
AN ENHANCED PASSKEY
ENTRY PROTOCOL FOR

SECURE SIMPLE PAIRING
IN BLUETOOTH

by

Sai Swaroop Madugula

A thesis submitted to the faculty of graduate studies
Lakehead University

in partial fulfillment of the requirements for the degree of
Masters of Science in Computer Science

Department of Computer Science

Lakehead University

April 2020

Copyright c© Sai Swaroop Madugula 2020

To my parents, for supporting me through everything.

Contents

List of Tables vi

List of Figures vii

Abstract viii

1 Introduction 1
1.1 The Bluetooth . 1
1.2 Problem Definition . 2
1.3 Security of passkey entry protocol according to Bluetooth standard . 2
1.4 Vulnerability in Passkey Entry Protocol . 3
1.5 How does the vulnerability arise? . 3
1.6 Assumptions on the capabilities for an adversary to exploit the vul-

nerability . 3
1.7 Goal of an attacker . 4
1.8 Research Goal . 4

2 Literature Review 6
2.1 Bluetooth . 6

2.1.1 Bluetooth BR/EDR . 7
2.1.2 Bluetooth Low Energy . 9

2.2 Bluetooth Classic vs Bluetooth Low Energy . 14
2.3 Security Overview of Bluetooth . 14
2.4 Security modes in Bluetooth BR/EDR and Bluetooth LE 16

2.4.1 Security modes in Bluetooth BR/EDR 16
2.4.2 Security modes in Bluetooth LE . 17

2.5 Well-known Bluetooth Attacks . 18
2.5.1 MAC Spoofing Attack . 19
2.5.2 BlueBump Attack . 19
2.5.3 BluePrinting Attack . 20
2.5.4 BlueSnarfing Attack . 20
2.5.5 Bluetooth KNOB Attack . 21

2.6 Related Research Works on Passkey Entry Protocol 21

iv

3 Secure Simple Pairing and Passkey Entry Protocol 24
3.1 Architecture of SSP . 24
3.2 How SSP provides security . 25
3.3 SSP Phase 1: Public Key Exchange . 26

3.3.1 ECDH . 28
3.4 SSP Phase 2: Authentication Stage 1 . 31

3.4.1 Passkey Entry Model . 32
3.4.2 f1() function . 35

3.5 SSP Phase 3: Authentication Stage 2 . 37
3.5.1 f3() function . 38

3.6 SSP Phase 4: Link Key Calculation . 38
3.6.1 f2() function . 39

3.7 SSP Phase 5: LMP Authentication and Encryption 40
3.8 Vulnerability in Passkey Entry Protocol . 40

4 Enhanced Passkey Entry Protocol 44
4.1 An Improved protocol by Sun and Mu . 44

4.1.1 An attack on SM protocol . 46
4.2 Proposed Enhanced Passkey Protocol . 50
4.3 Security of Enhanced Passkey Entry Protocol under passive Eaves-

dropping and MITM attacks . 53

5 Performance Evaluation 56
5.1 Performance Cost of Original Passkey Entry Model 56
5.2 Performance Cost of Enhanced Passkey Entry Model 56
5.3 Performance Evaluations of Different Passkey Entry Models 57
5.4 Discussion . 58

6 Conclusion 59

References 60

A Brute-force attack Code Link 64

v

List of Tables

2.1 Bluetooth Security Mechanisms . 16

3.1 Input Capabilities of a Bluetooth Device . 27
3.2 Output Capabilities of a Bluetooth Device . 27
3.3 IOcap of a Bluetooth Device . 28
3.4 ECDH domain parameters . 29
3.5 Passkey Entry Parameters . 34
3.6 f1() function Inputs . 35
3.7 SSP Phase 3 Parameters . 37
3.8 f3() function Inputs . 38
3.9 f2() function Inputs . 39

4.1 Experiment Test Cases . 48
4.2 Enhanced Passkey Entry Parameters . 52

5.1 Performance Evaluations of different passkey entry models 57

vi

List of Figures

2.1 Classic Bluetooth Architecture . 9
2.2 Bluetooth Piconet . 10
2.3 Bluetooth Low Energy States . 11
2.4 Bluetooth Low Energy Architecture . 12
2.5 Bluetooth GATT Architecture . 13
2.6 MAC Spoofing Attack with Malicious Node M 19
2.7 BlueBump Attack . 20
2.8 Giwon Kwon Proposed Method . 22

3.1 SSP Phases . 25
3.2 Communication using ECDH . 29
3.3 SSP Phase 1: Public Key Exchange . 31
3.4 SSP Phase 2: Passkey Entry Protocol . 33
3.5 HMAC-SHA256 basic operation . 36
3.6 SSP Phase 3: Authentication Stage 2 . 37
3.7 SSP Phase 4: Link Key Calculation . 39
3.8 Passive Eavesdropping on SSP session . 41
3.9 MITM on SSP session . 43

4.1 Da-zhi Sun Improved Passkey Entry Model . 45
4.2 SM protocol resistance against brute-force attack 50
4.3 Enhanced Passkey Entry Model . 51

vii

Abstract

Bluetooth devices are being used very extensively in today’s world. From simple
wireless headsets to maintaining an entire home network, the Bluetooth technology
is used everywhere. However, there are still vulnerabilities present in the pairing
process of Bluetooth which leads to serious security issues resulting in data theft and
manipulation. We scrutinize the passkey entry protocol in Secure Simple Pairing in
the Bluetooth standard v5.2. In this thesis, we propose a simple enhancement for
the passkey entry protocol in the authentication stage 1 of Secure Simple Pairing
(SSP) using preexisting cryptographic hash functions and random integer gener-
ation present in the protocol. Our research mainly focuses on strengthening the
passkey entry protocol and protecting the devices against passive eavesdropping and
active Man-in-the-middle (MITM) attacks in both Bluetooth Basic Rate/Enhanced
Data Rate (BR/EDR) and Bluetooth Low Energy (BLE). In addition to increasing
the security of the protocol, our proposed model will also significantly reduce the
computation cost and the communication cost of the protocol. This model can be
implemented for any Bluetooth device which uses the passkey entry protocol and
is of version 4.2 or greater.

viii

Chapter 1

Introduction

1.1 The Bluetooth

The Bluetooth is a simple wireless technology developed to exchange data over
short ranges of area. The Bluetooth technology usually employs a wireless personal
area network (PAN), also known as a piconet, in which data between two devices
are exchanged securely. With the introduction of Bluetooth v4.0, namely Bluetooth
Low Energy (Bluetooth LE), it became largely famous for its low power consump-
tion. Bluetooth LE largely has its applications in the healthcare, fitness, security,
and home network systems. This is because Bluetooth LE offered very low energy
consumption while maintaining a similar communication range to that of Bluetooth
Basic Rate/Enhanced Data Rate (BR/EDR). As the Bluetooth LE is known for
its low energy consumption, it is most suited for the Internet of things (IoT) and
is extensively used in it. The Bluetooth LE is ideal to send small amounts of data
between devices continuously or periodically. Although different from each other,
most security protocols in Bluetooth LE work like the BR/EDR. This is to ensure
that both devices which support BR/EDR and Bluetooth LE are compatible to con-
nect with each other. The BR/EDR and Bluetooth LE has a secure way of pairing
and generating the link key which is essential for communication between any two
Bluetooth devices. This method is known as Secure Simple Pairing (SSP). The two
main goals of SSP protocol are to protect the devices against passive eavesdropping
and active attacks like MITM.

SSP employs four association models that are used for authentication between
two devices. One model is selected out of the four based on the input-output com-
patibility (IOcap) of the two devices. In these models, the passkey entry protocol
uses a 6-digit passkey which is shared on both sides by the user and is used as
an authentication token. The Bluetooth standard describes that the passkey entry
protocol provides protection against passive eavesdropping and active man-in-the-
middle (MITM) attacks. However, there are vulnerabilities present in the passkey
entry model which allows an attacker or an adversary to guess the passkey if it is
reused and hijack the session which enables the attacker to gain access to the Blue-

1

CHAPTER 1. INTRODUCTION 2

tooth devices and retrieve sensitive information. For instance, many users monitor
their heart rate and health using Bluetooth technology. In some hospitals, Blue-
tooth technology is used to identify the ID of the patients and retrieve their health
reports. Now, if an adversary makes use of the vulnerabilities present in SSP and
obtains the Long Term Key (LTK) for the SSP session. Then, they can retrieve
sensitive data about the patients. And this is not limited to healthcare, Bluetooth
technology is also used in maintaining smart home networks which control different
aspects of a house. So the main goal of any Bluetooth pairing process should be to
prevent the attacker from obtaining the LTK from the legitimate devices.

The most recent countermeasure to the passkey reuse issue was proposed by
Da-zhi Sun and Mu in their improved passkey entry protocol. Their improved
protocol successfully prevents an adversary from deducing the passkey using passive
eavesdropping. However, in our research, we have deduced that their protocol is
still vulnerable to our simple brute-force attack which is a variant of the normal
brute-force method. By using our attack, the attacker will be able to deduce the
correct passkey which will help them to conduct a successful MITM attack allowing
them to gain access to the LTK.

1.2 Problem Definition

To understand the vulnerability in the passkey entry protocol, we need to consider
a few points.

• Security of passkey entry protocol according to Bluetooth standard.

• Vulnerability in passkey entry protocol.

• How does the vulnerability arise?

• Assumptions for an adversary to exploit the passkey entry protocol vulnera-
bility.

• Goal of an attacker.

• Research Goal.

1.3 Security of passkey entry protocol according

to Bluetooth standard

According to the Bluetooth standard v5.2 [1], the passkey entry protocol makes
use of a 6-digit passkey which is entered in both the devices. The 6-digit passkey
is entered by the user and is of 20-bit length. The passkey entry protocol uses a
method of gradual disclosure of each bit of the passkey to thwart MITM attacks.

CHAPTER 1. INTRODUCTION 3

And it also uses the Elliptic Curve Diffie Hellman (ECDH) under secure connec-
tions mode to protect the devices against passive eavesdropping. It describes that
a simple brute-force guesser succeeds guessing the passkey with a probability of
0.000001 thus making it very difficult for an attacker to execute a successful MITM
attack.

1.4 Vulnerability in Passkey Entry Protocol

The passkey entry protocol normally protects the devices against passive and active
attacks. The Bluetooth standard describes that in an ideal case, the user should
never reuse the passkey from the previous session. However, if the passkey is
reused, it creates a vulnerability which the attacker can exploit. If an attacker can
passively capture the public key exchange packets and the passkey entry protocol
communication packets, they can easily deduce the passkey and conduct a MITM
attack during the user’s next SSP session.

1.5 How does the vulnerability arise?

As we described earlier, ideally it is said that the user should not reuse the same
passkey again. Just like a user tends to use the same password for every account,
the user might find it simple or easy to reuse the same passkey for every Bluetooth
connection. The attacker can make use of this vulnerability and exploit the devices.
Alternatively, the protocol which is generating the random passkey might reuse the
same passkey to save space or its computational power which makes the passkey a
static key. Since the random passkey generation protocol does not belong to the
Bluetooth standard, it does not necessarily adhere to its rules. Therefore, there is
a chance that it will use the same passkey for every connection.

1.6 Assumptions on the capabilities for an adver-

sary to exploit the vulnerability

In our research work, we are assuming that an attacker has a set of capabilities
that enables them to perform passive eavesdropping and active MITM attacks.
The capabilities are defined below.

• The attacker has the knowledge of the frequency hopping pattern which is
shared by the two legitimate Bluetooth devices.

• The attacker has the ability to passively capture the transmission packets
exchanged by the two legitimate Bluetooth devices.

CHAPTER 1. INTRODUCTION 4

• The attacker has the ability to modify packets that are transmitted in real-
time between the legitimate Bluetooth devices thus enabling them to perform
a MITM attack.

1.7 Goal of an attacker

The obtaining of the 6-digit passkey in the passkey entry protocol run using passive
eavesdropping is only one of the goals of an adversary. The main goal of an attacker
is to obtain the Long Term Key (LTK) and the encryption key which is derived
after the secure simple pairing process is finished successfully. If an attacker can
successfully conduct a MITM attack using the derived 6-digit passkey, then they
can obtain the LTK and encryption key and will be considered as a trusted device
by the legitimate devices. By using these keys, an attacker can simply make a
request of sensitive data to the legitimate user. The legitimate user accepts the
request since the connection was successful and sends sensitive data to the attacker
thinking that it is an authentic device. Alternatively, the attacker can intercept the
data being exchanged by legitimate devices and modify the data. Therefore, the
vulnerability of the passkey entry protocol can lead to serious data manipulation
and data theft.

1.8 Research Goal

Our research goal can be divided into achieving the following results:

• Protection against passive eavesdropping in passkey entry protocol.

• Protection against active MITM attacks in passkey entry protocol.

• Protection against passive and active attacks even when a user reuses the
same passkey.

Keeping these goals in mind, we have proposed a new enhanced passkey entry
protocol that provides protection against passive eavesdropping and MITM attacks
even in case the user reuses the same passkey while significantly decreasing the
communication cost and the computation cost making it very efficient. Our protocol
also completely prevents an attacker from obtaining the correct passkey by using
our brute-force attack. By using our protocol, a legitimate device can successfully
prevent an attacker from obtaining the LTK.

In the coming chapters, we will learn about Bluetooth technology in detail.
In chapter 2, we will discuss the types of Bluetooth technology and the security
overview of Bluetooth. Next, we will talk about the different security features pro-
vided by the Bluetooth technology to protect the devices from malicious entities.
Next, we will discuss some of the most well-known vulnerabilities present in Blue-
tooth legacy versions and how the attacks are performed. Finally, we discuss the

CHAPTER 1. INTRODUCTION 5

related works and research works done on the Bluetooth passkey entry model and
their countermeasures for the vulnerabilities present in the protocol. In chapter 3,
we will go through the secure simple pairing protocol in detail by discussing the ar-
chitecture of SSP and its various phases. In each phase, we will discuss the working
of the SSP and how it provides protection. Finally, we will discuss the vulnerability
of the passkey entry protocol in detail and also know how an adversary performs
the passive and active attacks to obtain the LTK. In chapter 4, we will discuss the
proposed enhanced passkey entry protocol. First, we will talk about the related re-
search work and how they intend to protect the devices. Next, we will be discussing
the vulnerability present in their improved protocol and discuss in detail about the
attack on their proposed protocol. Next, we will discuss our proposed enhanced
passkey entry protocol and how it works. Finally, we will discuss the security of
our enhanced passkey entry model under different scenarios. In chapter 5, we will
talk about the performance cost of the original and the improved passkey entry
protocols proposed by related works. We will compare our enhanced passkey entry
protocol with different models and discuss the differences. In chapter 6, we provide
a brief conclusion and the scope of future work present for our research work.

Chapter 2

Literature Review

To better understand the working of Secure Simple paring and the passkey entry
protocol, we will review the concepts and the related research works done on the
secure simple pairing.

2.1 Bluetooth

Bluetooth is a simple wireless technology developed to exchange data over a short
range of distance. Bluetooth devices are being used extensively in today’s world.
It is mostly used for low bandwidth wireless communication. The Bluetooth tech-
nology is maintained and organized by the Bluetooth Special Interest Group (SIG).
The Bluetooth SIG foundation provides a specification standard that describes the
requirements and rules needed to follow to create a Bluetooth device. Currently, the
latest version of the Bluetooth standard is version 5.2. According to [2], the main
tasks of the SIG organization are to publish the Bluetooth specifications, protect
the Bluetooth trademarks and evangelize Bluetooth wireless technology.

The connection ranges of Bluetooth devices are divided into three classes. The
class 1 has a range of 100 meters and these types of devices are usually used for
industrial purposes. The class 2 Bluetooth devices are the most common devices
providing a range of up to 10 meters. These devices usually include smartphones,
tablets, laptops, etc. Finally, class 3 devices provide a range of fewer than 10
meters. Bluetooth employs a master/slave architecture for communication. When
two Bluetooth devices want to connect, the advertising device (usually known as
the peripheral device) broadcasts the advertisement packets within its range. When
the other device wants to connect to this advertising device, it initiates a connection
with the peripheral device by sending its clock information, unique 48-bit Bluetooth
Address (BD ADDR), and the frequency hopping pattern. Here, the initiating
device is known as the master and the advertising device is known as the slave
device. When the slave receives the above-mentioned data from the master, it sets
its clock and synchronizes itself with the master device. The frequency hopping
pattern helps the slave device to communicate with the master at different channels.

6

CHAPTER 2. LITERATURE REVIEW 7

The Bluetooth technology uses Frequency Hopping Spread Spectrum (FHSS)
to avoid interference with other devices on the communication channels. [2] A
Bluetooth device divides the data into several packets and transmits each packet
on one of 79 designated Bluetooth channels. Due to the FHSS, Bluetooth devices
perform 1600 hops per second which helps the devices to avoid interference and pas-
sive eavesdropping. However, since the frequency hopping pattern is not encrypted
when it is transmitted from a master device to a slave device, an attacker can cap-
ture this packet and learn the frequency hopping pattern which enables them to
perform passive eavesdropping on the subsequently transmitted data packets.

Primarily, in Bluetooth, there are two main technologies present: Bluetooth
BR/EDR and Bluetooth LE. The Bluetooth LE is more recently developed and
was introduced in version 4.0. We will delve a bit deeper into both technologies
below.

2.1.1 Bluetooth BR/EDR

The Bluetooth Enhanced data rate, also known as classic Bluetooth, was originally
designed for streaming data transfer. It is a packet-based protocol with a mas-
ter/slave architecture. In a piconet, there can be usually up to 7 slaves and one
master. All the operations are done through the master. [3] The classic Bluetooth
operates in the 2400-2483.5 MHz range within the ISM 2.4 GHz frequency band.
Although the classic Bluetooth has a better data transfer rate at 2-3 Mbps, it suf-
fers from high power consumption. The classic Bluetooth is more ideal for devices
that require constant or continuous data streaming.

The Bluetooth BR/EDR architecture is given in Figure 2.1. Note that for
simplicity, we have not included all the protocols present in the architecture. We
are only focusing on the ones which are pertaining to our research work. The classic
Bluetooth architecture can be divided into the following layers or features.

• Bluetooth Radio Layer: This layer mostly takes care of the features like defin-
ing frequency bands, frequency hopping specifications supported by the de-
vice. Aside from this, the radio layer is also responsible for defining the
modulation technique that is required and the transmission power classes. It
is in this layer that the frequency hopping pattern is generated and sent to
the slave device. There is no security provided in this layer as it strictly is
limited to only defining the hardware specifications and frequency hopping
patterns.

• Baseband Layer: This is also known as the physical layer in the classic Blue-
tooth architecture. This layer is responsible for defining how the data needs
to be transmitted across the devices. For instance, the baseband layer defines
the addressing schemes, packet frame format, and power control algorithms
that are required for connection establishment between the devices present in

CHAPTER 2. LITERATURE REVIEW 8

a piconet. All the devices in the piconet must adhere to schemes and frame
formats specified in this layer.

• LMP layer: The LMP layer, also known as the Link Manager Protocol, is re-
sponsible for the pairing and their subsequent processes. It is in this layer,
the connection establishment between two or more devices is performed. The
LMP layer defines how the link should be established and also maintained.
LMP layer provides the devices with specifications for authentication and en-
cryption. In addition to this, the negotiation of the packet sizes is also done
in this layer.

• L2CAP layer: The Logical Link Control and Adaptation Protocol (L2CAP)
layer resides in the data link layer just above the baseband layer. It is re-
sponsible for converting upper layer frames to baseband layer frame format
and vice versa. L2CAP can support both connection-oriented and connec-
tionless services.

• SDP: The Service Discovery Protocol (SDP) is responsible for searching the ser-
vices offered by other devices, and their associated parameters. For instance,
if a user connects their phone to a wireless headset, then the SDP searches for
the services related to the headset and uses Bluetooth profiles like Headset
profile or hands-free profile which belong to the wireless headset service and
allocates them. Each service is defined by a unique ID.

CHAPTER 2. LITERATURE REVIEW 9

Figure 2.1: Classic Bluetooth Architecture

Although the classic Bluetooth has been widely adopted in wireless communi-
cations, with the introduction of Wi-Fi, it got overlapped. The Wi-Fi produced
around 11Mbit/s data rate when it was introduced. It also did not have a limitation
on the slave devices as classic Bluetooth. And since version 4.0, the Bluetooth fo-
cused more on the low energy consumption and compatibility to the smart devices
by introducing Bluetooth LE.

2.1.2 Bluetooth Low Energy

The Bluetooth Low Energy was first introduced in the Bluetooth standard v4.0
by Bluetooth SIG. It was mainly aimed at applications in healthcare, fitness, and
smart systems such as a smart home network. The main advantage of Bluetooth
LE is its low power consumption for operations.

CHAPTER 2. LITERATURE REVIEW 10

Figure 2.2: Bluetooth Piconet

A Bluetooth LE device connects differently when compared to the classic Blue-
tooth device. [4] In classic Bluetooth piconet, every slave listens for incoming
connections requiring them to be on constant standby whereas Bluetooth LE slave
devices invite connections and are in control of when to consume power. In the
Figure 2.2, we can see how a piconet is formed where the slave device has a sep-
arate physical channel to communicate with the master device. In any Bluetooth
LE piconet, a physical channel will consist of two devices.

Unlike classic Bluetooth, the Bluetooth LE is used in cases where there is a need
to send data periodically at regular intervals. [5] A study in the beacon software
company, Aislelabs, reported that peripherals usually function for 1-2 years with
a 1000mAh coin cell battery. This is possible because of the power efficiency of
Bluetooth Low Energy protocol which only transmits small packets.

CHAPTER 2. LITERATURE REVIEW 11

Figure 2.3: Bluetooth Low Energy States

Bluetooth LE technology is vastly used in the Internet of Things (IoT). The
sensors of IoT need to transfer small amounts of data to the central system period-
ically. However, they do not need to keep a channel open constantly as it increases
power consumption. This is where Bluetooth LE comes into place. The Bluetooth
LE has a special mechanism where the Bluetooth LE only wakes up when a sen-
sor must transfer data between devices. After the data transfer, the Bluetooth
LE again goes to sleep thus saving power. [6] The Bluetooth LE over the air data
rate is 1Mbit/s using Gaussian Frequency Shift Keying (GFSK) modulation. The
GFSK enables the Bluetooth LE to allow the reuse of many existing elements of
Bluetooth radios.

In Figure 2.4, we can see the architecture of the Bluetooth LE technology. Al-
though somewhat similar to the classic Bluetooth, the Bluetooth LE uses a different
set of protocols to provide connection and data transfer between devices. The work-
ing of layers such as the physical layer, L2CAP, and Link layer is similar to the
classic Bluetooth. The main difference in Bluetooth LE is that the pairing process
and the security protocols are provided by the Security Manager Protocol (SMP)
which resides in the host. Usually, Bluetooth devices perform operations in host
and controller. In simple terms, the host is the operating system that is on the
device and the controller can be defined as the Bluetooth integrated circuit (IC).
Therefore, if a vulnerability was discovered, it is much easier to patch the vulnera-
bility in the host than in the controller. For instance, the key generation process in
classic Bluetooth is performed in the controller, and in case of Bluetooth LE, it is
done in the host. And, if a vulnerability arises in the key generation process, it is
much easier to apply the necessary countermeasures on Bluetooth LE devices than
in classic Bluetooth devices.

CHAPTER 2. LITERATURE REVIEW 12

Figure 2.4: Bluetooth Low Energy Architecture

Unlike classic Bluetooth, the Bluetooth LE technology makes use of profiles that
are based on the GATT(Generic Attribute Protocol) and ATT(Attribute Protocol).
According to Bluetooth Specification standard v5.2 [1], “The GATT server sends
responses to requests and when configured, sends indication and notifications asyn-
chronously to the GATT client when specified events occur on the GATT server.”.
It should also be noted that there can be one or more services present in a GATT
profile. The data is stored specifically in these services. In a GATT architecture,
the peripheral is called as the GATT server, which consists of the ATT lookup data
and service and characteristic definitions. The GATT client (usually a phone) is
the device that sends requests to this server.

CHAPTER 2. LITERATURE REVIEW 13

Figure 2.5: Bluetooth GATT Architecture

[7] The GATT uses services and characteristics to define the way that two
Bluetooth LE devices transfer data back and forth. The ATT protocol is used in
conjunction with GATT to store the services, characteristics, and data related to
the devices using 16-bits IDs for each entry. A GATT enables the Bluetooth device
to form a centralized structure where the Bluetooth device is the central system
and the Bluetooth LE peripherals are connected to this central system individually.
Note that a Bluetooth LE peripheral can only be connected to one central device.
As a master-slave architecture, if two peripheral devices want to connect, they
must communicate through the central device. As shown in figure 2.5, a service
can consist of several characteristics values. Each service is denoted by a unique ID

CHAPTER 2. LITERATURE REVIEW 14

(UUID). [7] The lowest level concept in GATT transactions is the Characteristic,
which encapsulates a single data point or an array of related data, such as X/Y/Z
values from a 3-axis accelerometer. Characteristics are mainly used to interact with
the Bluetooth LE peripherals and are used to transfer data back to the Bluetooth
LE peripheral.

2.2 Bluetooth Classic vs Bluetooth Low Energy

Although classic Bluetooth and Bluetooth Low Energy are similar in some respects,
they are targeted for different scenarios. For instance, classic Bluetooth is most
useful where higher data rate is required provided that the power is available. And
Bluetooth LE is most extensively used when there is a low power consumption
requirement. Therefore, Bluetooth LE is vastly used in smart devices that need
smaller data transfer at regular intervals. [8] The classic Bluetooth typically takes
100ms to send data whereas a Bluetooth LE device takes only 3ms. In the case
of power consumption, [9] the Bluetooth LE can be as much as 100 times lower
compared to the classic Bluetooth. Coming to the throughput, from the previous
information, we can easily deduce that Bluetooth LE will produce low throughput
when compared to the classic Bluetooth. Therefore, the classic Bluetooth will have
a throughput of up to 2.1 Mbps whereas Bluetooth LE will provide only around
0.3Mbps. [10] Despite their typical use, in connecting peripheral devices at close
range, both classic Bluetooth and Bluetooth LE are capable of transmitting data
up to 100m.

2.3 Security Overview of Bluetooth

The Bluetooth technology is found in almost every smartphone and IoT device in
this world. Hence, it is very important that the system should enforce strict security
principles such as authentication, confidentiality, authorization, and integrity. If
not, the users might be a victim to data theft and manipulation. According to
the Bluetooth standard v5.2 [1], the Bluetooth security model offers five distinct
security features: pairing, bonding, device authentication, encryption, and message
integrity. Each feature has a specific purpose in connecting the Bluetooth devices.

• Pairing: Pairing refers to the process where two devices which are connecting
for the first time create shared secret keys called link keys which are used in
later stages.

• Bonding: After pairing is successful, the keys are stored which are used for later
to form a trusted device pair. [11] Bonding establishes a semi-permanent
trusted relationship between two Bluetooth devices. When two devices have
bonded successfully, communication is much faster for future connection es-
tablishments.

CHAPTER 2. LITERATURE REVIEW 15

• Device authentication: In this, both devices compare the keys they computed
and verify them. Bluetooth provides authentication at the device level.

• Encryption: As the name suggests, it provides encryption using different algo-
rithms based on the IO capabilities of the devices.

• Message Integrity: Bluetooth uses Connection Signature Resolving Key
(CSRK) to sign the data to prevent message modification.

From a security perspective, pairing is the most essential step in ensuring the
security of the two devices. It is in this phase that a shared link key is generated
which is the foundation of communication between the paired devices. In the legacy
versions of Bluetooth, the encryption was based on the E0 algorithm derived from
the Massey-Rueppel algorithm while the authentication and key generation was
based on the SAFER+ algorithm. However, several vulnerabilities were found in
the legacy versions of the Bluetooth. According to [12], “a number of security
breaches have been discovered over the years where the most severe cases consisted
of an attacker gaining access to restricted data or taking complete control over the
device.”

Considering these security vulnerabilities, the Bluetooth standard introduced
Secure Simple Pairing (SSP) for classic Bluetooth in version 2.1 which used the
FIPS-approved algorithms. Although SSP was considered secure, it still had a few
vulnerabilities in the Bluetooth security architecture which could be easily exploited
by the attackers. Legacy SSP used the E0 algorithm for encryption and SAFER+
for Authentication. HMAC-SHA256 was used for Link key generation. With the
release of Bluetooth version 4.0, the Bluetooth LE also adopted the Secure simple
pairing (now Legacy SSP). However, the main difference between SSP in classic
Bluetooth and Bluetooth LE was that Bluetooth LE used did not use ECDH for
public key exchange. This led to certain vulnerabilities like MITM attacks in secure
message communication between devices. To mitigate these issues, in December
2013, Bluetooth SIG released the secure connections feature to classic Bluetooth.
[13] This was an upgrade to the existing Secure Simple Pairing algorithms for
pairing, device authentication, and message integrity.

In December 2014, Bluetooth SIG released version 4.2 which introduced fea-
tures for the Internet of Things (IoT). In addition to this, they released the secure
connections only feature to provide greater security for the Bluetooth Low Energy
devices. The secure connections mode in Bluetooth used SSP’s four association
models to protect the devices against passive and active attacks. Although the
secure connections mode is highly secure, it greatly depends on the compatibility
of both devices. One of the main improvements in version 4.2 was the adoption of
ECDH for pairing in Secure Simple Paring protocol.

CHAPTER 2. LITERATURE REVIEW 16

Legacy
Secure Simple
Pairing

Secure Connec-
tions

Encryption E0 E0 AES-CCM

Authentication SAFER+ SAFER+ HMAC-SHA256

Key Generation SAFER+
P192 ECDH and
HMAC-SHA-256

P256 ECDH and
HMAC-SHA-256

Table 2.1: Bluetooth Security Mechanisms

2.4 Security modes in Bluetooth BR/EDR and

Bluetooth LE

To securely connect with Bluetooth devices, security modes along with security
levels were defined for every Bluetooth device. Each device selects one of the modes
and communicates with the other devices. Each security mode defines a specific set
of security protocols that need to be followed by both devices. A security mode is
selected based on the support and IO compatibility of both devices.

2.4.1 Security modes in Bluetooth BR/EDR

In the classic Bluetooth technology, there are four security modes from which one
is selected by both devices to communicate with each other. The security modes of
classic Bluetooth are described below.

• Security mode 1: This mode is used when both devices have a higher priority
of data transfer rather than providing security. This level enables the devices
to communicate with no security whatsoever. Therefore, as a result, de-
vices operating in this mode do not employ any mechanisms to prevent other
Bluetooth-enabled devices from establishing or interrupting connections [14].

• Security mode 2: This mode supports FIPS-approved algorithms such as AES-
CMAC encryption during the communication phase of unpaired devices. This
level is enforced at the service level of the Bluetooth Architecture. The secu-
rity mode 2 is selected only if the attributes such as authorization, authenti-
cation, and encryption are absolutely supported.

• Security mode 3: This mode is executed at the link level. However, for this
mode to execute the Bluetooth device must already be paired. Otherwise, the
advertising device may reject the Host connection request. This mode also
supports encryption.

CHAPTER 2. LITERATURE REVIEW 17

• Security mode 4: The security mode 4 is the most secure out of all the 4 modes.
It is enforced at the service level and requires ECDH for the public key ex-
change. The security mode 4 supports two requirements which are authenti-
cated link key and unauthenticated link key. This mode provides protection
against MITM attacks if there is an authenticated link key. The unauthen-
ticated link key uses the SSP legacy model which does not use ECDH. The
secure connections mode uses security mode 4.

2.4.2 Security modes in Bluetooth LE

The security modes in Bluetooth LE are similar to those present in classic Blue-
tooth. In addition to this, the Bluetooth LE employs different levels among three
security modes. A Bluetooth LE device can select only one security mode at a
time. However, it can maintain a mixed security mode if required. The three
security modes in Bluetooth LE are defined as below.

The security mode 1 of the Bluetooth LE enforces the security through encryp-
tion and contains four levels of security [15].

• Security Level 1: This level like classic Bluetooth does not provide any secu-
rity. It has no authentication and encryption.

• Security Level 2: The security level defines the unauthenticated pairing with
encryption. The encryption algorithms used are FIPS-compliant.

• Security Level 3: Level 3 provides authenticated pairing with AES-CCM en-
cryption.

• Security Level 4: The security level 4 like classic Bluetooth is the most secure
level. It provides authenticated LE secure connections pairing with encryp-
tion. Due to the secure connections, it uses ECDH for the public key exchange
phase and AES-CCM for encryption.

The security mode 2 of Bluetooth LE concerns itself with the signing of data
and contains two levels of security. For Bluetooth LE security mode 2, data signing
is done with the help of Connection Signature Resolving Key (CSRK).

• Security Level 1: Provides unauthenticated pairing with data signing.

• Security Level 2: Provides authenticated pairing with data signing.

The mixed security mode provides the ability for a device to support multiple
combinations of security modes and levels. For instance, this mode can be used
when a device is required to support both security mode 1 and 2. If both Bluetooth
devices are trying to connect using the secure connections only mode, then it is
essentially security mode 1 with security level 4.

CHAPTER 2. LITERATURE REVIEW 18

2.5 Well-known Bluetooth Attacks

Since the introduction of the Bluetooth technology, several strides have been made
to keep it secure. In the earlier versions of Bluetooth such as version 2.0, 3.0, and
4.0, several vulnerabilities were found by researchers which compromised the secu-
rity of Bluetooth devices. [16] presented a brief overview of Bluetooth Technology
in IoT including its security and vulnerabilities. We will discuss the vulnerabilities
present in the legacy versions of Bluetooth and some of the attacks executed on
the Bluetooth devices. According to [16], the Bluetooth version 2.0 and less used
a 4-digit PIN to conduct the pairing sessions. However, since the PIN is too short,
the attackers could easily guess the PIN using simple brute-force schemes. Coming
to versions 2.1 and 3.0, security modes had backward compatibility which enabled
the attacker to connect their devices with security mode 1 which offered no secu-
rity. In addition to this, the usage of static keys led to the MITM attacks. Several
attacks were introduced when Bluetooth technology was released. We are going to
investigate some of the most well-known Bluetooth attacks.

CHAPTER 2. LITERATURE REVIEW 19

2.5.1 MAC Spoofing Attack

The MAC spoofing attack allows an attacker to get unauthorized access to the Blue-
tooth device by masquerading the MAC address or specifically the 48-bit unique
Bluetooth address (BD ADDR) of the device. This attack is performed when the
link keys are being generated. [17]

Figure 2.6: MAC Spoofing Attack with Malicious Node M

Here, the attacker simply imitates as the legitimate user A and sends a spoofed
packet over to device B. The device B thinking the packet is authentic accepts the
connection which gives the attacker access to the device. After that, device B sends
sensitive data to the attacker thinking it is the authentic device. The attacker will
intercept this data and send the modified data to the device A undetected. For this
attack to work, the attacker will use tools to intercept and modify data between
the two legitimate devices.

2.5.2 BlueBump Attack

This attack enables the attacker to get complete access to the victim’s Bluetooth
device and their data. [18] However the attack can be performed in a very limited
range, usually around 10 meters for the smartphones. For this attack, the attacker
first needs to establish a connection to the victim’s device. This is usually done
with social engineering tactics where the user believes the attacker’s device to be

CHAPTER 2. LITERATURE REVIEW 20

authentic. After a successful connection establishment, the attacker exploits its
connection and deletes the link key. This forces the user to create a new link key
with unlimited access to the hacker device as per the attacker’s request packets. If
this step is successful, the attacker will have full access to the user’s device until
the link key is deleted.

Figure 2.7: BlueBump Attack

2.5.3 BluePrinting Attack

The BluePrinting attack is a technique or a method for extracting information and
data about a remote Bluetooth device [19]. The attacker can extract information
such as device firmware, manufacture information, etc. to exploit their specific
vulnerabilities. To execute the BluePrinting Attack, the attacker first finds out
the BD ADDR of the targeted Bluetooth device and then tries to extract detailed
information of the device.

2.5.4 BlueSnarfing Attack

BlueSnarfing is the unauthorized access of sensitive information from a Bluetooth
device by connecting to the target device silently without the user’s knowledge.
Legacy Bluetooth devices communicate with each other using a certain protocol
known as Object Exchange (OBEX). The OBEX protocol has a vulnerability where

CHAPTER 2. LITERATURE REVIEW 21

there is no authentication required which is exploited by the attacker. According
to [20], it is possible for an attacker to connect to the target device without alerting
the owner of the request, and gain access to restricted portions of the stored data
on the phone. The attacker can extract sensitive information such as contacts
from the phonebook, message logs, and more. BlueSnarfing attack, in most of the
cases, can be prevented by turning off the discoverability mode of the Bluetooth
device. However, certain studies have shown that some tools can be used to guess
the device’s MAC address or BD ADDR by brute-forcing techniques [21]. In other
cases, [20], stated that the Bluesnarf attack can also be extended by combining
it with a backdoor attack. If successful, the attacker can not only gain sensitive
information, but they can also get access to certain services like sending an SMS
without the user’s knowledge.

2.5.5 Bluetooth KNOB Attack

Most recently, in August 2019, a new security vulnerability was introduced by [22],
which exploits the low entropy in the encryption key negotiation phase of Bluetooth
BR/EDR. This attack enables an attacker to spy and decrypt the encrypted connec-
tions after which they can manipulate the information and resend it to legitimate
devices. The attack known as Key Negotiation of Bluetooth (KNOB), works when
an attacker forces two or more target Bluetooth devices to agree on an encryption
key with only one byte of entropy. Because of the decrease in entropy, the attacker
can brute-force the encryption key and decrypt the communications. [22] states
that “The encryption key length negotiation process in Bluetooth BR/EDR Core
v5.1 and earlier is vulnerable to packet injection by an unauthenticated, adjacent
attacker that could result in information disclosure and escalation privileges.”

2.6 Related Research Works on Passkey Entry

Protocol

Da-Zhi Sun and Li Sun [23] designed a formal security model to evaluate SSP’s
association models and authenticated link key security. They discussed the security
and the possible vulnerabilities present in the SSP’s association models. This model
simulates the networking of the Bluetooth devices and detects attack vectors when
an SSP session is run over an insecure public channel. Eli Biham and Lior Neumann
[24] discovered a new vulnerability in the ECDH key exchange process. Their attack
successfully allows an adversary to recover the session encryption which is used for
secure data transfer with a success rate of 50% during the pairing attempts. They
accomplished this by modifying the y-coordinate of the public keys of the device
and setting them to zero. By doing this, the computed DHkey value will always
be infinity. Therefore, an adversary could calculate the encryption key this way.
This attack is performed during the public key exchange phase of SSP. Samta

CHAPTER 2. LITERATURE REVIEW 22

Gajbhiya [25] proposed SSP with an enhanced security level which involves SSP
with authenticated public key exchange and delayed-encrypted capability exchange.
The main goal of their protocol is to prevent an attacker from forcing the legitimate
devices to adopt the association model as per the attacker’s convenience. Giwon
Kwon [26] introduced a method to increase the length of the Temporary Key (TK)
by repeating it.

Figure 2.8: Giwon Kwon Proposed Method

They defined a model in which the master is required to select and transmit a
security level through the security level field in the PairingRequest packet. When
a user enters the passkey, the PasskeyRequest packet sets its phase field to 00
which represents the first phase. Then the packet is sent to the response device
where digits are on the display with the requested phase. Now, the requesting
device enters the digits displayed on the response device after which the digits are
concatenated to the TK on both sides. This process is repeated until a satisfactory
security level is reached. They proved that in a conventional Bluetooth LE protocol,
it takes less than 20 seconds for a 3.4 GHz CPU to predict a 6-digit TK which
has about 1,000,000 combinations. However, as the length increases, it becomes
exponentially difficult to brute-force the TK. However, for this protocol, the user
has to enter different passkeys in all devices until a security level is satisfied on all
devices which is redundant and cumbersome for the user.

CHAPTER 2. LITERATURE REVIEW 23

Da-Zhi Sun [27] proposed a novel method of protecting the passkey entry model
in secure simple pairing protocol against MITM even if passkey is reused. After
the passkey is injected into two devices, they generated a random nonce on both
devices A and B and exchange it. Then, A computes a hash using the HMAC-
SHA256 algorithm based on the passkey entered and sets the value r∗a by taking
the six most significant digits of r. The same process is also done at device B and
the rest of the protocol is kept the same. Due to the random nonces, the r∗ values
computed from the hash are different for each connection.

Barnickel [28] researched on the vulnerability on the passkey entry model of
Bluetooth v2.1+ when the user reuses the same passkey for another SSP session.
They implemented the MITM attack with a successful probability of 90% using the
GNU radio platform on Universal Software Radio Peripheral (USRP) and USRP2
devices. They proposed two countermeasures for the MITM attacks. The first is to
record all the previously entered passkeys by the user and reject them if they are
used again. However, this would mean there would be a very high storage cost of
the protocol since it has to store every passkey entered for every SSP session. In ad-
dition to this, it is difficult for a user to enter a new password every time they want
to connect to a new device since even they have to remember the previous passkeys
used. The second countermeasure involved using encrypting and decrypting the
random nonces which would prevent a passive attacker from eavesdropping. How-
ever, it greatly increases the complexity and the performance cost of the protocol
due to the encryption and decryption functions.

Chapter 3

Secure Simple Pairing and
Passkey Entry Protocol

For any kind of data transfer between two or more Bluetooth devices, they first
need to establish a connection and pair. To make it secure, the devices use protocols
such as Secure Simple Pairing under different security modes. The end goal of any
pairing process between two Bluetooth devices is to generate a shared long-term
link key on both sides which is used to transfer data. In classic Bluetooth and
Bluetooth LE, there are a total of five phases in the SSP protocol. SSP strives to
provide security while maintaining minimal user interaction. The primary focus of
our research work is the passkey entry protocol present in the authentication stage
1 phase.

3.1 Architecture of SSP

The SSP is the most important pairing protocol in Bluetooth Pairing. Before
SSP, the Bluetooth technology used a 4-digit PIN code to pair with other devices.
This PIN code was also a part of the Link Key calculation process. Due to the
short length of the PIN code, several vulnerabilities were revealed, and to mitigate
them, SSP was used. [29] The SSP protocol makes use of extremely large random
numbers (usually 128-bit) for seeding Link key calculations. Thus, an attacker
cannot brute-force it. The end goal of the SSP is to generate a shared Link key
between two Bluetooth devices. A shared link key must be linked with a strong
encryption algorithm to give the user protection against passive eavesdropping.
Therefore, SSP uses Elliptic Curve Diffie Hellman (ECDH) to generate the Link
Key (LK) and is used to maintain the pairing. However, The SSP process can still
be subjected to man-in-the-middle (MITM) attacks. To prevent MITM attacks,
the Bluetooth standard has introduced association models that are implemented in
the authentication stage 1 (phase 2) of the SSP.

24

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL25

Figure 3.1: SSP Phases

As shown in Figure 3.1, the working of SSP is the same for any device, ex-
cluding phase 2 which is protocol dependent. All phases of SSP must work in the
same way in every Bluetooth device. As for phase 2, when the IO capabilities are
exchanged before phase 1 of SSP, both devices show what protocols are supported
by them. Based on the compatibility and the requirements, a protocol is selected
and executed.

3.2 How SSP provides security

Usually, an attacker has two ways of obtaining data. The first technique is to
execute passive eavesdropping (usually performed with specially designed tools like
Ubertooth) and capture the transmission packets. By doing this, the attacker can
try to compute the LTK based on the captured data in phase 1 and phase 2. If the
attacker obtains the LTK this way, then they can simply calculate the encryption
key which is originally derived from the LTK. Thus, when two legitimate devices
transfer data using this encryption key, the attacker can again capture the data
packets and simply decrypt them using the deduced encryption. This way, they
can gain access to sensitive data.

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL26

The second technique is to execute a MITM attack. This technique is more
dangerous because if successful, the attacker has a trusted connection with the
legitimate device and can request data or send malicious files to the target device.
In the case of passive eavesdropping, the attacker can only access the data which
is transferred between two legitimate devices. However, when it comes to active
attacks such as MITM, the attacker and the target devices share the same LTK.
Therefore, an attacker can enable data transfer requests whenever they require
provided that the target device has its Bluetooth switched on.

In terms of security, the SSP protocol has two goals. The first goal is to protect
the devices from passive eavesdropping. The second goal is to protect the devices
from MITM attacks. SSP provides protection from these attacks in the authentica-
tion stage 1 and authentication stage 2. In authentication stage 1, the SSP tries to
prevent any MITM attacks by using either the numeric comparison or the passkey
entry protocol based on the IOcap of devices. That way, if an attacker was able to
intercept the communication in phase 1 of SSP, it prevents the attacker from ob-
taining the LTK by performing authentication in phase 2. In authentication stage
2, the DHkey which is computed in phase 1 is verified which protects the device
from passive eavesdropping. This way, an attacker cannot obtain the LTK which
is needed to transfer data between devices.

3.3 SSP Phase 1: Public Key Exchange

When two Bluetooth devices want to transfer data between each other, they first
need to establish a secure connection between them. For this purpose, SSP is used
which provides authentication, confidentiality, and integrity. Whenever a Bluetooth
device wants to connect with another device, it broadcasts advertisement packets
within its range. The device which is broadcasting the advertisement packets is
known as the advertising device. When a device is in advertising mode, it is discov-
erable by all other Bluetooth devices within its vicinity. The device which wants to
connect to the advertising device is known as the initiating device and is responsible
for sending an initiate packet to the advertising device. After the initiating device
establishes a connection with the responding device, the input-output capabilities
(IOcap) are exchanged between the two devices to select a security mode. It is in
this step that both devices select the required SSP association model as the pair-
ing protocol and proceed with the protocol. The IOcap is generated by combining
the input and output capabilities. Every Bluetooth device has a specific set of
capabilities. The input capabilities of any Bluetooth device are given in Table 3.1

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL27

Capability Description

No Input
Device does not have any input

capabilities to indicate any mes-
sage (like ’Yes’ or ’No’).

Yes / No

Device has at least one button
which the user has to press to in-
dicate an ’Yes’, otherwise the de-
vice assumes the value as ’No’.
Alternatively, device might con-
tain two buttons indicating ’Yes’
and ’No’.

Keyboard

Device has a keyboard through
which the user can enter a
passkey and also has two button
for confirmation and rejection.

Table 3.1: Input Capabilities of a Bluetooth Device

Similarly, the output capabilities of a Bluetooth device are given in Table 3.2

Capability Description

No Output

Device does not have any output
capabilities such as a display to
indicate any message or a passkey.

Yes / No
Device has the capability to com-
municate or display the 6-digit
passkey.

Table 3.2: Output Capabilities of a Bluetooth Device

In each Bluetooth device, the input and output capability is combined to gen-
erate a single IOcap specific to that device. This IOcap is then used in the pairing
process. The IOcap mapping of Bluetooth devices are given in Table 3.3

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL28

Local Output capacity

No Output Numeric Output

No input
NoInputNoOutput

DisplayOnly

Yes/No
NoInputNoOutput

DisplayYesNo

Keyboard KeyboardOnly KeyboardDisplay

Table 3.3: IOcap of a Bluetooth Device

In the first phase of SSP, the public keys of both devices are exchanged between
each other. On both sides, a public and private key pair are generated by using the
ECDH algorithm.

3.3.1 ECDH

The Secure Simple pairing protocol was first introduced in the Bluetooth version
2.1. Later, Bluetooth LE also adopted the SSP for connections in version 4.0.
However, the version 4.0 SSP (now legacy SSP) in Bluetooth LE did not use ECDH
for public key exchange. This led to a few vulnerabilities where an attacker could
passively capture packets and try to deduce the shared link key. Therefore, in
version 4.2, secure connections mode was introduced where ECDH was for the
public key exchange phase to prevent passive eavesdropping. The ECDH algorithm
is a public key cryptographic system that allows two devices, to establish a shared
secret over an insecure channel without explicitly communicating the secret keys
of both sides. The shared secret key is known as the Diffie-Hellman Key (DHKey)
and it is calculated at both sides. [30] The ECDH is a variant of the Diffie-Hellman
protocol using elliptic-curve cryptography. Each device will have its public-private
key pair used to establish a connection. And to generate them, ECDH uses six
parameters or variables as shown in table 3.4.

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL29

Parameters Description

p
Prime number that specifies the

size of the finite field.

a,b
Coefficients of the elliptic curve

equation.

G
Base point that generates the

subgroup.

n Order of the subgroup.

h Co-factor of the subgroup.

Table 3.4: ECDH domain parameters

In ECDH, the private key of the device is generated by choosing a random
integer d from [1,...,n-1] where n is the order of the subgroup [31]. The public key
is derived as a point Q = d · G where G is the base point of the subgroup. The
public key is sent when the connection is needed to be established.

Figure 3.2: Communication using ECDH

As shown in Figure 3.2, if device A wants to connect to device B, the first step

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL30

for both devices is to generate their public and private key pairs. After the key
pairs are generated they exchange their public keys with each other on an insecure
channel. If the device A has a key pair of (da, Qa) and the device B has a key
pair of (db, Qb), then both devices exchange their public key values (Qa, Qb) with
each other. Here, da and db are the secret keys of the device A and B respectively
and are not disclosed to either side. After the public key exchange, the device A
computes a point from its elliptic curve DHkey = (da · Qb). Likewise, device B
computes a point from its own elliptic curve DHkey = (db · Qa). Thus, a shared
secret key (DHKey) is calculated on both sides. [30] The shared secret calculated
by both parties is equal, because

da ·Qb = da · db ·G = db · da ·G = db ·Qa

In this run, the only information an attacker can passively capture are public keys
of both devices. However, the attacker has no way of computing the secret keys
from the public keys unless they solve the discrete logarithm problem. Although
the ECDH algorithm is secure, it provides no authentication during its public
key exchange phase. As a result, an attacker can execute a MITM attack on two
devices that are trying to communicate with each other. If an attacker executes
the attack in such a way, then the legitimate device and the attacker will have the
same DHKey. Therefore, additional security measures like AES ciphers and HMAC
are necessary when working with ECDH. It is also advised that the public-private
key pair of ECDH must be changed regularly to avoid a lack of entropy.

Coming back to the execution of phase 1 in SSP, the initiating device A
sends its public key to the advertising B. After receiving the public key of A,
device B also sends its own public key to A. When the public key exchange is
successful, both devices start computing the DHKey based on their secret key
and the public key of the other device. For example, at device A, the DHkey is
calculated as P256(SKa, PKb) or P192(SKa, PKb) depending on the length of
the elliptic curve P. This length is determined by the support of the two device’s
controllers. Here the SKais the secret key of the device A and the PKa is the
public key of the device A. If there is no secure connections support, then the
protocol will use P192. Alternatively, if secure connections mode is active, then
P256 is used during the calculation of DHKey. Thus, at the end of this phase, a
shared DHKey is generated which is used to generate Link Key in a later phase.
[32] The elliptic curve P256 provides roughly equivalent security 128-bit secret
key, yet the output shared secret is 256 bits. [33] In phase one, both devices select
which pairing method should be used based on the Attribution protocol (ATT)
values in the L2CAP layer.

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL31

Figure 3.3: SSP Phase 1: Public Key Exchange

If an adversary knows the frequency hopping pattern of both devices and per-
forms a passive capture on the connection in this phase, they can obtain the public
keys of device A and device B. This information is crucial to the attacker because
the public keys are used to compute the commitment values in authentication stage
1. Alternatively, an attacker can also perform a MITM attack by intercepting the
connection between the two devices and transmitting their public keys to both
devices. This way, the attacker will have two DHKeys, where device A and the
attacker will share the same DHkey and the other key will be shared with device B
and the attacker.

3.4 SSP Phase 2: Authentication Stage 1

This stage consists of 3 association models. In Bluetooth LE, the just works model
integrates with the numeric comparison model. Aside from these two models, we
have the out of band model and the passkey entry model. This phase is dependent
on the IO capabilities of both devices. Based on the IOCap, the compatible asso-
ciation model is selected. Since our research focus is on the passkey entry model,
we will not be discussing the other association models in detail.

To prevent MITM attacks, the Bluetooth standard employs three association
models that are implemented in the authentication stage 1 (phase 2) of the SSP.
The models are as follows:

• Just Works Model: This model is ideally used for scenarios where at least one
device has no output display or any input capability, e.g. wireless speaker.
The just works model does not provide any protection against MITM attacks.

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL32

• Numeric Comparison model: This model is used when both devices have dis-
play capabilities as well as input capability for the user to enter “yes” or “no”.
This user confirmation is required for the device to know that the other de-
vice is legitimate and authentic and is, in fact, the same device the user is
trying to connect to. [1] The numeric comparison model offers limited pro-
tection against MITM attacks with the attacker having a success probability
of around 0.000001 on each iteration of the protocol.

• Out of Band model: This model is used when both devices can support com-
munication over additional wireless channels e.g. near field communication
(NFC). The out of band (OOB) channel ideally is resistant to MITM attacks.
If not, there is a possibility that the data might be compromised during the
authentication phase.

3.4.1 Passkey Entry Model

This model is used in scenarios where one device has input capability but does not
have any output display capability. In this case, the user enters an identical 6-digit
passkey on both devices. Alternatively, the passkey might be randomly generated
by an algorithm in one device and displayed, which the user then inputs into the
other device. The passkey entry model architecture is shown in the Figure 3.4.

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL33

Figure 3.4: SSP Phase 2: Passkey Entry Protocol

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL34

Parameter Description

PKax
X-coordinate of public key of

device A.

PKbx
X-coordinate of public key of

device B.

ra or rb
Random 6-digit passkey gener-

ated by User.

rai
The ith bit of 20-bit passkey sent

by device A.

rbi
The ith bit of 20-bit passkey sent

by device B.

Nai Random 128-bit Nonce.

Nbi Random 128-bit Nonce.

Cai
Commitment Value calculated

by device A.

Cbi
Commitment Value calculated

by device B.

Table 3.5: Passkey Entry Parameters

In this model, the host or the user enters a 6-digit identical passkey on both
devices A and B. The 6-digit passkey which is of 20-bit length is then stored into
ra and rb. After injecting the passkey, the steps 3-8 are repeated for 20 times and
each round is denoted with the integer i which has a range of 1 <= i <= 20.
For every round, exactly one bit of passkey is sent to the other device. In
each round, a 128-bit random nonce Nai and Nbi is generated accordingly at
both sides. After that, the device A computes a commitment value Cai using
f1(PKax,PKbx,Nai,rai) and sends it to device B. B also generates the commitment
value Cbi using f1(PKbx,PKax,Nbi,rbi) and sends it to device A. After exchanging
the commitment values, the device A sends its Nai value to B. Now, the device B,
uses the Nai value sent by A to check if Cai = f1(PKax,PKbx,Nai,rbi) and if the
check passes, the device B will also send its Nbi value. If the check does not pass,
the protocol is aborted and the SSP session will need to be run again. The same
procedure is followed at the device A also. According to the Bluetooth standard,
the gradual disclosure of the passkey in this way prevents leakage of more than 1
bit of the passkey making it difficult for an MITM attacker to crack it. At the end
of this stage, the values of Na and Nb are set to Na20 and Nb20 which are later
used in the next stage, authentication stage 2. Here, f1() is a cryptographic hash
function used to calculate the commitment values of Cai and Cbi.

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL35

3.4.2 f1() function

The f1() function in the passkey entry phase model is cryptographic hash function
which uses HMAC-SHA256. The 128-bit commitment values computed in step 4
uses this algorithm along with a 128-bit key for HMAC. This 128-bit key is the
random nonce Na and Nb. For the simple pairing f1() function, there are a total
of four inputs. The f1() function is defined as

f1() = HMAC-SHA256X(U ||V ||Z)/2128

Input Parameter Size in P192 Size in P256

U 192 256

V 192 256

X 128 128

Z 8 8

Table 3.6: f1() function Inputs

At device A, the commitment values are generated by taking the PKax, PKbx,
Nai, and rai as inputs to f1() function. The same procedure at device B. The
random 128-bit nonce acts as the input X and is used as the key for HMAC function.
Using the 128-bit random nonce provides security as it is highly difficult for an
attacker to brute a 128-bit passkey. In addition to this, a new random nonce is
generated in each round. [1] rai is one bit value of the passkey expanded to 8 bits
(either 0x80 if ra = 0 or 0x81 if ra = 1).

3.4.2.1 HMAC-SHA-256

The Hashed Message Authentication Code (HMAC) is a variant of the MAC which
involves a cryptographic hash function like SHA-2 and a secret cryptographic key.
The main goal of a MAC function is to provide data integrity and the authenticity
of a message. [34] When a message of any length less than 264 bits (for SHA-256) is
input to a hash algorithm, the result is an output called a message digest (MD). The
SHA-256 is a secure hash algorithm because it produces a 256-bit unique MD which
is impossible for an attacker to brute-force through. In the Bluetooth standard,
the SHA-256 is used as the hash algorithm with the HMAC function. The HMAC
is run in two phases.

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL36

Figure 3.5: HMAC-SHA256 basic operation

As shown in Figure 3.5, when a secret key is selected, the HMAC uses the
secret key to generate two different keys. The secret key is XORed and two keys
are derived by performing inner padding and outer padding. In the next phase, the
input message is concatenated with the inner paddedkey which uses repeating
bytes of value 0x5c and the SHA-256 is used to generate a unique hash. After
this, the resultant hash is concatenated with the outer paddedkey which uses
repeating bytes of value 0x36 and a new hash is generated. The resultant hash is
the final output of the HMAC function. [35] The reason for using the hash function

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL37

two times is to provide better protection against length extension attacks. The
strength of an HMAC function greatly depends upon the length of the secret key
and the hash algorithm used.

3.5 SSP Phase 3: Authentication Stage 2

With the completion of the authentication stage 1, the devices move to the next
phase of the protocol to complete the second stage of the authentication which is
the message exchange between the devices.

Figure 3.6: SSP Phase 3: Authentication Stage 2

Parameter Description

ra or rb Entire 20-bit passkey.

IOcapA or IO-
capB

IO capabilities of device A and
device B.

Table 3.7: SSP Phase 3 Parameters

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL38

In this phase, the device A computes a new confirmation value Ea using
f3(DHkey,Na, Nb, rb, IOcapA,A,B) and B computes a confirmation value Eb

using f3(DHkey,Nb, Na, ra, IOcapB,B,A) simultaneously. After the computa-
tions, the device A sends the Ea to device B where B checks the Ea with
f3(DHKey,Na, Nb, rb, IOcapA,A,B). If the check fails, the protocol aborts. If
the check passes, the value of Eb is sent to device A where A also checks the Eb

with f3(DHKey,Nb, Na, ra, IOcapB,B,A). If the check fails, the protocol aborts.
Here the value of ra and rb is the entire 20-bit passkey. With this step, the message
exchange between both devices is complete and the DHkey values are verified.

3.5.1 f3() function

The f3() function uses the HMAC-SHA-256 algorithm to generate and verify the
confirmation values Ea and Eb. It uses the shared DHkey as the secret key for
HMAC function. The f3() function has a total of six inputs. The f3() function is
defined as

f2() = HMAC-SHA256W (N1||N2||R||IOcap||A1||A2)/2128

Here, the input A1 is the 48-bit unique BD ADDR of device A and the input
A2 is the BD ADDR of device B. The R is defined as the 6-digit passkey.

Input Parameter Size in P192 Size in P256

W 192 256

N1 128 128

N2 128 128

IOcap 24 24

A1 48 48

A2 48 48

Table 3.8: f3() function Inputs

3.6 SSP Phase 4: Link Key Calculation

After the authentication stage 2 is successful between two devices, a shared link key
is generated by using f2(DHkey,Na, Nb, btlk, BD ADDRa, BD ADDRb) at both
sides. The order of the parameters must be the same in order to calculate the same
key. The end goal of an attacker is to obtain this key.

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL39

Figure 3.7: SSP Phase 4: Link Key Calculation

3.6.1 f2() function

Similar to the f3() function in phase 2 of SSP, this uses the HMAC-SHA-256 al-
gorithm with the DHKey as the key for HMAC. As shown in Figure 3.7, the f2()
function is mainly used for the generation of a Link key. For the simple pairing
f2() function, there are a total of six inputs. [1] The output of the f2 function is
taken as the 128 most significant bits of the output of HMAC-SHA-256. The f2()
function is defined as

f2() = HMAC-SHA256W (N1||N2||keyID||A1||A2)/2128

Input Parameter Size in P192 Size in P256

W 192 256

N1 128 128

N2 128 128

keyID 32 32

A1 48 48

A2 48 48

Table 3.9: f2() function Inputs

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL40

3.7 SSP Phase 5: LMP Authentication and En-

cryption

Once the shared link key is established at both sides, the authentication process
and the encryption key generation process is completed based on the link key. The
steps followed in this phase are identical to the ones in the legacy pairing. Since
we are only focusing on the passkey entry model, we do not delve into the details
of this phase.

3.8 Vulnerability in Passkey Entry Protocol

Consider a scenario where a peripheral Bluetooth device starts advertising within
its range. The master device initiates a connection with the peripheral device by
sending its BD ADDR, clock information, and the frequency hopping pattern. Both
devices are now synchronized with each other and form a piconet where the initiat-
ing device is the master and the advertising device is the slave. If an attacker was
able to capture the frequency hopping pattern of these devices in the piconet, they
can establish passive eavesdropping for the subsequent transmission packets. When
the two legitimate devices exchange their IOcap and start the SSP process, the at-
tacker can start passively capturing packets. Note that the Bluetooth standard
uses ECDH public key exchange in phase 1 to prevent passive eavesdropping. It is
very important to make sure the DHkey is always secure in case of passive eaves-
dropping. An attacker can then passively capture all the packets sent during the
public key exchange and the passkey entry protocol and try to deduce the passkey
used. In the Phase 2 or authentication stage 1 phase, the Bluetooth standard uses
the commitment protocol to make sure that both parties have the same passkey.
That method works well if the user will change the passkey each time when the
connection has a problem. Unfortunately, in practice very likely users will use the
same passkey for many times, which will cause serious security problems.

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL41

Figure 3.8: Passive Eavesdropping on SSP session

For instance, a passive attacker can capture all the commitment values (Cai and
Cbi), random nonce (Nai and Nbi) and deduce each bit of passkey r by computing
their own commitment f1(Pkax, PKbx, Nai, r

′
ai) and comparing it with the original

value. Since the value of the rai is always either a 1 or 0, the attacker can easily
obtain the entire passkey. In this way, the attacker can figure out the correct rai.
Ideally, we should not reuse the same passkey again, however, most users tend to
reuse the old passkey again for simplicity and ease. This enables the attacker to
launch a MITM attack with the known passkey successfully communicating with
the two devices simultaneously. In this way, after capturing all the packets and
deducing the passkey, the attacker will proceed to launch a MITM attack with the
obtained passkey.

To launch a MITM attack, the attacker will follow the same procedure as that
of the passive capture. They will first acquire the frequency hopping pattern.
Then, they will intercept the communication packets exchanged between the two

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL42

legitimate devices and modify the data with their data. Since the public keys used
in Bluetooth do not have certificates, the Bluetooth standard uses phase 2 to check
the authentication. The main idea is that if there is a MITM attack in Phase 1,
then the Bluetooth standard will try to prevent the attacker from connecting by
using one of the association models in Phase 2. So we can always assume that
there is a MITM attack in Phase 1, and then check if the authentication process in
Phase 2 always works. As we have already indicated that the attacker can perform
a MITM attack in Phase 1, we can see that the attacker will be able to know all the
information except the passkey r in Phase 2. However, if the attacker has already
deduced the passkey using passive eavesdropping technique described earlier, then
they can execute a MITM attack with the passkey knowledge and complete the
authentication stage 1 successfully. By achieving this, the attacker and device A
will compute the same LTK and the device B and the attacker will compute the
same LTK. Based on this, an encryption key is derived. Here, device A and device
B will believe that the connection was successful and begin to transfer data. But
in reality, the device A and B will be sending the data to the attacker. In addition
to this, the attacker can also request for sensitive data with the two devices. Note
that if a MITM attack is successful, then the connection between device A and
device B will only work when the attacker is present because device A and device
B will have different LTKs.

As shown in Figure 3.9, after deducing the passkey from passive eavesdropping,
the attacker M can simply execute a MITM attack. Since ECDH does not provide
any authentication, the attacker can spoof their public keys and initiate a connec-
tion with device A and B. The attacker sends their public key PK

′
e to device A

and device B. Here, the device A thinking that the public key belongs to device B
accepts the public key of attacker E and computes the DHkey. The device B follows
similar steps as of A. After the public key exchange is completed, the attacker will
enter the same passkey which was used for their previous session. Since the attacker
deduced the passkey from passive eavesdropping, they follow the same steps as the
other devices. In step 3, attacker will generate a random nonce N

′

mi and compute
the commitment value C

′

ei. The computed commitment values are sent to device
A and B. Both devices, A and B, verify the commitment values by using the ra
and rb. The verification will be successful and the next bit is sent. This process is
repeated for 20 rounds where one bit of the 20-bit passkey is exchanged between
the attacker and the target devices A and B. Since the value of the passkey is the
same, the passkey entry protocol will successfully finish and the attacker will go to
the next phase of SSP. The authentication stage 2 will be completed and the link
keys will be calculated. Here, two link keys are generated where device A and the
attacker will have the same link key and the device B and the attacker will have
another same link key.

CHAPTER 3. SECURE SIMPLE PAIRING AND PASSKEY ENTRY PROTOCOL43

Figure 3.9: MITM on SSP session

Chapter 4

Enhanced Passkey Entry Protocol

4.1 An Improved protocol by Sun and Mu

Sun and Mu in [27] proposed an improved passkey entry protocol as a countermea-
sure to passkey reuse. We will refer to this protocol as the SM protocol. They
proposed an improved passkey entry protocol in which before the run of sending
each bit of passkey (steps 3-8) in Figure 3.4, they generate a new random nonce on
both sides and exchange them. Then, they compute r = f2(DHkey,Na0, Nb0, ra)
at device A and r = f2(DHkey,Na0, Nb0, rb) and set the six most significant digits
of r to r∗a. This protocol needs a generation of two additional 128-bit random nonces
as well as two additional cryptographic hash function f2() which is originally used
in the generation of link key in SSP phase 4.

As shown in Figure 4.1, after injecting the passkey r on both sides, the de-
vices A and B generate two random nonces Na0 and Nb0. The two nonces
are sent to each other. Then, on device A, a new hash value is computed as
r = f2(DHkey,Na0, Nb0, ra) and the six most significant digits of r is set to r∗a.
The device B computes the hash value r = f2(DHkey,Na0, Nb0, rb) and sets the
six most significant digits of r to r∗b . The rest of the protocol, the steps 5-10, is run
the same as that of the original passkey entry model. In their protocol, the random
passkey r is used as a seed of the authentication passkey.

Now, even if the user uses the same passkey next time, the attacker cannot
easily attack since each time the values of r∗a and r∗b will be different.

44

CHAPTER 4. ENHANCED PASSKEY ENTRY PROTOCOL 45

Figure 4.1: Da-zhi Sun Improved Passkey Entry Model

CHAPTER 4. ENHANCED PASSKEY ENTRY PROTOCOL 46

4.1.1 An attack on SM protocol

For our attack to work, we are assuming that an adversary has achieved the follow-
ing.

• They know the frequency hopping pattern and have intercepted the commu-
nication packets.

• Modify the communication packets and send the modified data to both legit-
imate devices so that one computed DHkey will be equal with device A and
the attacker and other DHkey will be equal with the attacker and device B.

• Attacker has obtained at least three to four r* bits from the MITM attacks
conducted on SSP sessions.

Consider a scenario where an attacker is simultaneously trying to establish a
connection with both devices A and B. If we assume that the device A and de-
vice B have a fault tolerance system where they allow three to four consecutive
SSP sessions with minimal delay in the event of failure, the attacker can try to
establish consecutive sessions to device A and device B event in the event of failure
of prediction of bits. When an attacker has successfully completed the public key
exchange, then they have two DHKey values, one with device A and another with
device B. If we assume that an attacker was able to correctly predict around 8-bits
of the r∗a and r∗b , then a simple brute-force would greatly increase the chances of
the attacker to predict the correct passkey. This is because aside from the passkey
r, the attacker knows the values of DHkey, Na0, and Nb0. So after the SSP session
fails due to the incorrect passkey bit, the attacker can simply brute-force all the
combinations of passkey and match the output with the 8-bits of r∗a. Out of the
passkeys which match, there is going to be the correct passkey. The attacker can
now take the list of the matched passkeys and perform a dictionary attack and
try those combinations with the first 8 bits of r∗b of another SSP session. By doing
this, the attacker can eventually obtain the correct passkey within 2-3 SSP sessions.
When the passkey is known, the attacker will simply execute another MITM attack
but this time, they will be successful because of the correct passkey and will be
able to obtain the LTK.

By using our brute attack given in Algorithm 1, an attacker can easily find
the passkey by trying the potential passkey list. For our simulation of the brute-
force attack, we used a desktop computer with an Intel i7 2.20GHz processor. The
simulation took less than 12 seconds to obtain the correct passkey for 2 consecutive
SSP sessions. Note that for our experiment, we are considering that an attacker
has successfully obtained at least 6 bits of r∗a and r∗b for one SSP session. Even with
a shorter r∗a and r∗b , the attacker can still try to brute-force but will most likely
need to execute MITM on more SSP sessions. But eventually, the list of potential
passkeys will only decrease and the attacker will obtain the correct passkey. The
main reason for this attack to succeed is that we have a limited keyspace of 220.

CHAPTER 4. ENHANCED PASSKEY ENTRY PROTOCOL 47

If the attacker knows partial digits of the passkey then it becomes even easier for
them to crack it possibly in one session.

In the table 4.1, we use our brute-force algorithm to try and deduce the correct
passkey. The inputs of the algorithm are as follows.

• The DHkey value which is shared between the target device and the adversary.

• The obtained r∗ bits from the SSP session with the target device.

• The 128-bit random nonce, N0, sent by the target device to the adversary.

• The 128-bit random nonce, Nx0, generated by adversary X.

For each session, these values are updated again. In our attack, we are assuming
that the attacker knows 8 bits of r∗a and r∗b . And since the attacker already knows
the values of DHkey, Na0, and Nb0, we compute r = f2(DHkey,Na0, Nx0, i) where i
is the potential passkey that the legitimate user has used. Now, we set the n most
significant bits of r to r′x where n is the number of bits an attacker has obtained
during the MITM attack. If the value of r′x is equal to the first n obtained r bits,
then the value of i is added to the list of potential passkeys. A new combination i is
tried and if the r′x is equal to the first n obtained of r bits, then the potential passkey
list is updated. This process is repeated until all combinations are exhausted and
the potential passkey list is obtained. Then, using that potential passkey list, we
move on to the next round, where we use the obtained potential passkeys from
round 1 and execute r = f2(DHkey,Nx0, Nb0, i) where i is one of the potential
passkeys. Similar to round 1, we set the n most significant bits of r to r′x and
compare the value with obtained r bits of device B. We repeat the process until the
list of passkeys is tried. If equal, we update our potential passkey list. Note that
this is still only one SSP session where the attacker has obtained the r∗b bits from
device B. We repeat the rounds with an updated potential passkey list for every
round until there is only one potential passkey left which is the correct passkey. The
attacker can also significantly increase the chances of deducing the right passkey
if they know at least 1 or 2 digits of the passkey as it greatly reduces the number
of combinations to brute-force. Note that we have executed our brute-force attack
by taking every possible combination of the 6-digit passkey whereas ideally, it is
said that the user must enter at least a 4-digit passkey. If the attacker knows
that the length of the passkey should always be greater than 3, then the possible
combinations will also decrease increasing the attack success probability.

CHAPTER 4. ENHANCED PASSKEY ENTRY PROTOCOL 48

No. of Potential Passkeys (Output)

Values Test Case 1 Test Case 2 Test Case 3

Round 1

Execute f2(DHKey, Na0,
Nx0, i) obtained from de-
vice A and attacker X in
1st SSP session.

7710 7835 7933

Round 2

Execute f2(DHKey, Nx0,
Nb0, i) obtained from de-
vice B and attacker X in
1st SSP session.

56 70 67

Round 3

Execute f2(DHKey, Na0,
Nx0, i) obtained from de-
vice A and attacker X in
2nd SSP session.

1 1 1

Correct Passkey 893562 120736 544557

Execution Time 8.75 Seconds 8.86 Seconds 8.88 Seconds

Table 4.1: Experiment Test Cases

CHAPTER 4. ENHANCED PASSKEY ENTRY PROTOCOL 49

Algorithm 1 brute-force algorithm

1: Initialise DHkey, Na0, Nb0, newlist[] and count = 0 obtained from first SSP
session.

2: for i in range of (0..1000000) do
3: if i≤1000000 then
4: prepend zeros to i to make it 6-digit.
5: end if
6: Generate rx = HMAC-SHA256(DHkey, Na0, Nb0, i)
7: Set n most significant of rx to r′x where n is the obtained number of r∗a bits

by the attacker.
8: if r′x ==r∗a then
9: newlist[count] = i (Adding i to the list of potential passkeys.)
10: count = count + 1
11: print(Match found. Potential Passkey = i)
12: end if
13: end for
14: procedure consecutivebrute(DHkey, Na0, Nb0, newlist, count)
15: Initialise DHkey, Na0, Nb0 obtained from next consecutive SSP session.
16: newcount = 0
17: for i in range of (0..count) do
18: if newlist[i]≤100000 then
19: prepend zeros to newlist[i] to make it 6-digit.
20: end if
21: Generate rx = HMAC-SHA256(DHkey, Na0, Nb0, newlist[i])
22: Set n most significant of rx to r′x where n is obtained number of r∗a bits

by the attacker.
23: if r′x ==r∗a then
24: newlist[newcount] = i (Adding i to the list of potential passkeys.)
25: newcount = newcount + 1
26: print(Match found. Potential Passkey = newlist[i])
27: end if
28: end for
29: end procedure
30: Execute consecutivebrute(DHkey, Na0, Nb0, newlist, count) with a new list of

potential passkeys until the correct passkey is found.

We have done a simulation where we tested the resilience of the SM passkey
entry model against the brute-force attack. For this specific simulation of the brute-
force attack, we used a desktop computer with an Intel i7 2.20GHz processor. We
have performed the brute-force attack when 4,5,6 and 7 bits of r* are known to the
attacker. The brute-force attack was conducted 50 times with each known r* value
and the average SSP sessions required were calculated for each r* value as shown
in Figure 4.2.

CHAPTER 4. ENHANCED PASSKEY ENTRY PROTOCOL 50

Figure 4.2: SM protocol resistance against brute-force attack

It is easy to see that if the attacker knew the DHkey, then they will be easily
able to get the value of r∗a. Alternatively, the attacker can try to set up a random
20-bit string r̂∗a. Then use the same formula to calculate Ca

i , except using the bit
from r̂∗a instead of r∗a. By comparing the value with the value Ca

i downloaded, they
can correct r̂∗a bit by bit to get the exact value of r∗a.

We note that, for security reasons, we may assume that an attacker knows all
the information except the value or ra in the authentication stage of SSP Phase 3.
At this point, we will think that the SM protocol is not resistant enough against
the aforementioned brute-force attack to prevent the reusing passkey problem.

4.2 Proposed Enhanced Passkey Protocol

To improve the security of the passkey protocol, we propose an alternate to [27],
our enhanced passkey entry protocol. Our protocol does not differ much from the
original protocol in Bluetooth standard and in addition to that, there are only 10
rounds in our protocol which significantly reduce the power and communication
costs of the devices. The main idea of our protocol is to never reveal the original
passkey until phase 3 of the SSP. We also make use of the properties of the DHKey
in the ECDH algorithm to generate a 256-bit hash from passkey r. Therefore, we
use a derivative hash of the original passkey r and use that to run the entire passkey

CHAPTER 4. ENHANCED PASSKEY ENTRY PROTOCOL 51

entry protocol. In our protocol, there are 2 different bits exchanged and verified at
each side for each round resulting in 20-bits being exchanged altogether.

Figure 4.3: Enhanced Passkey Entry Model

CHAPTER 4. ENHANCED PASSKEY ENTRY PROTOCOL 52

Parameter Description

PKax
X-coordinate of public key of de-

vice A.

PKbx
X-coordinate of public key of de-

vice B.

ra or rb
Random 6-digit passkey gener-

ated by User.

r′a or r′b
256-bit hash value of the six-digit
passkey.

r∗ai
The n′bth bit of 256-bit hash sent

by device A.

r∗bi
The n′ath bit of 256-bit hash sent

by device B.

n′a or n′b
8-bit random Integer with range

0-255.

Nai Random 128-bit Nonce.

Nbi Random 128-bit Nonce.

Cai
Commitment Value calculated by
device A.

Cbi
Commitment Value calculated by
device B.

Table 4.2: Enhanced Passkey Entry Parameters

As seen in Figure 4.3, when the user enters the random passkey on both devices,
we make use of the f2() hash function of the original passkey entry protocol to
create a 256-bit hash value from the input passkey r. We use the shared DHKey
calculated in the public key exchange phase as the key for the HMAC function
and the input message, 20-bit passkey. The resultant hash is denoted as r′a and r′b
respectively. The computed hashes r′a and r′b calculated in steps 3a and 3b have
the same value since the passkey is same at both devices. After generating these
values, the steps 4-12 are executed for 10 times. In steps 4a and 4b, an 8-bit random
integer n′ (where 1 <= n′ <= 255) is generated at both sides i.e., n′a and n′b for
device A and device B respectively. This random integer defines the position at
which the passkey bit is to be taken from r′a and r′b. After generating the random
integers, both devices perform an XOR operation with the 8-bit random integer
n′ and the ith set of 8-bits of the r′. Both values are exchanged in steps 5 and
6. Next, at device A, we compute the XOR as (n′b ⊕ r′b) ⊕ r′a and obtain the n′b
value. Then, we set the n′bth bit of 256-bit r′a hash value to the r∗ai bit. For
instance, if the random number n′b is 20, then we set the value of the 20th bit of

CHAPTER 4. ENHANCED PASSKEY ENTRY PROTOCOL 53

r′a hash as r∗ai. The same process is followed at the device B where we calculate
(n′a ⊕ r′a) ⊕ r′b to obtain the n′a. Since the values of the r′a and r′b are equal, the
XOR operation will derive the correct values. After setting the r∗ai and r∗bi values,
both devices generate a 128-bit random nonce. In steps 10a and 10b, the device A
computes a commitment value Cai= f1(PKax,PKbx,Nai,r

∗
ai) and device B computes

a commitment value Cbi= f1(PKbx,PKax,Nbi,r
∗
bi). Both commitment values are

exchanged between the two devices. Then, the device A sends the 128-bit random
nonce Nai. After receiving the random nonce Nai, the device B sets the r∗bi with
the value at n′b

th bit of r′b hash. Next, the commitment value Cai is checked by
verifying Cai= f1(PKax,PKbx,Nai,r

∗
bi(n

′
bposition)). If the two Cai values match,

then the protocol is continued. The device B sends the random nonce Nbi and
random integer n′b. The same process is followed at device A and the commitment
values are verified. This process is repeated for 10 rounds where two bits of the
256-bit r′ hash are sent randomly by two devices in each round.

In our proposed protocol, only 10 rounds are needed due to the fact that two
different bits are exchanged in each round. If an attacker conducted a MITM
attack, they have to predict the correct r∗ai bit with device A and the correct r∗bi
bit with device B in the same round. Even if the attacker predicts a correct r∗ai bit
with device A, they cannot use the same value with device B because the random
integer will be different thereby enabling device B to select another value in the
random integer position from the r′ hash. Therefore, in 10 rounds, we are effectively
providing the security of 20 rounds.

The main idea of our proposed protocol is to use bits from the random position
of the hash value of the passkey to do the commitment instead of using the bits
of passkey. To keep the position information secure, we again use the hash value
as the one-time pad encryption key to encrypt the information of positions. In our
protocol, the passkey is never used to communicate between two parties. Since the
random position is used, Algorithm 1 does not work for our protocol.

4.3 Security of Enhanced Passkey Entry Proto-

col under passive Eavesdropping and MITM

attacks

Compared to the original passkey entry protocol, our enhanced protocol provides
protection against passive and active attacks. Consider a scenario where the at-
tacker X captures all the commitment values and the random nonce of the passkey
entry protocol run using passive eavesdropping. Note that here, we are assuming
that the attacker already has the knowledge of the frequency hopping pattern of
the target devices. By doing this, the attacker effectively obtains the public keys
of device A and device B. Then in the passkey entry protocol run, the commitment
values and the random nonces are obtained. Now, the attacker X can try to deduce
the value of r∗ bits by comparing the commitment values but X cannot find out the

CHAPTER 4. ENHANCED PASSKEY ENTRY PROTOCOL 54

original passkey r from the r∗ bits. Therefore, even though X knows r∗, they cannot
deduce the original passkey using just that because the r∗ bits are generated from
the hash function which uses the original passkey r as the message and the DHkey
as the key for the HMAC operation. At most, the attacker would have 10 bits of
the r∗ai and r∗bi values which are exchanged in each round. However, these values
are not enough to deduce the entire hash. In addition to this, even if the DHkey is
known which is extremely difficult to deduce, the attacker would still not know the
position of the r∗ bits which are exchanged due to XOR operations. In addition to
this, the r′ value will be different for every SSP session which leads to an entirely
different and unique hash value r′ in another SSP session. This way we eliminate
the possibility of an attacker that uses passive eavesdropping to deduce the original
passkey. To summarise, it would be impossible for an attacker to deduce the full
hash value of the passkey even if they passively eavesdropped the target device’s
SSP sessions continuously several times because of the following reasons.

• Even if the passkey is reused, the hash value obtained in step 3 of Figure 4.3
will be different for every SSP session. Each time, the target device connects
to a different device, the DHKey value will change and as a result, the hash
value will also change.

• The ECDH private-public key pair is generated randomly and is not static.

• Since the n’ bits are hidden using the XOR operations, an adversary cannot
guess the correct passkey due to a one-time pad technique.

We have also compared the security of our protocol to the SM protocol defined
in Section 4.1. While the SM protocol can be attacked using our brute-force attack
mentioned in algorithm 1, the enhanced passkey entry model completely prevents
an adversary from establishing the attack. This is because of the XOR operations
done on both sides to hide the correct value of the n′a and n′b. From an attacker’s
perspective, the XOR’ed value which is sent during steps 5 and 6 is not useful to
them. Unless the attacker already knows the random integer n′ or the ith set of
8-bits of the correct hash value, they can obtain neither the correct n′ or the ith

set of r′ value. In the XOR operation, the value of the n′ and the set of 8-bit r′

used is different for each round and is not repeated anywhere. Therefore, the XOR
operation that is executed in steps 5 and 6 technically uses the properties of the
one-time pad technique [36] making it very secure.

In case of a MITM attack, when the public key exchange phase is completed
between the attacker and the devices A and B. Now, the attacker will share one
DHkey with device A and one DHkey with device B. In our proposed protocol, after
the legitimate user enters the 6-digit passkey, we generate a hash using the DHkey
and the 6-digit passkey. Since the attacker does not know the passkey, they have
1 million possibilities of the passkey. Even if one digit of the passkey is guessed
wrong, the hash value which is computed is changed drastically. In addition to

CHAPTER 4. ENHANCED PASSKEY ENTRY PROTOCOL 55

this, the hash value of device A and device B will be different due to the different
DHkey values. Due to this, when the XOR operation is done with the 8-bit random
integer and the 8-bit set of r′ and the result is exchanged between the devices, the
derived value will be different leading to an incorrect n′ value. Therefore, even if
an attacker predicts a correct r∗ bit in one round, they would not know the correct
value of the position n′ which is needed to execute the brute-force attack described
in Algorithm 1.

Therefore, our protocol not only thwarts off passive eavesdropping but also
Man-in-the-middle attacks even when a passkey is repeated.

Chapter 5

Performance Evaluation

5.1 Performance Cost of Original Passkey Entry

Model

In the original passkey entry protocol for each round, there are hash operations of
f1 at steps 4a, 4b, 7a, and 8a as shown in Figure 3.4. Therefore, the computation
cost between the two devices is 80 hash functions. Coming to the commitment
values, each value has a size of 128bits. And there are exactly 2 commitment
values exchanged in each round for 20 rounds. Therefore, the communication cost
for the commitment values can be calculated as

20(rounds) ∗ 2(commitmentvalues) ∗ 128(sizeofcommitment) = 5120bits

And in addition to that, the two devices exchange exactly two random nonce for
each round in 1 <= i <= 20 which leads to

20(rounds) ∗ 2(RandomNonce) ∗ 128(sizeofRandomnonce) = 5120bits

Altogether, we have a total of 10,240 bits being exchanged in the protocol run.
Finally, the storage cost of the protocol would be around 192 or 256 bits depending
on the length of the DHkey. Taking the size of the passkey into account, we also
need an additional 20-bits. Then, the total storage cost would be 212 or 276 bits.

5.2 Performance Cost of Enhanced Passkey En-

try Model

Our enhanced protocol performs in the same way as the original. The main differ-
ence of our protocol is that it significantly reduces the number of hash computations
required due to the 10 rounds. We also need two extra variables to store the calcu-
lated 256-bit hash r′ and the 8-bit random integer n′. In addition to this, there are

56

CHAPTER 5. PERFORMANCE EVALUATION 57

2 additional hash computations present before the execution of steps 4-14 in Fig-
ure 4.3. These hash computations are done on both sides. We are not considering
the XOR operations done on both sides as the operation cost is almost negligible.
In our protocol, aside from two hash computations in step 3a and 3b, in each round,
there are 4 hash computations which are used to compute the commitment values
and verify them at both sides. So, for 10 rounds we have 4(Hash) x 10(rounds) =
40 Hash computations. Therefore, the computation cost of our protocol adds up to
a total of 42 Hash computations. Regarding the communication cost, our protocol
follows the same steps as that of the original protocol aside from the fact that two
8-bit random integers are exchanged in each round. The size of the commitment
values and the random nonces remain the same. Therefore, the communication cost
can be calculated as

10(rounds) ∗ 2(randint) ∗ 8(randintsize) + 10(rounds) ∗ 2(commitmentvalues) ∗
128(commitmentsize)+10(rounds)∗2(randomnonces)∗128(randomnoncesize) =

5280bits

The storage cost of our protocol is 468 or 532 bits (including the 20-bit passkey)
depending on the length of DHkey. Although the storage cost is higher than the
original protocol, it significantly increases the security of the protocol by providing
two layers of security and protecting devices against passive attacks and active
MITM attacks.

5.3 Performance Evaluations of Different

Passkey Entry Models

Protocol
Computation
Cost

Communication
Cost

Storage Cost

Enhanced Passkey
Entry

42H 5280 bits 468 or 532 bits

Original Protocol
80H 10,240 bits 212 or 276 bits

Da-zhi yun Im-
proved passkey en-
try

82H 10,496 bits 212 or 276 bits

Barnickel’s coun-
termeasures

80H + 80(E+D)
10,496 bits 212 or 276 bits

Table 5.1: Performance Evaluations of different passkey entry models

CHAPTER 5. PERFORMANCE EVALUATION 58

Here, we calculate the storage cost by combining the size of the DHKey and also the
20-bit passkey. Barnickel’s countermeasures required the device to have encryption
and decryption capabilities. Furthermore, it requires 2 encryption and 2 decryption
functions for every round which adds up to a total of 80 encryption and decryption
functions in addition to the 80 hash computations. Although the performance
cost Da-zhi’s model is not high and is easy to implement, it is vulnerable to our
brute-force attack. Whereas our enhanced passkey entry significantly reduces the
computation cost as well as the communication cost in half. Due to the decrease
in the computation cost, the device will not take as much power as the original
protocol. In addition to this, the passkey entry protocol runs faster due to the
decrease in the communication cost as we only need to send half of the bits compared
to the original protocol.

5.4 Discussion

In Bluetooth standard, the passkey entry model uses the commitment scheme to
check the passkey bit by bit. As we have already seen that this is good only for
cases that the passkey is a one-time passkey. We proposed a method that still uses
the commitment scheme. The difference is that instead of the passkey, our protocol
checks the hash value of the passkey. Since the main part of the input for the hash
function is changed each time, the hash value will also change each time. In this
way, it’s more difficult for an attacker to figure out the passkey.

The reason that we still use the commitment scheme is that we try to modify
the standard protocol as little as possible so that the devices using the standard
protocol will be easy to adapt to our modification.

On the other hand, it is not necessary to use the commitment schemes in the
passkey scheme. It is possible to verify the whole hash value instead of commitment
bit by bit. The passkey protocol will be simpler and more efficient if we just check
the 256 bits hash value once and decide if the passkey is correct.

Chapter 6

Conclusion

In our research, we have introduced a new enhanced passkey entry protocol that
successfully protects the Bluetooth devices against passive attacks and MITM at-
tacks while reducing the computation and communication costs by half. It should
be noted that we have designed our protocol without deviating too much from
the original protocol. This is done so that our enhanced protocol can be simply
integrated with the Bluetooth devices in the form of a patch. We have made a
theoretical approach to the passkey reuse issue and protection against MITM in
the passkey entry model. Since our research is theoretical, for our future work, we
will be considering to employ our proposed protocol in different Bluetooth devices
and test the protocol under different scenarios.

59

References

[1] SIG. Bluetooth core specification version 5.2. Specification of the Bluetooth
System, 2019.

[2] Wikipedia contributors. ”Bluetooth.” Wikipedia, The Free Encyclopedia. Web.
Accessed September 2019.

[3] Brian Ray. Bluetooth vs Bluetooth Low Energy: What’s The Differ-
ence? https://www.link-labs.com/blog/bluetooth-vs-bluetooth-low-

energy, November 2015. Accessed December 2019.

[4] James C. Lin, University of Chicago. ”BLE Overview”. http://www.

summitdata.com/blog/ble-overview/, February 2013. Accessed October
2019.

[5] Wikipedia contributors. ”Bluetooth Low Energy.” Wikipedia, The Free Ency-
clopedia. Web. Accessed October 2019.

[6] Mikhail Galeev. Bluetooth 4.0: An introduction to Bluetooth Low
Energy. https://www.eetimes.com/bluetooth-4-0-an-introduction-to-

bluetooth-low-energy-part-i/, July 2011. Accessed October 2019.

[7] Kevin Townsend. https://learn.adafruit.com/introduction-to-

bluetooth-low-energy/gatt, March 2014. Accessed December 2019.

[8] Bluetooth Classic Vs Bluetooth Low Energy (BLE): Which one is
right for you?. https://www.plugintoiot.com/bluetoothclassic-vs-

bluetoothlowenergy/, June 2016. Accessed November 2019.

[9] Dawid Kliszowski. Bluetooth Classic vs. Bluetooth Low Energy on Android
- Hints & Implementation Steps. https://www.thedroidsonroids.com/

blog/bluetooth-classic-vs-bluetooth-low-energy-on-android-hints-

implementation-steps, June 2017. Accessed October 2019.

[10] Jeremy Martin, Douglas Alpuche, Kristina Bodeman, Lamont Brown, Ellis
Fenske, Lucas Foppe, Travis Mayberry, Erik Rye, Brandon Sipes, and Sam
Teplov. Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy
Continuity Protocol. https://arxiv.org/pdf/1904.10600.pdf, June 2019.
Accessed October 2019.

60

CHAPTER 6. CONCLUSION 61

[11] Vinh Pham and Janne Hagen. Bluetooth Security and Threats.
https://ffi-publikasjoner.archive.knowledgearc.net/bitstream/

handle/20.500.12242/1115/15-01091.pdf?sequence=1&isAllowed=y,
November 2015. Accessed November 2019.

[12] Zegeye and Wondimu K. Exploiting Bluetooth Low Energy Pairing Vulnerabil-
ity in Telemedicine. https://repository.arizona.edu/bitstream/handle/
10150/596383/ITC_2015_15-02-04.pdf?sequence=1&isAllowed=y, October
2015. Accessed October 2019.

[13] Michael. BLE secure connections security modes. https://security.

stackexchange.com/questions/141336/difference-between-bluetooth-

le-secure-connections-security-mode-1-and-level-3-a, November
2016. Accessed September 2019.

[14] Electronic Notes. Bluetooth Security. https://www.electronics-notes.

com/articles/connectivity/bluetooth/security.php. Accessed December
2019.

[15] Alexis Duque. Deep Dive into Bluetooth LE Security. https:

//medium.com/rtone-iot-security/deep-dive-into-bluetooth-le-

security-d2301d640bfc, Mar 2018. Accessed December 2019.

[16] Angela M. Lonzetta, Peter Cope, Joseph Campbell, Bassam J. Mohd,
and Thaier Hayajneh. Security Vulnerabilities in Bluetooth Technology
as Used in IoT. https://res.mdpi.com/jsan/jsan-07-00028/article_

deploy/jsan-07-00028.pdf?filename=&attachment=1, July 2018. Accessed
November 2019.

[17] Nateq Be-Nazir Ibn Minar and Mohammed Tarique. Bluetooth Secu-
rity Threats and Solutions: A survey. https://www.researchgate.net/

publication/267200901_Bluetooth_Security_Threats_And_Solutions_A_

Survey, February 2012. Accessed January 2020.

[18] Sanyam J. BlueBump Attack. https://iq.opengenus.org/bluebump-

attack/. Accessed December 2019.

[19] Shrinath. Bluetooth Hacking. https://exploitbyte.com/bluetooth-

hacking/, November 2019. Accessed December 2019.

[20] Adam Laurie. Serious flaws in bluetooth security lead to disclosure of per-
sonal data. https://seclists.org/fulldisclosure/2003/Nov/409, Novem-
ber 2003. Accessed October 2019.

[21] Wikipedia contributors. ”Bluesnarfing.” Wikipedia, The Free Encyclopedia.
Web. Accessed October 2019.

CHAPTER 6. CONCLUSION 62

[22] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen. The
KNOB is Broken: Exploiting Low Entropy in the Encryption Key Ne-
gotiation Of Bluetooth BR/EDR. https://www.usenix.org/system/files/

sec19-antonioli.pdf, August 2019. Accessed September 2019.

[23] Da-Zhi Sun, Li sun. On Secure Simple Pairing in Bluetooth standard v5.0-Part
I: Authenticated Link Key Security and Its Home Automation and Entertain-
ment Applications. March 2019. Accessed December 2019.

[24] Eli Biham, Lior Neumann. Breaking the Bluetooth Pairing - Fixed Coordinate
Invalid Curve Attack. July 2018. Accessed January 2020.

[25] Samta Gajbhiye, Sanjeev Karmakar. Bluetooth Secure Simple Pairing with
an enhanced security level. Journal of information security and applications 44
(2019). pp.170-183.

[26] Giwon Kwon, Jeehyeong Kim. Bluetooth Low Energy Security Vulnerability
and Improvement Method. IEEE ICCE Asia, 2016. Accessed December 2019.

[27] Da-Zhi Sun, Yi Mu. Man-in-the-middle attacks on Secure Simple Pairing in
Bluetooth standard v5.0 and its countermeasure. Personal and Ubiquitous Com-
puting, February 2018. pp.55-67.

[28] Barnickel J., Wang J., Meyer U. Implementing an attack on Bluetooth 2.1+
secure simple pairing in passkey entry mode. IEEE computer society (2012),
pp.17-24.

[29] Ellisys. Secure Simple Pairing Explained. https://www.ellisys.com/

technology/een_bt07.pdf, 2011. Accessed January 2020.

[30] Wikipedia contributors. ”Elliptic-curve Diffie–Hellman.” Wikipedia, The Free
Encyclopedia. Web. Accessed December 2019.

[31] Andrea Corbellini. Elliptic Curve Cryptography: ECDH and ECDSA.
https://andrea.corbellini.name/2015/05/30/elliptic-curve-

cryptography-ecdh-and-ecdsa/, May 2015. Accessed December 2019.

[32] Neil Madden. Ephemeral elliptic curve Diffie-Hellman key agreement in
Java. https://neilmadden.blog/2016/05/20/ephemeral-elliptic-curve-

diffie-hellman-key-agreement-in-java/, April 2017. Accessed December
2019.

[33] Mark Loveless. Understanding Bluetooth Security. https://duo.com/

decipher/understanding-bluetooth-security, Jan 2018. Accessed Decem-
ber 2019.

CHAPTER 6. CONCLUSION 63

[34] FIPS PUB 180-4. Secure Hash Standard (SHS). https://nvlpubs.nist.

gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf, August 2015. Accessed November
2019.

[35] Wikipedia contributors. ”HMAC.” Wikipedia, The Free Encyclopedia. Web.
Accessed December 2019.

[36] Wikipedia contributors. ”One-time pad.” Wikipedia, The Free Encyclopedia.
Web. Accessed December 2019.

Appendix A

Brute-force attack Code Link

To code the brute-force attack algorithm, we have used the python3.8 program-
ming language. The code is available at https://github.com/saiswaroop7/

Bluetooth-SSP-BruteForce

64

