ESTIMATING TANAGER DENSITIES IN CHAKRA AGROFORESTS IN RELATION TO PLANT SPECIES DIVERSITY AND AREA OF CHAKRA

by

Rebecca Sitar

FACULTY OF NATURAL RESOURCES MANAGEMENT LAKEHEAD UNIVERSITY THUNDER BAY, ONTARIO

April, 2019

ESTIMATING TANAGER DENSITIES IN CHAKRA AGROFORESTS IN RELATION TO PLANT SPECIES DIVERSITY AND AREA OF CHAKRA

by

Rebecca Sitar

An Undergraduate Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Honours Bachelor of Environmental Management

Faculty of Natural Resource Management

Lakehead University

April, 2019

Major Advisor

Second Reader

LIBRARY RIGHTS STATEMENT

In presenting this thesis in partial fulfillment of the requirements for the HBEM degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection.

This thesis is made available by my authority solely for the purpose of private study and research and may not be coped or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority.

Signature: _____

Date: _____April 25, 2019_____

A CAUTION TO THE READER

This HBEM thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for advancing the practice of professional and scientific environmental management.

The reader should be aware that opinions and conclusions expressed in this document are those of the student and do not necessarily reflect the opinions of the thesis supervisor, the faculty or Lakehead University.

ABSTRACT

Chakra agroforests in the community of Verde Sumaco, Ecuador were surveyed to estimate tanager densities. Distance sampling using transects was the methodology used to record presence of tanager species. Using the data collected, tanager counts were entered into a program called Distance and tanager density was calculated for each individual chakra. The results from this study showed that chakras are suitable habitat for tanagers and provide ample resources required by each species.

TABLE OF CONTENTS

ABSTRACT	V
TABLES	vii
FIGURES	viii
ACKNOWLEDGEMENTS	ix
INTRODUCTION	1
LITERATURE REVIEW	2
MATERIALS AND METHODS	6
RESULTS	8
DISCUSSION	15
CONCLUSION	18
LITERATURE CITED	19
APPENDICES	22
APPENDIX I	23
APPENDIX II	25

TABLES

Table		Page
1.	Field Data Sheet	8
2.	Chakra One Data	9
3.	Tanager Species List	11
4.	Tanager Densities	12
5.	Plant Species Important to Tanagers	14
6.	Foraging Diets of Tanager Species	15

FIGURES

Figure		Page
1.	Orellana Province	6
2.	Chakra Sites	7
3.	Graph of Tanager Density vs. Area	12
4.	Graph of Tanager Density vs. Plant Species Richness	13

ACKNOWLEDGEMENTS

I would like to thank Dr. Brian McLaren for giving me to opportunity to travel to Ecuador alongside him to study Tanager densities in chakra agroforests. I thank Dr. Ulf Runesson and Dr. Brian McLaren for helping with the costs of travel while in Ecuador. I would like to thank the community of Verde Sumaco, Ecuador for welcoming us and for providing incredible hospitality. I thank community members Carlos and Xavier for guiding us and assisting in our research, and all of the families that allowed us to record data on their chakras. I would like to thank Espoch students Jairo and Ruth for assisting in the identification and data collection of plant species found within the chakras. I thank Lucas for his extensive knowledge and bird identification skills, along with assisting me in recording tanager sightings. Finally, I would like to give an immense thank you to Dr. Don Henne for being my primary advisor and for overseeing my final thesis product.

Top Row: Ruth Cushicagua, Lucas Short, Brian McLaren, Rebecca Sitar, Xavier Shiguango Bottom Row: Brenden Voysey, Carlos Grefa, Jairo Calapucha

INTRODUCTION AND OBJECTIVES

Lowland tropical forests provide the most species rich habitats of all terrestrial ecosystems (Turner, 1996). Natural and anthropogenic disturbances and processes in tropical forests greatly impact species biodiversity and population densities. The Ecuadorian Amazonian Region (EAR) is subject to robust pressures that have stimulated the radical transformation of its ecosystems (Hecht, 1985). Forest types, such as primary, secondary and agricultural forests, can influence the area that a species inhabits due to specific habitat requirements and abundance of resources. These forest types can influence a population's density and can be either beneficial or detrimental to the existing inhabitants or a particular species. Indigenous systems of agriculture are based on agroforestry farms, known as chakras, which have biological and social relevance to the surrounding ecosystem (Coq-Huelva et al., 2017). This is important because in Ecuador, approximately 90% of deforested areas have been converted into agricultural areas for crop production over the past two decades (Sierra, 2013).

In many bird species, it has been shown that some bird communities occupy specific habitats and disregard others (Cody, 1974). Individual birds select an area to establish their territory based on specific habitat requirements and characteristics including; food availability, location to resources, and suitable nesting habitat to avoid predators (Klopfer and Hailman, 1965).

Population estimates are a fundamental aspect of applied ecology (Newson et al., 2008). These estimates are crucial in determining rarity of species that may need to be listed as a conservation concern, or species that may be at risk of extinction (IUCN, 2004). The most effective technique for estimating bird abundance is through distance

1

sampling, a method that uses a transect to count birds detected by sound or by sight (Buckland et al., 2001). The following factors must be taken into account when using this method; the targeted species may be easily detected in one habitat and difficult in another, some birds can be detected at further distances than others, and that time of day has an influence on detectability (Gottschalk and Huettmann, 2010).

This study was conducted in tropical forested areas located in Verde Sumaco, Ecuador. The focal bird species of interest in this study were tanager species, particularly those residing in chakra agroforests. Eleven different chakra agroforests were visited and sampled to collect tanager species counts in order to determine the overall tanager density in each chakra. The aim of this study was to examine the effects chakra agroforests have on tanager species densities, and to determine whether chakras are beneficial or detrimental to tanager densities. Distance sampling using transects was conducted to obtain tanager counts and densities. Within the study areas forest edges including; rivers, roads and the community were observed and related to tanager densities. Through sampling and observations in the study areas, chakras will be shown to be beneficial habitats for tanager densities.

LITERATURE REVIEW

TANAGERS

The tanager family, *Thraupidae*, is a diverse group consisting of primarily Neotropical birds with variations in morphology, feeding behaviours, habitats and plumage patterns (Burns, 1997). There are approximately 242 species in this family, primarily located in South, Central and North America, as well as on Caribbean islands

2

(Storer, 1970; Burns 1997). Tanagers represent approximately 10% of Neotropical bird species and are one of the most prominent families throughout the Neotropics (Sedano and Burns, 2010).

In the family Thraupidae, approximately one third species belong to the 'core tanager' clade (Burns and Naoki, 2004). This clade is represented by two genera; *Thraupis* and *Tangara*. The *Tangara* genus is characterized by a variety of brightly coloured species with many tanagers displaying nondescript cryptic plumage, and approximately half of the species are sexually dimorphic (Burns, 1997). The core tanagers occupy habitat elevations ranging from sea level to high up in the tree canopy (Sedano and Burns, 2010).

Although many tanager species are frugivores, some species are primarily nectarfeeders or insectivores. Many tanager species have a more generalized diet and do not feed exclusively on one food source (Burns, 1997). Tanagers specific diets will determine the areas in which they inhabit.

CHAKRA AGROFORESTS

Agroforestry is a dynamic, ecologically-based, system that diversifies and sustains production for amplified economic, social and environmental benefits for land users (Mead, 2004). Agroforestry is practiced widely throughout the world and practices differ across geographical regions. A chakra is an indigenous agroforestry system practiced in the western portion of the Amazon that fulfils medicinal, nutritional, and spiritual requirements for indigenous populations (Whitten and Whitten, 2008). Chakras are maintained and managed by local members of the community and provide food and building materials to families. Chakras have traditionally functioned as modified forests, resembling primary and secondary forests, and have fewer detrimental effects to the ecosystem as opposed to farming (Krause and Ness, 2017). The traditional use of chakras is primarily for producing resources for indigenous communities in the Amazon. The newly formed ecosystem chakras create can be beneficial habitat for wildlife species.

Many indigenous communities in Ecuador have recognized land titles and each community member is assigned an area they can use for crops (Krause and Ness, 2017). Specifically in the community of Verde Sumaco, Aboriginal communities recognize indigenous rights to the land. Voted by an assembly of members from the Quechua peoples of Verde Sumaco, chakras are distributed to local families. The families are able to freely use the land given to them to plant and harvest desired crops, but do not legally own the land. Each chakra is registered under the ministry of Agriculture and Fisheries.

Chakras have both biological and social features that must be understood collectively, and are characterised by interactions between environmental and socioeconomic variables (Coq-Huelva et al., 2017; Herrmann and Torri, 2009). The concept of co-evolution is used to describe this biological and social interaction. Co-evolution concentrates on the limits of "pristine natural" evolution and social processes, asserting that transformations in the environment cannot be understood in the absence of social interactions (Coq-Huelva et al., 2017). This approach is similar to the views of indigenous Amazonian communities. Indigenous communities' values mimic the co-evolution approach because it includes people, fauna, flora, ecosystems, and the spiritual aspects and interactions throughout the community (Coq-Huelva et al., 2017).

4

SAMPLING BIRD POPULATIONS

Estimates of bird population sizes or densities are widely used in bird conservation, and these counts are used to infer change over time in abundance or a difference between habitats (Buckland et al., 2008). When estimating bird abundance there can be inaccuracy associated with sampling methods. Two common causes of inaccuracy are: first, the proportion of birds present and recorded in the survey areas vary in accordance to time and place, and the second is that areas selected for surveying are often not representative of the entire area for which conclusions are made (Buckland et al., 2008).

Buckland et al. (2008) suggest three solutions to these causes of inaccuracy to aid in more efficient sampling. The first consideration when designing fieldwork is to ensure that all individuals within the study area can be assumed detectable. Another solution is to design the survey and the field procedures in order for detectability to be constant across units of space and time (Buckland et al., 2008). The third strategy is estimating detectability so abundance can be estimated without having a complete numbers of individuals on the sample plots.

Multiple sampling techniques have been developed to estimate the abundance/density of wildlife populations. Distance sampling is a method used as an extension of plot sampling, where birds are counted within a sample of the defined area (Buckland et al., 2008). As a result, this method allows for the possibility that some members of the population present in the plot remain undetected. Distance sampling plots can be either long narrow strips, line transect sampling or circular plots, point transect sampling (Buckland et al., 2008).

MATERIALS AND METHODS

This study was conducted in tropical forested areas of Verde Sumaco, Ecuador (Figure 1). With the permission of community members, eleven chakras were sampled to obtain tanager counts (Figure 2). The chakras were accessible by pathways within the community, and by canoes for further sites. Sites where sampled during one of two time frames, 6:30-10:00 am or 16:00-19:00 pm.

Figure 1. Google Earth image displaying Orellana province, Ecuador, and the study areas indicated by magenta points.

Figure 2. Google Earth image displaying the eleven chakras visited in the community of Verde Sumaco.

At each site, transects were walked in order to observe and count tanagers. The number of transects walked was determine by the size and accessibility of the chakra, and the lengths of each transect was recorded using a GPS unit. The perimeter of each site was also mapped using a GPS to later calculate chakra area in hectares. At each site the following was recorded; UTM coordinates, habitat, observer, weather conditions, date, time, a rough estimate of the percent tree cover, and the time of day (Table 1). As each transect was walked tanager species that were spotted were identified using binoculars, through photos taken, and field guides for neotropical birds in the region. The number of birds of each species was recorded immediately after identification and their behaviours were noted. A perpendicular distance from the transect line to the tree in which the tanager was occupying was taken using a clinometer.

		Tanager Density Sheet					
UTM:						Date:	
Habitat:			Weather:			Time:	
						% Tree Cover:	
Site ID	Transect ID	T. Length (m)	Species	Distance	Number	Time of Day	Behaviour

Table 1. Field data sheet used to record tanager abundance.

Plant species found at each site were also identified and recorded to examine the significance of plant species important to tanagers. Using a density program called Distance, the number of tanagers seen in each site was entered along with the area of the chakra to determine the overall tanager density for each site. The Distance program was obtained from a distance sampling site and was downloaded and installed to complete the data analysis.

RESULTS

Table 2 below contains the raw data collected in the field for chakra site 1. The data for chakra sites 2-11 can be found in Appendix II. The sites that were sampled in the morning displayed more bird activity than those sampled during the evening period.

In general, chakras that were larger in area tended to have greater tanager densities (Figure 3). The sites that contained a higher plant species richness, particularly those containing multiple fruiting plants, had higher tanager densities (Figure 4). Another factor that contributed to tanager abundance was if predatory bird species were present in the chakra during the sampling times.

I able 2	2. Bird and	plant spec	les dala		liected in c	nakra	one.		
UTM: S0° 22.852' W77° 15.010'				Date: December 18 2018					
Habitat: Chakra Agroforest				Time: 6:43 – 8:00					
Owne	er: SERGIC	SHIGUA	NGO		% Tree Cover: ~10%				
Weat	her: Overca	ast							
Site	Transect	Т.	Specie	es	Distance	(#)	Time of	Beh	aviour
ID	ID	Length	-		(m)	, í	Day		
		(m)							
CH1	T1	16.83				0	Morning		
1	T2	20.80				0			
	T3	25.50	SBTA	4	45	1		for	aging
	T4	14.30	PATA	A	22	3			aging
↓	T5	19.57	BAN	A	0	1	★		lying
									5 0
		PLANT	SPECI	ES	PRESENT	ΓΙΝ	L CHAKRA		
Nu	ımber	Scienti			ommon		equency		tance To
		name			Name			-	nager
								Yes	No
								105	110
	1	Oenocar	nus		Patawa		++	Х	
	-	batau			alm tree			~*	
		Saiah	•	чv	spp.)				
	2	Iriarte	a		Pambil	++	+++++	Х	
	-	deltoid			alm tree			* *	
				ч	spp.)				
	3	Grias	,	р	iton tree		+		X
	5	neubert		1			-		Λ
	4	Sacchar		Sı	ugarcane	<u>++</u>			X
	7	officinar		51	agareane				Λ
		ojjičinar	um						

Table 2. Bird and plant species data collected in chakra one.

5	Manihot	Yuca	(+)		Х
	esculenta				
6	Ananas	Pineapple	+		Х
	comosus				
7	Zea mays	Corn	+	Х	
8	Solanum	Naranjilla	+		Х
	quitoense				
9	Musa	Plantain	++	X	
	sapientum				
10	Phytelephas	Equadorian	+	X	
	aequatorialis	ivory palm			
11	Crescentia	Calabash	+		Х
	cujete	Tree			
12	Guarea	Cocora	+	Х	
	kunthiana				
13	Bactris	Peach palm	+	Х	
	gasipaes				

"Table 2. (continued)."

Table 3 contains an overall list of tanager species seen throughout the community of Verde Sumaco and identifies the species seen in the chakras. It was observed that most tanager species seen throughout the community were also observed in the chakra agroforests.

TANA	TANAGER SPECIES LIST FOR VERDE SUMACO				
Common Name	Scientific Name	Species Code	Seen in Chakra		
			(*)		
Palm tanager	Thraupis palmarum	PALM	*		
Silver-beaked	Ramphocelus carbo	SBTA	*		
tanager					
Bananaquit tanager	Oereba flaveola	BANA	*		
Blue-gray tanager	Thraupis episcopus	BGTA	*		
Masked Crimson	Ramphocelus	CMTA			
tanager	nigrogularis				
Masked tanager	Tangara	MATA			
	nigrocincta				
Paradise tanager	Tangara chilensis	PATA	*		
Swallow tailed	Tersina viridis	STTA	*		
tanager					
Fulvous shrike	Lanio fulvus	FSTA	*		
tanager					
Flame-crested	Tachyphonus	FCTA	*		
tanager	cristatus				
White-shouldered	Tachyphonus	WSTA			
tanager	luctuosus				
Purple	Cyanerpes	PUHO	*		
honeycreeper	caeruleus				
Magpie tanager	Cissopis leverianus	MAGP	*		
Turquoise tanager	Eriocnemis godini	TUTA			

Table 3. List of tanager species identified in Verde Sumaco.

Using a program called Distance, tanager densities for each individual chakra was calculated. Table 4 below displays the calculated densities and corresponding site chakra areas in hectares.

TANAGER DENSITIES					
Chakra	Density	Area (ha)			
CH1	9.358	0.067			
CH2	0	0.929			
CH3	1.015	1.126			
CH4	1.655	1.298			
CH5	4.064	1.497			
CH6	0	1.042			
CH7	0	0.666			
CH8	0	0.785			
CH9	0	1.105			
CH10	4.343	0.094			
CH11	11.368	0.955			

Table 4. Tanager densities calculated using the Distance program.

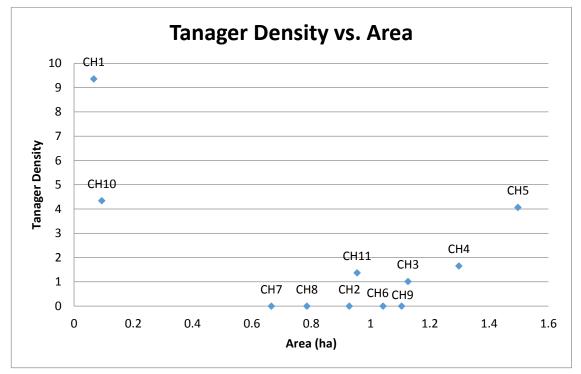


Figure 3. Graph displaying tanager densities in relation to the area of the chakra.

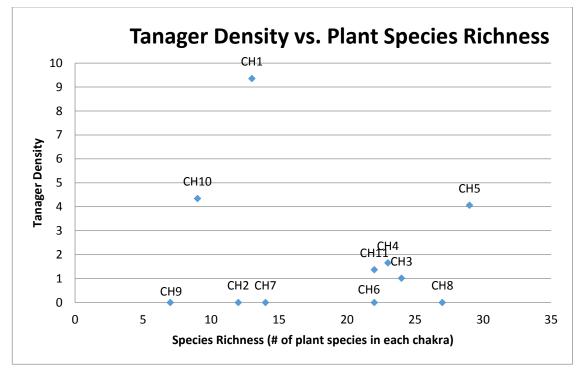


Figure 4. Graph displaying tanager densities in relation to plant species richness.

Accumulated from the raw field data, Table 5 summarizes the plant species that are important to tanagers foraging habitat and habitat. The majority of the significant plant species were either fruiting vegetation or palm tree species.

	RTANT TO TANAGERS
Scientific Name	Common Name
Oenocarpus bataua	Patawa (palm tree spp.)
Iriartea deltoidea	Pambil (palm tree spp.)
Zea mays	Corn
Musa sapientum	Plantain
Phytelephas aequatorialis	Equadorian ivory palm
Guarea kunthiana	Cocora
Bactris gasipaes	Peach palm
Pouteria caimito	Abiu
Mauritia flexuosa	Moriche palm
Inga edulis	Ice-cream-bean
Carica papaya	Papaya
Inga densiflora	Guaba machetona
Pourouma cecropiifolia	Amazon tree-grape
Ceroxylon echinulatum	Palm spp.
Carludovica palmata	Panama hat plant
Musa acuminata	Banana spp.
Annona cherimilia	Cherimoya
Persea americana	Avocado
Inga sp.	Guabilla
Psidium guajava	Common guava
Pourouma cecropiifolia	Amazon tree-grape
Annona squamosa	Sugar apple
Artocarpus altilis	Breadfruit

Table 5. Chakra plant species important to tanager species.

In the data obtained, it was also seen that tanager species that consumed a higher percentage of fruit in their diet were more frequently identified in the chakras than those with diets consisting mainly of insects (Table 6).

Species Common Name	Species Code	Diet
Palm tanager	PALM	-equal parts fruits and
		arthropods
Silver-beaked tanager	SBTA	- Diverse diet of fruits,
		arthropods and nectar
Bananaquit	BANA	-small insects and spiders
		- fruits and nectar
Blue-grey tanager	BGTA	- mainly fruits and
		arthropods
Paradise tanager	PATA	- fruits are arthropods
		- fruits foraged on more
		commonly
Swallow-tailed tanager	STTA	- fruits and insects,
		dependant on the season
Fulvous-shrike tanager	FSTA	- primarily insectivorous
		- feed on some fruit
Flame-crested tanager	FCTA	- mainly terrestrial
		invertebrates
		- forage on fruits when
		descending lower into the
		canopy
Purple honeycreeper	PUHO	- arthropods and spiders
		- regularly eating small
		fruits and nectar
Magpie tanager	MAGP	- primarily foraging on
		arthropods and fruit

Table 6. Foraging diets of tanager species found in chakras.

Source: The Cornell Lab of Ornithology Neotropical Birds

DISCUSSION

Based on the research conducted in this study, it was found that the chakra agroforests located in the community of Verde Sumaco Ecuador provided beneficial habitat and resources to the tanager populations in the area. Many of the chakras contained fruiting crops on which tanagers forage. The plant species planted in the chakras also provide ample habitat for arthropod species that are also important to tanager diets. A general trend seen in Figure 4 was that as plant species richness increases, the abundance of tanagers also increases in many cases. The chakras that contained fewer fruiting crops and/or having more crops used for building materials displayed less tanager activity. The tanager species that consume greater amounts of fruit in their diet were seen more often than the species that consumed more insects than fruit. For example, the palm tanager (10 individuals counted) and the silver-beaked tanager (16 individuals counted) have high fruit consumption in their diets, whereas the flame-crested tanager (1 individual counted) and the purple honeycreeper (1 individual counted) are mainly insectivorous.

Chakras were sampled at one of two periods during the day, the morning period (6:30-10:00) or during the evening period (16:00-19:00). Generally, the chakras sampled during the morning periods displayed more bird activity than those in the evening. Weather also had an effect on our bird counts. The tanagers were more active immediately after rain and in cooler temperatures. When the weather was very warm or when we sampled during a rain, a significant decrease in bird activity was seen.

Although chakras provided a suitable environment for tanager species to forage and inhabit, other frugivorous species and predatory birds also utilized the chakras (see Appendix I). When a predatory bird was present in the chakra, we did not record any sightings of tanagers. When the bird of prey left the site, we started to record tanagers on the site. Other frugivors seen in chakra sites did not affect the presence of tanager species. Although the presence of predatory birds resulted in an absence of tanagers, the chakras

16

proved to be a beneficial area for tanager feeding behaviours, social interactions and nesting habitat.

Each chakra sample was unique in species composition, location and in size. Chakras 3-5 and 11 were larger (ha) and a higher tanager density was correlated with this (Figure 3). For the remaining chakras, the size of the study area had no correlation with the amount of birds observed. Chakras that had a larger area often had a higher plant species diversity, therefore being more beneficial to tanager species.

Location of the sites must be considered in the analysis of the density results. Sites ranged from lowland, upland, higher elevations, and locations near a river. A number of the sites were located in remote areas, as opposed to sites located within close proximity to the centre of the community. Bird activity in chakras closer to main road access ways may have been influenced by the constant movement of people throughout the community. Habitat requirements are specific to each individual tanager species, and this may influence what species was present in each location. Another consideration when observing birds was the proximity to the river. Two of the chakras were located directly beside the river and the first displayed an abundance of bird activity. In the second chakra were did not record any tanagers, but this may have been a side-effect of the previous rainfall.

An approximate estimate of the percent canopy cover was taken in each plot. Tanagers forage, inhabit and display social interaction in the canopies of mature trees. All tanagers recorded within each site were using the tree canopy at the time of observation. Indigenous families are given these pieces of land to plant and harvest crops of their choice. It is important to the bird species that representative mature trees are left standing in the cleared area.

CONCLUSION

Chakra agroforests proved to be a beneficial resource to tanager species found in the Amazon. Although tanagers were observed and densities were estimated, specific criteria for chakras must be present to be favourable to this bird family. The purpose of chakra agroforests is to provide resources to families living in Amazonian communities. Although the main purpose is for resources, the surrounding flora and fauna species must be taken into consideration as they are an integral aspect of the ecosystem. For a chakra to benefit tanager species, a substantial amount of fruiting crops must be present. It is crucial that mature trees, for example palm species, are left in these agroforests to provide sites for tanagers to occupy.

LITERATURE CITED

- Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Bochers, and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations.Oxford University Press, New York.
- Buckland, S., S. Marsden, and R. Green. 2008. Estimating bird abundance: Making Methods work. Bird Conservatory International, 18(1) 91-108.
- Burns, K. J. 1997. Molecular Systematics of Tanagers (Thraupinae): Evolution
 And Biogeography of a Diverse Radiation of Neotropical Birds. Museum
 Of Vertebrate Zoology and Department of Integrative Biology, University of
 California. 8(3):334-348.
- Burns, K. J. and K. Naoki. 2004. Molecular phylogenetics and biogeography of Neotropical tanagers in the genus *Tangara*. 32:838-854
- Cody, M. L. 1974. Competition and the structure of bird communities. Princeton University Press, New Jersey. 318pp.
- Coq-Huelva, D., A. Higuchi, R. Alfalla-Luque, R. Burgos-Moran, and R. Arias-Gutierrez. 2017. Co-Evolution and Bio-Social Construction: The Kichwa Agroforestry Systems (Chakras) in the Ecuadorian Amazonia. Pp. 1-19.
- Cornell University. The Cornell Lab of Ornithology, Neotropical Birds. https://neotropical.birds.cornell.edu/Species-Account/nb/home. March 6, 2019.

Distance project. http://distancesampling.org/. April 15, 2019.

Gottschalk, T. K. and F. Huettmann. 2010. Comparison of distance sampling and

territory Mapping methods for birds in four different habitats. J Ornithol. 152:421-429.

- Hecht, S. B. 1985. Environment, development and politics: capital accumulation and the livestock sector in Eastern Amazonia. World Dev. 13:663-684.
- Herrmann, T. M., and M. C. Torri. 2009. Changing forest conservation and Management paradigms: Traditional ecological knowledge systems and sustainable forestry: Perspectives from Chile and India. World Ecol., 16:392-403.
- IUCN. 2004. Guidelines for Using the IUCN Red List Categories and Criteria. IUCN, Gland, Switzerland and Cambridge, UK. http://www.redlist.org. March 6, 2019.
- Klopfer, P. H. and J. P. Hailman. 1965. Habitat selection in birds. Adv Study Behav. 1:279-303.
- Krause, T. and B. Ness. 2017. Energizing agroforestry: *Ilex guayusa* as an additional Commodity to diversify Amazonian agroforestry systems. International Journal Of Biodiversity Science, Ecosystem Services & Management, 13(1):191-203.
- Mead, D. J. 2004. Forests and forest plants: agroforestry. Oxford (UK): EOLSS Publishers.
- Newson, S. E., K. L. Evans, D. G. Noble, J. J. D. Greenwood, and K. J. Gaston. 2008. Use of distance sampling to improve estimates of national population sizes for common and widespread breeding birds in the UK. Journal of Applied Ecology, 45(5): 1330-1338.
- Sedano, R. E. and K. J. Burns. 2010. Are the North Andes a species pump for

Neotropical birds? Phylogenetics and biogeography of a clade of Neotropical Tanagers (Aves: Thraupini). Journal of Biogeography 37:325-343.

- Sierra, R. 2013. Patrones y Factores de Deforestacion en el Ecuador Continental. Forest trends: Quita, Ecuador.
- Storer, R. W. 1970. Subfamilies Thraupinae and Tersininae. In "Check-list of Birds Of the World". 13:246-409.
- Turner, I. M. 1996. Species loss in fragments of Tropical Rainforest: A Review of the Evidence. Journal of Applied Ecology. 33(2):200-209.
- Whitten, N. E., and D. S. Whitten. 2008. Puyo Runa imagery and power in modern Amazonia. An ethnography of a changing indigenous culture in Ecuador. Champaign (IL): University of Illinois.

APPENDICES

APPENDIX I

Frugivor and predatory bird species found in each chakra.

CHAKRA	FRUGIVOR SPECIES	PREDATORY BIRDS
CH1	-many banded aracari	-yellow headed caracara (2
	-russet-backed oropendola	individuals)
	-black-crowned tityra	
	-Silver-beaked tanager	
	-bananaquit	
	-paradise tanager	
	-yellow rumped cacique	
	-spix's gwan	
CH2	-russet-backed oropendola	N/A
	-yellow rumped cacique	
CH3	-Silver-beaked tanager	-slate-coloured hawk
	-flame-crested tanager	
	-swallow-tailed tanager	
	-palm tanager	
	-fulvous shrike tanager	
	-black billed seed finch	
	-scaly naped amazon	
	- yellow rumped cacique	
	-russet-backed oropendola	
CH4	-russet-backed oropendola	-roadside hawk
	- yellow rumped cacique	
	-blue headed parrot	
	-palm tanager	
CH5	-russet-backed oropendola	N/A
0115	- yellow rumped cacique	
	-silver-beaked tanager	
	-palm tanager	
	-fulvous shrike tanager	
	-blue-grey tanager	
	-mealy amazon	
	-duskey headed parakeet	
	-blue headed parrot	
	-purple honeycreeper	
	-speckled chachalaca	
CH6		-slate-coloured hawk
U110	-russet-backed oropendola	-state-coloured hawk
CU7	- yellow rumped cacique	
CH7	-bare-necked umbrellabird	-black caracara
CII0	- yellow rumped cacique	
CH8	-russet-backed oropendola	-hawk spp.
	-amazon spp.	

CHAKRA	FRUGIVOR SPECIES	PREDATORY BIRDS
CH9	-russet-backed oropendola	N/A
	- yellow rumped cacique	
CH10	-russet-backed oropendola	N/A
	- yellow rumped cacique	
	-magpie tanager	
	-palm tanager	
	-Euphonia spp.	
	-giant cowbird	
	-silver-beaked tanager	
CH11	-russet-backed oropendola	N/A
	- yellow rumped cacique	
	-greater ani	
	-violacious jay	
	-smooth billed ani	
	-palm tanager	
	-silver-beaked tanager	
	-magpie tanager	
	-black billed seed finch	

Frugivor and predatory bird species found in each chakra.

APPENDIX II Bird and plant species data collected in chakra two.

								0.0010			
			<u>9' W77° 1:</u>		Date: D						
	Agrofores		Time: 16:20 – 17:49								
			OS GREF	·A	% Tree	C	over: ~	10%			
	her: Af										
Site	Trans	ect		T. Species		`		(#) Time		Behaviou	ır
ID	ID ID		Length		(m)			Day			
			(m)								
CH2	CH2 T1		91.00				0	Even	ing		
T2											
	T3		108.07				0				
	T4		113.87				0				
	T5		93.00				0	-			
	T6		122.06				0				
	T7		98.14				0				
+	T8		90.01				0	↓ ↓			
	T9		84.17				0				
]	PLANT S	PECIE	S PRESEN	T	IN CH	AKRA			
Nur	nber		Scientific	С	ommon		Frequ	ency	Imp	oortance T	0
		name			Name			J	Tanager		
									Yes	0	0
	1	Oenocarpus bataua		z Pata	Patawa (palm tree spp.)		+++		X		<u> </u>
	-										
	2	Pouteria			Abiu		++		X		
2		caimito			11010						
	3		Manihot		Yuca		(+)				Х
	•	esculenta					,	,			
4		Musa		F	Plantain		++++4	+++	X		
		sapientum									
5		Bactris		Pe	Peach palm		+++++++++++++++++++++++++++++++++++++++		Х		
5		gasipaes			I	+	+++++	+++++			
			5 ··· 7 ····				++	-			
6		Citrus nobilis		s T	Tangor		+				Х
7		Lonchocarpus utilis-nicoi			Cubé		+		ſ		Х
8					aoco tree	1	(+)				Х
9		(Coffea sp.			(+)				Х	
10			Ochroma	В	alsa tree	, ,					Х
		p	yramidale								
11					Trumpet tree		++				Х
				-							
12				o de cruz		++	-			Х	
		ı	ıcayalina								

Bird and plant species data collected in chakra three.

			W77° 15.2		Date: De	cember 192	2018			
				200	Time: 8:00 – 9:31					
Habitat: Chakra Agroforest Owner: BARTOLO SHIGUANGO					% Tree Cover: ~15%					
	her: Lig			100	/0 1100 (/0			
Site ID	Trans ID	ect	T. Length (m)	Species	Distance (m)	(#)	Tim Da		Behaviour	
CH3	T1		66.21			0	Mor	ning	Hawks	
									present	
	T2		69.82			0			Hawks	
									present	
	Т3		134.87	SBTA	0	1			Foraging	
	T4		68.51	STTA	0	1			Flying Perched	
	T5		76.40 85.71	FCTA SBTA	87 73	1				
	T6								Perched	
	T7		75.42	SBTA	37	1			Perched	
	T8		89.93	SBTA	58	1			Singing	
									interaction	
				PALM	58	1			Singing	
									interaction	
	Т9		78.27	SBTA	54	1			Foraging	
				SBTA	58	1			Territorial	
									interaction	
				FSTA	57	1			Perched	
▼	T10)	70.37	SBTA	39	1		★	perched	
				FSTA	39	1			perched	
			PLANT S	SPECIES	PRESENT	IN CHAF	KRA			
Number Scientific name				ommon Frequen Name		ncy	_	portance To Tanager		
								Yes	0	
	1	Theobroma		Cac	oco tree	(+)		105	X	
1		-	cacao							
	2	Mauritia		Mori	che palm	(+)		Х		
-			flexuosa		I					
3		Bactris		Pea	ch palm	+++++++		Х		
			gasipaes		1					
4 5		Musa		P1	antain	+++++++++++++++++++++++++++++++++++++++		Х		
		sapientum				++++				
		Manihot esculenta			l'uca	(+)		1	Х	
6		Inga edulis		Ice-cr	eam-bean	+++		Х		
7		Carica papaya		a Pa	apaya	+++++		Х		
8		Inga densiflora			huaba	+++++		Х		
			-	mao	chetona					

I			· · · · ·	
9	Herrania nitida	Guiana chestnut	+	X
10	Saccharum officinarum	Sugarcane	+++++	Х
11	Nephelium lappaceum	Rambutan	+++++	X
12	Grias neuberthii	Piton tree	++	X
13	Laurus nobilis	Bay laurel	+++	X
14	Carica cherimoya	Cherimoya	+	X
15	Citrus medica	Citron	+++	Х
16	Calathea lutea	Calatheas	++	Х
17	Pourouma cecropiifolia	Amazon tree- grape	++++	X
18	Pouteria caimito	Abiu	+	Х
19	Banisteriopsis caapi	Caapi	+	Х
20	Lonchocarpus utilis-nicoi	Cubé	++	X
21	Theobroma bicolor	Mocambo tree	+	X
22	Attalea butyracea	Palm tree spp.	+++	X
23	Siparuna eriocalyx	Malaria	+	X
24	Ceroxylon echinulatum	Palm spp.	+	X

"Bird and plant species data collected in chakra three (continued)."

Bird and plant species data collected in chakra four.

r						Data Da		mh an 10 201	0				
			<u>)' W77° 14</u>		19	Date: December 19 2018 Time: 17:03 – 18:33							
			Agroforest										
					1	% Tree	CO	ver: ~10%					
			st/ light ra		•	D ' ((11)	— •	C	D 1	•	
Site	Trans	ect	T.	S	pecies	Distance	e	(#)	Time		Beha	aviour	
ID	ID		Length			(m)			Day	7			
CIIA	T 1		(m)					0	г ·				
CH4	<u>T1</u>		52.52					0	Eveni	ng			
	T2		39.62			22		0		-		1 1	
	<u>T3</u>		175.33	P	ALM	33		3		-	Pei	ched	
	<u>T4</u>		141.00					0		-			
	<u>T5</u>		131.96	P	ALM	100		1		_	per	ched	
	<u>T6</u>		116.61					0		Ļ			
•	T7		101.50					0	↓	_			
	T8		85.88					0					
		-	PLANT	` SI	PECIE	S PRESE	NT	IN CHAK	RA				
Nun	nber	5	Scientific		Co	mmon		Frequenc	y	In	npor	tance	
			name		Ν	ame				T	o Tai	nager	
										Ye	s	No	
-	1		Cedrela		Spani	sh cedar		++				Х	
			odorata		-								
	2		Musa		Pla	antain		++++++++	+++	Х			
		S	apientum										
	3	Cit	trus medic	a	С	itron		+				Х	
4	1	(Crescentia		Calab	ash Tree	+					Х	
			cujete										
	5	Bi:	xa orellan	а	Ac	chiote		+				Х	
(5		Attalea		Palm	tree spp.		++++++	+			Х	
		Ŀ	butyracea										
,	7	Ca	lycophyllu	m	Ca	pirona		++++++++	+++			Х	
		sp	oruceanum	1									
2	3	Ň	<i>Ayroxylon</i>		Bal	sam of		++++++	+			Х	
		l	palsamum		I	Peru							
()		Bactris		Peac	h palm	+-	+++++++++	++++	Х			
		Į	gasipaes										
1	0	(Capsicum		Chili	Chili pepper +					Х		
		annuum											
1	11 Pouteria		A	Abiu		+		Х					
	caimito												
1	2	Ci	trus nobili	s	Та	angor		+				Х	
1	3	T	heobroma		Moca	mbo tree		++				Х	
			bicolor										

14	Carludovica	Panama hat	++++++	Х	
	palmata	plant			
15		Clauraina	(+)		v
15	Guadua angustifolia	Clumping bamboo	(')		Х
16	Persea americana	Avocado	++		Х
17	Carica papaya	Papaya	++	Х	
18	Ilex guayusa	Caffeinated	+		Х
		Holly spp.			
19	Zea mays	Corn	(+)		Х
20	Inga edulis	Ice-cream-	+	X	
	_	bean			
21	Stinging nettle	Stinging nettle	(+)		Х
22	Musa	Banana spp.	(+)	Х	
	acuminata				
23	Vochysia	Tamburo	++		Х
	leguiana				

"Bird and plant species data collected in chakra four (continued)."

Bird and plant species data collected in chakra five.

			W77° 15.	210	1		cember 20	02018				
			groforest			Time: 7:15 – 8:13						
			CALAPU	СНА	۱	% Tree	Cover: ~1	5%				
Weatl	her: Ove		t	1						1		
Site	Trans		Т.	Sp	oecies	Distance	(#)		e of	Behaviour		
ID	ID		Length	Length		(m)		Da	ay			
			(m)									
CH5	T1		109.79				0	Mor	ning			
	T2		123.89	FSTA		30	3			Foraging		
	Т3		99.02	TA	A spp.		2			Unknown		
										spp.		
	T4		110.64	S	BTA	5	1			Perched		
	T5		106.65	S	BTA	22	1			Perched		
				P/	ALM	22	2			Perched		
				B	GTA	22	2			Perched		
\downarrow	T6		68.93	PU	ЛЮ	0	1		↓	perched		
V	T7		141.87				0		•			
			PLANT	SPE	CIES	PRESEN	Γ IN CHA	KRA		•		
Nur	nber		Scientific		Co	mmon	Frequ	encv	Imr	oortance To		
1 (umber		name				ame	1-	J	-	Tanager		
									Yes	5		
	1	S	Saccharum		S110	garcane	++++++	+++++	105	X		
	1		fficinarum		Bug	areane				1		
	2		nchocarpi		Ba	rbasco	++++	++		X		
		LU	nicou	15	Darouseo					21		
	3		Triplaris		Δr	enillo	+++++++			X		
	5		umingiana	,	1 11	CIIIIO				21		
	4		Cedrela	L	Snani	ish cedar	++	-		X		
·	-		odorata		Span					Λ		
	5		Manihot		X	luca	(+)		X		
	0		esculenta			ucu	(•)		24		
	6		Coffea sp.		C	offee	(+)		Х		
	7		Ananas			eapple	(+	`		X		
	,		comosus		1 111	-uppie	(- /		Λ		
	8		icmellea sp	2	C	hicle	+			X		
	9		Gossypium			nt cotton	+			X		
	-		erbaceum		u					1		
1	0		nerbaceum Capsicum		Chil	i pepper	+			X		
10			capsicum annuum		CIIII	- L-LL-I				1		
11		1	Brunfelsia		Rove	al purple	+		1	X		
	11		randiflora			nfelsia				1		
		8	i anaiji01 u	,	010							
1	2	1	nacardiun	1	C	ashew	++	_		X		
12			nacardium ccidentale		Uč	1511C W	++			Λ		

I		lected in chakra fi			
13	Cocos nucifera	Coconut	+++		Х
14	Triticum	Wheat	(+)		Х
15	Inga edulis	Ice-cream-bean	+++	Х	
16	Bactris	Peach palm	++++	Х	
	gasipaes				
17	Carica papaya	Papaya	++++	Х	
18	Zea mays	Corn	(+)		Х
19	Musa	Banana spp.	(+)	Х	
	acuminata				
20	Nephelium	Rambutan	+		Х
	lappaceum				
21	Solanum	Cocona	++		Х
	sessiliflorum				
22	Musa	Plantain	+++++	Х	
	sapientum				
23	Cymbopogon	Lemon grass	+		Х
	citratus	0			
24	Colocasia	Taro	+		X
2.	esculenta	1010			
25	Annona	Cherimoya	+	X	
	cherimilia				
26	Bixa orellana	Achiote	+		Х
20	Citrus sinensis	Oranges	+		X
28	Arachis	Peanut	+		X
20	hypogaea	1 Callat			Λ
29	Rubus	Wild	+		X
<i></i>	ulmifolius	blackberry	-		Λ
	unnijonus	orackoerry			

"Bird and plant species data collected in chakra five (continued)."

Bird and plant species data collected in chakra six.

			' W77° 14.	850'		Date: Dec		2018			
			groforest			Time: 8:4					
			SHIGUAN	GO		% Tree C	over: ~5%	0			
Weath	ner: Ove		st				•				
Site	Trans	ect	Т.	Species		Distance	(#)	Time		Beh	aviour
ID	ID		Length			(m)		Da	у		
			(m)								
CH6	T1		93.07				0	Morn	ing		
	T2		86.77				0				
	T3		96.65				0				
	T4		98.99				0				
	T5		66.58				0				
	T6		95.69				0				
↓	T7		20.15				0	_ ↓	,		
	T8		58.59				0		<u> </u>		
				SPECI	IES	PRESENT	I' IN CHA	KRA	-		
Nun	nber		Scientific			nmon	Frequ	ency		-	tance
			name		N	ame					nager
	-								Ye	S	No
]	-		Zea mays		Corn		(+	.)			X
2	2	Theobroma		(Cac	ao tree	(+	.)			Х
		Cacao							37		
	3		Carica papaya			paya	++++	-++	Х		
2	4		Calycophyllum		Cap	oirona	+				Х
	-		oruceanum		Cabo de hacha		+		_		
	5	M	achaerium	i Ca	ibo	de hacha	+				Х
	c	4	millei		CI	1 '			_		v
(5		strocaryun	ı		mbira	++	-			Х
	7		chambira		-	alm	++				X
	/		strocaryun	l .	Pan	n spp.		-			Λ
	3	ľ	nurumuru Bactris	n	0000	h palm	+		X		
(ر		gasipaes	ſ	Cat	n pann	I		Λ		
()		<u>gusipues</u> Wettinia		Palı	n spp.	+				X
2	/	v	naynensis		1 all	n shh	•		1		Λ
1	0		Iriartea	Ps	amh	il (palm	+++	+++	1		X
1	v		deltoidea			spp.)	+++++		1		1
1	1		Ceroxylon			n spp.	+		1		X
1	-		chinulatum						1		21
1	2		Grias		Pito	on tree	+				Х
-		ĸ	euberthii								
	_										
1	3		Musa	B	Bana	na spp.	+++	+++	Х		
		G	icuminata								

14	Musa sapientum	Plantain	+++	Х
15	Solanum sessiliflorum	Cocona	+	X
16	Impomea batatas	Sweet potato	+	X
17	Capsicum annuum	Chili pepper	++++++	X
18	Persea americana	Avocado	+	Х
19	Triticum	Wheat	++	Х
20	Arachis hypogea	Peanut	(+)	X
21	Eugenia stipitata	Araza	++	X
22	Manihot esculenta	Yuca	+++++++++++++++++++++++++++++++++++++++	X

"Bird and plant species data collected in chakra six (continued)."

Bird and plant species data collected in chakra seven.

			' W77° 15.	506'	Date: De)18			
			Agroforest		Time: 16						
			NA GREFA	4	% Tree (Cove	r:~5%				
Weath	er: Sur	nny								-	
Site	Trans	ect	Τ.	Species	Distance	:	(#)	Tim	e of	Beh	aviour
ID	ID		Length		(m)			Da	ıy		
			(m)								
CH7	T1		71.99				0	Ever	ning		
	T2		95.29				0				
	Т3		50.62				0				
	T4		79.40				0				
•	T5		66.43				0		•		
			PLANT S	SPECIES	S PRESEN	T IN	CHAK	RA			
Nun	ıber	5	Scientific	Co	ommon	F	requen	cy	Ir	nport	tance
			name	I	Name			·		-	ager
									Yes		No
1	[Manihot		Yuca		(+)				X
	-		esculenta				()				
2	2		Musa	P	lantain	++	+++++-	+++	Х		
		S	sapientum								
3	3		Theobroma	Moc	Mocambo tree		++				Х
			bicolor								
2	1	H	eliconia sp	. Lobs	ster-claws		(+)				Х
4			Inga sp.		uabilla	+++	++++++	++++	Х		
6		C)enocarpus		wa (palm		+				Х
		_	bataua		e spp.)						
7	7	La	urus nobili		y laurel		+				Х
8			Solanum		locona		+		1		Х
		se	essiliflorum								
9)		Brownea		o de cruz		+				Х
			ucayalina								
1	0	1	Bactris	Pea	ch palm	+	+++++	++	Х		
			gasipaes		1						
1	1		Coffea sp.	(Coffee		++				Х
1	12 Ananas			neapple	+++	+++++	++++			Х	
			comosus		••						
1	3	Į	Virola spp.	I	Epená		+				Х
1	4		nchocarpus		arbasco		+				Х
			nicou								

Bird and plant species data collected in chakra eight.

	· ·		W77° 15.9		Date: De		er 21 2	018					
			groforest		Time: 8:			-					
			(MAXI) GF	REFA		% Tree Cover: ~50%							
	er: Over												
Site	Transe	ect	Т.	Species	Distance	2	(#)	Tim	e of	Behav	viour		
ID	ID			•	(m)			D	ay				
			(m)						•				
CH8	T1		59.63				0	Mor	ning				
	T2		36.50				0						
	Т3		22.18				0						
	T4		22.36				0						
	T5		85.61				0						
Ļ	T6		38.31				0						
•	T7	107.19					0		•				
			PLANT S	SPECIE	S PRESEN	T IN	CHAK	RA					
Num	ıber		Scientific	C	ommon	F	requen	cy	Imp	ortanc	e To		
			name		Name			·	-	Tanage			
									Yes	0	No		
1		(Coffea sp.		Coffee		(+)				X		
2	2		Musa		Plantain		(+))					
		S	apientum				. ,						
3			Cedrelinga	C	huncho		++				Х		
			nteniformis										
4	-		Mauritia	Mor	riche palm		+++		Х				
			flexuosa										
5	;		Psidium	C	ommon		++		Х				
			guajava		guava								
6)		Bactris	Pe	ach palm	+++	+++++	++++	Х				
			gasipaes										
7	1		Pouteria		Abiu		++++		Х				
			caimito	-									
8		Iı	nga edulis		ream-bean		++		X				
9)		Musa	Ba	nana spp.		(+)		Х				
	0		<i>icuminata</i>		X 7		(.)				• •		
1	U		Manihot		Yuca		(+)				Х		
1	1	(esculenta		C1				v				
1	1		Inga		Guaba		++		Х				
10			densiflora		achetona						77		
12 Laurus no		urus nobili	S Ba	ay laurel		+++++				Х			
13 C		С	arludovica	Pa	nama hat	++					Х		
			palmata		plant								
14	4	(Colocasia		Taro		+++++				Х		
		(esculenta										

				-
15	Theobroma bicolor	Mocambo tree	++	X
16	Pourouma cecropiifolia	Amazon tree- grape	++	X
17	Ilex guayusa	Caffeinated Holly spp.	+	X
18	Artocarpus altilis	Breadfruit	++	X
19	Grias neuberthii	Piton tree	+	X
20	Annona squamosa	Sugar apple	++	X
21	Croton lechleri	Sangre de grado	+	X
22	Brunfelsia grandiflora	Royal purple brunfelsia	+	X
23	Citrus sinensis	Oranges	+	X
24	Persea americana	Avocado	+	X
25	Gossypium herbaceum	Levant cotton	+	X
26	Banisteriopsis caapi	Caapi	+	X
27	Nephelium lappaceum	Rambutan	+	X

"Bird and plant species data collected in chakra eight (continued)."

Bird and plant species data collected in chakra nine.

UTM: S	50° 22.4	25' \	N77° 15.86	58'		Date: December 21 2018							
Habitat	: Chakr	a Ag	roforest			Time: 16:58 – 17:19							
Owner:	CARLO	DS (I	MAXI) GRE	EFA		% Tree Cover: ~2%							
Weathe	r: Over	cast											
Site	Trans	ect	Т.	Sp	oecies	Distance	(#)	ne of	Behaviour				
ID	ID		Length			(m)		D	ay				
			(m)										
CH9			103.71	1			0	Eve	ning				
	T2						0						
	T3		98.95				0						
	T4		111.34				0						
•	T5		86.07				0		▼				
]	PLANT SI	PEC	CIES P	RESENT I	N CHAK	RA					
Num	ber	Ş	Scientific		Col	mmon	Freque	ncy	Imp	oortance To			
			name		Name				,	Tanager			
									Yes	No			
1		H	eliconia sp.		Lobst	er-claws	(+))		Х			
2		La	urus nobili	is	Bay	laurel	++++4	++		Х			
3		1	Pouteria		Mame	ey sapote	+			Х			
			sapota			-							
4		Ca	rica papay	<i>ra</i>	Pa	paya	+		Х				
5		A	strocaryum	ı	Pal	m spp.	+++			Х			
		1	murumuru										
6		Fic	cus eslastic	ea	Rub	ber fig	+			Х			
7			Musa		Pla	intain	+		Х				
		S	apientum										

Bird and plant species data collected in chakra ten.

UTM: S	0° 22.29		V77° 15.87		Date: Dec	cember 21	2018					
Habitat:	: Chakra	Ag	roforest		Time: 17:	30-18:1	3					
Owner:	OTTO A	AGU	JINDA		% Tree Cover: ~ 5%							
Weather	r: Overc	ast										
Site ID	Trans	ect	Т.	Species	Distance	(#)	Tim	e of	Behaviour			
	ID		Length		(m)		Da	ay				
			(m)									
CH10	T1		22.77			0	Eve	ning				
	T2		28.47	SBTA	40	2			Perched			
	<u>T3</u>		23.66			0						
	T4		19.57			0						
↓ ↓	T5		53.15	PALM	0	1		,	Perched			
				MAGP	0	2			perched			
		F	PLANT SP	PECIES PI	RESENT II	N CHAK	RA					
Num	ber		Scientific	Co	mmon	Freque	ncy	Imp	oortance To			
		name		Ν	Name				Tanager			
								Yes	No			
1		H	eliconia sp	. Lobst	er-claws	(+)		Х			
2			Musa	Pla	antain	(+)	Х				
		S	sapientum									
3		Ca	rica papay	a Pa	ipaya	++++	++	Х				
4		A	strocaryum	Pal	m spp.	+			Х			
		Ľ	nurumuru									
5		La	urus nobili	s Bay	' laurel	+++			Х			
6			Ochroma	Bal	sa tree	++			Х			
		p	yramidale									
7			Manihot	Y	luca	(+)		Х			
			esculenta									
8			Bactris	Peac	ch palm	+		Х				
			gasipaes									
9			Musa	Bana	ana spp.	(+)	Х				
		C	icuminata									

Bird and plant species data collected in chakra eleven.

								010				
			W77° 15.	364'		Date: December 23 2018						
			groforest				9-8:38					
			ALAPUC	HA	%	Free C	Cover: ~40%	, 0				
Weath	er: Ove	rcast	t					1				
Site	Trans	ect	Т.	Specie	es Dis	tance	(#)	Time	of	Behaviour		
ID	ID		Length		((m)		Day	7			
			(m)									
CH11	T1		132.49				0	Morni	ng			
	T2		66.98	SBTA	1	83	3			Perched		
				MAG	P 1	115	2			Perched		
				SBTA	1	0	1			Perched		
	T3		47.93				0					
	T4		59.97				0					
	T5		66.26	PALM	1	63	2			Perched		
	T6		51.25				0					
	T7		84.63				0					
\downarrow	T8		58.66				0]				
•	T9		64.56	MAG	Р	39	2	•		Perched		
			PLANT S	SPECI	ES PRE	SENT	Г IN CHAK	RA				
Num	ıber		Scientific	(Commo	n	Freque	ncv	I	mportance		
			name		Name			·		o Tanager		
									Ye	5		
1		7	Thobroma	C	aoco tre	ee	(+))		X		
-		-	cacao				()					
2)		Carica		Papaya		(+)		Х			
_			papaya			,	()					
3	5		Manihot		Yuca		(+)			Х		
			esculenta				()					
4	ļ		Musa		Plantair	1	++++++++	+++++	Х			
		S	apientum									
5	;		'accharum	S	ugarcar	ne	(+)	1		Х		
		0	fficinarum		e		. ,					
6)	Ī	nga edulis	Ic	ce-crean	n-			Х			
					bean		+++++++	++++				
7	1	La	urus nobil	is E	Bay laur	el	+++++++++	++++++		Х		
							+++++	-+				
8			Bactris	Pe	each pal	lm	++++++++	++++	Х			
			gasipaes									
9			Mauritia	Mc	oriche pa	alm	++			Х		
			flexuosa									
10			Cedrela	Spa	Spanish cedar		r +			Х		
			odorata									
1		La	cmellea sp).	Chicle		++			Х		
12	2	V	'irola spp.		Epená		++			Х		

13	Pourouma	Amazon tree-	+	Х	
	cecropiifolia	grape			
14	Alibertia	Borojó	+		Х
	patinoi				
15	Musa	Banana spp.	+++++++	Х	
	acuminata				
16	Lonchocarpus	Cubé	(+)		Х
	utilis-nicoi				
17	Cedrelinga	Chuncho	+		Х
	cateniformis				
18	Pouteria	Abiu	+	Х	
	caimito				
19	Grias	Piton tree	+++		Х
	neuberthii				
20	Artocarpus	Breadfruit	+	Х	
	altilis				
21	Ananas	Pineapple	++		Х
	comosus				
22	Triplaris	Arenillo	+++		Х
	cumingiana				

"Bird and plant species data collected in chakra eleven (continued)."