

Congestion Control Enhancement Over Wireless
Networks

By

Taha Saedi

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science

Supervisor: Hosam El-Ocla

Department of Computer Science

Lakehead University

May 2019

Copyright © Taha Saedi

ii

 Abstract

In this thesis, we analyze the performance of wireless LAN networks subject to random loss. In

this regard, we use a congestion control technique that has been introduced in a previous study,

titled TCP Congestion Control Enhancement for Random Loss (TCP CERL). TCP CERL is a

sender-side modification of TCP Reno protocol. TCP CERL is an end-to-end technique that

achieves high performance over wireless links and does not decrease the congestion window and

slow start threshold if the random loss is detected. TCP CERL assumes a static threshold (A) equal

to 0.55 which does not perform well when considering a heavy traffic load compared to new

protocols. In this thesis, we propose a modified version of TCP CERL, called TCP CERL PLUS

(TCP CERL+, in short). TCP CERL+ works similarly as TCP CERL, but its main idea is to use a

dynamic threshold (A) in terms of Round-Trip Time (RTT) rather than static threshold. By doing

so, we employ the average RTT and the minimum RTT measurements made over the connection

to evaluate the queue length of the bottleneck link. In this thesis, we compare TCP CERL and TCP

CERL+ with TCP New Jersey+, TCP mVeno, TCP Westwood+, TCP Cubic, TCP YeAH, and

TCP NewReno by using Network Simulation NS-2. The results will show that CERL+

outperforms CERL when there are many users and Two-way transmission.

iii

Publications

[1] T. Saedi and H. El-Ocla, “Performance analysis of TCP CERL in wireless networks with
random loss,” in Proc. 32nd Canadian Conference on Electrical and Computer Engineer ing,
Edmonton, AB, Canada, 5-8 May 2019.

iv

Acknowledgments

 My sincere appreciation is extended to my supervisor, Dr. Hosam El-Ocla for his direct

supervision, guidance and leadership in this interesting research area throughout the years of

master’s and the preparation of this thesis. I would also like to extend my appreciation to the faculty

members of the Computer Science department for all their help and support.

Above all, I give the utmost gratefulness and thanks to the Almighty Allah (God) for the patience,

endurance, and determination. He has granted me for the completion of this academic research.

v

Dedication

I dedicate my dissertation work to my father and mother (Mr. Faraj and Mrs. Amina) who have

planted the seed in me to pursue this work, and encouraged me all these years

I dedicate my dissertation work to my brothers (Siraj and Hakim) and lovely sisters

(Nissren,Yasmin ,Mariam), who have always been by my side with their unconditional support.

vi

Table of Contents

Abstract……………………………………………………………………………………………ii

Publications……………………………………………………………………………………....iii

Acknowledgments……………………………………………………………………………......iv

Dedication………………………………………………………………………………………...v

Table of Contents………………………………………………………………………………...vi

List of Figures…………………………………………………………………………………....xi

Chapter 1 : Introduction …………………………………………………………………………1

1.1 Random Loss Problem……………………………………………………………………...4
1.2 Congestion control theory ………………………………………………………….………3
1.3 Random Loss vs congestion loss control Protocols ………………………………………...7
1.4 Proposed TCP Variant for Random Loss Solution………………………………………....8
1.5 Thesis Organization………………………………………………………………………...9

Chapter 2: Background and Literature Review………………………………………...………..10

2.1 General information about TCP………………………………………………………....10
2.2 Overview of TCP protocols……………………………………………………………….11

2.2.1 TCP Reno………………………………………………………………………….11
2.2.2 TCP NewReno……………………………………………………………………...13
2.2.3 TCP YeAh………………………………………………………………………….14
2.2.4 TCP BIC……………………………………………………………………………15
2.2.5 TCP Cubic………………………………………………………………………….15
2.2.6 TCP Westwood…………………………………………………………………….16
2.2.7 TCP Westwood+……………………………………………………………………17
2.2.8 TCP New Jersey…………………………………………………………………….19
2.2.9 TCP New Jersey+………………………………………………………………….20
2.2.10 TCP Vegas………………………………………………………………………….21
2.2.11 TCP Veno………………………………………………………………………….22
2.2.12 TCP mVeno ……………………………………………………………………….23

2.3 Concept of piggybacking…………………………………………………………………24
2.3.1 Piggybacking traffic……………………………………………………………….25
2.3.2 Acknowledgement technique………………………………………………………25

vii

2.4 Thesis Tool……………………………………………………………………………….26
2.4.1 Network simulation 2 (NS 2) ………………………………………………………26

2.4.2 Gnuplot…………………………………………………………………………….27
2.4.3 Network configuration……………………………………………………………...27

Chapter 3: TCP Congestion Control Enhancement of Random Loss (CERL)………………….28

3.1 TCP CERL Algorithm……………………………………………………………………28
3.1.1 Congestion window inflation……………………………………………………...29

3.1.2 Implementation of CERL………………………………………………………….31

3.2 Network configuration……………………………………………………………….…...32
3.2.1 Network Configuration 1…………………………………….................................33

3.2.1.1 Scenario 1: One-way transmission…….………………………………………33
3.2.1.2 Scenario 2: Two-way transmission.……………………………………………36

3.2.2 Network configuration 2…………………………………………………………..39
3.2.2.1 Scenario 1: Two-way transmission and heavy load, where qL1 is 1% loss rate

and qL2 is 1% loss rate ..39
3.2.2.2 Scenario 2: Two-way transmission and heavy load, where qL1 is 1% loss rate

and qL2 is 0% loss rate………………………………………………………...42

 3.3 Conclusion……………………………………………………………………………......45

Chapter 4: TCP Congestion Control Enhancement of Random Loss plus (CERL +) ………….47

4.1 TCP CERL +…………………………………………………………………………….47
 4.1.1 Distinguish random loss from congestion loss……………………………………...47
 4.1.2 Evaluation………………………………………………………………………........49

 4.1.3 CERL+ behavior in absence of random loss..51

4.2 Network configuration…………………………………………………………………...53

4.2.1 Network Configuration 1..53
 4.2.1.1 One-way transmission……………………………………………………………53
 4.2.1.2 Two-way transmission…………………………………………………………...56

4.2.2 Network configuration 2…………………………………………………………….59

 4.2.2.1 Scenario 1: Two-way transmission and heavy load, where qL1 is 1% loss rate and
qL2 is 1% loss rate………………………………………………………….........………...59

4.2.2.2 Scenario 2: Two-way transmission and heavy load, where qL1 is 1% loss rate and
qL2 is 0% loss rate..62

viii

4.2.2.3 Scenario 3: Two-way transmission with heavy load, where is qL1 is 1% and qL2 is
1% loss rate..65

4.3 Fairness………………………………………………………………………………………68

4.4 Conclusion…………………………………………………………………………………...70

Chapter 5: Conclusion & future work……………………………………………………………71

References………………………………………………………………………………………73

ix

List of figures

Figure 1.1: Noise………………………………………………………………………………….3

Figure 1.2: Multipath propagation………………………………………………………………...4

Figure 1.3: Start and congestion avoidance design………………………………………………..5

Figure 1.4: Congestion window threshold………………………………………………………...6

Figure 1.5: Full duplex protocol…………………………………………………………………..6

Figure 2.1: Three-way handshake………………………………………………………………..10

Figure 2.2: TCP header…………………………………………………………………………..11

Figure 2.3: TCP Reno diagram…………………………………………………………………..12

Figure 2.4: Congestion window changes………………………………………………………...13

Figure 2.5: NewReno tooth pattern………………………………………………………………13

Figure 2.6: Ack without data…………………………………………………………………….24

Figure 2.7: Ack with data………………………………………………………………………...25

Figure 2.8: NS2 tools…………………………………………………………………………….29

Figure 3.1: TCP Reno Congestion window……………………………………………………...30

Figure 3.2: TCP CERL Congestion window…………………………………………………….32

Figure 3.3: TCP CERL implementation………………………………………………………...32

Figure 3.4: wired/wireless topology……………………………………………………………..33

Figure 3.5: Average throughput versus packet loss in L………………………………………...34

Figure 3.6: Average throughput L’s bandwidth, where qL=1%..35

Figure 3.7: Average throughput versus bottleneck link propagation delay in L, where qL = 1%….35

Figure 3.8: Average throughput versus wireless link propagation delay between receives and G2,
where qL = 1%......5

x

Figure 3.9: Average throughput versus packet loss in L...38

Figure 3.10: Average throughput versus bottleneck link propagation delays in L, where qL=1%.39

Figure 3.11: Average throughput versus L’s bandwidth, where qL=1%......................................40

Figure 3.12: Average throughput versus wireless link propagation delay between receivers and
G2,where qL=1%...41

Figure 3.13: All wireless topology...42

Figure 3.14: Average throughput versus packet loss in L1, where qL2 = 1%...............................43

Figure 3.15: Average throughput versus bottleneck link propagation delay in L1, where
propagation delay in L2 = 60 ms and qL1 = 1% and qL2 = 1%...44

Figure 3.16: Average throughput versus L1’s bandwidth, where bandwidth of L2 = 85 Mbps
and qL1 = 1% and qL2 = 1%..45

Figure 3.17: Average throughput versus wireless link propagation delay between senders and G1,
where qL1 = 1% and qL2 = 1%...46

Figure 3.18: Average throughput versus packet loss in L1, where qL2 = 0%................................48

Figure 3.19: Average throughput versus bottleneck link propagation delay in L1,where qL1 = 1%
and qL2 = 0%..49

Figure 3.20: Average throughput versus L1’s bandwidth, where bandwidth of L = 85 Mbps,qL1=
1% and qL2 = 0%...50

Figure 3.21: Average throughput versus wireless link propagation delay between senders and G1,
where qL1 = 1% and qL2 = 0%..51

Figure 4.1:Wired/wireless topology...54

Figure 4.2: New Reno Congestion Window Evolution………………………………………….55

Figure 4.3: CERL+ Congestion Window Evolution...55

Figure 4.4: Average throughput versus packet loss in L...57

Figure 4.5: Average throughput versus bottleneck link propagation delay in L, where qL = 1%...58

Figure 4.6: Average throughput versus wireless link propagation delay between receivers and G2,
where qL = 1%..59

Figure 4.7: Average throughput versus bandwidth in L, where qL=1%..60

Figure 4.8: Average throughput versus packet loss in L...62

Figure 4.9: Average throughput versus bottleneck link propagation delay in L, where qL=1%...63

Figure 4.10: Average throughput versus bandwidth in L, where qL=1%.....................................64

xi

Figure 4.11: Average throughput versus wireless link propagation delay between receivers and
G2,where qL=1%...65

Figure 4.12: All wireless topology..66

Figure 4.13: Average throughput versus packet loss in L1(qL1), where qL2 =1%........................68

Figure 4.14: Average throughput versus bottleneck link propagation delay in L1,where
propagation delay in L2 = 60 ms and qL1 = 1% ,and qL2 = 1%..69

Figure 4.15: Average throughput versus in L1’ bandwidth, where bandwidth of L2 = 85Mbps and
qL1 = 1% and qL2 = 1%..70

Figure 4.16: Average throughput versus wireless link propagation delay between senders and G1
where qL1 = 1%. and qL2 = 1%...71

Figure 4.17: Average throughput versus packet loss in L1 (qL1),where qL2 =0%..........................73

Figure 4.18: Average throughput versus bottleneck link propagation delay in L1 and qL1 =1%,
where L2= 60ms and qL2 =0%..74

Figure 4.19: Average throughput versus L1’ bandwidth , where bandwidth of L2=85Mbps and qL1
= 1% and qL2 = 0%..75

Figure 4.20: Average throughput versus wireless link propagation delay between senders and G1
where qL2 = 1% and qL2 = 0%...76

Figure 4.21: Two NewReno connections without random loss..77

Figure 4.22: Two NewReno connections with 1% random loss...77

Figure 4.23: One CERL+ connection and one NewReno connection without random loss........78

Figure 4.24: One CERL+ connection and one NewReno connection with 1% random loss.......78

Figure 4.25: Three New Reno connections without random loss...79

Figure 4.26: Three New Reno connections with 1% random loss..79

Figure 4.27: One CERL+ connection and two NewReno connections with 1% random loss......80

Figure 4.28: Two CERL+ connections and one NewReno connections with 1% random loss..80

Figure 4.29: Two CERL+ connections with 1% random loss..81

xii

1

Chapter 1
1 Introduction

Over the past few decades, considerable progress has been made in the field of mobile computing
in terms of increased access to the Internet thanks to continuous technology advancement. There
have been considerable developments in wireless local area networks (WLANs), as well as in
cellular networks.

However, there are many problems related to wireless networks that affect the performance of data
communication such as multimedia traffic, medium access control, and random loss.
In the transmission of multimedia data over a
wireless network, there are two main issues
that affect the performance of the network:

1) Energy-efficiency: Devices like
laptops and mobile phones have some
constraints, such as device size, energy
consumption, and communica t ion
bandwidth. Therefore, wireless devices
must be capable of handling several
different classes of data traffic (e.g.,
voice and video) over a limited
bandwidth. When the energy of a
mobile device is low, the performance
of the data transmission will decrease
between this device and the access
point [1].

2) Quality of Service: “Provides the basis
for modern high-bandwidth and real-
time multimedia applications like
teleteaching and video conferencing.
The notion of quality of service
originally stems from communicat ion,
but because of its potential in the
allocation of all scarce resources, it has
found its way into other domains, e.g.,
operating systems” [1].

2

Medium access control on the wireless
network has many challenges that affect the
transmission between nodes:

1) The problem of node mobility on an ad hoc
network is that it affects the performance of
transmission between them since they are not
usually static (i.e., they move around most of
the time). Therefore, data exchanged could
possibly get disconnected if the mobility of
nodes is high [2].
2) Location constraint is a problem that occurs
when there are several nodes in a geographica l
region, which will result in excess load on the
wireless channel, thus causing much
contention between nodes [3].
3)Bandwidth efficiency is one of the most
important resources in wireless networking. It
“must be designed in such a way that the
limited bandwidth should be utilized in an
efficient manner. This approach keeps the
involved control overhead to the lowest level
possible and protects the network from
overloaded ” [4].

Another problem that affects the performance of data transmission through a wireless network is
a random loss, whereby one or more packets fail to reach their destination, resulting in issues on
network recourses. In this thesis, we focus on random loss problems of data packets in wireless
networks.

1.1 Random Loss Problem

Random loss occurs when there are problems in wireless links or intermittent faults in hardwires
[6]. Transmission errors are usually caused by random loss, and packets may be corrupted due to
errors. Wireless media are more prone to transmission errors than the wired type because of noise
and fading [7], high bit error rate, and hidden or exposed terminal problems [8].

Noise is one biggest problem affecting transmission between sender and receiver. Noise is
unwanted random energy that travels with the signal across the elements of communica t ion
systems, causing distortion of transmitted information, resulting in the data not being correctly
transmitted to the receiver.

3

In wireless communication (e.g., mobile cellular telephone), there are several varieties of noise
“that could degrade the quality of communication, such as acoustic background noise, thermal
noise, electromagnetic radio-frequency noise, co-channel interference, radio-channel distortion,
echo, and processing noise” [9].

Hidden terminal causes in wireless communication as a result, the receiver station is not able to
properly receive a segment from the sender station because of interference from other stations.
This can occur when the sender is within receiver range but is not within the range of the station.
For example, station A is within B station range, and C is also within B range, but C is not within
a range. Therefore, when A sends a packet to B, and C sends a packet to B at the same time, a
collision occurs because A and C are not within the same range [10]. The Hidden terminal problem
usually happens in ad hoc network, since it does not require additional resources.

In wireless communication, fading happens result the transmission signal between the sender and
receiver is distributed on multiple paths, therefore the signal receives by received will have some
changes. “Multipath propagation can lead to fluctuations in the amplitude, phase, and angle of the
signal received at a receiver” [11]. Figure 1.2 shows a multipath propagation.

Figure 1.1: Noise [10]

4

Figure 1.2: Multipath propagation

High bit error rate occurs in both wireless and wired communication whenever there is a difference
between the percentage of transmitted data and the received data. It occurs when there are problems
in the medium between sender and receiver, such as fiber links, ADSL, and cellular
communication.

1.2 Congestion control theory

Nowadays, many the Internet users employ reliable transport protocols such as Transmiss ion
Control Protocol (TCP). TCP provides reliable and connection-oriented transport between
applications [12]. It controls data flow on networks through both a sender-side congestion window
and a receiver-side advertised window, which means that TCP does not send segments larger than
the size of the congestion window of the sender, nor does it receive more segments that are
advertised on the window of the receiver [13, 14]. Congestion window size relies on traffic on the
network. When there is a high load on a router or link, the size of the congestion window becomes
small; the size increases gradually depending on the network [15]. Packets of TCP are
progressively acknowledged, which means that they reach their destination in a sequence. A
duplicate packet acknowledgment signifies that there is an issue on the network. The sender detects
a lost packet by receiving three duplicates [16]. In addition, TCP senders reveal a lost packet
through timeouts when they do not receive an acknowledgment [17]. Retransmission times are
consistently changed, depending on Round Trip Time (RTT) measurements.

Traffic overload on the routes results in congestion in the router queues, which increases delays
and causes the packets to become lost. TCP increases progressively, and transmission rates rely on
networks capability. If there are any packets lost, then TCP resends the lost packets and decreases
the transmission rate [18].

5

Congestion control has two initial phases: slow start and congestion avoidance. Slow start begins
the congestion window size with one segment; the congestion window size will increase by one
segment with each acknowledgment received, and the segment size will double [19]. The
transmission rate will be raised by the slow start until a loss is detected, if the receiver's advertised
window is full, or until it reaches the slow start threshold [20]. If packet loss occurs due to
congestion, the sender reduces the transmission rate in order to keep the network balanced. After
reaching the slow start threshold, TCP progresses to the congestion avoidance stage, and the
congestion window size will increase by one segment for each round trip unless there is packet
loss, or unless it times out [21]. Figure 1.3 outlines the slow start and congestion avoidance design,
and Figure 1.4 depicts the congestion window threshold.

Figure 1.3: Start and congestion avoidance design [37]

https://en.wikipedia.org/wiki/Acknowledgement_(data_networks)
https://en.wikipedia.org/wiki/Round-trip_delay_time

6

TCP is considered to be full duplex protocol, which means that data flow could be in both
directions [21]. This indicates that data may be sent from the sender or receiver, which is two-
way communication, as shown in figure 1.5.

TCP Tahoe [23] is the first version of TCP that utilized slow start and congestion avoidance.
Another popular version of TCP is TCP Reno, which was developed from Tahoe and includes a
fast recovery feature [24].

Figure 1.4: Congestion window threshold

Figure 1.5: Full duplex protocol

7

1.3 Random Loss vs congestion loss control Protocols

Several studies have been conducted to distinguish random loss from congestion. Biaz and Vaidya
[25] used inter-arrival times at receiver point to identify the between losses. Although they solved
the problem, this technique used only single wireless at end-to-end path, and high load on the
network.

Mathis et al. [26] used selective acknowledgment (SACK) to prevent multiple losses. The receiver
sends SACK segments to the sender for data that has been received successfully. The advantage
of SACK is that it carries information about some packets seen so far, thereby assisting the sender
by retransmitting only the actual packets lost. However, SACK’s disadvantage is overhead (excess
computation time) when there are a large number of users.

Keshav and Morgan [27] proposed a new technique to reduce overhead, titled Simple Method-to-
Aid ReTransmissions (SMART). The idea of SMART is to develop selective acknowledgment.
SMART mechanism behaves in a way where every acknowledgment holds the acknowledgment,
and the sequence number of packets that started the acknowledgment will inform the sender that
the packet has been received correctly. The problem of SMART is that it is still not fully capable
of distinguishing between random loss congestion.

Other schemes proposed to distinguish between two losses by congruous. Samaraweera et al. [28]
developed a technique for wireless network issues called Explicit Loss Notification (ELN). The
idea behind ELN is to specify the source of random loss, whereby it allows the sender to retransmit
the packet without decreasing the congestion window.

“An identical signal has been proposed to halt the congestion control at the source when a
disconnection appears due to handover in cellular networks. The difficulty with this solution is
that any packet corrupted at the link level is discarded before reaching TCP” [6].

Other researchers suggested improving the performance of TCP during the congestion loss more
than the random loss in order to add more techniques on the network or at the sender to decrease
the congestion on the network buffers. By decreasing the size of the queue in the nodes, it avoids
retransmission loss, and the performance will be adequate, particularly for certain applications.
Explicit Congestion Notification (ECN) [29] and TCP Vegas are new solutions that were
developed to solve the problem of end-to-end delay. TCP Vegas uses RTT and congestion window
size to calculate the packet in the router’s buffer; if the number of packets is more than the
threshold, TCP Vegas reduces the congestion window. In ECN, routers utilize an explicit signal to
notify the source that there is congestion, rather than dropping the packets. If there is no issue at
the senders, receivers or routers, then the congestion losses will reduce slightly, and other losses
can be considered as a random loss for both ECN and Vegas. This means that if some queue
lengths work well without interruption, they help to detect the congestion. Therefore, any losses
are considered to be random for the source, and as a result, the sender retransmits the packet loss
without decreasing the window. However, if the congestion loss was not clear in the medial node,
the sender will then deal with loss in a serious way. Sometimes, the sender somewhat decreases
the congestion window when the real loss occurs.

8

Floyd and Henderson created TCP NewReno in 1999. TCP NewReno checks to see if more than
one segment is lost in the current window when three duplicate ACKs arrive. When TCP receives
three duplicate ACKs, it retransmits the lost segment until a new ACK (not duplicate) arrives. If
the new ACK defines the end of the window when the congestion was detected, TCP is certain
that only one segment was lost.

Baiocchi et al. recommended the use of “Yet Another High Speed” TCP, whereby RTT estimation
and loss detection predict network delay[31]. In every RTT, the congestion window decreases by
.5 whenever 3 duplicate ACKs are received; the congestion window increases by 1 whenever a
loss is identified. The default TCP algorithm is CUBIC TCP. Initially introduced by Rhee and Ha
in 2008, it is the modified version of current TCP variants, and is currently used in maximum
Linux OS. Rather than using a linear function, CUBIC TCP applies a cubic function to a
congestion window increase in order to augment the scalability of a high-BDP network. It also
uses BIC algorithm and HTCP’s cubic function of the congestion window.

In order to improve fairness and TCP efficiency in wireless networks, Westwood+ TCP [32] was
proposed, a revised sender side-only version of NewReno TCP. Westwood+ TCP’s primary
objective was to conduct an end-to-end estimation of available bandwidth for a TCP connection
by accurately counting and correctly filtering the stream of ACK packets. That estimate is then
applied to adaptively reduce both the congestion window size and the slow-start threshold size at
the completion of the congestion phase. Consequently, Westwood+ TCP the classic multiplica t ive
decrease paradigm is replaced by the adaptive decrease paradigm.

TCP mVeno is a new version of TCP Veno [33]. Its purpose is to make full use of the congestion
information of all the subflows belonging to a TCP connection in order to adaptively adjust the
transmission rate of each subflow. TCP New Jersey+ differs from TCP New Jersey, in that the
main goal is to improve available bandwidth estimation and recovery technique. TC New Jersey+
guarantees high throughput via an increased congestion window when the sender reveals that a
packet is lost, or due to retransmission timeout [34].

1.4 Proposed TCP Variant for Random Loss Solution

These variants explained above perform well to distinguish between congestion loss and random
loss, however, we need to probe a better variant that can improve the performance of data
transmission in wireless networks.

The motivation behind this thesis is to use a congestion control technique that has been introduced
in a previous study, titled TCP Congestion Control Enhancement for Random Loss (TCP CERL).
TCP CERL is a sender-side modification of TCP Reno protocol. The difference between CERL
and other TCP variants is that CERL depends on the maximum sequence number of a segment
during the fast recovery algorithm. CERL is an end-to-end technique that achieves high
performance over wireless links and doesn’t decrease the congestion window and slow start
threshold if the random loss is detected. CERL assumes a static threshold (A), whereas it will not
perform well when considering piggybacking flow and a heavy traffic load compared to TCP New
Jersey+ and other new protocols.

9

 In this thesis, we propose a modified version of TCP CERL, called TCP CERL PLUS (TCP
CERL+, in short), which employs the average and minimum of RTT rather than only RTT in TCP
CERL. We compare CERL and CERL+ with TCP New Jersey+, TCP mVeno, TCP Westwood+,
TCP Cubic, TCP YeAh, and TCP NewReno by using Network Simulation NS-2. The results will
show that CERL+ outperforms CERL when there are many users and a piggybacking flow.

1.5 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 contains the background,
literature review and piggybacking concept. CERL is explained in Chapter 3, and it is compared
to other mentioned protocols. In Chapter 4, we examine CERL+ and compare it to other
mentioned protocols. Chapter 5 is the conclusion of this thesis.

10

Chapter 2
Background and Literature Review

This chapter presents background information about certain protocols that are related to this
study, as well as the concept of piggybacking.

2.1 General Information about TCP

TCP is a reliable, connection-oriented protocol in transport layers. Before starting the data
transmission, TCP prepares three phases: establish the connection, send the data, and terminate the
connection. When TCP establishes a connection, TCP uses a three-way handshake technique, as
shown in Figure 2.1.

Figure 2.1: Three-way handshake [35]

Host A sets the SYN bit by transmitting a segment with sequence number x.

Host B replies by sending an ACK bit segment, and sets the sequence number x+1 SYN bit; it
then sets sequence number y.

Host A sends back a segment with an ACK bit and sets the y+1 sequence number.

11

Figure 2.2: TCP header [36]

The TCP segment consists of a segment header and a data section. The header has ten required
fields, as well as an optional field. The source port is for sending, and the destination port is for
receiving; both are 16-bit fields. Sequence numbers are used by the source to indicate the packet
number. The acknowledgment number is utilized to denote the next sequence number sent from
the destination to the source. The data offset specifies the initial data. The reserved bit is a 6-bit
field, which is set to 0.

The window size is a 16-bit field, which denotes the number of packets that the receiver can carry.
Checksum is 16 bits, and it is equipped with an error detection feature. The urgent pointer is
utilized when the URG bit is set.

2.2 TCP Protocols Overview

2.2.1 TCP Reno

TCP Reno has three main phases: Slow Start, Congestion Avoidance, and Fast Recovery. The
purpose of this protocol is to treat the problems of congestion, timeout, and three duplicate ACKs.
When a timeout occurs, TCP Reno sender changes to the slow start phase from either the
congestion avoidance phase or the fast recovery phase [37].

In addition, the sender starts a new round if it remains in slow start. However, if the sender receives
three duplicate ACKs when in either Slow Start or Congestion Avoidance, the sender changes to
the fast-recovery phase and remains there as long as duplicate ACKs continue to arrive. The fast
recovery works in the same way as a slow start (increases the congestion window exponential ly),
however, it begins the congestion window from slow start threshold plus three MSSs (Maximum
Segment Size), rather than only one in the slow start phase. There are three cases that occur in fast
recovery:

12

Firstly, if Reno continues to receive duplicate ACKs, it continues in fast recovery and increases
the congestion window.

Secondly, when a timeout occurs, it reverts to Slow Start.

Lastly, if a new ACK arrives and is not duplicated, it moves to the congestion avoidance phase.
Reno then reduces the congestion window size equal to that of the slow start threshold value. Refer
to Figure 2.3 for a diagram of TCP Reno.

Figure 2.3: TCP Reno diagram [37]

Figure 2.4 shows the congestion window changes in slow start, congestion avoidance, and fast
recovery states.

13

 Figure 2.4: Congestion window changes [37]

2.2.2 TCP NewReno

TCP NewReno is a new version of TCP Reno[30]. TCP NewReno has a new mechanism in the
fast recovery phase called additive increase multiplicative decrease (AIMD), which means that
after slow start phase, the congestion window size increases as tooth pattern, as shown in Figure
2.5.

TCP NewReno checks to see if more than one segment is lost in the current window when three
duplicate ACKs arrive. When TCP receives three duplicate ACKs, it retransmits the lost segment
until a new ACK (not duplicate) arrives. If the new ACK defines the end of the window when the
congestion was detected, TCP is certain that only one segment was lost. However, if the ACK
number defines a position between the retransmitted segment and the end of the window, it is
possible that the segment defined by the ACK is also lost. NewReno TCP retransmits this segment
to avoid continually receiving more duplicate ACKs [37].

Figure 2.5: NewReno tooth pattern [37]

14

2.2.3 TCP YeAh

YeAh-TCP (Yet Another High-speed TCP) utilizes a mixed loss/delay approach to calculate
congestion windows, which means that RTT estimation and loss detection are used to predict
network delay [38].
The target of this protocol is to reach high efficiency and to decrease link loss, which keeps the
network load lower. TCP YeAh has two main modes: fast mode and slow mode. In fast mode, if
a network connection is still not fully used, the TCP YeAh increases the congestion window
(similar to STCP - Scalable TCP) [39]. However, when in slow mode, TCP YeAh works like TCP
Reno by in increasing the congestion window.

The phase is determined according to the estimated number of packets that are present in the
bottleneck queue.

 RTTbase is the minimum RTT (which is the predicted propagation delay measured by the sender)
and RTTmin is the minimum RTT (which is assumed to be in the current data window of the cwnd
packets), then the estimated queue delay at that time will be determined as follows:

RTTqueue = RTTmin − RTTbase (2,1)

From the RTTqueue, the number of packets that were placed in the queue by the flow can be
estimated to be:

Q = RTTqueue * G = RTTqueue * (𝑐𝑤𝑛𝑑

𝑅𝑇𝑇𝑚𝑖𝑛
) (2,2)

“Where G is the goodput. We can also evaluate the ratio between the queuing RTT and the
propagation delay L = RTTqueue/RTTbase, that indicates the network congestion level. Note that
RTTmin is updated once per window of data”[38].

When Q < Qmax and L < 1/φ, this indicates that the algorithm is in fast mode. If not, it is in slow
mode. Parameters Qmax and φ are tunable. Qmax is the highest allowable number of packets that
can be stored in the buffers in a single flow.

1/φ is the highest degree of buffer congestion in terms of BDP. In slow mode, there is a preventive
decongestion algorithm that is initiated: any time Q > Qmax, there is a reduction in the congestion
window by Q, and ssthresh is set to cwnd/2. In addition, because RTTmin is processed only one
time for each RTT, one RTT represents the decongestion granularity.

Whenever Q > Qmax, YeAH-TCP tries to eliminate the packets from the queue, the delay in the
queue continues to grow due to the greediness of the Reno flows, whereby the buffer gets
overloaded. When that happens, YeAH-TCP will infrequently remain in the fast mode; rather, it
spends most of its time in slow mode. On the other hand, in the case of the non-greedy flows that
compete against each other (e.g., those that initiate the preventive decongestion algorithm), the
YeAH-TCP algorithm changes the phase from fast to slow at any time when the buffer queue
increases beyond Qmax and reverts to Fast once preventive decongestion comes into effect [38].

15

2.2.4 TCP BIC

Binary Increase Congestion (TCP BIC) [40] is a TCP congestion-control that was recommended
for high-speed networks with high latency. It consists of two phases: the binary search increase
phase, and the additive increase phase.

The binary search phase is utilized by the sender to improve congestion window performance. If
the packet is lost, TCP BIC uses factor b to reduce the congestion window size, and BIC sets the
value of cwndmax to the value of congestion prior to the loss and sets the value of cwndmin to the
value of congestion after the loss to cwndmax * b [40].

If cwndmin and cwndmax are different at a medial point, and cwndmin is lower than the threshold,
BIC begins a binary search increase at the mid-point of the congestion window. Otherwise, BIC
increases the window size one by one, depending on the number of ACKs received.

When there is no packet loss detected by the sender, the BIC sender sets the value of the actual
window to a new minimum window. However, if packet loss is detected, then the BIC sets the
value of the actual window to a new maximum window[40].

BIC continues to increase the window by one until it becomes less than the minimum slow start
threshold, and the congestion window is equal to the maximum value if the window continues to
increase more than the maximum window. BIC switches to a new phase (max probing); In other
words, it uses the inverse of the binary search phase first and uses the increase afterward [41].

2.2.5 TCP Cubic

TCP Cubic is descendent of TCP BIC. It is used to solve the problem bandwidth delay product
(BDP), utilizing a cubic function rather than a linear congestion window function for congestion
control scalability and stability under fast and long-distance networks.

A cubic function is applied by Cubic to determine the time that has elapsed since the last
congestion episode. Although the majority of standard TCP algorithms apply a convex increase
formula following an episode of loss when the window queue continues to increase, Cubic applies
a cubic function to both convex and concave types of increase[42].

Following a loss event, once a window has been decreased, “Wmax” appears in the window. A
multiplicative reduction of the congestion window occurs by a factor of β (where β is the window
decrease constant, and the normal fast recover and TCP retransmission [42].

Once it switches from the fast recovery phase to congestion avoidance, the window begins to
expand thanks to the cubic function’s concave profile. Because the plateau of the cubic function
is set at Wmax, the window size keeps increasing until it reaches the Wmax level[42]. The cubic
function then transforms into a convex profile, which reinitiates the development of the convex
window.

The switch from concave to convex window enhances network stability and protocol during high
traffic times on the network due to the stable size of the window[42]. A plateau is created around
Wmax during times of maximum network use under a steady state. Because the majority of
Cubic’s samples of window sizes are at (or close to) Wmax, it results in improved protocol stability

16

and enhanced function during high network traffic. It appeared that the protocols that had convex
growth functions had the most significant increase at the saturation point, which caused substantia l
packet losses.

The function used by Cubic to determine window growth is as follows:

W(t) = C (𝑡 − 𝐾)3 + Wmax (2,3)

C is a Cubic parameter, t is the elapsed time from the last window reduction, and K is the time
elapsed by the above function to increase W to Wmax once there was no new episode[42]. This is
calculated as follows:

K = √
𝑊𝑚𝑎𝑥 𝛽

𝐶

3
 (2,4)

Once an ACK is sent during the congestion avoidance phase, the rate of increase in the window is
calculated by Cubic during the following RTT period. Using Eq.(2,3), it establishes the candidate
target value of the congestion window as W(t + RTT)[42]. If, for example, the size of the current
window size is cwnd, Cubic operates in three modes, depending on the value of cwnd.

If cwnd is less than the window size that would be reached by TCP (standard) at time t following
a loss event, Cubic would be in the TCP mode (see notation below on determining standard TCP
window size in terms of time t). If cwnd is smaller than Wmax, this signifies that Cubic is in the
concave zone, whereas if cwnd is larger than Wmax, Cubic is therefore in the convex zone[42].

Cubic has certain drawbacks, such as the fact that it does not adequate throughput when there are
a large number of packets lost on the network.

2.2.6 TCP Westwood

TCP Westwood is a sender-side modification of the TCP protocol that develops the performance
of end-to-end congestion control for both wireless and wired networks. The difference between
Reno and Westwood is that Westwood is capable of applying more techniques to identify the type
of loss, a feature that is not available with TCP Reno.

TCP Westwood utilizes a bandwidth estimate (BWE) mechanism to control the congestion
window and slow start threshold. A Westwood sender checks the average ACKs received to
estimate the current bandwidth of TCP connection. “When an ACK is received by the source, it
conveys the message that the amount of data corresponding to a specific transmitted packet was
delivered to the destination” [43].

17

With TCP Westwood, all segments have the same size when the source receives three duplicate
ACKs, or when a timeout occurs due to congestion. The Westwood source uses the BWE to set
the congestion window and slow start threshold.

Westwood implements [43] the pseudo code algorithm for three duplicates, as:

if (n DUPACKs are received)

ssthresh = (BWE * RTTmin)/seg_size;

if (cwnd > ssthresh) /* congestion avoid. */

cwnd = ssthresh;

Westwood implements the pseudo code algorithm for a timeout, as:

if (timeout expires)

ssthresh = (BWE * RTTmin)/seg_size;

if (ssthresh < 2)

ssthresh = 2;

end if;

cwnd = 1;

end if

To estimate (BWE), Westwood uses the following equation:

 bk = dk /∆𝑘 = dk / tk-tk-1 (2,5)

 Where bk is the estimated bandwidth, ∆𝑘 is interarrival ACKs, dk is the transmitted bytes and tk-

tk-1 ACK received at source[43].

2.2.7 TCP Westwood+

TCP Westwood+ is a sender-side-only modification of the TCP Reno protocol that develops the
performance of congestion control in wireless networks. TCP Westwood+ is a new enhanced
version of TCP Westwood [45]; it is simpler and capable of estimating available bandwidth.

Westwood+ algorithm is based on an end-to-end approximation process of the amount of available
bandwidth on the connection path of the TCP [45]. This estimate is acquired by filtering the flow
of ACK packets that are being returned, and this is used to adjust the control windows whenever
congestion on the network is occurring. Specifically, upon receiving 3 DUPACKS, the congestion
window (cwnd), along with the slow start threshold (ssthresh), are set to the same setting as the
estimated BWE, multiplied by the minimum round-trip time (RTTmin). When a coarse timeout
expires, ssthresh is adjusted to its previous setting, whereas cwnd is set to one.

https://en.wikipedia.org/wiki/TCP_Reno
https://en.wikipedia.org/wiki/Protocol_stack
https://en.wikipedia.org/wiki/Congestion_control
https://en.wikipedia.org/wiki/Wireless_network

18

Westwood+’s pseudo code algorithm is as follows[45]:

a) When ACKs are received:

cwnd is increased according to the Reno algorithm; the end-to-end bandwidth estimate BWE
is computed;

b) When 3 DUPACKs are received:

ssthresh = max(2, (BWE * RTTmin) / seg_size); cwnd = ssthresh;

c) Upon the expiration of coarse timeout:

ssthresh = max(2,(BWE * RTTmin) / seg_size); cwnd = 1;

According to the pseudo code, Westwood+ also increases the cwnd (similar to Reno) upon
receiving ACKs. However, when congestion episode occurs, Westwood applies a special function
of cwnd and ssthresh. Therefore, we can conclude that Westwood+ adheres to the paradigm of
Additive-Increase / Adaptive-Decrease [45].

An interesting fact is that TCP Westwood+ has an adaptive decrease mechanism that enhances the
stability of the standard TCP multiplicative decrease algorithm. Furthermore, the shrinking ability
of the adaptive window sufficiently decreases the congestion window during heavy traffic, and
decreases it only slightly during light traffic, or when losses occur that are unrelated to congestion
(e.g., unreliable radio links)[45]. In addition, the control window is equipped with the ability to
increase the allocation of available bandwidth to various TCP flows. In other words, one of the
features in TCP Westwood+’s window setting is that it can track the estimated bandwidth. Due to
an adequate estimation of what is considered to be “fair share”, fairness improves. On the other
hand, the following could occur:

the setting cwnd = B * RTTmin sustains a transmission rate (cwnd/RTT) = (B * RTTmin)/RTT

that is smaller than the bandwidth B, estimated at the time of congestion. Therefore, the flow in
TCP Westwood+ empties the backlog after the setting, which allows space for coexisting flows in
the buffers[45].

An end-to-end estimation of the “best-effort” available bandwidth is proposed by TCP Westwood+
by properly counting and filtering the flow of ACKs that are being returned[45]. For every RTT,
a sample of available bandwidth is calculated bk = dk /∆𝑘 , where dk represents the amount of
data acknowledged during the last RTT =∆𝑘. The amount dk of is established by applying a proper
counting process that considers delayed ACKs and duplicate ACKs[45].

Duplicate ACKs account for one delivered segment, whereas delayed ACKs account for two
segments. A cumulative ACK accounts for one segment, or for whichever number of segments
that exceed those that were already accounted for in previous duplicate acknowledgments.

19

2.2.8 TCP New Jersey

TCP New Jersey evolved from the TCP Jersey protocol to estimate available bandwidth. Its main
components include Congestion Warning and Timestamp-based Available Bandwidth Estimation.
Congestion Warning transfers the capacity of an intermediate router to the sender because it helps
the sender to distinguish the reason for the packet losses.

The purpose of Timestamp-based Available Bandwidth Estimation is that any packet that reaches
the receiver side obtains a timestamp with ACK that it sent back to the sender, rather than ACK
reaching the time in TCP-Jersey[46]. The available bandwidth that is estimated by Timestamp-
based Available Bandwidth Estimation is only slightly affected due to the reverse links state,
compared to the Available Bandwidth Estimation feature in TCP Jersey.

One of the disadvantages in TCP New jersey is that if the sender reveals a packet loss, the sending
rate drops, and might take longer to return than before the packet was lost. Both TCP Jersey or
TCP New Jersey estimate the current available bandwidth according to Eq. 2, [46]

 𝑅𝑛 =
𝑅𝑛−1×𝑅𝑇𝑇+𝐿𝑛
(𝑡𝑛− 𝑡𝑛−1)+𝑅𝑇𝑇

 (2,6)

Rn is the estimated bandwidth for ACK packet n received at time tn at sender and tn-1 is previous
ACK received time at the sender. RTT is round-trip time, and Ln is the size of payload n in TCP
Jersey. It is clear that the timestamp feature was used by the receiver for data segment arrival,
which is an option in the header.

The optimal congestion window (ownd) for TCP New Jersey is calculated as Eq. 2,7:

 𝑜𝑤𝑛𝑑𝑛 =
𝑅𝑛×𝑅𝑇𝑇

𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑖𝑧𝑒
 (2,7)

TCP New Jersey computes the time it takes for the packet to arrive at the receiver to obtain an
accurate estimate if there are no issues on the network.

However, New Jersey is not capable of calculating the accuracy of the available bandwidth if there
is too much traffic on the network that affects packets sent, which means that TCP Jersey and TCP
New Jersey are still not getting good performance if there is a significant amount of traffic in the
routers.

20

2.2.9 TCP New Jersey+

TCP New Jersey+ differs from TCP New Jersey, in that the main goal is to improve available
bandwidth estimation and recovery technique. TC New Jersey+ guarantees high throughput via an
increased congestion window when the sender reveals that a packet is lost, or due to retransmiss ion
timeout.

It is sometimes difficult to calculate the accurate available bandwidth estimation if the network
state is deteriorated from background traffic in forward links that transmit data packets; both TCP
Jersey and TCP New Jersey suffer from this problem.

The new recovery in TCP New Jersey+ helps to achieve a good throughput compared to other TCP
protocols in wireless networks, where packet loss occurs often.

Pseudocode algorithm below describes how to estimate the available bandwidth in TCP New

Jersey+.

 Initialization :

 n ← 1

 𝑅𝑆0, 𝑅𝑟0, 𝑡𝑆0,𝑡𝑟0 ← 1

 Procedure:

 ACK packet arrived at the sender

 if(timestamp)

 𝑅𝑆𝑛 ← (𝑅𝑇𝑇 × 𝑅𝑠𝑛−1 +𝐿𝑛) / ((𝑡𝑠𝑛 − 𝑡𝑠𝑛−1) + 𝑅𝑇𝑇)

 /* ABE based on ACK packet inter arrival time */

 𝑅𝑟𝑛 ← (𝑅𝑇𝑇 × 𝑅𝑟𝑛−1 +𝐿𝑛) / ((𝑡𝑟𝑛 − 𝑡𝑟𝑛−1) + 𝑅𝑇𝑇)

 /* ABE based on data packet inter arrival time */

 𝑅𝑛 ← max(𝑅𝑆𝑛 .𝑅𝑟𝑛)

 /* maximum value of two estimations */

 n ← n+1

 end if

The 𝑅𝑠𝑛 is the estimated bandwidth when the ACK packet n arrives at time 𝑡𝑠𝑛 at the sender, and
𝑡𝑠𝑛−1 is its previous ACK packet arrival time at the sender. The 𝑅𝑟𝑛 is the estimated bandwidth,
by using the timestamp option, when the data segment n arrives at time 𝑡𝑠𝑛at the receiver and 𝑡𝑟𝑛−1
is the previous data segment arrival time at the receiver. 𝐿𝑛 is the size of data packet n, and RTT is
the round-trip time [46].

21

TCP New Jersey+ uses the maximum value of 𝑅𝑠𝑛 and 𝑅𝑟𝑛 to specify the transmission rate;
therefore, it solves the problem of estimating bandwidth and decreasing traffic on the network. If
retransmission timeout (RTO) is expired, or due of BER, TCP New Jersey+ follows this
pseudocode algorithm [46]:

if (RTO expired)

if (Congestion Warning)

/* if RTO due to congestion*/

cwnd = 1;

ssthresh = owndn;

else

/* if RTO due to BER */

cwnd = (owndn + owndn-1) / 2;

ssthresh = owndn;

end if

end if

The TCP New Jersey+ sender decreases the ssthresh to owndn and the cwnd to 1 if RTO is expired
in order to distinguish the cause of network congestion, and to determine the BER. However, if
RTO is caused by BER, then TCP New Jersey+ functions the same as New Jersey by diminishing
ssthresh to owndn and cwnd to half total owndn plus cwndn-1 [46].

TCP New Jersey+ developed the recovery technique that is available in TCP New Jersey.
Whenever New Jersey+ receives three duplicates due to congestion, it behaves like New Jersey.
However, if BER causes the packet loss, then New Jersey+ sets ssthresh to owndn, and increases
cwnd by one MSS.

Compared to other TCP protocols, TCP New Jersey+ has high performance when there is a large
number of packets losses.

2.2.10 TCP Vegas

With TCP Reno (as well as Tahoe, its older version), the window size is continually increased until
packet loss is caused by congestion. At that point, when the window size is throttled due to packet
losses, the connection throughput could diminish. This cannot be avoided due to the type of
congestion control function featured in TCP Reno. In other words, TCP RENO can identify
network congestion only when the congestion has been caused by lost packets. However,
throttling of the window size is not adequate when it is the TCP connection itself that caused the
congestion because of its oversized window size. If the window size is properly controlled (e.g.,
the packet loss does not occur in the network), degraded throughput due to the throttled window
can be avoided, which is the reason that TCP Vegas was developed[47].

22

TCP Vegas employs another mechanism, in which it controls its window size by observing RTTs
(Round-trip Time) of packets that the connection has sent before. If observed RTTs become large,
TCP Vegas developers recognized that when the network starts getting congested, it throttles the
window size. However, if RTTs become small, TCP Vegas determines that the network is no
longer congested, and subsequently increases the window size again. Afterward, because the
window size is in a perfect situation, it reaches the appropriate value. More specifically, in the
congestion avoidance phase, the window size is updated as follows[47]:

 cwnd (𝑡 + 𝑡𝐴) =

{

 𝑐𝑤𝑛𝑑(𝑡) + 1, 𝑖𝑓 𝑑𝑖𝑓𝑓 <

𝑎

𝑏𝑎𝑠𝑒𝑟𝑡𝑡

𝑐𝑤𝑛𝑑(𝑡), 𝑖𝑓
𝑎

𝑏𝑎𝑠𝑒𝑟𝑡𝑡
≤ 𝑑𝑖𝑓𝑓 ≤

𝛽

𝑏𝑎𝑠𝑒𝑟𝑡𝑡

𝑐𝑤𝑛𝑑(𝑡) − 1, 𝑖𝑓
𝛽

𝑏𝑎𝑠𝑒𝑟𝑡𝑡
< 𝑑𝑖𝑓𝑓

 (2,8)

 diff =
𝑐𝑤𝑛𝑑(𝑡)

𝑏𝑎𝑠𝑒𝑟𝑡𝑡
 - 𝑐𝑤𝑛𝑑 (𝑡)

𝑟𝑡𝑡
 (2,9)

Where RTT represents the observed round-trip time, the smallest value of observed RTTs is
shown as 𝑏𝑎𝑠𝑒𝑟𝑡𝑡 , and both α and β are constant values.

TCP Vegas is equipped with a Slow Start mechanism, which is another special feature in its
congestion control algorithm. The rate at which it increases its window size in the slow start phase
is half of that in TCP Tahoe and TCP Reno (i.e., the increase in the window size is incremental for
every other ACK packet received). Eq.2,8 was applied in TCP Vegas to determine that if observed
RTTs of the packets are identical, the window size does not change[47]. The conclusion was that
TCP Vegas can reach an additional 40% of throughput over that of TCP Reno, as verified in
simulation and execution testing[47].

2.2.11 TCP Veno

TCP Veno applies end-to-end congestion control to distinguish between congestive and random
losses, similar to TCP Vegas for packet loss. The TCP Veno sender estimates the connection state
to specify if the packet loss was due to congestion or random loss. TCP Veno uses N measurement
for congestive state, which can be defined as equation Diff *BaseRTT. If packet loss occurs and
N <3, TCP Veno concludes that it is a random loss. But if N>=3 when packet loss occurs, then
TCP Veno assumes that the loss is due to congestion. In TCP Vegas, BaseRTT constantly changes
throughout the TCP connection with the minimum round-trip time. However, in TCP Veno,
BaseRTT is reset whenever packet loss is detected, either due to time-out or duplicate
acknowledgments (ACKs). BaseRTT is then updated as in the original Vegas algorithm until the

23

next fast recovery or slow start is triggered. This step is taken to take the changing traffic from
other connections in consideration, and that the bandwidth that was acquired by a single connection
among many other connections may change from time to time, thereby causing the BaseRTT to
change [48].

TCP Veno employs two algorithms: Slow Start and Additive Increase. TCP Veno utilizes a Slow
Start algorithm if cwnd is less than ssthresh, and it behaves similarly to TCP Reno for increasing
the cwnd. Otherwise, TCP Veno uses an Additive Increase algorithm if cwnd is higher than
ssthresh, and it modifies TCP Reno as follows pseudocode :

if (DIFF*BaseRTT < 3) // available bandwidth under-utilized

 cwnd=cwnd+1/cwnd when every new ACK received

else if (DIFF*BaseRTT ≥ 3) // available bandwidth fully utilized

 cwnd=cwnd+1/cwnd when every other new ACK received

If packet loss is due to random loss, then TCP Veno reduces the size of the window by 1/5 rather
than by1/2 (as in Reno). The main advantage of TCP Veno is that it increases the congestion
window slowly, which keeps the TCP at the appropriate transmission rate.

2.2.12 TCP mVeno

TCP mVeno is a new version of TCP Veno [48]. Its purpose is to make full use of the congestion
information of all the subflows belonging to a TCP connection in order to adaptively adjust the
transmission rate of each subflow.

The multi-path transfer feature in mVeno is based on TCP Veno. It changes the additional increase
during the congestion avoidance phase by assigning various weights 𝛿𝑠𝑟 for various paths r for
effective coupling of the subflows.

TCP Veno applies the concept of the congestion monitoring scheme from TCP Vegas and
integrates it into Reno’s congestion avoidance phase. Veno calculates the backlog N at the queue
and applies it as a gauge to determine whether or not the network is congested. If N ≥ β, the
network is in a congestive state.

Veno increases the congestion window w(t) by 1/ w(t) on every other positive acknowledgment.
Conversely, it decreases it by half on each packet loss event. If N < β, it is in the non-congestive
state.

The congestion window w(t) is increased by 1/w(t) for every positive acknowledgment and
decreased by 1/5 for each packet loss event [49].

The backlog N is given by Eq. 2,10, as follows[49]:

 N =(𝑐𝑤𝑛𝑑

𝑏𝑎𝑠𝑒𝑅𝑇𝑇
 - 𝑐𝑤𝑛𝑑

𝑅𝑇𝑇
) * baseRTT (2,10)

24

In the above formula, cwnd represents the congestion window size, RTT is the average RTT in the
last round, and baseRTT is the least RTT that has been measured up to this point.

Veno’s additional algorithms are improved by mVeno via distribution of the weighted parameter
(i.e., 𝛿𝑠𝑟 for each subflow). mVeno performs the following steps on every subflow.

When N ≥ β, the congestion window 𝑤𝑠,𝑟(𝑡) is increased by mVeno flow s on subflow r
by 𝛿𝑠𝑟/𝑤𝑠,𝑟(𝑡) on every second positive acknowledgment and decreases it by (1/2) for every lost
packet. However, when N < β, the congestion window 𝑤𝑠,𝑟(𝑡) increases by 𝛿𝑠𝑟/𝑤𝑠,𝑟(𝑡) on each
positive acknowledgment and decreases by (1/5) every time a lost packet occurs[49].

2.3 Concept of Piggybacking

Piggybacking is what some researchers called “two-way communication”, and others called
“bidirectional flow or full transmission”. Generally, piggybacking occurs when the packets
communicate in both directions from station A to station B, and the data arrives at B. Instead to
sending a control frame directly from B to A, station B waits until the network layer sends a packet
to A, and the acknowledgment is attached in the data frame from B to A, using the field of
acknowledgment in the data frame header. Therefore, the acknowledgment got a free ride in the
data frame [50]. Figure 2.6 shows the ACK frame without data, and Figure 2.7 shows it with data.

Figure 2.6: ACK without data

In Figure 2.6, station A sends packets to station B and waits for ACK. When station B receives
the packet correctly, it returns ACK without adding any data with ACK, therefore the ACK is
received quickly by station A.

25

Figure 2.7: ACK with data

In Figure 2.7, station A sends the packets to station B and waits for ACK. ACK packet could
contain data added by station B. After station B receives the packet, it waits sometimes before
sending ACK because station B might have data to send to A. It is not necessary for station B to
always data send to A, according to some researchers.

2.3.1 Piggybacking traffic

There are two cases for data received by a station. In the first case, the data received was corrupted,
and in the second case, it was received correctly. It is preferable for the transmission rate to be
high in order to use piggybacking because it might be overhead in the network. [51].

When there are several users on the network, the throughput of using piggybacking will be high
compared to without piggybacking because ACK packets hold data. Therefore, if they are lost,
piggybacking compensates these losses, particularly if the traffic in the network varies, (e.g., the
network does not always remain busy, but there could be several delays [52].

Proper utilization of bandwidth can be developed if the bandwidth is properly configured to the
channel access parameters, piggybacking policy, and network traffic [53].

2.3.2 Acknowledgment technique

TCP is a reliable protocol, which utilizes an acknowledgment technique to ensure that data
transmitted was successfully received by the receiver. The acknowledgment technique in TCP can
be either Cumulative or Delayed.

Cumulative acknowledgment is one where the receiver receives the data from the sender, then the
receiver sends a feedback byte called the “acknowledgment”, which confirms to the sender that all
the frames were received correctly. Therefore, in order to save time, the receiver sends one
acknowledgment in response to a particular number of frames.

Delayed acknowledgment in TCP occurs when the receiver has the option of sending ACK
immediately, or later. The purpose of delaying ACK is to reduce ACK traffic or to enable the

26

receiver to send data with ACK in one packet rather than separating them. However, delaying
might cause timeout and retransmission for the source.

2.4 Thesis Tool

This thesis will apply Network Simulation 2 (NS 2) to compare previously-mentioned protocols
in Section 1.3, as well as Gnuplot to plot the results.

2.4.1 Network simulation 2 (NS2)

NS 2 is a free open-source network simulation tool for network and communication research. NS
2 is utilized to simulate routing, multicast protocols, and IP protocols such as TCP and UDP in
wired and wireless networks. NS2 runs with many operating systems, such as Linux and SunOS,
as well as with Windows versions. NS2 uses two languages: Object-oriented Tool Command
Language (OTCL) to control the simulation and schedule discrete the events, and C++ language
to NS2 subjects. NS2 supports a large number of built-in C++ classes, and it is appropriate to use
these C++ classes to set up a simulation via a Tcl simulation script. NS2 runs traffic and topology
before processing the simulation. The trace file in NS2 is used to analyze processing after the
processing. “NS2 outputs any text-based simulation results. To interpret these results graphica lly
and interactively, tools such as NAM (Network AniMator) and XGraph are used” [55].

 Figure 2.8: NS2 tools [55]

The purpose of using C++ is thatNS2 deals with packets, and when using existing modules. NS2
uses OTCL for configuration, step and runs the simulation with an existing model.

Advantages of NS2:

➢ It is free and easy to download and install.

➢ It supports many protocols and models.

➢ It is flexible in terms of setting up the configuration parameters.

27

➢ It enables researchers to design different scenarios.

➢ It is widely popular, and the recourses can be found on many websites.

Disadvantages of NS2:

➢ It requires enough memory to simulate the topology, which means that it may not

executive if there is insufficient space in memory.

➢ It is sometimes incapable of running large-scale systems, or of obtaining the results.

➢ It occasionally slows down due to bugs or crashes.

2.4.2 Gnuplot

Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, OSX,
VMS, and other operating systems. The source code is copyrighted but freely distributed [56]. It
was designed to allow researchers and students to plot their mathematical equations and data
interactively.

2.4.3 Network configuration

We consider two distinct configurations in our implementations. One configuration assumes
having partially wireless network while the other configuration assumes all wireless network.
There are many reasons that we need to consider the wireless network in different applications:

1) Sensor networks: sensor networks are composed of numerous minuscule immobile sensors that
are randomly inserted to detect and transmit the current environment’s physical attributes, which
are accumulated and tallied on a “data-centric” basis[57] [58]. A common term used to describe
this feature is “battlefield surveillance”, whereby several sensors are dropped from an overhead
aircraft in enemy territory. Machinery prognosis, biosensing, and environmental monitoring are
other examples of potential commercial fields.

2) Personal healthcare includes multimedia networks that can monitor and analyze the behavior of
elderly citizens in order to identify the cause of illnesses that afflict them (e.g., dementia) [59].
Networks comprised of an audible communication device that attaches to clothing, or those with
video capability, can detect emergency events and immediately connect the elderly person with
remote crisis services or family members[60].

3) Industrial process control includes imaging and temperature / pressure sensing features for
instances of critical time-sensitive events, or for industrial or process control purposes.
Assimilating machine vision systems with WMSNs can streamline and add flexibility to
manufacturing processes in order to provide visual inspections and pre-set functions[61].

28

Chapter 3

TCP Congestion Control Enhancement of Random Loss (CERL)

In this chapter, we briefly summarize TCP CERL’s algorithm, and compare it to TCP protocols
previously mentioned in section 1.4.

3.1 TCP CERL Algorithm

TCP Congestion Control Enhancement of Random Loss (CERL) is an end-to-end mechanism
that achieves immediate throughput improvement over wireless. Although it is similar to TCP
Veno in terms of distinguishing between random loss and congestive loss, CERL techniques are
equipped with different mechanisms.

RTT consists of two parts in TCP CERL [62]:

1. The bottleneck queuing delay.

2. Total round-trip propagation delay with service delay.

The delay of queuing is equal to
𝑙

𝐵
 , where l is queue length, and B is the bandwidth of the

bottleneck link [62].

The total round-trip propagation delay with service delay is indicated as T, where T is a constant
value in TCP CERL.

The calculation of bottleneck queue length l uses the following equation [62]:

l = (RTT – T) B (4,1)

TCP CERL sets T to be smallest RTT detected by the sender. Usually, l changes with updated
RTT measurements.

The difference between TCP Veno and TCP CERL is that TCP Veno measures the backlog of
end-to-end, whereas TCP CERL measures the queue length of the router [62].

TCP CERL utilizes queue length in Eq. 4.1 to estimate the congestion state of the link. TCP
CERL uses parameter N as a dynamic queue length threshold, where N is equal to Eq. 4,2:

N = A * lmax (4,2)

29

lmax is the largest value of l calculated by the sender, and A is a value equal to 0.55 [62]. When the
sender detects packet loss through three duplicate acknowledgments, and l is less than N, the TCP
CERL sender, therefore, assumes that the lost packet was due to random loss, and retransmits that
packet without reducing the congestion window and slow start threshold. However, if l > N at the
time when the sender receives the duplicate acknowledgments, TCP CERL then assumes that the
loss was due to congestion and therefore, the TCP sender decreases the congestion window and
slow start threshold similar to TCP Reno. On occasion, when multiple losses occur during
transmission, the sender reduces the window only once.

3.1.1 Congestion window inflation

TCP Reno receiver sends an acknowledgment when a packet is received. The Reno receiver sends
a duplicate acknowledgment (ACK) when a packet is out of order. Therefore, if the TCP Reno
sender receives the duplicate ACK, the sender uses the fast recovery algorithm to increase the
congestion window and to keep the network channel full [62]. For each duplicate ACK received
by the sender during the fast recovery phase, the congestion window is increased by one. When
the sender receives the first ACK for the new data during the fast algorithm, the TCP Reno sender
sets the congestion window to the slow start threshold value.

TCP CERL slightly modified window inflation and deflation. If the first loss occurs in the current
window of data, the TCP CERL sender behaves in the same manner as TCP Reno in terms of
window inflation. “Otherwise, the current value of the congestion window is saved. To deflate the
window, the congestion window is set to this value when the first ACK acknowledges the new
data to this value” [62].

Figure 3.1 illustrates the Reno congestion window inflation and deflation from one time to six.
The TCP Reno sender receives the loss through three duplicate acknowledgments, after which the
sender sets the slow start threshold to cwnd/2, and sets cwnd to ssthresh + 3 * SegmentsS ize. From
Figure 3.1, it is clear that any period between 1 and 2, between 3 and 4, or between 5 and 6, Reno
received duplicate ACKs, and allows the congestion window to become inflated. In addition, in
periods 2, 4 and 6, TCP Reno received ACKs for the new data and reduced the cwnd equal to
ssthresh.

Figure 3.1: TCP Reno congestion window

30

Figure 3.2 shows that CERL detected the first loss at time 1 through three duplicate ACKs, the
TCP CERL sender behaved similarly to Reno. However, when the TCP CERL sender detected
another congestive loss at time 3, it behaved differently because it was not the first congestive loss,
and therefore the sender reduced oldcwnd to cwnd, and set the cwnd to equal cwnd + 3*
SegmentSize; CERL did not decrease the ssthresh value. In addition, during the period between 3
and 4, CERL received more duplicate ACKs, which resulted in CERL allowing the congestion
window to become inflated. In time 4, CERL received ACK for the new data and deflated cwnd
equal to oldcwnd. In time 5, CERL received another packet loss through three duplicates ACKs,
therefore determining that it was due to random loss.

Figure 3.2: TCP CERL congestion window

31

3.1.2 Implementation of CERL

1 - Every time a new RTT is estimated by the sender, T, l, lmax, and N are updated.

2 - The TCP CERL sender changes to the fast recovery algorithm if the sender receives three
duplicate acknowledgments. Therefore, the congestion window reduces to half if l is larger than
or equal to N, or when the first-time congestion loss occurs only during this window of data.

The details of CERL mechanism is presented in Algorithm 1

Algorithm 1: CERL algorithm

While (true)
{
 WaitFor RTT arrival Event
 If (Event(RTT ArrivalNotification))
 {
 T Min (ArrivedRTT, OldRTT)

 A 0.55
 Calculate: l RTT─T
 lmax Max(Calculated l, Old l)
 N A*lmax
 If (Event(l >N&highstAck>lastDecMaxSentSeqno)
 {
 ssthresh min (cwnd, rwnd)/2
 If (ssthresh < 2*segsize)
 ssthresh 2*segsize
 end if
 cwnd ssthresh+3*segsize
 lastDecMaxSentSeqno= MaxSentSeqno
 else
 oldcwnd cwnd
 cwnd cwnd + 3 * segsize
 end if
 end if }
Return }

32

For example, in Figure 3.3, the TCP CERL sender transmits segments from 1 to 20, and segment
13 and 16 are lost. Eventually, three duplicate ACKs for segment 13 are received by the sender.
Therefore, CERL causes the congestion window to be reduced, and the sender sets
lastDecMaxSentSeqno to equal 20, and segment 13 to be retransmitted. However, when segment
16 is lost, the TCP CERL sender does not reduce the congestion window since it is not the first
loss, and it is less than 20. Therefore, CERL simply retransmits only segment 16.

Figure 3.3: TCP CERL implementation

3.2 Network Configurations

In this chapter, we consider two configurations. The first configuration is a wired/wire less
topology, and the second is all wireless topology. We will implement various scenarios in both
topologies.

33

3.2.1 Network Configuration 1

Figure 3.4 illustrates the network configuration. We assume that N end-senders are S1 to SN, and
N end-receivers are R1 to RN. We also assume that the network operates on two routers (G1 and
G2). All transmission lines between end-senders are wired, and end-receivers are wireless. In
addition, we assume that the transmission line between G1 and G2 is wired.

3.2.1.1 Scenario 1 : One-way transmission

Scenario 1 evaluates the throughput of CERL with a small number of users, using one-way
transmission. Users will apply the same protocol during the simulation by sending FTP files at
different times.

Figure 3.4 shows the network topology used for scenario 1.

• N = 10.

• S1 to S10 are TCP senders.

• R1 to R10 are TCP receivers.

• G1 and G2 are routers.

• S1 to S10 are connected to G1 via wire links; bandwidth and propagation delay for each

link are 1 Mbps and 10 ms, respectively.

• R1 to R10 are connected to G2 via wireless links; bandwidth and propagation delay for

each link are 1 Mbps and 10 ms, respectively.

• We denote L for the wired link between G1 and G2, the bandwidth and propagation delay

for L are 8 Mbps and 50 ms, respectively.

• We consider the maximum segment size as 1460 bytes.

Figure 3.4: wired/wireless topology

36

Figure 3.7 clarifies the throughput of CERL with other protocols when Tp for L ranges from 20 to
180 ms, where qL is 1%, and Fig 3.8 illustrates the throughput of TCP protocols, where the
propagation delay between TCP receivers and G2 ranges between 10 and 90 ms, where qL is 1%.
Increasing the time delay would lead to a quicker excessive aggregation of packets in the
bottleneck queue waiting for transmission. This would increase the possibility of congestion and
random loss which in turn, would reduce the congestion window and, therefore, the throughput
decreases. However, in Fig 3.7, CERL still gains higher throughput compared to other variants for
its discrimination process. In fig 8, more timeouts would be produced when increasing the
propagation time delay at the wireless portion so TCPs would behave worse.

3.2.1.2 Scenario 2 : Two-way transmission

Scenario 2 evaluates the throughput of CERL with a small number of users, using bidirectiona l
flow. Users will apply the same protocol during the simulation sharing sending FTP files at
different times.

Figure 3.4 shows the network topology used for scenario 2.

• N = 10.
• S1 to S10 are TCP senders.
• R1 to R10 are TCP receivers.
• G1 and G2 are routers.
• S1 to S10 are connected to G1 via wire links; bandwidth and propagation delay for each

link are 1 Mbps and 10 ms, respectively.
• R1 to R10 are connected to G2 via wireless links; bandwidth and propagation delay for

each link are 1 Mbps and 10 ms, respectively.
• We denote L for the wired link between G1 and G2, the bandwidth and propagation delay

for L are 8 Mbps and 50 ms, respectively.

39

Figure 3.12 CERL behaves similarly as in Fig 3.10. CERL has a better performance at a wider
range of Tp of the link L (between 20 to 60 ms) compared to links delay at the receiver side
(between 10 to 20 ms). This shows that CERL is more flexible to the bottleneck delay than the
receivers’ side delays and this agrees with the one-way transmission in Figs 3.7 and 3.8, although
that CERL performs better with the one-way transmission generally. Such discrepancy in CERL
performance between tests in Figs 3.11 and 3.12 is because the limitation of the bandwidth at the
receivers’ side compared to that of L in addition to the increase of their time delay would lead to
have an obvious congestion at the bottleneck queue.

 3.2.2 Network configuration 2

Figure 3.13 illustrates the network configuration. We assume N end-senders S1 to SN as well as N
end-receivers R1 to RN. We also assume that the network has three routers: G1 to G3. All
transmission lines between end-senders and end-receivers (including between routers L1 and L2)
are wireless. Random loss (q) may occur in L1 or L2, as will be shown in our results in various
scenarios.

3.2.2.1 Scenario 1: Two-way transmission and heavy load, where qL1 is 1% and qL2 is 1%
loss rate.

Scenario 1 evaluates CERL’s throughput with a large number of users, using piggybacking flow.
Users apply the same protocol during the simulation sharing FTP files at different times. Scenario
1 allows receivers to send data with ACK in the same frame. Note that we allowed receivers to
send data with ACK by default in NS2.

Figure 3.13 shows the network topology used in scenario 1.
• N = 100.
• S1 to S100 are TCP senders.
• R1 to R100 are receivers.

Figure 3.13: All wireless topology

46

congestion window is high. Also, when we decrease the size of the segments in piggybacking tests,
New Jersey+, mVeno, and Westwood+ perform well during two-way sending tests. Throughput
from Cubic, Yeah and NewReno remain low in both one-way and piggybacking simulations.

We evaluate CERL with different simulations and conclude that CERL is not capable of achieving
high performance. Therefore, the constant value in CERL is not sufficient for piggybacking tests.

47

Chapter 4

TCP Congestion Control Enhancement of Random Loss plus (CERL +)

In this chapter, we will briefly summarize about TCP CERL+ and compared with TCP
protocols that previously mentioned in section 1.4

4.1 TCP CERL +

TCP Congestion Control Enhancement of Random Loss plus (CERL+) is an end to end mechanism
to improve the performance over wireless and wired networks, particularly when there are a large
number of nodes. TCP CERL+ is the evolution of TCP CERL [62] to distinguish between random
loss and congestion loss. TCP CERL+ has a similar implementation of TCP CERL measuring
bottleneck and inflation of congestion window, but CERL+ behaves differently when
calculating the dynamic queue length threshold N that in CERL.

4.1.1 Distinguish random loss from congestion loss

TCP CERL utilizes A, used in equation 3,2 of chapter 3, a constant value that is equal to 0.55 to
measure the dynamic queue length threshold N. When CERL uses this value, it gains a higher
throughput comparing to some protocols, but when A values are more than 0.55, throughputs
are the same [52]. Results in chapter 3 assuming piggybacking transmission and a heavy load of
users showed poor behavior of CERL compared to other techniques. In this regard, we revisit
CERL and consider modifying the queue length threshold N.

TCP CERL+ makes use of the average of RTTs and minimum RTT and this is measured by the
sender. As a result, CERL+ makes a dynamic queue length threshold N more flexible for every
sender. Which means that sender will estimate average RTTs and minimum in every RTT is
measured, so the transmission for data between users will be various. TCP CERL+ calculates N
according to equation 4,1:

N =
𝑅𝑇𝑇𝑎𝑣𝑔

𝑇
 * lmax (4,1)

Where RTTavg is the average of RTT measured in each time, T is minimum RTT observed by the
sender, and lmax is the largest value of l calculated by the sender.

In the results, we will show how TCP CERL+ improved the performance of throughput comparing
to CERL, when CERL + users use average and minimum round-trip time.

48

The details of CERL+ mechanism is presented in Algorithm 1

Algorithm 1: CERL+ algorithm

While (true)
{
 WaitFor RTT arrival Event
 If (Event(RTT ArrivalNotification))
 {
 T Min (ArrivedRTT, OldRTT)
 AvegRTT Average of RTT over simulation time
 A AvegRTT/T
 Calculate: l RTT─T
 lmax Max(Calculated l, Old l)
 N A*lmax
 If (Event(l >N&highstAck>lastDecMaxSentSeqno)
 {
 ssthresh min (cwnd, rwnd)/2
 If (ssthresh < 2*segsize)
 ssthresh 2*segsize
 end if
 cwnd ssthresh+3*segsize
 lastDecMaxSentSeqno= MaxSentSeqno
 else
 oldcwnd cwnd
 cwnd cwnd + 3 * segsize
 end if
 end if }
Return }

49

In figure 4.1, the network configuration is shown. We assume N end-senders S1 to SN and as well
N end-receivers R1 to RN. We assume that the network two routers G1 and G2. All transmiss ion
lines between end-senders are wired, and end-receivers are wireless. Also, we assume that the
transmission line between G1 and G2 is wired.

4.1.2 Evaluation

In this test, we evaluate the congestion window of NewReno and CERL+ when the link between
G1 and G2 in figure 4.1 has a random loss and without a random loss. We assume that from figure
4.1, there is one sender and one receiver. The bandwidth and propagation delay of links S1G0 and
G1R1 are set to 15 Mbps and 20 ms, respectively. Figure 4.2 illustrates the congestion widow
evolution of TCP NewReno, and figure 4.3 illustrates the congestion window evolution of TCP
CERL+.

Results show that congestion window of TCP NewReno and CERL+ are close without random
loss. In figure 4.3, we can notice that congestion window drops to 2 segments at 17 s at 90 s,
because when time out occurs CERL+ changes to slow start phase. With 1% random loss, the
average throughput of CERL+ is 0.89 Mbps, while the average throughput of NewReno is 1.79
Mbps. Which means that CERL+ gains a 115% throughput improvement over NewReno in this
test.

Figure 4.1: wired/wireless topology

50

Figure 4.2: NewReno Congestion Window Evaluation

Figure 4.3: CERL+ Congestion Window Evaluation

51

4.1.3 CERL+ behavior in absence of random loss

In this section, we demonstrate that the CERL+ random loss distinguishing mechanism does not
affect the throughput of CERL+ when the random loss is not present. To facilitate the
demonstration, we define CERL+2 as a modified version of CERL+ in which the code
preventing multiple segment losses in one window of data from reducing the congestion window
more than once is removed.

In figure 4.1, we set 10 connections between senders and G1, in addition, 10 connection between
G2 and receivers. The bandwidth and propagation delay between G1and G2 are 8 Mbps and 50
ms, respectively. The bandwidth between all senders and G1 and between all receivers and G2 is
set to 1 Mbps. S1 to S10 are TCP senders running either CERL+, CERL+2,NewReno or Reno. Each
sender initiates an ftp transfer to one of the receivers, R1 to R10. In order to test the TCPs under a
wide range of traffic conditions, we randomly set the remaining simulation parameters as described
below. The propagation delay of links Si G1 and G2 Ri, where i is an integer value ranging from
1 to 10, is set to a randomly generated number between 1 and 15 ms. The ftp transfer start time of
each connection between senders S1 to S10 and receivers R1 to R10 is set to a randomly generated
number between 1 and 150 s. The random values are generated using a uniformly distributed
random variable and a combined multiple recursive generator. We chose 25 different seeds from
among the 64 recommended seeds listed in the file rng.cc of the ns-2 source code and we number
the seeds from 0 to 24. Figure 4.4 illustrates the ftp transfer start and end times that resulted when
the seed was set to 0.

In Figure 4.5(a), we measure the throughput with 10 connections of Reno, CERL+ or CERL+2
and in figure 4.5(b), we measure the throughput with 10 connections of NewReno, CERL+ or
CERL+2. These measurements are made as the seed ranges from 0 to 24 and q = 0%. In Figure
4.5(a), the performance of CERL+2 is almost identical to that of Reno at every seed value.
However, CERL+ is sometimes at some seed values somehow different from NewReno as shown
in figure 4.5(b) as CERL+ is a sender-side modification of Reno. We can notice that the
performance of CERL+ implementation mostly performs better than Reno and NewReno owing
to the CERL+ mechanism that prevents multiple window decrement strategy.

Figure. 4.4 The ftp transfer start and end time

53

4.2 Network configuration

In this chapter, we consider two configurations. The first configuration is a wired/wire less
topology, and the second is all wireless topology. We will implement various scenarios in both
topologies

.

4.2.1 Network Configuration 1

4.2.1.1 Scenario 1 : One-way transmission

Scenario 1 evaluates the throughput of CERL+ with a small number of users, using one-way
transmission. Users will apply the same protocol during the simulation by sending FTP files at
different times.

Figure 4.1 shows the network topology used for scenario 1.
• N = 10.
• S1 to S10 are TCP senders.
• R1 to R10 are TCP receivers.
• G1 and G2 are routers.
• S1 to S10 are connected to G1 via wire links; bandwidth and propagation delay for each

link are 1 Mbps and 10 ms, respectively.
• R1 to R10 are connected to G2 via wireless links; bandwidth and propagation delay for

each link are 1 Mbps and 10 ms, respectively.
• We denote L for the wired link between G1 and G2, the bandwidth and propagation delay

for L1 are 8 Mbps and 50 ms, respectively.

59

4.2.2. Network configuration 2

In figure 4.14, the network configuration is shown. We assume N end-senders S1 to SN and as well
N end-receivers R1 to RN. We assume that the network has three routers: G1 to G3. All transmiss ion
lines between end-senders and end-receivers including between routers (L1 and L2) are wireless.
Random loss (q) may occur in L1 or L2 as we will show in our results in different scenarios.

4.2.2.1 Scenario 1: Two-way transmission with heavy load, where qL1 is 1% and qL2 is 1%
loss rate.

Scenario 1 evaluates the throughput of CERL+ with a large number of users, using two-way
transmission.

Figure 4.14 shows the network topology used for scenario 1.

• N=100

• S1 to S100 are TCP senders.

• R1 to R100 are receivers.

• G1 to G3 are routers.

• S1 to S100 are connected to G1 via wireless links, bandwidth and propagation delay for
each link are 1 Mbps and 20 ms, respectively.

• R1 to R100 are connected to G3 via wireless links, also, bandwidth and propagation delay
for each link are 1 Mbps and 20 ms respectively

• We denote L1 for the wireless link between G1 and G2, and the bandwidth and
propagation delay for L1 are 85Mbps and 60ms, respectively.

Figure 4.14: All wireless topology

71

Chapter 5
Conclusion & Future work

In this thesis, we proposed a new version of TCP CERL called TCP CERL+. The idea of CERL+

is to improve the performance of wireless networks when there are a large number of connections

and random loss in the link. We have examined CERL+ and compared to mVeno, New Jersey+,

Westwood+, Cubic, YeAh, and NewReno in one-way and two-way transmissions. Our preliminary

TCP CERL version throughput is good, but it is not that high compared to mVeno, and New

Jersey+ connections.

CERL+ is similar in its implementation to CERL in the sense that it would not behave less than

NewReno under any condition. Additionally, CERL+ achieves excellent performance in terms of

throughput in different network system configurations. CERL+ is fair enough not to embezzle

traffic resources such as bandwidth from other coexisting links that use NewReno mechanism.

Instead, simulated results prove that CERL+ is efficiently fair with NewReno assuming having

no random loss while it has a quite limited effect on those connections using NewReno and

sharing the bottleneck link.

In case of two-way transmission with a heavy load, CERL+ gains an 148%, 130%, 110%, 92%,

125% and 105% over throughput improvement over NewReno, YeAh, Westwood+, mVeno,

Cubic , NewJersey+, and, respectively

72

Future Work

TCP CERL+ is one of the significant protocols to distinguish between random loss, and congestion

loss, particularly with the development of wireless networks. From the tests, CERL+ proves can

reach the highest throughput as possible comparing several protocols. The simulation tool used for

these tests was open source NS2. NS2 is a useful simulation for network researches, but the issue

is not able to deal with big networks, and sometimes does not run the simulation correctly. My

future work, I want to add more features to CERL+ and implement them by using new simula t ion

tools like Tossim or NS3.

73

References

[1] Y. Zhang, P. Chowdhury, M. Tornatore, and B. Mukherjee, “Energy efficiency in telecom
optical networks,” IEEE Commun. Surveys Tuts., vol. 12, no. 4, pp. 441–458, 2010.

[2] Neha Trivedi, G. Kuamr, Teena Raikwar, “Survey onMAC protocol for Wireless Sensor
Network”, International Journal of Emerging Technology and Advanced Engineering, Vol. 3,
Issue 2, pp.558-562, February 2013

[3] Michele Zorzi, James Zeidler, A. Lee Swindlehurst, Michael Jensen, “Cross-Layer Issues in
MAC protocol Design for MIMO Ad Hoc Networks”, IEEE Wireless Communication, pp. 62-76.
August 2006

[4] Sharma,M.,& Sarmah,.M, "Technical Issues and Challenges involve in designing a MAC
protocol for Wireless Ad hoc Network". International Journal of Computer Networks and Wireless
Communications (IJCNWC), ISSN: 2250-3501Vol.5, No.1, February 2015.

[5] Z. Li, Y. Liu, M. Li, J. Wang, Z. Cao, “Exploiting ubiquitous data collection for mobile
users in wireless sensor networks,” IEEE Trans.Parallel and Distributed Systems, vol. 24, no. 2,
pp. 312-326, 2013.

[6] Y. Zhang, Y.-P. Tian, "Consensus of data-sampled multi-agent systems with random
communication delay and packet loss", IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 939-943,
Apr. 2010

[7] Y. Liang, H. V. Poor, S. Shamai, "Secure communication over fading channels", IEEE Trans.
Inform. Theory, Nov. 2006.

[8] L.-P. Tung, W.-K. Shih, T.-C. Cho, Y.S. Sun, M.C. Chen, "TCP Throughput Enhancement
over Wireless Mesh Networks", IEEE Communications Magazine, vol. 45, no. 11, pp. 64-70, Nov.
2007.

[9] Saeed V. Vaseghi, "Noise And Distortion". Advanced Digital Signal Processing and Noise
Reduction, Second Edition. ISBNs: 0-471-62692-9 (Hardback): 0-4 70-84162-1 (Electronic)

[10] A. Tsertou and D. Laurenson, “Revisiting the hidden terminal problem in a CSMA/CA
wireless network,” IEEE Transactions on Mobile Computing, vol. 7, no. 7, pp. 817–831, July 2008

[11] M. C. Domingo, “Magnetic Induction for Underwater Wireless Communication Networks,”
IEEE Trans. Antennas and Propagation, vol. 60, no. 6, 2012, pp. 2929–39

[12] N. Parvez, A. Mahanti, C. Williamson, "An Analytic Throughput Model for TCP
NewReno", Proc. of IEEE/ACM TON, vol. 18, no. 2, pp. 448-461, April 2010

74

[13] J. Sing and B. Soh, “TCP New Vegas: improving the performance of TCP Vegas over high
latency links,” in Proc. Fourth IEEE Int. Symp. on Netw. Comput. and Appl., Cambridge, MA,
July 2005, pp. 73–82

[14] K. Shi, Y. Shu, O. Yang, and J. Luo, “Receiver-assisted congestion control to achieve high
throughput in lossy wireless networks,” IEEE Trans. Nucl. Sci., vol. 57, no. 2, pp. 491–496, Apr.
2010

[15] Nikitinskiy, M.A. and Chalyy, D.Ju., Performance analysis of trickles and TCP transport
protocols under high-load network conditions, Automatic Control and Computer Sciences, 2013,
vol. 47, pp. 359–365

[16] Bathla, N.; Kaur, A.; Singh, G., Relative Inspection on TCP variants Reno, NewReno, Sack,
Vegas in AODV. International Journal of Research in Engg. & Applied Science, vol. 4,2014, pp.
1-12

[17] S. Shin, D. Han, H. Cho, J. M. Chung, I. Hwang, and D. Ok, “Tcp and mptcp retransmiss ion
timeout control for networks supporting wlans,” IEEE Communications Letters, vol. 20, no. 5, pp.
994–997, May 2016

[18] B. Soelistijanto and M. P. Howarth, “Transfer reliability and congestion control strategies in
opportunistic networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 16, 2014

[19] F. Zafar, Z. Mahmood, O. Ayoub, Z. Zhao, "Throughput Analysis of TCP SACK in
comparison to TCP Tahoe Reno and New Reno against Constant Rate Assignment (CRA) of 2500
and 4500 bps", Journal of Computer Science & Computational Mathematics, vol. 2, July 2012

[20] R. Kaur, G. S. Josan, “Performance Evaluation Of Congestion Control Tcp Variants In Vanet
Using Omnet++”, International Journal of Engineering Research and Applications (IJERA), Vol.
2, No. 5, pp. 1682-1688, 2012

[21] W. Bao, V. W. S. Wong, V. C. M. Leung, "A model for steady state throughput of TCP
CUBIC", Proc. IEEE GLOBECOM, pp. 1-6, Dec. 2010

[22] A. Pradeep, N. Dinakaran, P. Angelin, "Comparison of drop rates in different TCP variants
against various routing protocols", International Journal of Computer Applications, vol. 20, no. 6,
2011

[23] Yuvaraju B. N, Niranjan N Chiplunkar - “Scenario Based Performance Analysis of Variants
of TCP using NS2-Simulator” International Journal of Advancements in Technology, ISSN 0976-
4860 Vol 1, October 2010.

[24] Hanaa Torkey, Gamal Attiya and Ibrahim Z. Morsi, “Modified Fast Recovery Algorithm for
Performance Enhancement of TCP-New Reno” International Journal of Computer Applicat ions
(0975 – 8887) Volume 40– No.12, February 2012

75

[25] Biaz S, Vaidya NH. ‘De-randomizing’ congestion losses to improve TCP performance over
wired-wireless networks. IEEE/ACM Transactions on Networking, 2005

[26] M. Ivanovich, P. Bickerdike, and J. Li, “On TCP performance enhancing proxies in a wireless
environment,” IEEE Communications Magazine, vol. 46, pp. 76–83, September 2008

[27] Keshav S, Morgan S. Smart retransmission: performance with overload and random losses.
INFOCOM’97

[28] SAMARAWEERA, N. AND FAIRHURST, G. April 1998. Reinforcement of TCP error
recovery for wireless communication. ACM SIGCOMM Computer Communication Review 28,
2, 30–38

[29] S. Floyd. “TCP and Explicit Congestion Notification”. ACM Computer Communica t ion
Review, 24(5):10– 23, Oct. 1994

[30] PHANISHAYEE, A., KREVAT, E., VASUDEVAN, V., ANDERSEN, D. G., GANGER, G.
R., GIBSON, G. A., AND SESHAN, S. Measurement and analysis of tcp throughput collapse in
cluster-based storage systems. In Proceedings of the 6th USENIX Conference on File and Storage
Technologies (2008), pp. 12:1–12:14.

[31] Callegari, C., Giordano, S., Pagano, M., Pepe, T., A survey of congestion control mechanisms
in linux tcp. In: Distributed Computer and Communication Networks. Vol. 279 of
Communications in Computer and Information Science. Springer, pp. 28–42,2014

[32] S. Gangadhar, T. A. N. Nguyen, G. Umapathi, and J. P. Sterbenz, “TCP Westwood+ protocol
implementation in ns-3,” in Proceedings of the 6th International ICST Conference on Simula t ion
Tools and Techniques, pp. 167–175, ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2013.

[33] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath TCP: Analysis, design, and
implementation,” IEEE/ACM Trans. Netw, vol. 24, no. 1, pp. 596–609, Feb. 2016.

[34] Dalal, P.; Sarkar, M.; Dasgupta, K.; Kothar, N. Link Layer Correction Techniques and Impact
on TCP’s Performance in IEEE 802.11 Wireless Network. Commun. Netw. 2014, 6, 49–60.

[35] Katre.A.(2015, August 21). Explanation of the Three-Way Handshake via TCP/IP. Retrieved
from URL

<https://swapnilkatre.wordpress.com/2015/08/21/explanation-of-the-three-way-handshake-via-
tcpip/ >

[36] Kristoff,J . The Transmission Control Protocol. Retrieved from URL

https://condor.depaul.edu/jkristof/technotes/tcp.html

[37] B. Forouzan, Data Communications and Networkings, 4th ed. New York, NY, USA:
McGraw-Hill, 2006

https://swapnilkatre.wordpress.com/2015/08/21/explanation-of-the-three-way-handshake-via-tcpip/
https://swapnilkatre.wordpress.com/2015/08/21/explanation-of-the-three-way-handshake-via-tcpip/
https://condor.depaul.edu/jkristof/technotes/tcp.html

76

[38] Baiocchi A, Castellani AP, Vacirca F. YeAH-TCP: yet another highspeed TCP. In:
Proceedings of the PFLDnet. Marina Del Rey (Los Angeles, California): ISI; February 2007

[39] V. Jacobson. Congestion avoidance and control. SIGCOMM Comput. Commun. Rev.,
18(4):314–329, 1988

[40] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control (BIC) for fast long-
distance networks,” in Proc. IEEE INFOCOM, Hong Kong, 2004, pp. 2514–2524

[41] Y.-T. Li, D. Leith, and R. N. Shorten, “Experimental evaluation of TCP protocols for high-
speed networks,” IEEE/ACM Transactions on Networking, vol. 15, no. 5, pp. 1109–1122, 2007

[42] S. Ha, I. Rhee, and L. Xu. Cubic: A new tcp-friendly high-speed tcp variant. ACM SIGOPS
Operating Systems Review, 42, 2008

[43] N. Kaur, S. Umrao, R. K. Gujral, “Simulation based Analysis of TCP Variants over MANET
Routing Protocols using NS2.” International Journal of Computer Applications (0975 – 8887)
Volume 99– No.16, August 2014

[44] Shivaranjani, M., Shanju, R., Joseph Auxilius Jude, M., and Diniesh, V.C.: ‘Analysis of
TCP’s micro level behaviour in wireless multi-hop environment’. IEEE Conf. on Computer
Communication and Informatics, Coimbatore, India, January 2016, pp. 1–6, doi: 10.1109/
ICCCI.2016.7480006

[45] K. Ong, S. Zander, D. Murray, T. McGill, "Experimental Evaluation of Less-than-Best-Effort
TCP Congestion Control Mechanisms" in 42nd IEEE Conference on Local Computer Networks
(LCN), Singapore:IEEE, 2017

[46] S. Sathya Priya and K. Murugan, " Enhancing TCP Fairness in Wireless Networks using Dual
Queue Approach with Optimal Queue Selection", Wireless Personal Communications, vol. 83, no
2, pp. 1359-1372, Jul. 2015.

[47] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion control for TCP,” in Proc.
ACM CoNEXT, 2010, p. 13

[48] Wang, J., Wen, J., Zhang, J., Han, Y.: ‘TCP-FIT: an improved TCP congestion control
algorithm and its performance’. INFOCOM, 2011 Proc. IEEE, 2011, pp. 2894–2902

[49] P. Dong, J. Wang, J. Huang, H. Wang, and G. Min, ‘‘Performance enhancement of multipath
TCP for wireless communications with multiple radio interfaces,’’ IEEE Trans. Commun., vol.
64, no. 8, pp. 3456–3466, Aug. 2016

[50] Milad. A, Lafi.S, Algaet.M, “Piggyback Scheme over TCP in Very High Speed Wireless
LANs: Review” International Journal of Data Science and Analysis. Vol. 3, No. 6, 2017, pp. 69-
76

[51] Lee, T.H., Y.W. Kuo, Y.W. Huang and Y.H. Liu, 2010. “To Piggyback or not to piggyback
acknowledgments?” Proceedings of the IEEE 71th Vehicular Technology Conference, May 16-
19, IEEE Xplore Press, Taipei, pp: 1-5

77

[52] P. Rastin, S. Dirk, and M. Daniel, “Performance Evaluation of Piggyback Requests in IEEE
802.16,” in Proc. IEEE Vehicular Technology Conf., Baltimore, MD, 2007, pp. 1892-1896

[53] J. He, K. Yang, K. Guild, and H.-H. Chen, “On bandwidth request mechanism with piggyback
in fixed IEEE 802.16 networks,” Wireless Communications, IEEE Transactions on, vol. 7, no. 12,
pp. 5238-5243, 2008

[54] Gupta K, “Comparison based Performance Analysis of UDP/CBR and TCP/FTP Traffic under
Routing Protocol in MANET”, International Journal of Computer Application, VoL-56, 2012

[55] ns-2 network simulator. LBL, Retrieved from URL: http://www.isi.edu/nsnam/ns

[56] Gnuplot. Retrieved from URL http://www.gnuplot.info/

[57] Malladi, R., & Agrawal, D. P. (2002). Current and future applications of mobile and wireless
networks. Communications of the ACM, 45(10)

[58] Kahn, J.M., et al. Next Century Challenges: Mobile Networking for Smart Dust. ACM
Mobicom, 1999.

[59] A. A. Reeves, “Remote monitoring of patients suffering from early symptoms of dementia ”, in
Proc. Int. Workshop Wearable Implantable Body Sensor Netw., London, U.K., Apr. 2005.

[60] F. Hu and S. Kumar, “Multimedia query with QoS considerations for wireless sensor networks
in telemedicine”,in Proc. Soc. Photo-Optical Instrum. Eng. Int. Conf. InternetMultimedia Manage.
Syst., Orlando, FL,Sep. 2003.

[61] I. F. Akyildiz, T. Melodia, and K. R. Chowdury, “Wireless multimedia sensor network: A
survey,” IEEE Wireless Commun., vol. 14, no. 6, pp. 32–39, Dec. 2007

[62] H. El-Ocla, “TCP CERL: Congestion control enhancement over wireless networks,” Wireless
Netw., vol. 16, no. 1, pp. 183–198, Jan. 2010

[63] Sreekumari, P., & Chung, S. H. (2011). Tcp nce: A unified solution for non-congestion events
to improve the performance of tcp over wireless networks. EURASIP Journal on Wireless
Communications and Networking, 2011, 1–20. doi:10.1186/1687-1499-2011-23

[64] Stevens, W. R. (1994). TCP/IP illustrated, vol. 1. Addison Wesley

[65] J. Wu and H. El-Ocla, “TCP congestion avoidance model with congestive loss,” in Proc. 12th
IEEE ICON, Nov. 2004, vol. 1, pp. 3–8

[66] G. Y. Li et al., “Energy-efficiency Wireless Communications: tutorial, Survey and Open
Issues,” IEEE Wireless Commun., Dec. 2011, pp. 28–35

[67] R. Cavallari, F. Martelli, R. Rosini, C. Buratti, and R. Verdone, “A survey on wireless body
area networks: Technologies and designchallenges,” IEEE Communications Surveys &Tutorials,
vol. 16, no. 3,pp. 1635–1657, Third Quarter, 2014

http://www.isi.edu/nsnam/ns
http://www.gnuplot.info/

78

