independent vari-

ables. It will be estimated through logistic (sigmoid is more common presently)

function.

Figure 3.8: Logistic regression confusion matrix

Figure 3.8 shows the confusion matrix of LR. It also shows that algorithm can

successfully identify 92% of food tweets. While recognizing only 85% of the non-

food tweet as non-food. But the false positive ratio is very high, 15% which landed

into more noisy data.

Figure 3.9 shows the training curve of LR. As we can see, as the number of

training samples increases its accuracy is also increasing.

Our second algorithm is the Naive Bayes(NB) algorithm with tf-idf features

on a word level. This classification of algorithm techniques is based on Bayes’

theorem. This assumes Independence between predictors. Meaning, it implies one

feature in the model is unrelated to another feature.
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Figure 3.9: Logistic regression training curve

Figure 3.10: Naive Bayes confusion matrix
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Figure 3.11: Naive Bayes training curve

Figure 3.10 shows the confusion matrix of NB. It also shows that algorithm can

successfully identify 91% of food tweets as food tweet, while only 61% of the non-

food tweets as non-food tweets. And a high rate of false positive as 39% which

is quite high to get accurate results. Figure 3.11 shows the training curve of NB.

It also shows the accuracy of the algorithm and also increases constantly with an

increment of data. But after 400K samples, the accuracy of the algorithm is almost

constant.

The third model is the Random Forest(RF) model. This is a type of bagging

model, and it is a part of the tree based model. An advantage of this model is

that it gives more accurate pr editions when comparing it to any simple CART or

regression model in specific scenarios. Figure 3.12 shows the confusion metric of

RF. It also shows that algorithm can successfully identify 97% of the food tweets as

food tweets, while 88% of the non-food tweets are recognized as non-food tweets.

On the other side, the false positive rate is also as low as 12%. This result shows the
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highest accuracy among the other tested models. Figure 3.13 shows the learning

curve of RF. It also shows that the accuracy of the algorithm increases as the data

size increases.

Figure 3.12: Random forest confusion matrix
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Figure 3.13: Random forest training curve

Table 3.3: Model accuracy

Model Accuracy

Naive Bayes 79.202%

Linear Regression 89.155%

Random Forest 93.406%

CNN 60.142%

RNN-GRU 60.034%

SVM 56.031%

Table 3.3 shows the accuracy of different models. From above the analysis,

the random forest model gives us the best results for the binary classification of

tweets in food and non-food categories. The next step is to get information about

the calories and the user’s activity based on our dataset. We only focus on three

different values: caloric value they gain from their food (Cin), the caloric value
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they burn from their activity (Cout), and their caloric ratio from the first two values

(Crat). (Equation 1). Those three values are co-related to the 37 measures of the well

being and health. In Lexicocalorimeter, they found a statistically strong correlation

between high blood pressure, inactivity, diabetics and obesity rates [39]. Now to

count these three values Cin, Crat, Cout we depend on the benefits we get from an

individual tweet.

Input: Tweet text (T),list of food, dictionary of caloric value of food with
food name as key

Result: Cin

Global Frequency Matrix = {}
Global FoodList = list of food
Global FoodDict = dictionary of caloric value of food with food name as key

Calorie consumption(text):
phrase = phrase detection(text)
while word in text do

if phrase in FoodList then
cal = FoodDict[phrase]*Frequency(phrase);
Frequency Matrix[phrase]++;

else
if word is FoodList then

cal = FoodDict[word]*Frequency(word);
Frequency Matrix[word]++;

else
return 0

end
end
return 0

end

calorie = 0
Get Cin(Tweets):
while tweet in Tweets do

calorie = calorie + Calorie consumption(tweet)
end
return Cin= calorie/sum(Frequency Matrix)

Algorithm 3: Cin algorithm

Algorithm 3 gives the value of Cin value for Crat as shown in Equation 3.1. In the
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Input: Tweet text (T)
Result: Cout

Global Frequency Matrix = {}
Global ActivityList = list of activity
Global ActivityDict = dictonary of caloric value of activity with activity
name as key.

Calorie burn(text):
while word in text do

if word in ActivityList then
cal = ActivityDict[word]*Frequency(word);
Frequency Matrix[word]++;

else
return 0;

end
return 0

end

calorie = 0
Get Cout(Tweets):
while tweet in Tweets do

calorie = calorie + Calorie burn(tweet)
end
return Cout= calorie/sum(Frequency Matrix)

Algorithm 4: Cout algorithm
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first step we take the tweets in our dataset and get the caloric value of each tweet

using the Calorie consumption function. In that function we take the text and find

any food phrases. In the second step, the individual words or phrases found in

the tweet and compared it to the food dataset. If it present, we take caloric value

of the word or phrase from food dictionary. Then we multiply the calorie of that

food with the frequency of that word in the text. It is then stored in the Frequency

matrix and to get normalized Cin value we sum all calorie values from all the tweets

and divide by the sum of the frequency matrix.

Algorithm 4 gives the value of Cout value for Crat as shown in Equation 3.1.

In the first step we take the tweets in our dataset and get the caloric values of

each possible word in the tweet. Than we check each word from each tweet with

the activity dataset. The dataset will give a caloric burn value for each tweet. To

normalized the Cout value we take the summation of caloric values and divide it

by the frequency of each activity phrase. To count the Cout value, we need to count

how much calories a person can burn from a particular activity. For that, we make

an assumption where 80.7 kilograms is the standard average weight of Northern

American adult.

Table 3.4 is the result of the 100M tweets gathered between 2018 and 2019. We

choose 50K tweets pertaining to food and 50k tweets pertaining to activity from

each province and territory randomly, which combine to form our 100M tweet

dataset [46]. A free Twitter API was used to collect the data without any filters

and therefore makes our collection of tweets random. Table 3.4 shows the top 10

foods in Canada, and it clearly shows that junk food and hot drinks are the most

common.
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Table 3.4: Top 10 Food in Canada

Rank Food No. Tweets

1 coffee 38,785

2 burger 35,166

3 pizza 34,369

4 noodles 27,891

5 cake 18,456

6 pie 17,982

7 juice 16,711

8 tea 16,631

9 fruits 15,987

10 veggies 11,473

Table 3.5: Top 10 Activity in Canada

Rank Activity No. Tweets

1 watching (seeing) 42,489

2 reading 31,762

3 walking 28,127

4 running 27,838

5 drinking 27,339

6 sitting 24,347

7 cooking 22,561

8 skiing 18,947

9 gym 16,585

10 playing 14,191
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Figure 3.14: Canadian’s Tweets on food
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Figure 3.15: Canadian’s Tweets on activity
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Figure 3.16: Caloric ratio of tweets in Canada

54



Table 3.5 is the list of the top 10 activities in Canadian tweets. It clearly shows

that more and more people are choosing to watch something regularly instead of

physical exercise. It also shows that walking and running are the most common ex-

ercises people do. This means physical inactivity is increasing throughout Canada.

Figure 3.14 shows the most common foods people tweeted about in different

provinces and territories of Canada. As it is seen that in Ontario and Alberta,

the most common foods tweeted are Pizza, while Quebec’s most common food is

Fries. It also shows that coffee is the most common tweeted drink in provinces like

Manitoba, Saskatchewan, Yukon and Northwest Territories. As compared to tea,

which is more common in British Colombian’s tweets.

Figure 3.15 is about the most common activities people tweeted about in differ-

ent province and territories of Canada. The result shows watching (watching TV)

is the most common activity in dense population provinces of Canada, which in-

cludes Ontario, Quebec, Alberta, Yukon and Northwest Territories. This shows

that there is less physical activity among people in these provinces, which is an

alarming situation when looking at the individual’s food consumption versus ac-

tivity they do to burn calories.

If we go with Canadian government numbers from there own health analysis,

it shows that Ontario and Quebec have Canada’s 38.3% and 23.2% of the popula-

tion respectively. When we combine both of them, it is 61.5% population (census).

As Caloric ratio is highly correlated to blood pressure and obesity [39], which ac-

cording to the Lexicoloricmeter article that 77.92% population has a higher chance

of getting obese, and higher blood pressure which is an alarming situation. Our

result correlates to the result given by the Canadian Institute of Health Informa-

tion report ”Obesity in Canada” [47]. It also shows the rapid growth of Obesity in

Ontario and Quebec.

Figure 3.16 shows the Caloric ratio based on equation 1, where Cin is counted
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through Equation 2 and Cout is counted through Equation 3. If the ratio is greater

than 1 that means that the province’s consumption is greater than the caloric usage.

The opposite is true when the ratio is less than 1. According to Figure 3.16, Yukon,

Newfoundland and Labrador, and Saskatchewan’s caloric consumption is higher

than their caloric burning at this instance. Also when looking at the Northwest

Territories, Manitoba, and British Colombia have a caloric burn that is higher than

their caloric consumption. Caloric ratio is highly correlated to blood pressure and

obesity [39]. When looking at Figure 3.16, 77.92% population has a caloric ration

greater than 1.0. This can cause greater chance of getting obese, and higher blood

pressure. This population estimation is based on the population numbers from

the 2016 Canadian Census and was calculated by when adding up the populations

from each individual province with a 1.0 caloric ratio or higher. This is alarming

because it represents such a huge population of Canada.

We further decided to look at the obesity percentages for the provinces of Canada

to see if Figure 3.16 showed similarities. When looking at the obesity in Canada re-

port, published in 2017, the order of provinces from lowest obesity rate to highest

obesity rate is the following: British Columbia, Quebec, Ontario, Alberta, Man-

itoba, Saskatchewan, Newfoundland and Labrador [47]. When comparing that

with the lowest to highest rank in the Figure 3.16, British Columbia is the low-

est, Quebec and Ontario are tied, Alberta and Manitoba are switched in ranks,

Saskatchewan and Newfoundland and Labrador are the highest. The significance

of the comparison above is that it shows a strong correlation between Figure 3.16

and the data from the report. The provinces with the highest ratios also have the

highest obesity rates and the opposite is also true. This goes as far as to show

that our data can be just as reliable as a published Canadian report. By using this

knowledge the Canadian government can target healthy living programs in the

provinces that need it like Newfoundland and Labrador.
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Figure 3.16 only shows one caloric ration per province from the tweets collected

at that instance. In order to become obese you need to constantly have a ratio

greater than 1 over the span of weeks. That way you are consuming more calories

that you are burning which leads to the gaining of weight. Therefore our Figure

3.16 can be considered one data point in an obesity rate trend and in the future can

be added with many other points taken in different times to accurately show the

rate of obesity in Canada. By this logic you can also see the trend from one point to

another and immediately see if the programs implemented to counteract obesity

have worked. The result is going from tweets to a real time analysis of the rate of

obesity in Canada.
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CHAPTER 4

SUMMARY

4.1 Conclusion

Developing high-performance machine learning model with a limited amount of

training data is always a challenge, as it restricts the use of more complex deep

learning and neural models. Our model gives 93.406% accuracy in binary classi-

fication of food and non-food tweet. This result shows that social media analysis

on a large scale with the use of better NLP algorithms can help us to identify food

and activity related tweets more accurately. This helps us to gain a larger per-

spective on daily activities and its effect on people’s health. Our results convey a

complex relationship between health and social media. The presented approach

is faster when compared to traditional survey methods causing data to be readily

available as well a close representation of real time. This was all done via Elastic-

search which provides a functional system to store, pre-index, search and query

for large scale data in real-time. In particular, the capability of expanding the clus-

ter size without stopping service as per user’s requirement makes it suitable for

this application. This research provides insights on how to standardize and con-

figure the processes of Elasticsearch which result in increased analysis efficiency.

To demonstrate the functionality and interactivity for users, the Kibana plugin was

used as an interface. Proper configuration of Elasticsearch and Kibana makes real-

time analysis of large scale data efficient and can help policy makers see the results

instantaneously and in an accessible format that allows for decision making. The

impact of research is huge as it can change how we view data analysis. Now be-

cause of social media analysis there is no need to rely on traditional methods for
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health analysis that are much more expensive and time consuming. New Data is

generated almost instantaneously from social media analysis which allows for real

time accurate health reports. Its not a matter of if social media will be used for

health analysis, its about making it reach a point where at any moment in time the

government can get a detailed report on the health in Canada.

4.2 Future Work

The approach presented is faster compared to traditional survey methods, which

make data readily available as well as a close representation of real time. Many

promising future works, such as a more dynamic way to calculate calories based

on age, gender and work profile, are possible here. One limitation is that it only

recognizes the food when our model looks at the tweet, but leaves out the quantity

of said food. Our model, for example, can not distinguish 1 apple from 10 ap-

ples. Adding sentiment of the text could be used for further classification of text.

Furthermore, we can extend this work by analysing pictures’ that people post on

social media about their activity and food associated with twitter data.
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