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                                        Abstract 

In this thesis, we analyze the performance of wireless LAN networks subject to random loss. In 

this regard, we use a congestion control technique that has been introduced in a previous study, 

titled TCP Congestion Control Enhancement for Random Loss (TCP CERL). TCP CERL is a 

sender-side modification of TCP Reno protocol. TCP CERL is an end-to-end technique that 

achieves high performance over wireless links and does not decrease the congestion window and 

slow start threshold if the random loss is detected. TCP CERL assumes a static threshold (A) equal 

to 0.55 which  does not perform well when considering a heavy traffic load compared to new 

protocols. In this thesis, we propose a modified version of TCP CERL, called TCP CERL PLUS 

(TCP CERL+, in short). TCP CERL+ works similarly as TCP CERL, but its main idea is to use a 

dynamic threshold (A) in terms of Round-Trip Time (RTT) rather than static threshold. By doing 

so, we employ the average RTT and the minimum  RTT measurements made over the connection 

to evaluate the queue length of the bottleneck link. In this thesis, we compare TCP CERL and TCP 

CERL+ with TCP New Jersey+, TCP mVeno, TCP Westwood+, TCP Cubic, TCP YeAH, and 

TCP NewReno by using Network Simulation NS-2. The results will show that CERL+ 

outperforms CERL when there are many users and Two-way transmission.  
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Chapter 1 
1 Introduction 

Over the past few decades, considerable progress has been made in the field of mobile computing 
in terms of increased access to the Internet thanks to continuous technology advancement. There 
have been considerable developments in wireless local area networks (WLANs), as well as in 
cellular networks.  

However, there are many problems related to wireless networks that affect the performance of data 
communication such as multimedia traffic, medium access control, and random loss. 
In the transmission of multimedia data over a 
wireless network, there are two main issues 
that affect the performance of the network: 
 

1) Energy-efficiency: Devices like 
laptops and mobile phones have some 
constraints, such as device size, energy 
consumption, and communica t ion 
bandwidth. Therefore, wireless devices 
must be capable of handling several 
different classes of data traffic (e.g., 
voice and video) over a limited 
bandwidth. When the energy of a 
mobile device is low, the performance 
of the data transmission will decrease 
between this device and the access 
point [1]. 

2) Quality of Service: “Provides the basis 
for modern high-bandwidth and real-
time multimedia applications like 
teleteaching and video conferencing. 
The notion of quality of service 
originally stems from communicat ion, 
but because of its potential in the 
allocation of all scarce resources, it has 
found its way into other domains, e.g., 
operating systems” [1]. 
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Medium access control on the wireless 
network has many challenges that affect the 
transmission between nodes: 

1) The problem of node mobility on an ad hoc 
network is that it affects the performance of 
transmission between them since they are not 
usually static (i.e., they move around most of 
the time). Therefore, data exchanged could 
possibly get disconnected if the mobility of 
nodes is high [2]. 
2) Location constraint is a problem that occurs 
when there are several nodes in a geographica l 
region, which will result in excess load on the 
wireless channel, thus causing much 
contention between nodes [3]. 
3)Bandwidth efficiency is one of the most 
important resources in wireless networking.  It 
“must be designed in such a way that the 
limited bandwidth should be utilized in an 
efficient manner. This approach keeps the 
involved control overhead to the lowest level 
possible and protects the network from 
overloaded ” [4]. 

 

Another problem that affects the performance of data transmission through a wireless network is 
a random loss, whereby one or more packets fail to reach their destination, resulting in issues on 
network recourses.  In this thesis, we focus on random loss problems of data packets in wireless 
networks.  

1.1  Random Loss Problem 

Random loss occurs when there are problems in wireless links or intermittent faults in hardwires 
[6]. Transmission errors are usually caused by random loss, and packets may be corrupted due to 
errors. Wireless media are more prone to transmission errors than the wired type because of noise 
and fading [7], high bit error rate, and hidden or exposed terminal problems [8].  

Noise is one biggest problem affecting transmission between sender and receiver. Noise is 
unwanted random energy that travels with the signal across the elements of communica t ion 
systems, causing distortion of transmitted information, resulting in the data not being correctly 
transmitted to the receiver. 
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In wireless communication (e.g., mobile cellular telephone), there are several varieties of noise 
“that could degrade the quality of communication, such as acoustic background noise, thermal 
noise, electromagnetic radio-frequency noise, co-channel interference, radio-channel distortion, 
echo, and processing noise” [9]. 

Hidden terminal causes in wireless communication as a result, the receiver station is not able to 
properly receive a segment from the sender station because of interference from other stations.  
This can occur when the sender is within receiver range but is not within the range of the station. 
For example, station A is within B station range, and C is also within B range, but C is not within 
a range.  Therefore, when A sends a packet to B, and C sends a packet to B at the same time, a 
collision occurs because A and C are not within the same range [10]. The Hidden terminal problem 
usually happens in ad hoc network, since it does not require additional resources.  

In wireless communication, fading happens result the transmission signal between the sender and 
receiver is distributed on multiple paths, therefore the signal receives by received will have some 
changes. “Multipath propagation can lead to fluctuations in the amplitude, phase, and angle of the 
signal received at a receiver” [11]. Figure 1.2 shows a multipath propagation. 

 

 

Figure 1.1: Noise [10] 
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Figure 1.2: Multipath propagation 

High bit error rate occurs in both wireless and wired communication whenever there is a difference 
between the percentage of transmitted data and the received data. It occurs when there are problems 
in the medium between sender and receiver, such as fiber links, ADSL, and cellular 
communication.  

1.2 Congestion control theory 

Nowadays, many the Internet users employ reliable transport protocols such as Transmiss ion 
Control Protocol (TCP). TCP provides reliable and connection-oriented transport between 
applications [12]. It controls data flow on networks through both a sender-side congestion window 
and a receiver-side advertised window, which means that TCP does not send segments larger than 
the size of the congestion window of the sender, nor does it receive more segments that are 
advertised on the window of the receiver [13, 14]. Congestion window size relies on traffic on the 
network. When there is a high load on a router or link, the size of the congestion window becomes 
small; the size increases gradually depending on the network [15]. Packets of TCP are 
progressively acknowledged, which means that they reach their destination in a sequence.  A 
duplicate packet acknowledgment signifies that there is an issue on the network. The sender detects 
a lost packet by receiving three duplicates [16]. In addition, TCP senders reveal a lost packet 
through timeouts when they do not receive an acknowledgment [17]. Retransmission times are 
consistently changed, depending on Round Trip Time (RTT) measurements.   

Traffic overload on the routes results in congestion in the router queues, which increases delays 
and causes the packets to become lost. TCP increases progressively, and transmission rates rely on 
networks capability. If there are any packets lost, then TCP resends the lost packets and decreases 
the transmission rate [18].  
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Congestion control has two initial phases: slow start and congestion avoidance. Slow start begins 
the congestion window size with one segment; the congestion window size will increase by one 
segment with each acknowledgment received, and the segment size will double [19]. The 
transmission rate will be raised by the slow start until a loss is detected, if the receiver's advertised 
window is full, or until it reaches the slow start threshold [20]. If packet loss occurs due to 
congestion, the sender reduces the transmission rate in order to keep the network balanced. After 
reaching the slow start threshold, TCP progresses to the congestion avoidance stage, and the 
congestion window size will increase by one segment for each round trip unless there is packet 
loss, or unless it times out [21]. Figure 1.3 outlines the slow start and congestion avoidance design, 
and Figure 1.4 depicts the congestion window threshold.  

 

 

Figure 1.3: Start and congestion avoidance design [37]  

 

https://en.wikipedia.org/wiki/Acknowledgement_(data_networks)
https://en.wikipedia.org/wiki/Round-trip_delay_time
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TCP is considered to be full duplex protocol, which means that data flow could be in both 
directions [21]. This indicates that data may be sent from the sender or receiver, which is  two-
way communication, as shown in figure 1.5. 

 

TCP Tahoe [23] is the first version of TCP that utilized slow start and congestion avoidance. 
Another popular version of TCP is TCP Reno, which was developed from Tahoe and includes a 
fast recovery  feature [24].  

 

 

 

 

 

 

Figure 1.4: Congestion window threshold  

 

Figure 1.5: Full duplex protocol 
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1.3 Random Loss vs congestion loss control Protocols 

Several studies have been conducted to distinguish random loss from congestion. Biaz and Vaidya 
[25] used inter-arrival times at receiver point to identify the between losses.  Although they solved 
the problem, this technique used only single wireless at end-to-end path, and high load on the 
network. 

Mathis et al. [26] used selective acknowledgment (SACK) to prevent multiple losses. The receiver 
sends SACK segments to the sender for data that has been received successfully. The advantage 
of SACK is that it carries information about some packets seen so far, thereby assisting the sender 
by retransmitting only the actual packets lost.  However, SACK’s disadvantage is overhead (excess 
computation time) when there are a large number of users.  

Keshav and Morgan [27] proposed a new technique to reduce overhead, titled Simple Method-to-
Aid ReTransmissions (SMART). The idea of SMART is to develop selective acknowledgment. 
SMART mechanism behaves in a way where every acknowledgment holds the acknowledgment, 
and the sequence number of packets that started the acknowledgment will inform the sender that 
the packet has been received correctly. The problem of SMART is that it is still not fully capable 
of distinguishing between random loss congestion. 

Other schemes proposed to distinguish between two losses by congruous.   Samaraweera et al. [28] 
developed a technique for wireless network issues called Explicit Loss Notification (ELN). The 
idea behind ELN is to specify the source of random loss, whereby it allows the sender to retransmit 
the packet without decreasing the congestion window.  

“An identical signal has been proposed to halt the congestion control at the source when a 
disconnection appears due to handover in cellular networks. The difficulty with this solution is 
that any packet corrupted at the link level is discarded before reaching TCP” [6].  

Other researchers suggested improving the performance of TCP during the congestion loss more 
than the random loss in order to add more techniques on the network or at the sender to decrease 
the congestion on the network buffers. By decreasing the size of the queue in the nodes, it avoids 
retransmission loss, and the performance will be adequate, particularly for certain applications. 
Explicit Congestion Notification (ECN) [29] and TCP Vegas are new solutions that were 
developed to solve the problem of end-to-end delay. TCP Vegas uses RTT and congestion window 
size to calculate the packet in the router’s buffer; if the number of packets is more than the 
threshold, TCP Vegas reduces the congestion window. In ECN, routers utilize an explicit signal to 
notify the source that there is congestion, rather than dropping the packets. If there is no issue at 
the senders, receivers or routers, then the congestion losses will reduce slightly, and other losses 
can be considered as a  random loss for both ECN and Vegas. This means that if some queue 
lengths work well without interruption, they help to detect the congestion.  Therefore, any losses 
are considered to be random for the source, and as a result, the sender retransmits the packet loss 
without decreasing the window.  However, if the congestion loss was not clear in the medial node, 
the sender will then deal with loss in a serious way. Sometimes, the sender somewhat decreases 
the congestion window when the real loss occurs.  
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Floyd and Henderson created TCP NewReno in 1999. TCP NewReno checks to see if more than 
one segment is lost in the current window when three duplicate ACKs arrive. When TCP receives 
three duplicate ACKs, it retransmits the lost segment until a new ACK (not duplicate) arrives. If 
the new ACK defines the end of the window when the congestion was detected, TCP is certain 
that only one segment was lost.   

Baiocchi et al. recommended the use of “Yet Another High Speed” TCP, whereby RTT estimation 
and loss detection predict network delay[31].  In every RTT, the congestion window decreases by 
.5  whenever 3 duplicate ACKs are received; the congestion window increases by 1  whenever a 
loss is identified. The default TCP algorithm is CUBIC TCP.  Initially introduced by Rhee and Ha 
in 2008, it is the modified version of current TCP variants, and is currently used in maximum 
Linux OS.   Rather than using a linear function, CUBIC TCP applies a cubic function to a 
congestion window increase in order to augment the scalability of a high-BDP network.  It also 
uses BIC algorithm and HTCP’s cubic function of the congestion window. 

In order to improve fairness and TCP efficiency in wireless networks, Westwood+ TCP [32] was 
proposed, a revised sender side-only version of NewReno TCP.  Westwood+ TCP’s primary 
objective was to conduct an end-to-end estimation of available bandwidth for a TCP connection 
by accurately counting and correctly filtering the stream of ACK packets.  That estimate is then 
applied to adaptively reduce both the congestion window size and the slow-start threshold size at 
the completion of the congestion phase.  Consequently, Westwood+ TCP the classic multiplica t ive 
decrease paradigm is replaced by the adaptive decrease paradigm. 

TCP mVeno is a new version of TCP Veno [33].  Its purpose is to make full use of the congestion 
information of all the subflows belonging to a TCP connection in order to adaptively adjust the 
transmission rate of each subflow. TCP New Jersey+ differs from TCP New Jersey, in that the 
main goal is to improve available bandwidth estimation and recovery technique. TC New Jersey+ 
guarantees high throughput via an increased congestion window when the sender reveals that a 
packet is lost, or due to retransmission timeout [34].  

 

1.4 Proposed TCP Variant for Random Loss Solution 

These variants explained above perform well to distinguish between congestion loss and random 
loss, however, we need to probe a better variant that can improve the performance of data 
transmission in wireless networks.  

The motivation behind this thesis is to use a congestion control technique that has been introduced 
in a previous study, titled TCP Congestion Control Enhancement for Random Loss (TCP CERL). 
TCP CERL is a sender-side modification of TCP Reno protocol. The difference between CERL 
and other TCP variants is that CERL depends on the maximum sequence number of a segment 
during the fast recovery algorithm. CERL is an end-to-end technique that achieves high 
performance over wireless links and doesn’t decrease the congestion window and slow start 
threshold if the random loss is detected. CERL assumes a static threshold (A), whereas it will not 
perform well when considering piggybacking flow and a heavy traffic load compared to TCP New 
Jersey+ and other new protocols. 
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 In this thesis, we propose a modified version of TCP CERL, called TCP CERL PLUS (TCP 
CERL+, in short), which employs the average and minimum  of RTT rather than only RTT in TCP 
CERL. We compare CERL and CERL+ with TCP New Jersey+, TCP mVeno, TCP Westwood+, 
TCP Cubic, TCP YeAh, and TCP NewReno by using Network Simulation NS-2. The results will 
show that CERL+ outperforms CERL when there are many users and a piggybacking flow. 

 

1.5 Thesis Organization 

The remainder of this thesis is organized as follows:  Chapter 2 contains the background, 
literature review and piggybacking concept. CERL is explained in Chapter 3, and it is compared 
to other mentioned protocols.  In Chapter 4, we examine CERL+ and compare it to other 
mentioned protocols. Chapter 5 is the conclusion of this thesis.  
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Chapter 2 
Background and Literature Review  

This chapter presents background information about certain protocols that are related to this 
study, as well as the concept of piggybacking. 

2.1 General Information about TCP 

TCP is a reliable, connection-oriented protocol in transport layers. Before starting the data 
transmission, TCP prepares three phases: establish the connection, send the data, and terminate the 
connection. When TCP establishes a connection, TCP uses a three-way handshake technique, as 
shown in Figure 2.1. 

 

Figure 2.1: Three-way handshake [35] 

Host A sets the SYN bit by transmitting a segment with sequence number x.   

Host B replies by sending an ACK bit segment, and sets the sequence number x+1 SYN bit; it 
then sets sequence number y. 

Host A sends back a segment with an ACK bit and sets the y+1 sequence number. 
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Figure 2.2: TCP header [36] 

The TCP segment consists of a segment header and a data section. The header has ten required 
fields, as well as an optional field. The source port is for sending, and the destination port is for 
receiving; both are 16-bit fields. Sequence numbers are used by the source to indicate the packet 
number. The acknowledgment number is utilized to denote the next sequence number sent from 
the destination to the source. The data offset specifies the initial data. The reserved bit is a 6-bit 
field, which is set to 0.  

The window size is a 16-bit field, which denotes the number of packets that the receiver can carry. 
Checksum is 16 bits, and it is equipped with an error detection feature. The urgent pointer is 
utilized when the URG bit is set.  

2.2 TCP Protocols Overview  

2.2.1 TCP Reno 

TCP Reno has three main phases: Slow Start, Congestion Avoidance, and Fast Recovery. The 
purpose of this protocol is to treat the problems of congestion, timeout, and three duplicate ACKs. 
When a timeout occurs, TCP Reno sender changes to the slow start phase from either the 
congestion avoidance phase or the fast recovery phase [37].  

In addition, the sender starts a new round if it remains in slow start.  However, if the sender receives 
three duplicate ACKs when in either Slow Start or Congestion Avoidance, the sender changes to 
the fast-recovery phase and remains there as long as duplicate ACKs continue to arrive. The fast 
recovery works in the same way as a slow start (increases the congestion window exponential ly), 
however, it begins the congestion window from slow start threshold plus three MSSs (Maximum 
Segment Size), rather than only one in the slow start phase. There are three cases that occur in fast 
recovery: 
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Firstly, if Reno continues to receive duplicate ACKs, it continues in fast recovery and increases 
the congestion window. 

Secondly, when a timeout occurs, it reverts to Slow Start.  

Lastly, if a new ACK arrives and is not duplicated, it moves to the congestion avoidance phase.  
Reno then reduces the congestion window size equal to that of the slow start threshold value. Refer 
to Figure 2.3 for a diagram of TCP Reno. 

 

Figure 2.3: TCP Reno diagram [37] 

Figure 2.4 shows the congestion window changes in slow start, congestion avoidance, and fast 
recovery states.   
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                                 Figure 2.4: Congestion window changes [37] 

2.2.2 TCP NewReno 

TCP NewReno is a new version of TCP Reno[30]. TCP NewReno has a new mechanism in the 
fast recovery phase called additive increase multiplicative decrease (AIMD), which means that 
after slow start phase, the congestion window size increases as tooth pattern, as shown in Figure 
2.5. 

TCP NewReno checks to see if more than one segment is lost in the current window when three 
duplicate ACKs arrive. When TCP receives three duplicate ACKs, it retransmits the lost segment 
until a new ACK (not duplicate) arrives. If the new ACK defines the end of the window when the 
congestion was detected, TCP is certain that only one segment was lost. However, if the ACK 
number defines a position between the retransmitted segment and the end of the window, it is 
possible that the segment defined by the ACK is also lost. NewReno TCP retransmits this segment 
to avoid continually receiving more duplicate ACKs [37].  

 

Figure 2.5: NewReno tooth pattern [37] 
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2.2.3 TCP YeAh 

YeAh-TCP (Yet Another High-speed TCP) utilizes a mixed loss/delay approach to calculate 
congestion windows, which means that RTT estimation and loss detection are used to predict 
network delay [38].  
The target of this protocol is to reach high efficiency and to decrease link loss, which keeps the 
network load lower. TCP YeAh has two main modes: fast mode and slow mode. In fast mode, if 
a network connection is still not fully used, the TCP YeAh increases the congestion window 
(similar to STCP - Scalable TCP) [39].  However, when in slow mode, TCP YeAh works like TCP 
Reno by in increasing the congestion window. 

The phase is determined according to the estimated number of packets that are present in the 
bottleneck queue.   

 RTTbase  is the minimum RTT (which is the predicted propagation delay measured by the sender) 
and RTTmin is the minimum RTT (which is assumed to be in the current data window of the cwnd 
packets), then the estimated queue delay at that time will be determined as follows: 

RTTqueue = RTTmin − RTTbase                                                                                                                                      (2,1) 

From the RTTqueue, the number of packets that were placed in the queue by the flow can be 
estimated to be: 

Q = RTTqueue  * G  =  RTTqueue  * ( 𝑐𝑤𝑛𝑑

𝑅𝑇𝑇𝑚𝑖𝑛
)                                                                              (2,2) 

“Where G is the goodput. We can also evaluate the ratio between the queuing RTT and the 
propagation delay L = RTTqueue/RTTbase, that indicates the network congestion level. Note that 
RTTmin is updated once per window of data”[38]. 

When Q < Qmax and L < 1/φ, this indicates that the algorithm is in fast mode.  If not, it is in slow 
mode.  Parameters Qmax and φ are tunable.  Qmax is the highest allowable number of packets that 
can be stored in the buffers in a single flow.  

1/φ is the highest degree of buffer congestion in terms of BDP. In slow mode, there is a preventive 
decongestion algorithm that is initiated: any time Q > Qmax, there is a reduction in the congestion 
window by Q, and ssthresh is set to cwnd/2. In addition, because RTTmin is processed only one 
time for each RTT, one RTT represents the decongestion granularity. 

Whenever Q > Qmax, YeAH-TCP tries to eliminate the packets from the queue, the delay in the 
queue continues to grow due to the greediness of the Reno flows, whereby the buffer gets 
overloaded.  When that happens, YeAH-TCP will infrequently remain in the fast mode; rather, it 
spends most of its time in slow mode.  On the other hand, in the case of the non-greedy flows that 
compete against each other (e.g., those that initiate the preventive decongestion algorithm), the 
YeAH-TCP algorithm changes the phase from fast to slow at any time when the buffer queue 
increases beyond Qmax and reverts to Fast once preventive decongestion comes into effect [38]. 
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2.2.4 TCP BIC 

Binary Increase Congestion (TCP BIC) [40] is a TCP congestion-control that was recommended 
for high-speed networks with high latency.  It consists of two phases:  the binary search increase 
phase, and the additive increase phase. 

The binary search phase is utilized by the sender to improve congestion window performance. If 
the packet is lost, TCP BIC uses factor b to reduce the congestion window size, and BIC sets the 
value of cwndmax to the value of congestion prior to the loss and sets the value of cwndmin to the 
value of congestion after the loss to cwndmax * b [40].  

If cwndmin and cwndmax are different at a medial point, and cwndmin is lower than the threshold, 
BIC begins a binary search increase at the mid-point of the congestion window.  Otherwise, BIC 
increases the window size one by one, depending on the number of ACKs received.  

When there is no packet loss detected by the sender, the BIC sender sets the value of the actual 
window to a new minimum window.  However, if packet loss is detected, then the BIC sets the 
value of the actual window to a new maximum window[40].   

BIC continues to increase the window by one until it becomes less than the minimum slow start 
threshold, and the congestion window is equal to the maximum value if the window continues to 
increase more than the maximum window. BIC switches to a new phase (max probing); In other 
words, it uses the inverse of the binary search phase first and uses the increase afterward [41].  

 

2.2.5 TCP Cubic 

TCP Cubic is descendent of TCP BIC. It is used to solve the problem bandwidth delay product 
(BDP), utilizing a cubic function rather than a linear congestion window function for congestion 
control scalability and stability under fast and long-distance networks.  

A cubic function is applied by Cubic to determine the time that has elapsed since the last 
congestion episode.  Although the majority of standard TCP algorithms apply a convex increase 
formula following an episode of loss when the window queue continues to increase, Cubic applies 
a cubic function to both convex and concave types of increase[42]. 

Following a loss event, once a window has been decreased, “Wmax” appears in the window.  A 
multiplicative reduction of the congestion window occurs by a factor of β (where β is the window 
decrease constant, and the normal fast recover and TCP retransmission [42]. 

Once it switches from the fast recovery phase to congestion avoidance, the window begins to 
expand thanks to the cubic function’s concave profile.  Because the plateau of the cubic function 
is set at Wmax, the window size keeps increasing until it reaches the Wmax level[42].  The cubic 
function then transforms into a convex profile, which reinitiates the development of the convex 
window.   

The switch from concave to convex window enhances network stability and protocol during high 
traffic times on the network due to the stable size of the window[42].  A plateau is created around 
Wmax during times of maximum network use under a steady state.  Because the majority of 
Cubic’s samples of window sizes are at (or close to) Wmax, it results in improved protocol stability 
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and enhanced function during high network traffic.  It appeared that the protocols that had convex 
growth functions had the most significant increase at the saturation point, which caused substantia l 
packet losses.   

The function used by Cubic to determine window growth is as follows: 

W(t) = C (𝑡 − 𝐾)3  +   Wmax                                                                                                        (2,3) 

C is a Cubic parameter, t is the elapsed time from the last window reduction, and K is the time 
elapsed by the above function to increase W to Wmax once there was no new episode[42]. This is 
calculated as follows: 

 

K =   √
𝑊𝑚𝑎𝑥 𝛽 

𝐶

3
                                                                                                                      (2,4) 

 

Once an ACK is sent during the congestion avoidance phase, the rate of increase in the window is 
calculated by Cubic during the following RTT period.  Using Eq.(2,3), it establishes the candidate 
target value of the congestion window as W(t + RTT)[42].  If, for example, the size of the current 
window size is cwnd, Cubic operates in three modes, depending on the value of cwnd. 

If cwnd is less than the window size that would be reached by TCP (standard) at time t following 
a loss event, Cubic would be in the TCP mode (see notation below on determining standard TCP 
window size in terms of time t).  If cwnd is smaller than Wmax, this signifies that Cubic is in the 
concave zone, whereas if cwnd is larger than Wmax, Cubic is therefore in the convex zone[42]. 

Cubic has certain drawbacks, such as the fact that it does not adequate throughput when there are 
a large number of packets lost on the network. 

 

2.2.6 TCP Westwood 

TCP Westwood is a sender-side modification of the TCP protocol that develops the performance 
of end-to-end congestion control for both wireless and wired networks. The difference between 
Reno and Westwood is that Westwood is capable of applying more techniques to identify the type 
of loss, a feature that is not available with TCP Reno.    

TCP Westwood utilizes a bandwidth estimate (BWE) mechanism to control the congestion 
window and slow start threshold. A Westwood sender checks the average ACKs received to 
estimate the current bandwidth of TCP connection. “When an ACK is received by the source, it 
conveys the message that the amount of data corresponding to a specific transmitted packet was 
delivered to the destination” [43]. 
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With TCP Westwood, all segments have the same size when the source receives three duplicate 
ACKs, or when a timeout occurs due to congestion. The Westwood source uses the BWE to set 
the congestion window and slow start threshold.  

Westwood implements [43] the pseudo code algorithm for three duplicates, as:  

if (n DUPACKs are received) 

ssthresh = (BWE * RTTmin)/seg_size; 

if (cwnd > ssthresh ) /* congestion avoid. */ 

cwnd = ssthresh; 

Westwood implements the pseudo code algorithm for a timeout, as: 

if (timeout expires) 

ssthresh = (BWE * RTTmin)/seg_size; 

if (ssthresh < 2) 

ssthresh = 2; 

end if; 

cwnd = 1; 

end if 

To estimate (BWE), Westwood uses the following equation: 

 bk = dk /∆𝑘  = dk / tk-tk-1                                                                                                                                               (2,5) 

 Where bk is the estimated bandwidth,  ∆𝑘 is interarrival ACKs, dk is the transmitted bytes and tk-

tk-1 ACK received at source[43]. 
 

2.2.7 TCP Westwood+  

TCP Westwood+  is a sender-side-only modification of the TCP Reno protocol that develops the 
performance of congestion control in wireless networks. TCP Westwood+ is a new enhanced 
version of TCP Westwood [45]; it is simpler and capable of estimating available bandwidth. 

Westwood+  algorithm is based on an end-to-end approximation process of the amount of available 
bandwidth on the connection path of the TCP [45]. This estimate is acquired by filtering the flow 
of ACK packets that are being returned, and this is used to adjust the control windows whenever 
congestion on the network is occurring.  Specifically, upon receiving 3 DUPACKS, the congestion 
window (cwnd), along with the slow start threshold (ssthresh), are set to the same setting as the 
estimated BWE, multiplied by the minimum round-trip time (RTTmin).  When a coarse timeout 
expires, ssthresh is adjusted to its previous setting, whereas cwnd is set to one.   

https://en.wikipedia.org/wiki/TCP_Reno
https://en.wikipedia.org/wiki/Protocol_stack
https://en.wikipedia.org/wiki/Congestion_control
https://en.wikipedia.org/wiki/Wireless_network
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Westwood+’s pseudo code algorithm is as follows[45]: 

 

a) When ACKs are received:  

cwnd is increased according to the Reno algorithm; the end-to-end bandwidth estimate BWE 
is computed;  

b) When 3 DUPACKs are received:  

ssthresh = max(2, (BWE * RTTmin) / seg_size); cwnd = ssthresh;  

c)    Upon the expiration of coarse timeout:  

ssthresh = max(2,(BWE * RTTmin) / seg_size); cwnd = 1;  

According to the pseudo code, Westwood+ also increases the cwnd (similar to Reno) upon 
receiving ACKs.  However, when congestion episode occurs, Westwood applies a special function 
of cwnd and ssthresh. Therefore, we can conclude that Westwood+ adheres to the paradigm of 
Additive-Increase / Adaptive-Decrease [45]. 

An interesting fact is that TCP Westwood+ has an adaptive decrease mechanism that enhances the  
stability of the standard TCP multiplicative decrease algorithm.  Furthermore, the shrinking ability 
of the adaptive window sufficiently decreases the congestion window during heavy traffic, and 
decreases it only slightly during light traffic, or when losses occur that are unrelated to congestion 
(e.g., unreliable radio links)[45].  In addition, the control window is equipped with the ability to 
increase the allocation of available bandwidth to various TCP flows.  In other words, one of the 
features in TCP Westwood+’s window setting is that it can track the estimated bandwidth.  Due to 
an adequate estimation of what is considered to be “fair share”, fairness improves.  On the other 
hand, the following could occur: 

the setting cwnd = B * RTTmin sustains a transmission rate (cwnd/RTT) = (B * RTTmin)/RTT  

that is smaller than the bandwidth B, estimated at the time of congestion. Therefore, the flow in 
TCP Westwood+ empties the backlog after the setting, which allows space for coexisting flows in 
the buffers[45]. 

An end-to-end estimation of the “best-effort” available bandwidth is proposed by TCP Westwood+ 
by properly counting and filtering the flow of ACKs that are being returned[45]. For every RTT, 
a sample of available bandwidth is calculated bk = dk /∆𝑘  , where dk  represents the amount of 
data acknowledged during the last RTT =∆𝑘.  The amount dk of is established by applying a proper 
counting process that considers delayed ACKs and duplicate ACKs[45].   

Duplicate ACKs account for one delivered segment, whereas delayed ACKs account for two 
segments.  A cumulative ACK accounts for one segment, or for whichever number of segments 
that exceed those that were already accounted for in previous duplicate acknowledgments.  
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2.2.8 TCP New Jersey 

TCP New Jersey evolved from the TCP Jersey protocol to estimate available bandwidth. Its main 
components include Congestion Warning and Timestamp-based Available Bandwidth Estimation. 
Congestion Warning transfers the capacity of an intermediate router to the sender because it helps 
the sender to distinguish the reason for the packet losses.  

The purpose of Timestamp-based Available Bandwidth Estimation is that any packet that reaches 
the receiver side obtains a timestamp with ACK that it sent back to the sender, rather than ACK 
reaching the time in TCP-Jersey[46]. The available bandwidth that is estimated by Timestamp-
based Available Bandwidth Estimation is only slightly affected due to the reverse links state, 
compared to the Available Bandwidth Estimation feature in TCP Jersey.  

One of the disadvantages in TCP New jersey is that if the sender reveals a packet loss, the sending 
rate drops, and might take longer to return than before the packet was lost. Both TCP Jersey or 
TCP New Jersey estimate the current available bandwidth according to Eq. 2, [46] 

                                                𝑅𝑛  = 
𝑅𝑛−1×𝑅𝑇𝑇+𝐿𝑛
(𝑡𝑛− 𝑡𝑛−1)+𝑅𝑇𝑇

                                                                     (2,6) 

Rn is the estimated bandwidth for ACK packet n received at time tn at sender and tn-1 is previous 
ACK received time at the sender. RTT is round-trip time, and Ln is the size of payload n in TCP 
Jersey. It is clear that the timestamp feature was used by the receiver for data segment arrival, 
which is an option in the header.   

The optimal congestion window (ownd) for TCP New Jersey is calculated as Eq. 2,7: 

                                             𝑜𝑤𝑛𝑑𝑛  = 
𝑅𝑛×𝑅𝑇𝑇

𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑖𝑧𝑒
                                                          (2,7) 

TCP New Jersey computes the time it takes for the packet to arrive at the receiver to obtain an 
accurate estimate if there are no issues on the network.  

However, New Jersey is not capable of calculating the accuracy of the available bandwidth if there 
is too much traffic on the network that affects packets sent, which means that TCP Jersey and TCP 
New Jersey are still not getting good performance  if there is a significant amount of traffic in the 
routers.           
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2.2.9 TCP New Jersey+ 

TCP New Jersey+ differs from TCP New Jersey, in that the main goal is to improve available 
bandwidth estimation and recovery technique. TC New Jersey+ guarantees high throughput via an 
increased congestion window when the sender reveals that a packet is lost, or due to retransmiss ion 
timeout.  

It is sometimes difficult to calculate the accurate available bandwidth estimation if the network 
state is deteriorated from background traffic in forward links that transmit data packets; both TCP 
Jersey and TCP New Jersey suffer from this problem.  

The new recovery in TCP New Jersey+ helps to achieve a good throughput compared to other TCP 
protocols in wireless networks, where packet loss occurs often.  

Pseudocode algorithm below describes how to estimate the available bandwidth in TCP New  

Jersey+.  

                                        Initialization : 

                                           n ← 1 

                                  𝑅𝑆0, 𝑅𝑟0, 𝑡𝑆0,𝑡𝑟0 ← 1 

                                   Procedure: 

                                         ACK packet arrived at the sender 

                                            if(timestamp ) 

                                     𝑅𝑆𝑛  ←  (𝑅𝑇𝑇 × 𝑅𝑠𝑛−1 +𝐿𝑛  ) / ((𝑡𝑠𝑛 − 𝑡𝑠𝑛−1) + 𝑅𝑇𝑇  ) 

                                                                /* ABE based on ACK packet inter arrival time */ 

                                      𝑅𝑟𝑛  ←  (𝑅𝑇𝑇 × 𝑅𝑟𝑛−1 +𝐿𝑛 ) / ((𝑡𝑟𝑛 − 𝑡𝑟𝑛−1) + 𝑅𝑇𝑇  ) 

                                       /* ABE based on data packet inter arrival time */ 

                                        𝑅𝑛  ←  max( 𝑅𝑆𝑛  .𝑅𝑟𝑛   ) 

                                      /* maximum value of two estimations */  

                                    n ← n+1 

                                     end if  

The  𝑅𝑠𝑛 is the estimated bandwidth when the ACK packet n arrives at time 𝑡𝑠𝑛   at the sender, and 
𝑡𝑠𝑛−1 is its previous ACK packet arrival time at the sender. The  𝑅𝑟𝑛 is the estimated bandwidth, 
by using the timestamp option, when the data segment n arrives at time  𝑡𝑠𝑛at the receiver and 𝑡𝑟𝑛−1  
is the previous data segment arrival time at the receiver. 𝐿𝑛 is the size of data packet n, and RTT is 
the round-trip time [46]. 
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TCP New Jersey+ uses the maximum value of   𝑅𝑠𝑛  and 𝑅𝑟𝑛 to specify the transmission rate; 
therefore, it solves the problem of estimating bandwidth and decreasing traffic on the network. If 
retransmission timeout (RTO) is expired, or due of BER, TCP New Jersey+ follows this  
pseudocode algorithm [46]: 

if (RTO expired) 

if (Congestion Warning) 

/* if RTO due to congestion*/ 

cwnd = 1; 

ssthresh = owndn; 

else 

/* if RTO due to BER */ 

cwnd = (owndn + owndn-1) / 2; 

ssthresh = owndn; 

end if 

end if 

The TCP New Jersey+ sender decreases the ssthresh to owndn and the cwnd to 1 if RTO is expired   
in order to distinguish the cause of network congestion, and to determine the BER. However, if 
RTO is caused by BER, then TCP New Jersey+ functions the same as New Jersey by diminishing 
ssthresh to owndn and cwnd to half total owndn plus cwndn-1 [46]. 

TCP New Jersey+ developed the recovery technique that is available in TCP New Jersey. 
Whenever New Jersey+ receives three duplicates due to congestion, it behaves like New Jersey. 
However, if BER causes the packet loss, then New Jersey+   sets  ssthresh to  owndn, and increases 
cwnd by one MSS.  

Compared to other TCP protocols, TCP New Jersey+ has high performance when there is a large 
number of packets losses.  

2.2.10 TCP Vegas  

With TCP Reno (as well as Tahoe, its older version), the window size is continually increased until 
packet loss is caused by congestion.  At that point, when the window size is throttled due to packet 
losses, the connection throughput could diminish.  This cannot be avoided due to the type of 
congestion control function featured in TCP Reno. In other words, TCP RENO can identify 
network congestion only when the congestion has been caused by lost packets.  However, 
throttling of the window size is not adequate when it is the TCP connection itself that caused the 
congestion because of its oversized window size. If the window size is properly controlled (e.g., 
the packet loss does not occur in the network), degraded throughput due to the throttled window 
can be avoided, which is the reason that TCP Vegas was developed[47]. 
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TCP Vegas employs another mechanism, in which it controls its window size by observing RTTs 
(Round-trip Time) of packets that the connection has sent before. If observed RTTs become large, 
TCP Vegas developers recognized that when the network starts getting congested, it throttles the 
window size. However, if RTTs become small, TCP Vegas determines that the network is no 
longer congested, and subsequently increases the window size again. Afterward, because the 
window size is in a perfect situation, it reaches the appropriate value. More specifically, in the  
congestion avoidance phase, the window size is updated as follows[47]: 

 

             cwnd (𝑡 + 𝑡𝐴) =  

{
 
 

 
  𝑐𝑤𝑛𝑑(𝑡) + 1,     𝑖𝑓 𝑑𝑖𝑓𝑓 <

𝑎

𝑏𝑎𝑠𝑒𝑟𝑡𝑡

𝑐𝑤𝑛𝑑(𝑡),      𝑖𝑓 
𝑎

𝑏𝑎𝑠𝑒𝑟𝑡𝑡
≤ 𝑑𝑖𝑓𝑓 ≤ 

𝛽

𝑏𝑎𝑠𝑒𝑟𝑡𝑡

𝑐𝑤𝑛𝑑(𝑡) − 1,           𝑖𝑓 
𝛽

𝑏𝑎𝑠𝑒𝑟𝑡𝑡
< 𝑑𝑖𝑓𝑓

                   (2,8) 

 

                      diff   = 
𝑐𝑤𝑛𝑑(𝑡)

𝑏𝑎𝑠𝑒𝑟𝑡𝑡
 - 𝑐𝑤𝑛𝑑  (𝑡)

𝑟𝑡𝑡
                                                                       (2,9) 

Where RTT represents the observed round-trip time, the smallest value of observed RTTs is 
shown as 𝑏𝑎𝑠𝑒𝑟𝑡𝑡 , and both α and β are constant values.  

TCP Vegas is equipped with a Slow Start mechanism, which is another special feature in its 
congestion control algorithm. The rate at which it increases its window size in the slow start phase 
is half of that in TCP Tahoe and TCP Reno (i.e., the increase in the window size is incremental for 
every other ACK packet received).  Eq.2,8 was applied in TCP Vegas to determine that if observed 
RTTs of the packets are identical, the window size does not change[47]. The conclusion was that 
TCP Vegas can reach an additional 40% of throughput over that of TCP Reno, as verified in 
simulation and execution testing[47]. 

 

2.2.11 TCP Veno 

TCP Veno applies end-to-end congestion control to distinguish between congestive and random 
losses, similar to TCP Vegas for packet loss. The TCP Veno sender estimates the connection state 
to specify if the packet loss was due to congestion or random loss. TCP Veno uses  N  measurement 
for congestive state, which can be defined as equation  Diff *BaseRTT.  If packet loss occurs and 
N <3, TCP Veno concludes that it is a random loss. But if N>=3 when packet loss occurs, then 
TCP Veno assumes that the loss is due to congestion. In TCP Vegas, BaseRTT constantly changes 
throughout the TCP connection with the minimum round-trip time.  However, in TCP Veno, 
BaseRTT is reset whenever packet loss is detected, either due to time-out or duplicate 
acknowledgments (ACKs). BaseRTT is then updated as in the original Vegas algorithm until the 
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next fast recovery or slow start is triggered.  This step is taken to take the changing traffic from 
other connections in consideration, and that the bandwidth that was acquired by a single connection 
among many other connections may change from time to time, thereby causing the BaseRTT to 
change [48]. 

TCP Veno employs two algorithms: Slow Start and Additive Increase. TCP Veno utilizes a Slow 
Start algorithm if cwnd is less than ssthresh, and it behaves similarly  to TCP Reno for increasing 
the cwnd. Otherwise, TCP Veno uses an Additive Increase algorithm if cwnd is higher than 
ssthresh, and it modifies TCP Reno as follows pseudocode : 

if (DIFF*BaseRTT < 3) // available bandwidth under-utilized 

 cwnd=cwnd+1/cwnd when every new ACK received 

else if (DIFF*BaseRTT ≥ 3) // available bandwidth fully utilized 

 cwnd=cwnd+1/cwnd when every other new ACK received 

If packet loss is due to random loss, then TCP Veno reduces the size of the window by 1/5 rather 
than by1/2 (as in Reno). The main advantage of TCP Veno is that it increases the congestion 
window slowly, which keeps the TCP at the appropriate transmission rate.    

2.2.12 TCP mVeno   

TCP mVeno is a new version of TCP Veno [48].  Its purpose is to make full use of the congestion 
information of all the subflows belonging to a TCP connection in order to adaptively adjust the 
transmission rate of each subflow. 

The multi-path transfer feature in mVeno is based on TCP Veno. It changes the additional increase 
during the congestion avoidance phase by assigning various weights 𝛿𝑠𝑟  for various paths r for 
effective coupling of the subflows. 

TCP Veno applies the concept of the congestion monitoring scheme from TCP Vegas and 
integrates it into Reno’s congestion avoidance phase.  Veno calculates the backlog N at the queue 
and applies it as a gauge to determine whether or not the network is congested. If N ≥  β, the 
network is in a congestive state.  

Veno increases the congestion window w(t) by 1/ w(t) on every other positive acknowledgment.  
Conversely, it decreases it by half on each packet loss event.  If N < β,  it is in the non-congestive 
state.  

The congestion window w(t) is increased by 1/w(t) for every positive acknowledgment and 
decreased by 1/5 for each packet loss event [49]. 

The backlog N is given by Eq. 2,10, as follows[49]: 

                      N   =( 𝑐𝑤𝑛𝑑

𝑏𝑎𝑠𝑒𝑅𝑇𝑇
 - 𝑐𝑤𝑛𝑑 

𝑅𝑇𝑇
) *    baseRTT                                                       (2,10) 
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In the above formula, cwnd represents the congestion window size, RTT is the average RTT in the 
last round, and baseRTT is the least RTT that has been measured up to this point. 

Veno’s additional algorithms are improved by mVeno via distribution of the weighted parameter 
(i.e., 𝛿𝑠𝑟 for each subflow).  mVeno performs the following steps on every subflow. 

When N ≥ β, the congestion window 𝑤𝑠,𝑟(𝑡) is increased by mVeno flow s on subflow r 
by 𝛿𝑠𝑟/𝑤𝑠,𝑟(𝑡) on every second positive acknowledgment and decreases it by (1/2) for every lost 
packet.  However, when N < β, the congestion window 𝑤𝑠,𝑟(𝑡)  increases by   𝛿𝑠𝑟/𝑤𝑠,𝑟(𝑡) on each 
positive acknowledgment and decreases by (1/5) every time a lost packet occurs[49]. 
 

2.3 Concept of Piggybacking  

Piggybacking is what some researchers called “two-way communication”, and others called 
“bidirectional flow or full transmission”. Generally, piggybacking occurs when the packets 
communicate in both directions from station A to station B, and the data arrives at B.   Instead to 
sending a control frame directly from B to A, station B waits until the network layer sends a packet 
to A, and the acknowledgment is attached in the data frame from B to A, using the field of 
acknowledgment in the data frame header. Therefore, the acknowledgment got a free ride in the 
data frame [50]. Figure 2.6 shows the ACK frame without data, and Figure 2.7 shows it with data. 

 

Figure 2.6: ACK without data 

 

In Figure 2.6, station A sends packets to station B and waits for ACK.  When station B receives 
the packet correctly, it returns ACK without adding any data with ACK, therefore the ACK is 
received quickly by station A. 
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Figure 2.7: ACK with data 

In Figure 2.7, station A sends the packets to station B and waits for ACK. ACK packet could 
contain data added by station B. After station B receives the packet, it waits sometimes before 
sending ACK because station B might have data to send to A. It is not necessary for station B to 
always data send to A, according to some researchers.  

2.3.1 Piggybacking traffic 

There are two cases for data received by a station. In the first case, the data received was corrupted, 
and in the second case, it was received correctly. It is preferable for the transmission rate to be 
high in order to use piggybacking because it might be overhead in the network. [51]. 

When there are several users on the network, the throughput of using piggybacking will be high 
compared to without piggybacking because ACK packets hold data.  Therefore, if they are lost, 
piggybacking compensates these losses, particularly if the traffic in the network varies, (e.g., the 
network does not always remain busy, but there could be several delays [52].   

Proper utilization of bandwidth can be developed if the bandwidth is properly configured to the 
channel access parameters, piggybacking policy, and network traffic [53]. 

2.3.2 Acknowledgment technique 

TCP is a reliable protocol, which utilizes an acknowledgment technique to ensure that data 
transmitted was successfully received by the receiver. The acknowledgment technique in TCP can 
be either Cumulative or Delayed. 

Cumulative acknowledgment is one where the receiver receives the data from the sender, then the 
receiver sends a feedback byte called the “acknowledgment”, which confirms to the sender that all 
the frames were received correctly.  Therefore, in order to save time, the receiver sends one 
acknowledgment in response to a particular number of frames. 

Delayed acknowledgment in TCP occurs when the receiver has the option of sending ACK 
immediately, or later. The purpose of delaying ACK is to reduce ACK traffic or to enable the 
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receiver to send data with ACK in one packet rather than separating them. However, delaying 
might cause timeout and retransmission for the source. 

2.4 Thesis Tool 

This thesis will apply Network Simulation 2 (NS 2) to compare previously-mentioned protocols 
in Section 1.3, as well as Gnuplot to plot the results.  

2.4.1 Network simulation 2 (NS2) 

NS 2 is a free open-source network simulation tool for network and communication research. NS 
2 is utilized to simulate routing, multicast protocols, and IP protocols such as TCP and UDP in 
wired and wireless networks. NS2 runs with many operating systems, such as Linux and SunOS, 
as well as with Windows versions. NS2 uses two languages: Object-oriented Tool Command 
Language (OTCL) to control the simulation and schedule discrete the events, and C++ language 
to NS2 subjects. NS2 supports a large number of built-in C++ classes, and it is appropriate to use 
these C++ classes to set up a simulation via a Tcl simulation script. NS2 runs traffic and topology 
before processing the simulation. The trace file in NS2 is used to analyze processing after the 
processing. “NS2 outputs any text-based simulation results. To interpret these results graphica lly 
and interactively, tools such as NAM (Network AniMator) and XGraph are used” [55]. 

 

                                                          Figure 2.8: NS2 tools [55] 

The purpose of using C++ is thatNS2 deals with packets, and when using existing modules. NS2 
uses OTCL for configuration, step and runs the simulation with an existing model. 

Advantages of NS2: 

➢ It is free and easy to download and install. 

➢ It supports many protocols and models. 

➢ It is flexible in terms of setting up the configuration parameters. 



27 
 

➢ It enables  researchers to design different scenarios. 

➢ It is widely popular, and the recourses can be found on many websites. 

Disadvantages of NS2: 

➢ It requires enough memory to simulate the topology, which means that it may not 

executive if there is insufficient space in memory. 

➢ It is sometimes incapable of running large-scale systems, or of obtaining the results. 

➢ It occasionally slows down due to bugs or crashes. 

2.4.2 Gnuplot  

Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, OSX, 
VMS, and other operating systems. The source code is copyrighted but freely distributed [56]. It 
was designed to allow researchers and students to plot their mathematical equations and data 
interactively. 

 

2.4.3 Network configuration 

We consider two distinct configurations in our implementations. One configuration assumes 
having partially wireless network while the other configuration assumes all wireless network.  
There are many reasons that we need to consider the wireless network in different applications: 

1) Sensor networks: sensor networks are composed of numerous minuscule immobile sensors that 
are randomly inserted to detect and transmit the current environment’s physical attributes, which 
are accumulated and tallied on a “data-centric” basis[57] [58].  A common term used to describe 
this feature is “battlefield surveillance”, whereby several sensors are dropped from an overhead 
aircraft in enemy territory.  Machinery prognosis, biosensing, and environmental monitoring are 
other examples of potential commercial fields.  

2) Personal healthcare includes multimedia networks that can monitor and analyze the behavior of 
elderly citizens in order to identify the cause of illnesses that afflict them (e.g., dementia ) [59].  
Networks comprised of an audible communication device that attaches to clothing, or those with 
video capability, can detect emergency events and immediately connect the elderly person with 
remote crisis services or family members[60].   

3) Industrial process control includes imaging and temperature / pressure sensing features for 
instances of critical time-sensitive events, or for industrial or process control purposes.  
Assimilating  machine vision systems with WMSNs can streamline and add flexibility to 
manufacturing processes in order to provide visual inspections and pre-set functions[61]. 
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Chapter 3 
 

TCP Congestion Control Enhancement of Random Loss (CERL) 
 

In this chapter, we briefly summarize TCP CERL’s algorithm, and compare it to TCP protocols 
previously mentioned in section 1.4. 

3.1 TCP CERL Algorithm 

TCP Congestion Control Enhancement of Random Loss (CERL) is an end-to-end mechanism 
that achieves immediate throughput improvement over wireless.  Although it is similar to TCP 
Veno in terms of distinguishing between random loss and congestive loss, CERL techniques are 
equipped with different mechanisms. 

RTT consists of two parts in TCP CERL [62]: 

1. The bottleneck queuing delay. 

2. Total round-trip propagation delay with service delay. 

The delay of queuing is equal to  
𝑙

𝐵
 , where l is queue length, and B is the bandwidth of the 

bottleneck link [62]. 

The total round-trip propagation delay with service delay is indicated  as T, where T is a constant 
value in TCP CERL.  

The calculation of bottleneck queue length l uses the following equation [62]: 

 

l = (RTT – T) B                                                                                         (4,1) 

TCP CERL sets T to be smallest RTT detected by the sender. Usually, l changes with updated 
RTT measurements. 

The difference between TCP Veno and TCP CERL is that TCP Veno measures the backlog of 
end-to-end, whereas TCP CERL measures the queue length of the router [62]. 

TCP CERL utilizes queue length in Eq. 4.1 to estimate the congestion state of the link. TCP 
CERL uses parameter N as a dynamic queue length threshold, where N is equal to Eq. 4,2: 

 

N = A * lmax                                                                                                                              (4,2) 
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lmax is the largest value of l calculated by the sender, and A is a value equal to 0.55 [62]. When the 
sender detects packet loss through three duplicate acknowledgments, and l is less than N, the TCP 
CERL sender, therefore, assumes that the lost packet was due to random loss, and retransmits that 
packet without reducing the congestion window and slow start threshold. However, if l > N at the 
time when the sender receives the duplicate acknowledgments, TCP CERL then assumes that the 
loss was due to congestion and therefore, the TCP sender decreases the congestion window and 
slow start threshold similar to TCP Reno. On occasion, when multiple losses occur during 
transmission, the sender reduces the window only once.  

3.1.1 Congestion window inflation 

TCP Reno receiver sends an acknowledgment when a packet is received. The Reno receiver sends 
a duplicate acknowledgment (ACK) when a packet is out of order. Therefore, if the TCP Reno 
sender receives the duplicate ACK, the sender uses the fast recovery algorithm to increase the 
congestion window and to keep the network channel full [62]. For each duplicate ACK received 
by the sender during the fast recovery phase, the congestion window is increased by one. When 
the sender receives the first ACK for the new data during the fast algorithm, the TCP Reno sender 
sets the congestion window to the slow start threshold value. 

TCP CERL slightly modified  window inflation and deflation.  If the first loss occurs in the current 
window of data, the TCP CERL sender behaves in the same manner as TCP Reno in terms of 
window inflation. “Otherwise, the current value of the congestion window is saved. To deflate the 
window, the congestion window is set to this value when the first ACK acknowledges the new 
data to this value” [62]. 

Figure 3.1 illustrates the Reno congestion window inflation and deflation from one time to six. 
The TCP Reno sender receives the loss through three duplicate acknowledgments, after which the 
sender sets the slow start threshold to cwnd/2, and sets cwnd to ssthresh + 3 * SegmentsS ize. From 
Figure 3.1, it is clear that any period between 1 and 2, between 3 and 4, or between 5 and 6, Reno 
received duplicate ACKs, and allows the congestion window to become inflated. In addition, in 
periods 2, 4 and 6, TCP Reno received ACKs for the new data and reduced the cwnd equal to 
ssthresh. 

 

Figure 3.1: TCP Reno congestion window 
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Figure 3.2 shows that CERL detected the first loss at time 1 through three duplicate ACKs, the 
TCP CERL sender behaved similarly to Reno. However, when the TCP CERL sender detected 
another congestive loss at time 3, it behaved differently because it was not the first congestive loss, 
and therefore the sender reduced oldcwnd to cwnd, and set the cwnd to equal cwnd + 3* 
SegmentSize; CERL did not decrease the ssthresh value. In addition, during the period between 3 
and 4, CERL received more duplicate ACKs, which resulted in CERL allowing the congestion 
window to become inflated. In time 4, CERL received ACK for the new data and deflated cwnd 
equal to oldcwnd. In time 5, CERL received another packet loss through three duplicates ACKs, 
therefore determining that it was due to random loss. 

 

Figure 3.2: TCP CERL congestion window 
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3.1.2 Implementation of CERL 

1 - Every time a new RTT is estimated by the sender, T, l, lmax, and N are updated. 

2 - The TCP CERL sender changes to the fast recovery algorithm if the sender receives three 
duplicate acknowledgments. Therefore, the congestion window reduces to half if l is larger than 
or equal to N, or when the first-time congestion loss occurs only during this window of data.  

The details of CERL mechanism is presented in Algorithm 1 

 

Algorithm 1: CERL algorithm    

While (true) 
{ 
  WaitFor RTT arrival Event  
  If (Event(RTT ArrivalNotification)) 
 { 
    T                Min (ArrivedRTT, OldRTT)   
  
    A                 0.55 
    Calculate: l                 RTT─T 
    lmax                 Max(Calculated l, Old l)  
    N                 A*lmax 
    If (Event(l >N&highstAck>lastDecMaxSentSeqno) 
   {   
      ssthresh                 min (cwnd, rwnd)/2 
     If (ssthresh < 2*segsize)  
          ssthresh                 2*segsize 
      end if 
      cwnd                 ssthresh+3*segsize 
       lastDecMaxSentSeqno= MaxSentSeqno  
    else  
     oldcwnd                  cwnd 
      cwnd                  cwnd + 3 * segsize 
   end if 
  end if } 
Return } 
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For example, in Figure 3.3, the TCP CERL sender transmits segments from 1 to 20, and segment 
13 and 16 are lost. Eventually, three duplicate ACKs for segment 13 are received by the sender. 
Therefore, CERL causes the congestion window to be reduced, and the sender sets   
lastDecMaxSentSeqno to equal 20, and segment 13 to be retransmitted. However, when segment 
16 is lost, the TCP CERL sender does not reduce the congestion window since it is not the first 
loss, and it is less than 20. Therefore, CERL simply retransmits only segment 16.  

 

Figure 3.3: TCP CERL implementation 

 

3.2 Network Configurations  

In this chapter, we consider two configurations. The first configuration is a wired/wire less 
topology, and the second is all wireless topology. We will implement various scenarios in both 
topologies. 
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3.2.1 Network Configuration 1

 

Figure 3.4 illustrates the network configuration. We assume that N end-senders are S1 to SN, and 
N end-receivers are R1 to RN. We also assume that the network operates on two routers (G1 and 
G2). All transmission lines between end-senders are wired, and end-receivers are wireless. In 
addition, we assume that the transmission line between G1 and G2 is wired. 

3.2.1.1 Scenario 1 : One-way transmission  

Scenario 1 evaluates the throughput of CERL with a small number of users, using one-way 
transmission. Users will apply the same protocol during the simulation by  sending FTP files at 
different times. 

Figure 3.4 shows the network topology used for scenario 1. 

• N = 10. 

• S1 to S10 are TCP senders. 

• R1 to R10 are TCP receivers.  

• G1 and G2 are routers. 

• S1 to S10 are connected to G1 via wire links; bandwidth and propagation delay for each 

link are 1 Mbps and 10 ms, respectively. 

• R1 to R10 are connected to G2 via wireless links; bandwidth and propagation delay for 

each link are 1 Mbps and 10 ms, respectively.  

• We denote L for the wired link between G1 and G2, the bandwidth and propagation delay 

for L are 8 Mbps and 50 ms, respectively. 

• We consider the maximum segment size as 1460 bytes.   

Figure 3.4: wired/wireless topology 
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Figure 3.7  clarifies the throughput of CERL with other protocols when Tp for L ranges from 20 to 
180 ms, where qL is 1%, and Fig 3.8 illustrates the throughput of TCP protocols, where the 
propagation delay between TCP receivers and G2 ranges between 10 and 90 ms, where qL is 1%. 
Increasing the time delay would lead to a quicker excessive aggregation of packets in the 
bottleneck queue waiting for transmission. This would increase the possibility of congestion and 
random loss which in turn, would reduce the congestion window and, therefore, the throughput 
decreases. However, in Fig 3.7, CERL still gains higher throughput compared to other variants for 
its discrimination process. In fig 8, more timeouts would be produced when increasing the 
propagation time delay at the wireless portion so TCPs would behave worse.   

 

 

3.2.1.2 Scenario 2 : Two-way transmission  

Scenario 2 evaluates the throughput of CERL with a small number of users, using bidirectiona l 
flow. Users will apply the same protocol during the simulation sharing sending FTP files at 
different times. 

Figure 3.4 shows the network topology used for scenario 2. 

• N = 10. 
• S1 to S10 are TCP senders. 
• R1 to R10 are TCP receivers.  
• G1 and G2 are routers. 
• S1 to S10 are connected to G1 via wire links; bandwidth and propagation delay for each 

link are 1 Mbps and 10 ms, respectively. 
• R1 to R10 are connected to G2 via wireless links; bandwidth and propagation delay for 

each link are 1 Mbps and 10 ms, respectively.  
• We denote L for the wired link between G1 and G2, the bandwidth and propagation delay 

for L are 8 Mbps and 50 ms, respectively.  
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Figure 3.12 CERL behaves similarly as in Fig 3.10. CERL has a better performance at a wider 
range of Tp of the link L (between 20 to 60 ms) compared to links delay at the receiver side 
(between 10 to 20 ms). This shows that CERL is more flexible to the bottleneck delay than the 
receivers’ side delays and this agrees with the one-way transmission in Figs 3.7 and 3.8, although 
that CERL performs better with the one-way transmission generally. Such discrepancy in CERL 
performance between tests in Figs 3.11 and 3.12 is because the limitation of the bandwidth at the 
receivers’ side compared to that of L in addition to the increase of their time delay would lead to 
have an obvious congestion at the bottleneck queue.  
 
 
    3.2.2 Network configuration 2 

  

 

Figure 3.13 illustrates the network configuration. We assume N end-senders S1 to SN as well as N 
end-receivers R1 to RN. We also assume that the network has three routers: G1 to G3. All 
transmission lines between end-senders and end-receivers (including between routers L1 and L2) 
are wireless. Random loss (q) may occur in L1 or L2, as will be shown in our results in various 
scenarios.   

 

3.2.2.1 Scenario 1: Two-way transmission and heavy load, where qL1 is 1% and qL2 is 1% 
loss rate.  

Scenario 1 evaluates CERL’s throughput with a large number of users, using piggybacking flow. 
Users apply the same protocol during the simulation sharing FTP files at different times.  Scenario 
1 allows receivers to send data with ACK in the same frame. Note that we allowed receivers to 
send data with ACK by default in NS2.  

Figure 3.13 shows the network topology used in scenario 1.  
• N = 100. 
• S1 to S100 are TCP senders. 
• R1 to R100 are receivers.  

Figure 3.13: All wireless topology   
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congestion window is high. Also, when we decrease the size of the segments in piggybacking tests, 
New Jersey+, mVeno, and Westwood+ perform well during two-way sending tests.  Throughput 
from Cubic, Yeah and NewReno remain low in both one-way and piggybacking simulations. 

We evaluate CERL with different simulations  and conclude that CERL is not capable of achieving 
high performance.  Therefore, the constant value in CERL is not sufficient for piggybacking tests.  
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Chapter 4 
 

TCP Congestion Control Enhancement of Random Loss plus (CERL +) 

 
In  this chapter, we will briefly summarize   about TCP CERL+ and  compared  with TCP 
protocols that previously mentioned in section 1.4 

4.1 TCP CERL + 

TCP Congestion Control Enhancement of Random Loss plus (CERL+) is an end to end mechanism 
to improve the performance  over wireless and wired networks, particularly  when there are a large 
number of nodes. TCP CERL+  is  the evolution of TCP CERL [62] to distinguish between random 
loss and congestion loss. TCP CERL+ has a similar implementation of TCP CERL measuring 
bottleneck and   inflation of congestion window, but CERL+  behaves  differently  when 
calculating  the dynamic queue length threshold N that in CERL. 

4.1.1 Distinguish random loss from congestion loss   

TCP CERL utilizes A, used in equation 3,2 of chapter 3, a constant value that is  equal to 0.55 to 
measure the dynamic queue length  threshold N. When CERL uses this value, it gains a higher 
throughput  comparing  to some protocols, but when A values are more than 0.55,  throughputs   
are the same [52]. Results in chapter 3 assuming piggybacking transmission and a  heavy load of 
users showed poor behavior  of CERL compared to other techniques. In this regard, we revisit 
CERL and consider modifying the queue length threshold N.   

TCP CERL+ makes use of the average of RTTs and minimum RTT and this is measured by the 
sender. As a result, CERL+  makes  a dynamic queue length  threshold N more flexible for every 
sender. Which means that sender will estimate average RTTs and minimum in every RTT is 
measured, so the transmission for  data  between users will  be various. TCP CERL+ calculates N 
according to equation 4,1: 

N    = 
𝑅𝑇𝑇𝑎𝑣𝑔

𝑇
  * lmax                                                                                                          (4,1) 

Where RTTavg is the average of RTT measured in each time, T is minimum RTT observed by the 
sender, and  lmax is  the largest value of l  calculated by the sender. 

In the results, we will show how TCP CERL+ improved the performance of  throughput comparing 
to CERL, when  CERL + users use average and minimum round-trip time. 
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The details of CERL+ mechanism is presented in Algorithm 1 

 

Algorithm 1: CERL+ algorithm    

While (true) 
{ 
  WaitFor RTT arrival Event  
  If (Event(RTT ArrivalNotification)) 
 { 
    T                Min (ArrivedRTT, OldRTT)   
    AvegRTT                Average of RTT over simulation time 
    A                 AvegRTT/T 
    Calculate: l                 RTT─T 
    lmax                 Max(Calculated l, Old l)  
    N                 A*lmax 
    If (Event(l >N&highstAck>lastDecMaxSentSeqno) 
   {   
      ssthresh                 min (cwnd, rwnd)/2 
     If (ssthresh < 2*segsize)  
          ssthresh                 2*segsize 
      end if 
      cwnd                 ssthresh+3*segsize 
       lastDecMaxSentSeqno= MaxSentSeqno  
    else  
     oldcwnd                  cwnd 
      cwnd                  cwnd + 3 * segsize 
   end if 
  end if } 
Return } 
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In figure 4.1, the network configuration is shown. We assume N end-senders S1 to SN and as well 
N end-receivers R1 to RN. We assume that the network two routers G1 and G2. All transmiss ion 
lines between end-senders are wired, and end-receivers are wireless. Also, we assume that the 
transmission line between G1 and G2 is wired. 

 

4.1.2 Evaluation 
 
In this test,  we evaluate the congestion window of NewReno and CERL+ when the link  between 
G1 and G2 in figure 4.1  has a random loss and without  a random loss. We assume that from figure 
4.1, there is one sender and one receiver. The bandwidth and propagation delay of links S1G0 and 
G1R1 are set to 15 Mbps and 20 ms, respectively. Figure 4.2 illustrates the congestion widow 
evolution of TCP NewReno, and figure 4.3 illustrates the congestion window evolution of TCP 
CERL+. 
 
Results show that congestion window of TCP NewReno and CERL+  are close without random 
loss. In figure 4.3, we can notice that congestion window drops to  2 segments at 17 s  at 90 s, 
because when time out occurs CERL+ changes to slow start phase. With 1% random loss, the 
average throughput of CERL+ is 0.89 Mbps, while the average throughput of NewReno is 1.79 
Mbps. Which means that CERL+  gains a 115% throughput improvement over NewReno in this 
test. 

Figure 4.1: wired/wireless topology 
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Figure 4.2: NewReno Congestion Window Evaluation 

 

 

            

 

 

 

Figure 4.3: CERL+  Congestion Window Evaluation 
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4.1.3 CERL+ behavior in absence of random loss 

In this section, we demonstrate that the CERL+ random loss distinguishing mechanism does not 
affect the throughput of CERL+ when the random loss is not present. To facilitate the 
demonstration, we define CERL+2 as a modified version of CERL+ in which the code 
preventing multiple segment losses in one window of data from reducing the congestion window 
more than once is removed. 

In figure 4.1, we set 10 connections  between senders and G1, in addition, 10 connection between 
G2 and receivers. The bandwidth and propagation delay between G1and G2 are 8 Mbps and 50 
ms, respectively. The bandwidth between all senders and G1 and between all receivers and G2 is 
set to 1 Mbps. S1 to S10 are TCP senders running either CERL+, CERL+2,NewReno or Reno. Each 
sender initiates an ftp transfer to one of the receivers, R1 to R10. In order to test the TCPs under a 
wide range of traffic conditions, we randomly set the remaining simulation parameters as described 
below. The propagation delay of links Si G1 and G2 Ri, where i is an integer value ranging from 
1 to 10, is set to a randomly generated number between 1 and 15 ms. The ftp transfer start time of 
each connection between senders S1 to S10 and receivers R1 to R10 is set to a randomly generated 
number between 1 and 150 s. The random values are generated using a uniformly distributed 
random variable and a combined multiple recursive generator. We chose 25 different seeds from 
among the 64 recommended seeds listed in the file rng.cc of the ns-2 source code and we number 
the seeds from 0 to 24. Figure 4.4 illustrates the ftp transfer start and end times that resulted when 
the seed was set to 0. 

In Figure 4.5(a), we measure the throughput with 10 connections of Reno, CERL+ or CERL+2 
and in figure 4.5(b), we measure the throughput with 10 connections of NewReno, CERL+ or 
CERL+2. These measurements are made as the seed ranges from 0 to 24 and q = 0%. In Figure 
4.5(a), the performance of CERL+2 is almost identical to that of Reno at every seed value. 
However, CERL+ is sometimes at some seed values somehow different from NewReno as shown 
in figure 4.5(b) as CERL+ is a sender-side modification of Reno. We can notice that the 
performance of CERL+ implementation mostly performs better than Reno and NewReno owing 
to the CERL+ mechanism that prevents multiple window decrement strategy.  

 
Figure. 4.4 The ftp transfer start and end time 
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4.2 Network configuration 

In this chapter, we consider two configurations. The first configuration is a wired/wire less 
topology, and the second is all wireless topology. We will implement various scenarios in both 
topologies 

. 

4.2.1 Network Configuration 1 

4.2.1.1 Scenario 1 : One-way transmission 

Scenario 1 evaluates the throughput of CERL+ with a small number of users, using one-way 
transmission. Users will apply the same protocol during the simulation by sending FTP files at 
different times. 

Figure 4.1 shows the network topology used for scenario 1. 
• N = 10. 
• S1 to S10 are TCP senders. 
• R1 to R10 are TCP receivers.  
• G1 and G2 are routers. 
• S1 to S10 are connected to G1 via wire links; bandwidth and propagation delay for each 

link are 1 Mbps and 10 ms, respectively. 
• R1 to R10 are connected to G2 via wireless links; bandwidth and propagation delay for 

each link are 1 Mbps and 10 ms, respectively.  
• We denote L for the wired link between G1 and G2, the bandwidth and propagation delay 

for L1 are 8 Mbps and 50 ms, respectively.  
 



 
 

 



 
 



 
 

 



 
 



 
 



59 
 

 

4.2.2. Network configuration 2 

 

In figure 4.14, the network configuration is shown. We assume N end-senders S1 to SN and as well 
N end-receivers R1 to RN. We assume that the network has three routers: G1 to G3. All transmiss ion 
lines between end-senders and end-receivers including between routers (L1 and L2) are wireless. 
Random loss (q) may occur in L1 or L2 as we will show in our results in different scenarios.   

 

4.2.2.1 Scenario 1: Two-way transmission with heavy load, where qL1 is 1% and qL2 is 1% 
loss rate. 

Scenario 1 evaluates the throughput of CERL+ with a large number of users, using two-way 
transmission.   

Figure 4.14 shows the network topology used for scenario 1.  

• N=100 

• S1 to S100 are TCP senders. 

• R1 to R100 are receivers.  

• G1 to G3 are routers.  

• S1 to S100 are connected to G1 via wireless links, bandwidth and propagation delay for 
each link are 1 Mbps and 20 ms, respectively. 

•  R1 to R100 are connected to G3 via wireless links, also, bandwidth and propagation delay 
for each link are 1 Mbps and 20 ms respectively  

• We denote L1 for the wireless link between G1 and G2, and the bandwidth and 
propagation delay for L1 are 85Mbps and 60ms, respectively. 

Figure 4.14: All wireless topology    
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Chapter 5 
Conclusion & Future work 

In this thesis, we proposed a new version of TCP CERL called TCP CERL+. The idea of CERL+ 

is to improve the performance of wireless networks when there are a large number of connections 

and random loss in the link. We have examined CERL+ and compared to mVeno, New Jersey+, 

Westwood+, Cubic, YeAh, and NewReno in one-way and two-way transmissions. Our preliminary 

TCP CERL version throughput is good, but it is not that high compared to mVeno, and New 

Jersey+ connections. 

CERL+ is similar in its implementation to CERL in the sense that it would not behave less than 

NewReno under any condition. Additionally, CERL+ achieves excellent performance in terms of 

throughput in different network system configurations. CERL+ is fair enough not to embezzle 

traffic resources such as bandwidth from other coexisting links that use NewReno mechanism. 

Instead, simulated results prove that CERL+ is efficiently fair with NewReno assuming having 

no random loss while it has a quite limited effect on those connections using NewReno and 

sharing the bottleneck link.  

In case of two-way transmission with a heavy load, CERL+ gains an 148%, 130%, 110%, 92%, 

125% and 105% over throughput improvement over NewReno, YeAh, Westwood+, mVeno,  

Cubic , NewJersey+, and, respectively 
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Future Work 

TCP CERL+ is one of the significant protocols to distinguish between random loss, and congestion 

loss, particularly with the development of wireless networks. From the tests, CERL+  proves can 

reach the highest throughput as possible comparing several protocols. The simulation tool used for 

these tests was open source NS2. NS2 is a useful simulation for network researches, but the issue 

is not able to deal with big networks, and sometimes does not run the simulation correctly. My 

future work, I want to add more features to CERL+ and implement them by using new simula t ion 

tools like Tossim or NS3. 
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