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Abstract 
Circuit simulation involving nonlinear elements can be a challenging task. From these 

challenges rises a demand for finding better and more efficient ways of solving such problems. 

This work provides a novel approach for performing harmonic balance (HB) analysis using the 

fREEDA circuit  simulator.  The  proposed method is  an  extension  of  the  method of  multiple 

reflections for multiple ports. In addition the method is formulated in terms of power waves and 

state variables at the nonlinear devices. The HB problem is then solved using a procedure which 

resembles  the  signal  propagation  within  the  actual  circuit.  This  method  could  be  efficiently 

parallelized since it does not require a large matrix decompositions at each iteration.

Several approaches to improve convergence properties are investigated. The first involves 

adding capacitors in parallel with the nonlinear device ports, this allows the fixed-point iterations 

to always be convergent. These capacitors are only active in a separate time dimension and do 

not affect the steady-state solution. The harmonic balance solution is found when the transient 

response in this time dimension is extinguished. Another strategy to improve convergence is the 

combination of fixed-point iterations with the gradient descent method. The effect of a vector 

extrapolation  method  to  accelerate  convergence  is  also  investigated.  Simulation  results  for 

various strongly nonlinear circuits is presented.

This  thesis  covers  the  background  of  harmonic  balance  analysis,  literature  review, 

derivation of the proposed method, improvements, preliminary results, as well as future work.
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Chapter 1

Introduction

1.1 Motivation and Objectives of This Study

As technologies advance new possibilities emerge. With these advances the demand for 

faster, smaller and more complex designs occur. The electronics field is not exempt from this 

and may be one of the major driving forces in technology. From this stems the need for quicker 

and  more  efficient  ways  to  design  and  simulate  electronic  circuit  operation.  There  are  two 

common approaches used for solving such problems. They are commonly divided into two broad 

groups being time and frequency based. There are various available approaches for implementing 

these two methods. 

This  thesis  presents  a  harmonic  balance  (HB)  approach  using  a  relaxation  technique 

based on the work performed by Kerr [3] and  Hicks and Khan [4]. The idea draws from the 

multiple reflection technique of Kerr and considers a network partition similar to the approach 

proposed by Hicks and Khan. Transmission line theory and power waves are used to model the 

circuit operation along with various techniques to improve and control convergence. A rigorous 

extension  using  waves  (unlike  the  extensions  developed  in  References  [9,12])  for  solving 

harmonic balance analysis formulated using state variables for nonlinear circuit simulations is 

presented for the first time. Combining the use of power waves with the  addition of parallel 

connected capacitors, extrapolation and gradient descent methods are also tested for the first 

time.  
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The basic existing  harmonic balance techniques (discussed in Chapter 2) work well for 

circuits  of  smaller  size  and  that  demonstrate  fairly  linear  characteristics.  Krylov-subspace 

methods with inexact Newton harmonic balance using generalized minimum residual technique 

(GMRES)  and  preconditioning  has  demonstrated  success  for  larger  nonlinear  circuits  [2,5]. 

However there are limitations to these approaches in the size of problem which can be solved, 

convergence to the solution and CPU time. One of the major limitations of the harmonic balance 

approaches is  convergence.  Predicting convergence at  the on set  of  a  simulation can not be 

determined. A matrix preconditioner is used to improve the properties and initial guess of solving 

a system of equations.  The use of a preconditioner can become a requirement for successful 

convergence  and  thus  plays  a  crucial  role  in  obtaining  a  successful  solution  [2].  These 

improvements still do not entirely overcome all of these limitations.

The  proposal  of  using  wave quantities,  more  specifically  power  waves,  shows some 

promise.  The  use  of  waves  closely  represents  the  actual  signal  propagation  during  circuit 

operation.  Iterative methods based on power waves can be made theoretically constrained to 

avoid the possibility of divergence.

The majority of techniques mentioned in Chapter 2 have been formulated using Kirchoff's 

voltage  law  and/or  Kirchoff's  current  law  to  represent  the  circuit  quantities.  The  proposed 

process is based on transmission line theory and the propagation of wave quantities, by using 

transmission lines to connect the linear and nonlinear sub-circuits together.  The transmission 

lines have been selected to have a length of zero and thus have no effect on the circuit. The use 

of wave properties should allow for better convergence, the ability to easily divide the problem 

into smaller pieces and shows promise for parallelization which can take advantage of todays 
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multi-core and cluster computers. 

1.2 Thesis Overview

This thesis covers the following topics. Chapter 2 begins with a brief introduction to the 

history of solving nonlinear circuits,  followed by a review of basic concepts related to circuit 

simulation. The Harmonic balance concept is then introduced. Various present harmonic balance 

approaches  are  described.  Finally  the  circuit  simulator  used  to  implement  the  techniques 

developed in the thesis is discussed.

Chapter 3 presents a new harmonic balance based technique based on waves. The main 

equations  are  derived  first,  followed  by  an  analysis  of  convergence  and  some  strategies  to 

improve/accelerate  convergence.  Numerical  simulations  are  presented  in  Chapter  4.  The 

performance  of  the  proposed  methods  is  evaluated  with  the  simulations  of  several  circuits: 

Resistor  Diode,  Full  Wave Rectifier,  Charge Pump,  MESFET Amplifier,  and  a  Soliton  line. 

Chapter 5 presents conclusions and suggested future research directions. 
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Chapter 2 

Literature Review

2.1 Introduction

There are two main categories that  most  circuit  simulation techniques fall  into,  those 

being time and frequency based. Time based circuit simulations such as transient analysis use 

small time steps to sample the circuit operation [2]. The use of frequency based methods implies 

that there is some advantage over time based methods for certain circuit solutions. One of such 

frequency based methods is harmonic balance.

Unlike transient analysis, harmonic balance calculates the steady state solution directly. 

This is accomplished by using a linear addition of sinusoids to produce the solution [1]. There 

have been many different  approaches  proposed to  solve circuits  using the harmonic balance 

technique. The conventional process used for harmonic balance is to divide the circuit up into 

two subnetworks comprised of the linear and nonlinear elements of the circuit [2]. The linear 

network can then be solved in the frequency domain and the nonlinear network solved for in the 

time domain. This being the reason that harmonic balance is sometimes referred to as a mixed 

domain method [1].  The name harmonic balance stems from the process where currents  are 

balanced  between  the  linear  and  non-linear  sub-circuits  [4].  The  linear  network  is  typically 

represented in the form of an admittance matrix (Y-parameters) [2]. Other representations such as 

the scattering matrix (S-parameters) have been proposed and show some promise with certain 

techniques [5,17]. 
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As the number of elements in the circuit increase so does the number of unknowns and 

therefore the complexity in solving the system.  There have been different proposed methods to 

help deal with these complexities when solving a system of equations. Details of some of these 

approaches will be discussed in the following sections. Section 2.2 presents numerical techniques 

that are used to solve the harmonic balance equations, such as Newton's method. The use of 

extrapolation and gradient descent techniques is also covered. The basics of voltage and power 

waves  is  discussed in  Section  2.3.  Section  2.4  discusses  conventional  and  current  harmonic 

balance techniques and various approaches to solve the harmonic balance equations. The solution 

approaches discussed included, optimization, relaxation techniques, Newton based methods, and 

the  use  of  matrix  preconditioners.  Section  2.5  discusses  the  architecture  of  the  fREEDA 

simulator and implementation of a new simulation technique.

2.2 Numerical Techniques

2.2.1 Newton's Method

Newton's method more correctly referred to as the Newton-Raphson method is one of the 

most common numerical approaches used in todays computers to solve systems of nonlinear 

equations.  It  is  especially  powerful  when  it  comes  to  solving  complex  systems  with 

nonlinearities  where  conventional  substitution  methods  are  not  possible  or  difficult  [7]. 

Practically all of todays circuit simulation programs use some form of Newton based technique. 

Newton's method extrapolates to the axis of the independent variable using its first derivative [2]. 

Consider the system of nonlinear equations given by:
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f 1x1, x2,. .. , xn = 0
f 2x1, x2,. .. , xn = 0

⋮
f nx1, x2,. .. , xn = 0

 (2.1)

If  the  functions  f 1, f 2,. .. , f n are  expanded  using  a  Taylor  series  about  an  arbitrary  point 

x1, x2,. .. , xn and  only  the  linear  terms  retained  we  can  obtain  exact  solution  values 

 x1 , x2 ,... , xn [7]. Setting the equations defined from the Taylor series expansion equal to zero 

and defining a  x i term as the correction to the guess of xi ,

 xi = x i − x i where i = 1,2,... , n , (2.2)

can be formed. Rewriting the the Taylor series expansion in general form, 

[
∂ f 1

∂ x1

∂ f 1

∂ x2

⋯
∂ f 1

∂ xn

∂ f 2

∂ x1

∂ f 2

∂ x2

⋯
∂ f 2

∂ xn

⋮ ⋮ ⋱ ⋮
∂ f n

∂ x1

∂ f n

∂ x2

⋯
∂ f n

∂ xn

] [
 x1

 x2

⋮
⋮
 xn

] = [
− f 1

− f 2

⋮
⋮
− f n

] . (2.3)

The matrix on the left of Equation (2.3) is referred to as the Jacobian and is calculated for each 

approximation of x i . The use of the first order partial derivatives for each device and harmonic 

considered  creates  the  Jacobian  matrix.  The  Jacobian  contains  the  maximum  amount  of 

information about  the system and its  error.  With this  large amount of information about the 

system good convergence characteristics can typically be achieved [2]. 
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The  x i term is solved at each iteration ( k ) and the approximation of the solution x i is 

updated by,

x i
k1

= x i
k
 x i

k  (2.4)

This process can be broken down into six main steps. First the initial guess is selected ( x i
0 ), the 

function is evaluated at x i
0 and the partial derivatives are calculated to form the Jacobian matrix. 

The update  x i is solved,  a new solution x i
1 is determined and checked for convergence to a 

solution.  If  convergence to a  solution was achieved then the process is  stopped otherwise it 

repeats using the newest approximate solution as the initial guess [7]. 

Newton's method is quite good at solving systems of this form.  However this approach 

still  does  not  guarantee  convergence  if  the  the initial  guess  is  far  from the solution.  It  also 

becomes  impractical  for  solving  very  large  systems  of  equations.  This  occurs  because  the 

Jacobian size becomes too large to directly factor efficiently, even in today's powerful computers 

[15]. These issues and limitations lead to modifications of Newton's method to help alleviate 

them as discussed in Section 2.3.

2.2.2 Minimum Polynomial Extrapolation

Minimum polynomial extrapolation (MPE) is a technique to find the fixed point ( s ) of a 

sequence of vectors which satisfies the system of equations. If the system in question is linear 

using a MPE will extrapolate to the fixed point. For systems which are nonlinear performing a 

MPE with enough samples has the ability to extrapolate to a solution relatively close to the 

correct one. Minimum polynomial extrapolation is based on using vector differences to calculate 

the solution [19].
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Given a vector sequence x1,x2,⋯ ,xk1 generated by an equation of the form:

x j1 = [A]x j  b , j=0,1,2,⋯,  (2.5)

Where [A] is a fixed matrix and b a fixed vector. Both [A] and b do not necessarily have to be 

known, only that there is a way of generating x1,x2,⋯ ,xk1 [19]. From an initial starting point of

x0 a sequence x1,x2,⋯ ,xk1 is generated. Using a fixed amount of samples k , a N×k matrix is 

formed, where the columns are the vectors of the vector differences:

u j = x j = x j1 − x j  (2.6)

[U ]≡[U k ] = [u0 ,u1 ,⋯,uk−1]  (2.7)

Using the [U ] matrix a coefficient c vector is defined to satisfy. 

[U ]c = −uk  (2.8)

The values of c are calculated using the following formula,

c = −[U ]+uk , (2.9)

where [U ]+ is the Moore Penrose pseudo-inverse. 

For any consecutive term sequence with a  length of k1 the fixed point  ( s )  can be 

calculated [19] as follows,  

∑
j=0

k

c j xm j=∑
j=0

k

c j s  (2.10)

with the m term being an offset within the generated sequence and ck=1 . The conditions for a 
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successful  extrapolation  calculation  requires  that  the  fixed  point  exists  and  the  number  of 

samples k is equal or greater then the number of nonzero eigenvalues of the [U ] matrix.

The  outcome  of  using  MPE on  nonlinear  equations  can  be  incorrect  if  the  selected 

sequence length k is too short,  the generated sequence is far from the correct  solution or the 

system of equations exhibits strong nonlinearity.

2.2.3 Gradient Descent

Gradient descent is a first order optimization routine which can be used to find the local 

minima scalar field. During an iteration routine the gradient of the function is calculated and 

used to determine the direction of the update. The update is scaled toward the minimum of the 

function or proportionally to the negative of its gradient. Analogous to the descent method is 

gradient ascent which is used to find local maxima. Care must be taken when using gradient 

methods. Performing a gradient update on the system before being relatively close to solution 

can trap the iteration process at an incorrect result.

Given a function F xk
 where at solution equals zero. The gradient of the function can be 

calculated if the function is defined and differentiable in the area around a selected solution point

g [31]. The fastest way to decrease F xk
 from a starting point of g is to move in the direction 

of the negative gradient or −∇ F g  . If

h=g−∇ F g   , (2.11)

for a value of  small enough, then F g ≥F h . From this observation and starting from an 

initial guess of x0 for a local minimum of the function F xk
 . A generated sequence x0, x1, x2, ...

can be calculated from:
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xk1
=xk

−
k
∇ F xk

 , k≥0  , (2.12)

such that F x0
≥F x1

≥F  x2
≥... which will hopefully converge to the local minimum. The 

value of  is not necessarily the same for each iteration. 

2.3 Basics of Waves

Consider the lossless transmission line in Fig. 2.1 with characteristic impedance Z ref , 

terminating load impedance Z L and sinusoidal voltage source ES .

The  sinusoidal  wave  produced  by ES and  propagating  in  the  positive z direction  is 

reflected back in the negative z direction when it reaches the termination at z=L . The voltage 

and currents at any point along the transmission line consists of both positive and negative going 

waves.  The  voltage  and  current  at  any  point  along  the  transmission  line  consists  of  waves 

propagating along the positive and negative z direction: 

V  z  = V a ' e
− j z

 V b ' e
+ j z  (2.13)

I  z  =
V a'

Z ref

e − j z
−

V b '

Z ref

e + j z
 (2.14)
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The magnitudes of voltage in the positive and negative z direction are V a' and V b' respectively 

and  is the phase constant [8]. The ratio between the positive z direction propagating wave and 

the negative z direction propagating wave is referred to as the reflection coefficient   and is 

given by,  

 =
V b ' e

 j  z

V a ' e
− j  z

 =
Z L − Z ref

Z L  Z ref

 (2.15)

With V a and V b being the RMS values of traveling wave voltage, then ∣V b∣ =
∣V b '∣

2
and

∣V a∣ =
∣V a '∣

2
. The power flowing in the positive z direction is given by,

P =
∣V a∣

2

Z ref

−
∣V b∣

2

Z ref

 (2.16)

2.3.1 Voltage Wave

Given the length of the transmission line is L then the voltage and current at z=L is,

V L = V a' e
− j L

 V b ' e
 j  L

I L =
V a '

Z ref

e − j L
−

V b '

Z ref

e  j L
 (2.17)

Setting the length of the transmission line equal to zero the voltage and current become,

V = V a '  V b '

= 2V a  V b
 (2.18)
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and

I =
V a '

Z ref

−
V b '

Z ref

=
2
Zref

V a − V b
 (2.19)

The use of a zero length transmission line allows the voltage and currents at any node to be 

converted  to  voltage  waves.  The  use  of  voltage  waves  can  then  be  used  as  parameters  to 

formulate circuit analysis [8].

2.3.2 Power Wave

The  use  of  waves  is  not  limited  to  just  voltage.  The  circuit  parameters  can  also  be 

formulated using power waves. Considering ' a ' as the positive propagating power wave and ' b ' 

as the negative propagating power wave in such a away that ∣a∣
2
=
∣V a∣

2

Z ref

and ∣b∣
2
=
∣V b∣

2

Z ref

in 

(Fig. 2.1) [8]. The voltage and currents can be expressed as,

V = Z ref a  b  (2.20)

and

I =
1

Z ref

a − b  (2.21)

The power wave equations (2.20) and (2.21) are the bases used throughout this work.

2.4 Harmonic Balance Formulation

Early use of piecewise harmonic balance approach is demonstrated by Nakhla and Vlach 

[6]. The basis of piecewise harmonic balance is to separate the linear and nonlinear devices into 

two sub networks. Current and voltage equations are formed for the two ports. An error function 
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is formed by taking the difference between the currents and/or the voltages of the linear and 

nonlinear ports. Detailed equation formulation is presented next.

2.4.1 Conventional Harmonic Balance Equations

 As mentioned above the  idea  is  to  partition  the  circuit  into  its  linear  and  nonlinear 

components. This reduction allows the nonlinear sub-circuit to be solved independently of the 

linear sub-circuit. The linear network can then be solved directly in the frequency domain. While 

the nonlinear subnetwork element models can be solved in the time domain and subsequently 

converted to the frequency domain. This partitioning can be seen in Fig. 2.2.

The voltage and currents at each port ( p ) are assumed to be periodic having a period of

T which is defined as T=
2


and  being the angular velocity.  The voltage at port p can be 

expressed using the following equation: 
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v pt =ℜ {∑
k=0

m

V k e j ktk } , (2.22)

where the unknown values are the amplitude V k and phase k for each frequency.

The error function is formulated as the sum of the currents at the ports connecting the 

linear and nonlinear ports [2]. 

F V =I V  jQ V YVI S=0 , (2.23)

where I V  is the current from the nonlinear conductances or voltage-controlled sources 

and Q V  is the current contribution from the nonlinear capacitors. These two terms together 

represent the current contribution by the nonlinear network ( I NL ). The  symbol represents a 

diagonal matrix containing k  elements in the main diagonal,

 = [
0 0 ⋯ ⋯ 0
0  ⋱ ⋯ 0
⋮ ⋮ 2 ⋱ 0
⋮ ⋮ ⋱ ⋱ 0
0 0 ⋯ ⋯ m

]  (2.24)

The I S term is  the  current  contribution  from the  circuit  sources  and YV is  the  current 

contribution from the linear elements. These two together represent the linear port current I LIN . 

The name of harmonic balance is easily seen because a correct guess for V  in Equation (2.23) 

will balance the linear and nonlinear currents for each Harmonic. 

Consider just the nonlinear part from Equation (2.23). The nonlinear current contribution

I NL can be written as:
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I NLV =F {i [F −1
V ]}F {q [F −1

V ]}  (2.25)

where F and F −1 are the Fourier  and Inverse Fourier  transforms and i   and q   represent  the 

nonlinear currents and charge, respectively, in the time domain [2]. The estimate of voltage ( V ) 

in  the  frequency  domain  is  converted  into  the  time  domain  using  Fourier  transform.  The 

nonlinear current iNL is then solved for in the time domain. Using inverse Fourier transform iNL is 

then converted back to the frequency domain and used to calculate the error F V  [2].

For the correct selection of V in Equation (2.14) F V  will be approximately zero. Due to 

the iterative technique used to solve such a problem, a solution is found when all elements of the

F V  vector are less than a defined tolerance. 

A simple harmonic balance example can be demonstrated using the circuit in  Fig. 2.3. 

The source is made up of both a DC voltage and an AC fundamental frequency. First  defining 

the linear  current  ( I LIN ),  nonlinear  current ( I NL )  and port  voltage allows for easy equation 

setup. 

The circuit is divided up into its two sub-circuits. Fig. 2.4 represents the linear sub-circuit 

in the frequency domain. The diode is replaced with the voltage seen at the terminals. 
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Writing the equation for the linear current in the frequency domain Equation (2.26).

I LIN =
V kp−V sk  p

Z k  p
 (2.26)

Fig. 2.5 represents the nonlinear sub-circuit in the time domain. 

Writing the equation for the nonlinear current in the frequency domain is accomplished by first 

calculating the diode current in the time domain using,

iNLt  = i sat e
v NL t 

nvT −1  (2.27)

where i sat is the saturation current, vT is the thermal voltage and n is the ideality factor of the 

diode. The error function for the circuit is given by,

I LIN k  p  I NLk  p = 0  (2.28)
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Substituting the two currents into the error function Equation  (2.28) and using Fourier transform 

to convert the nonlinear current into the frequency domain,

V k p−V sk p

Z k p
 F [ I sat e

F −1
V k p 

nvt −1] = 0  (2.29)

is formed. A correct guess of V k p will balance the linear and nonlinear currents for each 

harmonic therefore satisfying Equation (2.29). The diode example is a brief demonstration using 

the harmonic balance approach.  The more complex problem of how to efficiently select  and 

update V using the numerical techniques from Section 2.2 is now discussed.

2.4.2 Existing Harmonic Balance Techniques

With the general structure of harmonic balance discussed lets look further into how the 

solution is found. The task that is being attempted is basically finding the zeros of the system of 

equations. Thankfully these problems have been largely studied by mathematicians. The most 

common  approach  involves  using  Newton  method  [2,5,14,15]. Newton's  method  is  a  very 

powerful and commonly used technique for indirectly solving complicated problems. However 

there are still some limitations to this approach. Convergence can not be guaranteed and the size 

of the Jacobian matrix produced using Newton's method is directly related to the number of 

nonlinear  devices  and  harmonics  considered.  These  two  major  limiting  factors  can  lead  to 

problems finding the solution of strongly nonlinear circuits and inefficiencies for large circuits 

due to long solution times and large amounts of computer memory usage. To overcome some of 

these limitations, modifications and alternative techniques have been proposed and used.  Some 

of which are, Optimization [2], Relaxation methods [3,4], matrix conditioning [2], Sparse Matrix 
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Solvers incorporating Krylov-Subspace methods with preconditioners [5,11,14,15].

2.4.3 Optimization

Optimization routines can be used to solve equation (2.30) using a norm of the error(  ).

 = F *
V F V   (2.30)

where F *
V  denotes the complex conjugate transpose of F V  . 

This method has an advantage that many scientific libraries already have an optimization 

routine  built  in.  However  this  process  destroys  information  about  the  contribution  of  each 

individual  element  to  the  error therefore  convergence  can  suffer  [2].  This  technique  is  only 

practical for relatively small and simple circuits. This technique reduces programing complexity 

and therefore implementation time at the cost of sometimes poor convergence and inefficiency. 

2.4.4 Relaxation Techniques

Relaxation methods derive their name from the fact that they allow the iteration process 

to gradually move towards a solution. One of the simplest examples of relaxation is the bisection 

method [7]. One main advantage of relaxation techniques are their ease of implementation [2]. 

These methods show promise on some circuits but in a more general sense tend to lead to poor 

and unpredictable convergence. Two of the more commonly known methods are those of Kerr 

[3] and Hicks and Khan [4]. 

Kerr's method starts by connecting a transmission line with characteristic impedance Z0

between a linear network port  and one nonlinear device,  in this  case a diode.  Equations are 
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formed by separating the circuit at both ends of the transmission line. This is accomplished by 

increasing the transmission line length ( L ) so that the period between transient reflections is 

long enough that the ends can reach their steady state condition [3]. To solve the circuit the left 

propagating wave ( E L ) is calculated and after a time delay will reach the left side embedding 

network (Fig. 2.6). The right propagating wave ( E R ) is calculated and after another time delay 

will reach the right side diode. The multiple reflections continue until the voltage and current that 

are calculated at each end of the transmission line are equal [3].

Hicks and Khan propose a method using either voltage or current updates with a circuit 

partitioning as seen in  Fig.  2.7 The process involves selecting a value of the nonlinear port 

voltage v N t  and using it to determine the nonlinear current iN t  [4]. 
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From the circuit topology the nonlinear current must be equal and opposite to  the linear current. 

iN t =−iL t   (2.31)

The linear current is converted to the frequency domain to obtain I L  , from which V L  can 

be easily calculated and converted back to the time domain for comparison. Using the calculated 

value  for v L t  the  error  between v L t  and v N t  can  be  determined.  The  iteration  process  is 

continued until [4]:

v N
k1
t  = vN

k
t  = v L

k
t   (2.32)

The voltage update is calculated using: 

v N m 
k1

= pn v Lm
k

 1−pmvN m
k , (2.33)

where m is the harmonic number and k is the iteration number. The pm term is referred to as the 

convergence parameter  and is  bound between the range of  0  pm  1 [4].  Adjusting the 

value of pm can increase the area of convergence which is typically offset by a longer solution 

time [4]. The equations for the current update method are analogous of those of the voltage 

method and therefore are not shown. 

The use of an “identity network” has also been proposed to help with convergence. An 

example of an identity network is shown in Fig. 2.8. Where  Fig. 2.8(a) is used for the voltage 

update method and Fig. 2.8(b) for the current update method [4]. 
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The purpose of the identity network is to modify the harmonic impedance ratios and therefore 

help with solution convergence [4]. 

A modified  version  of  Kerr's  method [3]  is  proposed  by  Tait  [12].  The  technique  is 

referred  to  as  the  Accelerated  Fixed  Point  Algorithm.  The  approach  maintains  the  fictitious 

transmission  lines  between  the  linear  and  nonlinear  devices  and  uses  the  idea  of  multiple 

reflections. A Steffensen acceleration technique [30] with a voltage update method similar to that 

of Hicks and Khan [4] is formulated for the iteration process. For Tait's example of a frequency 

multiplying circuit the Steffensen acceleration process demonstrates a super linear convergence 

rate that approaches the quadratic rate of Newton's method [12]. This is accomplished without 

the need of a derivative calculation [12]. 

Borich [9] proposes a method based from the work of Tait [12]. The method expands 

Tait's approach to a more general case supporting any number of nonlinear devices. Complex 

characteristic impedance values for the fictitious transmission lines are also examined. The use 
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of complex characteristic impedance values is shown to improve convergence especially in cases 

with nonlinear capacitances [9]. 

An advantage to the use of relaxation techniques is their somewhat easier implementation 

[2].  They  however  often  demonstrate  poor  convergence  performance  in  general  terms  and 

difficulties arise when dealing with large circuits. The general convergence properties of Borich's 

work is shown by Blakey to be possible for circuits containing only a few nonlinear devices and 

recommends  the  use  of  conventional  harmonic  balance  for  more  complex  circuits  [13]. 

Improvements in dealing with large circuits and solution convergence have been shown with the 

use of Newtons method [5,14,15].

2.4.5 Newton Based Methods for Harmonic Balance 

As has been discussed before issues arise when the problem size is increased. Krylov 

subspace  with  inexact  harmonic  balance  and  GMRES  (Section  2.4.5)  has  shown  good 

performance  for  solving  complex  systems  with  success.  However  large  circuits  which  are 

strongly  nonlinear  therefore  requiring  many  harmonics  increase  this  process  into  a  huge 

computational task. For this reason it becomes apparent that sub dividing the circuit into smaller 

sub circuits is appealing. This is accomplished by decoupling parts of the circuit that have little 

to no dependence on one another [15,18].  The technique requires the individual partitions to 

converge to solution. The entire system then must satisfy global convergence between all sub 

circuits. The use of Newtons method has been demonstrated to be a powerful tool for solving 

nonlinear circuits using the harmonic balance approach [2,5,15]. 

The Jacobian matrix in harmonic balance is made up of partial derivatives of every port 
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with respect to every frequency and because all harmonics except DC are complex the size must 

be doubled. The size of the Jacobian matrix required for the full newton method is M x M where,

M = p × 2m1 , p is the number of ports and m is the number of harmonics.

The size of the Jacobian itself becomes an issue in memory storage but the major problem 

arises when the calculation to factor it occurs. The Jacobian matrix formed during calculations, 

is not usually sparse. Direct matrix solves such as LU decomposition require a large amount of 

memory space. The approximate time required to compute the LU decomposition of a dense 

matrix is related to its dimension cubed. For example doubling the matrix dimension will require 

approximately eight times the amount of time to decompose [2]. 

Sparse matrix solvers are used to improve processing time and memory usage as the zero 

matrix entries are not stored in memory. For sparse matrix solvers to have a benefit the Jacobian 

matrix is typically pruned to further increase the number of zero entries. As the matrix is factored 

during calculations the zeros entries can tend to “fill-in” with non-zero values. Care must be 

taken to prevent or limit such “fill-ins” as they reduce the sparse matrix solving benefits [2]. 

2.4.6 Krylov-Subspace Methods

The  general  consensus  for  solving  harmonic  balance  problems is  using  a  version  of 

Krylov-Subspace method called generalized minimum residual technique or GMRES [2,5]. The 

technique  works  the  way  it  sounds.  Assuming  we  must  solve  an  equation  of  the  form 

[A]x = b where [A] is  a  matrix  and x and b are  vectors.  Defining  the  residual r as

r = b − [A] x and using iterative methods to reduce the residual, with the x term being an 

estimation of the solution. However if the matrices are ill-conditioned to begin with, convergence 
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has very little chance of being achieved [2]. Also for this process to succeed the approximate 

guess x must  be  relatively  close to  solution,  therefore  the  use  of  preconditioning  becomes  a 

requirement [2]. 

2.4.7 Preconditioning

With the techniques  discussed in  the previous  section the use of preconditioning is  a 

requirement for achieving convergence to solution. Some variations of preconditioning are block 

diagonal [5], static time, iterative time [11] and incomplete LU factorization [15,16].

Block diagonal preconditioning has shown good convergence properties when used with 

Krylov  subspace  using  inexact  harmonic  balance  and  GMRES.  As  is  the  problem with  full 

Newton iterations computer storage and computational cost of large circuits limit its efficiency 

[5].  Rizzoli proposes a method called incomplete LU factorization [15]. The idea is based on 

exploiting the sparsity pattern in the Jacobian matrix. This sparsity is artificially generated by 

examining the interaction or dependence between different nonlinear devices [5]. It has been 

demonstrated  that  this  approach works  better  when the  linear  network  is  represented  by  its 

scattering parameters instead of conventional admittance parameters [5,17]. 

The time based preconditioners both static and iterative are developed using the  time 

counterpart of the frequency domain Jacobian [11].  The difference between static and iterative 

preconditioners is in the steps of achieving the preconditioning matrix. Terms are dropped in the 

static  method  to  eliminate  the  need  to  iteratively  solve  for  the  preconditioning  matrix.  The 

iterative method does not neglect these terms [11].

The use of a preconditioner is a requirement for the use of Krylov subspace methods. The 

24



type of preconditioner selected plays an integral role in finding the solution and therefore the 

convergence performance.

2.5 The fREEDA Circuit Simulator

2.5.1 fREEDA State Variable Formulation

The fREEDA simulator is a free program which supports different circuit analysis types 

such as transient, harmonic balance and wavelet-based transient analysis. fREEDA is a circuit 

simulator which uses state variables to represent the nonlinear device models. 

fREEDA uses the previously discussed linear and nonlinear sub-circuit partitioning for 

harmonic balance as shown in Fig. 2.2. The state variable approach models the nonlinear devices 

using a set of general parametric equations,

i NLt  = w[ x t  , d x
dt

,⋯,
d m
x

dtm ,xD t ]  (2.34)

v NLt  = u[x t  , d x
dt

,⋯,
d m
x

dtm ,xD t ]  (2.35)

The currents and voltages present at each of the nonlinear device ports is represented by 

vectors i NLt  and v NLt  [10]. The vector of state variables is defined as x t  and the vector of 

time delayed state variables is defined as x Dt  . The time-delayed state variable vector x Dt  can 

be written as a function of time ( t ) with a time delay i , i.e. x Dt i = x i t−i . The time 

delay term i can be a function of the state variables x t  [10].  The size of the all vectors in 

equations  (2.34) and  (2.35) are the same and equal to the number of ports between the sub-

circuits [10]. The use of parametric equations allows for complete generality in the modeling of 
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each nonlinear device.

The use of harmonic balance requires the availability of port voltage and currents in the 

frequency domain. So far equations have been written and formulated in the time domain. The 

conversion to the frequency domain is accomplished using a vector of time domain samples of 

the iTH  state variable given by, 

x i = [ x i t0 , x it 1 ,⋯, x it 2m ,]T  (2.36)

Converting all  of  the frequency based state variables to the time domain is accomplished as 

follows:

x i = F −1
 X i  (2.37)

For one  device  having n states,  the  state-variable  vector  in  frequency  domain  is  defined  as 

follows,

X = [
X 1

X 2

⋮
X n
]  

(2.38)

Each state from Equation (2.38) is comprised of individual frequency components ( m ),

X i = [
X i , 0

X i ,1

⋮
X i , m

]
(2.39)

The time-domain vectors of  the derivatives and time-delayed state variables are obtained using 

the following equations:
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d x it 

dt
= F −1

 j X i  where  = [
0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ m0

] (2.40)

xD  it  = F −1[
e j00D i 0 ⋯ 0

0 e j 0 1 D i ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ e j0m D i
] X i  (2.41)

The samples of i NLt  and v NLt  are generated using equations (2.34) and (2.35). Finally 

the Fourier transform is used to obtain the I NL and V NL vectors in the frequency domain.

I NL i  = F [i NL i t ]  (2.42)

V NL i  = F [v NL i t ]  (2.43)

where 

V NL = [
V NL1

V NL2

⋮
V NLn

] & I NL = [
I NL 1 

I NL 2 

⋮
I NL n 

] (2.44)

2.5.2 fREEDA Architecture and Addition of New Simulation Technique

The  fREEDA simulator  is  programmed  mainly  using  the  C++  language.  The  circuit 

description is entered as a netlist file that has a format similar to the open source  Simulation 

Program with Integrated Circuit Emphasis (SPICE)[26]. This allows the circuit to be formulated 

in a standard way which can be used for various simulation types. Internally the code for each 

circuit analysis type is defined in a separate class. For a particular analysis type to be used a 

command line is entered in the netlist file with various user configurable options. The device 
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models are formulated using state variables and adding a new device is done separately of the 

main program. The addition of a new circuit analysis type requires minimal changes in the core 

code and consists mainly in the addition of a new class. The circuit data is available to the new 

class in an internal representation format (a graph). 

In fREEDA the frequency domain vectors I NL and V NL are directly available as functions 

of the state variables X (also in the frequency domain). This simplifies the task of implementing 

frequency domain analysis techniques such as harmonic balance.

The programing architecture provides access to the circuit information in various forms 

such as, modified nodal admittance matrix, source vector, linear network impedance matrix and 

others. FREEDA uses a circuit partitioning shown in Fig. 2.9 which allows for the easy addition 

of a new simulation technique. 

The  selected  implementation  approach  uses  the  linear  network  impedance  matrix 

represented by [M SV ] , containing the linear network information and topology. The SSV vector 
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contains the contribution of the sources to the circuit. 

The  circuit  partitioning  required  for  the  wave approach  is  shown in  Fig.  2.10.  Each 

nonlinear device is divided up into its own block with subsequent ports. Each nonlinear device is 

represented by independent state variables ( X ) which are used to calculate the voltages and 

currents at the ports of nonlinear devices.

The error function within fREEDA is given by,

S sv − [M sv]I NL X  − V NL X  = 0 (2.45)

The  nonlinear  devices  can  have  any  number  of  state  variables.  For  example  a  two 

terminal device such as a diode has one state variable. A BJT transistor with emitter, base and 

collector would be a two state variable device. 

2.5.3 Example Netlist in fREEDA 

An example of a simple netlist used in fREEDA is shown in Fig. 2.11.
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The first two lines are comments marked at the beginning by an '*'. The .options line is where 

various simulation names can be defined in this example the frequency is set to 1e8. The next 

line after the comment selects the type of simulation to run. In this case the wave harmonic 

balance (Wave HB) simulation technique is called (.wavehb). The various setup options for the 

simulation technique are also included on this line. The number of frequencies considered for the 

harmonic balance simulaiton is 15, the fundamental frequency is 'freq', the solution tolerance is 

set to 1e-8, the number of Newton iterations for each nonlinear device is 100 and the reference 

impedance is 800Ω. The next few lines represent the circuit configuration and values. The 

vsource, resistor and diode represent the type of component in the circuit. The following 

numbers are the nodes the device is connected to and the specific values and parameters of the 

device. The final lines set the output data to be saved when the simulation is complete. For this 

simulation the voltage at the specified nodes is converted from the frequency domain (invfft) to 

produce the voltage with respect to time waveform plot.  
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*** Wave HB Simple Diode Circuit ***

*Simulation options
.options freq=1e8

*Simulation Type and setup parameters
.wavehb n_freqs=15  fundamental=freq tol=1e-8 usecaps=0 n_iter=100  zref=800

*Circuit netlist
vsource:v1 1 0 f=freq vac=5 phase=-90
resistor:r1 1 2 r=1k
diode:d1 2 0 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10 
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.

*Simulation Output
.out plot term 2 vf invfft 2 repeat in "simplediodev.whb"
.out plot term 1 vf term 2 vf sub invfft 2 repeat in "simpledioderesv.whb"
.end

Fig. 2.11 Example Netlist



Chapter 3 

Wave Based Harmonic Balance 

3.1 Introduction

This  chapter  presents  a  formulation  of  HB  using  power  waves  that  expands  the 

techniques discussed in Section 2.4.2, i.e., Kerr's multiple reflections [3] and Hicks and Khan's 

voltage updates  [4].  The use of power waves  could improve the convergence of  the system 

because  conservation  of  power  restraints  can  be  implemented  on  the  reflections  to  prevent 

possible divergence situations; if a device is passive then the power of the reflected waves must 

be less  than or  equal  to  the power of the incident  waves.  The wave-based HB technique is 

implemented and demonstrated in fREEDA. This chapter covers the formulation of equations, 

flow  of  the  algorithm,  convergence  analysis,  convergence  improvements,  programming  and 

implementation, preconditioner applications and problems encountered. 

Section  3.2 presents  the  formulation of  the  HB equations,  harmonic  balance  solution 

process and programing implementation. Section 3.3 analyzes the convergence of the proposed 

wave HB method and Section 3.4 proposes convergence improvements. Section 3.5 explores the 

possibilities  of  the  wave HB method  being  used  as  a  preconditioner.  Section  3.6  highlights 

problems with implementation and their solutions.
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3.2 fREEDA Programing and Implementation

As previously discussed fREEDA is used to implement the proposed wave HB technique. 

Starting from the general form between the linear and nonlinear circuit partition discussed in 

Section  2.5,  we  need  to  interface  with  fREEDA.  For  this  some  transformations  of  circuit 

information  and  programing  structure  must  be  performed.  This  is  broken  into  three  parts, 

equation formulation, solution process, and implementation.

3.2.1 fREEDA Equation Formulation (Linear)

The first step for the proposed method is connecting fictitious transmission lines between 

the  linear  and  nonlinear  networks.  The  characteristic  impedance  of  the  transmission  lines  is 

denoted as Z ref and their length is set to zero. The characteristic impedance is the same for all 

transmission lines connected between the linear and nonlinear ports. 

Incident power waves A , A ' and reflected power waves B , B ' are defined as shown in 

Fig.  3.1.  The  direction  of  the  incident  and  reflected  power  waves  differs  from  that  of  a 

conventional two port network by referencing to the nonlinear devices. 

With the use of transmission line theory the network matrix [M SV ] must be transformed 

into a scattering parameter matrix ( [S ] ). The transmitted and reflected power waves replace the 

voltages and currents. The changes to the partitioning and introduction of power waves is shown 

in Fig. 3.1. In this section the power waves ( A & B ) and port voltage ( V NL ) and currents ( I NL ) 

are valid for all ports at one frequency. 
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For each frequency the scattering parameter matrix ( [S ' ] ) represents a multi-port network with 

two groups of ports, 

[ AA' ] = [S ' ][ BB ' ] = [ [S11 ] [ S12 ]

[ S 21] [ S22 ]] [
B
B ' ]  (3.1)

The  network  topology  and  linear  device  values  are  contained  in  the  scattering  matrix.  The 

individual blocks in equation (3.1) represent the relationships between the incident and reflected 

waves  at  the two port  groups.  Since the sources  are  assumed to  be matched,  B ' (vector)  is 

independent of A ' . Thus A ' is not needed to calculate the waves incident to the nonlinear device 

ports ( p ) and A is given by:

A = [S 11] B  [S12 ] B ' (3.2)

Defining A0 = [S 12 ] B' and [S ] = [S11 ] , respectively leads to,

A = [S ] B  A0 . (3.3)
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Fig. 3.1 Partition with Fictitious Transmission Lines and Power Waves 
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The  relation  between [M SV ] , SSV , [S ] and A0 will  be  derived  next.  Starting  from  the 

original  error  function  provided  in  fREEDA given  in  equation  (2.45) and  repeated  here  for 

convenience,

S sv − [M sv]I NL X  − V NL X  = 0 , (3.4)

a relationship between V NL , I NL and A , B  is required. Defining a diagonal matrix [D ] of size 

p× p which contains the square root of the characteristic impedance of the transmission lines 

and has a structure of, 

[D ] = [
Z ref 0 0 0

0 Z ref 0 0
0 0 ... ...
0 0 ... Z ref

]  (3.5)

I NL and V NL can be written as follows:

V NL = [D ] AB  (3.6)

I NL = [D ]−1
 A−B  (3.7)

Substituting Equation  (3.6) and Equation  (3.7) into the original fREEDA error function 

Equation (3.4) the new equation is formed. 

S sv − [M sv] [D ]
−1
 A−B − [D ]  AB = 0  (3.8)

Rearranging Equation (3.8) to isolate for the incident power wave A yields,

A = [M sv][D ]
−1
[D ]−1

[−S sv  [M sv] [D ]
−1
−[D ] B]  (3.9)

Multiplying  [M sv ][D ]
−1
[D ]−1  into  [−S sv  [M sv] [D ]

−1
−[D ] B]  the Equation  (3.9) is 

arranged to match the structure of Equation (3.3). 
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Am = [M sv] [D ]
−1
[D ]−1

[M sv] [D ]
−1
−[D ] Bm  [M sv ][D ]

−1
[D ]−1 S sv  (3.10)

From this a new definition of [S ] and A0 is obtained:

[S ] = [M sv ][D ]
−1
[D ]−1

[M sv ][D ]
−1
−[D ]  (3.11)

A0 = [M sv] [D ]
−1
[D ]−1 S sv  (3.12)

With  a  definition  of [S ] and A0 their  values  are  calculated.  The  parameters  of  the 

scattering matrix and source vector change with respect to frequency. This requires independent

[S m] and B0, m terms for each harmonic ( m ) plus DC considered. Each element of the scattering 

matrix and source vector are also comprised of complex values. 

3.2.2 fREEDA Equation Formulation (Nonlinear)

In this section the power waves ( A & B ), state variables ( X ) , port voltages ( V NL ) and 

port currents ( I NL ) are valid for all harmonics ( m ) plus DC for one nonlinear device ( d ). The 

vector containing power wave reflections from the nonlinear devices ( Bm ) is calculated using 

Newton's method. Combining Newton's technique with the use of state variables requires the 

development  of  both  the  update  equations  and  the  error  functions  for  each  port.  The  error 

functions are based from Equation (3.6) and Equation (3.7) by moving all terms to the right and 

defining error functions f v and f i  as follows: 

f v = D−1 V NL − A − B  (3.13)

f i = DI NL − A  B  (3.14)

There is a set of voltage and current error functions defined for each nonlinear device and 

each frequency and the [D ]matrix has dimensions n×m1×n×m1 where,
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( n=number of states  and  m=number of harmonics ).  The  [D ]  matrix  is  comprised  of 

diagonal elements of Zref the same as in Section 3.2.1.

With the use of Newton's method (Section 2.2.1) the formulation of the Newton iteration 

equations is as follows,

[
∂ f v

∂ X
∂ f v

∂ B
∂ f i

∂ X

∂ f i

∂ B
] [X k1

−X k

Bk1
−Bk ] = −[ f v X

k , Bk 

f i X
k , Bk

 ]  

 [
∂ f v

∂ X
∂ f v

∂B
∂ f i

∂ X

∂ f i

∂B
][ X k1

−X k

Bk1
−Bk ][ f v X

k , Bk


f i X
k , B k

] = [00]

(3.15)

Taking the partial derivative of the error function given in Equation (3.13), 

∂ f v

∂ X
= [D ]−1 ∂V NLX 

∂ X
= [D ]−1

[ J v ]
and

∂ f v

∂ B
= −[ I ] (3.16)

Similarly for Equation (3.14),
∂ f i

∂ X
= [D ]−1 ∂ I NL X 

∂ X
= [D ]−1

[ J i]
and

∂ f i

∂ B
= [ I ] (3.17)

Substituting Equation (3.16) and Equation (3.17) into Equation (3.15),

[[D ]
−1 J v [I ]

[D ] J i [I ]][ X
B ][ f v

f i ] = [00]  (3.18)

And solving for B and  X leads to,

Δ B = −f i − [D ][ J i ]Δ X  (3.19)

and
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Δ X = [D ] [ J i ]  [D ]−1
[ J v ]

−1
−f i−f v   (3.20)

Defining the updates for one nonlinear device ( X d and Bd ) from  (3.19) and  (3.20) is 

given by,

Δ X d = [D ] [ J i d ]  [D ]−1
[ J vd ]

−1
−f i d −f v d   (3.21)

Δ Bd = −f i d  − [D ][ J i d ]Δ X d  (3.22)

Where [ J vd ] and [ J i d ] are the Jacobian matrices of the port voltage and currents for the 

nonlinear device being calculated using the state variables from Section 2.5.1. 

Harmonic  balance  technique  requires  the  state  variables  in  the  frequency  domain. 

fREEDA provides the Jacobian matrix, state variables, port voltages and currents directly, using 

the process discussed in section 2.5.1. Combining the linear and nonlinear calculations together 

produces a fixed point iterations technique given by,

Am
k1

= [ S ]m Bm
k
 A0m   (3.23)

Each nonlinear device's reflected power wave ( Bd ) is calculated independently for each 

nonlinear device considering all frequencies simultaneously. When all of the nonlinear device's 

reflected waves have been solved for the current iteration ( k ), Equation (3.23) is independently 

calculated for each harmonic considered using the reflected waves provided from the nonlinear 

device's  Newton  iterations.  The  solution  is  found  when  Equation  (3.23) is  satisfied  for  all 

harmonics. A more detailed explanation of this process is discussed in the next in Section.

3.2.3 Solution Methodology

The iterative process to solve for the solution is now discussed.  The solution process 
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consists of solving for the transmitted and reflected waves. This is accomplished by solving for 

the local reflection B given the transmitted wave A for each port(s) of the nonlinear devices. The 

process  uses  fixed  point  iterations  where  the  new  transmitted  wave  is  calculated  using  the 

previously calculated reflection using Equation (3.23). 

The value of the source vector is available from the simulation setup and is therefore used 

as an initial guess for the transmitted power wave A=A0 . The state variables ( X ) are set to zero 

as the initial guess and are used to calculate I NL X  and V NL X  from the device models within 

fREEDA. The results of the I NL X  and V NL X  calculation is then used in the error functions 

Equation (3.13) and Equation (3.14). 

If the errors f i d  and f v d  are less than the solution tolerance then the correct reflection 

value Bd for the transmitted wave Ad has been solved for that device's port(s). If the calculated 

reflection  does  not  satisfy  Equation  (3.13) and Equation  (3.14) then  the  state  variables  and 

reflected  wave  are  updated  by  adding  X d and Bd calculated  from  Equation  (3.21) and 

Equation  (3.22) to X d and Bd . The use of a scaling factor is also used to limit the amount of 

change from one iteration to the next. This scaling factor  is set to a value between 01 and 

the update is calculated by:

X d
k1

= X d
k
 X d (3.24)

Bd
k1

= Bd
k
Bd  (3.25)

Once all  reflected waves Bd have been solved for  each port,  they are  substituted into 

Equation (3.23) to calculate the new value of Ad . The iteration process is shown in Fig. 3.2.
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This process continues until the state variables are found which satisfy Equation (3.23).

With the solution process explained the next step is implementing it in software. This 

becomes a large task having to  support  circuits  of varying size and harmonics.  Most  of the 

variables and terms from above are multidimensional matrices or vectors. Certain parts of the 

solution process are separated for each frequency and others require all frequencies together. 

This  requires  care  and  proper  planning  to  successfully  achieve  an  efficient  program.  The 

programming process is discussed in the next section.

3.2.4 Implementation in fREEDA

As mentioned in Section 2.5 the platform selected to integrate the wave technique into 

was fREEDA.  The use of fREEDA greatly reduced the programing effort while increasing the 

flexibility. The addition of a new class 'wavehb' was added to the simulation package to support 

wave based harmonic balance. The existing simulation class 'SVHB' or state variable harmonic 
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balance class was used as an intial model to implement the new class. 

Besides the major changes to the equation formulation discussed in Section 3.2.1 and 

3.2.2 the use of an open source matrix library was added. The Matrix Template Library (MTL) 

[22]  was  selected  to  ease  programing complexity  and decrease  programing time.  The  MTL 

includes various matrix and vector operations for both real and complex numbers. The use of this 

library did however have some limitations and problems, which are discussed in Section 3.6. The 

original SVHB simulation was formulated using different vector representations and a different 

complex number format. Conversions were required to fit the data into a usable format for using 

the MTL. 

With the data rearranged to fit the MTL format the scattering matrices [S m] and source 

vectors A0 m are calculated for each frequency using the formulas derived in Section 3.2.1. There 

is one scattering matrix and source vector per frequency. The scattering parameters are stored in 

a square matrix with a dimension equal to the number of ports p . An array of scattering matrices 

is formed to store the values for each frequency. The size of the array is equal to the number of 

harmonics considered plus DC shown in Equation (3.26).

[S m] = [
s11 s12 ⋯ s1p

s21 s22 ⋯ s2p

⋮ ⋮ ⋱ ⋮
s p1 s p2 ⋯ s pp

]  (3.26)

Similarly an array is defined for the source vectors. The source vector length is equal to 

the number of ports and the number of array elements is equal to the number of harmonics plus 

DC. Both the scattering matrices and source vectors are only calculated once at the beginning of 

the  simulation.  This  is  beneficial  because  it  keeps  the  computationally  expensive  matrix 

40



decompositions to a minimum. The structure of the A vector is shown here:

A0 m = [
A00

A0 1

⋮
A0  p

]  (3.27)

The other main values that need to be stored are the vectors B ,  I NL X  and V NL X  . 

The treatment of I NL X  and V NL X  is similar to that of the source vectors by using an array. 

The array length for I NL X  and V NL X  is equal to the number of ports not necessarily equal to 

the number of devices. For devices that have more than one state variable the dimension of the 

vector increases to the number of frequencies times the number of states variable for that device 

shown in Equation  (3.28). This requirement adds some programing complexity because many 

circuits  can have a mixture of devices with various states per device.   The structure for the 

vectors in one device is illustrated below: 

V NL d  = [
V NL 1,0 

V NL 1,1 

⋮
V NL1,m 

V NL 2,0

V NL 2,1

⋮
V NL2,m 

V NL  p , 0

V NL  p , 1

⋮
V NL  p , m

]   I NL d  = [
I NL1,0 

I NL 1,1

⋮
I NL 1, m

I NL2,0 

I NL2,1 

⋮
I NL 2, m

I NL p ,0 

I NL p ,1 

⋮
I NL p ,m 

]     (3.28)

Unlike the  A0 , I NL x and V NL x  vectors which are stored in an array of vectors the 
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power  wave  vectors A and B are  stored  as  a  matrix  shown  in  Equation  (3.29).  The  matrix 

dimensions being the number of ports by the number of frequencies. This convention allows for 

easy access to different data. For example the magnitude and phase of all the power waves at one 

port  can be used by referencing an individual row. Similarly referencing one column allows 

access to all components of one particular frequency.

A = [
a1,0 a1,1 ⋯ a1,m

a2,0 a2,1 ⋯ a2,m

⋮ ⋮ ⋱ ⋮
a p ,0 a p , 1 ⋯ a p , m

]        B = [
b1,0 b1,1 ⋯ b1,m

b2,0 b2,1 ⋯ b2,m

⋮ ⋮ ⋱ ⋮
b p ,0 b p , 1 ⋯ b p , m

]  

(3.29)

The iteration process is set to sequentially loop through the devices and solve the local 

reflections B . This is accomplished by formulating the voltage and current Jacobian matrix for 

the  device  in  question.  Both  Jacobian  matrices [ J i ] and [ J v] are  square  and  of  the  same 

dimension. Their dimension is equal to the number of ports ( p ) for the device times the number 

of frequencies considered. The structure of the current Jacobian matrix [ J i] for one device ( d ) 

is,

[ J i d ] = [
[ J 1,1] [ J 1,2] ⋯ [ J 1, p]

[ J 2,1] [ J 2,2] ⋯ [ J 2, p]

⋮ ⋮ ⋱ ⋮
[ J p ,1] [ J 1,2] ⋯ [ J p , p]

]  

(3.30)

Each term in Equation  (3.30) is comprised of another sub-matrices [ J r , q] which refers to the 

number of ports per device with 1r p and 1q p . Each of the sub-matrices [ J r , q] are also 

square and have a dimension of the number of frequencies. 
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[ J r , q] = [
j0,0 j 0,2 ⋯ j0,m

j1,0 j 1,2 ⋯ j1,m

⋮ ⋮ ⋱ ⋮
jm ,1 jm ,2 ⋯ jm ,m

]  (3.31)

Each element in [ J r , q] is composed of one complex number. The voltage Jacobian is of the same 

form and is not shown. 

The process of calculating the Jacobian for each nonlinear device is not a trivial task and 

interfacing with fREEDA requires  great  care  as  the data  types  and pointers  are  not  directly 

compatible. The calculation process of the Jacobian matrix is performed using the same structure 

and process used for converting the state variable based current and voltage vectors from the 

time to frequency domain as discussed in Section 2.5.1.

The  Jacobian  is  used  to  calculate  the  updates  to X and B .This  process  requires  one 

matrix decomposition for the [D ] [ J i]  [D ]−1
[J v ]

−1 calculation in Equation (3.20). There is a 

scaling factor (  ) applied to the update values for  X and B (Section 3.2.3) . This scaling 

factor is used to help convergence. For each device the stop criteria is met when the infinity 

norm  of Zref  A B , Zref
f i , f v /Zref ,  X are  all  less  then  the  specified  simulation 

tolerance for that port. 

Implementation of the overall programing including debugging and verification added up 

to approximately thirteen hundred lines of code. This does not include the trials with alternative 

nonlinear equation solvers and the code used to integrate with Octave files [25] to verify parts of 

the code that were operational during development. 
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3.3 Convergence Analysis

3.3.1 Power Bound

The use of a relaxation technique based on power waves for harmonic balance analysis is 

guaranteed  not  to  diverge  to  infinity,  even if  the initial  guess  is  far  from the  solution.  This 

property is a direct consequence of using power waves. This is important because it ensures that 

there is a physically meaningful excitation for the device models therefore avoiding numerical 

problems. The fixed point relaxation scheme can be summarized using the following equation,

B = F [S ] BA0  (3.32)

where the bold matrix ( [S ] ) and vectors ( B , A0 )are defined as,

[S ] = [
[S 0] 0 ⋯ 0

0 [S 1] ⋱ 0
⋮ ⋱ ⋱ 0
0 0 0 [ Sm]

]  (3.33)

B k1
= [

B0
k1

B1
k1

⋮

Bm
k1]  (3.34)

A0 = [
A0 0

A01

⋮
A0 m

]  (3.35)

The total power reflected at each iteration of Equations (3.23) is given by ∣B∣2 , where the bars 

denote the 2-norm of the vector. Since the nonlinear devices are assumed to be passive,
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∣B k1∣2 = ∣F [S ] B kA0∣
2  ∣LSc [S ] B

k A0∣
2

, (3.36)

where LSc is a scalar with a value between 0LSc1 .  If it is assumed that the upper bound is 

propagated during the first iteration the result obtained is as follows:

∣LSc [S ] B
k
A0∣  LSc ∣[S ] B

k
∣∣A0∣  LSc∣B

k
∣∣A0∣  (3.37)

Given B0 ,

B k1
 LSc∣B

k
∣∣A0∣  

⋮

B k1
 LSc

k1
∣B k

∣∣A0∣LSc
k
LSc

k−1
⋯LSc∣A0∣

(3.38)

Therefore,

lim
k∞

∣B k1
∣
2


1
1−LSc

 LSc∣A0∣
2
  (3.39)

3.4 Convergence Improvements

The  proposed  method  using power  waves  demonstrates  good  empirical  convergence 

properties with simple circuits however there were some convergence issues when simulating 

relatively complex and highly nonlinear circuits. To help overcome some of the convergence 

issues a few techniques detailed below have been developed in this Thesis.
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3.4.1 Addition of Parallel Capacitors

The  capacitors  are  connected  to  each  port  as  seen  in  Fig.  3.3.  These  capacitors  are 

assumed to be active only in an independent time dimension. A transient analysis is performed in 

this time dimension following a procedure inspired by the pseudo transient analysis technique 

presented in [27] and the multi-time techniques presented in [21]. The addition of port capacitors 

after the discretization in time domain can be seen equivalent to adding a conductance in parallel 

with the port. This conductance can be adjusted based on the size of the capacitance or the time 

step in the pseudo-transient analysis.

Implementing  this  technique  into  the  wave  based  harmonic  balance  approach  is 

accomplished by transforming the capacitors into an equivalent circuit. The current in a capacitor 

is  related to the capacitance and the change of voltage with respect to the independent time 

variable ( t ' ),
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I c ≃ C
dV
dt '

 (3.40)

The derivative in equation  (3.41) can be approximated  with the Backward Euler formula  by 

using a small time step h ,

I c ≃ C
V t 'h−V t ' 

h
 (3.41)

Rearranging  Equation  (3.41) into  Equation  (3.42) and  defining  a  current  term I and  a 

conductance term G1 the equivalent circuit can be formed (Fig. 3.4).

I c ≃
−CV t ' 

h


CV t 'h
h

 (3.42)

I =
−CV t ' 

h
G1 =

1
R
=

C
h

 (3.43)

I c ≃ I V u
  G1V

u1
  (3.44)

Replacing  the  capacitors  with  its  equivalent  circuit  (Fig.  3.4)  requires  some  slight 

modifications to the equations derived in Section 3.2. The first equation to be modified is the 

nonlinear current returned from the device models.

i NLx i NL x[G ]vNL
k
x , th−vNL

k−1
 x , t   (3.45)

Where the square diagonal matrix is defined as, 
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[G ] = [
G1 0 ⋯ 0
0 G1 ⋱ 0
⋮ ⋱ ⋱ ⋮
0 0 ⋯ G1

]  (3.46)

and  the  dimensions  of [G ] are  equal  to  the  number  of  state  variables  times  the  number  of 

frequencies considered for the device being calculated. 

For the currents to remain balanced the effect of the capacitors must be considered. As 

can be seen in Equation (3.45) as the port voltage approaches steady state the current related to 

the capacitors goes to zero. 

Similar modifications are made to the nonlinear current error function in Equation (3.14). 

The additional  current  is  added to  the port  nonlinear  current  in  the error  function shown in 

Equation (3.47).

f i f i = [D ][i NL x [G ]v NL
k
 x ,th−v NL

k−1
x , t ]−ab  (3.47)

The final  affected  equation  is  the  current  Jacobian  matrix.  Again  the  current  caused  by the 

capacitors must be accounted for as seen in.

[ J i][ J i][G ] [ J v ]  (3.48)

The value of [G ] is a main diagonal matrix therefore it can be used to change the properties of 

the Jacobian matrix. 

As the  pseudo transient  reaches  steady state  the capacitors  effect  on the solution  are 

automatically removed without changing any simulation parameters. The value of conductance is 

used to passivate the port so at the onset of the iteration process the impedance seen at the port is 

dominated by the capacitor. As the voltage at the port begins to reach a steady state the effect of 

the capacitor is negligible and the solution is found. 
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For simulations using capacitors there are two different analysis available, referred to as 

timing analysis and iterative timing analysis [23] . Timing analysis requires only one iteration of 

the main reflection loop Equation (3.23) per time step of the 'pseudo transient' approach. The use 

of  iterative  time  analysis  allows  Equation  (3.23) to  converge  to  solution  before  a  'pseudo 

transient' time step is calculated. Solving the reflections to the solution tolerance when using 

'pseudo transient' could have little benefit because the solution calculated is not correct until the 

port  voltage  has  reach  steady  state.  A flow  diagram  of  the  solution  process  using  'pseudo 

transient' is shown in Fig. 3.5.
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3.4.2 Extrapolation Techniques

The use of capacitors helps the convergence of the system but as a trade off it extends the 

solution  time  considerably  under  some circumstances.  The  increase  in  solution  time can  be 

attributed to the slowly changing port voltage especially when close to the steady state value. To 

overcome this newly introduced problem an extrapolation technique is proposed. The theory for 
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using extrapolation is that capacitors charge quite quickly when voltage is first applied. However 

as  the  port  voltage  approaches  steady state  the  capacitors  take  much  longer  to  achieve  full 

charge. So the use of extrapolation in theory should help overcome this slow final charging. 

The use of extrapolation is implemented on both the port voltage variable v NL and the 

reflected wave B . The ability to enable and disable the use of extrapolation for both variables is 

added to the program through the use of simulation options within the netlist file. The sequence 

for v NL and B is generated in the form of v NL
1 ,v NL

2 ,⋯ ,vNL
k1 and B1, B2,

⋯, B k1  with the number of 

samples k .  The  sequence  is  then  used  to  calculate u j Equation  (2.6), [U ] Equation  (2.7), c

Equation (2.8) and the final extrapolated solution s Equation (2.10) as discussed in Section 2.2.2.

3.4.3 Gradient Descent Method

Another method attempted to improve convergence was that of gradient descent. Gradient 

descent is used to scale iterations updates in the correct direction. The hope being that if the 

current iteration is close the gradient descent can be used to guide the updates in the correct 

direction. 

The system of equations in question are currently in the form of a vector. The gradient 

descent method is performed on a scalar. Given the fixed point relaxation scheme in Equation 

(3.32) an error function G  B can be defined as, 

G  B = F [S ] BA0 − B =  B (3.49)

The bold vectors and matrices are defined in Section 3.3.1. The Jacobian of F  B  and the error 

function ( G  B )are defined as [ J F ]  and [ J G ] respectively, where,
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[ J G ] = [ J F ][S ]−[ I ]  (3.50)

Converting the vector error function into a scalar function is accomplished as follows:

H  B = G*
 B G  B , (3.51)

where G*
 B is the complex conjugate transpose.

The gradient of G  B is then,

∇ H = 2 [ J G ]
* G  B

= 2[ [S ]*[ J B]
*
−[ I ]] B

= 2[ [S ]*[ J B]
*
B− B ] ,

(3.52)

where [ J F ]
* and [S ]* are the complex conjugate transpose of [ J F ] and [S ] , respectively.

The value of [ J F ]
*
B is calculated using,

[ J F ]
*
B = [[D−1

]−[D ][Y ]*] [[D−1
][D ][Y ]*]−1

B , (3.53)

where [Y ] and  B  are defined as, 

[Y ]B = [ J i] [ J v]
−1       B = Bk1

−Bk  (3.54)

One [Y ]B term is calculated for each nonlinear device. 

The direction of ∇ H is used to determine the update direction. The update (  B ) for the 

next iteration is normally calculated using Equation (3.21) and Equation (3.22). With the use of 

gradient descent, the update is scaled using the direction of the gradient field. If the gradient field 

and the calculated update  B are in same direction the update  B is flipped to the opposite 

direction before being added to the current value of B .
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3.4.4 Tolerance Stepping

Tolerance  stepping  is  used  to  solve  the  individual  nonlinear  device  reflections B to  a 

looser tolerance than the one set in the simulation netlist. This reduces the number of Newton 

iterations required for each main routine iteration. As the iteration process becomes closer to 

solution the tolerance of the individual nonlinear device reflection calculations is stepped by a 

factor of 0.1 until the required simulation tolerance is reached. This process is demonstrated in 

Fig. 3.6.
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Fig. 3.6 Tolerance Stepping Flow Diagram 
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3.5 Wave HB as Preconditioner

The wave technique can also be used as a type of preconditioner for the more traditional 

Newton-based  HB simulation.  The  idea  is  to  allow  the  wave  approach  to  solve  the  circuit 

operation to a somewhat looser tolerance. The results of the loose simulation tolerance is then 

used as the initial guess for the start  of Newton-based HB. The relaxation approach initially 

convergences  quickly  and  therefore  requires  less  computational  time  to  solve  to  a  slack 

tolerance.  Having the Newton-based HB approach start  from an approximate solution should 

reduce the amount of large Jacobian decompositions and therefore the solution time.  

For  Newton-based  HB  the  major  time  dominating  process  for  large  circuits  is 

decomposing the Jacobian matrix.  The dominating process for the wave HB approach is the 

accuracy of the solution.  The tighter  the tolerance the longer the wave HB process takes  to 

converge to a solution. Exploiting the fact that wave HB can solve to a looser tolerance quicker 

then Newton-based HB a mixture of the two should be able to produce an overall improvement.

3.6 Problems and Solutions

Upon first implementing the wave technique a few simple circuits solved successfully 

and the solution time was comparable to conventional techniques. Attempting circuits of greater 

size and complexity, the solution convergence became a serious issue. Various modifications and 

techniques were attempted to help improve convergence. After many hours of failed attempts 

further investigation started to point to a serious problem in the MTL.

The matrix template library which is used to store and perform various complex matrix 

calculations appeared to be incorrectly calculating the LU decomposition. Further investigation 
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revealed that the LU function did not properly support complex matrices. The solution to this 

was to use the MTL interface to linear algebra package (LAPACK) routine [24]. The LAPACK 

routines are a Fortran based matrix library which does support complex matrix decomposition. 

The  matrix  template  library  also  lacked  a  routine  to  properly  perform  a  matrix  complex 

conjugate transpose. A function was written separately to perform this operation. 

To help verify all further modifications and calculations separate routines were written to 

output matrices and vectors to files. The files are stored in a format that can be read into Octave 

[25] where calculations can be confirmed to be correct.
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Chapter 4 

Results

4.1 Simulation Setup

A few different test circuits are simulated to compare the state variable wave technique 

against  that  of  the  regular  state  variable  based  harmonic  balance  within  fREEDA.  The 

comparison  focuses  mainly  on  the  number  of  iterations,  execution  time  and  memory 

consumption. The details of the various simulations using the wave approach include the initial 

proposed wave HB, wave HB with the use of capacitors ('pseudo transient'), extrapolation and 

gradient descent. The use of wave HB as a suitable preconditioner for more complex circuits is 

also examined. 

The simulation setup options include the solution tolerance, tolerance stepping, iteration 

limits, transmission line characteristic impedance, parallel capacitor conductance value, update 

scaling factor, gradient descent setup and extrapolation parameters. The simulation setup options 

and settings are defined in Table 4.1.

The stop criteria for simulations is based on the specified solution tolerance set in the 

netlist file. When the error of the function defined in Section 3.2 has reach a value less than the 

set solution tolerance the simulation is stopped and results saved. 

The wave HB approach is demonstrated with a number of circuits. The initial test circuit 

is  a  simple resistor  diode used to  confirm program operation.  Once the simple diode circuit 

solved correctly other circuits tested are, full wave rectifier, charge pump, MESFET amplifier, 
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MMIC amplifier,  soliton line and multi-soliton line.  The netlists  of the circuits  are  given in 

Appendix A.

4.2 Simple Diode Circuit

The simple diode circuit shown in Fig. 4.1 is used as an easy proof of concept and code 

verification  test.  Being  a  circuit  with  only  one  nonlinear  port  and  a  well  known  solution 
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Table 4.1 Simulation Setup Table Definitions 

Circuit Title or Simulation Description Section Explained in Thesis

Number Harmonics  Section 2.4
Solution Tolerance The Required Solution Tolerance  Section 3.2.2
Tolerance Stepping Use Tolerance Stepping 1=Yes 0=No  Section 3.4.4

Max Port Iterations  Section 3.2.2
Transmission Line  Section 3.2.1

Update Scaling Factor  Section 3.2.2
Max NL Iterations Maximum Iterations of Entire Circuit Loop  Section 3.2.2
Use Caps Use Pseudo Transient 1=Yes 0=No  Section 3.4.1

Conductance Value  Section 3.4.1

Max Cap Iterations  Section 3.4.1
Iterated Timing Analysis Use Iterated Timing Analysis 1=Yes 0=No  Section 3.4.1
Use Extrapolation Use Extrapolation 1=Yes 0=No  Section 3.4.2
Extrapolation Start Point Tolerance to Start Extrapolation  Section 3.4.2

 Section 3.4.2

Use Cap Extrapolation  Section 3.4.2

 Section 3.4.2

 Section 3.4.2
Use Gradient Descent Use Gradient Descent 1=Yes 0=no  Section 3.4.3

Gradient Descent Start  Section 3.4.3

Execution Time(s) Simulation Execution time
Number of NL Iterations Number of Iterations of Entire Circuit Loop
Number of Cap Iterations Number of Pseudo Transient Iterations

Memory Usage

The Number of Harmonics Considered in 
Calculation

Maximum Number of Newton Iterations for 
Each NL Device 

Zref
The Value of Scaling Factor α

Conductance Value of Parallel Capacitor 
(G)
Maximum Iterations of Pseudo Transient 
Loop

Number of Extrapolation 
Samples

Number of Extrapolation Samples Used in 
Calculation
Use Extrapolation on Pseudo Transient 
1=Yes 0=No

Cap Extrapolation Start 
Point

Tolerance to Start Extrapolation on Pseudo 
Transient 

Number of Cap 
Extrapolation Samples

Number of Samples Used on Pseudo 
Transient Extrapolation

Tolerance to Start Gradient Descent 
Method

Computer Memory Required to Perform 
Calculations



waveform it became a useful troubleshooting circuit tool. 

4.2.1 Diode Simulation Setup and Results

A large number of simulations were performed on the diode circuit, the first examining 

the  effect  of  varying  the  transmission  line  characteristic  impedance.  Two  characteristic 

impedances  are  used for  comparison.  The various  simulation setup parameters are  shown in 

Table 4.2 along with the Newton-based state variable HB (NBSV-HB) results as a reference. 

Changing the characteristic impedance has an effect on the convergence rate of solution. 

The  error  as  a  function  of  iterations  using  a  50Ω and  an  800Ω characteristic  impedance 

transmission line are shown in  Fig. 4.2. The number of iterations and therefore the execution 
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Fig. 4.1 Resistor Diode Circuit
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Table 4.2 Wave HB Simulation Setup and Results

Simulation Type NBSV-HB
Number Harmonics 15 15 15
Solution Tolerance 1.00E-008 1.00E-008 1.00E-008
Tolerance Stepping 0 0 NA
Max Port Iterations 100 100 NA

800 50 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1000 NA
Execution Time(s) 0.62 7.94 0.04
Number of NL Iterations 10 161 33
Number of Cap Iterations NA NA NA
Memory Usage 496k 496k NA

Wave HB 
(Z

ref
=800)

Wave HB 
(Z

ref
=50)

Zref



time is extended considerably with the changing of characteristic impedance from 800Ω to 50Ω. 

The wave HB simulation takes 10 total iterations compared to the 33 iterations taken by 

the  Newton-based  HB simulation.  The  reason that  the  wave HB approach  is  still  slower  is 

because  the  Jacobian  matrix  is  calculated  for  every  iteration.  The  Newton-based  HB  only 

recalculates the Jacobin matrix when the iterations move far enough away from the point where 

the last Jacobian calculated becomes invalid. For comparison the Jacobian was only calculated 

twice during the Newton-based HB simulation. 

The use of  tolerance  stepping  is  also tested  (Fig.  4.3).  Tolerance stepping  starts  at  a 

solution tolerance of 0.01 and steps down by a factor of 0.1 until the specified solution tolerance 

is achieved. Starting the simulation at a looser tolerance improves iteration speed especially at 

the beginning when solving each nonlinear port to a tight tolerance is an inefficiency use of 

processing time as the global reflection equations are still far from solution. 
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Fig. 4.2 Comparison of Different Characteristic Impedances Effect on Iterations for Resistor Diode Circuit
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Tolerance stepping increases the total  number of iterations to achieve solution.  However  the 

average time per iteration is less therefore leading to an overall processing time considerably 

shorter as seen in Table 4.3. 

The resulting waveform of the voltage across the diode from each converging simulation 

resulted in the same solution output shown in Fig. 4.4.
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Fig. 4.3 Comparison of Different Characteristic Impedances using Tolerance Stepping
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Table 4.3 Tolerance Stepping Setup 

Simulation Type NBSV-HB
Number Harmonics 15 15 15
Solution Tolerance 1.00E-008 1.00E-008 1.00E-008
Tolerance Stepping 1 1 NA
Max Port Iterations 100 100 NA

800 50 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1000 NA
Execution Time(s) 0.25 1.72 0.04
Number of NL Iterations 14 186 33
Number of Cap Iterations NA NA NA
Memory Usage 496k 496k NA

Wave HB w 
Tol Step 
(Z

ref
=800)

Wave HB w 
Tol Step 
(Z
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As discussed in Section 3.4.1 the use of capacitors connected in parallel to the ports is 

attempted to improve convergence. The resulting iteration error progress of testing the 'pseudo 

transient'  on the diode circuit  is  shown in  Fig.  4.5. Three different simulation iteration error 

trends  are  shown  in  Fig.  4.5.  The  different  simulation  setup  configurations  and  results  are 

recorded in Table 4.4. 
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Fig. 4.5 Iteration Error Function of Resistor Diode Circuit using Capacitors
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Fig. 4.4 Simulated Voltage Waveform Across Diode 
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Adjusting the value of the parallel connected conductance ( G1 ) is tested at 1/250S and

1/800S . The use of timing analysis and iterative timing analysis as discussed in Section 3.4.1 is 

tested at a fixed conductance value of 1/250S . Lowering the conductance value is equivalent to 

connecting a smaller  value capacitor.  The number of time steps required for a smaller  value 

capacitor to charge is less when connected in parallel with the same nonlinear device therefore 

decreasing the number of 'pseudo transient' iterations required to reach solution.  

The use of iterated timing analysis averaged 2.88 iterations of Equation (3.23) per 'pseudo 

transient' time step. The use of iterated timing analysis reduced the overall iterations from 82 

down to 81 but with a considerable trade off of almost 3 extra sub-iterations per step. The use of 

iterated timing analysis with other circuits also resulted in little to no performance improvement 

and is therefore not shown or discussed in the remaining simulations. 

Two  other  methods  proposed  to  improve  convergence  given  in  Section  3.4  are 

extrapolation and gradient descent.  The sampling for the extrapolation shown in Fig. 4.6 starts 
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Table 4.4 Simulation Setup and Results

Simulation Type NBSV-HB
Number Harmonics 15 15 15 15
Solution Tolerance 1.00E-008 1.00E-008 1.00E-008 1.00E-008
Max Port Iterations 100 100 100 NA

800 800 800 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Caps 1 1 1 NA
Conductance Value 1/250 1/800 1/250 NA
Max Cap Iterations 1000 1000 1000 NA
Iterated Timing Analysis 0 0 1 NA
Execution Time(s) 3.71 1.68 6.86 0.04
Number of NL Iterations 1 1 2.88 33
Number of Cap Iterations 82 35 81 NA

Memory Usage 496k 496k 496k NA

Timing 
Analysis 
G

1
(1/250)

Timing 
Analysis 
G

1
(1/800)

Iterated 
Timing 

Analysis

Zref



when the residual of the error is less than 0.01. The number of samples taken before calculating 

the extrapolation is set to 3. Extrapolation in this simulation is performed on the reflected wave

B . For the gradient descent technique two thresholds of 1e-3 and 1e-5 are tested. The simulation 

is run normally until the error is less then the threshold and scaling of the update in accordance to 

the gradient begins. 

The extrapolation technique did not improve the convergence rate. Different numbers of 

samples were attempted for this  circuit  to analyze their  effect.  However the matrix template 

library which then calls the Lapack routine to perform the complex matrix factoring returns a 

failure code for samples greater than 3 for this particular circuit.

The performance of using gradient descent for this simple circuit shows similar results to 

the basic wave technique (Table 4.5). Setting the gradient descent activation tolerance to high 

results in the solution becoming trapped at an incorrect solution. Lowering the gradient descent 
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Fig. 4.6 Gradient Descent and Extrapolation Error
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start tolerance prevents this from occurring and has a moderate improvement on performance 

near the end of the simulation.

The final technique to be tested is the use of extrapolation on the port voltage while using 

'pseudo transient'.  The use of extrapolation on the port  voltage has an adverse effect  on the 

simulation. The overall effect of extrapolation on the port voltage while using capacitors severely 

increased the total number of iterations required and subsequently the execution time. This trend 

is observed with other test circuits as well. The issues that arise from the use of extrapolation 

appear  to  be  related  to  issues  in  the  programming  code  and  for  this  reason  all  further 

extrapolation results are provided in Appendix B. 

4.2.2 Diode Simulation Summary

The simulation of the simple diode circuit using wave HB was successful in the sense that 
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Table 4.5 Gradient Descent and Extrapolation Setup and Results

Simulation Type NBSV-HB
Number Harmonics 15 10 10 15
Solution Tolerance 1.00E-008 1.00E-008 1.00E-008 1.00E-008
Tolerance Stepping 0 0 0 NA
Max Port Iterations 100 100 100 NA

800 800 800 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Extrapolation 1 NA NA NA
Extrapolation Start Point 1.00E-001 NA NA NA
Number of Extrapolation Samples 3 NA NA NA
Use Gradient Descent NA 1 1 NA
Gradient Descent Start NA 1.00E-005 1.00E-003 NA
Execution Time(s) 1.03 0.56 15.28 0.04
Number of NL Iterations 22 10 385 33
Number of Cap Iterations NA NA NA NA
Memory Usage 496k 496k 496k NA

Wave HB  w 
Extrapolation

Wave HB  w 
Gradient 
Descent

Wave HB  w 
Gradient 
Descent

Zref



the correct  solution was found. The use of tolerance stepping provides the fastest simulation 

which is still quite a bit slower than the Newton-based HB. The use of 'pseudo transient' also 

converges to the solution with a slower execution time due to the number of 'pseudo transient' 

time steps required to  reach solution.  For this  simple circuit  however  the use the wave HB 

technique does not meet the performance of Newton-based HB. 

4.3 Full Wave Rectifier

A full  wave  rectifier  is  commonly  used  to  convert  an  alternating  current  containing 

positive  and  negative  swings  into  a  signal  containing  only  positive  swings.  Connecting  a 

capacitor  on  the  output  is  used  to  filter  the  signal  to  an  approximate  DC  signal.  For  the 

simulations the filter capacitor was removed therefore the resulting waveform is approximately a 

rectified sine wave. The circuit is comprised of four diodes arranged as shown in the circuit 

schematic Fig. 4.7 with a load resistance of RL=10kΩ. 

4.3.1 Full Wave Rectifier Simulation Setup and Results

Similar to the diode circuit discussed previous the effect of varying the transmission line 
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Fig. 4.7 Rectifier Schematic
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characteristic impedance is tested. The simulation setup is shown in Table 4.6 The simulations 

compare the use of regular wave HB with and without the use of tolerance stepping.

Tolerance  stepping  for  this  particular  circuit  improved  both  the  convergence  and 

execution speed. Tolerance stepping reduces the number of iterations by almost a factor of 3 and 

improves convergence speed by a factor of roughly 12.5.

The simulated voltage output from the rectifier circuit for a convergent solution is shown 

in Fig. 4.9.
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Fig. 4.8 Wave HB Error as Function of Iterations 
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Table 4.6 Wave HB Simulation Setup

Simulation Type NBSV-HB
Number Harmonics 25 25 15
Solution Tolerance 1.00E-007 1.00E-007 1.00E-008
Tolerance Stepping 0 1 NA
Max Port Iterations 200 200 NA

800 800 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1000 NA
Execution Time 2m29.312s 14.071s Diverges
Number of NL Iterations 323 97 NA
Number of Cap Iterations NA NA NA
Memory Usage 892k 892k 1000k

Wave HB 
(Z

ref
=800)

Wave HB  w 
Tol Step

Zref



The  simulation  setup  and  results  from the  use  of  'pseudo  transient'  are  compared  to 

Newton-based HB and wave HB, shown in Table 4.7 and Fig. 4.10.

Pseudo transient improved the convergence speed of wave HB but not enough to beat the 

tolerance stepping approach. 
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Fig. 4.9 Simulated Voltage Output Waveform (Wave HB)
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Table 4.7 Pseudo Transient Compared with Wave and Newton-based HB 

Simulation Type NBSV-HB
Number Harmonics 25 25 25 25
Solution Tolerance 1.00E-007 1.00E-007 1.00E-007 1.00E-007
Tolerance Stepping 0 1 0 NA
Max Port Iterations 200 200 200 NA

800 800 800 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Caps 0 0 1 NA
Conductance Value NA NA 1/250 NA
Max Cap Iterations NA NA 1000 NA
Iterated Timing Analysis NA NA 0 NA
Use Extrapolation 0 0 0 NA
Execution Time 2m29.312s 14.07 1m16.68s Diverges
Number of NL Iterations 323 97 1 NA
Number of Cap Iterations NA NA 230 NA
Memory Usage 892k 892k 892k 1000k

Wave HB 
(Z

ref
=800)

Wave HB  w 
Tol Step

Wave HB  w 
Pseudo 

Transient

Zref



The simulation setup to test the use of gradient descent to improve convergence is shown 

in Table 4.8.

The use of gradient descent improved the solution time of wave HB with and without 

tolerance stepping. As can be seen from the gradient descent simulation starting at a tolerance of 
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Table 4.8 Gradient Descent Setup and Results 

Simulation Type NBSV-HB
Number Harmonics 25 25 25 25
Solution Tolerance 1.00E-007 1.00E-007 1.00E-007 1.00E-008
Tolerance Stepping 0 0 1 NA
Max Port Iterations 200 200 200 NA

800 800 800 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 300 1000 1000 NA
Use Gradient Descent 1 1 1 NA
Gradient Descent Start (SF=0.1) 1.00E-005 5.00E-007 5.00E-007 NA

No Convergence
Execution Time 4m16.647s 2m12.414 12.808s Diverges
Number of NL Iterations 300 288 81 NA
Number of Cap Iterations NA NA NA NA
Memory Usage 892k 892k 892k 1000k

Wave HB w 
Gradient Descent

Wave HB w 
Gradient 
Descent

Wave HB w 
Gradient 
Descent

Zref

Fig. 4.10 Pseudo Transient Compared with Wave and Newton-based HB  
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1e-5 the gradient descent diverges from solution (Fig. 4.11). This is an example of what happens 

if the gradient descent is started too far away from the correct solution. 

Activating the gradient descent method at 1e-6 improves convergence and simulation time. The 

fastest  simulation  for  solving  the  full  wave  rectifier  is  the  combination  of  wave  HB  with 

tolerance stepping and gradient descent. 

4.3.2 Full Wave Rectifier Simulation Summary

The full wave rectifier circuit converged to solution using wave HB with and without 

capacitors  when  the  characteristic  impedance  was  set  to  800Ω.  When  the  impedance  was 

lowered however convergence did not occur without the use of 'psuedo transient'. Adding the use 

of gradient descent together with tolerance stepping proved to be the quickest simulation. For 

this  particular  circuit  Newton-based HB did not converge to solution so no comparison was 

available as a reference.
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Fig. 4.11 Gradient Descent Error 
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4.4 Charge Pump

A simple charge pump circuit uses a configuration of capacitors and diodes to turn an 

applied  sin  wave  input  into  a  DC voltage  output  higher  than  the  applied  AC voltage.  The 

magnitude of the output voltage is related to the number of capacitor and diode stages in the 

circuit. The greater the number of stages the higher the output voltage.  The circuit schematic 

shown in Fig. 4.12 is a typical charge pump circuit.

4.4.1 Charge Pump Simulation Setup and Results

The simulated voltage output waveform for  a convergent simulation is shown in  Fig.

4.13.
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Fig. 4.12 Charge Pump Schematic
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Fig. 4.13 Charge Pump Voltage Output Waveform 
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The applied AC voltage in all simulations of the charge pump is 10VAC and the output is 

loaded with a 1MΩ resistor. The simulation setup for the first comparison is the same as the full 

wave rectifier. The characteristic impedance is varied between 50Ω and 800Ω and the use of 

'pseudo transient' with the addition of parallel capacitors is tested (Table 4.9).

The  charge  pump circuit  simulation  using wave HB hit  the  maximum iteration  limit 

before converging to the required solution tolerance.  The error trends in  Fig. 4.14 show that 

eventual convergence to solution is likely however the number of iterations and execution time 

appear to be great. The convergence improves considerably when the use of 'pseudo transient' is 

implemented.  Unlike  the  previous  simulations  the  use  of  the  lower  valued  characteristic 

impedance of 50Ω shows better convergence characteristics.
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Table 4.9 Simulation Setup and Results 

Simulation Type NBSV-HB
Number Harmonics 25 25 25 25 15
Solution Tolerance 1.00E-005 1.00E-005 1.00E-005 1.00E-005 1.00E-005
Tolerance Stepping 0 0 1 0 NA
Max Port Iterations 200 200 200 200 NA

50 800 800 800 NA
Update Scaling Factor 0.3 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 2000 1000 NA
Use Caps 0 0 0 1 NA
Conductance Value NA NA NA 1/250 NA
Max Cap Iterations NA NA NA 1000 NA
Iterated Timing Analysis NA NA NA 0 NA
Use Extrapolation 0 0 0 0 NA

Execution Time 8m 42s 19m12s 4m45.194s 2m25.143s 2.881s
Number of NL Iterations 1000 1000 1634 1 1000
Number of Cap Iterations 472 NA
Memory Usage 904k 904k 904k 904k 1700k

Wave HB 
(Z

ref
=50)

Wave HB 
(Z

ref
=800)

Wave HB  w 
Tol Step

Wave HB w 
Pseudo 

Transient

Zref

Iteration Limit 
Hit

Iteration Limit 
Hit



For this simulation 'pseudo transient' provides the best wave HB convergence results. The 

use of tolerance stepping also improves the convergence of regular wave HB. When compared to 

the reference simulation using Newton-based HB the simulation times are still much greater. 

The  use  of  extrapolation  and  gradient  descent  are  attempted  to  improve  the  overall 

simulation further. The simulation error as a function of iterations is shown in Fig. 4.15 and is 

compared with that of 'pseudo transient'.
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Fig. 4.14 Wave HB, Tolerance Stepping and Pseudo Transient Iteration Error Results 
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The simulation setup and results  for comparing extrapolation and gradient  descent  to 

'pseudo transient'  are shown in  Table 4.10. The use of gradient descent did not improve the 

performance and caused the simulation to hit the maximum iterations threshold. 
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Fig. 4.15 Extrapolation and Gradient Descent Error Compared to Pseudo Transient
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Table 4.10 Extrapolation and Gradient Descent Compared to 'Pseudo 
Transient' 

Simulation Type NBSV-HB
Number Harmonics 25 25 15
Solution Tolerance 1.00E-005 1.00E-005 1.00E-005
Tolerance Stepping 0 1 NA
Max Port Iterations 200 200 NA

50 50 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1600 NA
Use Caps 1 NA NA
Conductance Value 1/250 NA NA
Max Cap Iterations 1000 NA NA
Iterated Timing Analysis 0 NA NA
Use Gradient Descent NA 1 NA
Gradient Descent Start NA 1.00E-004 NA
Execution Time 2m25.143s 4m51.04s 2.881s
Number of NL Iterations 1 1600 1000
Number of Cap Iterations 472 NA NA
Memory Usage 904k 904k 1700k

Wave HB w 
Pseudo 

Transient

Wave HB w 
Gradient 
Descent

Zref



4.4.2 Charge Pump Simulation Summary

The  results  from the  charge  pump circuit  are  poor  when  compared  to  the  reference 

simulation using the Newton-based HB approach. The use of 'pseudo transient' showed the best 

performance out of the wave HB techniques. Tolerance stepping also produced an execution time 

similar to 'pseudo transient' but required many iterations to achieve convergence. 

4.5 MESFET Amplifier

So far the circuits tested with the wave HB approach have consisted of diodes and passive 

components. The MESFET amplifier circuit is the first circuit using an active element with more 

than one port per device. The schematic for the MESFET amplifier is shown in Fig. 4.16.

The simulated solution waveform for the MESFET amplifier output is shown in Fig. 4.17.
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Fig. 4.16 MESFET Amplifier Schematic 
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The first simulation setup is shown in Table 4.11 using the same variation as the previous 

circuits tested examining the use of different characteristic impedances at 50Ω and 800Ω.

Similar to the simulations before changing the value of the characteristic impedance has 

an  effect  on  the  convergence  rate  and therefore  the  number  of  iterations.  For  the  MESFET 

however the use of the lower 50Ω impedance instead of 800Ω displayed better  convergence 
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Table 4.11 MESFET Amplifier Wave HB Simulation Setup and Results 

Simulation Type NBSV-HB
Number Harmonics 20 25 25
Solution Tolerance 1.00E-006 1.00E-006 1.00E-006
Tolerance Stepping 0 0 NA
Max Port Iterations 200 200 NA
Zref 50 800 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1000 NA
Execution Time(s) 5.637s 44.816s .076s
Number of NL Iterations 26 96 NA
Number of Cap Iterations NA NA NA
Memory Usage 1000k 1000k 1020k

Wave HB 
(Z

ref
=50)

Wave HB 
(Z

ref
=800)

Fig. 4.17 Simulated Solution Waveform  
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characteristics (Fig. 4.18). 

The  use  of  tolerance  stepping  and  'pseudo  transient'  techniques  is  tested  next.  The 

tolerance stepping approach is run twice using a different number of maximum iterations for the 

nonlinear ports. The first simulation use a maximum of 200 iterations to solve for each reflected 

power wave and the other simulation uses 1. The simulation setup and results are shown in Table

4.12.
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Fig. 4.18 Characteristic Impedance Effect on Convergence 
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The use of 'pseudo transient' and tolerance stepping using a maximum of 200 iteration per 

nonlinear port produced very similar simulation results. Taking just over 6 seconds to converge 

to  solution  in  20 iterations.  Tolerance  stepping  with  only  one  iteration  per  nonlinear  device 

required over 100 iterations to converge to solution however the execution time was considerably 

lower at just over 1 second (Fig. 4.19). 
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Table 4.12 MESFET Amplifier Tolerance Stepping Simulation Setup and Results

Simulation Type NBSV-HB
Number Harmonics 20 25 25 25
Solution Tolerance 1.00E-006 1.00E-006 1.00E-006 1.00E-006
Tolerance Stepping 1 1 0 NA
Max Port Iterations 200 1 200 NA

50 50 50 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Caps 0 0 1 NA
Conductance Value NA NA 1/250 NA
Max Cap Iterations NA NA 1000 NA
Iterated Timing Analysis NA NA 0 NA
Execution Time(s) 6.461s 1.057s 6.249s .076s
Number of NL Iterations 20 107 1 NA
Number of Cap Iterations NA NA 21 NA
Memory Usage 1000k 1000k 1000k 1020k

Wave HB  w 
Tol Step '200' 
Port Iteratios

Wave HB  w 
Tol Step '1' 

Port Iterations

Wave HB  w 
Pseudo 

Transient

Zref



4.5.2 MESFET Amplifier Simulation Summary

The MESFET amplifier differs from the other circuits tested because it contains an active 

device which contains two ports per device. The use of tolerance stepping and only one iteration 

per port produces the quickest solution time. The use of one port iteration per nonlinear device 

saves  time  because  only  one  small  matrix  decomposition  is  required  per  global  nonlinear 

iteration. For this simulation the effects are greater still because a device with two ports doubles 

the matrix and vector sizes within the nonlinear port routine. This accounts for the substantial 

time savings caused by reducing the maximum number of port iterations from 200 down to 1. 

The  other  simulation  techniques  preformed  comparable  to  the  other  test  circuits,  including 

extrapolation causing an adverse effect on the solution convergence. The use of gradient descent 

was not preformed due to the implementation being coded to support devices with only one state.
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Fig. 4.19 Simulation Iteration Error 
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4.6 Soliton Line

So far the circuits that have been tested consist of very few nonlinear elements and do not 

require a large number of harmonics to accurately describe the solution waveform. The soliton 

line however is a highly nonlinear network that consists of many nonlinear devices and requires 

a large number of harmonics to accurately represent the solution. The schematic of the soliton 

line is shown in Fig. 4.20. It consists of a high frequency source driving 47 diodes connected to 

each other by transmission lines and terminated with a 50Ω load [28,29]. 

The output voltage waveform at the end of the soliton line is shown in Fig. 4.21. It can be seen 

that the waveform exhibits strong nonlinearities. The size of the system to be solved for this 
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Fig. 4.20 Soliton Line Schematic 
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circuit using Newton-based HB consist of a square matrix, having a dimension of 3807 x 3807.

4.6.1 Soliton Line Simulation Setup and Results

The soliton line is first solved to a loose tolerance of 1e-2 to compare the performance 

between the various different methods covered so far. The reason for solving to a loose tolerance 

is due to the fact that simulation of the soliton line takes a considerable amount of time to solve. 

The first simulation is used to compare the effect of different characteristic impedances. The use 

of 50Ω and 800Ω is compared in Table 4.13.

The use of  a  50Ω characteristic  impedance shows better  solution performance and is 

therefore used for all remaining simulations. The error as a function of iterations using the two 

different impedances is shown in Fig. 4.22.
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Table 4.13 Characteristic Impedance Comparison 

Simulation Type
Number Harmonics 40 40
Solution Tolerance 1.00E-002 1.00E-002
Max Port Iterations 100 100
Zref 50 800
Update Scaling Factor 0.3 0.3
Max NL Iterations 100 1000

Execution Time 41m2.025s 82m4.09s
Number of NL Iterations 75 101
Number of Cap Iterations NA NA
Memory Usage 13.2M 13.2M

Wave HB 
(Z

ref
=50)

Wave HB 
(Z

ref
=800)

Iteration Limit 
Hit



The use of 'pseudo transient' is tested at different tolerances. As the tolerance is increased 

the number of iterations and the amount  of time required to reach solution increases.  Three 

different simulations are run with various tolerances as shown in Table 4.14. The Newton-based 

HB approach is also included for comparison.  
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Fig. 4.22 Characteristic Impedances Effect on Convergence 
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Table 4.14 Different Tolerance Comparisons

Simulation Type NBSV-HB
Number Harmonics 40 40 40 40
Solution Tolerance 1.00E-002 1.00E-003 1.00E-006 1.00E-005
Max Port Iterations 100 100 100 NA

50 50 50 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Caps 1 1 1 NA
Conductance Value 1/250 1/250 1/250 NA
Max Cap Iterations 1000 1000 1000 NA
Iterated Timing Analysis 0 0 0 NA

Source Step
Execution Time 28m7.471s 74m4.636s 301m15s 57m51.676s
Number of NL Iterations 1 1 1 354
Number of Cap Iterations 75 114 248 NA
Memory Usage 13.2M 13.2M 13.2M 340.1M

Wave HB  w 
Pseudo 

Transient

Wave HB  w 
Pseudo 

Transient

Wave HB  w 
Pseudo 

Transient

Zref



A couple of points of interest from the results in Table 4.14. The total amount of memory 

required to perform the solution calculation is substantially lower in the wave HB approach, 

approximately 26 times less then Newton-based HB. The Newton-based HB approach also uses a 

source-stepping technique. The source stepping technique is the same as solving the circuit at a 

fraction of the input voltage and considering less harmonics. At the next step the voltage and 

number of harmonics is increased until the voltage is at the specified amount and all harmonics 

are  considered.  Without  source  stepping  the  Newton-based  HB  fails  to  converge.  Another 

interesting observations is that Newton-based HB takes a considerable amount of time to reach a 

solution which is relatively close to correct. Once a solution is relatively close Newton-based HB 

takes very few iterations and therefore a short amount of time to solve to a tight tolerance. On the 

other hand wave HB reaches a solution which is close in a relatively short amount of time but 

takes much longer to reach a tight tolerance. 

The use of tolerance stepping and using a different limit on the number of nonlinear port 

iterations is shown in Fig. 4.23. Increasing the limit on the Newton iterations for each device port 

typically extends the overall solution time. This occurs because more time is spent calculating 

each device ports reflections. The use of more Newton iterations for each device improves the 

rate and likeliness of global convergence of the system. However increasing the number past a 

certain point has little effect, as the Newton iterations solve to solution before the limit is hit. The 

major advantage of lowering the iteration limit is reducing the time spent on device ports which 

have slowly converging Newton iterations. This can improve the overall solution time with the 

trade offs being a reduction in the rate and likeliness of global convergence.

83



The use of tolerance stepping improves the simulation convergence time by decreasing 

the average time spent on each iteration at the cost of requiring more iterations. The same holds 

true when the limit of iterations per local device port reflection calculation is lowered. From 

Table 4.15 using tolerance stepping combined with only one iteration of the reflection calculation 

for each port provides the quickest solution time. 
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Fig. 4.23 Comparison of Tolerance Stepping and Max Port Iteration Setting
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Table 4.15 Tolerance Stepping Simulation Setup and Results 

Simulation Type NBSV-HB
Number Harmonics 40 40 40 40
Solution Tolerance 1.00E-004 1.00E-004 1.00E-004 1.00E-006
Tolerance Stepping 1 1 1 NA
Max Port Iterations 1 10 100 NA

50 50 50 NA
Update Scaling Factor 0.3 0.3 0.3 NA
Max NL Iterations 1000 1000 1000 NA
Use Caps 0 0 0 NA

Source Step
Execution Time 41m7.773s 45m 50.66s 103m5.865s 57m51.676s
Number of NL Iterations 978 556 534 354
Number of Cap Iterations NA NA NA NA
Memory Usage 13.2M 13.2M 13.2M 340.1M

Wave HB  w 
Tol Step '1' 

Port Iteratios

Wave HB  w 
Tol Step '10' 
Port Iteratios

Wave HB  w 
Tol Step '100' 
Port Iteratios

Zref



In  Table 4.16 a comparison is made between 'pseudo transient', tolerance stepping and 

Newton-based HB solved to a tight solution tolerance of 1e-6. The tolerance stepping solution 

simulation time is somewhat comparable to that of Newton-based HB but still comes up short. 

 4.6.2 Soliton Line Simulation Summary

The soliton line is  a  relatively nonlinear  circuit  which presents some difficulty  when 

solving  with  a  harmonic  balance  approach.  The  use  of  wave  HB  combined  with  tolerance 

stepping shows performance which is similar to that of Newton-based HB but does not improve 

the overall time required to solve the simulation. Wave HB approach is a form of relaxation 

technique with a low convergence rate. This differs from the path taken by Newton-based HB 

which takes a considerable amount of time to get close to solution, but once there converges 

rapidly.  The  possibility  of  mixing  the  two  together  is  present  in  the  Section  4.7.  Another 

advantage of the wave approach is the substantial reduction in memory usage. This becomes an 

even bigger savings as the size of the circuit in question grows. 
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Table 4.16 Comparison of Wave HB and Newton-based HB  

Simulation Type NBSV-HB
Number Harmonics 40 40 40
Solution Tolerance 1.00E-006 1.00E-006 1.00E-006
Tolerance Stepping 0 1 NA
Max Port Iterations 100 10 NA

50 50 NA
Update Scaling Factor 0.3 0.3 NA
Max NL Iterations 1000 1500 NA
Use Caps 1 0 NA
Conductance Value 1/250 NA NA
Max Cap Iterations 1000 NA NA
Iterated Timing Analysis 0 NA NA

Source Step
Execution Time 301m15s 68m28s 57m51.676s
Number of NL Iterations 1 1000 354
Number of Cap Iterations 248 NA NA
Memory Usage 13.2M 13.2M 340.1M

Wave HB  w 
Pseudo 

Transient
Wave HB  w 

Tol Step

Zref



4.7 Wave HB as a Preconditioner

As was mentioned in Section 4.6 the wave HB approach relaxes towards the solution. 

This  results in a considerable simulation time  for  complex systems. The use of Newton-based 

HB has much better convergence performance once the solution is relatively close. The cost of 

getting relatively close to solution using Newton-based HB can be high due to the computational 

cost of decomposing the Jacobian matrix. For smaller circuits this task is quite quick but as the 

circuit and number of harmonics considered grows execution time increases dramatically. This 

leads to the idea of using wave HB as a preconditioner for Newton-based HB when complex 

circuits are simulated. In this section combining the relaxation approach of wave HB with the 

fast  converge rate of Newton-based HB when near solution is examined. The soliton line in 

Section 4.6 is tested along with a circuit containing two soliton lines. 

4.7.1 Soliton Line with Wave HB as a Preconditioner 

For testing the wave HB as a preconditioner a simulation tolerance of 1e-2 is set and the 

solution  is  solved.  The  resulting  solution  waveform  is  shown  in  Fig.  4.24.  Determining a 

stopping criteria for the change from one method to the other was determined using a trial and 

error approach.  For this particular example the tolerance of 1e-2 showed the best compromise 

between time and accuracy.
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It can be seen from  Fig. 4.24 that the simulated solution although only solved to 1e-2 is still 

resemblant of the correct solution waveform shown in Fig. 4.21 

The resulting solution is then feed into the start of Newton-based HB as the initial guess 

and solved without source stepping to  a tolerance of 1e-6.  The results  of the simulation are 

shown in Table 4.17.
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Fig. 4.24 Soliton Output Waveform 1e-2 Solution Tolerance 
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Table 4.17 Soliton Line Wave HB as a Preconditioner Results 

Simulation Type NBSV-HB
Number Harmonics 40 40 40 40 40
Solution Tolerance 1.00E-002 1.00E-002 1.00E-002 1.00E-006 1.00E-006
Tolerance Stepping 0 0 0 NA NA
Max Port Iterations 1 20 1 NA NA

50 50 50 NA NA
Update Scaling Factor 0.3 0.3 0.3 NA NA
Max NL Iterations 1000 100 1000 NA NA
Use Caps 0 0 1 NA NA
Conductance Value NA NA 1/250 NA NA
Max Cap Iterations NA NA 1000 NA NA
Iterated Timing Analysis NA NA 0 NA NA

NA NA NA 18m35s NA
Regular HB Time NA NA NA 11m46.44s Source Step
Execution Time 18m35s 41m2.025s 28m7.471s 30m21.44s 57m51.676s
Number of NL Iterations 470 75 1 35 354
Number of Cap Iterations NA NA 75 NA NA
Memory Usage 13.2M 13.2M 13.2M 340.1M 340.1M

Wave HB  w 
Tol Step

Wave HB 
(Z

ref
=50)

Wave HB  w 
Pseudo 

Transient

Combination 
of Wave HB 
and NBSV-

HB 

Zref

Preconditioner Time



The use of wave HB as a preconditioner achieves a solution speed that is faster than 

Newton-based HB on its own. The use of one iteration per port and a solution tolerance of 1e-2 is 

used for the preconditioner. The result is then used as the initial guess for Newton-based HB 

yielding a net time of just over half an hour almost twice as fast as the reference simulation using 

Newton-based HB.

4.7.2 Multiple Soliton Line with Wave HB as a Preconditioner 

The advantages of using the wave HB as a preconditioner should become more evident as 

the circuit size grows and the decomposition of the Jacobian matrix becomes more expensive. To 

verify this, two soliton lines are connected  as shown in Fig. 4.25. The sources are set to have a 

180 degree phase shift from one another during simulation. 

The circuit is solved using wave HB to a tolerance of 1e-2 and then used as the initial 

guess for Newton-based HB. Results of the preconditioner testing are shown in Table 4.18.
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Fig. 4.25 Multiple Soliton Line Schematic
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The use of wave HB as a precondition for the multiple soliton line improves the overall 

solution time considerably. The total simulation time is almost 5 hours less with the use of wave 

HB  and  Newton-based  HB  together  when  compared  with  just  Newton-based  HB.  Another 

observation is the reduction in memory required to perform the Newton-based HB calculation 

when compared to that of wave HB. This memory savings is however lost once the Newton-

based HB is used to converge to the final solution. 

4.7.3 Wave HB as a Preconditioner Summary

Wave HB as a preconditioner  used as a preconditioner for Newton- harmonic balance 

results in shorter simulation times, at least for some circuits. The simulation time savings become 

more important as the circuit size grows. Wave HB uses substantial less memory when solving 

the system which can become an issue for the Newton-based HB technique used as a reference 
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Table 4.18 Multiple Soliton Line Wave HB as a Preconditioner Results 

Simulation Type NBSV-HB
Number Harmonics 40 40 40
Solution Tolerance 1.00E-002 1.00E-006 1.00E-006
Tolerance Stepping 0 NA NA
Max Port Iterations 1 NA NA

50 NA NA
Update Scaling Factor 0.3 NA NA
Max NL Iterations 1000 NA NA
Use Caps 1 NA NA
Conductance Value 1/250 NA NA
Max Cap Iterations 1000 NA NA
Iterative time 0 NA NA

NA 85m38.145s NA
Regular HB Time NA 47m1.255s NA
Execution Time 85m38.145s 132m39.4s 421m9.649s
Number of NL Iterations 1 15 390
Number of Cap Iterations 116 NA NA
Memory Usage 64M 1300M 1300M

Wave HB 
(Z

ref
=50)

Combination 
of Wave HB 
and NBSV-

HB 

Zref

Preconditioner Time



throughout this work. However this benefit is lost when wave HB is used as a preconditioner. 

4.8 Performance Comparisons

A variety of circuits have been tested in the previous sections. Some observations can be 

drawn from these  simulations.  Wave  HB being  a  form of  relaxation  technique  results  in  a 

solution process which exhibits  this  behavior.  Relaxing to  the solution can be beneficial  for 

convergence but it also suffers from much slower solution times. Solving the reflections for each 

port individually is shown to conserve the amount of memory required, especially for larger and 

more complex circuits. The use of 'pseudo transient' showed some improvements and the ability 

to moderately control convergence. 

If  the conductance  value  used  in  'pseudo transient'  is  set  to  zero then  the  simulation 

becomes the normal wave HB approach.  Using capacitors connected to the nonlinear device 

ports allows the Newton iterations for each port to converge faster. There is a trade off between 

using 'pseudo transient'  to improve convergence speed of the individual ports and the overall 

time that is required for the 'pseudo transient' to reach solution. In some instants this trade off 

results in an improved overall solution time, for others it does not. 

The most promising of the techniques used are those of 'pseudo transient' and tolerance 

stepping. For relatively large nonlinear circuit 'pseudo transient' can be used to help convergence. 

For circuits of moderate size tolerance stepping seems to offer the quickest solution time. The 

attempts  at  extrapolation  did  not  produce  positive  results.  The  problem  with  extrapolation 

appears to be in the MTL when solving the Moore Penrose pseudo inverse. Upon solving the LU 

decomposition  Moore  Penrose  pseudo  inverse  the  Lapack  library  returns  various  different 
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problem codes dependent on the number of extrapolation samples selected. Gradient descent did 

have a mild improvement however its use was only beneficial close to the end of the iteration 

process so its overall benefit is low. 

The final use of wave HB tests its ability of being a type of preconditioner. The results of 

a  loose  tolerance  solution  are  used  as  an  initial  guess  for  a  conventional  harmonic  balance 

approach. The combination of the two methods has an overall improvement in the solution time 

of the large circuits tested. The trade off being  a reduction in the   size of system that can be 

solved due to  the memory-intensive Newton-based HB method. However the harmonic balance 

technique provided in fREEDA does not use the Krylov-subspace method and results would be 

different otherwise. 
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Chapter 5 

Conclusion

5.1 Conclusion

A rigorous  extension of  the multiple  port  reflection technique [3] for  HB formulated 

using  state  variables  for  nonlinear  circuit  simulations  is  presented  for  the  first  time.  The 

simulation technique does not  require the use of a preconditioner  or a specific initial  guess. 

During the solution process only a small matrix decomposition is required for each port iteration. 

This has a considerable impact on reducing the amount of memory required during computation 

when compared to Newton-based HB techniques. To improve convergence the use of power 

waves in conjunction with parallel connected capacitors, minimum polynomial extrapolation and 

gradient descent methods has also been examined for the first time.

The use of power waves alone worked well for simple circuits however issues arose when 

attempting to solve relatively complex circuits. The addition of parallel capacitors connected to 

the  nonlinear  device  ports  to  create  a  pseudo  transient  approach  shows  convergence 

improvements, typically at the cost of increased solution execution time. A tolerance stepping 

method was implemented which had a positive improvement on the time required to reach the 

solution. 

The use of power waves in combination with minimum polynomial extrapolation showed 

no  improvement  over  the  regular  wave  HB  technique. However  implementation  issues  are 

suspected in the calculation of the extrapolation process resulting in unfavorable outcomes. The 
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problem  with  extrapolation  is  suspected  to  be  related  to  the  MTL and  the  LAPACK  LU 

decomposition calculations.  The values returned from the matrix  decomposition indicate  that 

there is a problem factoring the matrix. Further investigation is required of this calculation before 

extrapolation can be considered not to help with the solution execution time. The use of transient 

analysis  simulation  using  power  wave  relaxation  techniques  based  on  state  variables  shows 

promising results when performing extrapolation [27]. It is believed that the use of extrapolation 

combined with the wave HB approach could improve the overall  solution time and produce 

performance  results  better  than  the Newton-based HB approach used  for  comparison in  this 

work.

A gradient descent technique was also tested with the use of power waves. The method 

showed minor improvement in the convergence rate once relatively close to solution, however 

causes problems if activated early. 

The use of wave HB as a type of preconditioner for Newton-based HB shows promise 

when  simulating  relatively  large  nonlinear  circuits.  Overall  the  wave  HB  approach  shows 

promise  in  some areas  and  introduces  problems  in  others.  There  is  still  a  large  amount  of 

investigation required to make this approach a viable alternative to the existing harmonic balance 

techniques. The code written to test  this approach still  suffers from inefficiencies both in its 

structure and the selected support libraries. The MTL presented many issues when dealing with 

complex number operations.

5.2 Future Research

There are  many areas  that  still  require  investigating.  For  example a  simulation using 
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'pseudo transient'  has three separate iterations loops occurring.  Those being at  the individual 

nonlinear port using Newton's method, iterations of waves between the linear and nonlinear ports 

(3.23) and the pseudo transient time steps. The maximum number of nonlinear port iterations and 

the value of the parallel conductance are adjustable. Finding a correlation between the circuit 

being simulated and the most efficient combination could benefit the solution process. 

For the Newton iterations the scaling factor is fixed in all presented simulations, changing 

this number has an effect on convergence and speed. Finding an optimal setting for this value for 

each  simulation  could  lead  to  a  more  general  performance  improvement.  The  effect  of  the 

selected  transmission  line  characteristic  impedance  also  effects  solution  convergence  and  it 

varies circuit to circuit. Finding a relationship between the circuit and this impedance could also 

improve the solution convergence.

The simulations presented are mostly made up of diode circuits with the exception of the 

MESFET amplifier. The use of fREEDA helped with the implementation however there is not a 

great selection of device models within the included library.  This limited the number of test 

circuits available. The development of new device models would lead to a greater variety of test 

circuits therefore could further test the worthiness of this approach. The complexities attributed 

to  supporting  circuits  containing  nonlinear  devices  with varying  number  of  ports  makes  the 

programing quite  difficult  due  to  the  various  sizes  and ordering  of  matrices  and vectors.  A 

problem is suspected with the programming for circuits containing more than one device with 

two or more ports. Due to time constraints this issue was not located and corrected before the 

preparation of this paper and further debugging is required to locate this problem. 

Performance  gains  could  also  come  from  implementing  more  efficient  coding  and 
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replacing the matrix template library with one that is better tested and supports more complex 

number operations. This may also help with the suspected problem when using extrapolation. 

The  wave  algorithm  is  also  setup  in  a  way  that  it  could  possibly  benefit  from  parallel 

programing, making use of modern multi-core and cluster computers. 

The final area of interest is the use of the wave technique as a possible preconditioner for 

other harmonic balance techniques which require an initial guess close to solution before starting 

the simulation to achieve convergence.
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Appendices

Appendix A

Appendix A.1 Simple Diode Circuit Netlist
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*** Wave HB Simple Diode Circuit ***

*Simulation options
*******************************************************
.options freq=1e8

*Simulation Type and setup parameters
*******************************************************
.wavehb n_freqs=15  fundamental=freq tol=1e-8 usecaps=0 n_iter=100  zref=800

*Circuit netlist
*******************************************************
vsource:v1 1 0 f=freq vac=5 phase=-90

resistor:r1 1 2 r=1k

diode:d1 2 0 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10 
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.

*Simulation Output
*******************************************************
.out plot term 2 vf invfft 2 repeat in "simplediodev.whb"
.out plot term 1 vf term 2 vf sub invfft 2 repeat in "simpledioderesv.whb"

.end



Appendix A.2 Full Wave Rectifier Circuit Netlist
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*** Wave HB Full Wave Rectifier ***

*Simulation options
*******************************************************
.options freq=60

*Simulation Type and setup parameters
*******************************************************
.wavehb n_freqs = 25  fundamental = freq tol=1e-7 n_iter = 10 zref = 800 max_iter = 1000 tol_step=1

*Circuit netlist
*******************************************************
vsource:v1 1 3 f=freq vac=10 phase=-90

resistor:rs 1 2 r=5
resistor:rl 4 0 r=10k

diode:d1 2 4 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10 
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.
diode:d2 3 4 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10 
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.
diode:d3 0 2 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10 
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.
diode:d4 0 3 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10 
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10.

*Simulation Output
*******************************************************
.out plot term 4 vf invfft 2 repeat in "recvout.whb"
.out plot term 1 vf term 3 vf sub invfft 2 repeat in "recresv.whb"
.out plot term 4 vf in "recvout.whb_p"
.out plot term 1 vf term 3 vf sub in "recresv.whb_p"

.end



Appendix A.3 Charge Pump Circuit Netlist
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***Wave HB Charge Pump Circuit*** 

*Simulation options
*******************************************************
.options freq=1e6 

*Simulation Type and setup parameters
*******************************************************
.wavehb n_freqs=25  fundamental=freq tol=1e-5 n_iter=200 usecaps=0 zref=50 max_iter=1600 tol_step = 0 

*Circuit netlist
*******************************************************
vsource:v1 0 1 f=freq vac=10 phase=-90 

resistor:rs 1 2 r=1 
resistor:rl 0 7 r=1e6 

diode:d1 0 4 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10 
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10. 
diode:d2 4 5 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10 
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10. 
diode:d3 5 6 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10 
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10. 
diode:d4 6 7 js=5.1e-14 alfa=38.696 jb=1.0e-5 vb=-1.0e50 e=10 
+ CT0=1.32767e-15 gama=0.810205 fi=1.27517 afac=38.696 area=271 r0=10. 

capacitor:c1 2 4 c=1e-5 
capacitor:c2 0 5 c=1e-5 
capacitor:c3 4 6 c=1e-5 
capacitor:c4 5 7 c=1e-5 

*Simulation Output
*******************************************************
.out plot term 7 vf invfft 4 repeat in "chargepumpvout.whb" 
.out plot term 1 vf invfft 2 repeat in "chargepumpvoutvin.whb" 

.end



Appendix A.4 MESFET Amplifier Circuit Netlist
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*** Wave HB MESFET Amplifier Circuit ***

*Simulation options
*******************************************************
.options f0 = 5.1e9 jupdm=4 output=0 nonlin=4

*Simulation Type and setup parameters
*******************************************************
.wavehb n_freqs=20  fundamental=f0 tol=1e-6 n_iter=200 usecaps=0 zref=50 extrap=1 n_extrap=3 extol=0.01 max_iter=100 
tol_step=0

*Circuit netlist
*******************************************************
inductor:l1 1 2 l=1e-9 time_d=0
capacitor:c1 2 3 c=20e-11 time_d=0
inductor:l2 3 7 l=15e-9 time_d=0 
resistor:r2 7 8 r=100
mesfetm:m1 3 4 123 idss = 0.06 vp0 = -1.906 gama = -0.015 e = 1.8 
+ sl = 0.0676 kg = 1.1 t = 7.0e-12 ss = 1.666e-3 ig0 = 7.13e-6 
+ afag = 38.46 r10 = 3.5 kr = 1.111 vbc = 12 ib0 = 7.13e-6 afab = 38.46 
+ c10 = 0.42e-12 k1 = 1.282 cf0 = 0.02e-12 kf = 1.282 
resistor:rs 123 0 r=1.144
inductor:l3 4 5 l=15e-9 time_d=0 
resistor:r3 5 6 r=10
capacitor:cload 4 9 c=20e-12 time_d=0
resistor:rload 9 0 r=50.
vsource:vbias 8 0  vdc = -.4
vsource:vdrain 6 0 vdc = 3.
resistor:rin 11 1 r = 50
vsource:vs 11 0 f = f0 vac = 1.

*Simulation Output
*******************************************************
.out plot term 4 vf term 123 vf sub invfft 4 repeat in "out.vds"
.out plot term 4 vf term 123 vf sub mag in "out.vds.mag"
.out plot element "mesfetm:m1" 1 if invfft 4 repeat in "out.ids"

.end



Appendix A.5 Soliton Line Circuit Netlist

*** Wave HB MESFET Amplifier Circuit ***

*Simulation options
*******************************************************
* Transim file for NLTL with 24.00 GHz initial Bragg frequency,
* 225.00 GHz final Bragg frequency and 0.952097 tapering rule,
* and 120.00 ps total compression.
.options freq=9.GHz nonlin=4 

*Simulation Type and setup parameters
*******************************************************
.wavehb n_freqs=40 fundamental=freq oversample=8 tol=1e-6 zref=50 n_iter=10 tol_step=1 max_iter=1000 usecaps=0

*Circuit netlist
*******************************************************
* For 27dBm input use vac = 14V
vsource:1 201 0 vac = 14. vdc = -6. f = 9e9 phase=90
resistor:rs 201 202 r=50.
* Diode parameters
* From thesis: js=2.24e-12, alfa=21.13
* From Libra netlist: js=51e-15, alfa=default
.model carlos diode ( js=2.24e-12 alfa=21.13 e=10 ct0=1.32767e-15 r0=171.9
+ fi=1.27517 gama=0.810205 jb=1.e-5 vb=-16.)
* Transmission line parameters
.model c_line tlinp4 ( z0mag=75.00 k=7 fscale=1.e10
+ alpha = 59.9 )
* Diodes
diode:d1 101 0 model = "carlos" area=271.64
diode:d2 102 0 model = "carlos" area=258.63
diode:d3 103 0  model = "carlos" area=246.24
diode:d4 104 0  model = "carlos" area=234.45
diode:d5 105 0  model = "carlos" area=223.21
diode:d6 106 0  model = "carlos" area=212.52
diode:d7 107 0  model = "carlos" area=202.34
diode:d8 108 0  model = "carlos" area=192.65
diode:d9 109 0  model = "carlos" area=183.42
diode:d10 110 0  model = "carlos" area=174.63
diode:d11 111 0  model = "carlos" area=166.27
diode:d12 112 0  model = "carlos" area=158.3
diode:d13 113 0  model = "carlos" area=150.72
diode:d14 114 0  model = "carlos" area=143.5
diode:d15 115 0  model = "carlos" area=136.63
diode:d16 116 0  model = "carlos" area=130.08
diode:d17 117 0  model = "carlos" area=123.85
diode:d18 118 0  model = "carlos" area=117.92
diode:d19 119 0  model = "carlos" area=112.27
diode:d20 120 0  model = "carlos" area=106.89
diode:d21 121 0  model = "carlos" area=101.77
diode:d22 122 0  model = "carlos" area=96.89
diode:d23 123 0  model = "carlos" area=92.25
diode:d24 124 0  model = "carlos" area=87.83
diode:d25 125 0  model = "carlos" area=83.63
diode:d26 126 0  model = "carlos" area=79.62
diode:d27 127 0  model = "carlos" area=75.81
diode:d28 128 0  model = "carlos" area=72.18
diode:d29 129 0  model = "carlos" area=68.72
diode:d30 130 0  model = "carlos" area=65.43
diode:d31 131 0  model = "carlos" area=62.29
diode:d32 132 0  model = "carlos" area=59.31
diode:d33 133 0  model = "carlos" area=56.47
diode:d34 134 0  model = "carlos" area=53.76
diode:d35 135 0  model = "carlos" area=51.19
diode:d36 136 0  model = "carlos" area=48.73
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diode:d37 137 0  model = "carlos" area=46.4
diode:d38 138 0  model = "carlos" area=44.18
diode:d39 139 0  model = "carlos" area=42.06
diode:d40 140 0  model = "carlos" area=40.05
diode:d41 141 0  model = "carlos" area=38.13
diode:d42 142 0  model = "carlos" area=36.3
diode:d43 143 0  model = "carlos" area=34.56
diode:d44 144 0  model = "carlos" area=32.91
diode:d45 145 0  model = "carlos" area=31.33
diode:d46 146 0  model = "carlos" area=29.83
diode:d47 147 0  model = "carlos" area=28.4
* Parasitic inductors
inductor:i1  1 101 l=21.8pH
inductor:i2  2 102 l=21.8pH
inductor:i3  3 103 l=21.8pH
inductor:i4  4 104 l=21.8pH
inductor:i5  5 105 l=21.8pH
inductor:i6  6 106 l=21.8pH
inductor:i7  7 107 l=21.8pH
inductor:i8  8 108 l=21.8pH
inductor:i9  9 109 l=21.8pH
inductor:i10 10 110 l=21.8pH
inductor:i11 11 111 l=21.8pH
inductor:i12 12 112 l=21.8pH
inductor:i13 13 113 l=21.8pH
inductor:i14 14 114 l=21.8pH
inductor:i15 15 115 l=21.8pH
inductor:i16 16 116 l=21.8pH
inductor:i17 17 117 l=21.8pH
inductor:i18 18 118 l=21.8pH
inductor:i19 19 119 l=21.8pH
inductor:i20 20 120 l=21.8pH
inductor:i21 21 121 l=21.8pH
inductor:i22 22 122 l=21.8pH
inductor:i23 23 123 l=21.8pH
inductor:i24 24 124 l=21.8pH
inductor:i25 25 125 l=21.8pH
inductor:i26 26 126 l=21.8pH
inductor:i27 27 127 l=21.8pH
inductor:i28 28 128 l=21.8pH
inductor:i29 29 129 l=21.8pH
inductor:i30 30 130 l=21.8pH
inductor:i31 31 131 l=21.8pH
inductor:i32 32 132 l=21.8pH
inductor:i33 33 133 l=21.8pH
inductor:i34 34 134 l=21.8pH
inductor:i35 35 135 l=21.8pH
inductor:i36 36 136 l=21.8pH
inductor:i37 37 137 l=21.8pH
inductor:i38 38 138 l=21.8pH
inductor:i39 39 139 l=21.8pH
inductor:i40 40 140 l=21.8pH
inductor:i41 41 141 l=21.8pH
inductor:i42 42 142 l=21.8pH
inductor:i43 43 143 l=21.8pH
inductor:i44 44 144 l=21.8pH
inductor:i45 45 145 l=21.8pH
inductor:i46 46 146 l=21.8pH
inductor:i47 47 147 l=21.8pH
* Transmission lines
tlinp4:t0 202 0 1 0 model = "c_line" length=501.29u
tlinp4:t1  1 0 2 0  model = "c_line" length=978.57u
tlinp4:t2  2 0 3 0 model = "c_line" length=931.69u
tlinp4:t3  3 0 4 0 model = "c_line" length=887.06u
tlinp4:t4  4 0 5 0  model = "c_line" length=844.57u
tlinp4:t5  5 0 6 0  model = "c_line" length=804.11u
tlinp4:t6  6 0 7 0  model = "c_line" length=765.59u
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tlinp4:t7  7 0 8 0  model = "c_line" length=728.92u
tlinp4:t8  8 0 9 0  model = "c_line" length=694.00u
tlinp4:t9  9 0 10 0 model = "c_line" length=660.75u
tlinp4:t10  10 0 11 0 model = "c_line" length=629.10u
tlinp4:t11  11 0 12 0 model = "c_line" length=598.97u
tlinp4:t12  12 0 13 0 model = "c_line" length=570.27u
tlinp4:t13  13 0 14 0 model = "c_line" length=542.96u
tlinp4:t14  14 0 15 0 model = "c_line" length=516.95u
tlinp4:t15  15 0 16 0 model = "c_line" length=492.18u
tlinp4:t16  16 0 17 0 model = "c_line" length=468.61u
tlinp4:t17  17 0 18 0 model = "c_line" length=446.16u
tlinp4:t18  18 0 19 0 model = "c_line" length=424.79u
tlinp4:t19  19 0 20 0 model = "c_line" length=404.44u
tlinp4:t20  20 0 21 0 model = "c_line" length=385.06u
tlinp4:t21  21 0 22 0 model = "c_line" length=366.62u
tlinp4:t22  22 0 23 0 model = "c_line" length=349.05u
tlinp4:t23  23 0 24 0 model = "c_line" length=332.33u
tlinp4:t24  24 0 25 0 model = "c_line" length=316.41u
tlinp4:t25  25 0 26 0 model = "c_line" length=301.26u
tlinp4:t26  26 0 27 0 model = "c_line" length=286.83u
tlinp4:t27  27 0 28 0 model = "c_line" length=273.09u
tlinp4:t28  28 0 29 0 model = "c_line" length=260.00u
tlinp4:t29  29 0 30 0 model = "c_line" length=247.55u
tlinp4:t30  30 0 31 0 model = "c_line" length=235.69u
tlinp4:t31  31 0 32 0 model = "c_line" length=224.40u
tlinp4:t32  32 0 33 0 model = "c_line" length=213.65u
tlinp4:t33  33 0 34 0 model = "c_line" length=203.42u
tlinp4:t34  34 0 35 0 model = "c_line" length=193.67u
tlinp4:t35  35 0 36 0 model = "c_line" length=184.39u
tlinp4:t36  36 0 37 0 model = "c_line" length=175.56u
tlinp4:t37  37 0 38 0 model = "c_line" length=167.15u
tlinp4:t38  38 0 39 0 model = "c_line" length=159.14u
tlinp4:t39  39 0 40 0 model = "c_line" length=151.52u
tlinp4:t40  40 0 41 0 model = "c_line" length=144.26u
tlinp4:t41  41 0 42 0 model = "c_line" length=137.35u
tlinp4:t42  42 0 43 0 model = "c_line" length=130.77u
tlinp4:t43  43 0 44 0 model = "c_line" length=124.51u
tlinp4:t44  44 0 45 0 model = "c_line" length=118.54u
tlinp4:t45  45 0 46 0 model = "c_line" length=112.86u
tlinp4:t46  46 0 47 0 model = "c_line" length=107.46u
tlinp4:t47  47 0 48 0 model = "c_line" length=52.41u
resistor:rl   48  0  r=50.

*Simulation Output
*******************************************************
.out plot term 48 vf in "vout.complex"
.out plot term 1 vf in "vdiode1.complex" 
.out plot term 47 vf in "vdiode47.complex" 
.out plot term 101 vf invfft 5 repeat in "vdiode1.wave" 
.out plot term 122 vf invfft 5 repeat in "vdiode22.wave" 
.out plot term 147 vf invfft 5 repeat in "vdiode47.wave" 
.out plot term 48 vf invfft 5 repeat in "vout.wave" 
.out plot term 202 vf invfft 5 repeat in "vin.wave"
.out plot element "diode:d1" 0 if invfft 5 repeat in "diode1.current"
.out plot element "diode:d47" 0 if invfft 5 repeat in "diode47.current"

.end
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Appendix A.5 Multiple Soliton Line Circuit Netlist

*** Wave HB MESFET Amplifier Circuit ***

* Transim file for NLTL with 24.00 GHz initial Bragg frequency,
* 225.00 GHz final Bragg frequency and 0.952097 tapering rule,
* and 120.00 ps total compression.

*Simulation options
*******************************************************
.options freq=9.GHz nonlin=4  ftol = 1e-5

*Simulation Type and setup parameters
*******************************************************
.wavehb n_freqs = 40 fundamental = freq oversample= 8 tol=1e-2 usecaps = 1 zref=50 n_iter=10

*Circuit netlist
*******************************************************
* For 27dBm input use vac = 14V
vsource:1 201 0 vac = 14. vdc = -6. f = 9.GHz phase=90 tr=.1e-9
resistor:rs1 201 1 r=50.
vsource:2 202 0 vac = 14. vdc = -6. f = 9.GHz phase=-90 tr=.1e-9
resistor:rs2 202 4 r=50.
xline1 1 2 0 nltline
xline2 4 5 0 nltline
resistor:rl1 2 0 r=100.
resistor:rl2 5 0 r=100.
resistor:rl3 7 0 r=100.
resistor:rp1 2 5 r=80.
resistor:rp2 5 7 r=80.
****************************************************
* Definition of the Non-linear Tr Line model
* Input node = 202
* Output node = 48
* Common node = "GND1" (GND) 
****************************************************
.subckt nltline 202 48 "GND1"
* Diode parameters
* From thesis: js=2.24e-12, alfa=21.13
* From Libra netlist: js=51e-15, alfa=default
.model carlos diode ( js=2.24e-12 alfa=21.13 e=10 ct0=1.32767e-15 r0=171.9
+ fi=1.27517 gama=0.810205 jb=1.e-5 vb=-16. )
* Transmission line parameters
.model c_line tlinp4 ( z0mag=75.00 k=7 fscale=10.e9 alpha = 59.9 
+ nsect = 20 fopt=10e9)
* Diodes
diode:d1 101 "GND1" model = "carlos" area=271.64
diode:d2 102 "GND1" model = "carlos" area=258.63
diode:d3 103 "GND1"  model = "carlos" area=246.24
diode:d4 104 "GND1"  model = "carlos" area=234.45
diode:d5 105 "GND1"  model = "carlos" area=223.21
diode:d6 106 "GND1"  model = "carlos" area=212.52
diode:d7 107 "GND1"  model = "carlos" area=202.34
diode:d8 108 "GND1"  model = "carlos" area=192.65
diode:d9 109 "GND1"  model = "carlos" area=183.42
diode:d10 110 "GND1"  model = "carlos" area=174.63
diode:d11 111 "GND1"  model = "carlos" area=166.27
diode:d12 112 "GND1"  model = "carlos" area=158.3
diode:d13 113 "GND1"  model = "carlos" area=150.72
diode:d14 114 "GND1"  model = "carlos" area=143.5
diode:d15 115 "GND1"  model = "carlos" area=136.63
diode:d16 116 "GND1"  model = "carlos" area=130.08
diode:d17 117 "GND1"  model = "carlos" area=123.85
diode:d18 118 "GND1"  model = "carlos" area=117.92
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diode:d19 119 "GND1"  model = "carlos" area=112.27
diode:d20 120 "GND1"  model = "carlos" area=106.89
diode:d21 121 "GND1"  model = "carlos" area=101.77
diode:d22 122 "GND1"  model = "carlos" area=96.89
diode:d23 123 "GND1"  model = "carlos" area=92.25
diode:d24 124 "GND1"  model = "carlos" area=87.83
diode:d25 125 "GND1"  model = "carlos" area=83.63
diode:d26 126 "GND1"  model = "carlos" area=79.62
diode:d27 127 "GND1"  model = "carlos" area=75.81
diode:d28 128 "GND1"  model = "carlos" area=72.18
diode:d29 129 "GND1"  model = "carlos" area=68.72
diode:d30 130 "GND1"  model = "carlos" area=65.43
diode:d31 131 "GND1"  model = "carlos" area=62.29
diode:d32 132 "GND1"  model = "carlos" area=59.31
diode:d33 133 "GND1"  model = "carlos" area=56.47
diode:d34 134 "GND1"  model = "carlos" area=53.76
diode:d35 135 "GND1"  model = "carlos" area=51.19
diode:d36 136 "GND1"  model = "carlos" area=48.73
diode:d37 137 "GND1"  model = "carlos" area=46.4
diode:d38 138 "GND1"  model = "carlos" area=44.18
diode:d39 139 "GND1"  model = "carlos" area=42.06
diode:d40 140 "GND1"  model = "carlos" area=40.05
diode:d41 141 "GND1"  model = "carlos" area=38.13
diode:d42 142 "GND1"  model = "carlos" area=36.3
diode:d43 143 "GND1"  model = "carlos" area=34.56
diode:d44 144 "GND1"  model = "carlos" area=32.91
diode:d45 145 "GND1"  model = "carlos" area=31.33
diode:d46 146 "GND1"  model = "carlos" area=29.83
diode:d47 147 "GND1"  model = "carlos" area=28.4
* Parasitic inductors
inductor:i1  1 101 l=21.8pH
inductor:i2  2 102 l=21.8pH
inductor:i3  3 103 l=21.8pH
inductor:i4  4 104 l=21.8pH
inductor:i5  5 105 l=21.8pH
inductor:i6  6 106 l=21.8pH
inductor:i7  7 107 l=21.8pH
inductor:i8  8 108 l=21.8pH
inductor:i9  9 109 l=21.8pH
inductor:i10 10 110 l=21.8pH
inductor:i11 11 111 l=21.8pH
inductor:i12 12 112 l=21.8pH
inductor:i13 13 113 l=21.8pH
inductor:i14 14 114 l=21.8pH
inductor:i15 15 115 l=21.8pH
inductor:i16 16 116 l=21.8pH
inductor:i17 17 117 l=21.8pH
inductor:i18 18 118 l=21.8pH
inductor:i19 19 119 l=21.8pH
inductor:i20 20 120 l=21.8pH
inductor:i21 21 121 l=21.8pH
inductor:i22 22 122 l=21.8pH
inductor:i23 23 123 l=21.8pH
inductor:i24 24 124 l=21.8pH
inductor:i25 25 125 l=21.8pH
inductor:i26 26 126 l=21.8pH
inductor:i27 27 127 l=21.8pH
inductor:i28 28 128 l=21.8pH
inductor:i29 29 129 l=21.8pH
inductor:i30 30 130 l=21.8pH
inductor:i31 31 131 l=21.8pH
inductor:i32 32 132 l=21.8pH
inductor:i33 33 133 l=21.8pH
inductor:i34 34 134 l=21.8pH
inductor:i35 35 135 l=21.8pH
inductor:i36 36 136 l=21.8pH
inductor:i37 37 137 l=21.8pH
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inductor:i38 38 138 l=21.8pH
inductor:i39 39 139 l=21.8pH
inductor:i40 40 140 l=21.8pH
inductor:i41 41 141 l=21.8pH
inductor:i42 42 142 l=21.8pH
inductor:i43 43 143 l=21.8pH
inductor:i44 44 144 l=21.8pH
inductor:i45 45 145 l=21.8pH
inductor:i46 46 146 l=21.8pH
inductor:i47 47 147 l=21.8pH
* Transmission lines
tlinp4:t0 202 "GND1" 1 "GND1" model = "c_line" length=501.29u
tlinp4:t1  1 "GND1" 2 "GND1"  model = "c_line" length=978.57u
tlinp4:t2  2 "GND1" 3 "GND1" model = "c_line" length=931.69u
tlinp4:t3  3 "GND1" 4 "GND1" model = "c_line" length=887.06u
tlinp4:t4  4 "GND1" 5 "GND1"  model = "c_line" length=844.57u
tlinp4:t5  5 "GND1" 6 "GND1"  model = "c_line" length=804.11u
tlinp4:t6  6 "GND1" 7 "GND1"  model = "c_line" length=765.59u
tlinp4:t7  7 "GND1" 8 "GND1"  model = "c_line" length=728.92u
tlinp4:t8  8 "GND1" 9 "GND1"  model = "c_line" length=694.00u
tlinp4:t9  9 "GND1" 10 "GND1" model = "c_line" length=660.75u
tlinp4:t10  10 "GND1" 11 "GND1" model = "c_line" length=629.10u
tlinp4:t11  11 "GND1" 12 "GND1" model = "c_line" length=598.97u
tlinp4:t12  12 "GND1" 13 "GND1" model = "c_line" length=570.27u
tlinp4:t13  13 "GND1" 14 "GND1" model = "c_line" length=542.96u
tlinp4:t14  14 "GND1" 15 "GND1" model = "c_line" length=516.95u
tlinp4:t15  15 "GND1" 16 "GND1" model = "c_line" length=492.18u
tlinp4:t16  16 "GND1" 17 "GND1" model = "c_line" length=468.61u
tlinp4:t17  17 "GND1" 18 "GND1" model = "c_line" length=446.16u
tlinp4:t18  18 "GND1" 19 "GND1" model = "c_line" length=424.79u
tlinp4:t19  19 "GND1" 20 "GND1" model = "c_line" length=404.44u
tlinp4:t20  20 "GND1" 21 "GND1" model = "c_line" length=385.06u
tlinp4:t21  21 "GND1" 22 "GND1" model = "c_line" length=366.62u
tlinp4:t22  22 "GND1" 23 "GND1" model = "c_line" length=349.05u
tlinp4:t23  23 "GND1" 24 "GND1" model = "c_line" length=332.33u
tlinp4:t24  24 "GND1" 25 "GND1" model = "c_line" length=316.41u
tlinp4:t25  25 "GND1" 26 "GND1" model = "c_line" length=301.26u
tlinp4:t26  26 "GND1" 27 "GND1" model = "c_line" length=286.83u
tlinp4:t27  27 "GND1" 28 "GND1" model = "c_line" length=273.09u
tlinp4:t28  28 "GND1" 29 "GND1" model = "c_line" length=260.00u
tlinp4:t29  29 "GND1" 30 "GND1" model = "c_line" length=247.55u
tlinp4:t30  30 "GND1" 31 "GND1" model = "c_line" length=235.69u
tlinp4:t31  31 "GND1" 32 "GND1" model = "c_line" length=224.40u
tlinp4:t32  32 "GND1" 33 "GND1" model = "c_line" length=213.65u
tlinp4:t33  33 "GND1" 34 "GND1" model = "c_line" length=203.42u
tlinp4:t34  34 "GND1" 35 "GND1" model = "c_line" length=193.67u
tlinp4:t35  35 "GND1" 36 "GND1" model = "c_line" length=184.39u
tlinp4:t36  36 "GND1" 37 "GND1" model = "c_line" length=175.56u
tlinp4:t37  37 "GND1" 38 "GND1" model = "c_line" length=167.15u
tlinp4:t38  38 "GND1" 39 "GND1" model = "c_line" length=159.14u
tlinp4:t39  39 "GND1" 40 "GND1" model = "c_line" length=151.52u
tlinp4:t40  40 "GND1" 41 "GND1" model = "c_line" length=144.26u
tlinp4:t41  41 "GND1" 42 "GND1" model = "c_line" length=137.35u
tlinp4:t42  42 "GND1" 43 "GND1" model = "c_line" length=130.77u
tlinp4:t43  43 "GND1" 44 "GND1" model = "c_line" length=124.51u
tlinp4:t44  44 "GND1" 45 "GND1" model = "c_line" length=118.54u
tlinp4:t45  45 "GND1" 46 "GND1" model = "c_line" length=112.86u
tlinp4:t46  46 "GND1" 47 "GND1" model = "c_line" length=107.46u
tlinp4:t47  47 "GND1" 48 "GND1" model = "c_line" length=52.41u
.ends
*****************************************************
*Simulation Output
*******************************************************
.out plot term 2 vf invfft 5 repeat in "vdiode22.wave" 
.out plot term 2 vf invfft 5 repeat in "vdiode47.wave" 

.end
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Appendix B

Appendix B.1 Extrapolation Results of Simple Diode Circuit 

To try and improve the convergence performance further the use of extrapolation is tested 

on both the reflected wave and the port voltage while using capacitors.
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Table B.1 Simple Diode Extrapolation Setup 

Diode Diode
Number Harmonics 15 15
Solution Tolerance 1.00E-008 1.00E-008
Tolerance Stepping
Max Port Iterations 100 100
Zref 800 800
Update Scaling Factor 0.3 0.3
Max NL Iterations 1000 1000
Use Caps 1 0
Conductance Value 1/250 NA
Max Cap Iterations 1000 NA
Iterative time 0 NA
Use Extrapolation 0 1
Extrapolation Start Point NA 1.00E-001
Number of Extrapolation Samples NA 3
Use Cap Extrapolation 1 NA
Cap Extrapolation Start Point 1.00E-005 NA
Number of Cap Extrapolation Samples 3 NA

Fig. B.1 Extrapolation on Reflected Wave
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The residual of the error after performing an extrapolation increases dramatically and 

then slowly decreases until another extrapolation is performed. The simulation was stopped by 

the maximum number of iterations threshold defined in the simulation setup. The trend appears 

to be converging to solution when the iteration threshold is hit.

Appendix B.2 Extrapolation Results of Full Wave Rectifier Circuit 
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Fig. B.2 Capacitor Extrapolation
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Table B.2 Full Wave Rectifier Extrapolation Setup

Rectifier Rectifier
Number Harmonics 25 25
Solution Tolerance 1.00E-007 1.00E-007
Tolerance Stepping 0 0
Max Port Iterations 200 200
Zref 800 800
Update Scaling Factor 0.3 0.3
Max NL Iterations 1000 1000
Use Caps 1 0
Conductance Value 1/250 NA
Max Cap Iterations 300 NA
Iterative time 0 NA
Use Extrapolation 0 1
Extrapolation Start Point NA 1.00E-003
Number of Extrapolation Samples NA 5
Use Cap Extrapolation 1 NA
Cap Extrapolation Start Point 1.00E-005 NA
Number of Cap Extrapolation Samples 15 NA



Appendix B.3 Extrapolation Results of Charge Pump Circuit
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Fig. B.3 Capacitor and Reflected Wave Extrapolation
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Table B.3 Charge Pump Extrapolation Setup

Charge Pump
Number Harmonics 25
Solution Tolerance 1.00E-005
Tolerance Stepping 1
Max Port Iterations 200
Zref 50
Update Scaling Factor 0.3
Max NL Iterations 1600
Use Caps 0
Conductance Value NA
Max Cap Iterations NA
Iterative time NA
Use Extrapolation 1
Extrapolation Start Point 1.00E-002



Appendix B.4 Extrapolation Results of MESFET Amplifier Circuit
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Fig. B.5 Extrapolation on Reflected Wave 
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Fig. B.4 Extrapolation on Reflected Wave 
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Table B.4 MESFET Amplifier Extrapolation Setup

MESFET
Number Harmonics 25
Solution Tolerance 1.00E-006
Tolerance Stepping 0
Max Port Iterations 200
Zref 50
Update Scaling Factor 0.3
Max NL Iterations 100
Use Extrapolation 1
Extrapolation Start Point 5.00E-001
Number of Extrapolation Samples 3
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