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ABSTRACT 

 
 

Kumer, E.J. 2020. Thermal treated wood and Modification processes, properties, and 
environmental impacts .pp 46. 

 
 
Key Words: thermal treatment, heat treatment, environmental impact, bioeconomy, 
thermal modification 
 
 
 This paper explores the different ways wood is thermally treated in particular 
looking at thermal treatment processes, properties produced, environmental impacts and 
market opportunities. Review is done on different processes that are currently on the 
market and the properties that are developed through thermal modification such as 
advances in thermal treatments such as colour stability, dimensional stability, and 
durability against pests and fungi. Of all the variations of wood modification studied, 
thermal treatment is the most advanced commercially. The pros and cons for different 
thermal treatments are looked at and compared. The thermal modification of lumber is 
recognised as a method to improve the dimensional stability. This review looks at 
discrepancies of thermal treatments and the environmental consideration of the different 
procedures. The objective of this thesis is to conduct a review of published literature 
regarding thermal wood modification processes, properties, environmental impact and 
market opportunities.  
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1.0 INTRODUCTION 

 

As a natural renewable resource, wood is an easily accessible, nontoxic and 

inexpensive biomass material. Although wood is used for many reasons due to its material 

properties (aesthetic appearance, strength to weight ratio etc.), it also contains some 

disadvantages. Modifications are applied to the wood to overcome the disadvantages of the 

wood properties that are mainly related to moisture sensitivity, low dimensional stability, 

hardness and wear resistance, low resistance to bio-deterioration against fungi and termites 

(Sandberg et al. 2016).  The increased interest has depended on the restricted use of toxic 

preservatives. Recently environmental concerns have forced industries to examine and 

demonstrate the environmental impacts of their products. The term environmentally friendly 

is used far to frequently when describing a product, it needs to be known that all industrial 

processes have an associated environmental impact. Recently environmental concerns have 

forced industries to examine and demonstrate the environmental impacts of their products. 

It’s a matter of using products that have the lowest impacts on our environment and should 

note that all choices should follow principles of sustainability.  

Wood modification is looked at to enhance the physical, mechanical and aesthetic 

properties of wood products. Development of wood processes are looking to limit the impact 

of the product development, and produce a product that can be disposed of at the end of its 

life cycle that will not cause environmental impacts greater than the disposal of untreated 

wood. Currently industries are undergoing changes to the way they are processing the 

lumber, driven by the concerns for the environment, the motivation to find alternatives to 

chemical treated wood is ever expanding. Several wood treatment technologies have 
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developed with the idea to minimise the impacts of the treatments and the disposal of the 

products.   

The increased interest in wood modification to industry and society in general is due 

to a couple of reasons. The change in wood properties that are produced by different 

treatments can expand the market opportunities in the bioeconomy and the way we use our 

wood products. There has also been a realization that laws have restricted wood treatment to 

using environmentally harmful materials for durability in wood products. The study and 

implementation of other wood treatments can also introduce the use of rare species, which 

contain outstanding durability or appearance. 

The goal of this paper is to review wood modification technologies that have been 

developed and introduced into some markets with the focus on thermal modification. 

Thermal treatments and the properties produced from the treatment will be discussed and 

looked at for the environmental impact in regards to the current wood industrial processes. 

1.1 Objective 

The objective of this paper is to assess and review the different desired and undesired 

properties that are developed when thermally modifying wood. Also looking at industrial 

processes of thermal modification that have been developed and put into the market, and 

assessing the environmental aspect that is associated with the process and products 

developed. This paper also looks at the potential development of new environmentally 

friendly products produced from thermal modification and new market opportunities in the 

bioeconomy. 
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2.0 Thermal modification 
 

The basics of thermal modification have been known for a very long time and 

include several different methods. According to CEN (2007) thermally modified timber 

(TMT) is wood that has alteration to the macromolecular structure of the wood through the 

use of heat and moisture in conditions of decreased oxygen availability. On a commercial 

scale raw lumber is heated between the temperatures of 160° and 240° C to give you 

thermally modified wood. Temperatures that exceed 240°C degrade the wood to the point 

where it’s commercially useless (Hills 2021). The result of thermally modified wood alters 

the wood to a darker color, improves dimensional stability, and increases microbial 

resistance when compared to the raw lumber. The down side is that there is significant 

reduction in strength, and fracture resistance. The thermal treatment induces chemical 

changes to macromolecular structure resulting in alterations to biological and physical 

properties of the wood, these properties include (Callum 2006): 

 
Table 1. Desirable and undesired properties of TMT  

Desirable properties of TMT Undesired properties of TMT 

High resistance against decay  Decreased MOR and MOE 

High dimensional stability Decreased impact strength 

Lower EMC Increased brittleness  

Lower thermal conductivity  Decreased hardness 

Colour change to become darker  

Distinct smell to TMT 

Lower density 
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  The properties of thermally modified wood are highly dependent upon the type of 

thermal treatment implemented. There are a variety of thermal modification methods that 

can be applied to wood, and the exact method of treatment can have a significant effect upon 

the properties of the thermally modified timber (Callum et al. 2006). Some of the important 

aspects involved in thermal treatment that alter the properties are shown in Table 2. 

Table 2. Components that have significant influence over the properties achieved throughout 
thermal modification. 

Important components altering thermal treatment 

Time & temperature of treatment 
Closed vs open system 
Treatment atmosphere 
Wet and dry systems 
Sample dimensions 

Wood species 
Use of catalysts 

 

2.1 Chemical Alterations  

  During any thermal heat treatment the cell wall compounds in the wood are 

degraded. The components affected are hemicellulose, cellulose, lignin and extractives seen 

in figure 1. The alteration of the components occurs during different stages of the treatment, 

and the extent of the alteration depends on the duration and the temperature of the treatments 

applied. At temperatures from 20-150°C the wood begins to dry, 180-250°C the wood 

begins undergoing important chemical transformations, and at temperatures above 250°C the 

carbonization processes with formation of CO! and other pyrolysis products develop 

(Esteves 2009). 
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Figure 1. Shows the 4 different components Hemicellulose, cellulose, lignin, extractives that 
are affected from thermal treatment and the results associated with the alteration of each 
component (Esteves and Pereira 2009). 

Hemicellulose is the first structural compound to be affected by low thermal 

applications. The degradation starts by deacetylation, and the released acetic acid acts as a 

depolymerization catalyst that further increases polysaccharide decomposition (Tjeerdsma et 

al. 1998; Sivonen et al. 2002; Nuopponen et al. 2004). The loss of hemicelluloses causes an 

increase in the crystallinity of wood samples and also in addition changes degradation and 

rearrangement of the amorphous cellulose content (Kim et al. 2001). Cellulose degradation 

occurs at a higher temperature than hemicelluloses, it is thought that minor thermal 

degradation does occur at relatively low temperatures, but at a much slower rate than the 

hemicelluloses. The amorphous regions of cellulose are more susceptible to thermal 

degradation and these regions probably exhibit similar thermal properties to the hexose 

components of hemicelluloses (Hills 2006). Crystalline cellulose degrades in the temperature 

range 300–340°C (Kim et al. 2001). It was discovered that the percent of cellulose degraded 
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is reduced with the presence of water; this is due to the ability of the amorphous regions to 

change structure to produce more thermally stable crystalline regions (Fengel and Wegener 

1989). The loss of polysaccharide material in early stages from heating it leads to an increase 

in lignin content in treated wood. Generally lignin is the most thermally stable component of 

the cell wall, but some thermal degradation of lignin can occur at relatively low 

temperatures, with the production of various phenolic breakdown products (Sandermann and 

Augustin 1964). During the heating process most of the extractives disappear or degrade 

especially the most volatile, but new compounds are developed and can be extracted from 

the wood. Bourgois (1989) and Nuopponen (2003) reported extraction of carbohydrates, 

tannins, resins, fats and waxes.  Despite the fact that most of the original extractives are lost 

from the wood with the heat treatment, the extract content increases greatly with mass loss 

followed by a decrease (Esteves et al. 2008). Table 3 presents the loss of lignin, extractives 

and carbohydrates at temperatures from 205-230°C at durations of 4-8 hours for Pine and 

Birch (Zaman et al. 2000). 

Table 3. Pine (Pinus sylvestris), and Birch (Betula pendula) compared to see the loss of 
lignin, extractives and carbohydrates at temperatures from 205-230°C at durations of 4-8 
hours (Zaman et al. 2000). 

 

Pinus sylvestris 
heat treatment 

(C/h) Lignin Extractives Carbohydrates 
No treatment 24.5 3.2 72.3 

205/4 30.1 3.8 66.1 
205/6 30.5 2.7 66.8 
205/8 32.3 3.2 64.5 
230/4 35 3 62 
230/6 37.1 4.4 58.5 
230/8 38.7 3.8 57.5 
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Betula pendula 

heat treatment 
(C/h) Lignin Extractives Carbohydrates 

No treatment 21.8 2.6 75.6 
205/4 26.3 5.7 68 
205/6 28.1 6.7 65.2 
205/8 30.6 7.8 61.6 
230/4 35.4 8.3 56.3 
230/6 35.1 8 56.9 
230/8 35.8 8 56.2 

 

2.2 Physical properties 
 

Most properties of TMT are associated to properties of the raw material, affected by 

the intensity of the thermal treatment process, ie by the temperature and duration of the 

process (Sandberg et al. 2016). Observing different studies to evaluate the different 

properties significantly influenced by thermal modification such as mass loss, dimensional 

stability, colour change, resistance against Fungi and insects, and mechanical properties are 

presented below.  

2.2.1 Mass Loss 

Mass loss of wood is considered one of the most important features in heat treatment 

and is commonly referred to as an indication of quality (Esteves et al. 2009). The reduction 

in weight is a common effect across all the thermal treatments, due to degradation of 

carbohydrates and reduction in moisture content held in the wood. The loss in mass changed 

depending on the species being treated, and the extent of the temperature in the process 

(Figure 2). As the wood is heated, an initial decrease in weight is from the loss of bound 

moisture and volatile extractives (Esteves et al. 2008). As temperature is increased during 

the process, chemical changes to the macromolecular components of the cell wall occur, 
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causing further weight loss (Esteves et al. 2008). The equilibrium moisture % is also a big 

part that has to do with the final weight of the product. Looking at figure 3 it shows clear 

resemblance between loss of weight and loss of equilibrium moisture content follow with the 

increased intensity of thermal treatment. 

Figure 2. Shows relation of mass loss deration of time and temperature done on pine 
(Esteves et al. 2008). 

The most notable difference in mass loss between species has to do with softwoods 

and hardwoods, with the mass loss generally being higher in hardwoods (MacLean 1951; 

Zaman et al. 2000; Militz 2002). Zaman et al. (2000) presented research showing the 

difference between a hardwood and softwood at temperatures between 205°C -230°C for 4-

6-8 hours (Table 4). Total mass loss of the Pine (Pinus sylvestris) samples during heating at 

205°C and 230°C varied in the range 5.7-7.0 and 11.1-15.2%, respectively, revealing the 

clear bearing of temperature on overall mass loss. Looking at the birch (Betula pendula) data 

in Table 4, it further supports the link between the increased temperature of treatment and 
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overall mass loss. Furthermore, birch samples degraded slightly more than the pine samples; 

at 200°C and 225°C the corresponding mass losses in the birch samples were in the range 

6.4-10.2 and 13.5-15.2%, respectively. 

 

Figure 3. Shows relation between the mass loss in wood in relation to the equilibrium 
moisture (Esteves et al. 2007). 

Table 4. Compares the weight loss between Pine and Birch through different temperatures of 
205-230 at 4,6,8-hour intervals (Zaman et al. 2000). 

Betula pendula 
Heat treatment 

(C/h) 
Total mass 

loss % 
205/4 6.4 
205/6 7.1 
205/8 10.2 
220/4 13.5 
220/6 14.7 
220/8 15.2 

 

2.2.2  Colour 

One of the desired effects when treating lumber with thermal treatment is the 

Pinus sylvestris 
Heat treatment 

(C/h) 
Total mass 

loss % 
205/4 5.7 
205/6 6.8 
205/8 7 
230/4 11.1 
230/6 13.2 
230/8 15.2 
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alteration from the species natural colour to a darker hue. Different hues can be achieved 

depending on the temperature of the process and duration (Hoang 2009). A darkening of the 

wood occurs, with the colour change being related to the temperature and time of treatment 

(Hills et al. 2006). As the wood is heated chemical changes to the macromolecular 

components of the cell wall occurs causing colour change, the higher the temperature the 

further the degradation and the darker the result of the wood (Figure 4). The alteration in the 

colour of the wood is uniform through out the entire product. Thermal treatment has the 

ability to increase low value tree species with a light shade to resemble darker shades that are 

desired from exotic wood species but for a lower cost (Thermo-Drewno 2009). 

 In the study done by Betkhta and Niemz (2003), they look at colour alteration in 

relation to the temperature and treatment effects on bending strength. There was a linear 

relation between the bending strength and the alteration of colour (Table 5). These results 

suggested that using color changes in wood it is possible to predict the bending strength of 

wood. 

 

Figure 4. Hues of heat-treated pine from 120 to 210°C (left to right) at 20°C intervals 
(Thermo wood 2009). 
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2.2.3 Dimensional stability 

Physical properties of wood are altered when it undergoes thermal modification. The 

process degrades hemicellulose pieces leading to a change in the hygroscopic behaviour of 

the wood (Hoang et al. 2009). This leads to less moisture being absorbed into thermally 

modified wood because of the reduction in absorption rate. Chemical processes explain the 

reduction in dimensional movement in wood after heat treatment. Hemicellulose has high 

hygroscopic behaviour. Burmester (1975) concludes that heat treatment of wood results in 

high reduction in the hemicellulose content, and is thus an improvement of the dimensional 

stability of the wood. The extent of dimensional stability is dependent upon the extent and 

intensity of the treatment. It was reported that the Antishrink efficiency (ASE) increased 

with increased time and temperature (Stamm et al. 1946). For example, an ASE of 20 % 

could be obtained by heating small wood samples either at 150°C for 6 days or at 250°C for 

3 minutes (Hills et al. 2006). With improvement in minimizing the water uptake by the 

wood, this enhances the dimensional stability due to the reduction in swelling and shrinking. 

Compared to untreated wood, it was found that thermally treated wood was much more 

stable as shown in figure 5. 

This was supported with a study done by Bekhta and Niemz (2003), where wood 

heated at 200°C becomes more dimensionally stable than wood heated at 20°C due to 

smaller changes in moisture content. With a treatment duration of 24 h giving more 

dimensionally stable wood than a treatment duration of 2 h. Swelling both in tangential and 

radial directions decreased with increases in treatment duration. Bekhta and Niemz (2003) 

also found that the change in dimensional stability was highly dependent upon the treatment 

atmosphere employed. 
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Figure 5. Shows the relation between the treatment temperature and the extent of the 
swelling of pine post treatment (Hoang 2009).  

Three softwood species were studied and these showed very similar behavior. The 

increase in ASE as a result of heat treatment followed an asymptotic relationship when 

plotted against weight loss due to heating, reaching a maximum ASE value at about 20% 

weight loss. However, the results obtained were influenced by the presence of air and lower 

ASE values were found for a given weight loss compared to anaerobic conditions. Stamm 

and Hansen (1937) found that heating of dry wood at temperatures ranging from 165°C to 

205°C for up to 6 h resulted in a substantial reduction in ASE, but there was no change when 

the wood was heated in the presence of water. It was considered that the presence of water 

suppressed those thermal reactions involving loss of water of constitution. Heating in air was 

found to result in greater reductions in ASE compared with heating in a reducing 
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atmosphere.  

2.2.4 Resistance against Fungi and Insects 

 Thermal modification of wood has displayed great promise in terms of an 

economically viable way for production of non-toxic wood materials with improved 

biological durability (Esteves and Pereira 2009; Welzbacher and Rapp 2007; Candelier et al. 

2016). It has been discovered from several authors that thermal modification increases the 

decay resistance. It has been discovered that the extent of the fungi degradation is dependent 

on the species, temperature, time, and type of rot or insect. During thermal modification 

degradation of hemicelluloses and lignin are the leading contributions to the improved 

fungal resistance.  Hemicelluloses are generally considered a key in the hygroscopic 

behaviour of wood for the development of wood rotting fungi, along with the modification 

of lignin is also part of explaining the ineffectiveness of fungal enzymatic attacks (Candelier 

et al. 2016).  

These heat-treated wood modifications are represented by mass loss. Various authors 

compared the weight loss caused by fungal attack to the decrease in mass of wood by heat 

treatment. The variation in different thermal modifications reveal that the treatment used has 

a significant variation in the effectiveness of fungi and insect resistances. Gao et al. (2018) 

looked at the effects of soft rot fungi by assessing the mass loss over a year between 

hardwood and softwood species. In particular looking at Phialophora malorum, Phialopora 

mtabilis, and Chaetomium golbosum effect on for Ash (Fraxinus), Beach (Fagus), Spruce 

(Picea) and Fir (Abies) (Figures 6 and 7). It was noted that softwoods have a higher 

resistance to soft rot than hardwoods. Observations of hardwood TMWs indicate that 
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enhanced decay resistance to soft rot fungi is closely related to delay in formation of typical 

soft rot cavities in TMWs, particularly at high TM temperatures (Gao et al. 2018).  

 Figure 6. Compares 3 fungi Phialophora malorum, Phialophora mutabilis, Chaetomium 
globosum in relation to the mass loss of different thermally treated hard woods Ash 
(Fraxinus), and Beech (Fagus) and untreated wood (Ref.) up to the extent of 1 year (Gao et 
al. 2018). 

. 
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 Figure 7. Compares 3 fungi Phialophora malorum, Phialophora mutabilis, Chaetomium 
globosum in relation to the mass loss of different thermally treated hard woods Ash 
(Fraxinus), and Beech (Fagus) and untreated wood (Ref.) up to the extent of 1 year (Gao et 
al. 2018). 

In one study conducted by Kartal (2010), it was discovered that white-rot fungus (T. 

versicolor) caused less mass loss than did the brown-rot fungus (F. palustris). This was for 

specimens that went under treatment at a temperature of 220°C for 2 hours. Another study 

done by Doi et al. (2004) using the Plato treatment had very little resistance of wood against 

(F. palustris) and (T. versicolor). Another study done by Welzbacher and Rapp (2005) 

revealed that heat treatment increased the durability of Scots pine sapwood in ground contact 

for up to 4 years. In a previous study, Kartal (2006) showed that heat treatment at 180°C for 

2 and 4 hours was apparently ineffective against decay by F. palustris. However, specimens 

with heat treatment that where exposed to T. versicolor had much lower mass loss than 
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untreated specimens. It was also discovered that two stage heat treatments of wood and dry-

heat treatments improved the resistance of wood against C. puteana and T. versicolor 

(Tjeerdsma et al. 2002).  

The results in fungi resistance have a vast array of results depending on the species, 

treatment and duration; it requires further study of what treatments improve resistance of 

which fungi. This makes it difficult for industrial production if it can’t follow a set standard 

for the product. With further research different methods are used to try and determine the 

grade of fungal resistances through the use of mass loss and colour change.  

2.2.5 Mechanical properties 

Thermal modification at high temperatures will results in a reduction in strength, 

toughness and abrasion resistance (Chang and Keith 1978).  Studies have been done to show 

the extent of different treatments on the strength of its product, it was discovered that an 

open and closed system could influence the strength differently (Stamm 1956; MacLean, 

1954). This makes it difficult to compare data as different treatments result in different 

grades. It is clear that with the use of thermal treatment a reduction in strength is to be 

expected, but it can be influenced through different systems and atmospheric conditions. For 

example under hygrothermal compared to hydrothermal conditions, and in air compared to 

anaerobic conditions  (MacLean 1954; Stamm 1956).  

Bekhta and Niemz (2003) found that bending strength and modulus elasticity were affected 

at different treatment temperatures. It was discovered that the strength of spruce decreased 

44-50% as the treatment temperature was raised from 100-200°C, but with no effect on 

modulus of elasticity. It was determined that the bending strength was best when heated at 
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100°C (Figure 8). When the thermal treatment was raised above 100°C both bending 

strength and modulus elasticity decreased. Another study done by Poncsák el al. (2007) also 

revealed the used of thermally modified wood used in adhesive bonding has significantly 

lower strength properties compared to unmodified wood (Figure 9). It was also determined 

that hardwoods exhibit higher strength losses than softwoods when treated under the same 

conditions. It was found that elm and beech were more susceptible to thermal degradation 

compared to aspen and maple, as determined from toughness measurements of the thermally 

modified samples (Chang and Keith 1978). 

 
Figure 8. Effect of heat treatment temperature on the bending strength of spruce wood at 
different relative humidity. ×: RH = 35%; O: RH = 65%; : RH = 95% (Bekhta and Niemz 
2003).  
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Figure 9. Impact of the thermal treatment on the resistance of the wood–adhesive interface to 
shear stress, exerted by compression parallel to glued surfaces, of 4 different wood species 
glued used was polyurethane polymer (Poncsák el al. 2007).  

Another property that is displayed from thermal modification is increased hardness. 

The hardness of wood is a property commonly tested on woods used for paneling, furniture, 

flooring, decking, products that requires the wood to have resistance to indentation (Leitch 

2008). In a study conducted by Leitch M.A (2008), it looks at hardness value of thermally 

modified Black ash (Fraxinus nigra) from Superior thermo wood (STW). For this study the 

Black ash was treated at 200°C and resulted with a moisture content of 5-8%. It was 

determined that the STW treatment increases the hardness value of the Black ash when 

compared with the controls. The increased hardness of the ash was due to cell wall 

compression, which was observed during the study. It was revealed from this study that 

thermal modification is effective at increasing the hardness, and aesthetics to create high-

valued forest products. 
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3.0 Commercial thermal modification processes  

3.1 Feuchte Wärme Druck (FWD) 

Thermally modified treatment of sawn lumber has gained popularity since the start of 

the 20th century and is now becoming more commercialized. Industrial development of 

thermal treatments are more popular in Europe then north America, early studies were 

developed in Germany as far back as the 1940s by using a closed system. Burmester (1973) 

looked at effects of temperature, pressure, and moisture on wood properties. The process was 

named the Feuchte Wärme Druck (FWD). The first commercial thermal treatment facility in 

Europe was based off the study-conducted by Burmester but never produced on a large scale 

(Sanberg 2016). 

3.2 Plato Wood 

Intensive development of TMT in Europe gave rise to the Plato process in the 

Netherlands in the 1980s. It is broken into a 4-stage process (Figure 10) that can take up to 3 

weeks from raw sawn lumber to Plato wood (Hills 2006). The first stage is called 

hydrothermolysis, it takes place in a humid atmosphere and takes from 4-5 hours at 

temperatures of 160-190°C (Esteves 2009). The second step is the drying process; the wood 

is dried to the point where it reaches 8%-10% equilibrium moisture content taking anywhere 

from 5 days to 3 weeks (Hills 2006). The third step is the curing of the wood at the 

temperature of 150 – 190°C in a dry atmosphere for 12-16 hours; this brings the moisture 

content to 1%. The fourth and last step is the conditioning where it is placed in a kiln for 

about 3 days to increase the moisture content to desired levels of about 4-6% when complete 
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(Hills 2006). 

  

 

 

 

 

 

 

 

 

 

 

Figure 10. Schematic of the Plato Wood production process (Hills et al. 2006) 

3.3 Thermo Wood 

  In Finland VTT Technical Research Center of Finland worked along side industry to 

develop the Thermo Wood process in 1993 that got established as an industrial process for 

improving wood properties (Sanberg et al. 2016). The Thermo wood process is the most 

advanced heat treatment for wood modification available on a commercial scale. The process 

occurs in 3 stages and takes up to 40 hours from raw sawn lumber to Thermo wood (figure 

11). The first stage is to increase the temperature to dry the wood for about19 hours. During 

this step a mix of heat and steam raise the temperature of the wood to 100°C for the first 5 

hours. The temperature is then ramped to 130°C for the high-temperature drying phase, 

which reduces the wood moisture content to near 0 %. The second stage is the heat treatment 

that takes about 10 hours; during this step the temperature in the kiln is increased to 185°C - 
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230°C and maintained at a target level for 2-3 hours (Hills 2006). The last step is the cooling 

moisture conditioning, at this point the temperature is gradually lowered using water spray 

till conditioned to a moisture content of 4%-7%. 

 

 

 

 

 

 

 

Figure 11. Diagram showing the stages of the Thermo Wood thermal modification process 
(Hills et al., 2006). 

 

3.4 Le Bois Perdure/ Rectification 

Currently two processes are in use in France, the Le Bois Perdure and Rectification. 

The Le Bois Perdure process starts with green cut wood. The first step starts with the green 

wood artificially dried in an oven then subsequent heating of wood at temperatures ranging 

from 200°C - 230°C in a steam atmosphere (Hills et al. 2006; Vernois 2021). Rectification 

was developed by Ecole des Mines de Saint-Etienne, according to Vernois (2021) the 

company now holds operating licenses and patents (Also known as RETITECH). The 

process consists of previously dried wood with a moisture content around 12%, placed in a 

chamber heated up to 210 - 240°C in a nitrogen atmosphere with less than 2% oxygen 

(Vernois 2021).  

Table 5. Evaluating 4 different commercial thermal modification processes, looking 
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at the implemented the initial MC (%) used in each (Green= raw sawn lumber) the durations 
of the processes, type of systems, temperature of application, atmosphere and stages. 

 

 

4.0 Environmental Concerns of Thermal Modification  

In the 21st century there has been a great deal of development in the thermal 

modification field. Despite the fundamental knowledge of the treatment, there is still 

significant research to be done regarding the process performance and quality of heat-treated 

wood products, and especially the impact on the environment. The growth and development 

of thermal modification is encouraged in the Canadian bio-economy. With development it is 

important to assess the environmental impacts of the treatment and the effect that can be 

associated with the process. One way to do this is through a life cycle analysis (LCA), it 

evaluates environmental burdens associated with a product, process, or activity by 

identifying and quantifying the energy and materials used and the wastes released to the 

environment; to assess the impact of those energy and materials used and released to the 

environment; and to identify and evaluate opportunities to affect environmental 

improvements (Thermo Wood 2008). It should reveal the environmental and energy 

Commercial 
Process  Year  

Initial 
MC (%) 

Process 
Duration (h) 

type of 
system  Temperature C 

Atmosphere / 
transportation 
median 

             
#Stages 

FMD 1970 10-30. 15 Closed  120-180 Steam  1 

Plato Wood  1980 Green  2 - 3 wk  Closed  150-190 
Steam/ Oxygen 

8-10%/ dry  4 
Thermo 
wood 1990 Green-10 30-50 Closed  100-230 Steam  3 

Le Bois 
Perdure 1990 Green 12-36 Closed  230-240 

Saturated water 
vapour  2 

Rectification 1997 12 8-24 Closed  200-240 
Nitrogen 2% 

oxygen  1 
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performances of the materials used throughout their whole life cycle from extraction to 

disposal (Sandberg et al. 2015).  

Candelier and Dibdiakova (2020) conducted a LCA review on thermally treated 

wood and revealed several issues which, lead to question the knowledge behind the 

environmental impact of thermally based timber processing. In the study two environmental 

impacts where highlighted one being the energy required to process thermally modified 

wood and the other concern was the CO2 emissions produced through the process. The LCA 

was based off data acquired from several different wood treatment companies but in 

particular emissions test and energy consumption tests based off Thermo Wood in 

comparison to imported and chemically treated products.  

Assessing the distribution of energy consumption through the drying and heating of 

ThermoWood Ash (Fraxinus) and Spruce (Picea) compared to imported Ipe from Brazil and 

chemically treated Tanalyth E spruce (Figure 12). It was discovered that the Distribution of 

energy consumption needed for Thermo Wood required more energy to produce than Ipe and 

Tanalyth E treated species. The high-energy consumption for thermal modification is due to 

the drying process. It is also notable that the energy required during the process between 

Thermo Wood Ash and Spruce is significantly different. With the ash being a hardwood it 

takes almost twice the energy during the drying process compared to the softwood.  



32 
 

 
Figure 12. Comparisons between Thermo Wood (ash, and spruce), Ipe imported lumber and 
impregnated Tanalyth E lumber. Looking at Distribution of energy consumption needed 
during each process. Energy costs of ash Thermo Wood and spruce Thermo Wood are higher 
than those of imported Ipe and Tanalyth impregnated spruce. The energy costs are higher for 
thermally modified ash and spruce woods, due to the high energy use in the drying step 
(Candelier and Dibdiakova 2020).  
 

The other issue related to the environmental impact of industrial production of 

thermally modified timber is the release of carbon emissions. The CO2 is mainly released 

from the decarboxylation reaction C=O and –COOH groups linked to glucuronic acid units 

of hemicelluloses (Popescu et al. 2013). The formation of these gasses is dependent on the 

particular species under treatment and the treatment process used. The release of the gasses 

also increase with the raise in temperatures when the wood is treated, which in response 

causes an acceleration of the kinetic reaction of hemicelluloses under the thermal 

degradation (Xu et al. 2019). Figure 13 shows the data collected from Candelier and 

Dibdiakoas (2020), it looks at thermally treated Ash, Spruce, Sycamore (Acer 

pseudoplantanus), and Poplar (Populus) produced from Thermo Wood and Brimstone, 
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compared to imported Ipe, and chemically modified Spruce. Note Bristone treatment 

emissions review includes milling, kilning, raw materials electricity, fuel, and transport. This 

is why there is a significant difference in the difference of CO2 content emitted by drying 

compared to CO2 emitted by other processes.  It is clear that the trend in the thermal 

treatments follows the energy consumption Figure. The carbon emissions released in the 

thermal treatments where higher than other imported and chemically treated products. The 

trend also reveals that the CO2 released is higher in hardwoods than softwoods in both 

Thermo Wood, and Brimstone thermal treatments. The drying process again was the leading 

cause in the release of the CO2 emissions. Based on the results 60 – 80% of the total CO2 is 

generated from the initial drying process (Candelier et al. 2020). In some cases to avoid the 

release of toxic or smelly volatile compounds into the atmosphere is to burn them at very 

high temperatures during the process (Candelier et al. 2020). Currently today thermo wood 

developed an ecological solution for recovering volatiles by condensation, purification and 

filtration successive pro-cesses. Thermo wood is able to retrieve the volatile co-products   

in the water which is used in the modification process (ThermoWood 2008).  
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Figure 13. Looking at representations of CO2 emissions produced from Thermo Wood (ash, 
spruce), and Brimstone treatments (ash, sycamore, poplar), compared to imported Ipe, and 
chemically treated spruce. Generally, CO2 emissions of thermally modified ash, sycamore 
and poplar woods are higher than those of imported Ipe and Tanalyth impregnated spruce. 
The elevated CO2 emissions of thermally modified woods are mainly formed during the 
drying step (Candelier and Dibdiakova 2020). 
 
 

For the most part thermal modification is seen as an environmentally friendly 

solution to wood treatment because of the use of steam and heat and no chemicals. In this 

case some toxic volatiles compounds are generated during the process. An ecological 

solution throughout the process is to recover the volatiles through condensation, purification 

and filtration successive processes (Candelier et al. 2020). This is dependent on the process 

but for Thermo Wood systems, the volatile co-products are retrieved in the water that is used 

during the modification process (Thermo Wood 2008). These volatiles are collected to 
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improve the ecofriendly aspect of the treatment but also providing economic benefits that 

can be gained from the collected volatiles (Figure14). These collected volatiles can be 

retrieved for a number of uses in other aspects of the timber industry such as wood 

preservation with furfural (Dautzenberg et al. 2011), antifungal properties of Eugenol 

(Pfriem et al. 2009), or antitermitic activity gained from terpenes (Bédounguindzi et al. 

2020). This data suggests that there can be economic potential from using the co-products 

produced from thermal wood modification while reducing the environmental footprint of the 

thermal process. In addition with the release of volatiles during the thermal process it helps 

to reduce the release of these chemicals during the life cycle of the product compared to 

those of natural or other chemically modified woods, therefore reducing the impact further. 

Recovering these volatiles in the stages of thermal treatment can have high added-value 

components for industry and allow further transformation into wood preservatives 

(Bédounguindzi et al. 2020; Boer et al. 2020; Brocco et al. 2017) while improving the 

circular economy and environmental impacts associated with wood heat treatment (Candelier 

et al. 2020). 
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Figure 14. This diagram demonstrated the volatiles that are extracted from the wood during 
thermal modification process. The diagram also shows what the volatiles are used for and 
what other products use the volatiles, expanding market opportunities (Candelier and 
Dibdiakova 2020).  

 
5.0 Bio-economy 
 

The global trade of forest products is changing rapidly under the influence of 

international competition, and a shift in consumer demand for green products (Duchesne et 

al. 2003). Today Canada has a clear opportunity to leverage its global forest sector 

leadership into bio products that will lower our environmental impacts and drive economic 

growth (Maloney et al. 2018).  At this point the world’s political and economic decisions 

will need to be made around the fact of energy scarcity and climate change. In this case a 

balance needs to be achieved between economic, ecological and social well being that can be 

summed up into sustainability. Forestry has been put in the spot light to lead the change for 

sustainability, it is viewed as one of the worlds most utilized sustainable resources, but the 

one area where forestry fails to appear sustainable is during the production of energy 
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intensive materials. New technologies are being developed in thermal modification in an 

effort to reduce the wood technological applications without changing eco-friendly 

characteristics (Sandberg 2016). Even though thermally modified wood only represents a 

small portion of the timber industry, the product tends to gain more interest each year. Due 

to recent developments of more environmentally friendly wood treatments, chemical 

modifications are becoming more limited due to the raising environmental concern and 

opening new interest in market opportunities for thermal modification. Since the new 

developments of the thermal modified process was developed in Europe, Canada has begun 

to establish several production units and research facilities as a result. In Quebec several 

industrial plants using the Perdure process where developed. The Thermo Wood process was 

also established, in 2012 with a total of 7 manufacturers of TMT established in Canada 

(Sandberg 2016). 

 
Thermal modification is the leading wood treatment to become a low environmental 

impact alternative for wood modification, and it considerably improves wood durability 

(Marra et al. 2015). The growing environmental awareness has led to a growing interest in 

these alternative wood modification processes (Gérardin et al. 2016). The development of 

commercial interest is due to changes in the restriction of conventional chemical products 

used for wood preservation (Jones et al. 2019). New demand for low environmental 

impacted treatments (Gérardin 2016), higher use of low value locally sourced timber species 

(Candelier et al. 2016), and an ever increasing demand for new aesthetics and customer 

requirements (Gamache et al. 2017) is driving the push. 

According to Sandberg and Kutnar (2016) thermal heat-treated wood materials can 

contribute to mitigating climate change and promoting sustainable development by reducing 
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energy intake, solid and volatile emissions reducing pollution, and ecosystem damage, while 

increasing wood performance. This can help lead to a low-carbon economy and sustainable 

development, it is essential to embed awareness of environmental impacts and by-products 

to wood modification process parameters and product properties and qualities (Candelier et 

al. 2020). In order to gain an advantage in the market, Canada needs to pursue new 

alternatives for forest products, while achieving opportunity in the abundance of forest 

resources and conduct research and development of industry based bioproducts.  

 
6.0 Discussion  
 

The development of thermally modified timber has shown to present improved 

physical properties. It allows wood to become dimensionally stable, darker in hue, and more 

resistant to fungi and insects in some cases. Suitable uses indoor and outdoors have been 

found to benefit from thermal modification. Exterior uses have been found to be used on 

window and door frames where it is exposed to moisture, Christmas et al. (2007) suggested 

that due to the brittleness associated with thermal treatment it minimizes the use for doors. 

The high moisture resistance and fungi resistance make it a good material to use in climates 

with high humidity or with high exposure to wet environments. Some internal applications 

consist of: flooring, sauna fittings, and wall/ceiling panels (Hogan et al. 2009). Modified 

wood can also be used for some external applications such as: cladding, siding, fascia 

boards, garden structures, and decking (Stora Enso, 2004). Although thermal treated wood is 

good in moist climates, it should not be buried under the ground. “ Moisture up-take of the 

cell walls is reduced due to the thermal treatment process, but cell cavities can take up fluid 

water, similar to untreated wood” (Scheiding et al. 2007). 
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 Thermal modification was also found to have some poor results, strength properties 

where found to decrease. The alterations of the structure were due to the cellulose and lignin 

within the wood due to heat, the extent of the reduction in strength was found to increase 

with increases in temperature. There has yet to be a balance discovered between durability 

and strength, the higher the treatment the more durable the product, but lower the modulus of 

rupture. The decrease in strength excludes the use of this product in structural uses and is not 

possible for industrial use until further studies are carried out and materials are approved.  

The thermal modification process offers an environmentally friendly alternative to 

alter the aesthetics of natural wood. The process can take low valued timbers that isn’t 

utilised in local markets and add increased value with thermal modification. The alteration of 

colour to low value species resembles the aesthetic value that is desired in exotic species of 

wood, but for a lower price. 

The process of thermal modification is an environmentally friendly alternative to 

modify wood. Although it is an environmental alternative the process still seems to be 

working out kinks in the industrial development of the product regarding the environmental 

impact around the production process. Environmental concerns were discovered to be 

exhibited with the drying process, with respect to releasing any extractives from the wood 

into the atmosphere. It was also discovered that high amounts of CO2 emissions are released 

into the atmosphere. These are the major concerns with the process, however it also holds 

major potential for becoming an ecofriendly alternative to chemical treatments with further 

study.  

Since the process only uses heat and water without the use of chemicals, it is believed the 

risk of harmful chemicals leaching into the environment is minimal if at all. 
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 Thermal modification is growing in interest with development into the bioeconomy 

as an alternative to chemical treatments. The main developments have been realised in 

Europe, with industrial production at a number of different processing facilities. New 

developments of Thermo Wood, Plato wood, Le Bois Perdure, and Rectification has led to a 

growing popularity in Canada and the USA. There have been several developments of 

thermal wood modification processing plants developed in North America. With further 

development of thermal modification it expands market opportunities in the bioeconomy as 

an environmentally friendly alternative.  

7.0 Conclusion  

This literature review concludes that several aspects related to heat-treated wood 

have significant limits that contribute to performance. Further study can reveal potential in 

future markets as an environmentally friendly alternative for industrial wood products. It is 

restricted from its poor strength due to alteration to cellulose and lignin during the treatment 

process, it restricts the use of the product to non-structural uses. Due to the low awareness of 

the consumer, the popularity of the product is lower than traditional preservative products. 

The production of thermal modified wood is limited to the exposure and knowledge of the 

consumers. Although thermal modification has some limitations there is also major potential 

for the product to develop as a widely used product. Due to the process improving properties 

such as dimensional stability, colour alteration, and decay resistance without the use of 

chemicals it is beginning to gain more interest from the common consumer in recent years. 

Thermal modification has the potential to shift ever changing markets to move away from 
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traditional practices of wood preservation involving chemicals towards thermal modification 

of wood using only heat and steam.  

 

With current studies and developments of thermal modification the market potential 

for indoor and outdoor uses regarding décor, due to the aesthetic alteration during treatment, 

is significant. Until further research is done to fully determine the extent of structural 

properties, decisions can’t be determined to see what changes can be done to adapt it to 

certain markets. If thermal modification can be developed to offer structural materials and be 

fungi resistant with good dimensional stability, markets to use thermally modified wood 

compared to traditional chemical treatments will expand.  

 

Furthermore, through the literature assessed and the LCA reviewed, the thermal 

modification processes look to provide strong potential to produce environmentally friendly 

wood products. The process of thermal treatment uses a combination of high heat and steam, 

without the use of chemicals or other environmentally harmful chemical. Thermal 

modification is based on the potential for developing green building products (Sandberg et 

al. 2016). In an ever-changing market and a growth of interest in environmentally friendly 

products, thermal modification looks to take the stage, but with all development of new 

technologies there is always room for improvement. 
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