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Abstract 
A resilient infrastructure system remains a top priority for Canada as it is hinged to strong 

economies. Corrosion, ageing, aggressive environments, material defects, and unforeseen 

mechanical loads can compromise the serviceability and safety of existing infrastructures. 

Introducing Artificial Intelligence (AI) in smart structural health monitoring (SHM) can assist in 

building an automated and efficient infrastructure condition monitoring method to facilitate an 

effortless inspection and accurate evaluation of deteriorated infrastructure. Over the last decades, 

vision-based AI has proven successful in pattern recognition applications and motivated this 

current research to assemble a data-driven damage detection technique. To further explore the 

possibilities of deep-learning (DL) applications, this dissertation research aims to develop an 

autonomous damage assessment process using DL techniques to classify and detect two types of 

defects- crack and spalling on concrete structures. This research started with reviewing existing 

application of various DL-based technologies for damage detection of concrete structures and 

identifying the challenges and limitations. One major challenge in DL-based SHM technique is 

the lack of adequate real image database obtained from field inspection. To address these 

challenges, this research has created a diverse dataset with concrete crack (4087) and spalling 

(1100) images and used it for damage detection and classification by applying convolutional neural 

network (CNN) algorithms. For defects classification VGG19, ResNet50, InceptionV3, 

MobileNetV2, and Xception CNN models were used, whereas semantic segmentation process 

adopted Encoder-Decoder Models- U-Net and PSPnet. For both cases a detailed sensitivity 

analysis of hyper-parameters (i.e., batch size, optimizers, learning rate) was performed to compare 

their performances and identify the best-performed model. After assessing all the criteria, the best 

performance for defects classification was achieved by InceptionV3. On the other hand, for crack 

and spalling segmentation U-net outperformed the other models. Overall, the developed algorithms 

achieved an excellent performance in damage classification and localization and proved to be 

successful enough to offer an automated inspection platform for ageing infrastructures. The 

outcomes of this study signify that the data-driven CNN methods could be a promising solution 

for the condition assessment of deteriorating concrete structures.  The research outcomes can be 

implemented by practitioners for condition assessment of existing infrastructure and 

recommending proper rehabilitation measures. 
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Chapter 1   Introduction 

1.1 Research Background and Motivation 

Maintaining a fully functional and healthy infrastructure is crucial to ensure proper serviceability 

and operation of any society. After a certain service life, these infrastructures including bridges, 

buildings, dams, power station, etc. faces deterioration while continuously going through extreme 

environmental changes and loading conditions and ultimately disturbing the reliability of the 

structures. Nations all around the world face a great challenge in economic and environmental 

sectors making it imperative for the public and private sectors to provide uninterrupted service. 

According to ASCE's 2021 Infrastructure Report Card at least 42% of all the bridges in the United 

States are over 50 years old and 7.5% of these bridges are in “poor” condition implicating the 

structural deficiency. In total 231,000 bridges acquired a grade “C” indicating a requirement of 

$125 billion worth repair and preservation work. The 2019 Canadian Infrastructure Report Card 

stated that Over 40% bridges in Canada were built between 1940 to 1970 making them over 40 

years old, and 39% bridges and tunnels are in fair, poor, and very poor condition. The repair and 

replacement cost of these bridges alone was estimated over CAD 21 billion. The main reasons 

behind the increment of structure’s life-cycle costs are lack of systematical inspection, proper 

maintenance, and limited data on deterioration process, which ultimately disrupts the functionality 

and safety of the structures [Anai et. al. (2019)]. In quest of early detection and safety assessment, 

Canadian government has considered to inspect bridges on every 540 days or less [The 

Government of Canada, 2018], while the US government imposed a regulation of biannual bridge 

inspection [Federal Highway Administration, 2004].  

In Canada for any kind of construction and repair work, concrete has always been considered as 

the primary material [Cusson and Isgor (2004)]. Due to the continuous exposure to aggressive 

environment, these concrete structures are facing durability issues which is affecting the desired 

service life of the structure. For deterioration of reinforced concrete structures, carbonation and 

chloride-induced corrosion are mostly responsible. Later on these corrosions results in defects on 

concrete surface, such as- crack and spalling, which are the main reason behind the subsequent 

failure of the structures [Yamane and Chun (2020)]. Figure 1 shows the typical nature of crack and 



2 
 
 

spalling on concrete surface. With the increasing service time, these defects show a pattern of 

gradual increment both in number and quantitatively [Chao and Wenjun 2020].      

Even though the periodical inspection is highly encouraged for infrastructure condition 

assessment, the conventional inspection system has some serious drawbacks. Firstly, due to 

variance in technical skills, expertise and subjective interpretation, the inspection output lacks the 

consistency [Phares et al., 2001]. Also, the aged infrastructures require more frequent inspections 

than the recently constructed ones. Moreover, these manual inspections are time-consuming, 

laborious, expensive and can be health hazardous in case of inaccessible parts of the infrastructures 

[Wells and Lovelace, 2018].  

         
(a) Crack on concrete surface  

           
(a) Spalling on concrete surface 

Figure 1.1: Type os defects (Image Courtesy: TBT Engineering) 

Infrastructure inspection has historically been depended on visual inspection method. In general, 

visual inspection refers to finding the visual changes on structures’ surface showing the obvious 

warning of deterioration, and the visual assessment is considered as the initial form of evaluation 

in support of decision making in terms of safety, maintenance, and rehabilitation. Based on the 

collected visual information visual assessment involves a detailed inspection of the damaged area, 

including data collection, data processing and analysis, and post-event reconnaissance covering 
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the decision making process and documentation. Visual inspection and assessment are the primary 

requirement of a successful structural health monitoring (SHM) system. Researchers have 

immensely worked on creating various smart SHM modules to establish a resilient infrastructure 

system, as the stakeholders are more indulgent to finding an innovative, effective and economical 

ways to investigate the infrastructures [Agdas et al. (2015), Shamshirband et al. (2019), Zhang et 

al. (2017)]. With the introduction of computer-vision based analysis engineers are now capable to 

build a comprehensive solution for detecting and diagnosing the structural defects [Azimi et al. 

(2020)].  

Recently, deep learning (DL) based techniques have discovered a potential solution with a promise 

to reduce the subjectivity yet increase the accuracy of the damage diagnoses and accessibility in 

SHM system. Also, DL algorithms are proved to be quiet effective in understanding the hard-to-

describe features in high-dimensional data automatically without prior definition of the features. 

Moreover, DL approach helps overcoming the limitations of manual visual inspection. Among 

different types of DL methods convolutional neural network (CNN) is a type of neural network 

that works by processing data from an image. CNN has gained a high confidence in image 

classification and object recognition by automatically analyzing the different features from an 

image. 

1.2 Research Objective and Contribution 

Currently, DL approaches, more specifically CNN has proved to be exceedingly successful in 

image classification, segmentation, detection, recognition and many other process by using 

automatic feature extraction method. An in-depth review of prior studies (described in detail in 

Chapter-2) has showed the existing limitations, such as- only a few studies worked with multiple 

damage detection whereas multiple detection is essential to comprehend the real scenario of 

damage condition of any structure. Even though some studies have worked with different types of 

damages (Dunphy et. al. (2022), Ghosh Mondal et. al. (2020)), the image dataset is very limited 

for some case, i.e. spalling, rebar exposure. Also, most of the prior research lack multiple CNN 

model analysis and detailed sensitivity analysis of hyper-parameters, whereas a comprehensive 

comparison of the different CNN models’ performance based on a variety of hyper-parameters can 

actually provide a good understanding on how a well-tuned model can help building an automatic 

DL based damage classification and segmentation solution. Considering the aforementioned 
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challenges, this study has outlined some specific improvements for all these challenges and 

evaluated the effectiveness and feasibility of the developed DL based visual assessment technique.  

In summary, this study has used CNN-based DL methods to classify the different defect types, and 

later on used segmentation process to recognize the specific defect areas. In defects classification, 

using the CNN algorithms the models learn the different patterns and features from the multiple 

defects image database and finally categorizes the different types, such as- concrete crack and 

concrete spalling. Segmentation is the process to localize the defects area on pixel level, and labels 

the exact area by outlining the different features from an image. This dissertation research aims to 

develop a comprehensive module for concrete defects analysis from visual inspection images, 

specifically including the following objectives-   

i. Performing a literature review on prior contribution of CNN-based defects identification 

and segmentation in SHM system for civil infrastructures and understand the concept of 

DL transfer learning to frame a solution for CNN based defects detection. The review has 

helped understanding the specific difficulties and solutions to adopt for certain scenarios. 

Also, analyzing the prior studies have facilitated the idea of identifying the limitations of 

the current studies and explore the existing DL transfer learning techniques to use in this 

study’s benefit to achieve the research scope.  

ii. Building a large dataset of labeled images for two different types of defects representing 

the diversity of the defects’ physical parameters and image architectures. For CNN models, 

the successful completion of pattern recognition and object detection highly depends on a 

comprehensive and diverse dataset.  

iii. Avoiding augmented images for the developed damage detection and classification 

algorithm. Augmented images are avoided as the augmented dataset can give a false 

presentation of good performance with a specific dataset while in real-word application the 

models do not achieve a successful evaluation. 

iv. Developing an automatic and user-friendly concrete damage detection (i.e. crack and 

spalling) AI model that can be utilized for any site condition.  

v. Performing a detailed sensitivity analysis to identify optimized hyper-parameters for CNN-

classifiers and segmentation models. This study aims to analyze different pre-built CNN 

models for defects classification and segmentation. Also, the hyper-parameters are tuned 
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during the training process to achieve an optimized CNN model. For sensitivity analysis 

different type of hyper-parameters are selected and implemented in all the CNN models to 

find the best tuned hyper-parameters values for defects classification and detection.   

To achieve the aforementioned objectives, this study has collected defect images from various 

sources including actual industrial inspection reports (courtesy to TBT Engineering), web-based 

resources and pre-developed dataset by other researchers. This study has developed a crack dataset 

of 4087 images and spalling dataset of 1100 images without implementing any augmentation 

process. This dataset is developed to train and evaluate the CNN models for defects identification 

and segmentation and to the best of authors knowledge this dataset is the largest concrete defects 

dataset consisting the original images from inspection reports without applying any image 

augmentation process. As the site condition of concrete structure is not same everywhere, this 

study has focused on building a damage dataset of different concrete structures from different 

locations. This way a generic AI model can be standardized for any site condition to avoid the 

complexity of using condition-based solution. Also, the AI model developed in this study is trained 

on real site conditions targeting the generic data collection system to provide a user-friendly 

approach for engineers. Moreover, by introducing this automated AI solution for data 

categorization and segmentation professionals can reduce the resources required for site 

reconnaissance and focus on rehabilitation work more preciously. Also, for classification and 

segmentation purpose this study has worked with five different types of CNN models to make a 

performance comparison. Simultaneously, a substantial amount of sensitivity analysis is done for 

each CNN model with the significant hyper-parameters, like- optimization function, loss function, 

learning rate, batch size, and epoch. The final selection of the hyper-parameters values is done 

based on the optimized model performance. Another highlight of this research is the Encode-

Decoder models- U-net and PSP-net used for segmentation process. For both U-net and PSP-net 

four different backbone CNN models are considered and to this author’s knowledge no previous 

studies used these four backbone models for concrete crack and spalling detection. In short, this 

research has contributed by pushing some boundaries of the existing studies and developed a 

comprehensive defects assessment technique by addressing the real-world complexity and 

comparison of multiple CNN models in a feasible way.  
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1.3 Organization of Thesis 

In this dissertation, a comprehensive vision-based defects assessment technique is introduced, 

including- categorizing the defects type and recognizing the exact area of the defects on the image 

through semantic segmentation enabling the successful implementation of this project in real-

world problems. The first half of this dissertation has listed some of the previous works with CNN 

models in defects detection and illustrated the core techniques of the CNN models used in this 

study. The other half of the dissertation has portrayed the sensitivity analysis of the CNN models 

based on the hyper-parameters tuning and made some graphical representation of the final outputs. 

The details of the chapters are organized as follows- 

Chapter 2 reviews the previous studies worked on artificial intelligence (AI) based SHM system 

for condition assessment of civil infrastructures. These reviews started from digital image 

processing techniques (IPTs) to various DL-based models.  

Chapter 3 presents the overall methodology of how the DL-based defects condition assessment 

process works and the detailed techniques of the CNN-models considered in this study. The 

detailed process starts with data collection process to CNN layer organization, model selection and 

finally the feature extraction methods. This chapter also includes the various methods adapted for 

hyper-parameters tuning, model training and validation, model’s optimization process, and 

performance evaluation metrics.  

Chapter 4 exhibits the final performance output of the models for classification models by means 

of tabulation and graphical content. This chapter displays the accuracy of the models and the 

superiority of this research over previous works.  

Chapter 5 discusses the basic methodology of semantic segmentation process and presents a 

summary of two types of encoder-decoder models used in this study. Also, this chapter illustrates 

the sensitivity analysis of hyperparameters for all the segmentation models and the final 

performance results of the encoder-decoder models.   

Chapter 6 summarizes the research methodology and findings from the previous chapters and put 

on generalized conclusion. It also focuses on the advantages and limitations of this study while 

mentioning the future scope of this research.   
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Chapter 2  Literature Review 

2.1 Introduction 

Safety, reliability and uninterrupted performance are the universal concerns for any kind of in-

service infrastructure. To highlight the construction materials, in today’s world, concrete is one of 

the most regularly used materials for any construction work. However, under the extreme 

weathering effect, the serviceability of the concrete structures is subjected to disruption. Hence it 

is crucial to employ a systematic inspection system to ensure the perseverance of the structures, 

i.e., bridges, buildings, dams, high-rises and power stations. With the increasing number of ageing 

infrastructures globally, the significance of SHM systems to visually inspect the structures are 

prevalent. Conventionally the SHM system is highly dependent on on-site manual inspection, 

which can be expensive, laborious, time-consuming and inconsistent in the condition assessment 

decision-making process. To support the professionals in the structural diagnosis and advance the 

qualitative assessment, researchers have introduced computer-vision based technology in the SHM 

system. Moreover, some researchers have built a systematic review of the advancement of smart 

SHM systems in the application of structural performance assessment [Mohsen et. al. (2020), Han 

et. al. (2021) and Sandeep et. al. (2021)]. Chapter 2 reviews the challenges and advancements of 

some of these previous works on computer-vision based defects analysis, starting from image 

processing technology and following machine learning employed defects analysis, DL-based 

condition assessment, and finally highlighting the CNN-focused studies.    

2.2 Related Works: Image Processing Techniques (IPTs) 

Vision-based techniques in damage detection have been studied extensively for the past few 

decades. One of the early advancements of the vision-based method was image processing 

techniques (IPTs), which has shown credibility in crack detection on concrete and asphalt surfaces 

[Zenghui et. al. (2021)]. Some of the most widely known approaches to IPTs for defects detection 

are- the thresholding-based approach [Cheng et. al. (2003), Ying and Salari, (2010), Yusuke and 

Yoshihiko (2011), Takfumi et. al. (2012)], and morphological methods [Shivprakash and Sunil, 

2006; Hoang-Nam et. al. (2014)]. The thresholding method converts an image into a binary image 

from a colour or grayscale image. In contrast, in morphological processing, a structuring element 
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is added to an image to outline the shapes of the objects. These methods are employed for concrete 

crack detection [Yusuke et. al. (2006) and Takfumi et. al. (2012)] and concrete spalling [Stephanie 

et. al. (2012)]. In summary, IPTs are an assumption-based approach that considers the contrast of 

the gray level of the image objects between crack and background. These assumptions are made 

on two concepts- first, the defects' area is thinner than the other texture patterns, and the image 

background has a lighter pixel shade than the area of the defects [Tomoyuki et. al. (2008)]. 

Therefore, the performance of IPTs is highly reliant on photo-shooting conditions avoiding the 

shading variance and noises. Later, researchers built some methods like Bayesian decision theory 

[Mohan and Poobal (2018) and Argyris et. al. (2018)], edge detection techniques [Hoang et. al. 

(2018)] and fuzzy C-means clustering [Ouma and Hahn (2017)] to detect cracks. In a study of 

crack detection, Ikhlas et al. (2003) developed an evaluation with four techniques, i.e., Fast Haar 

Transform (FHT), Fast Fourier Transform (FFT), Sobel and Canny, where FHT outperformed the 

other three techniques in crack identification. Even though assumption-based models are fast and 

reliable in crack detection, the performance is negatively affected by lightning conditions and 

background obstructions of the images [Michal and Boguslaw (2017)]. To address this limitation, 

Leonid et. al. (1992) adopted denoising techniques to remove the distortion and noises from the 

images to escalate the model’s training performance. Yet the improvement of IPTs is limited as 

the inspection images are collected from extensively varying environmental conditions.   

2.3 Related Works: Machine Learning in Vision-based Methods 

Considering the generic site condition of structures, preparing a dataset with standard lightening 

conditions and without any disruption is quite impossible. Therefore, to further improve the 

damage detection methods, some researchers have worked on combining Machine learning (ML) 

approaches with IPTs. ML methods are a subsection of artificial intelligence (AI) which are widely 

used in defects detection for their prominent characteristics of both supervised and unsupervised 

learning of features and noise elimination, including techniques like feature engineering, 

classification and data clustering. Some of the previous studies included IPTs, ML method (i.e., 

Support vector machine) and neural networks to categorize the damage features from other features 

[Mohammad et al. (2013) and Young-Jin et al. (2016)]. Ikhlas et al. (2006) studied three special 

principal component analysis (PCA) methods while working on automatic crack extraction in 

concrete structures. First, they employed PCA to analyze the raw data, then enhanced the results 
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of linear feature detection and finally focused on the features detected on the specific block of the 

data. In another study, Gajanan and Sayan (2012) combined the fuzzy logic and artificial neural 

network (ANN) approach for crack extraction from digital images based on two principles (a) 

image approach: classifying the crack and crack-free images globally, (b) object approach: 

analyzing an image to locally classify the crack and background obstruction.  

Over the past decades, ML has proved its potential in reliability and flexibility in feature detection 

applications through feature engineering, where geometrical properties and colour distributions 

are analyzed and calculated to identify a segmented area in images. Later, different ML algorithms 

are applied to categorize or cluster the specific feature index areas based on the pre-defined damage 

classes. Researchers used the k-nearest neighbours [(Jahanshahi et. al. (2013); Oliveira & Correia 

(2008)], support vector machine (SVM) [Fu-Chen et. al. (2017), Po-Han et.al. (2012), Michael 

et.al. (2014)] and ML algorithm to identify and detect the crack area. Based on a type of ML, SVM, 

Wei and Wang (2012) built a proximal support vector machine (PSVM) method for pavement 

surface damage detection. Later, Gang et. al. (2017) developed an automatic crack detection 

algorithm established on the base algorithm of linear SVM. This novel algorithm performed well 

with the capacity of noise elimination by applying a unique, wide-ranging search strategy.  

Hyunjun et.al. (2018) proposed a two-step classification ML approach for crack and non-crack 

identification. First, they applied the image banalization technique to highlight the crack-

containing zone. They later used a previously trained classification model to extract the crack and 

crack-free features separately. Another novel approach was achieved by Bao et. al. (2019), where 

they used the genetic optimized online sequential extreme learning machine algorithm. This 

method does not need to restart the training from scratch when a new dataset is uploaded. However, 

although the ML methods successfully attempted defect classification, the feature-based 

approaches have certain drawbacks as the performance degrades when applied in the complex 

situation for arbitrary defect categories. In addition, the models require reasonable training with 

domain knowledge and pre-defined feature indexes to achieve a better performance, which gets 

more complicated with a complex dataset.    

2.4 Related Works: Deep Learning in Vision-based Methods 

In recent times, DL based detection process has become profound for its automatic and optimized 

feature extraction potentiality [Wu et. al. (2021)]. Also, DL can analyze a large amount of data at 
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a time and multiple categorizations, which have facilitated the damage evaluation in the SHM 

system [Azimi et. al. (2020)]. In the context of SHM, DL techniques are implemented in the 

damage detection of infrastructure in three steps: classification, localization and segmentation. DL 

has several techniques, such as deep belief networks (DBNs), recurrent neural networks (RNNs), 

encoder-decoder model and convolutional neural networks (CNNs). Among all CNNs have shown 

efficacy for defects detection purpose [Zhao et. al. (2019)]. 

2.4.1 Pre-built base CNN models 

Even though ML methods' performance was relatively decent, since 2012 introduction of CNN 

gave a robust solution for object recognition and classification [Liu et. al. (2020)]. A CNN-based 

DL method was developed to detect concrete cracks by Young-Jin and Wooram (2017) and Pan 

and Yang (2020) and other defects by Lin et. al. (2017). The CNN model has different algorithms 

based on the depth and width of the learning layers. Researchers continuously explore pre-built 

and own-developed CNN algorithms to develop an effective damage assessment model, such as- 

VGGNet [Simonyan and Andrew (2015)], ResNet [He et. al. (2016)] and Inception [Szegedy et. 

al. (2015)] models are used as damage pattern recognition and detection process. VGGNet- built-

in 2014 by Visual Geometry Group (VGG) from Oxford University used 3x3 convolutional filters 

with 16 and 19 convolutional layers and achieved an outstanding performance without having too 

deep layers. However, VGGNet faced a vanishing gradient problem where the learning rate 

becomes smaller within the deeper layer, increasing the training time considerably. In 2015, 

researchers proposed a Residual Network (ResNet) to solve the vanishing gradient issue. ResNet 

uses the “skip connection” concept within the residual block, allowing the gradient an alternate 

shortcut without hindering the performance of the deeper layers. In 2014, in the ImageNet visual 

recognition competition, the Inception model put forward a breakthrough performance to solve 

recognition and detection problems [Sandeep et. al. (2021)]. The objective of the Inception model 

was to increase the depth and width of the model while avoiding overfitting and extensive 

computational cost. Table 2.1 presents a comprehensive summary of the previous studies that 

worked with base CNN models for infrastructure defects detection. 
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Table 2.1 A summary of previous studies on defects classification and detection with pre-built 

CNN models 

References Application CNN 
architecture 

Specifications 

Yang et. al. 
(2021) 

Concrete surface 
damage- crack 

AlexNet 

 VGGNet13 

ResNet18 

 227x227 pixels 
 Data augmentation  
 10,000 cracks and 10,000 

crack-free images 
 Accuracy-  

AlexNet, 97.6%, 

VGGNet13, 98.3%, 

ResNet18, 98.8%, 

  
Niannian et al. 

(2021) 
Brick surface 

damage- crack, 
spalling, and 
efflorescence 

AlexNet 

GoogLeNet 

 480x105 & 210x 105 
pixels 

 24000 images 
 Accuracy-  

GoogLeNet, 94%, 
Dimitris et. al. 

(2021) 
Masonry surface- 

Crack 
VGGNet 

ResNet 
DenseNet 

Inception 

MobileNet 

 224x224 pixels 
 351 cracks and 118 crack-

free images 
 Accuracy-  

MobileNet 95.3%, 

Yadong and 
Yicheng (2018) 

Tunnel concrete 
surface damage 

GoogLeNet 

VGGNet 

Faster R-CNN 

 256x256 pixels 
 9520 images 
 Accuracy- 95%, 

Dhananjay et al. 
(2019) 

Building damage 
assessment 

VGG16  224x224 pixels 
 1200 images 
 Accuracy- 97.85% 

Li et al. (2018) Automatic pixel-
level crack 
detection 

GoogleNet  256x256 pixels 
 1250 images 
 Accuacy 99.39% 
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A. Transfer learning of CNN in damage classification: Conventionally, the damage assessment 

process works in two steps: a) classify the types of damages using the feature extraction and b) 

object area recognition technique (also known as segmentation) to recongnize the area of the 

damages on the images. In the first step, CNN models identify the differences among the images 

and categorize the damages. After the categorization, CNN models do the quantitative analysis of 

the images to show the exact defect areas for the specific defect category. For example, Yang et. 

al. (2021) compared three neural networks, AlexNet, VGGNet13, and ResNet18, to identify the 

concrete cracks and no-crack surface, with images of 227x227 pixels. The models were trained 

with 10,000 cracks and 10,000 crack-free images and got an accuracy of 97.6%, 98.3%, and 98.8%, 

respectively. This study used the data augmentation process to create the 10000 crack images 

database from 2000 original images. In the study of Niannian et. al. (2021), AlexNet and 

GoogLeNet base models were used to identify the brick crack, spalling, and efflorescence. They 

used 1466, 1830, 865, and 984 original images of intact brick, crack, spalling and efflorescence, 

respectively. Both the models had an accuracy of over 90%. In another research, Dimitris et. al. 

(2021) compared five different types of base algorithms- VGGNet, ResNet, DenseNet, Inception 

and MobileNet to identify the crack images of masonry surfaces. The dataset contained 351 images 

of cracks and 118 without any cracks and had a resolution of 224x224 pixels. The implementation 

of transfer learning brought a significant boost in the model’s performance, and with an accuracy 

of 95.3%, MobileNet outperformed all the other models. 

B. Damage detection process with CNN: CNN–based damage detection can be categorized into 

three sections: Image patch method, boundary box regression and semantic segmentation [Mahtab 

et. al. (2020)]. Figure 2.1(a) shows the small patches used to identify the damage on the image. 

For the boundary box regression method, the model uses a box to bound the area of the damage 

[Figure 2.1b)]. These methods were successful in predicting the damaged area with promising 

accuracy. CNN method with the image patch technique was adopted by [Pan and Yang (2020), 

Chuncheng et. al. (2019), Yadong and Yicheng (2018)] to localize the damages on the images. 

Subsequently, region-based CNN models (R-CNN) were proposed, with simple modifications 

such as Faster R-CNN [Byunghyun and Soojin (2019), Young et. al. (2018), Yadong and Yicheng 

(2018), Jianghua et. al. (2019) and Tarutal et. al. (2020)] for multiple damage detection. Employing 

a Faster R-CNN, built on the basic architecture of ResNet-101, Niannian et al. (2019) developed 
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the efflorescence and spalling detection model for historic masonry buildings. They used a dataset 

of 500 images with 500x500 pixels splitting the dataset into 80-20% for training and testing. They 

concluded that despite having some minor errors, the developed model was able to obtain 

substantial success in predicting efflorescence and spalling. Nevertheless, the image patch method 

and R-CNN were incapable of extracting the exact geometry of the damages as it works by dividing 

the images into patches and boxes, respectively. To get a more quantitative assessment of damage 

characteristics, researchers worked with pixel-wise analysis using CNN-based semantic 

segmentation [Figure 1(c)]. Table 2.2 shows a summarized version of previous research on defects 

detection with the help of CNN models. 

           
                                      (a)                                                                  (b) 

 
(c) 

Figure 2.1: Defect detection with (a) image patch classification, (b) boundary box regression and 
(c) semantic segmentation (Image Courtesy: TBT Engineering) 
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Table 2.2 A summary of previous studies on defects detection with pre-built CNN models 

References Application CNN 
architecture 

Specifications 

Lei et. al. 
(2016) 

Road surface damage- 
crack 

ConvNet  99 × 99 pixels 
 Data augmentation  
 500 images 
 F1-score 89.6%  

Pan and Yang 
(2020) 

Concrete building 
surface- post-disaster 

damage 

AlexNet 
VGG19 

ResNet50 
YOLOv2 

 224 × 224 pixels 
 Precision-  

YOLOv2, 94%, 

Chuncheng et. 
al. (2019) 

Hydro-junction 
infrastructure- Crack, 

Spalling, Seepage, 
Rebar Expose 

InceptionV3  300x300 pixels 
 435 images 
 Accuracy- 96.8%, 

Yadong and 
Yicheng 
(2018) 

Tunnel concrete surface 
damage 

GoogLeNet 
VGGNet 

Faster R-CNN 

 256x256 pixels 
 9520 images 
 Accuracy- 95%, 

Byunghyun 
and Soojin 

(2019) 

Concrete surface- crack Mask R-CNN  800x800 pixels 
 453 images 
 Recall 76.5% 

Young et. al. 
(2018) 

Concrete and Steel 
surface- crack, 

corrosion  

Faster R-CNN  500x375 pixels 
 297 images 
 Accuracy 89.7% 

Jianghua et. al. 
(2019) 

Concrete surface- 
cracks 

Faster R-CNN 
YOLOv2 

 500 × 375 pixels 
 160 images 
 Accuracy- 

Faster R-CNN 79% 
Tarutal et. al. 

(2020) 
Concrete infrastructure- 

Post-disaster 
reconnaissance- crack 

and spalling 

Faster R-CNN 
Inception-
ResNet-v2 

 1024 x 1024 pixels 
 Overall Accuracy- 

Proposed model 80% 

Niannian et. al. 
(2019) 

Historic masonry 
building- Efflorescence 

and spalling 

Faster R-CNN 
 

 500x500 pixels 
 500 images 
 Average Precision 90% 
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2.4.2 Proposed CNN Models for Classification and Segmentation 

A. Proposed CNN-classifiers using backbone CNN models:  Using the MobileNet as the 

backbone model, Perez and Tah (2021) used SSDNet to develop a mobile device application to 

detect concrete damages, such as mold, crack, stains and paint deterioration. For training and 

testing purposes, 700 and 176 images were used, respectively. Finally, the accuracy for detecting 

crack, deterioration, mold and stain was 61%, 83%, 81% and 95%, respectively. Another study by 

Majdi et. al. (2020) built a distinctive CNN-classifier with three convolutional layers, ReLu 

(Rectified Linear Unit) activation function, and a softmax layer. This model used an available 

online dataset of crack images with a resolution of 227x227 pixels. The proposed classifier 

achieved a high accuracy of 99.57%. However, the dataset used in this study was highly modified 

without any noise, which does not replicate the real-time inspection condition. To achieve a 

quantitative assessment of multiple seismic damages of reinforced concrete (RC) structures, such 

as cracks, spalling and crushing, reinforcement exposure, buckling and fracture, Zenghui et. al. 

(2021) built two unique CNN models. First, the Crack-Net was developed to detect cracks, and 

finally, 4Category-Net was optimized to detect the other four damage categories. These models 

performed satisfactorily with a mean IoU of 70% (Crack-Net) and 71% (4Category-Net).  

An improved crack detection and recognition process with Batch Normalized (BN) technique was 

adopted by Chen et al. (2019) to detect cracks in historic masonry buildings. They used a dataset 

of crack and no-crack with the RGB pixels of 227x227 and gained an average accuracy of 99.71%. 

B. Proposed CNN models for segmentation: To upgrade the damage evaluation process, 

researchers have worked on developing their own CNN model while using the pre-built base 

models as the backbone of the structure. In recent years, DeepCrack [Zou et. al. (2019)], SDDNet 

[Choi and Cha (2020)], STRNet [Dong and Young-Jin (2021)], and U-Net [Ronneberger et. al. 

(2015)] have gained popularity over the base models with their robust performance in crack 

detection. The studies above found that these models were successful in crack detection with a 

performance evaluation matric IoU value of 0.88, 0,846, 0.926 and 0.923 for DeepCrack, SDDNet, 

STRNet and U-Net, respectively. Also, Fully Convolutional Network (FCN) DeepLab and YOLO 

have shown good performance in defect identification and detection. For crack detection, Anai et 

al. (2019) used publicly available pre-built models, such as R-CNN, Shot Multibox Detector 

(SSD), YOLO, and RetinaNet, with different numbers of layers. The models were trained with a 
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dataset of 230 images, and validation was done with 208 images. After the training at the testing 

stage with randomly split images, YOLOv3 showed a mean average precision of 91.1%.  

A detailed review of CNN-based semantic segmentation with various application techniques was 

presented in the study by Alberto et. al. (2017). Liu et. al. (2020) proposed U-Net architecture to 

build an autonomous pavement crack segmentation model. ResNet-34 was applied as the backbone 

base model, pre-trained by ImageNet parameters. The proposed segmentation model detected 

cracks with the precision, recall and F1-score 97.24%, 94.31%, and 95.75%, respectively. Next, 

DeepLab3+ CNN model was applied by Jia-ji et. al. (2022) for semantic segmentation of cracks. 

This proposed model used ResNet as the base model to compare the crack detection performance, 

and the DeepLab3+ with the backbone ResNet101 outperformed the others. The dataset was 

collected from previous research resources, consisting of crack images of the building, pavement, 

and concrete structure. Finally, a dataset of 2446 images was developed with a resolution of 

512x512 pixels, and the whole dataset was divided into 1827 and 619 images for training and 

validation purposes. The best-performed model had the highest IoU, recall, and F1-score of 

0.6298, 0.6834, and 0.7732, respectively.  

In another semantic segmentation of defects, Pozzer et al. (2020) used two different types of 

images, regular and thermographic, to compare the performance of different CNN model 

architectures, VGG-16, ResNet, and MobileNetV2. The dataset included images of delamination, 

crack, spalling, and patches. The authors achieved the best performance from MobileNetV2, 

detecting the defects with 79.7% accuracy.   

C. FCN-based semantic segmentation: Recently, FCN-based CNN algorithms have been 

extensively analyzed for semantic segmentation [Li et.  al. (2019)]. FCNs are implemented as an 

end-to-end pixel-level process where the outcome is semantic segmentation instead of damage 

categorization. This study considered four types of concrete defects: crack, spall, efflorescence 

and hole, and achieved a mean pixel accuracy of 91.59%. In the end, they also compared their 

own-developed FCN model’s performance with the SegNet-based method and concluded that their 

proposed method performed better in realistic conditions. Table 2.3 summarises proposed CNN 

models used in different research for classification and segmentation, respectively.  
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Table 2.3 A summary of previous studies on defects classification and segmentation with 

proposed CNN models 

References Application CNN 
architecture 

Specifications 

Perez and Tah 
(2021) 

Concrete surface 
damage- mould, crack, 

stains and paint 
deterioration 

SSDNet  224 x 224 pixels 
 1890 images 
 Overall accuracy- 

Crack 61%, deterioration 
83%, mould 81% and 
stain 95%. 

Majdi et. al. 
(2020)  

Concrete surface- crack Distinctive 
CNN-classifier 

 227x227 pixels 
 458 images 
 Accuracy- 99.57% 

Zenghui et. al. 
(2021) 

Concrete surface- 
crack, spalling, rebar 
exposure, fracture.  

Crack-Net 
4Category-Net 

 300x300 pixels 
 76 images 
 Overall IoU- 

Crack-Net 70.11% 
4Category-Net 71.12% 
 

Xiao-Wei et. 
al. (2019) 

Concrete surface 
damage- crack 

Ci-Net  500 x 300 pixels 
 762 images 
 Overall precision 84% 

Yang et. al. 
(2019) 

Seismic damage 
detection of reinforced 

concrete columns 

Faster R-CNN 
 

 640 × 640 pixels 
 Data augmentation 
 Overall precision 80% 

Zou et. al. 
(2019) 

Crack detection DeepCrack 
 

 512 × 512 pixels 
 Backbone model- SegNet 
 Pre-built dataset 
 Overall precision 85-95%  

Choi and Cha 
(2020) 

Concrete surface- 
cracks 

SDDNet  513× 513 pixels 
 Backbone model- 

DenSep 
 44 imges 
 IoU- 84.6%,  

F1 score 81.9% 
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Dong and 
Young-Jin 

(2021) 

Crack segmentation STRNet  512 × 512 pixels 
 1784 images  
 Precision- 91.7%, 

Fangzheng et. 
al. (2015) 

Structural crack 
segmentation 

U-Net  386×256 pixels 
 101 images 
 Accuracy- 90.02%, 

Anai et al. 
(2019) 

Concrete surface- 
deterioration 

R-CNN, Shot 
Multibox 
Detector 
(SSD), 

YOLOv3, 
RetinaNet 

 800x800 pixels 
 438 images 
 Average Precision 91.1% 

Liu et. al. 
(2020) 

Concrete and Steel 
surface- crack, 

corrosion  

YOLO 
U-net 

 320x320 pixels 
 Backbone model- ResNet 
 297 images 
 Segmentation 90.5% 

Jia-ji et. al. 
(2022) 

Concrete surface- 
cracks 

DeepLab3+  512 × 512 pixels 
 Backbone model- ResNet 
 2446 images 
 IoU-  62.98% 

Li et.  al. 
(2019) 

Concrete infrastructure- 
crack, spalling, 

efflorescence, hole 

FCN  504 x 376 pixels 
 2750 images 
 Overall Accuracy-

91.59% 
 

2.5 Summary 

This chapter provides a detailed summary of past research on different types of defects 

classification and detection in the context of database size, image quality and image processing 

techniques. Furthermore, this section provides an insight into previous applications' achievements 

and scopes of future works indicating the existing demand for automatic SHM techniques. 

Comparing to other techniques deep learning methods have provided a promising result in SHM 

applications with automated defects pattern recognition. 

In terms of deep learning algorithms CNN proves to have the most success in damage pattern 

recognition in computer vision. This literature review contains an in-depth discussion of structural 
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condition assessment by making a list for both the classification CNN models and the segmentation 

CNN models and identifies the behaviour of the different CNN models in context of damage 

classification and detection for different types of structures. Finally, this review has summarized 

three concepts- first, transfer learning can facilitate the idea of developing a sophisticated CNN 

algorithm to build a successful defects detection model, especially the deeper architectures are able 

to recognize the patterns more accurately. Also, having a sufficiently large and complex image 

dataset can aid in build a better performing and efficient CNN model capable enough to solving 

complex problem in real-time condition. Finally, multiple damage detection with CNN is a 

considerably possible approach which is not yet explored extensively.  

Based on the findings of this chapter this study has decided on exploring multiple damage detection 

with CNN models by developing an image dataset of concrete crack and spalling replicating the 

real-world structural conditions. Also, this study has implemented multiple CNN algorithms to 

compare the damage detection accuracy and outline the best output. Overall, this review work of 

previous studies has helped this research to identify the unexplored segments of CNN models and 

built a comparative study for defects assessment to understand how new approaches can assist in 

achieving a better prediction quality.   

 

 

 

 

 

 

 

 

 



20 
 
 

Chapter 3  Deep Learning Methodologies 

3.1 Introduction  

Visual damage detection of infrastructure using deep learning (DL) based computational 

approaches has developed an interdisciplinary area of interest for engineers. DL has the potential 

to process a large scale of complex data which can be engaged in civil infrastructure health 

monitoring system. As DL is a very complex method it can be very challenging to train a DL 

model and to overcome some common issues, i.e. overfitting, vanishing/exploding gradient. To 

build a fine tuned model it is very important to choose the appropriate components and understand 

the basic work principles of those components. This chapter explains how a DL model extracts 

features, is trained and tuned to reach an optimized position. Furthermore, this chapter contains 

the description of the specific modules used in this study for defects classification and 

segmentation process.  

3.2 Overview of Deep Learning  

DL has the potential for automatic detection and identification of patterns and features from a 

dataset. DL operations combine deep and hierarchical layers working toward feature extraction 

and identification [Bengio et. al. (2017)]. One of the prominent approaches of DL is CNN, works 

with the base learning layers called convolutional layers and supports the automatic image analysis 

processing. CNN was first introduced in a computer vision competition in 2012 called ImageNet 

Large Scale Visual Recognition Competition (ILSVRC) and continuously had a dominant 

implementation in various fields for its scalable approach to object recognition tasks and image 

classification [Yamashita et. al. (2018)]. A schematic diagram of basic CNN architecture is 

presented in Figure 3.1. 
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Figure 3.1: schematic diagram of basic CNN architecture 

As illustrated in Figure 3.1, a CNN model starts with an input layer, followed by a group of 

learnable layers (convolutional layer, pooling layer, activation layer, fully connected layers etc.) 

and finally provides the decision in the output layer. These learnable layers are responsible for 

feature extraction from images where the previous layer's output acts as the next layer's input. DL 

is an automatic learning process; however, to optimize the learning process and cut the 

computational cost, several learnable parameters, also independently defined as hyperparameters, 

are selected and fed into the models. The hyperparameters are initialized randomly, and with the 

help of the optimization process, each layer tunes these parameters and accumulates the final result, 

which is referred to as model training. The tuning of hyperparameters is set empirically by 

imposing a trial and error process. In CNN model training, a training dataset is fed into the model 

for training purposes. A part of this training dataset is used as a validation dataset to validate an 

unbiased evaluation of the training data against unseen data while tuning the model’s 

hyperparameters. Once the training and validation are done, hyperparameters are set, and 

satisfactory performance is achieved, the model is considered trained. A trained model is then 

tested with a set of images that were not introduced beforehand to the model. This test dataset aids 

in evaluating the trained model. 

3.3 Layer operations of CNN 

Generally, a CNN model consists of (a) Input Layer, (b) hidden layer- convolutional layer, pooling 

layer, fully-connected layer, activation layer, and (c) output layer. This section presents the 

fundamental operation process of the layers in CNN models. The CNN layer’s learning process 

works by forward-pass and backpropagation in search of best optimized output.   
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3.2.1 Input Layer 

In this study for the CNN models, the input data accumulates a set of images of concrete defects, 

including crack and spalling. In this case, colored images with red, green, and blue (RGB) channels 

are used. A digital image with RGB channels is considered to have three dimensional (3D) tensor 

(i.e., height, h x width, d x channel, c) [Figure 3.2]. 

 
Figure 3.2: Data input style (RGB channel) 

RGB channel is an accumulation of different pixel values representing the pixel's brightness, and 

for this study, the pixel number ranges between 0 to 224. Another significant image processing is 

called image normalization. A high-resolution image is converted into a small resolution image to 

reduce the pixel size, ultimately easing the computational cost of model training. Also, a large 

image with more background can adversely affect the model’s performance. Therefore, cutting the 

original images into small ones is recommended for better performance. According to Flah et. al. 

(2020) a model trained with relatively small pixels can learn the desired feature more accurately 

than the original image but not vice-versa. 

3.2.2 Convolutional Layer 

Ian et. al. (2016) introduced a simple convolutional operation method [Figure 3.3]. In general, 

convolution is a linear function where multiplication of a set of weights is multiplied with the input 

tensors. This set of weights is called filter/kernel and has a two-dimensional array. The filter is a 

smaller tensor in size than the input array, and the output result of the multiplication of the input 

array and filet array is a dot product reflecting a single value. Within the forwarding pass training 

period, the filters keep multiplying and learning the features of the local dependents on their own. 

Notably, the higher the number of filters in a network, the more features are extracted from the 
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image, and the better chance for the network to excel in recognizing diverse patterns. To simplify, 

the deeper the CNN network goes, the better the performance. The following mathematical term 

can represent the convolutional process for a single image-  

Yij =  ∑ 𝜔𝑚,𝑛𝑋 + 𝑏𝑖𝑗(𝑚,𝑛)𝜖𝑓                                                                                             (1) 

Here, X and Y represent the input and the output values, respectively. f is a filter used for training. 

w and b are the weight and bias, continuously updated with the ongoing learning process. On the 

forward training process, the filters move along the width and height of the input image. The steps 

followed by the filters to convolve around the image is called stride. With each layer input image 

losing much information, padding is considered to keep the volume same for the input and output 

image. 

 
Figure 3.3: Convolutional operation method with 1-D tensor 

In mathematical explanation, if for an actual conv layer (L), f is the filter size, p is the padding, s 

is the stride and nf is the number of filters. The input image size is (mL-1, nL-1, cL-1) where m, n, c 

represents the height, width, and channel of the image and the output layer will be a two-

dimensional matrix. Following Eqn. 2 and Eqn. 3 show the mathematical formulation for the size 

of the output layer- 

mL =  
𝑚𝐿−1+2∗𝑝𝐿−𝑓𝐿

𝑠𝐿 + 1                                                                                                                  (2) 
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nL =  
𝑛𝐿−1+2∗𝑝𝐿−𝑓𝐿

𝑠𝐿 + 1                                                                                                                    (3) 

In the convolutional layer, stride function can be for both input and filter multidimensional. Figure 

3.4(a) shows an example of the multiplication of 2-D stride input with a spatial dimension of 8x4 

and a 2-D filter array with a spatial dimension of 3x3. The filter moves along the column by column 

and row by row on the input array and provides a weighted sum, and the output is a 2D array with 

a spatial dimension 3x3. Following a similar process, an input with three channels works with a 

three-channel filter, resulting in a 2D array with one channel [Figure 3.4(b)].   

 

 

 

 

 

 

 

 

 

 

 

 

(a) 1-D channel                                                     (b) 3-D Channel  

Figure 3.4: Convolution example- (a) 1-D channel and (b) 3-D channel 

3.2.3 Pooling Layer 

The Pooling layer operates by summarizing the features of a targeted region in an image by using 

a pooling filter (selecting the active array of each region) [Ciresan et.al. (2012), Zeiler and Fergus 

(2013)]. It helps the model reduce the size of the feature maps, which eventually makes the model 

computation faster by reducing the number of training parameters. After the pooling layer, the 

dimension of the output layer can be determined using the Eqn. 4 and Eqn. 5. 

moutput =  
𝑚−𝑓

𝑠
 + 1                                                                                                                      (4)                                                        
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noutput =  
𝑛−𝑓

𝑠
 + 1                                                                                                                        (5) 

Where (moutput, noutput) represents (height, width) of the output dimension, s and f is the size of the 

stride and filter.  

In practice, maximum and average pooling are the most employed pooling methods [Song et. al. 

(2018)]. Average pooling considers all the elements in the pooling region to avoid variance 

increase [Song et. al. (2018)]. On the other hand, maximum pooling only grabs the foreground 

element from the featured map as the representative feature for the next layer [Ciresan et.al. 

(2012)]. Figure 3.5 shows the example of the maximum and average pooling process. 

 

 

 

 

 

 

 

 

 

Figure 3.5: Example of max and average pooling 

3.2.4 Activation Layer 

In DL, Convolution and pooling are solely responsible for linear operations of the model and 

proceed the feature map with linear expression. However, the feature extraction in DL is a 

nonlinear process and requires the application of nonlinear functions called the activation function. 

In a neural network, the activation layer uses an activation function (nonlinear) to navigate how 

the weighted sum of the input transforms from nodes to output. In this study, ReLu (Rectified 

Linear Activation) function [Figure 3.6] is used for all the CNN models, showed in Eqn. 6. ReLu 

is a linear function that gives output only if the input is positive otherwise the output is zero 
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meaning the neuron is deactivated. This gives advantages on computational efficiency as not all 

the neurons are activated at once instance. 

f (x) = max (0, x)                                                                                                                               (6) 

 
Figure 3.6: Activation Function (ReLu) 

3.2.5 Fully Connected (FC) Layer 

Fully connected layers are one of the essential components of the CNN model because of their 

successful application for classification and recognition in vision-based analysis. In practice, this 

layer works as decision making layer to predict the best label for the image. In numerical terms, 

all the input neurons from the previous layer (Eqn. 7) are connected with the corresponding output 

layer (Eqn. 8) through the FC layer. 

Input layer, 𝜓(𝑙−1) = {𝜓𝑗
(𝑙−1)

I 𝑗 𝜖 {1,2, … … … , 𝑛𝑙−1}}                                                                   (7) 

Output layer, 𝜓(𝑙) = {𝜓𝑖
(𝑙)

I 𝑖 𝜖 {1,2, … … … , 𝑛𝑙}}                                                                           (8) 
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Figure 3.7 shows how each input neuron goes through the learning process using weights and 

biases to give a weighted sum as output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Example of a fully connected layer  

3.3 CNN Model Optimization   

The previous section discusses the operations of CNN layers and the parameters are tuned over 

numerous forward and backward pass actions to achieve a meaningful result. Forward propagation 

is the calculation and accumulation of intermediate variables of CNN layers from the input layer 

to the output layer. In backpropagation, the variable parameters are penalized by calculating the 

gradient of the network in reverse order from the output layer to the input layer. A complete 

forward-pass and backpropagation are referred to as iterations. With each iteration, the trained 

model updates its’ parameters (i.e. filters, weights, biases) by minimizing the loss and the process 
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is defined as model optimization. For model optimization, two functions are required- the loss 

function and the optimization function.   

3.3.1 Loss Functions 

To update the model variables, it is crucial to calculate the derivation of the ground truth and the 

prediction value, and the function that calculates the derivation is referred to as the loss function. 

In this study, a combination of focal loss and dice loss is considered for the classification binary 

cross-entropy loss function and segmentation.  

Binary cross-entropy (BCE) is a cross-entropy function used to choose between two choices (i.e. 

concrete crack and spalling). This loss function is usually considered to achieve prediction by the 

sigmoid activation function. Cross-entropy (CE) is a pixel-wise loss function and has performed 

prominently for various object detection applications [Ju et. al. (2020)]. Also, using this loss 

function in the CNN model gives the model the highest compatibility to be employed in the new 

dataset. Eqn. 9 presents the mathematical approach to how the binary cross-entropy loss function 

(LBCE) calculates the average loss, where yj is the scaler value of output, yi is the corresponding 

target value, and n is the output size. 

Loss = − 1

n
∑ yi ∗ log yj + (1 −  yi)∗ log(1 −  yj)

n
i=1                                                                       (9) 

Focal loss is an updated version of binary cross-entropy. This loss function solves class imbalance 

issues by down-weighting the easy example learning while focusing more on harder example [Lin 

et. a. (2017)]. The focal loss function can be written by rearranging the components of the cross-

entropy function [Eqn. 10, Eqn. 11 and Eqn. 12].   

CE (p, y) = {
− log(p)      if y = 1

− log(1 − p)     if y = 0        
                                                                                   (10) 

Ground truth probability (pgt) =  { p     if y = 1
1 − p      if y = 0        

                                                             (11) 

LBCE (p, y) = CE (pgt) = − log (pgt)                                                                                              (12) 

Finally, the focal loss (LF) can be presented with a modulation factor consisting of parameters α 

and λ shown in Eqn. 13. α and λ represent the class weights and degree of down-weighting scale.  
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LF (pgt) = α (1- pgt)λ * LBCE (p, y)                                                                                                    (13) 

Dice loss (LDSC) is one of the most commonly used loss functions for segmentation. Dice loss 

comes from an evaluation metric, Dice similarity coefficient (DSC), applied in Boolean data, 

which is also known as the Sørensen-Dice index [Michael et. al. (2021)]. DSC is defined with the 

terms true positive (TP), false positive(FP) and false negative (FN) prediction [Eqn. 14 and Eqn. 

15].  

DSC = 2∗TP

2∗TP+FP+FN
                                                                                                                (14) 

LDSC = 1- DSC                                                                                                                      (15) 

Dice loss function is also adapted to manage class imbalance. In this study, for segmentation, a 

total loss is calculated with a summation of focal loss and dice loss.  

3.3.2 Optimizers 

The optimization technique in a neural network works as finding the minimum or maximum output 

of the function depending on the input parameters or arguments. While updating the variable 

parameters through the forward pass and backpropagation process, the model emphasizes 

minimizing the loss function and optimizing the model accuracy. The loss function guides the 

optimizers by quantifying the difference between the expected result and the predicted result of 

the model. For classification CNN, two optimizers are used- Stochastic Gradient Descent (SGD) 

and Root Mean Square Propagation (RMSprop). The segmentation models are analyzed using 

SGD and Adaptive Moment Estimation (ADAM) optimizers.  

SGD is a type of gradient descent process that is linked with a random probability. SGD takes a 

single random data to update its parameters for each iteration. To summarize, SGD uses a single 

sample to find the gradient of the loss function rather than using the summation of the loss function 

of all the samples. As, SGD works with each image individually, the overall computational cost 

of the model analysis increases. However, a greater performance is easily achieved by SGD as it 

processes each data separately to reach the local minima.  

To the DL researchers, RMSprop is one of the most popular optimizers. RMSprop has a unique 

feature which restrains swaying in the vertical direction when helping the learning rate to learn 
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faster in the horizontal direction, making the convergence faster. In mathematical terms, RMSprop 

takes an exponential average of the gradients to demise the learning rate instead of the cumulative 

sum of squared gradients [Eqn.16]. Weights are calculated using the formula presented in Eqn. 17. 

Vt = γ Vt-1 + (1- γ) * Gt2                                                                                                                                                                                 (16) 

Wt = - [η/((Vt + ϵ))] * Gt                                                                                                              (17) 

Here, η = learning rate 

Vt = Exponential average of squares of gradients 

Gt = Gradient at time t  

γ = Forgetting factor 

ADAM is a gradient descent optimizer that combines two types of gradient descent- Momentum 

and RMSProp algorithm, which is very efficient and requires very little memory [Diederik and 

Jimmy (2015)]. Momentum helps speed up the gradient descent of the network by taking the 

exponentially weighted average. RMSP also accelerates the optimization process by reducing the 

number of function evaluations. For the ADAM optimizer, the numerical expression is done by 

taking the average of weights squared gradients and dividing by the square root of the mean square 

[Eqn. 18, Eqn. 19 and Eqn. 20]. 

Vt = 1  Vt-1 + (1- 1) * Gt                                                                                                                                                                    (18) 

St = 2  St-1 + (1- 2) * Gt2                                                                                                                                                     (19)                                                                                                                                                             

Wt = - [η/((St + ϵ))] * Gt                                                                                                              (20) 

Vt = Exponential average of gradients 

St = Exponential average of squares of gradients 

1, 2 = Hyper-parameters    

3.3.3 Batch Normalization 

According to the developers [Sergey and Christian (2015)], Batch Normalization (BN) can help a 

neural network model improve the computational speed and performance while constructing a 
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reliable model. BN standardizes and normalizes the operations of the input layer from the previous 

layer. Also with BN, the internal covariate shift reduces. Covariate shift implies the interruption 

in input distribution for the learning process. Two parameters are added to each layer by BN, and 

the output is multiplied by a parameter for standard deviation purposes. By modifying the two 

weights in the activation layer, BN helps stabilize the network performance rather than changing 

the weights of the entire network. Eqn. 21 and Eqn. 22 represent features' mean and variance over 

a mini-batch. 

mean (μ) =  
1

m
 ∑ ψ[i]m

i=1                                                                                                                (21) 

variance =  
1

m
 ∑ (ψ[i] − μ)m

i=1                                                                                                      (22) 

Here, ψ and m define the mini batch and size of the mini batch.  

3.4 Transfer Learning 

In vision-based DL process, deep neural networks learn the features from the dataset by tuning a 

group of parameters and later on transferring these attributes to solve novel tasks. This 

phenomenon of transferring the learned data to a new model is referred to as transfer learning 

[Rich (1995), Yoshua (2012)]. In practical use, transfer learning uses the pre-learned elements 

from a trained model to initialize the training process of a new DL model. This can be considered 

as a less resource-intensive approach as the new models do not have to start training from scratch. 

To consider the pre-trained models for new tasks usually, the original model should have a certain 

amount of better generalization adaptability to perform satisfactorily with new unseen data [Dai 

et. al. (2007)]. In general, a novel CNN model requires analyzing a large amount of data resulting 

in training a few million parameters. However, these training parameters can reduce sizes by 

implementing a transfer learning process.  

Transfer learning has two different methods- (a) feature extraction and (b) fine-tuning. In the 

feature extraction method, some existing pre-build CNN models are directly used to learn the 

features and patterns of the input images. In the second method, a group of pre-trained hyper-

parameters are considered for training the parameters of the new model. There are many existing 

CNN models; however, for this study, a few pre-trained models are considered (i.e. VGG-19, 
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ResNet50, InceptionV3, MobileNetV2, Xception, EfficientB3). To train the CNN models, the pre-

trained weights, “ImageNet” (1.2 million images with 1000 categories), was examined to achieve 

the efficiency in classifying the type of defect- crack and spalling. For instance, ImageNet has 

paved the way toward pre-trained generic features for transfer learning [Jia et. al. (2009)]. The 

hyper-parameters from ImageNet have acceptable interpretations and usually require minimal 

tuning. The architecture of the proposed methods is discussed in the following subchapters. 

3.4.1 VGG-19 

In 2015, Simonyan and Andrew (2015) proposed the VGG-16 and VGG-19 models and analyzed 

the effect of the depth of the CNN model for the classification purpose. For this study, VGG-19 is 

considered as one of the backbone models, and Figure 3.8 illustrates the architecture of the VGG-

19. VGG-19 consists of 19 layers with convolutional layers, pooling layers, fully connected layers, 

and softmax layer. The images are passed down these layers by applying a fixed filter size (3x3), 

and the max-pooling function is used at pooling layers. There are two distinctive characteristics of 

the VGG network- (a) the filter size remains the same for all the feature map sizes, and (b) using 

the max-pooling function, the feature map size is reduced to half, and with that number of filter 

gets doubled. According to the researchers, VGG-19 had 19.6 billion floating-point operations 

(FLOPS) and 144 million parameters, and after training, the model improved remarkably in the 

CNN-based image classification task. 
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Figure 3.8: CNN base model architecture- VGG-19 

3.4.2 ResNet-50 

ResNet was first introduced by He et. al. (2016) where they described a residual learning algorithm 

with the advantage of going deeper without encountering performance degradation. ResNet was 

also proved effective in solving the problem with vanishing gradient descent by decreasing the 

error within the deeper layer. In each layer of the convolutional layer, a residual learning block 

was added, which worked as a “skip connection”. Figure 3.9 shows the building block for the 

ResNet, where the formulation works as shown in Eqn. 23 and Eqn. 24.   

y = F (x, {wi}) + x                                                                                                                      (23) 

F =  w2 ∗ б (w1x)                                                                                                                       (24) 

From the formulation, x and y represent the input and output function, and F denotes the residual 

mapping to be trained. w1 and w2 are the weights for the subsequent convolutional layers, and б is 
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the activation function. This research adopts ResNet50 for the classification and semantic 

segmentation process.   

 
Figure 3.9: CNN base model architecture- ResNet  

3.4.3 EfficientNet 

In 2019, Tan and Quoc (2019) reviewed the performance of CNN based on the correlation of width 

and height of CNN models. They found an efficient CNN architecture with a limited parameter 

that achieved higher accuracy. The authors named the model EfficientNet and proposed a novel 

model scaling method for scaling up CNN models with an effective compound coefficient. Unlike 

the conventional models that scale up the dimensions of the networks with width, height, and 

resolution, EfficientNet uses a fixed set of scaling coefficients to scale up the dimensions 

uniformly. Generally, the model’s performance improves with an individual dimension scale. 

However, by balancing all the network dimensions, the model's whole performance can be 

improved highly. Figure 3.10 illustrates the compound scaling architecture of EfficientNet.  
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Figure 3.10: CNN base model architecture- EfficientNetB3 

3.4.4 Inception 

The inception model was first introduced by Szegedy et. al. (2015) and put forward a remarkable 

performance on the ImageNet Visual Recognition Challenge (2014). This model was once 

regarded as the state-of-the-art deep learning model for its’ noteworthy performance in image 

recognition and detection. The main objective of this model is to connect the model sparsely, 

replacing the fully connected networks of the convolutional layers. The sparsely connected 

network is the core concept of the inception layer. The inception layer has its convolutional layers 

(conv) and pooling layer, including a 1x1 conv layer, 3x3 conv layer, 5x5 conv layer, and 3x max-

pooling layer. The output of these layers is converted into a single output vector and concatenated 

into the next stage as input. Figure 3.11 shows the work method of the inception layer in the 

Inception CNN model.  One of the major advantages of the Inception model is that the model’s 

computational cost is maintained while increasing the height and depth of the network. For the 

damage assessment purpose, InceptionV3 is considered for this study. 
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Figure 3.11: CNN base model architecture- Inception 

3.4.5 MobileNet 

MobileNet CNN model is the first-ever computer vision model solely designed for mobile and 

embedded applications [Andrew et. al. (2017)]. This model takes a unique approach called depth-

wise separable convolutions to build a lightweight neural network. Depth-wise separable 

convolution was first introduced by Laurent (2014) and showed a reduction in computational cost 

in the first few CNN layers. In practice, using the Depth-wise separable convolutions, MobileNet 

significantly reduces its quantity of the learnable parameters making the model smaller and faster. 

This unique convolution works in two steps- (a) Depthwise convolution and (b) Pointwise 

convolution. In depthwise convolution, the filters' depth and spatial dimension (input channel) are 

separated, and a single filter is applied for each input channel. Finally, the pointwise convolution, 

a 1x1 convolution, combines the outputs of the depthwise convolution. Figure 3.12(a) (b) shows 

the transformation process from standard convolution filter to two-layer depthwise convolution. 

Figure 3.12(c) presents the 1X1 convolution that grabs the output of the depthwise convolution to 

build a depthwise separable filter. From Figure 11 (a) (b) (c), DK is the size of the spatial 

dimension with a convolution filter K, M is the number of input channels, and N is the number of 

output channel. 
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(a) Standard convolution filters 

 

(b) Depthwise convolution filters 

 

(c) 1x1 Pointwise convolution filters 

Figure 3.12: Difference between the standard convolution filer and the depthwise separable 

convolutions. 

3.4.6 Xception 

The basic concept of Xception is based on the Inception and refers to “extreme inception”. 

Inception takes a 1x1 convolution to map the cross-channel correlations of the input images and 

uses a different type of filter for each depth space [Francois (2017)]. However, Xception works in 

a reverse way. Firstly, Xception applies the filters on each depth map, and a 1x1 convolution is 

used to compress the input space across the depth [Figure 3.13]. This model’s working method is 

almost similar to depthwise separable convolution. Like Xception, depthwise convolution first 

works with taking the mapping of 1x1 convolution and later cross-channel wise spatial 
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convolution, whereas Inception works in vice versa. Another notable difference between the 

Inception and Xception model is the presence of non-linearity. Inception uses non-linearity 

throughout all its operations, followed by ReLu non-linearity; however, Xception avoids any type 

of non-linearity in its architecture. 

 
Figure 3.13: CNN base model architecture- Xception 

3.5 Evaluation Metrics 

In CNN model analysis, evaluation matrices are considered to quantify the statistical performance 

of the output results of the trained models. Evaluating the DL models is an essential part of 

understanding the output results and comparing various models’ performance to select an 

appropriate model for different tasks. In this study, four different metrics are considered to evaluate 

the performance of defects classification: Accuracy, Precision, Recall and Confusion matrix. 

Following are formulations for these evaluation metrics- 

Accuracy =  
TP+TN

TP+TN+FP+FN
                                                                                                             (23) 

Precision =  
TP

TP+FP
                                                                                                                          (24) 

Recall =  
TP

TP+FN
                                                                                                                              (25) 

TP = True Positive 
TN = True Negative  
FP = False Positive 

Filter 
Concatenation

3x3 3x3 3x3 3x3 3x3 3x3 3x3

Input Layer 

Conv layer 
1x1



39 
 
 

FN = False Negative 

Here, TP denotes if the crack image is classified correctly while TN shows if the spalling image is 

classified correctly. FP means if the crack image is classified incorrectly while FN represents if 

the spalling image is classified incorrectly. 

The confusion matrix is a type of matrix which presents the numerical summary of the final 

predictions (TP, TN, FP, and FN). This model uses a binary confusion matrix as the dataset is 

divided into two classes. For this study, “0” represents the “crack” and “1” is termed as “spalling”.  

Generally, Intersection over Union (IoU) and F1-Score are considered for semantic segmentation. 

Apart from these two, precision and recall metrics are also applied here. In simple words, IoU 

[Figure 3.14] quantifies the overlap area between the original and predicted image, and the F1-

score is a harmonic mean of the combination of precision and recall metric. F1-Score is one of the 

most indicative metrics to identify the best-performing network. Eqn. 26 and Eqn. 27 presents the 

formulation of IoU and F1-Score. 

IoU =  
Area of Overlap

Area of Union
                                                                                                                      (26) 

          

Figure 3.14: Schematic presentation of IoU  
 

F1 − Score =  
2∗Precision∗Recall

Precision+Recall
                                                                                                      (27) 

 

3.6 Summary 

This chapter presents a detailed summary of all the component of CNN layers and parameters used 

for this study. Also the chapter includes a short description of all the CNN models used as transfer 

learning methods for both classification and segmentation. Moreover, few mathematical elements 
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are used to explain the structure of the model algorithms. The application of these mathematical 

operations are demonstrated in chapter 4 and 5. 
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Chapter 4  Concrete Defects Classification using Deep Learning 

4.1 Introduction 

Concrete is one of the most popular material for any kind of infrastructure construction and within 

the life-cycle of an infrastructure it requires systematical maintenance. Crack and spalling are the 

most common defects types of concrete infrastructures and detecting these defects are the primary 

scope of any structural management and maintenance. Conventionally the on-site human 

inspections are time-consuming, expensive and certainly not error-free. In recent decades’ 

researchers are working on implementing artificial intelligence (AI) in SHM to build an automatic 

detection method while avoiding the inconvenience of manual inspection. Vision-based DL 

methods have gained popularity for their significant efficiency in defects detection. To start an 

automatic detection process identification of defects is the preliminary requirement. This study has 

considered concrete crack and spalling for the damage detection process and used those defects’ 

images for CNN model training. In classification process CNN layers learn the features from the 

images and categorizes the images based on the training. Later on the trained model is evaluated 

with a new dataset to examine the prediction accuracy of the model. 

4.2 Research Method 

CNN classifiers analyze the spectral information of pixels in the images and classify the pixels 

into multiple classes. For this study, the classification model is constructed to categorize two types 

of concrete defects- crack and spalling. In this study, the overall CNN classification model is built 

on three components – a) data processing, b) CNN models training, and c) performance evaluation 

of the trained models. A schematic diagram of the workflow chart for defect identification is 

presented in Figure 4.1. As shown in Figure 4.1, the overall process starts with data preparation, 

including image acquisition from available resources, image processed into desired resolution and 

randomly split into training, validation, and testing datasets. After data processing, the next step is 

the implementation of CNN models and model training. The hyper-parameters are continuously 

updated and tuned to achieve the best performance in the training and validation process. Later, 

the trained model is evaluated with the testing dataset to predict defects classification.  
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Figure 4.1: Workflow chart for defects classification 

4.3 Data Preparation 

4.3.1 Data Collection 

CNN models’ robust performance is highly dependent on developing an organized dataset. To 

maintain a certain significant performance of CNN models, a dataset should have high-quality 

images with various background noises, replicating the real-world conditions. Such conditions 

include surface roughness (i.e., scaling, edges, holes), lightening condition, background debris etc. 

According to Kaige et al. (2020), the quality and quantity of the dataset highly influence the 
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performance of the CNN models and are certainly affected by the low-quality images. Some 

studies have shown that the models trained with monotonous background images can perform 

better. However, when these models are evaluated in terms of the new dataset with a complex 

background, the prediction accuracy easily gets impaired. For example, Choi and Cha (2020) 

observed that when a CNN model was analyzed with a dataset of targeted images and noise-free 

background and subsequently tested on images with a rough surface, the model’s performance 

severely declined, condensing the precision from 87.4% to 23.1%.   

As mentioned in chapter 1, this study has worked with defects on any concrete infrastructure, such 

as bridges, buildings, dams etc. For defect types, concrete cracks and spalling are considered. One 

of the primary focuses of this study is to build a comparative dataset collecting images from various 

resources to imitate the real structural site conditions. Firstly, defects images are collected from 

actual infrastructure inspection reports executed by a local industry partner, TBT Engineering. 

These images have served as an exact replication of an actual event that occurs at defected structure 

site. However, the number of images collected from the inspection reports is inadequate to run a 

successful DL-based automated defect condition assessment project. Therefore, this study has 

taken advantage of the online resources to deal with the challenge mentioned above, as some 

previous studies have explored DL applications in concrete defect identification. Part of the 

concrete crack and spalling images are retrieved from a freely available annotated dataset created 

by Çağlar (2021). Apart from these sources, some images are collected from open-source online 

sources and experimental test results conducted on concrete sections. Finally, a dataset of 4087 

crack images and 1100 spalling images are incorporated for this study [Figure 4.2]. A few data 

samples of crack and spalling images are presented in Figure 4.3. The developed dataset has a 

wide range of defects characteristics, such as different areas, lengths, widths, and shapes, including 

horizontal, vertical and zigzag shapes on the various concrete surface. These realities in defects’ 

area and shape are supposed to aid the CNN models in learning the versatile patterns of the defects 

to make a more accurate prediction with untrained images. 
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      (a) Crack dataset                                            (b) Spalling dataset 

Figure 4.2: Size of dataset 

          
(a) crack                         (b) crack                      (c) crack  

            
(d) spalling                   (e) spalling                    (f) spalling 

Figure 4.3: Sample images for defects dataset (a, b, c) crack and (d, e, f) spalling (Image 
Courtesy: TBT Engineering) 
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To the author’s best knowledge, this is one of the largest datasets of both concrete defects without 

applying any image augmentation process. Image augmentation is used to artificially expand a 

dataset for training purposes when the available dataset is minimal by generating new images from 

existing dataset. Augmentation process creates new dataset by applying minor alteration to the 

existing dataset using some techniques, such as- cropping, flipping, rotation, color adjustment etc. 

4.3.2 Data Processing 

As mentioned earlier, the images are collected from multiple sources, meaning it’s natural that the 

image properties are not the same for the entire dataset. This is where detailed image processing 

is required to standardize the entire dataset's image format. At first, the image resolutions are 

systematized by converting all the images into a resolution of 224x224 pixels. As per the previous 

study by Majdi et al. (2020), when the DL models are trained using images with comparatively 

small pixels, the models can learn and identify the desired features more precisely. Even though 

the original images of this dataset had higher resolutions, to facilitate the CNN model’s learning 

capability the images are turned into a much smaller pixel. For this study, colourful images are 

considered input images, implicating that the images have three channels Red-Green-Blue (RGB). 

These images are also called 3D images as they have three dimensions- height (h) x width (d) x 

channel (c). So the final input image size can be defined as 224x224x3.  

The entire dataset is divided into input and testing images for a model's learning process. The input 

dataset is used to develop a prediction model, whereas the function of the testing dataset is to 

determine the model's prediction quality. The input images have two components- the training 

dataset and the validation dataset. While the training dataset is used for the learning process, the 

validation dataset offers an unbiased evaluation of the training dataset by subsequently tuning the 

hyper-parameters. Conventionally, while splitting the entire dataset, the input dataset is considered 

to have a larger portion of images while the rest is used for testing purposes. However, there is no 

universal approach to dataset splitting ratio. For instance, most of the researchers [Xincong et al. 

(2018), Shengyuan and Xuefeng (2020) and Jia-ji et al. (2022)] have considered an 80%-20% 

train-test split ratio for their CNN models. On the other hand, Youzhi et al. (2021) has adopted the 

70% of the entire dataset as a train and validation dataset and the rest of the 30% as a test dataset. 

Jacob et al. (2021) have divided the dataset into 60%-40% ratio to use the 60% as input images 

and 40% for evaluating the models. As the crack dataset and spalling dataset has a big difference 
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in size this study has decided on using the maximum images for training and validation purpose 

for the CNNs classification, and split the dataset into 70%-20%-10% ratios for training, validation 

and testing purposes. Table 1 presents the summary of data distribution for train, validation and 

testing. 

Table 4.1: Image distribution for classification CNNs 

Defect Classes Total Train  

Dataset 

Validation  

Dataset 

Test  

Dataset 

Crack 4087 2861 (70%) 817 (20%) 409 (10%) 

Spalling 1100 770 (70%) 220 (20%) 110 (10%) 

 

4.4 CNN-classifier Model configuration 

In this study, five different CNN-classifiers are considered: (a) VGG19, (b) ResNet50, (c) 

InceptionV3, (d) Xception and (e) MobileNetV2. The details of these models are discussed in 

section 3.4. One of the main reason behind choosing these five models is that after analysing the 

previous studies, it is perceived that these models have consistent difference in their trainable 

layers and their performance potentiality. For example, while the VGG-19 followed by ResNet-50 

has the lowest trainable layers, they have shown acceptable performance prospects with their 

unique architecture. As MobileNetV2 was built to perform faster in a mobile application system, 

this model is considered in this study to evaluate the model’s damage identification performance 

if the model is implemented in mobile application. Moreover, InceptionV3 and Xception has a 

large amount of trainable layers which helped this study to comprehend the variation in model’s 

performance with a change in trainable layers. The algorithms of these networks are developed 

using Keras applications [Francois (2015)]. Keras application includes the pre-built deep learning 

models which can be used for training the model and make prediction. For the coding language, 

Python is used backend by TensorFlow. After building the CNN-classifier application, the model 

simulations are run using Google Collaboratory. 

4.5 Sensitivity Analysis of Hyper-parameters 

As mentioned earlier in chapter 3, pre-trained ImageNet weights are considered to start the training 

process of CNN models, followed by a continuous trial-error method to reach the optimized point 
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of hyper-parameters. A sensitivity analysis is done to train the hyper-parameters and find the best-

performed models. This study considers a few hyper-parameters, such as batch size, activation 

function, optimization function, loss function and learning rates, for sensitivity analysis. As 

mentioned by Goodfellow (2016) these parameters are the most important parameters that guide 

the models towards the optimized convergence. The details of these hyper-parameters are 

presented in Table 4.2. 

 

Table 4.2: Details of hyper-parameters 
Name of Parameters  Value of Parameters  

Batch Size (CNN-classifiers) 10  

Learning rate (CNN-classifiers) 0.1, 0.001, 0.0001 

Optimization function  SGD, RMSprop 

Activation function ReLu 

Evaluation metrics threshold 0.5 

Loss function (CNN-classifiers) Binary cross-entropy 

Pre-trained weights  ImageNet 

Callbacks  Early-stopping  

Epoch 100 

 

To achieve the best output result, the values of hyper-parameters for CNN-classifiers are 

designated after carefully analyzing the learning process. According to Table 4.2, a batch size of 

10 is considered, and the models are trained for 100 epochs. An epoch refers to the one complete 

training cycle of a forward pass and backpropagation. To finalize the epoch size, two functions 

called early-stopping and the reduced learning rate is applied in these models. These two functions 

help the models avoid over-fitting by stopping the model’s training process when the best accuracy 

is achieved. This also helps reduce the models' computational cost (time and computer memory). 

After completing all the combinations of sensitivity analysis, it is found that the models reach their 



48 
 
 

optimized performance condition within the 100 epochs. Therefore, this study has considered 100 

epochs for model training. Also, for batch size, it is observed that with a group of 10 images, the 

model learns the features with a minimal computational cost. Moreover, as an activation function, 

ReLu has functioned to have a positive impact on the model’s performance. According to some 

previous studies SGD and RMSprop are some commonly used optimizers to train the CNN models 

[Poojary and Pal (2019), Kumar et. al. (2019), Agarwal et. al. (2021)]. Also, some studies used 

learning rate 0.001 [Poojary and Pal (2019)] and 0.0001 [Verma et. al. (2021)] to control the 

learning process of the CNN model to achieve the best performance Hence this study has explored 

two different types of optimization functions- SGD and RMSprop along with three different 

learning rates 0.1, 0.001 and 0.0001 for each of the five models separately and summarized the 

results in section 4.6. Finally, the best hyper-parameters values are decided on by evaluating the 

trained model with the testing dataset and comparing their results using the evaluation matrices. 

 

4.6 Result and Discussion 

In accordance with section 4.5 for the sensitivity analysis, at first, each CNN-classifier model- 

VGG19, ResNet50, IncptionV3, Xception and MobileNetV2 has considered two different 

optimizers- SGD and RMSprop. Later, each CNN-classifier with both SGD and RMSprop 

optimizer is evaluated for three learning rates 0.0001, 0.001 and 0.1. With the combination of two 

optimizers and three learning rates for five CNN classifiers, thirty models are analyzed and 

evaluated separately. Table 4.3 represent the performance of all the CNN-classifiers for learning 

rate 0.0001, 0.001 and 0.1, respectively. Three evaluation matrices, accuracy, precision and recall, 

are considered to evaluate the model’s performance.  

From Table 4.3, it can be established that InceptionV3 has outperformed all the other models in 

the case of both optimizers. For a learning rate of 0.001, SGD optimizer IncpetionV3 has achieved 

the best accuracy, precision and recall value of 91%, 82% and 100%, respectively. Xception attains 

the second-best performance by adopting SGD optimizer with an accuracy of 89%, precision of 

82% and recall of 94%. As mentioned in chapter 3, the architecture of Xception is based on 

Inception model, which is one of the possible reason for the performance resemblance of these two 

models. Inception model is considered to have better performance than ResNet as Inception model 

focuses on reducing computation cost while doing deeper eventually increasing optimization 
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accuracy. However, ResNet only works on computational accuracy without concerning the 

optimization which can lead to overfitting the training process and ultimately affecting the 

prediction performance. In case of MobileNet, this model has less learnable parameters than 

Inception model which can be an advantage to achieve reasonable performance with lower 

memory capacity, but then with higher learnable parameters Inception model performs better than 

MobileNet. So, it is evident that InceptionV3 model has outranked the other models. 

 

Table 4.3: Summary results of defects classification models 
 

CNN models 
Learning 

rate 

Accuracy Precision Recall 

SGD RMSProp SGD RMSProp SGD RMSProp 

*InceptionV3 

0.1 86% 88% 78% 82% 100% 97% 

0.001 91% 89% 83% 79% 100% 100% 

0.0001 84% 89% 81% 84% 94% 100% 

Xception 

0.1 89% 87% 79% 76% 100% 100% 

0.001 90% 88% 81% 78% 100% 100% 

0.0001 89% 88% 82% 78% 94% 100% 

MobileNetV2 

0.1 81% 79% 71% 73% 94% 76% 

0.001 82% 83% 71% 72% 94% 100% 

0.0001 82% 84% 71% 70% 94% 100% 

ResNet-50 

0.1 85% 87% 72% 76% 97% 100% 

0.001 82% 87% 69% 77% 89% 97% 

0.0001 79% 85% 69% 74% 89% 97% 

VGG-19 

0.1 63% 65% 60% 62% 81% 82% 

0.001 61% 62% 64% 68% 80% 84% 

0.0001 63% 67% 61% 62% 82% 86% 

Note: *Best Performance  

In the case of a learning rate of 0.001, InceptionV3 has shown the best output, followed by 

Xception model [Figure 4.4]. With learning rate 0.1 the training process has skipped many learning 

features and converged faster towards a suboptimal position, whereas learning rate 0.0001 has 
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taken a slow pace to update the models’ weights and increasing the computational cost without 

improving the model’s performance significantly. Between two optimizers, the optimizer SGD has 

aided in obtained the best performance for defects classification for IncpetionV3 with the accuracy, 

precision and recall values of InceptionV3 are found at 91%, 83% and 100%, respectively. Like 

InceptionV3, Xception has the best performance with the SGD optimizer. According to [Hardt et. 

al. (2016)] SGD has better stability and generalization capacity than other adaptive optimization 

methods (i.e., RMSprop), which helps the models to reach its optimization point better than others. 

Wilson et. al. (2019) studied experimental and empirical analysis to prove that for classification 

task SGD converged better than other adaptive methods. They also stated that even with faster 

initial training progress, in validation the performance did not improve much. 

 

 
Figure 4.4: Defects classification: comparison of the evaluation metrics based on SGD and 

RMSprop optimization function for learning rate 0.001 
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After analyzing the models with evaluation metrics, another evaluation is done based on the true 

label vs. prediction label of crack and spalling to determine which CNN-classifier has attained 

better performance on defects identification. As mentioned in chapter 3, the confusion matrix helps 

to understand the image's true and predicted label. Figure 4.5 portraits the confusion matrix for 

InceptionV3 and Xception model. For all the confusion matrix diagrams, the x-axis and y-axis 

represent the true label and predicted label, where “0” denotes the crack, and “1” refers to 

“spalling”. As mentioned earlier, the InceptonV3 and Xception model has its’ best performance 

with optimizer SGD and learning rate 0.001. Therefore, this study has illustrated the confusion 

matrix graphs only for those conditions. 

  
    (a) InceptionV3 (SGD)                                         (b) Xception (SGD) 

Figure 4.5: Confusion matrix for InceptionV3 and Xception for optimizer SGD and learning rate 

0.001 

Figure 4.5 (a) and (b) illustrates the true and false prediction of defects by the InceptionV3 and 

Xception model, respectively for learning rate 0.001 and optimizer SGD. From the graphs, it is 

visible that in case of crack prediction with both InceptionV3 and Xception models predicted forty-

nine images correctly while making eight false predictions. In case of spalling detection 

InceptionV3 has predicted all the spalling cases correctly whereas Xception has falsely identified 

two spalling cases. From the explanation above, it is clear that the InceptionV3 model has the 

superiority over Xception model. 
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As mentioned earlier in chapter 3, loss function helps the model reduce the difference between the 

true value and prediction value for tuning the hyper-parameters, so its’ essential to track the 

training loss and validation loss over the training period. Figure 4.6, Figure 4.7 and Figure 4.8 

present the graphical understanding of the InceptionV3 model’s performance over the epochs for 

three learning rates 0.0001, 0.001 and 0.1. From the graphs, it is prominent that IncpetionV3 

models have the least amount of loss with a learning rate of 0.001. Also, the trained model has 

obtained the sharp training accuracy, precision and recall close to 100%. 

 

 
Figure 4.6: Defects classification with InceptionV3: result of the evaluation metrics and model 

loss for optimizer SGD and learning rate 0.0001 

 
Figure 4.7: Defects classification with InceptionV3: result of the evaluation metrics and model 

loss for optimizer SGD and learning rate 0.001 
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Figure 4.8: Defects classification with InceptionV3: result of the evaluation metrics and model 

loss for optimizer SGD and learning rate 0.1 

After analyzing the model’s performances, the IceptionV3 model ranked the best-performed model 

for defects classification. Also, this model has reached its performance-optimized point owing to 

the SGD optimization function and learning rate of 0.001. Apart from InceptionV3, the Xception 

model has also shown a promising ground for defects classification using the SGD optimizer. On 

the other hand, among all the CNN classifiers VGG19 has ranked the last. One possible reason 

behind the InceptionV3 model functioning better than other models is that the model has the 

highest layers of depth for learning, which facilitates the model to gain better performance. On the 

other hand, VGG19 has the least depth of learning layers, which may have affected its overall 

performance. The best performance results for each CNN classifier model are presented in Table 

4.4. This table summarizes the best result for the models based on their potential optimizer and 

learning rate.   

Table 4.4: Details and results of defects classification using Learning rate 0.001 

Network Optimizer Parameters  Accuracy Precision Recall 

  (millions) Train Test Train Test Train Test 

*InceptionV3 SGD 87.9 100% 89% 100% 80% 100% 100% 

Xception SGD 83.7 96% 89% 70% 82% 100% 94% 

Note: *Best Performed Model 
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Figure 4.9 and Figure 4.10 demonstrates some sample results of defects identification of crack and 

spalling for all the CNN-classifiers. On the image the first sentence describes the prediction result 

of the defects, and the second line shows the label of defects type. Figure 4.9 indicates that 

InceptionV3 has predicted most of the cracks with a 100% accuracy. On the other hand, some 

crack images have an accuracy of around 90% and predicted very few crack images with spalling. 

Also, the VGG19 model has the least accuracy in crack prediction and even has some false 

predictions. From Figure 4.10, it is clear that, similar to crack prediction, the InceptionV3 model 

also performed best for spalling detection and VGG19 has the least accuracy. In both figures red 

box indicates the prediction inaccuracy. All the probability percentage for each damage cases are 

the output results of from developed CNN models.  
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Figure 4.9: Sample images for crack prediction using CNN models 
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Figure 4.9 (continue): Sample images for crack prediction using CNN models  
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Figure 4.10: Sample images for spalling prediction using CNN 
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Figure 4.10 (continue): Sample images for spalling prediction using CNN 
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4.7 Summary 

This chapter explores the potentiality of five different CNN classifiers to predict categorizing the 

defect type. The chapter has two primary goals a) conduct CNN classification for multi-class 

defects- crack and spalling, and b) train the model with different types and values of hyper-

parameters to obtain the best output from the CNN classifiers. To achieve the first goal, this study 

has collected a dataset of 4080 crack images and 1100 spalling images. As the performance of a 

CNN model highly depends on the size and quality of the dataset, it is essential to train a model 

with images replicating the real site condition. This study has collected images from real-world 

inspection reports to train the model more effectively in real-life infrastructure inspection work. 

Apart from the inspection reports, many images are obtained from previous research work and 

other open-source resources. This dataset is solely prepared for this research purpose only. To the 

author's knowledge, this is one of the largest concrete crack and spalling datasets consisting only 

of the original images avoiding the image augmentation process. After finalizing the dataset, the 

CNN classifiers are analyzed for different types of hyper-parameters and evaluated based on their 

prediction potentiality. The highlights of this task can be summarized as follows:  

a) A detailed sensitivity analysis is conducted by combining different types of hyper-

parameters, and a total of thirty models are evaluated to decide on the best-performed 

model for defects identification. Among other hyper-parameters, this study has mostly 

focused on two optimization function-SGD and RMSprop, and three learning rates, 0.0001. 

0.001, 0.1.  

b) After a comparative analysis of all these models InceptionV3 model has outranked the 

other models with accuracy, precision and recall of 91%, 83% and 100%, respectively. 

Furthermore, Xception has also gained a profound accuracy with defects classification, 

whereas VGG19 has the least prospect with defects identification.  

c) Regarding optimization function, SGD has shown the acute characteristic to guide the 

IncpetionV3 and Xception model towards its optimized trained condition. However, for 

the ResNet-50 and VGG-19 model, RMSprop has aided in adequate prediction quality.  

d) While training all the models for each optimization function and learning rate, models with 

a learning rate of 0.001 learnt the trainable parameters more precisely. This phenomenon 

directs the concept of using a lower learning rate does not always confirm better 
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performance with CNN models, some cases it can prolong the learning process without 

significant performance improvement. 

e) This study has presented the actual positive and negative defects prediction percentage by 

adopting the confusion matrix as one of the evaluation metrics for the CNN models. 

According to the results, IncpetionV3 has made eight false predictions of spalling while 

the actual cases are crack, and successfully labelled all the spalling cases. After 

InceptionV3, Xception has the best prediction results- nine falsely labelled crack images 

and zero false cases for spalling.
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Chapter 5  Deep Learning Application: Defects Semantic Segmentation 

5.1 Introduction 

DL-based automated assessment of infrastructure has significant potential to replenish human 

visual inspection. In SHM, after categorizing defects, it is crucial to localize the damages to 

understand the exact pattern and quantify them. Some of the previous studies used the sliding 

window technique to localize the crack and background in images [Cha et al. (2017), Cha and Choi 

(2017)]. However, this technique depends on the size of the sliding window rather than the exact 

size and shape of the damage, which limits the exact qualification of the area of the defect. Also, 

in the case of thin, diagonal and atypical features residing in defects images, tracking the specific 

location of the defects can be obscured [Wooram and Young (2019)]. To address this challenge, 

this study has adopted the pixel level localization method, also named as segmentation process, to 

detect the defective area in images. Object segmentation serves as the key component of the DL 

task that aims to learn the features of an image to obtain a complete understating of a scene in 

images. The base work method of segmentation is similar to classification, except the segmentation 

process uses each pixel to classify the defects pixel and the image background. In contrast, 

classification is formulated by considering the entire image. In segmentation, the binary numbers 

“1” and “0” represents the pixel values of a defect pixel and a general background pixel, 

respectively. 

5.1.1 Semantic Segmentation  

There are different types of the segmentation process; however, in this study, semantic 

segmentation is adopted for defect localization. In DL, to understand an image at pixel-level, two 

questions must be answered-  what object resides in the image, and where is it located in the image? 

By assigning a class label to each pixel, semantic segmentation can differentiate among the objects 

and locate each object by creating a segmentation mask inside the boundary line of the same pixel 

values. In summary, semantic segmentation works in three steps: (a) classifying individual objects 

on the image at pixel-level, (b) localizing the object by drawing a bounding line, and (c) creating 

a segmentation mask on a similar group of pixels in a localized image. Figure 5.1 shows a general 



62 
 
 

overview of semantic image segmentation where the defect (i.e. crack) is labelled as “1” and the 

background is labelled as “0”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Schematic diagram of semantic image segmentation process 

 

5.2 Research Method 

In DL, CNN segmentation analyzes each pixel in an image and recognizes a group of pixels that 

forms a distinct category. In this study, separate semantic segmentation models are constructed for 

each type of concrete defects: crack and spalling. Similar to CNN-classifiers, the CNN 

segmentation model is also built on three components: a) data processing, b) CNN models training, 

and c) performance evaluation of the trained models. Even though the overall work process is the 

same, each component has a different functioning method from CNN-classifiers. A schematic 
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diagram of the workflow chart for defect semantic segmentation is presented in Figure 5.2. As 

shown in Figure 5.2, the overall process started with data preparation, including a separate dataset 

for crack and spalling, and randomly split into training, validation and testing datasets. Later, both 

crack and spalling dataset is implemented in encoder-decoder models individually and analyzed 

with four different CNN base models (VGG19, ResNet50, InceptionV3 and EfficienNetB3). The 

encoder part of the model converts the image pixels into a two dimensional vector using the CNN 

base models to focus on the context of the image. On the other hand, the decoder part gives 

meaning to the context learned from the encoder part. After adopting the CNN models, the models 

undergo continuous training and validation to learn the pixel data from images. In the training and 

validation process, the hyper-parameters are updated continuously and tuned to achieve the best 

performance for defects segmentation. Finally, the test datasets are applied to the trained model to 

evaluate the performance of the trained model for defects localization. 
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Figure 5.2: Work flow chart for defects segmentation 

5.3 Data Preparation 

The same dataset as defects (i.e., crack and spalling) classification is used here for CNN 

segmentation. Therefore, these images contain a variety of background noises replicating the 

original scenario of the inspection site. The input images have three channels (i.e., RGB channels) 
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and resolutions of 224x224 pixels, keeping the image dimension 224x224x3. As mentioned in the 

chapter 4 while splitting the entire dataset, the input dataset is considered to have a larger portion 

of images while the rest is used for testing purposes. Also, similar to chapter 4 the dataset is divided 

into three parts: training, validation and testing, with a split ratio of 70%, 20% and 10%, 

respectively. Table 4.1 from chapter 4 presents the summary of data distribution for train, 

validation and testing. 

For segmentation, apart from the RGB images, a ground truth mask dataset is required as the input 

dataset for each defect case while keeping the image resolution to 224x224. Ground truth refers to 

annotations of objects in images from direct observation. Generally, any inspection images of 

defects contain a variety of objects aside from the defect itself. Therefore, to help the CNN 

segmentation analysis only focus on defects, the defects’ specific area is annotated as defect type 

and the rest of the objects area is counted as background. The ground truth dataset is the desired 

output from a CNN algorithm, fed into the model as an input image and expected to predict the 

same output at the evaluation stage. Figure 5.3 illustrates the example of a ground truth image for 

crack and spalling. 
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                                (a.1) Crack image                       (a.2) Crack ground truth mask  

                      
                              (b.1) Spalling image                   (b.2) Spalling ground truth mask 

Figure 5.3: Ground truth mask sample for (a) crack and (b) spalling 

 
5.4 CNN Segmentation Model Configuration 

Encoder-Decoder models have proven to be the best-performed semantic segmentation model. In 

the encoder-decoder model, the encoder section focuses on extracting the features from an image. 

At the end of the model, the decoder part predicts the class of each pixel. This study has considered 

two types of encoder-decoder models for semantic segmentation: (a) U-net and (b) Pyramid scene 

parsing network (PSPnet). For semantic segmentation, U-net and PSPnet models are analyzed for 

four CNN backbone models: VGG19, ResNet50, InceptionV3 and EfficientB3. This subsection 

presents the details of the segmentation model configuration and the working procedure. For 

computer computation configuration, the algorithms of these networks are developed using Kears 

applications [Francois (2015)], and the segmentation models are loaded from the segmentation 

application. For the coding language, Python is used backend by TensorFlow. After building the 

CNN-segmentation application, the model simulations are run using Google Collaboratory 
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5.4.1 Encoder Decoder Model: U-net 

U-net [Ronneberger et. al. (2015)] is a type of semantic segmentation method which is based on a 

Fully connected Neural (FCN) network [Jonathan et. al. (2015)] where numbers increase the 

feature maps in upsampling part and transmits the image information to higher resolution layers. 

The name “U-Net” denotes the “U” shape of the network architecture [Figure 5.4]. Like FCN, U-

Net is composed of two segments: the encoding component (convolutional and pooling layers) and 

the decoding component (deconvolutional layers). The base concept of the encoder component is 

to successfully propagate an input image through convolutional, activation and pooling layers to 

obtain multilevel feature maps from the image. During this process, the size of the feature map is 

subsequently reduced, with each layer up to the bottleneck segment of the U-Net. Contrary to the 

encoder trend, the decoder part aims to recover the lost feature maps of the image through 

transpose convolution. 

 
Figure 5.4: Schematic diagram of U-Net architecture 
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5.4.1.1 U-net: Encoder Architecture 

The encoder segment includes two repeated blocks of 3x3 convolutional layers. Each 

convolutional layer is followed by ReLu activation and batch normalization. Batch normalization 

helps the CNN model accelerate the convergence and improves the network's performance. These 

blocks are denoted as ConvBlock. In ConvBlock, a downsampling process is implemented where 

after the ConvBlock comes to the 2x2 max-pooling layer with a stride size of two. With 

downsampling, the image's dimensions are halved, and the number of feature maps is doubled. In 

this study, the encoder network has used four pre-trained backbone models, VGG-19, ResNet-50, 

InceptionV3 and EfficientNetB3. 

5.4.1.2 U-net: Decoder Architecture 

In this study, the decoder part of U-Net has two steps: (a) the encoder part- encodes the ground 

truth image to create a 1/16 feature map, and (b) the decoder part- decodes the 1/16 feature map 

from the encoder part to yield prediction result. The deconvolutional layer, where the images get 

upsampled, is followed by a 4x4 transpose convolution layer, referring to increasing the size of 

the image dimensions and reducing the number of the feature channels by one-fourth. 

Concatenation is done with a 3x3 convolutional layer, and the model is closed by a 1x1 

convolutional layer which generates the final detection. Finally, the decoder segment upsamples 

the feature channels of the image by five blocks: 1/256, 1/128, 1/64, 1/32 and 1/16, subsequently. 

Table 5.1 shows the detailed network specification for decoder architecture. 
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Table 5.1: Details network layers for decoder architecture 

Layer name Layer size 

Input 512 X 512 X 1 

Conv 1 256 X 256 X16 

Conv 2 128 X 128 X 32 

Conv 3 64 X 64 X 32 

Conv 4 32 X 32 X32 

Deconv 1 16 X16 X 32 

Deconv 2 32 X 32 X 32 

Deconv 3 64 X 64 X 32 

Deconv 4 128 X 128 X 16 

Deconv 5 256 X 256 X 1 

 

5.4.2 Encoder-Decoder Model: Pyramid Scene Parsing Network (PSPNet) 

The base of any semantic segmentation is the scene parsing approach, where the model aims to 

assign a specific class to each pixel and gives a complete understanding of the image. Using the 

scene parsing technique, the model predicts the label of an element and gives the geometrical 

properties, like the location and shape of the element. The overall architecture of the PSPnet is 

built with the encoder part containing a pyramid pooling layer along with a CNN backbone model 

and the decoder part that uses the upsampling technique to predict the class of each pixel 

[Hengshuang et. al. (2016)]. In short, PSPnet is a type of semantic segmentation model that 

employs a pyramid parsing module that takes advantage of the global context of an image to 

estimate the local level predictions depending on region-based context aggression.   

5.4.2.1 PSP-net: Encoder Architecture  

The PSPnet encoder part works with two components: (a) one CNN backbone model with a dilated 

convolutional layer and (b) a pyramid pooling module. Firstly, the last traditional convolutional 



70 
 
 

layer of a backbone CNN model is replaced by a dilated convolutional layer, which helps the 

model upscale the receptive field. In conventional CNN, backbone models lose spatial information 

with each proceeding convolutional layer. The loss of this spatial information can significantly 

hamper an image scene's detailed spatial learning process. In some cases of pixel classification, if 

the desired object’s spatial dimension is not dominant rather than the background pixel, the 

background response can overpower the value of the desired object in a global context. In extreme 

cases, if the object of interest is lost during the downsampling session, then the upsampling training 

cannot recover the object anymore. To avoid this situation, the resolution of the network’s output 

is enhanced by replacing the striding layer with a dilation layer [Fisher et. al. (2017)]. In short, 

dilated convolution is a technique that expands the input image by implementing holes between 

the sequential elements. This convolutional layer skips pixels while analyzing an image, and 

skipping some pixels covers a large area of the input image without losing much spatial 

information.    

Along with dilated convolutional layer comes the pyramid pooling module. This is the principal 

part of the model that helps PSPSnet to obtain the information of the image in a global context, 

which eventually helps the model classify the pixels in terms of global information of an input. 

The feature map from the last convolutional layer of the backbone model is pooled at different 

dimensions and passes through a convolutional layer. After that, the new feature maps are 

upsampled to match the original size of the input feature maps. Finally, the upsampled feature 

maps are concatenated with the original feature map from the last backbone convolution layer and 

passed to the decoder section of the model. By utilizing this technique, the features of different 

objects are analyzed on different scales hence aggregating the overall context of the pixels in the 

image. Figure 5.5 illustrates a schematic diagram of how the pyramid pooling module functions. 

First, the last convolution layer's feature map is pooled into various dimensions. Green, blue, 

orange and purple represent the feature maps' different sizes, and H & W represents height and 

weight, respectively. Later, these new feature maps are subsequently passed through a 

convolutional layer, upsampled and concatenated with the original feature map. 

5.4.2.2 PSP-net: Decoder Architecture  

After the encoder part, the feature map is inputted into the decoder part and predicts the pixel 

classes. This decoder part works similarly like the decoder part of U-net. This study uses a simple 
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8x bilinear upsampling module as the decoder part. The conventionally PSP-net segmentation 

model only has the encoder part, but a simple upsampling is required to implement the model as a 

segmentation model. However, this upsampling does not have any learnable perimeters; it just 

helps the model to classify the pixel output. 

 
Figure 5.5: Schematic diagram of PSP-net 

5.5 Sensitivity Analysis of Hyper-parameters  

As mentioned in chapter 3, pre-trained ImageNet weights are considered to start the training 

process of CNN segmentation models, followed by a continuous trial-error method to reach the 

optimized point of hyper-parameters. Then, a sensitivity analysis is done to train the hyper-

parameters and determine the optimized hyper-parameters for models. In this study, a few hyper-

parameters, listed as batch size, activation function, optimization function, loss function and 

learning rates, are considered for sensitivity analysis, as these hyper-parameters are considered to 

have a greater influence on the model training process. The details of these hyper-parameters are 

presented in Table 5.2. 
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Table 5.2: Details of hyper-parameters 

Name of Parameters  Value of Parameters  

Batch Size (CNN-classifiers) 10  

Learning rate (CNN-classifiers) 0.1, 0.01, 0.0001 

Optimization function  SGD, ADAM 

Activation function ReLu 

Evaluation metrics threshold 0.5 

Loss function (CNN-classifiers) Dice Loss + Focal Loss 

Pre-trained weights  ImageNet 

Callbacks  Early-stopping  

Epoch 100 

 

To achieve the best output result, the values of hyper-parameters- batch size, the size of the epoch, 

optimization function, learning rate and loss functions for CNN-classifiers are designated after 

carefully analyzing the learning process. As Goodfellow (2016) mentioned, these parameters are 

the most important parameters that guide the models toward optimized convergence. Similar to 

the classification of CNN models for segmentation, a batch size of 10 is considered, and the models 

are trained for 100 epochs. As the same dataset is used for classification and segmentation 

purposes, this study has decided to keep the hyper-parameters similar to classification CNN 

models. To finalize the epoch size, two functions called early-stopping and the reduced learning 

rate is applied in these models to reduce the computational cost (time and computer memory) of 

the models. For the training purpose, this study has used an epoch value of 100, as all the 

segmentation models reached their optimized point within 100 epochs. Also, it is observed that the 

model is trained with a batch of 10 images with minimal computational cost and obtained 

optimized performance. Moreover, for the activation function, ReLu is selected and proved to 

impact the model’s training performance positively. According to some previous studies, it has 
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been proven that SGD and ADAM optimizers are two of the best optimizers for segmentation 

purposes; hence this study has decided to follow the statements and used these optimizers to train 

the models [Zaheer and Shaziya (2019), Desai (2020)]. The learning rate defines the number of 

weights that will be updated in each step during training and also navigates the degree of 

convergence frequency of a model to adapt to the problem. This study has explored two different 

optimization functions: SGD and ADAM along with three different learning rates, 0.1, 0.01 and 

0.0001, for each of the two segmentation models, i.e., U-Net and PSP-net. These models separately 

utilized four different backbone models, i.e., VGG-19, ResNet-50, InceptionV3 and 

EfficientNetB3 and summarized the results in sections 5.6 and 5.7 for crack segmentation and 

spalling segmentation, respectively. Finally, the best hyper-parameters values are selected after 

evaluating the performance of the trained models based on the evaluation metrics. For the hyper-

parameters training, this study has finalized. 

5.6 Result and Discussion: Crack Segmentation  

This section is divided into two subsections where 5.6.1 discusses the results of the crack 

segmentation model using the U-Net encoder-decoder model, and subsection 5.6.2 illustrates the 

output of the PSP-net model. Both these models are analyzed based on four backbone models, and 

their results are summarized in those subsections. 

5.6.1 Crack Segmentation: U-Net model  

The U-Net model is analyzed with four backbone models- VGG-19, ResNet50, IncpetionV3 and 

EfficientNetB3 considering two types of optimization functions, SGD and ADAM. Later, these 

models are evaluated for three different learning rates, i.e., 0.1, 0.01 and 0.0001. In total, twenty-

four models are analyzed, and the summarized results are presented in Table 5.3. Finally, all the 

trained models are tested with the testing dataset and evaluated with four evaluation metrics IoU, 

F1-score, precision and recall. 

Table 5.3 summarizes the outputs of twenty-four models for crack segmentation utilizing U-Net, 

and it is highlighted that most of the best performance is achieved with a learning rate of 0.01 and 

optimizer ADAM, meaning the models have identified most of the crack features with a limited 

computational cost with the combination of these two parameters. With a learning rate of 0.1, the 

training process has skipped many learning features and converged faster towards a suboptimal 
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position. In contrast, a learning rate of 0.0001 has taken a slow pace to update the models’ weights 

and increase the computational cost without significantly improving the model’s performance. 

Also, between the two optimizers, ADAM has helped the models to perform better, eventually 

consenting to the outcome of the research performed by [Kingma and Ba (2014) and Yaqub et. al. 

(2020)]. Yaqub et. al. (2020) studied the state-of-the-art of nine different CNN optimizers for the 

segmentation process with an extensive experimental analysis and concluded that ADAM is the 

best optimizer among all the optimizers, including the SGD optimizer. Also, according to Choi et. 

al. (2019), the best-tuned model adaptive gradient methods always perform better than the gradient 

descent optimizers, as the fine-tuned models have better generalization potential for the SGD. 

Also, ADAM has the unique feature of using momentum and adaptive learning rates to converge 

faster than any other optimizer.  

Another finding from Table 5.3 is that EfficientNetB3 based U-Net model has outranked all the 

other models with the highest evaluation values (marked in red). The model has an IoU score of 

91.98%, F1-score of 95.66%, a precision score of 94.73% and a recall score of 97.59%, with the 

learning rate of 0.01 and optimizer ADAM. Conventionally, with the certain architectural build of 

EfficientNetB3, it is supposed to achieve higher accuracy and better efficiency by reducing 

parameter size over the existing CNN models. The EfficentNet model utilizes a specific technique 

called compound efficient component, which focuses on scaling up the model is a simple but 

effective manner [Tan and Le (2019]. The compound technique expands the dimension scale 

uniformly over a fixed set of scaling coefficients instead of randomly expanding the width, depth 

and resolution. Also, the training process is faster than other CNN models to reduce computational 

cost. 

 

 

 

 

 

 

 

 



75 
 
 

Table 5.3 Evaluation summary of U-Net based crack segmentation models’ results depending on 

different optimizers and learning rate 

Evaluation 
Metrics 

Learning 
rate 

U-Net 
EfficientnetB3 

U-Net 
InceptionV3 

U-Net 
ResNet 50 

U-Net 
VGG 19 

SGD ADAM SGD ADAM SGD ADAM SGD ADAM 

IoU 

0.1 87.81 80.64 86.61 86.59 89.50 87.61 86.81 80.64 

*0.01 89.40 *91.98 88.81 91.83 91.91 89.55 87.35 89.54 

0.0001 88.67 90.05 88.83 91.46 90.85 82.02 83.59 91.27 

F1-score 

0.1 92.75 88.17 92.29 92.19 94.11 92.89 92.35 88.17 

*0.01 94.09 *95.66 93.66 95.53 95.62 94.16 92.76 94.14 

0.0001 93.66 94.47 93.62 95.32 94.58 89.42 90.42 95.21 

Precision 
 

0.1 93.38 80.64 91.97 95.31 92.86 92.99 89.95 80.64 

*0.01 93.90 *94.73 95.04 93.82 93.42 94.54 95.81 95.00 

0.0001 92.84 93.86 94.16 94.42 94.58 85.73 92.65 93.97 

Recall 

0.1 93.72 100 93.14 90.16 95.54 93.45 95.28 100 

*0.01 94.57 *97.59 92.74 97.35 97.97 93.94 90.41 93.47 

0.0001 94.42 94.38 93.54 96.25 95.36 94.94 88.55 96.52 

Note: *Best performance  

Figure 5.6 illustrates the output results of four different U-net models for two optimizers using the 

learning rate of 0.01. It is prominent from the graph that most of the models obtained the best 

efficient result using the ADAM optimizer except for the ResNet50 backbone model. Also, for all 

the evaluation metrics EfficientB3 based U-Net has achieved the performance. InceptionV3 based 

PSP-Net has the second best performance with an IoU of 89.45%, F1-score of 93.7, precision of 

and recall of 97.4%, followed by ResNet50 and VGG19 based PSP-Net model. 
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Figure 5.6 Crack segmentation: U-Net- comparison of the evaluation metrics based on SGD and 

ADAM optimizers for learning rate 0.01 

According to Figure 5.7 EfficientB3 based U-Net model with a learning rate of 0.01 has obtained 

its optimized performance only after 40 epochs. Also, among all the learning rates, 0.01 required 

most epochs to reach the optimizing point indicating that with a learning rate of 0.01, the trainable 

model learns the crack features more deeply. 
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Figure 5.7: Crack segmentation: U-Net- comparison of the evaluation metrics based on ADAM 

optimizers and learning rate 0.1, 0.01 and 0.0001 

5.6.2 Crack Segmentation: PSP-Net model  

Like U-net crack segmentation models, PSP-net is also analyzed with four backbone models- 

VGG19, ResNet50, InceptionV3 and EffiecientNetB3. These models are evaluated for optimizers 

SGD and ADAM with three learning rates of 0.1,0.01 and 0.0001. Altogether twenty-four models 

are analyzed and summarized in Table 5.4. 

From Table 5.4, EfficientNetB3 based PSP-Net has outranked the other CNN models in crack 

segmentation with an IoU value of 89.55%, F1-Score of 94.13%, precision value of 92.56% and 

recall value of 95.94%. This model has achieved its best performance using optimizer ADAM and 

a learning rate of 0.01. As discussed earlier, usually, an ADAM optimizer has a positive impact on 

model’s performance better than SGD.  
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Table 5.4 Evaluation summary of PSP-Net based crack segmentation models’ results depending 

on different optimizers and learning rate 

Evaluation 
Metrics 

Learning 
rate 

PSP-Net 
EfficientnetB3 

PSP-Net 
InceptionV3 

PSP-Net 
ResNet 50 

PSP-Net 
VGG 19 

SGD ADAM SGD ADAM SGD ADAM SGD ADAM 

IoU 

0.1 81.56 85.39 81.59 84.43 74.56 80.82 72.39 78.49 

*0.01 86.03 *89.55 84.33 87.64 76 83.2 74.4 80.7 

0.0001 85.65 88.59 83.41 86.75 77.01 82.96 73.69 79.58 

F1-score 

0.1 89.95 91.22 88.76 91.38 83.74 83.85 83.94 83.12 

*0.01 91.30 *94.13 90.98 92.83 85.6 86 85.3 88.1 

0.0001 90.89 93.97 89.35 91.45 84.59 85.38 84.58 87.65 

Precision 
 

0.1 91.88 90.10 85.38 90.33 79.58 85.49 81.24 89.58 

*0.01 93.07 *92.56 89.67 91.74 82.2 88.6 83.4 92.2 

0.0001 92.03 92.45 88.96 91.57 82.59 87.96 82.87 91.97 

Recall 

0.1 90.39 91.74 91.24 90.84 82.38 88.23 81.64 85.38 

*0.01 92.31 *95.94 93.10 91.62 85.3 90.4 84.7 88.4 

0.0001 91.76 94.39 92.40 90.88 84.79 89.54 83.67 87.57 

Note: *Best performance  

Figure 5.8 presents the performance of the four backbone models against two optimizers with a 

learning rate of 0.01. Similar to U-Net crack segmentation, the ADAM optimizer has helped all 

models gain better performance than SGD. Also, among all the models, EfficientNetB3 has the 

best evaluation values.  
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Figure 5.8: Crack segmentation: PSP-Net- comparison of the evaluation metrics based on SGD 

and ADAM optimizers and learning rate 0.01 

 

Figure 5.9 illustrates the changes in evaluation metrics value over the training process for 

EfficienNetB3 based PSP-Net crack segmentation model. With the learning rate of 0.01 and 

ADAM optimizer, this model has achieved its optimized evaluation at epoch 40. Also, in the 

training process for all the evaluation metrics, IoU, F1-score, precision and recall, the model 

gained more than 95% performance.   
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Figure 5.9: Crack segmentation: PSP-Net- comparison of the evaluation metrics based on 

ADAM optimizers and learning rate 0.1, 0.01 and 0.0001  

 

After analyzing both the U-Net and PSP-Net models, it is evident that the EfficientNetB3 backbone 

model has achieved the best performance in the crack semantic segmentation model. Also, the 

ADAM optimizer has shown superiority over other optimizers. A learning rate of 0.01 has proven 

to be the most efficient learning rate for weight update in each training step. According to Table 

5.3 and Table 5.4, both U-Net and PSP-Net model has obtained quite a similar performance in 

crack segmentation with the EfficientNetB3 model, which glorifies the statement that encoder-

decoder models have higher accuracy in crack semantic segmentation. 

5.7 Result and Discussion: Spalling Segmentation  
This section is also divided into two sub-sections where 5.7.1 discusses the results of the spalling 

segmentation model using the U-Net encoder-decoder model, and sub-section 5.7.2 shows the 

output of the PSP-net model. Four backbone models are implemented in both cases, and their 

results are summarized in those sub-sections. 
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5.7.1 Spalling Segmentation: U-Net model   
For spalling segmentation U-Net model is analyzed with four different backbone models- VGG-

19, ResNet50, InceptionV3 and EfficientNetb3. These models are also evaluated for different 

learning rates, i.e., 0.1, 0.01, 0.0001 and two types of optimizers, the same as crack segmentation 

models.  

Table 5.5 presents the performance of the U-Net models based on four backbone models, three 

learning rates and two optimizers. After analyzing all twenty-four models, the InceptionV3 based 

U-Net model has the best achievement on spalling segmentation. According to the InceptionV3 

model’s architecture, the height and depth of the trainable layers are very deep, which can 

eventually prompt the model’s performance. Upon introducing the model for the first time by 

Szegedy et. al. (2015), this model was considered one of the noteworthy CNN architectures for 

better performance with image processing. InceptionV3 has reached its optimized situation with 

the implementation of the ADAM optimizer and a learning rate of 0.01. This model can predict 

the spalling segmentation on the images with an IoU value of 81.30%, F1-score of 89.43%, the 

precision value of 86.40% and recall value of 92.87%. As discussed in the earlier section, ADAM 

and a learning rate of 0.01 are expected to help the model reach the optimized convergence point. 
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Table 5.5 Evaluation summary of U-Net based spalling segmentation models’ results depending 

on different optimizers and learning rate 

Evaluation 
Metrics 

Learning 
rate 

U-Net 
EfficientnetB3 

U-Net 
InceptionV3 

U-Net 
ResNet 50 

U-Net 
VGG 19 

SGD ADAM SGD ADAM SGD ADAM SGD ADAM 

IoU 

0.1 72.33 50.30 72.03 74.69 63.66 70.63 65.38 56.10 

*0.01 77.16 78.10 77.31 *81.30 80.78 74.68 74.98 81.28 

0.0001 40.01 79.53 36.37 79.90 81.86 42.19 72.32 81.46 

F1-score 

0.1 83.16 49.05 83.03 84.88 76.37 81.93 78.24 69.55 

*0.01 86.73 87.30 86.75 *89.43 89.13 84.95 85.10 89.42 

0.0001 55.39 88.30 52.35 88.52 89.79 58.22 83.24 89.56 

Precision 
 

0.1 88.28 77 85.33 87.45 95.66 88.49 79.21 56.20 

*0.01 87.70 88.58 87.20 *86.40 82.02 84.86 85.94 88.38 

0.0001 59.65 85.65 56.86 86.07 86.64 58.43 88.32 83.73 

Recall 

0.1 79.66 51.24 82.20 82.87 65.53 77.48 78.03 66.34 

*0.01 85.93 86.27 86.57 *92.87 97.92 83.34 82.61 93.31 

0.0001 56.00 91.24 51.86 91.29 93.22 62.08 79.37 96.48 

Note: *Best performance  

Figure 5.10 compares evaluation metrics for U-Net models for spalling detection in the context of 

two different optimization functions. As per the graphical representation, most models gained 

efficient prediction performance with the help of an ADAM optimizer, except for the ResNet50 

model. This summarization clearly shows that InceptionV3 is the best performed model. 
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Figure 5.10: Spalling segmentation: U-Net- comparison of the evaluation metrics based on SGD 

and ADAM optimizers and learning rate 0.01 

Figure 5.11 shows the training accuracy of evaluation metrics over three different learning rates. 

It is prominent from these graphs that the model training outputs remained in straight lines over 

the epochs, meaning the model has reached its’ convergence point too fast in the training process. 

One of the possible reasons behind this scenario can be that when preparing the ground truth mask 

of the original dataset, this study used a generalized annotation system, which eventually affected 

the exact outlining of the spalling area. However, even though this study has used a generalized 

annotation system, the final results for spalling predictions are satisfactory. 
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Figure 5.11: Spalling segmentation: U-Net InceptionV3- comparison of the evaluation metrics 

based on ADAM optimizers and learning rate 0.1, 0.01 and 0.0001 

5.7.2 Spalling Segmentation: PSP-Net model   
Similar to U-Net based spalling segmentation, PSP-Net has used four backbone models, two 

optimizers, and three learning rates to compare models’ output and finalize the best prediction 

model. Table 5.6 shows that PSP-Net has obtained its best performance with the backbone model 

EfficientNetB3, once aging, proving the superiority of the EfficientNetB3 model over the other 

models. Also, similar to all the previous cases ADAM and a learning rate of 0.01 has exhibited the 

most affirmative impact for spalling segmentation prediction. Moreover, this model has the best 

IoU, F1-score, precision and recall values of 75.30%, 85.28%, 86.88% and 84.41, respectively. 
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Table 5.6 Evaluation summary of PSP-Net based spalling segmentation models’ results 

depending on different optimizers and learning rate 

Evaluation 
Metrics 

Learning 
rate 

PSP-Net 
EfficientnetB3 

PSP-Net 
InceptionV3 

PSP-Net 
ResNet 50 

PSP-Net 
VGG 19 

SGD ADAM SGD ADAM SGD ADAM SGD ADAM 

IoU 

0.1 68.34 69.68 62.59 61.24 59.32 71.84 58.48 64.38 

*0.01 70.78 *75.30 66.89 65.09 60.66 74.67 63.94 68.76 

0.0001 70.43 74.31 63.91 64.91 61.24 73.72 61.38 65.10 

F1-score 

0.1 79.75 79.47 71.34 73.80 69.47 80.46 72.40 76.61 

*0.01 82.25 *85.28 79.10 77.51 73.60 84.84 77.13 80.63 

0.0001 81.86 84.83 74.49 76.42 71.56 82.35 76.39 80.54 

Precision 
 

0.1 81.05 80.25 76.29 75.39 72.38 85.66 77.05 85.98 

*0.01 84.10 *86.88 81.64 77.43 78.25 88.45 79.28 86.9 

0.0001 85.63 85.44 79.50 78.23 76.77 87.30 78.98 87.20 

Recall 

0.1 80.88 81.40 70.94 77.86 69.58 79.66 73.44 74.23 

*0.01 82.08 *84.41 78.90 81.87 72.97 82.31 75.89 76.28 

0.0001 81.37 84.34 77.48 81.36 72.45 81.98 74.09 75.20 

Note: *Best performance  

Based on Figure 5.12, all the PSP-Net models have obtained their optimized performance with the 

ADAM optimizer agreeing with the statement that ADAM is one of the best optimizers for the 

segmentation process. EfficeintNetB3 model has the best accuracy with ADAM, followed by 

InceptionV3, ResNet50 and VGG-19. Figure 5.13 represents the variation of different evaluation 

metrics of EfficientNetB3 based PSP-Net over the training process for different learning rates. It 

indicates that with a learning rate of 0.01 model has the most epochs and best numerical 
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performance. Both these graphs are presented to support the statement that ADAM is the best 

optimizer and a learning rate of 0.01 is the most effective learning step for this model. 

 
Figure 5.12: Spalling segmentation: PSP-Net- comparison of the evaluation metrics based on 

SGD and ADAM optimizers and learning rate 0.01 
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Figure 5.13: Spalling segmentation: PSP-Net EfficientNetB3- comparison of the evaluation 

metrics based on ADAM optimizers and learning rate 0.1, 0.01 and 0.0001 

 

After analyzing both the U-Net and PSP-Net models, it can be concluded that InceptionV3 based 

U-Net has performed better than any other models for spalling segmentation. On the other hand, 

EfficientNetB3 based PSP-Net has the best second performance in spalling segmentation with very 

close evaluation metrics values to InceptonV3 based U-Net model. This eventually justifies that 

encoder-decoder models are highly profound at spalling segmentation. 

5.8 Crack and Spalling Segmentation Prediction    
Figure 5.14 illustrates some of the sample images of crack prediction done by the best performed 

model for both U-Net and PSP-Net models separately. The first column shows the original images, 

and the second column shows the ground truth mask dataset. The rest of the two columns 

exemplifies the prediction done by EfficientNetB3 based, U-Net model and PSP-net model, 

respectively. From the graphs, it is prominent that the crack area prediction quality is relatively 

similar for both models, with a slightly better performance with U-Net. 
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Figure 5.14: Semantic segmentation of crack detection using best two models 
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Figure 5.15: Semantic segmentation of spalling detection using best two models 
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5.9 Summary 

This chapter explores the potentiality of two different encoder-decoder models, i.e., U-Net and 

PSP-Net, as CNN-segmentation to predict defects area on the images. Later, these two models are 

analyzed with four different backbone models, i.e., VGG-19, ResNet50, Inception and 

EfficientNetB3. The semantic segmentation process focuses on two goals: a) conducting CNN-

segmentation for crack and spalling with U-Net and PSP-Net models and b) training the models 

with different learnable hyper-parameters types to obtain the best output from the CNN 

segmentation models. This section has used a dataset of crack and spalling consisting of 4082 and 

1100 images, respectively. After finalizing the dataset, the semantic segmentation models are 

analyzed for different types of hyper-parameters and evaluated based on their prediction 

potentiality. The highlights of this study can be summarized as follows: 

a) This study has performed a detailed sensitivity analysis of semantic segmentation for both 

crack and spalling cases by combining different learnable and optimization parameters, 

i.e., encoder backbone model, optimizers and learning rates with two different encoder-

decoder model- U-Net and PSP-Net. As a result, SGD and ADAM are the two optimization 

functions applied in CNN-segmentation algorithms while implementing three different 

learning rates 0.1, 0.01 and 0.0001.  

b) In the case of crack segmentation with U-Net, EfficientNetB3 based model have outranked 

all the other segmentation models with IoU, F1-score, precision and recall of 91.98%, 

95.66%, 94.73% and 97.59%, respectively. In this case, optimizer ADAM and learning 

rate of 0.01 has enlightened the learning process of the CNN segmentation model towards 

an optimized convergence 

c) After the crack segmentation analysis with PSP-Net, the comparative analysis has revealed 

that EfficientNetB3 backend PSP-Net has the significant potential for crack area 

segmentation. Furthermore, similar to U-Net analysis, this model obtained the best 

execution with ADAM and a learning rate of 0.01.  

d) For spalling segmentation InceptionV3 based U-net model has gained the highest rank for 

spalling area detection based on the evaluation metrics’ numerical values- IoU value of 

81.30%, F1-score of 89.43%, precision value of 86.40% and recall value of 92.87%. 

However, with PSP-Net EfficienNetB3 functioned as the best model. In both these cases, 
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ADAM and a learning rate of 0.01 assisted the models in reaching their utmost output 

accuracy. 

e) Even though U-Net has the upper hand in the crack and spalling segmentation, it is also to 

mention that PSP-Net models also have obtained a performance adjacent to U-Net models, 

which certainly glorifies the overall architecture of encoder-decoder models.  

f) In all the cases, ADAM is found to be the best optimizer which supports the statement of 

previous studies. Also, with a learning rate of 0.01, the training process has achieved its’ 

optimized output without losing much information. 
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Chapter 6  Conclusion and Future Works 

6.1 Introduction  

This thesis planned on implementing deep learning methods for automatic damage detection on 

concrete surface. First it presented a comprehensive summary of the previous researches conducted 

to explore the compute vision technologies in damage identification and detection. On 

implementation stage this study used various CNN models in context of transfer learning methods 

to decide on the best performed model for multiple defects identification and segmentation. Also 

an extensive sensitivity analysis for hyper-parameters were performed to track the optimal 

condition for the successful automatic damage detection model.  

6.2 Core Contributions 

The outcomes of this research work are expected to expedite future research toward optimizing 

the CNN models to develop an automatic damage detection process with real-world application. 

Also, this thesis has worked on multiple damage detection- concrete crack and concrete spalling. 

To achieve the ultimate goal this study has focused working on few concepts which supposedly 

improves the model performance significantly and the core contributions of this study are as 

follows: 

In chapter 2, a detailed literature review of previous developments in computer-vision based 

damage detection are presented and the findings of this chapter have helped shaping this study. To 

summarize- 

 The accuracy of any trained CNN model highly depends on the size and quality of image 

dataset.  

 Transfer learning can aid in initializing a CNN model analysis and reach the optimized 

training condition by reducing the model’s computational cost.  

 Deep learning based models are competent of multiple object detection at a time and can 

be utilized for several damage detections of structures.  

Based on these findings this study has developed a work procedure which are discussed in next 

chapters.  
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In chapter 3, this study has discussed the base methodology of a CNN model and specified the 

CNN models used for transfer learning-  

 Selection of various CNN models based on their learning depth and optimized learning 

process.  

 Identified the appropriate evaluation metrics to evaluate the trained CNN model and 

understand the performance of the model at prediction stage.  

This study has worked in two steps- first classifying the damage types and finally segmentation of 

damage area. In chapter 4 a detailed research method and CNN model outputs for defects 

classification is presented- 

 Created a comparative dataset collecting images from various resources, such as- original 

damage inspection reports, open-source online resources to imitate the real structural site 

conditions. To the author’s best knowledge, this is one of the largest datasets of both 

concrete defects without applying any image augmentation process 

 Conducted multiple sensitivity analysis for different hyper-parameters- learning rate 

(0.0001, 0.001, 0.1) and optimization function (SGD and RMSprop).  

 Implemented multiple CNN models, such as- VGG-19, ResNet50, MobileNetV2, Xception 

and InceptionV3 to make a comparison of the models and decide on the best performed 

model.  

In chapter 5, this study introduced the semantic segmentation method for defects area recognition- 

 Implemented two different types of Encoder-Decoder model- U-Net and PSP-Net, and 

analyzed these models for four different base CNN models- VGG-19, ResNet50, 

InceptionV3 and EfficienNetB3.  

 Conducted multiple sensitivity analysis for different hyper-parameters- learning rate 

(0.0001, 0.01, 0.1) and optimization function (SGD and ADAM).  
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6.3 Conclusions 

6.3.1 Defects Classification  

For defects classification this study had two goals- a) conduct CNN classification for multi-class 

defects- crack and spalling, and b) train the model with different types and values of hyper-

parameters to obtain the best output from the CNN classifiers. To achieve the first goal, this study 

has collected a dataset of 4080 crack images and 1100 spalling images. To summarize the output 

of this defects classification models-  

 A total of thirty models are evaluated combining the learning rates (0.0001, 0.001, 0.1) and 

optimization functions (SGD, RMSprop) with five different CNN models (VGG-19, 

ResNet50, MobileNetV2, Xception and InceptionV3). 

  InceptionV3 model has outranked the other models with accuracy, precision and recall of 

91%, 83% and 100%, respectively. One possible reason behind the InceptionV3 model 

functioning better than other models is that the model has the highest layers of depth for 

learning, which facilitates the model to gain better performance. VGG19 has the least 

prospect with defects identification.  

 With the help of confusion matrix this study has found that IncpetionV3 has made the least 

false prediction with crack identification. Also in case of spalling identification 

IncpetionV3 has labelled all the spalling cases correctly.   

 Among three learning rate 0.0001, 0.001 and 0.1 with learning rate 0.001 all the CNN 

models has achieved the best performance which establishes the idea that a low learning 

rate does not always confirm better performance with CNN models, some cases increase 

the computation cost of the learning process without improving the models’ prediction 

proficiency. 

 In case of optimization functions SGD has assisted the CNN modes to achieve the better 

performance, which proves the statement that SGD has better stability and generalization 

capacity than other adaptive optimization methods (i.e., RMSprop). 

6.3.2 Defects Segmentation 

In case of segmentation, this study has engaged semantic segmentation process because of its 

competency with differentiating various the objects and locate each object individually. Also, the 
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semantic segmentation is done for both the defects- crack and spalling separately. This study has 

explored two types of Encode-Decoder models, i.e., U-Net and PSP-Net, as these models have 

previously proved too have better segmentation accuracy. For segmentation purpose this study has 

used the same dataset from defects classification stage. The highlights of segmentation task are 

summarized as follows-  

 This study has performed a detailed sensitivity analysis of semantic segmentation for both 

crack and spalling cases by combining different learnable parameters, i.e., encoder 

backbone model (VGG-19, ResNet50, Inception and EfficientNetB3), optimizers (SGD 

and ADAM) and learning rates (0.0001, 0.01,0.1) with two different encoder-decoder 

model- U-Net and PSP-Net.  

 In case of crack segmentation, U-Net with EfficientNetB3 backbone model has outranked 

all the other segmentation models with IoU, F1-score, precision and recall of 91.98%, 

95.66%, 94.73% and 97.59%, respectively. Among all the PSP-Net models the best 

performance is achieved by EfficientNetB3 backend PSP-Net, which indicates that 

EfficientNetB3 has performed better than other backbone models.  

 For spalling segmentation InceptionV3 based U-net model has gained the highest rank for 

spalling area detection based on the evaluation metrics’ numerical values- IoU value of 

81.30%, F1-score of 89.43%, precision value of 86.40% and recall value of 92.87%.  

 Even though U-Net has the upper hand in both the crack and spalling segmentation, it is 

prominent that PSP-Net models also have obtained a performance close to U-Net models, 

which certainly glorifies the overall architecture of encoder-decoder models.  

 In all the cases, ADAM is found to be the best optimizer which supports the statement of 

Choi et. al. (2019) that with the best-tuned model adaptive gradient methods always 

perform better than the gradient descent optimizers. Also, with a learning rate of 0.01, the 

training process has achieved its’ optimized output without losing much information 

6.4 Limitations and Recommendations for Future Works 

A real-word DL-based application requires a lot of proper resources and proficiency in defects 

assessment. Nevertheless, there are many limitations that need to be addressed before implicating 

the CNN trained model for defects detection. This study has worked with some of the current 
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limitations and gained a satisfactory performance in both defects classification and defects 

segmentation cases. However, some challenges are still need a lot of attention and substantially 

requires further studies, such as-  

 One of the biggest challenge for this research was to collect images with complex 

background implicating the original structural condition.  Previously many researches has 

worked on concrete crack identification and collected images of concrete crack surfaces. 

So, it was easier to get open-sourced crack dataset but it was difficult to get any open-

sourced dataset for any other type of defects.  This study has built a spalling dataset of 1100 

images from scratch but unfortunately still the dataset size is quite smaller than the crack 

dataset (almost ¼ of crack dataset).  

 

Based on the analysis performed in this study, there are few areas that has future scopes to improve 

the automatic defects detection process. 

First, it has been observed that in this study the crack and spalling dataset has an imbalance in size. 

Also the images from original inspection reports were very limited and was forced to depend on 

online resources. In future the project working with DL based defects detection need more 

collaboration with industrial partners to collect a large amount of diverse images.  Also, the images 

from dataset need to be annotated individually as the generalized annotation process can not always 

identify the specific area of the defects. 

 

Secondly, the future studies can take advantage of DL’s multiple object detection proficiency and 

create model capable to identify multiple defects at a time from both images and videos. This study 

has worked with images of two types of defects because of the limited availability of resources of 

other type of defects. Once an adequate amount of dataset is developed it is possible to identify 

various type of defects from a single image or a video clip.  

 

Finally, to make the models’ proficiency easily accessible for engineers and other stack holders it 

is necessary to build an digital application system which is competent enough to identify various 

defects of the structures and in advanced level can also quantify the defects.  
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