
STATE VARIABLE HARMONIC BALANCE
ANALYSIS OF NONLINEAR CIRCUITS

BASED ON WAVES

by

Ryan Gregory Bruce Plater

A Thesis
Presented to Lakehead University

in Partial Fulfilment of the Requirements for the
Degree of Master of Science

in
Electrical and Computer Engineering

Thunder Bay, Ontario, Canada
September 17, 2010

ii

Abstract
Circuit simulation involving nonlinear elements can be a challenging task. From these

challenges rises a demand for finding better and more efficient ways of solving such problems.

This work provides a novel approach for performing harmonic balance (HB) analysis using the

fREEDA circuit simulator. The proposed method is an extension of the method of multiple

reflections for multiple ports. In addition the method is formulated in terms of power waves and

state variables at the nonlinear devices. The HB problem is then solved using a procedure which

resembles the signal propagation within the actual circuit. This method could be efficiently

parallelized since it does not require a large matrix decompositions at each iteration.

Several approaches to improve convergence properties are investigated. The first involves

adding capacitors in parallel with the nonlinear device ports, this allows the fixed-point iterations

to always be convergent. These capacitors are only active in a separate time dimension and do

not affect the steady-state solution. The harmonic balance solution is found when the transient

response in this time dimension is extinguished. Another strategy to improve convergence is the

combination of fixed-point iterations with the gradient descent method. The effect of a vector

extrapolation method to accelerate convergence is also investigated. Simulation results for

various strongly nonlinear circuits is presented.

This thesis covers the background of harmonic balance analysis, literature review,

derivation of the proposed method, improvements, preliminary results, as well as future work.

iii

Acknowledgements

I would like thank my supervisor Dr. Carlos E. Christoffersen for the tremendous support

and guidance throughout my graduate studies at Lakehead University. It is my privilege studying

with him and being a part of his research group.

I would also like to express my sincere thank you to the remaining faculty and staff of the

faculty of engineering for their support and teaching over the course of my studies. Another

thank you to my peers, colleagues, friends and family for their encouragement and support

throughout this process. Finally a special thank you to Muhammad Kabir for his help during my

research work.

Ryan Gregory Bruce Plater

rplater@lakeheadu.ca

iv

Table of Contents
Chapter 1..1
Introduction..1

1.1 Motivation and Objectives of This Study...1
1.2 Thesis Overview..3

Chapter 2 ...4
Literature Review...4

2.1 Introduction...4
2.2 Numerical Techniques...5

2.2.1 Newton's Method...5
2.2.2 Minimum Polynomial Extrapolation...7
2.2.3 Gradient Descent...9

2.3 Basics of Waves...10
2.3.1 Voltage Wave...11
2.3.2 Power Wave...12

2.4 Harmonic Balance Formulation..12
2.4.1 Conventional Harmonic Balance Equations..13
2.4.2 Existing Harmonic Balance Techniques..17
2.4.3 Optimization..18
2.4.4 Relaxation Techniques...18
2.4.5 Newton Based Methods for Harmonic Balance ...22
2.4.6 Krylov-Subspace Methods..23
2.4.7 Preconditioning..24

2.5 The fREEDA Circuit Simulator..25
2.5.1 fREEDA State Variable Formulation...25
2.5.2 fREEDA Architecture and Addition of New Simulation Technique...........................27

Chapter 3 ...31
Wave Based Harmonic Balance ..31

3.1 Introduction...31
3.2 fREEDA Programing and Implementation...32

3.2.1 fREEDA Equation Formulation (Linear)..32
3.2.2 fREEDA Equation Formulation (Nonlinear)...35
3.2.3 Solution Methodology...37
3.2.4 Implementation in fREEDA..39

3.3 Convergence Analysis...44
3.3.1 Power Bound...44

3.4 Convergence Improvements..45
3.4.1 Addition of Parallel Capacitors...46
3.4.2 Extrapolation Techniques..50
3.4.3 Gradient Descent Method..51
3.4.4 Tolerance Stepping..53

3.5 Wave HB as Preconditioner..55
3.6 Problems and Solutions...55

v

Chapter 4 ...57
Results..57

4.1 Simulation Setup...57
4.2 Simple Diode Circuit...58

4.2.1 Diode Simulation Setup and Results...59
4.2.2 Diode Simulation Summary..65

4.3 Full Wave Rectifier...66
4.3.1 Full Wave Rectifier Simulation Setup and Results...66
4.3.2 Full Wave Rectifier Simulation Summary...70

4.4 Charge Pump...71
4.4.1 Charge Pump Simulation Setup and Results...71
4.4.2 Charge Pump Simulation Summary..75

4.5 MESFET Amplifier...75
4.5.1 MESFET Amplifier Simulation Setup and Results...76
4.5.2 MESFET Amplifier Simulation Summary..79

4.6 Soliton Line...80
4.6.1 Soliton Line Simulation Setup and Results...81
 4.6.2 Soliton Line Simulation Summary...85

4.7 Wave HB as a Preconditioner..86
4.7.1 Soliton Line with Wave HB as a Preconditioner ..86
4.7.2 Multiple Soliton Line with Wave HB as a Preconditioner ...88
4.7.3 Wave HB as a Preconditioner Summary...89

4.8 Performance Comparisons..90
Chapter 5 ...92
Conclusion...92

5.1 Conclusion...92
5.2 Future Research...93

Appendices...96
Appendix A...96

Appendix A.1 Simple Diode Circuit Netlist...96
Appendix A.2 Full Wave Rectifier Circuit Netlist...97
Appendix A.3 Charge Pump Circuit Netlist...98
Appendix A.4 MESFET Amplifier Circuit Netlist...99
Appendix A.5 Soliton Line Circuit Netlist...100
Appendix A.5 Multiple Soliton Line Circuit Netlist..103

Appendix B...106
Appendix B.1 Extrapolation Results of Simple Diode Circuit ..106
Appendix B.2 Extrapolation Results of Full Wave Rectifier Circuit107
Appendix B.3 Extrapolation Results of Charge Pump Circuit...108
Appendix B.4 Extrapolation Results of MESFET Amplifier Circuit.................................109

References..110

vi

List of Figures
Fig. 2.1 Lossless Transmission Line..10
Fig. 2.2 Harmonic Balance General Partitioning ..13
Fig. 2.3 Simple Diode Circuit..15
Fig. 2.4 Linear Sub-Circuit (ILIN)..16
Fig. 2.5 Nonlinear Sub-Circuit (INL)..16
Fig. 2.6 Kerr's Circuit Partitioning...19
Fig. 2.7 Hicks and Khan Circuit Partitioning..19
Fig. 2.8 Identity Networks (a)Voltage Update Method (b) Current Update Method.....................21
Fig. 2.9 fREEDA Circuit Partition...28
Fig. 2.10 Circuit Partition Used in This Thesis..29
Fig. 2.11 Example Netlist..30
Fig. 3.1 Partition with Fictitious Transmission Lines and Power Waves33
Fig. 3.2 Solution Iteration Process ..39
Fig. 3.3 Addition of Parallel Port Capacitors...46
Fig. 3.4 Capacitor Transformed into Equivalent Circuit..47
Fig. 3.5 Pseudo Transient Flow Solution Flow Diagram ..50
Fig. 3.6 Tolerance Stepping Flow Diagram ..54
Fig. 4.1 Resistor Diode Circuit..59
Fig. 4.2 Comparison of Different Characteristic Impedances Effect on Iterations for Resistor
Diode Circuit..60
Fig. 4.3 Comparison of Different Characteristic Impedances using Tolerance Stepping..............61
Fig. 4.4 Simulated Voltage Waveform Across Diode ..62
Fig. 4.5 Iteration Error Function of Resistor Diode Circuit using Capacitors...............................62
Fig. 4.6 Gradient Descent and Extrapolation Error...64
Fig. 4.7 Rectifier Schematic...66
Fig. 4.8 Wave HB Error as Function of Iterations ..67
Fig. 4.9 Simulated Voltage Output Waveform (Wave HB)..68
Fig. 4.10 Pseudo Transient Compared with Wave and Newton-based HB 69
Fig. 4.11 Gradient Descent Error ..70
Fig. 4.12 Charge Pump Schematic...71
Fig. 4.13 Charge Pump Voltage Output Waveform ..71
Fig. 4.14 Wave HB, Tolerance Stepping and Pseudo Transient Iteration Error Results73
Fig. 4.15 Extrapolation and Gradient Descent Error Compared to Pseudo Transient...................74
Fig. 4.16 MESFET Amplifier Schematic ..75
Fig. 4.17 Simulated Solution Waveform ..76
Fig. 4.18 Characteristic Impedance Effect on Convergence ...77
Fig. 4.19 Simulation Iteration Error ..79
Fig. 4.20 Soliton Line Schematic ..80
Fig. 4.21 Soliton Line Voltage Output Waveform ...80
Fig. 4.22 Characteristic Impedances Effect on Convergence ...82
Fig. 4.23 Comparison of Tolerance Stepping and Max Port Iteration Setting...............................84
Fig. 4.24 Soliton Output Waveform 1e-2 Solution Tolerance ..87

vii

Fig. 4.25 Multiple Soliton Line Schematic..88
Fig. B.1 Extrapolation on Reflected Wave..106
Fig. B.2 Capacitor Extrapolation...107
Fig. B.3 Capacitor and Reflected Wave Extrapolation..108
Fig. B.4 Extrapolation on Reflected Wave ...109
Fig. B.5 Extrapolation on Reflected Wave ...109

viii

List of Tables
Table 4.1 Simulation Setup Table Definitions ..58
Table 4.2 Wave HB Simulation Setup and Results..59
Table 4.3 Tolerance Stepping Setup ..61
Table 4.4 Simulation Setup and Results..63
Table 4.5 Gradient Descent and Extrapolation Setup and Results...65
Table 4.6 Wave HB Simulation Setup..67
Table 4.7 Pseudo Transient Compared with Wave and Newton-based HB68
Table 4.8 Gradient Descent Setup and Results ...69
Table 4.9 Simulation Setup and Results ...72
Table 4.10 Extrapolation and Gradient Descent Compared to 'Pseudo Transient'74
Table 4.11 MESFET Amplifier Wave HB Simulation Setup and Results77
Table 4.12 MESFET Amplifier Tolerance Stepping Simulation Setup and Results......................78
Table 4.13 Characteristic Impedance Comparison ...81
Table 4.14 Different Tolerance Comparisons..82
Table 4.15 Tolerance Stepping Simulation Setup and Results ..84
Table 4.16 Comparison of Wave HB and Newton-based HB ..85
Table 4.17 Soliton Line Wave HB as a Preconditioner Results ..87
Table 4.18 Multiple Soliton Line Wave HB as a Preconditioner Results89
Table B.1 Simple Diode Extrapolation Setup ...106
Table B.2 Full Wave Rectifier Extrapolation Setup...107
Table B.3 Charge Pump Extrapolation Setup..108
Table B.4 MESFET Amplifier Extrapolation Setup..109

ix

List of Symbols

Symbol Meaning
A Transmitted Power Wave Vector
A0 Source Power Vector
B Reflected Power Wave Vector
ck Extrapolation Coefficient Vector
d Device Number
[D] Diagonal Matrix Containing Zref in the diagonal elements
f i Current Error Vector
f v Voltage Error Vector
G1 Parallel Conductance Value for 'Pseudo Transient'
∇ H Gradient of H
iL Time Domain Linear Port Current
I L Frequency Domain Linear Port Current
i NL Time Domain Nonlinear Port Current
I NL Frequency Domain Nonlinear Port Current
[J i] Current Jacobian Matrix
[J v] Voltage Jacobian Matrix
k Iteration Number
m Harmonic Number
[M SV] Frequency Domain Modified Nodal Admittance Matrix
n State Number
p Port Number
pn Convergence Parameter
q Time Domain Charge
Q Frequency Domain Charge
[S] Scattering Parameter Matrix
SSV Frequency Domain Source Vector
uk Extrapolation Difference Vector
[U k] Extrapolation Difference Matrix
v L Time Domain Linear Port Voltage
V L Frequency Domain Linear Port Voltage
v NL Time Domain Nonlinear Port Voltage
V NL Frequency Domain Nonlinear Port Voltage
x Estimate of Solution
x Time Domain State Variable Vector
x D Time delay State Variable
X Frequency Domain State Variable Vector
[Y] Admittance Matrix
Z ref Reference Transmission Line Characteristic Impedance

x

F Fourier Transform

F −1 Inverse Fourier Transform
ℜ Real Part
ℑ Imaginary Part
 Reflection Coefficient
 Nonlinear Port Newton Update Scaling Factor
 Frequency (rad/s)
 Diagonal  Matrix
 Phase
i Time Delay

xi

List of Abbreviations

Abbreviation Meaning
AC Alternating Current
DC Direct Current
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
GD Gradient Descent
GMRES General Minimum Residual
HB Harmonic Balance
INHB Inexact Harmonic Balance
LAPACK Linear Algebra PACKage
LU Lower Upper (Matrix Decomposition)
LNA Low Noise Amplifier
MESFET Metal Semiconductor Field Effect Transistor
MMIC Monolithic Microwave Integrated Circuit
MPE Minimum Polynomial Extrapolation
MTL Matrix Template Library
NL Nonlinear
NA Not Applicable
RMS Root Mean Squared
SVHB State Variable Harmonic Balance
Tol Step Tolerance Stepping

xii

Chapter 1

Introduction

1.1 Motivation and Objectives of This Study

As technologies advance new possibilities emerge. With these advances the demand for

faster, smaller and more complex designs occur. The electronics field is not exempt from this

and may be one of the major driving forces in technology. From this stems the need for quicker

and more efficient ways to design and simulate electronic circuit operation. There are two

common approaches used for solving such problems. They are commonly divided into two broad

groups being time and frequency based. There are various available approaches for implementing

these two methods.

This thesis presents a harmonic balance (HB) approach using a relaxation technique

based on the work performed by Kerr [3] and Hicks and Khan [4]. The idea draws from the

multiple reflection technique of Kerr and considers a network partition similar to the approach

proposed by Hicks and Khan. Transmission line theory and power waves are used to model the

circuit operation along with various techniques to improve and control convergence. A rigorous

extension using waves (unlike the extensions developed in References [9,12]) for solving

harmonic balance analysis formulated using state variables for nonlinear circuit simulations is

presented for the first time. Combining the use of power waves with the addition of parallel

connected capacitors, extrapolation and gradient descent methods are also tested for the first

time.

1

The basic existing harmonic balance techniques (discussed in Chapter 2) work well for

circuits of smaller size and that demonstrate fairly linear characteristics. Krylov-subspace

methods with inexact Newton harmonic balance using generalized minimum residual technique

(GMRES) and preconditioning has demonstrated success for larger nonlinear circuits [2,5].

However there are limitations to these approaches in the size of problem which can be solved,

convergence to the solution and CPU time. One of the major limitations of the harmonic balance

approaches is convergence. Predicting convergence at the on set of a simulation can not be

determined. A matrix preconditioner is used to improve the properties and initial guess of solving

a system of equations. The use of a preconditioner can become a requirement for successful

convergence and thus plays a crucial role in obtaining a successful solution [2]. These

improvements still do not entirely overcome all of these limitations.

The proposal of using wave quantities, more specifically power waves, shows some

promise. The use of waves closely represents the actual signal propagation during circuit

operation. Iterative methods based on power waves can be made theoretically constrained to

avoid the possibility of divergence.

The majority of techniques mentioned in Chapter 2 have been formulated using Kirchoff's

voltage law and/or Kirchoff's current law to represent the circuit quantities. The proposed

process is based on transmission line theory and the propagation of wave quantities, by using

transmission lines to connect the linear and nonlinear sub-circuits together. The transmission

lines have been selected to have a length of zero and thus have no effect on the circuit. The use

of wave properties should allow for better convergence, the ability to easily divide the problem

into smaller pieces and shows promise for parallelization which can take advantage of todays

2

multi-core and cluster computers.

1.2 Thesis Overview

This thesis covers the following topics. Chapter 2 begins with a brief introduction to the

history of solving nonlinear circuits, followed by a review of basic concepts related to circuit

simulation. The Harmonic balance concept is then introduced. Various present harmonic balance

approaches are described. Finally the circuit simulator used to implement the techniques

developed in the thesis is discussed.

Chapter 3 presents a new harmonic balance based technique based on waves. The main

equations are derived first, followed by an analysis of convergence and some strategies to

improve/accelerate convergence. Numerical simulations are presented in Chapter 4. The

performance of the proposed methods is evaluated with the simulations of several circuits:

Resistor Diode, Full Wave Rectifier, Charge Pump, MESFET Amplifier, and a Soliton line.

Chapter 5 presents conclusions and suggested future research directions.

3

Chapter 2

Literature Review

2.1 Introduction

There are two main categories that most circuit simulation techniques fall into, those

being time and frequency based. Time based circuit simulations such as transient analysis use

small time steps to sample the circuit operation [2]. The use of frequency based methods implies

that there is some advantage over time based methods for certain circuit solutions. One of such

frequency based methods is harmonic balance.

Unlike transient analysis, harmonic balance calculates the steady state solution directly.

This is accomplished by using a linear addition of sinusoids to produce the solution [1]. There

have been many different approaches proposed to solve circuits using the harmonic balance

technique. The conventional process used for harmonic balance is to divide the circuit up into

two subnetworks comprised of the linear and nonlinear elements of the circuit [2]. The linear

network can then be solved in the frequency domain and the nonlinear network solved for in the

time domain. This being the reason that harmonic balance is sometimes referred to as a mixed

domain method [1]. The name harmonic balance stems from the process where currents are

balanced between the linear and non-linear sub-circuits [4]. The linear network is typically

represented in the form of an admittance matrix (Y-parameters) [2]. Other representations such as

the scattering matrix (S-parameters) have been proposed and show some promise with certain

techniques [5,17].

4

As the number of elements in the circuit increase so does the number of unknowns and

therefore the complexity in solving the system. There have been different proposed methods to

help deal with these complexities when solving a system of equations. Details of some of these

approaches will be discussed in the following sections. Section 2.2 presents numerical techniques

that are used to solve the harmonic balance equations, such as Newton's method. The use of

extrapolation and gradient descent techniques is also covered. The basics of voltage and power

waves is discussed in Section 2.3. Section 2.4 discusses conventional and current harmonic

balance techniques and various approaches to solve the harmonic balance equations. The solution

approaches discussed included, optimization, relaxation techniques, Newton based methods, and

the use of matrix preconditioners. Section 2.5 discusses the architecture of the fREEDA

simulator and implementation of a new simulation technique.

2.2 Numerical Techniques

2.2.1 Newton's Method

Newton's method more correctly referred to as the Newton-Raphson method is one of the

most common numerical approaches used in todays computers to solve systems of nonlinear

equations. It is especially powerful when it comes to solving complex systems with

nonlinearities where conventional substitution methods are not possible or difficult [7].

Practically all of todays circuit simulation programs use some form of Newton based technique.

Newton's method extrapolates to the axis of the independent variable using its first derivative [2].

Consider the system of nonlinear equations given by:

5

f 1x1, x2,. .. , xn = 0
f 2x1, x2,. .. , xn = 0

⋮
f nx1, x2,. .. , xn = 0

 (2.1)

If the functions  f 1, f 2,. .. , f n are expanded using a Taylor series about an arbitrary point

x1, x2,. .. , xn and only the linear terms retained we can obtain exact solution values

 x1 , x2 ,... , xn [7]. Setting the equations defined from the Taylor series expansion equal to zero

and defining a  x i term as the correction to the guess of xi ,

 xi = x i − x i where i = 1,2,... , n , (2.2)

can be formed. Rewriting the the Taylor series expansion in general form,

[
∂ f 1

∂ x1

∂ f 1

∂ x2

⋯
∂ f 1

∂ xn

∂ f 2

∂ x1

∂ f 2

∂ x2

⋯
∂ f 2

∂ xn

⋮ ⋮ ⋱ ⋮
∂ f n

∂ x1

∂ f n

∂ x2

⋯
∂ f n

∂ xn

] [
 x1

 x2

⋮
⋮
 xn

] = [
− f 1

− f 2

⋮
⋮
− f n

] . (2.3)

The matrix on the left of Equation (2.3) is referred to as the Jacobian and is calculated for each

approximation of x i . The use of the first order partial derivatives for each device and harmonic

considered creates the Jacobian matrix. The Jacobian contains the maximum amount of

information about the system and its error. With this large amount of information about the

system good convergence characteristics can typically be achieved [2].

6

The  x i term is solved at each iteration (k) and the approximation of the solution x i is

updated by,

x i
k1

= x i
k
 x i

k (2.4)

This process can be broken down into six main steps. First the initial guess is selected (x i
0), the

function is evaluated at x i
0 and the partial derivatives are calculated to form the Jacobian matrix.

The update  x i is solved, a new solution x i
1 is determined and checked for convergence to a

solution. If convergence to a solution was achieved then the process is stopped otherwise it

repeats using the newest approximate solution as the initial guess [7].

Newton's method is quite good at solving systems of this form. However this approach

still does not guarantee convergence if the the initial guess is far from the solution. It also

becomes impractical for solving very large systems of equations. This occurs because the

Jacobian size becomes too large to directly factor efficiently, even in today's powerful computers

[15]. These issues and limitations lead to modifications of Newton's method to help alleviate

them as discussed in Section 2.3.

2.2.2 Minimum Polynomial Extrapolation

Minimum polynomial extrapolation (MPE) is a technique to find the fixed point (s) of a

sequence of vectors which satisfies the system of equations. If the system in question is linear

using a MPE will extrapolate to the fixed point. For systems which are nonlinear performing a

MPE with enough samples has the ability to extrapolate to a solution relatively close to the

correct one. Minimum polynomial extrapolation is based on using vector differences to calculate

the solution [19].

7

Given a vector sequence x1,x2,⋯ ,xk1 generated by an equation of the form:

x j1 = [A]x j  b , j=0,1,2,⋯, (2.5)

Where [A] is a fixed matrix and b a fixed vector. Both [A] and b do not necessarily have to be

known, only that there is a way of generating x1,x2,⋯ ,xk1 [19]. From an initial starting point of

x0 a sequence x1,x2,⋯ ,xk1 is generated. Using a fixed amount of samples k , a N×k matrix is

formed, where the columns are the vectors of the vector differences:

u j = x j = x j1 − x j (2.6)

[U]≡[U k] = [u0 ,u1 ,⋯,uk−1] (2.7)

Using the [U] matrix a coefficient c vector is defined to satisfy.

[U]c = −uk (2.8)

The values of c are calculated using the following formula,

c = −[U]+uk , (2.9)

where [U]+ is the Moore Penrose pseudo-inverse.

For any consecutive term sequence with a length of k1 the fixed point (s) can be

calculated [19] as follows,

∑
j=0

k

c j xm j=∑
j=0

k

c j s (2.10)

with the m term being an offset within the generated sequence and ck=1 . The conditions for a

8

successful extrapolation calculation requires that the fixed point exists and the number of

samples k is equal or greater then the number of nonzero eigenvalues of the [U] matrix.

The outcome of using MPE on nonlinear equations can be incorrect if the selected

sequence length k is too short, the generated sequence is far from the correct solution or the

system of equations exhibits strong nonlinearity.

2.2.3 Gradient Descent

Gradient descent is a first order optimization routine which can be used to find the local

minima scalar field. During an iteration routine the gradient of the function is calculated and

used to determine the direction of the update. The update is scaled toward the minimum of the

function or proportionally to the negative of its gradient. Analogous to the descent method is

gradient ascent which is used to find local maxima. Care must be taken when using gradient

methods. Performing a gradient update on the system before being relatively close to solution

can trap the iteration process at an incorrect result.

Given a function F xk
 where at solution equals zero. The gradient of the function can be

calculated if the function is defined and differentiable in the area around a selected solution point

g [31]. The fastest way to decrease F xk
 from a starting point of g is to move in the direction

of the negative gradient or −∇ F g  . If

h=g−∇ F g  , (2.11)

for a value of  small enough, then F g ≥F h . From this observation and starting from an

initial guess of x0 for a local minimum of the function F xk
 . A generated sequence x0, x1, x2, ...

can be calculated from:

9

xk1
=xk

−
k
∇ F xk

 , k≥0 , (2.12)

such that F x0
≥F x1

≥F  x2
≥... which will hopefully converge to the local minimum. The

value of  is not necessarily the same for each iteration.

2.3 Basics of Waves

Consider the lossless transmission line in Fig. 2.1 with characteristic impedance Z ref ,

terminating load impedance Z L and sinusoidal voltage source ES .

The sinusoidal wave produced by ES and propagating in the positive z direction is

reflected back in the negative z direction when it reaches the termination at z=L . The voltage

and currents at any point along the transmission line consists of both positive and negative going

waves. The voltage and current at any point along the transmission line consists of waves

propagating along the positive and negative z direction:

V  z  = V a ' e
− j z

 V b ' e
+ j z (2.13)

I  z  =
V a'

Z ref

e − j z
−

V b '

Z ref

e + j z
 (2.14)

10

Fig. 2.1 Lossless Transmission Line

E
S

Z
LV(0) V(z)

+

V
aI(0)

Z
r e f

+

-

+

-

V
b

I(z)

z

z = 0 z = L

b

a

The magnitudes of voltage in the positive and negative z direction are V a' and V b' respectively

and  is the phase constant [8]. The ratio between the positive z direction propagating wave and

the negative z direction propagating wave is referred to as the reflection coefficient  and is

given by,

 =
V b ' e

 j  z

V a ' e
− j  z

 =
Z L − Z ref

Z L  Z ref

 (2.15)

With V a and V b being the RMS values of traveling wave voltage, then ∣V b∣ =
∣V b '∣

2
and

∣V a∣ =
∣V a '∣

2
. The power flowing in the positive z direction is given by,

P =
∣V a∣

2

Z ref

−
∣V b∣

2

Z ref

 (2.16)

2.3.1 Voltage Wave

Given the length of the transmission line is L then the voltage and current at z=L is,

V L = V a' e
− j L

 V b ' e
 j  L

I L =
V a '

Z ref

e − j L
−

V b '

Z ref

e  j L
 (2.17)

Setting the length of the transmission line equal to zero the voltage and current become,

V = V a '  V b '

= 2V a  V b
 (2.18)

11

and

I =
V a '

Z ref

−
V b '

Z ref

=
2
Zref

V a − V b
 (2.19)

The use of a zero length transmission line allows the voltage and currents at any node to be

converted to voltage waves. The use of voltage waves can then be used as parameters to

formulate circuit analysis [8].

2.3.2 Power Wave

The use of waves is not limited to just voltage. The circuit parameters can also be

formulated using power waves. Considering ' a ' as the positive propagating power wave and ' b '

as the negative propagating power wave in such a away that ∣a∣
2
=
∣V a∣

2

Z ref

and ∣b∣
2
=
∣V b∣

2

Z ref

in

(Fig. 2.1) [8]. The voltage and currents can be expressed as,

V = Z ref a  b (2.20)

and

I =
1

Z ref

a − b (2.21)

The power wave equations (2.20) and (2.21) are the bases used throughout this work.

2.4 Harmonic Balance Formulation

Early use of piecewise harmonic balance approach is demonstrated by Nakhla and Vlach

[6]. The basis of piecewise harmonic balance is to separate the linear and nonlinear devices into

two sub networks. Current and voltage equations are formed for the two ports. An error function

12

is formed by taking the difference between the currents and/or the voltages of the linear and

nonlinear ports. Detailed equation formulation is presented next.

2.4.1 Conventional Harmonic Balance Equations

 As mentioned above the idea is to partition the circuit into its linear and nonlinear

components. This reduction allows the nonlinear sub-circuit to be solved independently of the

linear sub-circuit. The linear network can then be solved directly in the frequency domain. While

the nonlinear subnetwork element models can be solved in the time domain and subsequently

converted to the frequency domain. This partitioning can be seen in Fig. 2.2.

The voltage and currents at each port (p) are assumed to be periodic having a period of

T which is defined as T=
2


and  being the angular velocity. The voltage at port p can be

expressed using the following equation:

13

Fig. 2.2 Harmonic Balance General Partitioning

Sources
and

Linear
Network

Nonlinear
Device

V
p

I
L

I
N L

pp

v pt =ℜ {∑
k=0

m

V k e j ktk } , (2.22)

where the unknown values are the amplitude V k and phase k for each frequency.

The error function is formulated as the sum of the currents at the ports connecting the

linear and nonlinear ports [2].

F V =I V  jQ V YVI S=0 , (2.23)

where I V  is the current from the nonlinear conductances or voltage-controlled sources

and Q V  is the current contribution from the nonlinear capacitors. These two terms together

represent the current contribution by the nonlinear network (I NL). The  symbol represents a

diagonal matrix containing k  elements in the main diagonal,

 = [
0 0 ⋯ ⋯ 0
0  ⋱ ⋯ 0
⋮ ⋮ 2 ⋱ 0
⋮ ⋮ ⋱ ⋱ 0
0 0 ⋯ ⋯ m

] (2.24)

The I S term is the current contribution from the circuit sources and YV is the current

contribution from the linear elements. These two together represent the linear port current I LIN .

The name of harmonic balance is easily seen because a correct guess for V in Equation (2.23)

will balance the linear and nonlinear currents for each Harmonic.

Consider just the nonlinear part from Equation (2.23). The nonlinear current contribution

I NL can be written as:

14

I NLV =F {i [F −1
V ]}F {q [F −1

V ]} (2.25)

where F and F −1 are the Fourier and Inverse Fourier transforms and i   and q   represent the

nonlinear currents and charge, respectively, in the time domain [2]. The estimate of voltage (V)

in the frequency domain is converted into the time domain using Fourier transform. The

nonlinear current iNL is then solved for in the time domain. Using inverse Fourier transform iNL is

then converted back to the frequency domain and used to calculate the error F V  [2].

For the correct selection of V in Equation (2.14) F V  will be approximately zero. Due to

the iterative technique used to solve such a problem, a solution is found when all elements of the

F V  vector are less than a defined tolerance.

A simple harmonic balance example can be demonstrated using the circuit in Fig. 2.3.

The source is made up of both a DC voltage and an AC fundamental frequency. First defining

the linear current (I LIN), nonlinear current (I NL) and port voltage allows for easy equation

setup.

The circuit is divided up into its two sub-circuits. Fig. 2.4 represents the linear sub-circuit

in the frequency domain. The diode is replaced with the voltage seen at the terminals.

15

Fig. 2.3 Simple Diode Circuit

I
NL

VV
s

I
LIN

Z(ω)

Writing the equation for the linear current in the frequency domain Equation (2.26).

I LIN =
V kp−V sk  p

Z k  p
 (2.26)

Fig. 2.5 represents the nonlinear sub-circuit in the time domain.

Writing the equation for the nonlinear current in the frequency domain is accomplished by first

calculating the diode current in the time domain using,

iNLt  = i sat e
v NL t 

nvT −1 (2.27)

where i sat is the saturation current, vT is the thermal voltage and n is the ideality factor of the

diode. The error function for the circuit is given by,

I LIN k  p  I NLk  p = 0 (2.28)

16

Fig. 2.5 Nonlinear Sub-Circuit (INL)

i
NL

(t)

v(t)

Fig. 2.4 Linear Sub-Circuit (ILIN)

VV
s

I
LIN

Z(ω)

Substituting the two currents into the error function Equation (2.28) and using Fourier transform

to convert the nonlinear current into the frequency domain,

V k p−V sk p

Z k p
 F [I sat e

F −1
V k p 

nvt −1] = 0 (2.29)

is formed. A correct guess of V k p will balance the linear and nonlinear currents for each

harmonic therefore satisfying Equation (2.29). The diode example is a brief demonstration using

the harmonic balance approach. The more complex problem of how to efficiently select and

update V using the numerical techniques from Section 2.2 is now discussed.

2.4.2 Existing Harmonic Balance Techniques

With the general structure of harmonic balance discussed lets look further into how the

solution is found. The task that is being attempted is basically finding the zeros of the system of

equations. Thankfully these problems have been largely studied by mathematicians. The most

common approach involves using Newton method [2,5,14,15]. Newton's method is a very

powerful and commonly used technique for indirectly solving complicated problems. However

there are still some limitations to this approach. Convergence can not be guaranteed and the size

of the Jacobian matrix produced using Newton's method is directly related to the number of

nonlinear devices and harmonics considered. These two major limiting factors can lead to

problems finding the solution of strongly nonlinear circuits and inefficiencies for large circuits

due to long solution times and large amounts of computer memory usage. To overcome some of

these limitations, modifications and alternative techniques have been proposed and used. Some

of which are, Optimization [2], Relaxation methods [3,4], matrix conditioning [2], Sparse Matrix

17

Solvers incorporating Krylov-Subspace methods with preconditioners [5,11,14,15].

2.4.3 Optimization

Optimization routines can be used to solve equation (2.30) using a norm of the error().

 = F *
V F V  (2.30)

where F *
V  denotes the complex conjugate transpose of F V  .

This method has an advantage that many scientific libraries already have an optimization

routine built in. However this process destroys information about the contribution of each

individual element to the error therefore convergence can suffer [2]. This technique is only

practical for relatively small and simple circuits. This technique reduces programing complexity

and therefore implementation time at the cost of sometimes poor convergence and inefficiency.

2.4.4 Relaxation Techniques

Relaxation methods derive their name from the fact that they allow the iteration process

to gradually move towards a solution. One of the simplest examples of relaxation is the bisection

method [7]. One main advantage of relaxation techniques are their ease of implementation [2].

These methods show promise on some circuits but in a more general sense tend to lead to poor

and unpredictable convergence. Two of the more commonly known methods are those of Kerr

[3] and Hicks and Khan [4].

Kerr's method starts by connecting a transmission line with characteristic impedance Z0

between a linear network port and one nonlinear device, in this case a diode. Equations are

18

formed by separating the circuit at both ends of the transmission line. This is accomplished by

increasing the transmission line length (L) so that the period between transient reflections is

long enough that the ends can reach their steady state condition [3]. To solve the circuit the left

propagating wave (E L) is calculated and after a time delay will reach the left side embedding

network (Fig. 2.6). The right propagating wave (E R) is calculated and after another time delay

will reach the right side diode. The multiple reflections continue until the voltage and current that

are calculated at each end of the transmission line are equal [3].

Hicks and Khan propose a method using either voltage or current updates with a circuit

partitioning as seen in Fig. 2.7 The process involves selecting a value of the nonlinear port

voltage v N t  and using it to determine the nonlinear current iN t  [4].

19

Fig. 2.7 Hicks and Khan Circuit Partitioning

I
L
(t) I

N
(t)

V
N
(t)V

L
(t)

Z
L Z

N

Linear
Network

Nonlinear
NetworkE(t)

Fig. 2.6 Kerr's Circuit Partitioning

Embedding
Network

LO

BIAS

Z
e

i
e

i
d

v
e

v
e

E
R
(x,t)

E
L
(x,t)

Z
o

X=0 X=L

L,t
d

L=mλ
LO

From the circuit topology the nonlinear current must be equal and opposite to the linear current.

iN t =−iL t  (2.31)

The linear current is converted to the frequency domain to obtain I L  , from which V L  can

be easily calculated and converted back to the time domain for comparison. Using the calculated

value for v L t  the error between v L t  and v N t  can be determined. The iteration process is

continued until [4]:

v N
k1
t  = vN

k
t  = v L

k
t  (2.32)

The voltage update is calculated using:

v N m 
k1

= pn v Lm
k

 1−pmvN m
k , (2.33)

where m is the harmonic number and k is the iteration number. The pm term is referred to as the

convergence parameter and is bound between the range of 0  pm  1 [4]. Adjusting the

value of pm can increase the area of convergence which is typically offset by a longer solution

time [4]. The equations for the current update method are analogous of those of the voltage

method and therefore are not shown.

The use of an “identity network” has also been proposed to help with convergence. An

example of an identity network is shown in Fig. 2.8. Where Fig. 2.8(a) is used for the voltage

update method and Fig. 2.8(b) for the current update method [4].

20

The purpose of the identity network is to modify the harmonic impedance ratios and therefore

help with solution convergence [4].

A modified version of Kerr's method [3] is proposed by Tait [12]. The technique is

referred to as the Accelerated Fixed Point Algorithm. The approach maintains the fictitious

transmission lines between the linear and nonlinear devices and uses the idea of multiple

reflections. A Steffensen acceleration technique [30] with a voltage update method similar to that

of Hicks and Khan [4] is formulated for the iteration process. For Tait's example of a frequency

multiplying circuit the Steffensen acceleration process demonstrates a super linear convergence

rate that approaches the quadratic rate of Newton's method [12]. This is accomplished without

the need of a derivative calculation [12].

Borich [9] proposes a method based from the work of Tait [12]. The method expands

Tait's approach to a more general case supporting any number of nonlinear devices. Complex

characteristic impedance values for the fictitious transmission lines are also examined. The use

21

Fig. 2.8 Identity Networks (a)Voltage Update Method (b) Current Update Method

Linear
Network

Nonlinear
Network

-Y
ID

Y
ID

Linear
Network

Nonlinear
Network-Z

ID
Z

ID

(a)

(b)

of complex characteristic impedance values is shown to improve convergence especially in cases

with nonlinear capacitances [9].

An advantage to the use of relaxation techniques is their somewhat easier implementation

[2]. They however often demonstrate poor convergence performance in general terms and

difficulties arise when dealing with large circuits. The general convergence properties of Borich's

work is shown by Blakey to be possible for circuits containing only a few nonlinear devices and

recommends the use of conventional harmonic balance for more complex circuits [13].

Improvements in dealing with large circuits and solution convergence have been shown with the

use of Newtons method [5,14,15].

2.4.5 Newton Based Methods for Harmonic Balance

As has been discussed before issues arise when the problem size is increased. Krylov

subspace with inexact harmonic balance and GMRES (Section 2.4.5) has shown good

performance for solving complex systems with success. However large circuits which are

strongly nonlinear therefore requiring many harmonics increase this process into a huge

computational task. For this reason it becomes apparent that sub dividing the circuit into smaller

sub circuits is appealing. This is accomplished by decoupling parts of the circuit that have little

to no dependence on one another [15,18]. The technique requires the individual partitions to

converge to solution. The entire system then must satisfy global convergence between all sub

circuits. The use of Newtons method has been demonstrated to be a powerful tool for solving

nonlinear circuits using the harmonic balance approach [2,5,15].

The Jacobian matrix in harmonic balance is made up of partial derivatives of every port

22

with respect to every frequency and because all harmonics except DC are complex the size must

be doubled. The size of the Jacobian matrix required for the full newton method is M x M where,

M = p × 2m1 , p is the number of ports and m is the number of harmonics.

The size of the Jacobian itself becomes an issue in memory storage but the major problem

arises when the calculation to factor it occurs. The Jacobian matrix formed during calculations,

is not usually sparse. Direct matrix solves such as LU decomposition require a large amount of

memory space. The approximate time required to compute the LU decomposition of a dense

matrix is related to its dimension cubed. For example doubling the matrix dimension will require

approximately eight times the amount of time to decompose [2].

Sparse matrix solvers are used to improve processing time and memory usage as the zero

matrix entries are not stored in memory. For sparse matrix solvers to have a benefit the Jacobian

matrix is typically pruned to further increase the number of zero entries. As the matrix is factored

during calculations the zeros entries can tend to “fill-in” with non-zero values. Care must be

taken to prevent or limit such “fill-ins” as they reduce the sparse matrix solving benefits [2].

2.4.6 Krylov-Subspace Methods

The general consensus for solving harmonic balance problems is using a version of

Krylov-Subspace method called generalized minimum residual technique or GMRES [2,5]. The

technique works the way it sounds. Assuming we must solve an equation of the form

[A]x = b where [A] is a matrix and x and b are vectors. Defining the residual r as

r = b − [A] x and using iterative methods to reduce the residual, with the x term being an

estimation of the solution. However if the matrices are ill-conditioned to begin with, convergence

23

has very little chance of being achieved [2]. Also for this process to succeed the approximate

guess x must be relatively close to solution, therefore the use of preconditioning becomes a

requirement [2].

2.4.7 Preconditioning

With the techniques discussed in the previous section the use of preconditioning is a

requirement for achieving convergence to solution. Some variations of preconditioning are block

diagonal [5], static time, iterative time [11] and incomplete LU factorization [15,16].

Block diagonal preconditioning has shown good convergence properties when used with

Krylov subspace using inexact harmonic balance and GMRES. As is the problem with full

Newton iterations computer storage and computational cost of large circuits limit its efficiency

[5]. Rizzoli proposes a method called incomplete LU factorization [15]. The idea is based on

exploiting the sparsity pattern in the Jacobian matrix. This sparsity is artificially generated by

examining the interaction or dependence between different nonlinear devices [5]. It has been

demonstrated that this approach works better when the linear network is represented by its

scattering parameters instead of conventional admittance parameters [5,17].

The time based preconditioners both static and iterative are developed using the time

counterpart of the frequency domain Jacobian [11]. The difference between static and iterative

preconditioners is in the steps of achieving the preconditioning matrix. Terms are dropped in the

static method to eliminate the need to iteratively solve for the preconditioning matrix. The

iterative method does not neglect these terms [11].

The use of a preconditioner is a requirement for the use of Krylov subspace methods. The

24

type of preconditioner selected plays an integral role in finding the solution and therefore the

convergence performance.

2.5 The fREEDA Circuit Simulator

2.5.1 fREEDA State Variable Formulation

The fREEDA simulator is a free program which supports different circuit analysis types

such as transient, harmonic balance and wavelet-based transient analysis. fREEDA is a circuit

simulator which uses state variables to represent the nonlinear device models.

fREEDA uses the previously discussed linear and nonlinear sub-circuit partitioning for

harmonic balance as shown in Fig. 2.2. The state variable approach models the nonlinear devices

using a set of general parametric equations,

i NLt  = w[x t  , d x
dt

,⋯,
d m
x

dtm ,xD t ] (2.34)

v NLt  = u[x t  , d x
dt

,⋯,
d m
x

dtm ,xD t ] (2.35)

The currents and voltages present at each of the nonlinear device ports is represented by

vectors i NLt  and v NLt  [10]. The vector of state variables is defined as x t  and the vector of

time delayed state variables is defined as x Dt  . The time-delayed state variable vector x Dt  can

be written as a function of time (t) with a time delay i , i.e. x Dt i = x i t−i . The time

delay term i can be a function of the state variables x t  [10]. The size of the all vectors in

equations (2.34) and (2.35) are the same and equal to the number of ports between the sub-

circuits [10]. The use of parametric equations allows for complete generality in the modeling of

25

each nonlinear device.

The use of harmonic balance requires the availability of port voltage and currents in the

frequency domain. So far equations have been written and formulated in the time domain. The

conversion to the frequency domain is accomplished using a vector of time domain samples of

the iTH state variable given by,

x i = [x i t0 , x it 1 ,⋯, x it 2m ,]T (2.36)

Converting all of the frequency based state variables to the time domain is accomplished as

follows:

x i = F −1
 X i (2.37)

For one device having n states, the state-variable vector in frequency domain is defined as

follows,

X = [
X 1

X 2

⋮
X n
]

(2.38)

Each state from Equation (2.38) is comprised of individual frequency components (m),

X i = [
X i , 0

X i ,1

⋮
X i , m

]
(2.39)

The time-domain vectors of the derivatives and time-delayed state variables are obtained using

the following equations:

26

d x it 

dt
= F −1

 j X i where  = [
0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ m0

] (2.40)

xD  it  = F −1[
e j00D i 0 ⋯ 0

0 e j 0 1 D i ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ e j0m D i
] X i (2.41)

The samples of i NLt  and v NLt  are generated using equations (2.34) and (2.35). Finally

the Fourier transform is used to obtain the I NL and V NL vectors in the frequency domain.

I NL i  = F [i NL i t ] (2.42)

V NL i  = F [v NL i t ] (2.43)

where

V NL = [
V NL1

V NL2

⋮
V NLn

] & I NL = [
I NL 1 

I NL 2 

⋮
I NL n 

] (2.44)

2.5.2 fREEDA Architecture and Addition of New Simulation Technique

The fREEDA simulator is programmed mainly using the C++ language. The circuit

description is entered as a netlist file that has a format similar to the open source Simulation

Program with Integrated Circuit Emphasis (SPICE)[26]. This allows the circuit to be formulated

in a standard way which can be used for various simulation types. Internally the code for each

circuit analysis type is defined in a separate class. For a particular analysis type to be used a

command line is entered in the netlist file with various user configurable options. The device

27

models are formulated using state variables and adding a new device is done separately of the

main program. The addition of a new circuit analysis type requires minimal changes in the core

code and consists mainly in the addition of a new class. The circuit data is available to the new

class in an internal representation format (a graph).

In fREEDA the frequency domain vectors I NL and V NL are directly available as functions

of the state variables X (also in the frequency domain). This simplifies the task of implementing

frequency domain analysis techniques such as harmonic balance.

The programing architecture provides access to the circuit information in various forms

such as, modified nodal admittance matrix, source vector, linear network impedance matrix and

others. FREEDA uses a circuit partitioning shown in Fig. 2.9 which allows for the easy addition

of a new simulation technique.

The selected implementation approach uses the linear network impedance matrix

represented by [M SV] , containing the linear network information and topology. The SSV vector

28

Fig. 2.9 fREEDA Circuit Partition

Linear
Network

Nonlinear
Device

Sources

S
s v [M

s v
]

v
N L

 i
N L

contains the contribution of the sources to the circuit.

The circuit partitioning required for the wave approach is shown in Fig. 2.10. Each

nonlinear device is divided up into its own block with subsequent ports. Each nonlinear device is

represented by independent state variables (X) which are used to calculate the voltages and

currents at the ports of nonlinear devices.

The error function within fREEDA is given by,

S sv − [M sv]I NL X  − V NL X  = 0 (2.45)

The nonlinear devices can have any number of state variables. For example a two

terminal device such as a diode has one state variable. A BJT transistor with emitter, base and

collector would be a two state variable device.

2.5.3 Example Netlist in fREEDA

An example of a simple netlist used in fREEDA is shown in Fig. 2.11.

29

Fig. 2.10 Circuit Partition Used in This Thesis.

Linear
Network

Nonlinear
Device 1

Sources

Nonlinear
Device 2

Nonlinear
Device d

S
s v

[M
s v

]

v
N L

(x)

i
N L

(x)

v
N L

(x)

i
N L

(x)

v
N L

(x)

i
N L

(x)

The first two lines are comments marked at the beginning by an '*'. The .options line is where

various simulation names can be defined in this example the frequency is set to 1e8. The next

line after the comment selects the type of simulation to run. In this case the wave harmonic

balance (Wave HB) simulation technique is called (.wavehb). The various setup options for the

simulation technique are also included on this line. The number of frequencies considered for the

harmonic balance simulaiton is 15, the fundamental frequency is 'freq', the solution tolerance is

set to 1e-8, the number of Newton iterations for each nonlinear device is 100 and the reference

impedance is 800Ω. The next few lines represent the circuit configuration and values. The

vsource, resistor and diode represent the type of component in the circuit. The following

numbers are the nodes the device is connected to and the specific values and parameters of the

device. The final lines set the output data to be saved when the simulation is complete. For this

simulation the voltage at the specified nodes is converted from the frequency domain (invfft) to

produce the voltage with respect to time waveform plot.

30

*** Wave HB Simple Diode Circuit ***

*Simulation options
.options freq=1e8

*Simulation Type and setup parameters
.wavehb n_freqs=15 fundamental=freq tol=1e-8 usecaps=0 n_iter=100 zref=800

*Circuit netlist
vsource:v1 1 0 f=freq vac=5 phase=-90
resistor:r1 1 2 r=1k
diode:d1 2 0 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.

*Simulation Output
.out plot term 2 vf invfft 2 repeat in "simplediodev.whb"
.out plot term 1 vf term 2 vf sub invfft 2 repeat in "simpledioderesv.whb"
.end

Fig. 2.11 Example Netlist

Chapter 3

Wave Based Harmonic Balance

3.1 Introduction

This chapter presents a formulation of HB using power waves that expands the

techniques discussed in Section 2.4.2, i.e., Kerr's multiple reflections [3] and Hicks and Khan's

voltage updates [4]. The use of power waves could improve the convergence of the system

because conservation of power restraints can be implemented on the reflections to prevent

possible divergence situations; if a device is passive then the power of the reflected waves must

be less than or equal to the power of the incident waves. The wave-based HB technique is

implemented and demonstrated in fREEDA. This chapter covers the formulation of equations,

flow of the algorithm, convergence analysis, convergence improvements, programming and

implementation, preconditioner applications and problems encountered.

Section 3.2 presents the formulation of the HB equations, harmonic balance solution

process and programing implementation. Section 3.3 analyzes the convergence of the proposed

wave HB method and Section 3.4 proposes convergence improvements. Section 3.5 explores the

possibilities of the wave HB method being used as a preconditioner. Section 3.6 highlights

problems with implementation and their solutions.

31

3.2 fREEDA Programing and Implementation

As previously discussed fREEDA is used to implement the proposed wave HB technique.

Starting from the general form between the linear and nonlinear circuit partition discussed in

Section 2.5, we need to interface with fREEDA. For this some transformations of circuit

information and programing structure must be performed. This is broken into three parts,

equation formulation, solution process, and implementation.

3.2.1 fREEDA Equation Formulation (Linear)

The first step for the proposed method is connecting fictitious transmission lines between

the linear and nonlinear networks. The characteristic impedance of the transmission lines is

denoted as Z ref and their length is set to zero. The characteristic impedance is the same for all

transmission lines connected between the linear and nonlinear ports.

Incident power waves A , A ' and reflected power waves B , B ' are defined as shown in

Fig. 3.1. The direction of the incident and reflected power waves differs from that of a

conventional two port network by referencing to the nonlinear devices.

With the use of transmission line theory the network matrix [M SV] must be transformed

into a scattering parameter matrix ([S]). The transmitted and reflected power waves replace the

voltages and currents. The changes to the partitioning and introduction of power waves is shown

in Fig. 3.1. In this section the power waves (A & B) and port voltage (V NL) and currents (I NL)

are valid for all ports at one frequency.

32

For each frequency the scattering parameter matrix ([S ']) represents a multi-port network with

two groups of ports,

[AA'] = [S '][BB '] = [[S11] [S12]

[S 21] [S22]] [
B
B '] (3.1)

The network topology and linear device values are contained in the scattering matrix. The

individual blocks in equation (3.1) represent the relationships between the incident and reflected

waves at the two port groups. Since the sources are assumed to be matched, B ' (vector) is

independent of A ' . Thus A ' is not needed to calculate the waves incident to the nonlinear device

ports (p) and A is given by:

A = [S 11] B  [S12] B ' (3.2)

Defining A0 = [S 12] B' and [S] = [S11] , respectively leads to,

A = [S] B  A0 . (3.3)

33

Fig. 3.1 Partition with Fictitious Transmission Lines and Power Waves

Linear
Network

Nonlinear
Devices

Matched
Sources

A
p

B
p

A
2

B
2

A
1

B
1

S
s v

Z
r e f

Z
r e f

Z
r e f

B'
1

A'
1

M
s v

[S']

V
N L (i)

(X)

I
N L (i)

(X)

1

2

p

The relation between [M SV] , SSV , [S] and A0 will be derived next. Starting from the

original error function provided in fREEDA given in equation (2.45) and repeated here for

convenience,

S sv − [M sv]I NL X  − V NL X  = 0 , (3.4)

a relationship between V NL , I NL and A , B is required. Defining a diagonal matrix [D] of size

p× p which contains the square root of the characteristic impedance of the transmission lines

and has a structure of,

[D] = [
Z ref 0 0 0

0 Z ref 0 0
0 0
0 0 ... Z ref

] (3.5)

I NL and V NL can be written as follows:

V NL = [D] AB (3.6)

I NL = [D]−1
 A−B (3.7)

Substituting Equation (3.6) and Equation (3.7) into the original fREEDA error function

Equation (3.4) the new equation is formed.

S sv − [M sv] [D]
−1
 A−B − [D]  AB = 0 (3.8)

Rearranging Equation (3.8) to isolate for the incident power wave A yields,

A = [M sv][D]
−1
[D]−1

[−S sv  [M sv] [D]
−1
−[D] B] (3.9)

Multiplying [M sv][D]
−1
[D]−1 into [−S sv  [M sv] [D]

−1
−[D] B] the Equation (3.9) is

arranged to match the structure of Equation (3.3).

34

Am = [M sv] [D]
−1
[D]−1

[M sv] [D]
−1
−[D] Bm  [M sv][D]

−1
[D]−1 S sv (3.10)

From this a new definition of [S] and A0 is obtained:

[S] = [M sv][D]
−1
[D]−1

[M sv][D]
−1
−[D] (3.11)

A0 = [M sv] [D]
−1
[D]−1 S sv (3.12)

With a definition of [S] and A0 their values are calculated. The parameters of the

scattering matrix and source vector change with respect to frequency. This requires independent

[S m] and B0, m terms for each harmonic (m) plus DC considered. Each element of the scattering

matrix and source vector are also comprised of complex values.

3.2.2 fREEDA Equation Formulation (Nonlinear)

In this section the power waves (A & B), state variables (X) , port voltages (V NL) and

port currents (I NL) are valid for all harmonics (m) plus DC for one nonlinear device (d). The

vector containing power wave reflections from the nonlinear devices (Bm) is calculated using

Newton's method. Combining Newton's technique with the use of state variables requires the

development of both the update equations and the error functions for each port. The error

functions are based from Equation (3.6) and Equation (3.7) by moving all terms to the right and

defining error functions f v and f i as follows:

f v = D−1 V NL − A − B (3.13)

f i = DI NL − A  B (3.14)

There is a set of voltage and current error functions defined for each nonlinear device and

each frequency and the [D]matrix has dimensions n×m1×n×m1 where,

35

(n=number of states and m=number of harmonics). The [D] matrix is comprised of

diagonal elements of Zref the same as in Section 3.2.1.

With the use of Newton's method (Section 2.2.1) the formulation of the Newton iteration

equations is as follows,

[
∂ f v

∂ X
∂ f v

∂ B
∂ f i

∂ X

∂ f i

∂ B
] [X k1

−X k

Bk1
−Bk] = −[f v X

k , Bk 

f i X
k , Bk

]

 [
∂ f v

∂ X
∂ f v

∂B
∂ f i

∂ X

∂ f i

∂B
][X k1

−X k

Bk1
−Bk][f v X

k , Bk


f i X
k , B k

] = [00]

(3.15)

Taking the partial derivative of the error function given in Equation (3.13),

∂ f v

∂ X
= [D]−1 ∂V NLX 

∂ X
= [D]−1

[J v]
and

∂ f v

∂ B
= −[I] (3.16)

Similarly for Equation (3.14),
∂ f i

∂ X
= [D]−1 ∂ I NL X 

∂ X
= [D]−1

[J i]
and

∂ f i

∂ B
= [I] (3.17)

Substituting Equation (3.16) and Equation (3.17) into Equation (3.15),

[[D]
−1 J v [I]

[D] J i [I]][ X
B][f v

f i] = [00] (3.18)

And solving for B and  X leads to,

Δ B = −f i − [D][J i]Δ X (3.19)

and

36

Δ X = [D] [J i]  [D]−1
[J v]

−1
−f i−f v  (3.20)

Defining the updates for one nonlinear device (X d and Bd) from (3.19) and (3.20) is

given by,

Δ X d = [D] [J i d ]  [D]−1
[J vd ]

−1
−f i d −f v d  (3.21)

Δ Bd = −f i d  − [D][J i d ]Δ X d (3.22)

Where [J vd ] and [J i d ] are the Jacobian matrices of the port voltage and currents for the

nonlinear device being calculated using the state variables from Section 2.5.1.

Harmonic balance technique requires the state variables in the frequency domain.

fREEDA provides the Jacobian matrix, state variables, port voltages and currents directly, using

the process discussed in section 2.5.1. Combining the linear and nonlinear calculations together

produces a fixed point iterations technique given by,

Am
k1

= [S]m Bm
k
 A0m  (3.23)

Each nonlinear device's reflected power wave (Bd) is calculated independently for each

nonlinear device considering all frequencies simultaneously. When all of the nonlinear device's

reflected waves have been solved for the current iteration (k), Equation (3.23) is independently

calculated for each harmonic considered using the reflected waves provided from the nonlinear

device's Newton iterations. The solution is found when Equation (3.23) is satisfied for all

harmonics. A more detailed explanation of this process is discussed in the next in Section.

3.2.3 Solution Methodology

The iterative process to solve for the solution is now discussed. The solution process

37

consists of solving for the transmitted and reflected waves. This is accomplished by solving for

the local reflection B given the transmitted wave A for each port(s) of the nonlinear devices. The

process uses fixed point iterations where the new transmitted wave is calculated using the

previously calculated reflection using Equation (3.23).

The value of the source vector is available from the simulation setup and is therefore used

as an initial guess for the transmitted power wave A=A0 . The state variables (X) are set to zero

as the initial guess and are used to calculate I NL X  and V NL X  from the device models within

fREEDA. The results of the I NL X  and V NL X  calculation is then used in the error functions

Equation (3.13) and Equation (3.14).

If the errors f i d  and f v d  are less than the solution tolerance then the correct reflection

value Bd for the transmitted wave Ad has been solved for that device's port(s). If the calculated

reflection does not satisfy Equation (3.13) and Equation (3.14) then the state variables and

reflected wave are updated by adding  X d and Bd calculated from Equation (3.21) and

Equation (3.22) to X d and Bd . The use of a scaling factor is also used to limit the amount of

change from one iteration to the next. This scaling factor  is set to a value between 01 and

the update is calculated by:

X d
k1

= X d
k
 X d (3.24)

Bd
k1

= Bd
k
Bd (3.25)

Once all reflected waves Bd have been solved for each port, they are substituted into

Equation (3.23) to calculate the new value of Ad . The iteration process is shown in Fig. 3.2.

38

This process continues until the state variables are found which satisfy Equation (3.23).

With the solution process explained the next step is implementing it in software. This

becomes a large task having to support circuits of varying size and harmonics. Most of the

variables and terms from above are multidimensional matrices or vectors. Certain parts of the

solution process are separated for each frequency and others require all frequencies together.

This requires care and proper planning to successfully achieve an efficient program. The

programming process is discussed in the next section.

3.2.4 Implementation in fREEDA

As mentioned in Section 2.5 the platform selected to integrate the wave technique into

was fREEDA. The use of fREEDA greatly reduced the programing effort while increasing the

flexibility. The addition of a new class 'wavehb' was added to the simulation package to support

wave based harmonic balance. The existing simulation class 'SVHB' or state variable harmonic

39

Fig. 3.2 Solution Iteration Process

Calculate Reflections
b for Each Device(s)

Port(s) Using ak

Calculate ak + 1 For Each Frequency

am
k1 = [S]mbm

k  a0 m 

∣am
k1
−am

k∣tolerance

Yes

No

Solution Found

balance class was used as an intial model to implement the new class.

Besides the major changes to the equation formulation discussed in Section 3.2.1 and

3.2.2 the use of an open source matrix library was added. The Matrix Template Library (MTL)

[22] was selected to ease programing complexity and decrease programing time. The MTL

includes various matrix and vector operations for both real and complex numbers. The use of this

library did however have some limitations and problems, which are discussed in Section 3.6. The

original SVHB simulation was formulated using different vector representations and a different

complex number format. Conversions were required to fit the data into a usable format for using

the MTL.

With the data rearranged to fit the MTL format the scattering matrices [S m] and source

vectors A0 m are calculated for each frequency using the formulas derived in Section 3.2.1. There

is one scattering matrix and source vector per frequency. The scattering parameters are stored in

a square matrix with a dimension equal to the number of ports p . An array of scattering matrices

is formed to store the values for each frequency. The size of the array is equal to the number of

harmonics considered plus DC shown in Equation (3.26).

[S m] = [
s11 s12 ⋯ s1p

s21 s22 ⋯ s2p

⋮ ⋮ ⋱ ⋮
s p1 s p2 ⋯ s pp

] (3.26)

Similarly an array is defined for the source vectors. The source vector length is equal to

the number of ports and the number of array elements is equal to the number of harmonics plus

DC. Both the scattering matrices and source vectors are only calculated once at the beginning of

the simulation. This is beneficial because it keeps the computationally expensive matrix

40

decompositions to a minimum. The structure of the A vector is shown here:

A0 m = [
A00

A0 1

⋮
A0  p

] (3.27)

The other main values that need to be stored are the vectors B , I NL X  and V NL X  .

The treatment of I NL X  and V NL X  is similar to that of the source vectors by using an array.

The array length for I NL X  and V NL X  is equal to the number of ports not necessarily equal to

the number of devices. For devices that have more than one state variable the dimension of the

vector increases to the number of frequencies times the number of states variable for that device

shown in Equation (3.28). This requirement adds some programing complexity because many

circuits can have a mixture of devices with various states per device. The structure for the

vectors in one device is illustrated below:

V NL d  = [
V NL 1,0 

V NL 1,1 

⋮
V NL1,m 

V NL 2,0

V NL 2,1

⋮
V NL2,m 

V NL  p , 0

V NL  p , 1

⋮
V NL  p , m

] I NL d  = [
I NL1,0 

I NL 1,1

⋮
I NL 1, m

I NL2,0 

I NL2,1 

⋮
I NL 2, m

I NL p ,0 

I NL p ,1 

⋮
I NL p ,m 

] (3.28)

Unlike the A0 , I NL x and V NL x  vectors which are stored in an array of vectors the

41

power wave vectors A and B are stored as a matrix shown in Equation (3.29). The matrix

dimensions being the number of ports by the number of frequencies. This convention allows for

easy access to different data. For example the magnitude and phase of all the power waves at one

port can be used by referencing an individual row. Similarly referencing one column allows

access to all components of one particular frequency.

A = [
a1,0 a1,1 ⋯ a1,m

a2,0 a2,1 ⋯ a2,m

⋮ ⋮ ⋱ ⋮
a p ,0 a p , 1 ⋯ a p , m

] B = [
b1,0 b1,1 ⋯ b1,m

b2,0 b2,1 ⋯ b2,m

⋮ ⋮ ⋱ ⋮
b p ,0 b p , 1 ⋯ b p , m

]

(3.29)

The iteration process is set to sequentially loop through the devices and solve the local

reflections B . This is accomplished by formulating the voltage and current Jacobian matrix for

the device in question. Both Jacobian matrices [J i] and [J v] are square and of the same

dimension. Their dimension is equal to the number of ports (p) for the device times the number

of frequencies considered. The structure of the current Jacobian matrix [J i] for one device (d)

is,

[J i d ] = [
[J 1,1] [J 1,2] ⋯ [J 1, p]

[J 2,1] [J 2,2] ⋯ [J 2, p]

⋮ ⋮ ⋱ ⋮
[J p ,1] [J 1,2] ⋯ [J p , p]

]

(3.30)

Each term in Equation (3.30) is comprised of another sub-matrices [J r , q] which refers to the

number of ports per device with 1r p and 1q p . Each of the sub-matrices [J r , q] are also

square and have a dimension of the number of frequencies.

42

[J r , q] = [
j0,0 j 0,2 ⋯ j0,m

j1,0 j 1,2 ⋯ j1,m

⋮ ⋮ ⋱ ⋮
jm ,1 jm ,2 ⋯ jm ,m

] (3.31)

Each element in [J r , q] is composed of one complex number. The voltage Jacobian is of the same

form and is not shown.

The process of calculating the Jacobian for each nonlinear device is not a trivial task and

interfacing with fREEDA requires great care as the data types and pointers are not directly

compatible. The calculation process of the Jacobian matrix is performed using the same structure

and process used for converting the state variable based current and voltage vectors from the

time to frequency domain as discussed in Section 2.5.1.

The Jacobian is used to calculate the updates to X and B .This process requires one

matrix decomposition for the [D] [J i]  [D]−1
[J v]

−1 calculation in Equation (3.20). There is a

scaling factor () applied to the update values for  X and B (Section 3.2.3) . This scaling

factor is used to help convergence. For each device the stop criteria is met when the infinity

norm of Zref  A B , Zref
f i , f v /Zref ,  X are all less then the specified simulation

tolerance for that port.

Implementation of the overall programing including debugging and verification added up

to approximately thirteen hundred lines of code. This does not include the trials with alternative

nonlinear equation solvers and the code used to integrate with Octave files [25] to verify parts of

the code that were operational during development.

43

3.3 Convergence Analysis

3.3.1 Power Bound

The use of a relaxation technique based on power waves for harmonic balance analysis is

guaranteed not to diverge to infinity, even if the initial guess is far from the solution. This

property is a direct consequence of using power waves. This is important because it ensures that

there is a physically meaningful excitation for the device models therefore avoiding numerical

problems. The fixed point relaxation scheme can be summarized using the following equation,

B = F [S] BA0 (3.32)

where the bold matrix ([S]) and vectors (B , A0)are defined as,

[S] = [
[S 0] 0 ⋯ 0

0 [S 1] ⋱ 0
⋮ ⋱ ⋱ 0
0 0 0 [Sm]

] (3.33)

B k1
= [

B0
k1

B1
k1

⋮

Bm
k1] (3.34)

A0 = [
A0 0

A01

⋮
A0 m

] (3.35)

The total power reflected at each iteration of Equations (3.23) is given by ∣B∣2 , where the bars

denote the 2-norm of the vector. Since the nonlinear devices are assumed to be passive,

44

∣B k1∣2 = ∣F [S] B kA0∣
2  ∣LSc [S] B

k A0∣
2

, (3.36)

where LSc is a scalar with a value between 0LSc1 . If it is assumed that the upper bound is

propagated during the first iteration the result obtained is as follows:

∣LSc [S] B
k
A0∣  LSc ∣[S] B

k
∣∣A0∣  LSc∣B

k
∣∣A0∣ (3.37)

Given B0 ,

B k1
 LSc∣B

k
∣∣A0∣

⋮

B k1
 LSc

k1
∣B k

∣∣A0∣LSc
k
LSc

k−1
⋯LSc∣A0∣

(3.38)

Therefore,

lim
k∞

∣B k1
∣
2


1
1−LSc

 LSc∣A0∣
2
 (3.39)

3.4 Convergence Improvements

The proposed method using power waves demonstrates good empirical convergence

properties with simple circuits however there were some convergence issues when simulating

relatively complex and highly nonlinear circuits. To help overcome some of the convergence

issues a few techniques detailed below have been developed in this Thesis.

45

3.4.1 Addition of Parallel Capacitors

The capacitors are connected to each port as seen in Fig. 3.3. These capacitors are

assumed to be active only in an independent time dimension. A transient analysis is performed in

this time dimension following a procedure inspired by the pseudo transient analysis technique

presented in [27] and the multi-time techniques presented in [21]. The addition of port capacitors

after the discretization in time domain can be seen equivalent to adding a conductance in parallel

with the port. This conductance can be adjusted based on the size of the capacitance or the time

step in the pseudo-transient analysis.

Implementing this technique into the wave based harmonic balance approach is

accomplished by transforming the capacitors into an equivalent circuit. The current in a capacitor

is related to the capacitance and the change of voltage with respect to the independent time

variable (t '),

46

Fig. 3.3 Addition of Parallel Port Capacitors

Linear
Network

Nonlinear
Device 1

Nonlinear
Device 2

Nonlinear
Device n

Matched
Sources

I c ≃ C
dV
dt '

 (3.40)

The derivative in equation (3.41) can be approximated with the Backward Euler formula by

using a small time step h ,

I c ≃ C
V t 'h−V t ' 

h
 (3.41)

Rearranging Equation (3.41) into Equation (3.42) and defining a current term I and a

conductance term G1 the equivalent circuit can be formed (Fig. 3.4).

I c ≃
−CV t ' 

h


CV t 'h
h

 (3.42)

I =
−CV t ' 

h
G1 =

1
R
=

C
h

 (3.43)

I c ≃ I V u
  G1V

u1
 (3.44)

Replacing the capacitors with its equivalent circuit (Fig. 3.4) requires some slight

modifications to the equations derived in Section 3.2. The first equation to be modified is the

nonlinear current returned from the device models.

i NLx i NL x[G]vNL
k
x , th−vNL

k−1
 x , t  (3.45)

Where the square diagonal matrix is defined as,

47

Fig. 3.4 Capacitor Transformed into Equivalent Circuit

Cv(t')/h C/hC

+

v

_

i

[G] = [
G1 0 ⋯ 0
0 G1 ⋱ 0
⋮ ⋱ ⋱ ⋮
0 0 ⋯ G1

] (3.46)

and the dimensions of [G] are equal to the number of state variables times the number of

frequencies considered for the device being calculated.

For the currents to remain balanced the effect of the capacitors must be considered. As

can be seen in Equation (3.45) as the port voltage approaches steady state the current related to

the capacitors goes to zero.

Similar modifications are made to the nonlinear current error function in Equation (3.14).

The additional current is added to the port nonlinear current in the error function shown in

Equation (3.47).

f i f i = [D][i NL x [G]v NL
k
 x ,th−v NL

k−1
x , t ]−ab (3.47)

The final affected equation is the current Jacobian matrix. Again the current caused by the

capacitors must be accounted for as seen in.

[J i][J i][G] [J v] (3.48)

The value of [G] is a main diagonal matrix therefore it can be used to change the properties of

the Jacobian matrix.

As the pseudo transient reaches steady state the capacitors effect on the solution are

automatically removed without changing any simulation parameters. The value of conductance is

used to passivate the port so at the onset of the iteration process the impedance seen at the port is

dominated by the capacitor. As the voltage at the port begins to reach a steady state the effect of

the capacitor is negligible and the solution is found.

48

For simulations using capacitors there are two different analysis available, referred to as

timing analysis and iterative timing analysis [23] . Timing analysis requires only one iteration of

the main reflection loop Equation (3.23) per time step of the 'pseudo transient' approach. The use

of iterative time analysis allows Equation (3.23) to converge to solution before a 'pseudo

transient' time step is calculated. Solving the reflections to the solution tolerance when using

'pseudo transient' could have little benefit because the solution calculated is not correct until the

port voltage has reach steady state. A flow diagram of the solution process using 'pseudo

transient' is shown in Fig. 3.5.

49

3.4.2 Extrapolation Techniques

The use of capacitors helps the convergence of the system but as a trade off it extends the

solution time considerably under some circumstances. The increase in solution time can be

attributed to the slowly changing port voltage especially when close to the steady state value. To

overcome this newly introduced problem an extrapolation technique is proposed. The theory for

50

Fig. 3.5 Pseudo Transient Flow Solution Flow Diagram

Calculate Reflections
b for Each Device(s)

Port(s) Using ak

∣V NL
k1
− V NL

k ∣tolerance

Yes

Solution Found

No

∣am
k1
−am

k∣tolerance

Yes

No

Calc ak + 1 For Each Frequency

Iterated
Timing

No

Yes

am
k1 = [S]mbm

k  a0 m 

using extrapolation is that capacitors charge quite quickly when voltage is first applied. However

as the port voltage approaches steady state the capacitors take much longer to achieve full

charge. So the use of extrapolation in theory should help overcome this slow final charging.

The use of extrapolation is implemented on both the port voltage variable v NL and the

reflected wave B . The ability to enable and disable the use of extrapolation for both variables is

added to the program through the use of simulation options within the netlist file. The sequence

for v NL and B is generated in the form of v NL
1 ,v NL

2 ,⋯ ,vNL
k1 and B1, B2,

⋯, B k1 with the number of

samples k . The sequence is then used to calculate u j Equation (2.6), [U] Equation (2.7), c

Equation (2.8) and the final extrapolated solution s Equation (2.10) as discussed in Section 2.2.2.

3.4.3 Gradient Descent Method

Another method attempted to improve convergence was that of gradient descent. Gradient

descent is used to scale iterations updates in the correct direction. The hope being that if the

current iteration is close the gradient descent can be used to guide the updates in the correct

direction.

The system of equations in question are currently in the form of a vector. The gradient

descent method is performed on a scalar. Given the fixed point relaxation scheme in Equation

(3.32) an error function G  B can be defined as,

G  B = F [S] BA0 − B =  B (3.49)

The bold vectors and matrices are defined in Section 3.3.1. The Jacobian of F  B and the error

function (G  B)are defined as [J F] and [J G] respectively, where,

51

[J G] = [J F][S]−[I] (3.50)

Converting the vector error function into a scalar function is accomplished as follows:

H  B = G*
 B G  B , (3.51)

where G*
 B is the complex conjugate transpose.

The gradient of G  B is then,

∇ H = 2 [J G]
* G  B

= 2[[S]*[J B]
*
−[I]] B

= 2[[S]*[J B]
*
B− B] ,

(3.52)

where [J F]
* and [S]* are the complex conjugate transpose of [J F] and [S] , respectively.

The value of [J F]
*
B is calculated using,

[J F]
*
B = [[D−1

]−[D][Y]*] [[D−1
][D][Y]*]−1

B , (3.53)

where [Y] and  B are defined as,

[Y]B = [J i] [J v]
−1  B = Bk1

−Bk (3.54)

One [Y]B term is calculated for each nonlinear device.

The direction of ∇ H is used to determine the update direction. The update ( B) for the

next iteration is normally calculated using Equation (3.21) and Equation (3.22). With the use of

gradient descent, the update is scaled using the direction of the gradient field. If the gradient field

and the calculated update  B are in same direction the update  B is flipped to the opposite

direction before being added to the current value of B .

52

3.4.4 Tolerance Stepping

Tolerance stepping is used to solve the individual nonlinear device reflections B to a

looser tolerance than the one set in the simulation netlist. This reduces the number of Newton

iterations required for each main routine iteration. As the iteration process becomes closer to

solution the tolerance of the individual nonlinear device reflection calculations is stepped by a

factor of 0.1 until the required simulation tolerance is reached. This process is demonstrated in

Fig. 3.6.

53

54

Fig. 3.6 Tolerance Stepping Flow Diagram

Calculate Reflections
b for Each Device(s)

Port(s) Using ak

Yes

Solution Found

∣am
k1
−am

k∣ 
Current Tolerance Step

No

Calc ak + 1 For Each Frequency

Yes

am
k1 = [S]mbm

k  a0 m 

Current Tolerance Step
 Tolerance

No

Current Tolerance Step =
Current Tolerance Step×0.1

3.5 Wave HB as Preconditioner

The wave technique can also be used as a type of preconditioner for the more traditional

Newton-based HB simulation. The idea is to allow the wave approach to solve the circuit

operation to a somewhat looser tolerance. The results of the loose simulation tolerance is then

used as the initial guess for the start of Newton-based HB. The relaxation approach initially

convergences quickly and therefore requires less computational time to solve to a slack

tolerance. Having the Newton-based HB approach start from an approximate solution should

reduce the amount of large Jacobian decompositions and therefore the solution time.

For Newton-based HB the major time dominating process for large circuits is

decomposing the Jacobian matrix. The dominating process for the wave HB approach is the

accuracy of the solution. The tighter the tolerance the longer the wave HB process takes to

converge to a solution. Exploiting the fact that wave HB can solve to a looser tolerance quicker

then Newton-based HB a mixture of the two should be able to produce an overall improvement.

3.6 Problems and Solutions

Upon first implementing the wave technique a few simple circuits solved successfully

and the solution time was comparable to conventional techniques. Attempting circuits of greater

size and complexity, the solution convergence became a serious issue. Various modifications and

techniques were attempted to help improve convergence. After many hours of failed attempts

further investigation started to point to a serious problem in the MTL.

The matrix template library which is used to store and perform various complex matrix

calculations appeared to be incorrectly calculating the LU decomposition. Further investigation

55

revealed that the LU function did not properly support complex matrices. The solution to this

was to use the MTL interface to linear algebra package (LAPACK) routine [24]. The LAPACK

routines are a Fortran based matrix library which does support complex matrix decomposition.

The matrix template library also lacked a routine to properly perform a matrix complex

conjugate transpose. A function was written separately to perform this operation.

To help verify all further modifications and calculations separate routines were written to

output matrices and vectors to files. The files are stored in a format that can be read into Octave

[25] where calculations can be confirmed to be correct.

56

Chapter 4

Results

4.1 Simulation Setup

A few different test circuits are simulated to compare the state variable wave technique

against that of the regular state variable based harmonic balance within fREEDA. The

comparison focuses mainly on the number of iterations, execution time and memory

consumption. The details of the various simulations using the wave approach include the initial

proposed wave HB, wave HB with the use of capacitors ('pseudo transient'), extrapolation and

gradient descent. The use of wave HB as a suitable preconditioner for more complex circuits is

also examined.

The simulation setup options include the solution tolerance, tolerance stepping, iteration

limits, transmission line characteristic impedance, parallel capacitor conductance value, update

scaling factor, gradient descent setup and extrapolation parameters. The simulation setup options

and settings are defined in Table 4.1.

The stop criteria for simulations is based on the specified solution tolerance set in the

netlist file. When the error of the function defined in Section 3.2 has reach a value less than the

set solution tolerance the simulation is stopped and results saved.

The wave HB approach is demonstrated with a number of circuits. The initial test circuit

is a simple resistor diode used to confirm program operation. Once the simple diode circuit

solved correctly other circuits tested are, full wave rectifier, charge pump, MESFET amplifier,

57

MMIC amplifier, soliton line and multi-soliton line. The netlists of the circuits are given in

Appendix A.

4.2 Simple Diode Circuit

The simple diode circuit shown in Fig. 4.1 is used as an easy proof of concept and code

verification test. Being a circuit with only one nonlinear port and a well known solution

58

Table 4.1 Simulation Setup Table Definitions

Circuit Title or Simulation Description Section Explained in Thesis

Number Harmonics Section 2.4
Solution Tolerance The Required Solution Tolerance Section 3.2.2
Tolerance Stepping Use Tolerance Stepping 1=Yes 0=No Section 3.4.4

Max Port Iterations Section 3.2.2
Transmission Line Section 3.2.1

Update Scaling Factor Section 3.2.2
Max NL Iterations Maximum Iterations of Entire Circuit Loop Section 3.2.2
Use Caps Use Pseudo Transient 1=Yes 0=No Section 3.4.1

Conductance Value Section 3.4.1

Max Cap Iterations Section 3.4.1
Iterated Timing Analysis Use Iterated Timing Analysis 1=Yes 0=No Section 3.4.1
Use Extrapolation Use Extrapolation 1=Yes 0=No Section 3.4.2
Extrapolation Start Point Tolerance to Start Extrapolation Section 3.4.2

 Section 3.4.2

Use Cap Extrapolation Section 3.4.2

 Section 3.4.2

 Section 3.4.2
Use Gradient Descent Use Gradient Descent 1=Yes 0=no Section 3.4.3

Gradient Descent Start Section 3.4.3

Execution Time(s) Simulation Execution time
Number of NL Iterations Number of Iterations of Entire Circuit Loop
Number of Cap Iterations Number of Pseudo Transient Iterations

Memory Usage

The Number of Harmonics Considered in
Calculation

Maximum Number of Newton Iterations for
Each NL Device

Zref
The Value of Scaling Factor α

Conductance Value of Parallel Capacitor
(G)
Maximum Iterations of Pseudo Transient
Loop

Number of Extrapolation
Samples

Number of Extrapolation Samples Used in
Calculation
Use Extrapolation on Pseudo Transient
1=Yes 0=No

Cap Extrapolation Start
Point

Tolerance to Start Extrapolation on Pseudo
Transient

Number of Cap
Extrapolation Samples

Number of Samples Used on Pseudo
Transient Extrapolation

Tolerance to Start Gradient Descent
Method

Computer Memory Required to Perform
Calculations

waveform it became a useful troubleshooting circuit tool.

4.2.1 Diode Simulation Setup and Results

A large number of simulations were performed on the diode circuit, the first examining

the effect of varying the transmission line characteristic impedance. Two characteristic

impedances are used for comparison. The various simulation setup parameters are shown in

Table 4.2 along with the Newton-based state variable HB (NBSV-HB) results as a reference.

Changing the characteristic impedance has an effect on the convergence rate of solution.

The error as a function of iterations using a 50Ω and an 800Ω characteristic impedance

transmission line are shown in Fig. 4.2. The number of iterations and therefore the execution

59

Fig. 4.1 Resistor Diode Circuit

V
S

5V
100MHz

+

R
1

V
o

D
1

Table 4.2 Wave HB Simulation Setup and Results

Simulation Type NBSV-HB
Number Harmonics 15 15 15
Solution Tolerance 1.00E-008 1.00E-008 1.00E-008
Tolerance Stepping 0 0 NA
Max Port Iterations 100 100 NA

800 50 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1000 NA
Execution Time(s) 0.62 7.94 0.04
Number of NL Iterations 10 161 33
Number of Cap Iterations NA NA NA
Memory Usage 496k 496k NA

Wave HB
(Z

ref
=800)

Wave HB
(Z

ref
=50)

Zref

time is extended considerably with the changing of characteristic impedance from 800Ω to 50Ω.

The wave HB simulation takes 10 total iterations compared to the 33 iterations taken by

the Newton-based HB simulation. The reason that the wave HB approach is still slower is

because the Jacobian matrix is calculated for every iteration. The Newton-based HB only

recalculates the Jacobin matrix when the iterations move far enough away from the point where

the last Jacobian calculated becomes invalid. For comparison the Jacobian was only calculated

twice during the Newton-based HB simulation.

The use of tolerance stepping is also tested (Fig. 4.3). Tolerance stepping starts at a

solution tolerance of 0.01 and steps down by a factor of 0.1 until the specified solution tolerance

is achieved. Starting the simulation at a looser tolerance improves iteration speed especially at

the beginning when solving each nonlinear port to a tight tolerance is an inefficiency use of

processing time as the global reflection equations are still far from solution.

60

Fig. 4.2 Comparison of Different Characteristic Impedances Effect on Iterations for Resistor Diode Circuit

0 20 40 60 80 100 120 140 160 180

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
Diode Iteration Error

Zref (800)
Zref (50)

Number of Iterations

E
rr

o
r

Tolerance stepping increases the total number of iterations to achieve solution. However the

average time per iteration is less therefore leading to an overall processing time considerably

shorter as seen in Table 4.3.

The resulting waveform of the voltage across the diode from each converging simulation

resulted in the same solution output shown in Fig. 4.4.

61

Fig. 4.3 Comparison of Different Characteristic Impedances using Tolerance Stepping

0 20 40 60 80 100 120 140 160 180

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01
Diode Iteration Error

Zref (800)
Zref (50)

Number of Iterations

E
rr

o
r

Table 4.3 Tolerance Stepping Setup

Simulation Type NBSV-HB
Number Harmonics 15 15 15
Solution Tolerance 1.00E-008 1.00E-008 1.00E-008
Tolerance Stepping 1 1 NA
Max Port Iterations 100 100 NA

800 50 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1000 NA
Execution Time(s) 0.25 1.72 0.04
Number of NL Iterations 14 186 33
Number of Cap Iterations NA NA NA
Memory Usage 496k 496k NA

Wave HB w
Tol Step
(Z

ref
=800)

Wave HB w
Tol Step
(Z

ref
=50)

Zref

As discussed in Section 3.4.1 the use of capacitors connected in parallel to the ports is

attempted to improve convergence. The resulting iteration error progress of testing the 'pseudo

transient' on the diode circuit is shown in Fig. 4.5. Three different simulation iteration error

trends are shown in Fig. 4.5. The different simulation setup configurations and results are

recorded in Table 4.4.

62

Fig. 4.5 Iteration Error Function of Resistor Diode Circuit using Capacitors

0 10 20 30 40 50 60 70 80 90

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
Diode Error with Capacitors

Timing Analysis G1
(1/800)
Timing Analysis G1
(1/250)
Iterated Time Analysis
(1/250)

Iterations

E
rr

o
r

Fig. 4.4 Simulated Voltage Waveform Across Diode

0 5 10 15 20

-6

-5

-4

-3

-2

-1

0

1
Diode Output Voltage Waveform

Wave HB Newton HBTime(nS)

V
o

lta
g

e
 (

V
)

Adjusting the value of the parallel connected conductance (G1) is tested at 1/250S and

1/800S . The use of timing analysis and iterative timing analysis as discussed in Section 3.4.1 is

tested at a fixed conductance value of 1/250S . Lowering the conductance value is equivalent to

connecting a smaller value capacitor. The number of time steps required for a smaller value

capacitor to charge is less when connected in parallel with the same nonlinear device therefore

decreasing the number of 'pseudo transient' iterations required to reach solution.

The use of iterated timing analysis averaged 2.88 iterations of Equation (3.23) per 'pseudo

transient' time step. The use of iterated timing analysis reduced the overall iterations from 82

down to 81 but with a considerable trade off of almost 3 extra sub-iterations per step. The use of

iterated timing analysis with other circuits also resulted in little to no performance improvement

and is therefore not shown or discussed in the remaining simulations.

Two other methods proposed to improve convergence given in Section 3.4 are

extrapolation and gradient descent. The sampling for the extrapolation shown in Fig. 4.6 starts

63

Table 4.4 Simulation Setup and Results

Simulation Type NBSV-HB
Number Harmonics 15 15 15 15
Solution Tolerance 1.00E-008 1.00E-008 1.00E-008 1.00E-008
Max Port Iterations 100 100 100 NA

800 800 800 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Caps 1 1 1 NA
Conductance Value 1/250 1/800 1/250 NA
Max Cap Iterations 1000 1000 1000 NA
Iterated Timing Analysis 0 0 1 NA
Execution Time(s) 3.71 1.68 6.86 0.04
Number of NL Iterations 1 1 2.88 33
Number of Cap Iterations 82 35 81 NA

Memory Usage 496k 496k 496k NA

Timing
Analysis
G

1
(1/250)

Timing
Analysis
G

1
(1/800)

Iterated
Timing

Analysis

Zref

when the residual of the error is less than 0.01. The number of samples taken before calculating

the extrapolation is set to 3. Extrapolation in this simulation is performed on the reflected wave

B . For the gradient descent technique two thresholds of 1e-3 and 1e-5 are tested. The simulation

is run normally until the error is less then the threshold and scaling of the update in accordance to

the gradient begins.

The extrapolation technique did not improve the convergence rate. Different numbers of

samples were attempted for this circuit to analyze their effect. However the matrix template

library which then calls the Lapack routine to perform the complex matrix factoring returns a

failure code for samples greater than 3 for this particular circuit.

The performance of using gradient descent for this simple circuit shows similar results to

the basic wave technique (Table 4.5). Setting the gradient descent activation tolerance to high

results in the solution becoming trapped at an incorrect solution. Lowering the gradient descent

64

Fig. 4.6 Gradient Descent and Extrapolation Error

0 5 10 15 20 25 30 35 40 45 50

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
Diode Error with Extrapolation and Gradient Descent

Extrapolation
Gradient Descent (1e-3)
Gradient Descent (1e-5)

Iterations

E
rr

o
r

start tolerance prevents this from occurring and has a moderate improvement on performance

near the end of the simulation.

The final technique to be tested is the use of extrapolation on the port voltage while using

'pseudo transient'. The use of extrapolation on the port voltage has an adverse effect on the

simulation. The overall effect of extrapolation on the port voltage while using capacitors severely

increased the total number of iterations required and subsequently the execution time. This trend

is observed with other test circuits as well. The issues that arise from the use of extrapolation

appear to be related to issues in the programming code and for this reason all further

extrapolation results are provided in Appendix B.

4.2.2 Diode Simulation Summary

The simulation of the simple diode circuit using wave HB was successful in the sense that

65

Table 4.5 Gradient Descent and Extrapolation Setup and Results

Simulation Type NBSV-HB
Number Harmonics 15 10 10 15
Solution Tolerance 1.00E-008 1.00E-008 1.00E-008 1.00E-008
Tolerance Stepping 0 0 0 NA
Max Port Iterations 100 100 100 NA

800 800 800 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Extrapolation 1 NA NA NA
Extrapolation Start Point 1.00E-001 NA NA NA
Number of Extrapolation Samples 3 NA NA NA
Use Gradient Descent NA 1 1 NA
Gradient Descent Start NA 1.00E-005 1.00E-003 NA
Execution Time(s) 1.03 0.56 15.28 0.04
Number of NL Iterations 22 10 385 33
Number of Cap Iterations NA NA NA NA
Memory Usage 496k 496k 496k NA

Wave HB w
Extrapolation

Wave HB w
Gradient
Descent

Wave HB w
Gradient
Descent

Zref

the correct solution was found. The use of tolerance stepping provides the fastest simulation

which is still quite a bit slower than the Newton-based HB. The use of 'pseudo transient' also

converges to the solution with a slower execution time due to the number of 'pseudo transient'

time steps required to reach solution. For this simple circuit however the use the wave HB

technique does not meet the performance of Newton-based HB.

4.3 Full Wave Rectifier

A full wave rectifier is commonly used to convert an alternating current containing

positive and negative swings into a signal containing only positive swings. Connecting a

capacitor on the output is used to filter the signal to an approximate DC signal. For the

simulations the filter capacitor was removed therefore the resulting waveform is approximately a

rectified sine wave. The circuit is comprised of four diodes arranged as shown in the circuit

schematic Fig. 4.7 with a load resistance of RL=10kΩ.

4.3.1 Full Wave Rectifier Simulation Setup and Results

Similar to the diode circuit discussed previous the effect of varying the transmission line

66

Fig. 4.7 Rectifier Schematic

V
S
=

10V

+
R

L

V
o

characteristic impedance is tested. The simulation setup is shown in Table 4.6 The simulations

compare the use of regular wave HB with and without the use of tolerance stepping.

Tolerance stepping for this particular circuit improved both the convergence and

execution speed. Tolerance stepping reduces the number of iterations by almost a factor of 3 and

improves convergence speed by a factor of roughly 12.5.

The simulated voltage output from the rectifier circuit for a convergent solution is shown

in Fig. 4.9.

67

Fig. 4.8 Wave HB Error as Function of Iterations

0 50 100 150 200 250 300 350

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
Full Wave Rectifier Error

Regular Wave HB
Tolerance Stepping
Wave HB

Iterations

E
rr

o
r

Table 4.6 Wave HB Simulation Setup

Simulation Type NBSV-HB
Number Harmonics 25 25 15
Solution Tolerance 1.00E-007 1.00E-007 1.00E-008
Tolerance Stepping 0 1 NA
Max Port Iterations 200 200 NA

800 800 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1000 NA
Execution Time 2m29.312s 14.071s Diverges
Number of NL Iterations 323 97 NA
Number of Cap Iterations NA NA NA
Memory Usage 892k 892k 1000k

Wave HB
(Z

ref
=800)

Wave HB w
Tol Step

Zref

The simulation setup and results from the use of 'pseudo transient' are compared to

Newton-based HB and wave HB, shown in Table 4.7 and Fig. 4.10.

Pseudo transient improved the convergence speed of wave HB but not enough to beat the

tolerance stepping approach.

68

Fig. 4.9 Simulated Voltage Output Waveform (Wave HB)

0 0.5 1 1.5 2 2.5 3 3.5

-2

0

2

4

6

8

10

Rectifier Output

Time (mS)

V
o

lta
g

e
 (

V
)

Table 4.7 Pseudo Transient Compared with Wave and Newton-based HB

Simulation Type NBSV-HB
Number Harmonics 25 25 25 25
Solution Tolerance 1.00E-007 1.00E-007 1.00E-007 1.00E-007
Tolerance Stepping 0 1 0 NA
Max Port Iterations 200 200 200 NA

800 800 800 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Caps 0 0 1 NA
Conductance Value NA NA 1/250 NA
Max Cap Iterations NA NA 1000 NA
Iterated Timing Analysis NA NA 0 NA
Use Extrapolation 0 0 0 NA
Execution Time 2m29.312s 14.07 1m16.68s Diverges
Number of NL Iterations 323 97 1 NA
Number of Cap Iterations NA NA 230 NA
Memory Usage 892k 892k 892k 1000k

Wave HB
(Z

ref
=800)

Wave HB w
Tol Step

Wave HB w
Pseudo

Transient

Zref

The simulation setup to test the use of gradient descent to improve convergence is shown

in Table 4.8.

The use of gradient descent improved the solution time of wave HB with and without

tolerance stepping. As can be seen from the gradient descent simulation starting at a tolerance of

69

Table 4.8 Gradient Descent Setup and Results

Simulation Type NBSV-HB
Number Harmonics 25 25 25 25
Solution Tolerance 1.00E-007 1.00E-007 1.00E-007 1.00E-008
Tolerance Stepping 0 0 1 NA
Max Port Iterations 200 200 200 NA

800 800 800 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 300 1000 1000 NA
Use Gradient Descent 1 1 1 NA
Gradient Descent Start (SF=0.1) 1.00E-005 5.00E-007 5.00E-007 NA

No Convergence
Execution Time 4m16.647s 2m12.414 12.808s Diverges
Number of NL Iterations 300 288 81 NA
Number of Cap Iterations NA NA NA NA
Memory Usage 892k 892k 892k 1000k

Wave HB w
Gradient Descent

Wave HB w
Gradient
Descent

Wave HB w
Gradient
Descent

Zref

Fig. 4.10 Pseudo Transient Compared with Wave and Newton-based HB

0 50 100 150 200 250 300 350

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
Full Wave Rectifier Error

Regular Wave HB
Tolerance Stepping
Pseudo Transient

Iterations

E
rr

o
r

1e-5 the gradient descent diverges from solution (Fig. 4.11). This is an example of what happens

if the gradient descent is started too far away from the correct solution.

Activating the gradient descent method at 1e-6 improves convergence and simulation time. The

fastest simulation for solving the full wave rectifier is the combination of wave HB with

tolerance stepping and gradient descent.

4.3.2 Full Wave Rectifier Simulation Summary

The full wave rectifier circuit converged to solution using wave HB with and without

capacitors when the characteristic impedance was set to 800Ω. When the impedance was

lowered however convergence did not occur without the use of 'psuedo transient'. Adding the use

of gradient descent together with tolerance stepping proved to be the quickest simulation. For

this particular circuit Newton-based HB did not converge to solution so no comparison was

available as a reference.

70

Fig. 4.11 Gradient Descent Error

0 50 100 150 200 250 300 350

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
Full Wave Rectifier Error

GD 1e-6 Tol Step
GD 1e-5
GD 1e-6

Iterations

E
rr

o
r

4.4 Charge Pump

A simple charge pump circuit uses a configuration of capacitors and diodes to turn an

applied sin wave input into a DC voltage output higher than the applied AC voltage. The

magnitude of the output voltage is related to the number of capacitor and diode stages in the

circuit. The greater the number of stages the higher the output voltage. The circuit schematic

shown in Fig. 4.12 is a typical charge pump circuit.

4.4.1 Charge Pump Simulation Setup and Results

The simulated voltage output waveform for a convergent simulation is shown in Fig.

4.13.

71

Fig. 4.12 Charge Pump Schematic

V
S
=

10V

+

V
o

D
1

D
2

D
3

D
4

C
1

C
3

C
2

C
4

Fig. 4.13 Charge Pump Voltage Output Waveform

0 10 20 30 40 50 60 70

37.60

37.65

37.70

37.75

37.80

37.85

37.90

37.95

Charge Pump Output

Wave HB Newton HB Time (mS)

V
o

lta
g

e
 (

V
)

The applied AC voltage in all simulations of the charge pump is 10VAC and the output is

loaded with a 1MΩ resistor. The simulation setup for the first comparison is the same as the full

wave rectifier. The characteristic impedance is varied between 50Ω and 800Ω and the use of

'pseudo transient' with the addition of parallel capacitors is tested (Table 4.9).

The charge pump circuit simulation using wave HB hit the maximum iteration limit

before converging to the required solution tolerance. The error trends in Fig. 4.14 show that

eventual convergence to solution is likely however the number of iterations and execution time

appear to be great. The convergence improves considerably when the use of 'pseudo transient' is

implemented. Unlike the previous simulations the use of the lower valued characteristic

impedance of 50Ω shows better convergence characteristics.

72

Table 4.9 Simulation Setup and Results

Simulation Type NBSV-HB
Number Harmonics 25 25 25 25 15
Solution Tolerance 1.00E-005 1.00E-005 1.00E-005 1.00E-005 1.00E-005
Tolerance Stepping 0 0 1 0 NA
Max Port Iterations 200 200 200 200 NA

50 800 800 800 NA
Update Scaling Factor 0.3 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 2000 1000 NA
Use Caps 0 0 0 1 NA
Conductance Value NA NA NA 1/250 NA
Max Cap Iterations NA NA NA 1000 NA
Iterated Timing Analysis NA NA NA 0 NA
Use Extrapolation 0 0 0 0 NA

Execution Time 8m 42s 19m12s 4m45.194s 2m25.143s 2.881s
Number of NL Iterations 1000 1000 1634 1 1000
Number of Cap Iterations 472 NA
Memory Usage 904k 904k 904k 904k 1700k

Wave HB
(Z

ref
=50)

Wave HB
(Z

ref
=800)

Wave HB w
Tol Step

Wave HB w
Pseudo

Transient

Zref

Iteration Limit
Hit

Iteration Limit
Hit

For this simulation 'pseudo transient' provides the best wave HB convergence results. The

use of tolerance stepping also improves the convergence of regular wave HB. When compared to

the reference simulation using Newton-based HB the simulation times are still much greater.

The use of extrapolation and gradient descent are attempted to improve the overall

simulation further. The simulation error as a function of iterations is shown in Fig. 4.15 and is

compared with that of 'pseudo transient'.

73

Fig. 4.14 Wave HB, Tolerance Stepping and Pseudo Transient Iteration Error Results

0 200 400 600 800 1000 1200 1400 1600 1800

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

Charge Pump Error

Zref 50
Zref 800
Tolerance Stepping
Capacitors

Iterations

E
rr

o
r

The simulation setup and results for comparing extrapolation and gradient descent to

'pseudo transient' are shown in Table 4.10. The use of gradient descent did not improve the

performance and caused the simulation to hit the maximum iterations threshold.

74

Fig. 4.15 Extrapolation and Gradient Descent Error Compared to Pseudo Transient

0 200 400 600 800 1000 1200 1400 1600 1800

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

Charge Pump Error
Pseudo Transient
GD 1e-4

Iterations

E
rr

o
r

Table 4.10 Extrapolation and Gradient Descent Compared to 'Pseudo
Transient'

Simulation Type NBSV-HB
Number Harmonics 25 25 15
Solution Tolerance 1.00E-005 1.00E-005 1.00E-005
Tolerance Stepping 0 1 NA
Max Port Iterations 200 200 NA

50 50 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1600 NA
Use Caps 1 NA NA
Conductance Value 1/250 NA NA
Max Cap Iterations 1000 NA NA
Iterated Timing Analysis 0 NA NA
Use Gradient Descent NA 1 NA
Gradient Descent Start NA 1.00E-004 NA
Execution Time 2m25.143s 4m51.04s 2.881s
Number of NL Iterations 1 1600 1000
Number of Cap Iterations 472 NA NA
Memory Usage 904k 904k 1700k

Wave HB w
Pseudo

Transient

Wave HB w
Gradient
Descent

Zref

4.4.2 Charge Pump Simulation Summary

The results from the charge pump circuit are poor when compared to the reference

simulation using the Newton-based HB approach. The use of 'pseudo transient' showed the best

performance out of the wave HB techniques. Tolerance stepping also produced an execution time

similar to 'pseudo transient' but required many iterations to achieve convergence.

4.5 MESFET Amplifier

So far the circuits tested with the wave HB approach have consisted of diodes and passive

components. The MESFET amplifier circuit is the first circuit using an active element with more

than one port per device. The schematic for the MESFET amplifier is shown in Fig. 4.16.

The simulated solution waveform for the MESFET amplifier output is shown in Fig. 4.17.

75

Fig. 4.16 MESFET Amplifier Schematic

+

-0.4V

3V

10

10nH

10pF

50

15nH100

1.144
50

1nH

200pF

V
I
 = 1V

5.1GHz

The first simulation setup is shown in Table 4.11 using the same variation as the previous

circuits tested examining the use of different characteristic impedances at 50Ω and 800Ω.

Similar to the simulations before changing the value of the characteristic impedance has

an effect on the convergence rate and therefore the number of iterations. For the MESFET

however the use of the lower 50Ω impedance instead of 800Ω displayed better convergence

76

Table 4.11 MESFET Amplifier Wave HB Simulation Setup and Results

Simulation Type NBSV-HB
Number Harmonics 20 25 25
Solution Tolerance 1.00E-006 1.00E-006 1.00E-006
Tolerance Stepping 0 0 NA
Max Port Iterations 200 200 NA
Zref 50 800 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1000 NA
Execution Time(s) 5.637s 44.816s .076s
Number of NL Iterations 26 96 NA
Number of Cap Iterations NA NA NA
Memory Usage 1000k 1000k 1020k

Wave HB
(Z

ref
=50)

Wave HB
(Z

ref
=800)

Fig. 4.17 Simulated Solution Waveform

0 100 200 300 400 500 600 700 800

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Mesfet Amplifier Output

Wave HB Newton HB Time (pS)

V
o

lta
g

e
 (

V
)

characteristics (Fig. 4.18).

The use of tolerance stepping and 'pseudo transient' techniques is tested next. The

tolerance stepping approach is run twice using a different number of maximum iterations for the

nonlinear ports. The first simulation use a maximum of 200 iterations to solve for each reflected

power wave and the other simulation uses 1. The simulation setup and results are shown in Table

4.12.

77

Fig. 4.18 Characteristic Impedance Effect on Convergence

0 10 20 30 40 50 60 70 80 90 100

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
MESFET Error

Zref 50
Zref 800

Iterations

E
rr

o
r

The use of 'pseudo transient' and tolerance stepping using a maximum of 200 iteration per

nonlinear port produced very similar simulation results. Taking just over 6 seconds to converge

to solution in 20 iterations. Tolerance stepping with only one iteration per nonlinear device

required over 100 iterations to converge to solution however the execution time was considerably

lower at just over 1 second (Fig. 4.19).

78

Table 4.12 MESFET Amplifier Tolerance Stepping Simulation Setup and Results

Simulation Type NBSV-HB
Number Harmonics 20 25 25 25
Solution Tolerance 1.00E-006 1.00E-006 1.00E-006 1.00E-006
Tolerance Stepping 1 1 0 NA
Max Port Iterations 200 1 200 NA

50 50 50 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Caps 0 0 1 NA
Conductance Value NA NA 1/250 NA
Max Cap Iterations NA NA 1000 NA
Iterated Timing Analysis NA NA 0 NA
Execution Time(s) 6.461s 1.057s 6.249s .076s
Number of NL Iterations 20 107 1 NA
Number of Cap Iterations NA NA 21 NA
Memory Usage 1000k 1000k 1000k 1020k

Wave HB w
Tol Step '200'
Port Iteratios

Wave HB w
Tol Step '1'

Port Iterations

Wave HB w
Pseudo

Transient

Zref

4.5.2 MESFET Amplifier Simulation Summary

The MESFET amplifier differs from the other circuits tested because it contains an active

device which contains two ports per device. The use of tolerance stepping and only one iteration

per port produces the quickest solution time. The use of one port iteration per nonlinear device

saves time because only one small matrix decomposition is required per global nonlinear

iteration. For this simulation the effects are greater still because a device with two ports doubles

the matrix and vector sizes within the nonlinear port routine. This accounts for the substantial

time savings caused by reducing the maximum number of port iterations from 200 down to 1.

The other simulation techniques preformed comparable to the other test circuits, including

extrapolation causing an adverse effect on the solution convergence. The use of gradient descent

was not preformed due to the implementation being coded to support devices with only one state.

79

Fig. 4.19 Simulation Iteration Error

0 20 40 60 80 100

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
MESFET Error

Tolerance Stepping
(200)
Tolerance Stepping (1)
Pseudo Transient

Iterations

E
rr

o
r

4.6 Soliton Line

So far the circuits that have been tested consist of very few nonlinear elements and do not

require a large number of harmonics to accurately describe the solution waveform. The soliton

line however is a highly nonlinear network that consists of many nonlinear devices and requires

a large number of harmonics to accurately represent the solution. The schematic of the soliton

line is shown in Fig. 4.20. It consists of a high frequency source driving 47 diodes connected to

each other by transmission lines and terminated with a 50Ω load [28,29].

The output voltage waveform at the end of the soliton line is shown in Fig. 4.21. It can be seen

that the waveform exhibits strong nonlinearities. The size of the system to be solved for this

80

Fig. 4.20 Soliton Line Schematic

V
S

9GHz

Z
L

+

50

50

Fig. 4.21 Soliton Line Voltage Output Waveform

0 100 200 300 400 500 600

-18.0

-16.0

-14.0

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

Soliton Line Output

Wave HB Newton HB Time (pS)

V
o

lta
g

e
 (

V
)

circuit using Newton-based HB consist of a square matrix, having a dimension of 3807 x 3807.

4.6.1 Soliton Line Simulation Setup and Results

The soliton line is first solved to a loose tolerance of 1e-2 to compare the performance

between the various different methods covered so far. The reason for solving to a loose tolerance

is due to the fact that simulation of the soliton line takes a considerable amount of time to solve.

The first simulation is used to compare the effect of different characteristic impedances. The use

of 50Ω and 800Ω is compared in Table 4.13.

The use of a 50Ω characteristic impedance shows better solution performance and is

therefore used for all remaining simulations. The error as a function of iterations using the two

different impedances is shown in Fig. 4.22.

81

Table 4.13 Characteristic Impedance Comparison

Simulation Type
Number Harmonics 40 40
Solution Tolerance 1.00E-002 1.00E-002
Max Port Iterations 100 100
Zref 50 800
Update Scaling Factor 0.3 0.3
Max NL Iterations 100 1000

Execution Time 41m2.025s 82m4.09s
Number of NL Iterations 75 101
Number of Cap Iterations NA NA
Memory Usage 13.2M 13.2M

Wave HB
(Z

ref
=50)

Wave HB
(Z

ref
=800)

Iteration Limit
Hit

The use of 'pseudo transient' is tested at different tolerances. As the tolerance is increased

the number of iterations and the amount of time required to reach solution increases. Three

different simulations are run with various tolerances as shown in Table 4.14. The Newton-based

HB approach is also included for comparison.

82

Fig. 4.22 Characteristic Impedances Effect on Convergence

0 20 40 60 80 100 120

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
Soliton Simulation Error

Zref 50
Zref 800

Iterations

E
rr

o
r

Table 4.14 Different Tolerance Comparisons

Simulation Type NBSV-HB
Number Harmonics 40 40 40 40
Solution Tolerance 1.00E-002 1.00E-003 1.00E-006 1.00E-005
Max Port Iterations 100 100 100 NA

50 50 50 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Caps 1 1 1 NA
Conductance Value 1/250 1/250 1/250 NA
Max Cap Iterations 1000 1000 1000 NA
Iterated Timing Analysis 0 0 0 NA

Source Step
Execution Time 28m7.471s 74m4.636s 301m15s 57m51.676s
Number of NL Iterations 1 1 1 354
Number of Cap Iterations 75 114 248 NA
Memory Usage 13.2M 13.2M 13.2M 340.1M

Wave HB w
Pseudo

Transient

Wave HB w
Pseudo

Transient

Wave HB w
Pseudo

Transient

Zref

A couple of points of interest from the results in Table 4.14. The total amount of memory

required to perform the solution calculation is substantially lower in the wave HB approach,

approximately 26 times less then Newton-based HB. The Newton-based HB approach also uses a

source-stepping technique. The source stepping technique is the same as solving the circuit at a

fraction of the input voltage and considering less harmonics. At the next step the voltage and

number of harmonics is increased until the voltage is at the specified amount and all harmonics

are considered. Without source stepping the Newton-based HB fails to converge. Another

interesting observations is that Newton-based HB takes a considerable amount of time to reach a

solution which is relatively close to correct. Once a solution is relatively close Newton-based HB

takes very few iterations and therefore a short amount of time to solve to a tight tolerance. On the

other hand wave HB reaches a solution which is close in a relatively short amount of time but

takes much longer to reach a tight tolerance.

The use of tolerance stepping and using a different limit on the number of nonlinear port

iterations is shown in Fig. 4.23. Increasing the limit on the Newton iterations for each device port

typically extends the overall solution time. This occurs because more time is spent calculating

each device ports reflections. The use of more Newton iterations for each device improves the

rate and likeliness of global convergence of the system. However increasing the number past a

certain point has little effect, as the Newton iterations solve to solution before the limit is hit. The

major advantage of lowering the iteration limit is reducing the time spent on device ports which

have slowly converging Newton iterations. This can improve the overall solution time with the

trade offs being a reduction in the rate and likeliness of global convergence.

83

The use of tolerance stepping improves the simulation convergence time by decreasing

the average time spent on each iteration at the cost of requiring more iterations. The same holds

true when the limit of iterations per local device port reflection calculation is lowered. From

Table 4.15 using tolerance stepping combined with only one iteration of the reflection calculation

for each port provides the quickest solution time.

84

Fig. 4.23 Comparison of Tolerance Stepping and Max Port Iteration Setting

0 100 200 300 400 500 600 700 800 900 1000

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
Soliton Simulation Error

Tolerance Stepping (1)
Tolerance Stepping (10)
Tolerance Stepping (100)

Iterations

E
rr

o
r

Table 4.15 Tolerance Stepping Simulation Setup and Results

Simulation Type NBSV-HB
Number Harmonics 40 40 40 40
Solution Tolerance 1.00E-004 1.00E-004 1.00E-004 1.00E-006
Tolerance Stepping 1 1 1 NA
Max Port Iterations 1 10 100 NA

50 50 50 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Caps 0 0 0 NA

Source Step
Execution Time 41m7.773s 45m 50.66s 103m5.865s 57m51.676s
Number of NL Iterations 978 556 534 354
Number of Cap Iterations NA NA NA NA
Memory Usage 13.2M 13.2M 13.2M 340.1M

Wave HB w
Tol Step '1'

Port Iteratios

Wave HB w
Tol Step '10'
Port Iteratios

Wave HB w
Tol Step '100'
Port Iteratios

Zref

In Table 4.16 a comparison is made between 'pseudo transient', tolerance stepping and

Newton-based HB solved to a tight solution tolerance of 1e-6. The tolerance stepping solution

simulation time is somewhat comparable to that of Newton-based HB but still comes up short.

 4.6.2 Soliton Line Simulation Summary

The soliton line is a relatively nonlinear circuit which presents some difficulty when

solving with a harmonic balance approach. The use of wave HB combined with tolerance

stepping shows performance which is similar to that of Newton-based HB but does not improve

the overall time required to solve the simulation. Wave HB approach is a form of relaxation

technique with a low convergence rate. This differs from the path taken by Newton-based HB

which takes a considerable amount of time to get close to solution, but once there converges

rapidly. The possibility of mixing the two together is present in the Section 4.7. Another

advantage of the wave approach is the substantial reduction in memory usage. This becomes an

even bigger savings as the size of the circuit in question grows.

85

Table 4.16 Comparison of Wave HB and Newton-based HB

Simulation Type NBSV-HB
Number Harmonics 40 40 40
Solution Tolerance 1.00E-006 1.00E-006 1.00E-006
Tolerance Stepping 0 1 NA
Max Port Iterations 100 10 NA

50 50 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1500 NA
Use Caps 1 0 NA
Conductance Value 1/250 NA NA
Max Cap Iterations 1000 NA NA
Iterated Timing Analysis 0 NA NA

Source Step
Execution Time 301m15s 68m28s 57m51.676s
Number of NL Iterations 1 1000 354
Number of Cap Iterations 248 NA NA
Memory Usage 13.2M 13.2M 340.1M

Wave HB w
Pseudo

Transient
Wave HB w

Tol Step

Zref

4.7 Wave HB as a Preconditioner

As was mentioned in Section 4.6 the wave HB approach relaxes towards the solution.

This results in a considerable simulation time for complex systems. The use of Newton-based

HB has much better convergence performance once the solution is relatively close. The cost of

getting relatively close to solution using Newton-based HB can be high due to the computational

cost of decomposing the Jacobian matrix. For smaller circuits this task is quite quick but as the

circuit and number of harmonics considered grows execution time increases dramatically. This

leads to the idea of using wave HB as a preconditioner for Newton-based HB when complex

circuits are simulated. In this section combining the relaxation approach of wave HB with the

fast converge rate of Newton-based HB when near solution is examined. The soliton line in

Section 4.6 is tested along with a circuit containing two soliton lines.

4.7.1 Soliton Line with Wave HB as a Preconditioner

For testing the wave HB as a preconditioner a simulation tolerance of 1e-2 is set and the

solution is solved. The resulting solution waveform is shown in Fig. 4.24. Determining a

stopping criteria for the change from one method to the other was determined using a trial and

error approach. For this particular example the tolerance of 1e-2 showed the best compromise

between time and accuracy.

86

It can be seen from Fig. 4.24 that the simulated solution although only solved to 1e-2 is still

resemblant of the correct solution waveform shown in Fig. 4.21

The resulting solution is then feed into the start of Newton-based HB as the initial guess

and solved without source stepping to a tolerance of 1e-6. The results of the simulation are

shown in Table 4.17.

87

Fig. 4.24 Soliton Output Waveform 1e-2 Solution Tolerance

0 100 200 300 400 500 600

-18
-16
-14
-12
-10

-8
-6
-4
-2
0
2

Soliton Line Output Waveform

Time (pS)

V
o

lta
g

e
 (

V
)

Table 4.17 Soliton Line Wave HB as a Preconditioner Results

Simulation Type NBSV-HB
Number Harmonics 40 40 40 40 40
Solution Tolerance 1.00E-002 1.00E-002 1.00E-002 1.00E-006 1.00E-006
Tolerance Stepping 0 0 0 NA NA
Max Port Iterations 1 20 1 NA NA

50 50 50 NA NA
Update Scaling Factor 0.3 0.3 0.3 NA NA
Max NL Iterations 1000 100 1000 NA NA
Use Caps 0 0 1 NA NA
Conductance Value NA NA 1/250 NA NA
Max Cap Iterations NA NA 1000 NA NA
Iterated Timing Analysis NA NA 0 NA NA

NA NA NA 18m35s NA
Regular HB Time NA NA NA 11m46.44s Source Step
Execution Time 18m35s 41m2.025s 28m7.471s 30m21.44s 57m51.676s
Number of NL Iterations 470 75 1 35 354
Number of Cap Iterations NA NA 75 NA NA
Memory Usage 13.2M 13.2M 13.2M 340.1M 340.1M

Wave HB w
Tol Step

Wave HB
(Z

ref
=50)

Wave HB w
Pseudo

Transient

Combination
of Wave HB
and NBSV-

HB

Zref

Preconditioner Time

The use of wave HB as a preconditioner achieves a solution speed that is faster than

Newton-based HB on its own. The use of one iteration per port and a solution tolerance of 1e-2 is

used for the preconditioner. The result is then used as the initial guess for Newton-based HB

yielding a net time of just over half an hour almost twice as fast as the reference simulation using

Newton-based HB.

4.7.2 Multiple Soliton Line with Wave HB as a Preconditioner

The advantages of using the wave HB as a preconditioner should become more evident as

the circuit size grows and the decomposition of the Jacobian matrix becomes more expensive. To

verify this, two soliton lines are connected as shown in Fig. 4.25. The sources are set to have a

180 degree phase shift from one another during simulation.

The circuit is solved using wave HB to a tolerance of 1e-2 and then used as the initial

guess for Newton-based HB. Results of the preconditioner testing are shown in Table 4.18.

88

Fig. 4.25 Multiple Soliton Line Schematic

V
S

9GHz

Z
L

+

50

50

V
S

9GHz

Z
L

+

50

50

Z
L

50

The use of wave HB as a precondition for the multiple soliton line improves the overall

solution time considerably. The total simulation time is almost 5 hours less with the use of wave

HB and Newton-based HB together when compared with just Newton-based HB. Another

observation is the reduction in memory required to perform the Newton-based HB calculation

when compared to that of wave HB. This memory savings is however lost once the Newton-

based HB is used to converge to the final solution.

4.7.3 Wave HB as a Preconditioner Summary

Wave HB as a preconditioner used as a preconditioner for Newton- harmonic balance

results in shorter simulation times, at least for some circuits. The simulation time savings become

more important as the circuit size grows. Wave HB uses substantial less memory when solving

the system which can become an issue for the Newton-based HB technique used as a reference

89

Table 4.18 Multiple Soliton Line Wave HB as a Preconditioner Results

Simulation Type NBSV-HB
Number Harmonics 40 40 40
Solution Tolerance 1.00E-002 1.00E-006 1.00E-006
Tolerance Stepping 0 NA NA
Max Port Iterations 1 NA NA

50 NA NA
Update Scaling Factor 0.3 NA NA
Max NL Iterations 1000 NA NA
Use Caps 1 NA NA
Conductance Value 1/250 NA NA
Max Cap Iterations 1000 NA NA
Iterative time 0 NA NA

NA 85m38.145s NA
Regular HB Time NA 47m1.255s NA
Execution Time 85m38.145s 132m39.4s 421m9.649s
Number of NL Iterations 1 15 390
Number of Cap Iterations 116 NA NA
Memory Usage 64M 1300M 1300M

Wave HB
(Z

ref
=50)

Combination
of Wave HB
and NBSV-

HB

Zref

Preconditioner Time

throughout this work. However this benefit is lost when wave HB is used as a preconditioner.

4.8 Performance Comparisons

A variety of circuits have been tested in the previous sections. Some observations can be

drawn from these simulations. Wave HB being a form of relaxation technique results in a

solution process which exhibits this behavior. Relaxing to the solution can be beneficial for

convergence but it also suffers from much slower solution times. Solving the reflections for each

port individually is shown to conserve the amount of memory required, especially for larger and

more complex circuits. The use of 'pseudo transient' showed some improvements and the ability

to moderately control convergence.

If the conductance value used in 'pseudo transient' is set to zero then the simulation

becomes the normal wave HB approach. Using capacitors connected to the nonlinear device

ports allows the Newton iterations for each port to converge faster. There is a trade off between

using 'pseudo transient' to improve convergence speed of the individual ports and the overall

time that is required for the 'pseudo transient' to reach solution. In some instants this trade off

results in an improved overall solution time, for others it does not.

The most promising of the techniques used are those of 'pseudo transient' and tolerance

stepping. For relatively large nonlinear circuit 'pseudo transient' can be used to help convergence.

For circuits of moderate size tolerance stepping seems to offer the quickest solution time. The

attempts at extrapolation did not produce positive results. The problem with extrapolation

appears to be in the MTL when solving the Moore Penrose pseudo inverse. Upon solving the LU

decomposition Moore Penrose pseudo inverse the Lapack library returns various different

90

problem codes dependent on the number of extrapolation samples selected. Gradient descent did

have a mild improvement however its use was only beneficial close to the end of the iteration

process so its overall benefit is low.

The final use of wave HB tests its ability of being a type of preconditioner. The results of

a loose tolerance solution are used as an initial guess for a conventional harmonic balance

approach. The combination of the two methods has an overall improvement in the solution time

of the large circuits tested. The trade off being a reduction in the size of system that can be

solved due to the memory-intensive Newton-based HB method. However the harmonic balance

technique provided in fREEDA does not use the Krylov-subspace method and results would be

different otherwise.

91

Chapter 5

Conclusion

5.1 Conclusion

A rigorous extension of the multiple port reflection technique [3] for HB formulated

using state variables for nonlinear circuit simulations is presented for the first time. The

simulation technique does not require the use of a preconditioner or a specific initial guess.

During the solution process only a small matrix decomposition is required for each port iteration.

This has a considerable impact on reducing the amount of memory required during computation

when compared to Newton-based HB techniques. To improve convergence the use of power

waves in conjunction with parallel connected capacitors, minimum polynomial extrapolation and

gradient descent methods has also been examined for the first time.

The use of power waves alone worked well for simple circuits however issues arose when

attempting to solve relatively complex circuits. The addition of parallel capacitors connected to

the nonlinear device ports to create a pseudo transient approach shows convergence

improvements, typically at the cost of increased solution execution time. A tolerance stepping

method was implemented which had a positive improvement on the time required to reach the

solution.

The use of power waves in combination with minimum polynomial extrapolation showed

no improvement over the regular wave HB technique. However implementation issues are

suspected in the calculation of the extrapolation process resulting in unfavorable outcomes. The

92

problem with extrapolation is suspected to be related to the MTL and the LAPACK LU

decomposition calculations. The values returned from the matrix decomposition indicate that

there is a problem factoring the matrix. Further investigation is required of this calculation before

extrapolation can be considered not to help with the solution execution time. The use of transient

analysis simulation using power wave relaxation techniques based on state variables shows

promising results when performing extrapolation [27]. It is believed that the use of extrapolation

combined with the wave HB approach could improve the overall solution time and produce

performance results better than the Newton-based HB approach used for comparison in this

work.

A gradient descent technique was also tested with the use of power waves. The method

showed minor improvement in the convergence rate once relatively close to solution, however

causes problems if activated early.

The use of wave HB as a type of preconditioner for Newton-based HB shows promise

when simulating relatively large nonlinear circuits. Overall the wave HB approach shows

promise in some areas and introduces problems in others. There is still a large amount of

investigation required to make this approach a viable alternative to the existing harmonic balance

techniques. The code written to test this approach still suffers from inefficiencies both in its

structure and the selected support libraries. The MTL presented many issues when dealing with

complex number operations.

5.2 Future Research

There are many areas that still require investigating. For example a simulation using

93

'pseudo transient' has three separate iterations loops occurring. Those being at the individual

nonlinear port using Newton's method, iterations of waves between the linear and nonlinear ports

(3.23) and the pseudo transient time steps. The maximum number of nonlinear port iterations and

the value of the parallel conductance are adjustable. Finding a correlation between the circuit

being simulated and the most efficient combination could benefit the solution process.

For the Newton iterations the scaling factor is fixed in all presented simulations, changing

this number has an effect on convergence and speed. Finding an optimal setting for this value for

each simulation could lead to a more general performance improvement. The effect of the

selected transmission line characteristic impedance also effects solution convergence and it

varies circuit to circuit. Finding a relationship between the circuit and this impedance could also

improve the solution convergence.

The simulations presented are mostly made up of diode circuits with the exception of the

MESFET amplifier. The use of fREEDA helped with the implementation however there is not a

great selection of device models within the included library. This limited the number of test

circuits available. The development of new device models would lead to a greater variety of test

circuits therefore could further test the worthiness of this approach. The complexities attributed

to supporting circuits containing nonlinear devices with varying number of ports makes the

programing quite difficult due to the various sizes and ordering of matrices and vectors. A

problem is suspected with the programming for circuits containing more than one device with

two or more ports. Due to time constraints this issue was not located and corrected before the

preparation of this paper and further debugging is required to locate this problem.

Performance gains could also come from implementing more efficient coding and

94

replacing the matrix template library with one that is better tested and supports more complex

number operations. This may also help with the suspected problem when using extrapolation.

The wave algorithm is also setup in a way that it could possibly benefit from parallel

programing, making use of modern multi-core and cluster computers.

The final area of interest is the use of the wave technique as a possible preconditioner for

other harmonic balance techniques which require an initial guess close to solution before starting

the simulation to achieve convergence.

95

Appendices

Appendix A

Appendix A.1 Simple Diode Circuit Netlist

96

*** Wave HB Simple Diode Circuit ***

*Simulation options

.options freq=1e8

*Simulation Type and setup parameters

.wavehb n_freqs=15 fundamental=freq tol=1e-8 usecaps=0 n_iter=100 zref=800

*Circuit netlist

vsource:v1 1 0 f=freq vac=5 phase=-90

resistor:r1 1 2 r=1k

diode:d1 2 0 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.

*Simulation Output

.out plot term 2 vf invfft 2 repeat in "simplediodev.whb"
.out plot term 1 vf term 2 vf sub invfft 2 repeat in "simpledioderesv.whb"

.end

Appendix A.2 Full Wave Rectifier Circuit Netlist

97

*** Wave HB Full Wave Rectifier ***

*Simulation options

.options freq=60

*Simulation Type and setup parameters

.wavehb n_freqs = 25 fundamental = freq tol=1e-7 n_iter = 10 zref = 800 max_iter = 1000 tol_step=1

*Circuit netlist

vsource:v1 1 3 f=freq vac=10 phase=-90

resistor:rs 1 2 r=5
resistor:rl 4 0 r=10k

diode:d1 2 4 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.
diode:d2 3 4 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.
diode:d3 0 2 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.
diode:d4 0 3 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.

*Simulation Output

.out plot term 4 vf invfft 2 repeat in "recvout.whb"
.out plot term 1 vf term 3 vf sub invfft 2 repeat in "recresv.whb"
.out plot term 4 vf in "recvout.whb_p"
.out plot term 1 vf term 3 vf sub in "recresv.whb_p"

.end

Appendix A.3 Charge Pump Circuit Netlist

98

Wave HB Charge Pump Circuit

*Simulation options

.options freq=1e6

*Simulation Type and setup parameters

.wavehb n_freqs=25 fundamental=freq tol=1e-5 n_iter=200 usecaps=0 zref=50 max_iter=1600 tol_step = 0

*Circuit netlist

vsource:v1 0 1 f=freq vac=10 phase=-90

resistor:rs 1 2 r=1
resistor:rl 0 7 r=1e6

diode:d1 0 4 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.
diode:d2 4 5 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.
diode:d3 5 6 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.
diode:d4 6 7 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.

capacitor:c1 2 4 c=1e-5
capacitor:c2 0 5 c=1e-5
capacitor:c3 4 6 c=1e-5
capacitor:c4 5 7 c=1e-5

*Simulation Output

.out plot term 7 vf invfft 4 repeat in "chargepumpvout.whb"
.out plot term 1 vf invfft 2 repeat in "chargepumpvoutvin.whb"

.end

Appendix A.4 MESFET Amplifier Circuit Netlist

99

*** Wave HB MESFET Amplifier Circuit ***

*Simulation options

.options f0 = 5.1e9 jupdm=4 output=0 nonlin=4

*Simulation Type and setup parameters

.wavehb n_freqs=20 fundamental=f0 tol=1e-6 n_iter=200 usecaps=0 zref=50 extrap=1 n_extrap=3 extol=0.01 max_iter=100
tol_step=0

*Circuit netlist

inductor:l1 1 2 l=1e-9 time_d=0
capacitor:c1 2 3 c=20e-11 time_d=0
inductor:l2 3 7 l=15e-9 time_d=0
resistor:r2 7 8 r=100
mesfetm:m1 3 4 123 idss = 0.06 vp0 = -1.906 gama = -0.015 e = 1.8
+ sl = 0.0676 kg = 1.1 t = 7.0e-12 ss = 1.666e-3 ig0 = 7.13e-6
+ afag = 38.46 r10 = 3.5 kr = 1.111 vbc = 12 ib0 = 7.13e-6 afab = 38.46
+ c10 = 0.42e-12 k1 = 1.282 cf0 = 0.02e-12 kf = 1.282
resistor:rs 123 0 r=1.144
inductor:l3 4 5 l=15e-9 time_d=0
resistor:r3 5 6 r=10
capacitor:cload 4 9 c=20e-12 time_d=0
resistor:rload 9 0 r=50.
vsource:vbias 8 0 vdc = -.4
vsource:vdrain 6 0 vdc = 3.
resistor:rin 11 1 r = 50
vsource:vs 11 0 f = f0 vac = 1.

*Simulation Output

.out plot term 4 vf term 123 vf sub invfft 4 repeat in "out.vds"
.out plot term 4 vf term 123 vf sub mag in "out.vds.mag"
.out plot element "mesfetm:m1" 1 if invfft 4 repeat in "out.ids"

.end

Appendix A.5 Soliton Line Circuit Netlist

*** Wave HB MESFET Amplifier Circuit ***

*Simulation options

* Transim file for NLTL with 24.00 GHz initial Bragg frequency,
* 225.00 GHz final Bragg frequency and 0.952097 tapering rule,
* and 120.00 ps total compression.
.options freq=9.GHz nonlin=4

*Simulation Type and setup parameters

.wavehb n_freqs=40 fundamental=freq oversample=8 tol=1e-6 zref=50 n_iter=10 tol_step=1 max_iter=1000 usecaps=0

*Circuit netlist

* For 27dBm input use vac = 14V
vsource:1 201 0 vac = 14. vdc = -6. f = 9e9 phase=90
resistor:rs 201 202 r=50.
* Diode parameters
* From thesis: js=2.24e-12, alfa=21.13
* From Libra netlist: js=51e-15, alfa=default
.model carlos diode (js=2.24e-12 alfa=21.13 e=10 ct0=1.32767e-15 r0=171.9
+ fi=1.27517 gama=0.810205 jb=1.e-5 vb=-16.)
* Transmission line parameters
.model c_line tlinp4 (z0mag=75.00 k=7 fscale=1.e10
+ alpha = 59.9)
* Diodes
diode:d1 101 0 model = "carlos" area=271.64
diode:d2 102 0 model = "carlos" area=258.63
diode:d3 103 0 model = "carlos" area=246.24
diode:d4 104 0 model = "carlos" area=234.45
diode:d5 105 0 model = "carlos" area=223.21
diode:d6 106 0 model = "carlos" area=212.52
diode:d7 107 0 model = "carlos" area=202.34
diode:d8 108 0 model = "carlos" area=192.65
diode:d9 109 0 model = "carlos" area=183.42
diode:d10 110 0 model = "carlos" area=174.63
diode:d11 111 0 model = "carlos" area=166.27
diode:d12 112 0 model = "carlos" area=158.3
diode:d13 113 0 model = "carlos" area=150.72
diode:d14 114 0 model = "carlos" area=143.5
diode:d15 115 0 model = "carlos" area=136.63
diode:d16 116 0 model = "carlos" area=130.08
diode:d17 117 0 model = "carlos" area=123.85
diode:d18 118 0 model = "carlos" area=117.92
diode:d19 119 0 model = "carlos" area=112.27
diode:d20 120 0 model = "carlos" area=106.89
diode:d21 121 0 model = "carlos" area=101.77
diode:d22 122 0 model = "carlos" area=96.89
diode:d23 123 0 model = "carlos" area=92.25
diode:d24 124 0 model = "carlos" area=87.83
diode:d25 125 0 model = "carlos" area=83.63
diode:d26 126 0 model = "carlos" area=79.62
diode:d27 127 0 model = "carlos" area=75.81
diode:d28 128 0 model = "carlos" area=72.18
diode:d29 129 0 model = "carlos" area=68.72
diode:d30 130 0 model = "carlos" area=65.43
diode:d31 131 0 model = "carlos" area=62.29
diode:d32 132 0 model = "carlos" area=59.31
diode:d33 133 0 model = "carlos" area=56.47
diode:d34 134 0 model = "carlos" area=53.76
diode:d35 135 0 model = "carlos" area=51.19
diode:d36 136 0 model = "carlos" area=48.73

100

diode:d37 137 0 model = "carlos" area=46.4
diode:d38 138 0 model = "carlos" area=44.18
diode:d39 139 0 model = "carlos" area=42.06
diode:d40 140 0 model = "carlos" area=40.05
diode:d41 141 0 model = "carlos" area=38.13
diode:d42 142 0 model = "carlos" area=36.3
diode:d43 143 0 model = "carlos" area=34.56
diode:d44 144 0 model = "carlos" area=32.91
diode:d45 145 0 model = "carlos" area=31.33
diode:d46 146 0 model = "carlos" area=29.83
diode:d47 147 0 model = "carlos" area=28.4
* Parasitic inductors
inductor:i1 1 101 l=21.8pH
inductor:i2 2 102 l=21.8pH
inductor:i3 3 103 l=21.8pH
inductor:i4 4 104 l=21.8pH
inductor:i5 5 105 l=21.8pH
inductor:i6 6 106 l=21.8pH
inductor:i7 7 107 l=21.8pH
inductor:i8 8 108 l=21.8pH
inductor:i9 9 109 l=21.8pH
inductor:i10 10 110 l=21.8pH
inductor:i11 11 111 l=21.8pH
inductor:i12 12 112 l=21.8pH
inductor:i13 13 113 l=21.8pH
inductor:i14 14 114 l=21.8pH
inductor:i15 15 115 l=21.8pH
inductor:i16 16 116 l=21.8pH
inductor:i17 17 117 l=21.8pH
inductor:i18 18 118 l=21.8pH
inductor:i19 19 119 l=21.8pH
inductor:i20 20 120 l=21.8pH
inductor:i21 21 121 l=21.8pH
inductor:i22 22 122 l=21.8pH
inductor:i23 23 123 l=21.8pH
inductor:i24 24 124 l=21.8pH
inductor:i25 25 125 l=21.8pH
inductor:i26 26 126 l=21.8pH
inductor:i27 27 127 l=21.8pH
inductor:i28 28 128 l=21.8pH
inductor:i29 29 129 l=21.8pH
inductor:i30 30 130 l=21.8pH
inductor:i31 31 131 l=21.8pH
inductor:i32 32 132 l=21.8pH
inductor:i33 33 133 l=21.8pH
inductor:i34 34 134 l=21.8pH
inductor:i35 35 135 l=21.8pH
inductor:i36 36 136 l=21.8pH
inductor:i37 37 137 l=21.8pH
inductor:i38 38 138 l=21.8pH
inductor:i39 39 139 l=21.8pH
inductor:i40 40 140 l=21.8pH
inductor:i41 41 141 l=21.8pH
inductor:i42 42 142 l=21.8pH
inductor:i43 43 143 l=21.8pH
inductor:i44 44 144 l=21.8pH
inductor:i45 45 145 l=21.8pH
inductor:i46 46 146 l=21.8pH
inductor:i47 47 147 l=21.8pH
* Transmission lines
tlinp4:t0 202 0 1 0 model = "c_line" length=501.29u
tlinp4:t1 1 0 2 0 model = "c_line" length=978.57u
tlinp4:t2 2 0 3 0 model = "c_line" length=931.69u
tlinp4:t3 3 0 4 0 model = "c_line" length=887.06u
tlinp4:t4 4 0 5 0 model = "c_line" length=844.57u
tlinp4:t5 5 0 6 0 model = "c_line" length=804.11u
tlinp4:t6 6 0 7 0 model = "c_line" length=765.59u

101

tlinp4:t7 7 0 8 0 model = "c_line" length=728.92u
tlinp4:t8 8 0 9 0 model = "c_line" length=694.00u
tlinp4:t9 9 0 10 0 model = "c_line" length=660.75u
tlinp4:t10 10 0 11 0 model = "c_line" length=629.10u
tlinp4:t11 11 0 12 0 model = "c_line" length=598.97u
tlinp4:t12 12 0 13 0 model = "c_line" length=570.27u
tlinp4:t13 13 0 14 0 model = "c_line" length=542.96u
tlinp4:t14 14 0 15 0 model = "c_line" length=516.95u
tlinp4:t15 15 0 16 0 model = "c_line" length=492.18u
tlinp4:t16 16 0 17 0 model = "c_line" length=468.61u
tlinp4:t17 17 0 18 0 model = "c_line" length=446.16u
tlinp4:t18 18 0 19 0 model = "c_line" length=424.79u
tlinp4:t19 19 0 20 0 model = "c_line" length=404.44u
tlinp4:t20 20 0 21 0 model = "c_line" length=385.06u
tlinp4:t21 21 0 22 0 model = "c_line" length=366.62u
tlinp4:t22 22 0 23 0 model = "c_line" length=349.05u
tlinp4:t23 23 0 24 0 model = "c_line" length=332.33u
tlinp4:t24 24 0 25 0 model = "c_line" length=316.41u
tlinp4:t25 25 0 26 0 model = "c_line" length=301.26u
tlinp4:t26 26 0 27 0 model = "c_line" length=286.83u
tlinp4:t27 27 0 28 0 model = "c_line" length=273.09u
tlinp4:t28 28 0 29 0 model = "c_line" length=260.00u
tlinp4:t29 29 0 30 0 model = "c_line" length=247.55u
tlinp4:t30 30 0 31 0 model = "c_line" length=235.69u
tlinp4:t31 31 0 32 0 model = "c_line" length=224.40u
tlinp4:t32 32 0 33 0 model = "c_line" length=213.65u
tlinp4:t33 33 0 34 0 model = "c_line" length=203.42u
tlinp4:t34 34 0 35 0 model = "c_line" length=193.67u
tlinp4:t35 35 0 36 0 model = "c_line" length=184.39u
tlinp4:t36 36 0 37 0 model = "c_line" length=175.56u
tlinp4:t37 37 0 38 0 model = "c_line" length=167.15u
tlinp4:t38 38 0 39 0 model = "c_line" length=159.14u
tlinp4:t39 39 0 40 0 model = "c_line" length=151.52u
tlinp4:t40 40 0 41 0 model = "c_line" length=144.26u
tlinp4:t41 41 0 42 0 model = "c_line" length=137.35u
tlinp4:t42 42 0 43 0 model = "c_line" length=130.77u
tlinp4:t43 43 0 44 0 model = "c_line" length=124.51u
tlinp4:t44 44 0 45 0 model = "c_line" length=118.54u
tlinp4:t45 45 0 46 0 model = "c_line" length=112.86u
tlinp4:t46 46 0 47 0 model = "c_line" length=107.46u
tlinp4:t47 47 0 48 0 model = "c_line" length=52.41u
resistor:rl 48 0 r=50.

*Simulation Output

.out plot term 48 vf in "vout.complex"
.out plot term 1 vf in "vdiode1.complex"
.out plot term 47 vf in "vdiode47.complex"
.out plot term 101 vf invfft 5 repeat in "vdiode1.wave"
.out plot term 122 vf invfft 5 repeat in "vdiode22.wave"
.out plot term 147 vf invfft 5 repeat in "vdiode47.wave"
.out plot term 48 vf invfft 5 repeat in "vout.wave"
.out plot term 202 vf invfft 5 repeat in "vin.wave"
.out plot element "diode:d1" 0 if invfft 5 repeat in "diode1.current"
.out plot element "diode:d47" 0 if invfft 5 repeat in "diode47.current"

.end

102

Appendix A.5 Multiple Soliton Line Circuit Netlist

*** Wave HB MESFET Amplifier Circuit ***

* Transim file for NLTL with 24.00 GHz initial Bragg frequency,
* 225.00 GHz final Bragg frequency and 0.952097 tapering rule,
* and 120.00 ps total compression.

*Simulation options

.options freq=9.GHz nonlin=4 ftol = 1e-5

*Simulation Type and setup parameters

.wavehb n_freqs = 40 fundamental = freq oversample= 8 tol=1e-2 usecaps = 1 zref=50 n_iter=10

*Circuit netlist

* For 27dBm input use vac = 14V
vsource:1 201 0 vac = 14. vdc = -6. f = 9.GHz phase=90 tr=.1e-9
resistor:rs1 201 1 r=50.
vsource:2 202 0 vac = 14. vdc = -6. f = 9.GHz phase=-90 tr=.1e-9
resistor:rs2 202 4 r=50.
xline1 1 2 0 nltline
xline2 4 5 0 nltline
resistor:rl1 2 0 r=100.
resistor:rl2 5 0 r=100.
resistor:rl3 7 0 r=100.
resistor:rp1 2 5 r=80.
resistor:rp2 5 7 r=80.
**
* Definition of the Non-linear Tr Line model
* Input node = 202
* Output node = 48
* Common node = "GND1" (GND)
**
.subckt nltline 202 48 "GND1"
* Diode parameters
* From thesis: js=2.24e-12, alfa=21.13
* From Libra netlist: js=51e-15, alfa=default
.model carlos diode (js=2.24e-12 alfa=21.13 e=10 ct0=1.32767e-15 r0=171.9
+ fi=1.27517 gama=0.810205 jb=1.e-5 vb=-16.)
* Transmission line parameters
.model c_line tlinp4 (z0mag=75.00 k=7 fscale=10.e9 alpha = 59.9
+ nsect = 20 fopt=10e9)
* Diodes
diode:d1 101 "GND1" model = "carlos" area=271.64
diode:d2 102 "GND1" model = "carlos" area=258.63
diode:d3 103 "GND1" model = "carlos" area=246.24
diode:d4 104 "GND1" model = "carlos" area=234.45
diode:d5 105 "GND1" model = "carlos" area=223.21
diode:d6 106 "GND1" model = "carlos" area=212.52
diode:d7 107 "GND1" model = "carlos" area=202.34
diode:d8 108 "GND1" model = "carlos" area=192.65
diode:d9 109 "GND1" model = "carlos" area=183.42
diode:d10 110 "GND1" model = "carlos" area=174.63
diode:d11 111 "GND1" model = "carlos" area=166.27
diode:d12 112 "GND1" model = "carlos" area=158.3
diode:d13 113 "GND1" model = "carlos" area=150.72
diode:d14 114 "GND1" model = "carlos" area=143.5
diode:d15 115 "GND1" model = "carlos" area=136.63
diode:d16 116 "GND1" model = "carlos" area=130.08
diode:d17 117 "GND1" model = "carlos" area=123.85
diode:d18 118 "GND1" model = "carlos" area=117.92

103

diode:d19 119 "GND1" model = "carlos" area=112.27
diode:d20 120 "GND1" model = "carlos" area=106.89
diode:d21 121 "GND1" model = "carlos" area=101.77
diode:d22 122 "GND1" model = "carlos" area=96.89
diode:d23 123 "GND1" model = "carlos" area=92.25
diode:d24 124 "GND1" model = "carlos" area=87.83
diode:d25 125 "GND1" model = "carlos" area=83.63
diode:d26 126 "GND1" model = "carlos" area=79.62
diode:d27 127 "GND1" model = "carlos" area=75.81
diode:d28 128 "GND1" model = "carlos" area=72.18
diode:d29 129 "GND1" model = "carlos" area=68.72
diode:d30 130 "GND1" model = "carlos" area=65.43
diode:d31 131 "GND1" model = "carlos" area=62.29
diode:d32 132 "GND1" model = "carlos" area=59.31
diode:d33 133 "GND1" model = "carlos" area=56.47
diode:d34 134 "GND1" model = "carlos" area=53.76
diode:d35 135 "GND1" model = "carlos" area=51.19
diode:d36 136 "GND1" model = "carlos" area=48.73
diode:d37 137 "GND1" model = "carlos" area=46.4
diode:d38 138 "GND1" model = "carlos" area=44.18
diode:d39 139 "GND1" model = "carlos" area=42.06
diode:d40 140 "GND1" model = "carlos" area=40.05
diode:d41 141 "GND1" model = "carlos" area=38.13
diode:d42 142 "GND1" model = "carlos" area=36.3
diode:d43 143 "GND1" model = "carlos" area=34.56
diode:d44 144 "GND1" model = "carlos" area=32.91
diode:d45 145 "GND1" model = "carlos" area=31.33
diode:d46 146 "GND1" model = "carlos" area=29.83
diode:d47 147 "GND1" model = "carlos" area=28.4
* Parasitic inductors
inductor:i1 1 101 l=21.8pH
inductor:i2 2 102 l=21.8pH
inductor:i3 3 103 l=21.8pH
inductor:i4 4 104 l=21.8pH
inductor:i5 5 105 l=21.8pH
inductor:i6 6 106 l=21.8pH
inductor:i7 7 107 l=21.8pH
inductor:i8 8 108 l=21.8pH
inductor:i9 9 109 l=21.8pH
inductor:i10 10 110 l=21.8pH
inductor:i11 11 111 l=21.8pH
inductor:i12 12 112 l=21.8pH
inductor:i13 13 113 l=21.8pH
inductor:i14 14 114 l=21.8pH
inductor:i15 15 115 l=21.8pH
inductor:i16 16 116 l=21.8pH
inductor:i17 17 117 l=21.8pH
inductor:i18 18 118 l=21.8pH
inductor:i19 19 119 l=21.8pH
inductor:i20 20 120 l=21.8pH
inductor:i21 21 121 l=21.8pH
inductor:i22 22 122 l=21.8pH
inductor:i23 23 123 l=21.8pH
inductor:i24 24 124 l=21.8pH
inductor:i25 25 125 l=21.8pH
inductor:i26 26 126 l=21.8pH
inductor:i27 27 127 l=21.8pH
inductor:i28 28 128 l=21.8pH
inductor:i29 29 129 l=21.8pH
inductor:i30 30 130 l=21.8pH
inductor:i31 31 131 l=21.8pH
inductor:i32 32 132 l=21.8pH
inductor:i33 33 133 l=21.8pH
inductor:i34 34 134 l=21.8pH
inductor:i35 35 135 l=21.8pH
inductor:i36 36 136 l=21.8pH
inductor:i37 37 137 l=21.8pH

104

inductor:i38 38 138 l=21.8pH
inductor:i39 39 139 l=21.8pH
inductor:i40 40 140 l=21.8pH
inductor:i41 41 141 l=21.8pH
inductor:i42 42 142 l=21.8pH
inductor:i43 43 143 l=21.8pH
inductor:i44 44 144 l=21.8pH
inductor:i45 45 145 l=21.8pH
inductor:i46 46 146 l=21.8pH
inductor:i47 47 147 l=21.8pH
* Transmission lines
tlinp4:t0 202 "GND1" 1 "GND1" model = "c_line" length=501.29u
tlinp4:t1 1 "GND1" 2 "GND1" model = "c_line" length=978.57u
tlinp4:t2 2 "GND1" 3 "GND1" model = "c_line" length=931.69u
tlinp4:t3 3 "GND1" 4 "GND1" model = "c_line" length=887.06u
tlinp4:t4 4 "GND1" 5 "GND1" model = "c_line" length=844.57u
tlinp4:t5 5 "GND1" 6 "GND1" model = "c_line" length=804.11u
tlinp4:t6 6 "GND1" 7 "GND1" model = "c_line" length=765.59u
tlinp4:t7 7 "GND1" 8 "GND1" model = "c_line" length=728.92u
tlinp4:t8 8 "GND1" 9 "GND1" model = "c_line" length=694.00u
tlinp4:t9 9 "GND1" 10 "GND1" model = "c_line" length=660.75u
tlinp4:t10 10 "GND1" 11 "GND1" model = "c_line" length=629.10u
tlinp4:t11 11 "GND1" 12 "GND1" model = "c_line" length=598.97u
tlinp4:t12 12 "GND1" 13 "GND1" model = "c_line" length=570.27u
tlinp4:t13 13 "GND1" 14 "GND1" model = "c_line" length=542.96u
tlinp4:t14 14 "GND1" 15 "GND1" model = "c_line" length=516.95u
tlinp4:t15 15 "GND1" 16 "GND1" model = "c_line" length=492.18u
tlinp4:t16 16 "GND1" 17 "GND1" model = "c_line" length=468.61u
tlinp4:t17 17 "GND1" 18 "GND1" model = "c_line" length=446.16u
tlinp4:t18 18 "GND1" 19 "GND1" model = "c_line" length=424.79u
tlinp4:t19 19 "GND1" 20 "GND1" model = "c_line" length=404.44u
tlinp4:t20 20 "GND1" 21 "GND1" model = "c_line" length=385.06u
tlinp4:t21 21 "GND1" 22 "GND1" model = "c_line" length=366.62u
tlinp4:t22 22 "GND1" 23 "GND1" model = "c_line" length=349.05u
tlinp4:t23 23 "GND1" 24 "GND1" model = "c_line" length=332.33u
tlinp4:t24 24 "GND1" 25 "GND1" model = "c_line" length=316.41u
tlinp4:t25 25 "GND1" 26 "GND1" model = "c_line" length=301.26u
tlinp4:t26 26 "GND1" 27 "GND1" model = "c_line" length=286.83u
tlinp4:t27 27 "GND1" 28 "GND1" model = "c_line" length=273.09u
tlinp4:t28 28 "GND1" 29 "GND1" model = "c_line" length=260.00u
tlinp4:t29 29 "GND1" 30 "GND1" model = "c_line" length=247.55u
tlinp4:t30 30 "GND1" 31 "GND1" model = "c_line" length=235.69u
tlinp4:t31 31 "GND1" 32 "GND1" model = "c_line" length=224.40u
tlinp4:t32 32 "GND1" 33 "GND1" model = "c_line" length=213.65u
tlinp4:t33 33 "GND1" 34 "GND1" model = "c_line" length=203.42u
tlinp4:t34 34 "GND1" 35 "GND1" model = "c_line" length=193.67u
tlinp4:t35 35 "GND1" 36 "GND1" model = "c_line" length=184.39u
tlinp4:t36 36 "GND1" 37 "GND1" model = "c_line" length=175.56u
tlinp4:t37 37 "GND1" 38 "GND1" model = "c_line" length=167.15u
tlinp4:t38 38 "GND1" 39 "GND1" model = "c_line" length=159.14u
tlinp4:t39 39 "GND1" 40 "GND1" model = "c_line" length=151.52u
tlinp4:t40 40 "GND1" 41 "GND1" model = "c_line" length=144.26u
tlinp4:t41 41 "GND1" 42 "GND1" model = "c_line" length=137.35u
tlinp4:t42 42 "GND1" 43 "GND1" model = "c_line" length=130.77u
tlinp4:t43 43 "GND1" 44 "GND1" model = "c_line" length=124.51u
tlinp4:t44 44 "GND1" 45 "GND1" model = "c_line" length=118.54u
tlinp4:t45 45 "GND1" 46 "GND1" model = "c_line" length=112.86u
tlinp4:t46 46 "GND1" 47 "GND1" model = "c_line" length=107.46u
tlinp4:t47 47 "GND1" 48 "GND1" model = "c_line" length=52.41u
.ends

*Simulation Output

.out plot term 2 vf invfft 5 repeat in "vdiode22.wave"
.out plot term 2 vf invfft 5 repeat in "vdiode47.wave"

.end

105

Appendix B

Appendix B.1 Extrapolation Results of Simple Diode Circuit

To try and improve the convergence performance further the use of extrapolation is tested

on both the reflected wave and the port voltage while using capacitors.

106

Table B.1 Simple Diode Extrapolation Setup

Diode Diode
Number Harmonics 15 15
Solution Tolerance 1.00E-008 1.00E-008
Tolerance Stepping
Max Port Iterations 100 100
Zref 800 800
Update Scaling Factor 0.3 0.3
Max NL Iterations 1000 1000
Use Caps 1 0
Conductance Value 1/250 NA
Max Cap Iterations 1000 NA
Iterative time 0 NA
Use Extrapolation 0 1
Extrapolation Start Point NA 1.00E-001
Number of Extrapolation Samples NA 3
Use Cap Extrapolation 1 NA
Cap Extrapolation Start Point 1.00E-005 NA
Number of Cap Extrapolation Samples 3 NA

Fig. B.1 Extrapolation on Reflected Wave

0 5 10 15 20 25

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
Diode Error with Extrapolation

Extrapolation

Iterations

E
rr

o
r

The residual of the error after performing an extrapolation increases dramatically and

then slowly decreases until another extrapolation is performed. The simulation was stopped by

the maximum number of iterations threshold defined in the simulation setup. The trend appears

to be converging to solution when the iteration threshold is hit.

Appendix B.2 Extrapolation Results of Full Wave Rectifier Circuit

107

Fig. B.2 Capacitor Extrapolation

0 100 200 300 400 500 600 700 800 900 1000

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0
Diode Error with Capacitor Extrapolation

Cap Extrapolation

Iteration Number

E
rr

o
r

Table B.2 Full Wave Rectifier Extrapolation Setup

Rectifier Rectifier
Number Harmonics 25 25
Solution Tolerance 1.00E-007 1.00E-007
Tolerance Stepping 0 0
Max Port Iterations 200 200
Zref 800 800
Update Scaling Factor 0.3 0.3
Max NL Iterations 1000 1000
Use Caps 1 0
Conductance Value 1/250 NA
Max Cap Iterations 300 NA
Iterative time 0 NA
Use Extrapolation 0 1
Extrapolation Start Point NA 1.00E-003
Number of Extrapolation Samples NA 5
Use Cap Extrapolation 1 NA
Cap Extrapolation Start Point 1.00E-005 NA
Number of Cap Extrapolation Samples 15 NA

Appendix B.3 Extrapolation Results of Charge Pump Circuit

108

Fig. B.3 Capacitor and Reflected Wave Extrapolation

0 50 100 150 200 250 300 350

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
Full Wave Rectifier Error

Capacitor Extrapolation
Extrapolation

Iterations

E
rr

o
r

Table B.3 Charge Pump Extrapolation Setup

Charge Pump
Number Harmonics 25
Solution Tolerance 1.00E-005
Tolerance Stepping 1
Max Port Iterations 200
Zref 50
Update Scaling Factor 0.3
Max NL Iterations 1600
Use Caps 0
Conductance Value NA
Max Cap Iterations NA
Iterative time NA
Use Extrapolation 1
Extrapolation Start Point 1.00E-002

Appendix B.4 Extrapolation Results of MESFET Amplifier Circuit

109

Fig. B.5 Extrapolation on Reflected Wave

0 10 20 30 40 50 60 70 80 90 100

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
MESFET Extrapolation Error

Extrapolation

Iterations

E
rr

o
r

Fig. B.4 Extrapolation on Reflected Wave

0 200 400 600 800 1000 1200 1400 1600

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1
Charge Pump Extrapolation Error

Extrapolation

Iterations

E
rr

o
r

Table B.4 MESFET Amplifier Extrapolation Setup

MESFET
Number Harmonics 25
Solution Tolerance 1.00E-006
Tolerance Stepping 0
Max Port Iterations 200
Zref 50
Update Scaling Factor 0.3
Max NL Iterations 100
Use Extrapolation 1
Extrapolation Start Point 5.00E-001
Number of Extrapolation Samples 3

References

[1] C. Christoffersen and M. Steer, “State Variable Harmonic Balance Simulation of a Quasi-

Optical Power Combing System”, North Carolina State University, Masters Thesis, 1998.

[2] S. Mass, “Nonlinear Microwave and RF Circuits”, Second Edition, CRC Press, 2003.

[3] A. R. Kerr, “A Technique for Determining the Local Oscillator Waveforms in a Microwave

Mixer”, IEEE Trans. On Microwave Theory and Techniques, October 1974, pp. 828-831.

[4] R. G. Hicks and P. J. Khan, “Numerical Analysis of Nonlinear Solid-State Device Excitation

in Microwave Circuits”, IEEE Trans. On Microwave Theory and Techniques, vol. Mtt-30, March

1982, pp. 251-259.

[5] V. Rizzoli, F. Mastri, D. Masotti and F. Sgallari, “Scattering-Matrix Based Inexact-Newton

Harmonic Balance with Incomplete Preconditioning”, European Microwave conference,

October 2000, pp. 1-4.

[6] M. S. Nakhla, J. Vlach, “A Piecewise Harmonic Balance Technique for Determination of

Periodic Response of Nonlinear Systems”, IEEE Trans. on Circuits and Systems, Vol CAS-23,

No. 2, Feb 1976.

[7] S. Rao, “Applied Numerical Methods for Engineers and Scientists”, Prentice Hall, Upper-

Saddle River, New Jersey, 2002.

[8] D. Pozar, “Microwave Engineering 3rd Edition”, John Wiley & Sons, Hoboken, New Jersey,

2005.

[9] V. Borich, J. East and G. Haddad, “A Fixed Point Harmonic Balance Approach For Circuit

Simulation Under Modulated Carrier Excitation”, Proc. Of the IEEE International Symp. On

Circuits and Systems, vol. 6, June 1999, pp. 182-188.

[10] C. Christoffersen, “Global Modeling of Nonlinear Microwave Circuits”, North Carolina

State University, PhD. Dissertation, 2000.

110

[11] F. Veerse, “Efficient Iterative Time Preconditioners for Harmonic Balance RF Circuit

simulations”, Computer Aided Design, 2003 International Conference, Nov. 9-13, 2003, pg 251-

254

[12] G. Tait, “Efficient Solution Method for Unified NonlInear Microwave Circuit and

Numerical Solid-State Device Simulation”, IEEE Microwave and Guided Wave Letter, Vol. 4,

No.12, Dec. 1994.

[13] P. Blakey and S. Bates “Convergence Properties of Fixed-Point Harmonic balance

Algorithms”, IEEE International Symp. on Signals, Systems and Electronics, Aug. 2007.

[14] V. Rizzoli, F. Mastri, C. Cecchetti and F. Sgallari, “Fast and Robust Inexact Netwon

Approach to the Harmonic Balance Analysis of Nonlinear Microwave Circuits”, IEEE

Microwave and Guided Wave Letter, Vol. 7, No.10, Dec. 1997.

[15] V. Rizzoli, A. Lipparini, A. Costanzo, F. Mastri, C. Cecchetti, A. Neri and D. Masotti,

“State-of-the-Art Harmonic Balance Simulation of Forced Nonlinear Microwave Circuits by the

Piecewise Technique”, IEEE Trans. On Microwave Theory and Techniques, Vol. 40, No. 1, Jan.

1992.

[16] M. Honkala, “Parallel Hierarchal DC Analysis”, Thesis for Degree of Licentiate of Science

in Technology, Helsinki University of Technology, March 2002.

[17] N. Soveiko, M. Nakhla and R. Achar, “Comparsion Study of Performance of Parallel Steady

State Solvers on Different Computer Architechtures”, IEEE Trans. On Computer-Aided Design

of Integrated Circuits and Systems, Vol. 29, No. 1, Jan. 2010.

[18] B. Steer, “Global Modeling of Spatially Distributed Microwave and Millimeter-Wave

Systems”, IEEE Trans. On Microwave Theory and Techniques, Vol. 47 No. 6, June 1999.

[19] D. Smith, W. Ford and A. Sidi, “Extrapolation Methods for Vector Sequences”, SAIM

Review, Vol. 29, No. 2, June 1987.

[20] C. Christoffersen, “Transient Analysis of Nonlinear Circuits Based on Waves”, Lakehead

University, 2008.

111

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8895
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8895

[21] J. Roychowdhury, “Analyzing Circuits with Widely Separated Time Scales Using

Numerical PDE Methods”, IEEE Trans. on Circuits and Systems, Vol 48, No. 5, May 2001.

[22] J. Siek, “A Modern Framework for Portable High Performance Numerical Linear Algebra”,

University of Notre Dame, PhD. Dissertation, 1999.

[23] E. Lelarasme, “The Waveform Relaxation Method for the Time-Domain Analysis of Large

Scale Integrated Circuits: Theory and Applications”, Ph.D. dissertation, Dept. of EECS, Univ. of

California, Berkele, 1982.

[24] http://www.netlib.org/lapack/

[25] http://www.gnu.org/software/octave/doc/interpreter/

[26] L. Nagel and D. Pederson, “SPICE (Simulation Program with Integrated Circuit

Emphasis)”, Memorandum No. ERL-M382, University of California, Berkeley, Apr. 1973.

[27] M. Kabir, “Nonlinear Transient Analysis Based on Power Waves and State Variables”,

Masters Thesis, Lakehead University, May 2010.

[28] H. Shi, C. Domier and N. Luhmann, “A Monolithic Nonlinear Transmission Line System

for the Experimental Study of Lattice Solutions”, Journal of Applied Physic, Vol. 4, 1995.

[29] M. J. W. Rodwell, M. Kamegawa, R. Yu, M. Case, E. Carman and K. S. Giboney, “GaAs

Nonlinear Transmission Lines for Picosecond Pulse Generation and Millimeter-wave Sampling”,

IEEE Trans. on Microwave Theory and Tech., Vol. 39, Issue-7, 1991.

[30] G. Dahlquist and A. Bjorck, “Numerical Methods”, Prentice Hall, 1974.

[31] http://en.wikipedia.org/wiki/Gradient_descent

112

	Chapter 1
	Introduction
	1.1	Motivation and Objectives of This Study
	1.2	Thesis Overview

	Chapter 2
	Literature Review
	2.1	Introduction
	2.2	Numerical Techniques
	2.2.1	Newton's Method
	2.2.2	Minimum Polynomial Extrapolation
	2.2.3	Gradient Descent

	2.3	Basics of Waves
	2.3.1	Voltage Wave
	2.3.2	Power Wave

	2.4	Harmonic Balance Formulation
	2.4.1	Conventional Harmonic Balance Equations
	2.4.2	Existing Harmonic Balance Techniques
	2.4.3	Optimization
	2.4.4	Relaxation Techniques
	2.4.5	Newton Based Methods for Harmonic Balance
	2.4.6	Krylov-Subspace Methods
	2.4.7	Preconditioning

	2.5	The fREEDA Circuit Simulator
	2.5.1	fREEDA State Variable Formulation
	2.5.2	fREEDA Architecture and Addition of New Simulation Technique

	Chapter 3
	Wave Based Harmonic Balance
	3.1	Introduction
	3.2	fREEDA Programing and Implementation
	3.2.1	fREEDA Equation Formulation (Linear)
	3.2.2	fREEDA Equation Formulation (Nonlinear)
	3.2.3	Solution Methodology
	3.2.4	Implementation in fREEDA

	3.3	Convergence Analysis
	3.3.1	Power Bound

	3.4	Convergence Improvements
	3.4.1	Addition of Parallel Capacitors
	3.4.2	Extrapolation Techniques
	3.4.3	Gradient Descent Method
	3.4.4	Tolerance Stepping

	3.5	Wave HB as Preconditioner
	3.6	Problems and Solutions

	Chapter 4
	Results
	4.1	Simulation Setup
	4.2	Simple Diode Circuit
	4.2.1	Diode Simulation Setup and Results
	4.2.2	Diode Simulation Summary

	4.3	Full Wave Rectifier
	4.3.1	Full Wave Rectifier Simulation Setup and Results
	4.3.2	Full Wave Rectifier Simulation Summary

	4.4	Charge Pump
	4.4.1	Charge Pump Simulation Setup and Results
	4.4.2	Charge Pump Simulation Summary

	4.5	MESFET Amplifier
	4.5.1	MESFET Amplifier Simulation Setup and Results
	4.5.2	MESFET Amplifier Simulation Summary

	4.6	Soliton Line
	4.6.1	Soliton Line Simulation Setup and Results
	 4.6.2	Soliton Line Simulation Summary

	4.7	Wave HB as a Preconditioner
	4.7.1	Soliton Line with Wave HB as a Preconditioner
	4.7.2	Multiple Soliton Line with Wave HB as a Preconditioner
	4.7.3	Wave HB as a Preconditioner Summary

	4.8	Performance Comparisons

	Chapter 5
	Conclusion
	5.1	Conclusion
	5.2	Future Research

	Appendices
	Appendix A
	Appendix A.1 Simple Diode Circuit Netlist
	Appendix A.2 Full Wave Rectifier Circuit Netlist
	Appendix A.3 Charge Pump Circuit Netlist
	Appendix A.4 MESFET Amplifier Circuit Netlist
	Appendix A.5 Soliton Line Circuit Netlist
	Appendix A.5 Multiple Soliton Line Circuit Netlist

	Appendix B
	Appendix B.1 Extrapolation Results of Simple Diode Circuit
	Appendix B.2 Extrapolation Results of Full Wave Rectifier Circuit
	Appendix B.3 Extrapolation Results of Charge Pump Circuit
	Appendix B.4 Extrapolation Results of MESFET Amplifier Circuit

	References

