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ABSTRACT

This thesis aims to explore the potential of statistical concepts, specifically the

Vapnik-Chervonenkis Dimension (VCD)[33], in optimizing neural networks. With the

increasing use of neural networks in replacing human labor, ensuring the safety and

reliability of these systems is a critical concern. The thesis delves into the question

of how to test the safety of neural networks and optimize them through accessible

statistical concepts.

The thesis presents two case studies to demonstrate the effectiveness of using

VCD in optimizing neural networks. The first case study focuses on optimizing the

autoencoder, a neural network with both encoding and decoding functions, through

the calculation of the VCD. The conclusion suggests that optimizing the activation

function can improve the accuracy of the autoencoder at the mathematical level.

The second case study explores the optimization of the VGG16 neural network

by comparing it to VGG19 in terms of their ability to process high-density data. By

adding three hidden layers, VGG19 outperforms VGG16 in learning ability, suggesting

that adjusting the number of neural network layers can be an effective way to analyze

the capacity of neural networks.

Overall, this thesis proposes that statistical concepts such as VCD can provide a

promising avenue for analyzing neural networks, thus contributing to the development

of more reliable and efficient machine learning systems. The final vision is to allocate

the mathematical model reasonably to machine learning and establish an idealized

neural network establishment, allowing for safe and effective use of neural networks

in various industries.
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1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Overview

For anyone in today’s society, the words machine learning(ML) and artificial intelli-

gence(AI) will not be unfamiliar. Especially in recent years, the rise of new technolo-

gies such as unmanned driving and medical judgment has reminded people to realize

this face again that technology has changed our lives. However, how do things change

so fast, and actually, ML and AI just appear not longer than 100 years.

Firstly, researchers focused on ”reasoning,” which means how the machine makes

logical decisions based on a set of rules. After that, researchers turned their attention

to ”knowledge,” which means how can machines store and access vast amounts of

data. In recent years, the focus has shifted again to ”learning,” means how can

machines automatically improve performance over time.[14][15]
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Machine learning(ML) and neural network have now become a complex field with

cutting-edge and unimaginable techniques that can be applied in different fields. The

essence of machine learning is interdisciplinary and uses knowledge beyond probability

theory, statistics, approximation theory, and convex analysis. Its main goal is to

achieve the best results by designing algorithms and adopting different techniques on

different problems. Machine learning algorithms are designed to analyze data, and

patterns are once again the focus of machine learning. Promising machine learning

algorithms use it to make predictions on new data.[5]

Statistical theories play a critical role in machine learning, and the field is closely

related to inferential statistics, or statistical learning theory. Machine learning theory

places particular emphasis on the development of achievable and effective learning

algorithms that can prevent error accumulation. For part of the reasoning process,

machine learning cannot replace the human brain for the time being. Therefore, a

huge part of the current study is basically focused on the approximate algorithms,

which can provide available solutions to complex problems.[3]

A significant portion of machine learning technology can be considered well-

established, including data mining, computer vision, natural language processing,

biometric recognition, search engines, medical diagnosis, credit card fraud detection,

securities market analysis, DNA sequencing, speech and handwriting recognition,

games, and robots. Due to its versatility and wide applicability of it, our lives are all

around with it. Even we need to constantly update technology to avoid the discomfort

caused.[16]

In the field of data mining, ML algorithms are used to extract useful information

from plenty of datasets which is also complex. By analyzing patterns and relation-

ships, the model can be used to identify trends, predict future outcomes, and make

data-driven decisions. In computer vision, ML is used to analyze images and videos,

recognize objects and faces, and extract useful information from visual data.[17]

Natural language processing (NLP) is another area where autoencoder, one of

ML models, has been largely utilized. NLP involves allowing machines to understand

human language and generate human language using a human voice. This is not just

as simple as inputting language text and generating it, but more focus is on generation

and understanding. It is similar to the part of the human brain when newborns need

to learn and practice languages. ML algorithms can be used to analyze large volumes

of text and generate meaningful insights.

NLP is also the fastest-growing part of biometric recognition. Biometric recogni-
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tion is an area where ML has been widely used in recent years. Phones can accurately

unlock by using physical characteristics such as fingerprints and facial features. Not

only for phones but also has major implications for security, law enforcement, health-

care and finance, among other things.[18]

In finance, ML is used to analyze market data and make predictions about future

market trends. Before the global financial crisis comes, or before major investment

decisions, by identifying patterns and relationships in financial data, ML can avoid

risks through scientific means.

In the field of robotics, ML can achieve varying degrees of learning effects by writ-

ing programs and practicing them. It includes navigating, recognizing objects and

faces, and interacting with humans in a human way. By combining machine learn-

ing with other technology such as computer vision and natural language processing,

robots can be designed to perform a variety of tasks in many different environments.

1.1.1 Machine Learning in Medical Decision-Making

In recent years, ML also being a powerful tool in medical research and healthcare,

with applications ranging from image analysis and diagnosis to drug discovery and

personalized medicine.

In radiation oncology, ML has the potential to transform the practice of radiation

therapy from treatment planning to outcome prediction. Radiation therapy is a com-

mon form in that more than half of cancer patients receive ionizing radiation as part

of their treatment. Radiation therapy involves a multitude of processes, not only from

consultation to treatment but beyond to ensure that patients receive the prescribed

dose of radiation and respond well. These processes vary in complexity and may

involve several stages of complex human-machine interaction and decision-making,

which will naturally require the use of ML algorithms to optimize and automate

these processes.[19]

Based on these trends and advancements, it is plausible to predict the emergence

of several new technologies, as examples shown in the figure. Additionally, it is noted

that biologically-inspired AI will play a significant role in the development of ML

models in the future.
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Figure 1.1: New technologies in medical area based on machine learning[19]

1.1.2 The Intersection of Geology and Machine Learning

In Karimpouli’s 2020 article[20], he first discusses the practicalities of using ML tech-

niques in geology. Its application has the potential to restructure the way researchers

analyze data, helping them understand the properties of different complex geological

materials differently.

In this field, the first main challenge need to be mensioned is the geological char-

acterization. For instance, when researchers want to analyze the properties for a

specific rock formation, there may be some obvious variations in the composition of

the rock at different points within the formation. And it may be troubling because

the limitations of data and the nature of the measurements themselves. But ML can

help address this challenge by providing more accurate and reliable predictions of

geological properties based on limited data sets.

In particular, Karimpouli noted that ML can be used to quantify uncertainty in

complex geological materials and to model fractures and phase transitions in these

materials. Its ability to learn from previous data and generalize to new environments

is one of its advantages. This is particularly useful when there is little data or the

data is highly variable. By learning from previous data, ML can identify patterns

and relationships that humans might not immediately spot.

Another advantage is the ability to automatically analyze large volumes of data.

Nowadays, the traditional methods of geological analysis are time- waste and labor-
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intensive. It may require researchers to have significant expertise. ML algorithms

can automate these and allow researchers to have more time to efficiently analyze

large volumes of data. Whatsmore, they can also identify patterns and trends that

traditional methods might struggle to discern.

Despite its many positive side, there are still some difficulties that must be ad-

dressed. One of these is for now with ML, it needs high-quality data. This is also

an especially challenge in geology, where data may be limited or difficult to obtain.

Additionally, there is a need for ML models that are robust and can account for the

complexity of geological materials.

To address some of these issues, Karimpouli proposed the use of Gaussian pro-

cesses and physical informatics ML as a smart meshless approach to solving the

seismic wave equation. The proposed architecture of a physically informative ML

model for solving the 1D seismic wave equation is shown in the figure. By exploiting

its powerful capabilities, Karimpouli’s method provides a promising framework for

developing more accurate and reliable geological ML models.

Overall, the use of ML based on theoretical knowledge of physics has the potential

to revolutionize geology. It can help solve the challenges associated with the uncer-

tainty and variability of geological data and automate the analysis of large volumes

of data. While there are still challenges that must be addressed, the proposed frame-

work for machine learning using Gaussian processes and physio informatics provides a

promising avenue for developing more accurate and reliable geological ML models.[20]

Figure 1.2: Architecture of the proposed PIML for solving 1D seismic wave
equation.[57]

Various experiments shown in this article were conducted to analyze the effect

of variables, such as the number of neurons on the prediction accuracy of noise-free
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data using this final model. The comparison of absolute error is shown in Figure

2, which indicates the potential of physics-based deep learning methods for more

accurate predictions.

Also, the physical laws and empirical relations are incorporated into the learning

process. These methods show better performance when having more analytically

tractable, which allows researchers taking a good understanding of the underlying

physical processes.

To further demonstrate the potential of physics-informed machine learning meth-

ods in geosciences, the authors evaluated their power and flexibility in solving seismic

wave equations. The results showed that these methods can provide accurate and

efficient solutions, demonstrating their effectiveness in solving complex geoscientific

problems. This makes the potential of these methods for further applications high-

lighted in other fields of geoscience research.

Figure 1.3: The PINN evaluation: (a) Predicted u(x, t) and (b) the absolute
error of predictions for noise free data. (c) Predicted u(x, t) and (d) the
absolute error of predictions for noisy data. u(x, t) is the output, u∗(x, t) is
the output of network.[57]
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ML grows rapidly with countless applications in various industries, including

healthcare, finance, and transportation. At its core, it involves training algorithms

to learn from data and make predictions or decisions without being explicitly pro-

grammed. One popular type of this is the neural network.

A neural network(NN) is a computational model that imitates the biological neural

network, which is the central nervous system of animals, especially the structure and

function of the human brain. NN is computed by a large number of artificial neuron

connections, and they have the function of learning. In other words, they can change

their internal structure on the basis of external information, and they are adaptive

systems.

The modern NN is a nonlinear statistical data modeling tool. NN is optimized

through a learning method based on mathematical statistics, which makes them a

practical application of mathematical statistics. By using this method, we can obtain

a large number of local structure spaces that can be expressed by functions.

In the field of artificial perception in artificial intelligence, we can make deci-

sions about artificial perception through the application of mathematical statistics.

Through statistical learning, the artificial neural network can have simple decision-

making ability and simple judgment ability similar to human beings. This method

has more advantages than formal logical reasoning and calculation. Like other ML

methods, NN has been used to solve a variety of problems, such as machine vision and

speech recognition. These problems will be more difficult when we used traditional

rule-based programming.

In recent years, NN’s potential has been explored mostly in the healthcare field.

The use of neural networks in this area mainly has been used for revolutionizing the

way that doctors diagnose and treat diseases. It shows that ML gives promising poten-

tial in improving various aspects of radiation oncology, particularly in the optimiza-

tion and automation of processes, such as treatment planning and outcome prediction.

Radiotherapy, as one of the most common treatment modalities for cancer patients,

involves a complex set of processes that require sophisticated human-machine in-

teractions and decision-making. With ML algorithms, these can be optimized and

automated. This means it will make sure that patients receive the appropriate radi-

ation dose and respond well to the treatment. One study published in the Journal of

Cancer explored the use of genotype information and a mathematical model to pre-

cisely predict radiation pneumonitis, a common side effect of lung cancer treatment.

The results showed that the proposed model gives better performance than traditional
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models in predicting radiation pneumonitis, and demonstrated the potential of ML

in improving the efficacy and safety of radiotherapy for lung cancer patients.[21]

Figure 1.4: Prediction model from Du[21]

In another study by Yoon[22], the researchers used a deep learning model to

predict tumor response to radiotherapy in patients with head and neck squamous cell

carcinoma (HNSCC). The researchers used a dataset of 185 patients with HNSCC

who received radiotherapy and developed a neural network model to predict tumor

response.

After the training and testing, researchers found that the model can achieve ac-

curacy up to 0.74, whats more, the area under the receiver operating characteristic

curve can achieve to 0.77. These results show that this model has the potential to

accurately predict tumor response to radiotherapy and could be a valuable tool for

optimizing treatment plans.
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1.2 Motivation

Recent advancements in the field of ML have demonstrated its indelible role of itself

and big data in the success of neural network applications. However, the era of big

data has arrived, and it is clear that ML needs vast amounts of data for training

and optimization. While some data collections can be obtained without incurring

significant costs of time and money, such as the widely-used iris database, other data

sets require extensive efforts and resources to obtain, such as car accident pictures,

road surface recognition images for unmanned driving systems, and seismic wave data.

The availability and quality of data can significantly affect the accuracy of a neural

network, as the authenticity and error values of input data can become uncertain

factors that restrict the performance of the network.

This thesis aims to analyze and optimize neural networks including autoencoders

and VGG networks using statistical concepts. The neural network will be optimized

by calculating and determining the known database to achieve higher accuracy. Au-

toencoders can be used for more areas after analysis and optimize. And for the VGG

network, VCD can use to analyze its structure and create another neural network that

can have the same performance or even better. Under these two purposes, selecting

a more suitable activation function can further increase the accuracy of the network.

While large-scale neural network models have been extensively employed to achieve

high generalization performance, it does not necessarily reflect the quantifiable, inter-

pretable, and mathematical capacity of a network as the parameters of the networks

increase. Given the increasing demands of asking for more explainable AI models, the

thesis aims to find a quantifiable capacity of neural network models under different

network architectures and the size of free parameters using VC dimensions. There-

fore, the results of the thesis could be used to compare the expected performance

with different network models.

1.3 Problem Description

The research problem addressed in this thesis is the integration of statistical concepts

into neural networks and their application. The focus is on understanding and utiliz-

ing the VCD in statistics, which has been identified as relevant to the optimization of

specific neural networks. The objective is to analyze a single neural network through

the application of VCD and statistical concepts and eventually scale it up to a mature
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neural network.

The VCD is a measure of the representational ability and complexity of a learnable

classification function space in VC theory. It is determined by the maximum number

of points that a given algorithm can classify correctly. The power of a classification

model is directly related to its complexity. For example, a high-degree polynomial

classification model can accurately fit a set of points. However, this same model may

also misclassify other point sets that follow a different pattern. Therefore, such a

model is considered highly capable but may not be the most optimal solution.

By integrating statistical concepts into neural networks and considering VCD,

this research aims to optimize neural networks and improve their accuracy and ef-

fectiveness. The successful application of these concepts will ultimately reduce the

dependence on human expertise in fields such as medical diagnosis and early predic-

tion of natural disasters.

1.4 Contribution

This thesis is structured into two main parts. The first part aims to examine the

optimization capabilities of the VCD in known deep-learning models. Idealized digital

deductions will be utilized to obtain implementable optimization results. Firstly, the

analyze of a single hidden layer neural network using VCD will be expanded to multi-

layer hidden layers. Then, the unique structure of the autoencoder will be leveraged

to optimize VCD for the autoencoder.

The second part of the study will focus on the mathematical deduction of the sub-

parts of the VGG network. The mathematical proof will be used to demonstrate the

varying effects of the VGG16 and VGG19 network structures. Subsequently, theoret-

ical optimization of the VGG series network will be deduced from the mathematical

proof. Overall, this research aims to explore the potential of VCD as an optimizer

for deep-learning models and to provide theoretical insight into the optimization of

specific neural networks.

1.5 Organization of Thesis

This section was all about the introduction and the rest of the thesis proceeds as

follows,

Chapter II, explained the background and relevant information of this study. It
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mainly introduces the application of VCD in statistics and computers. After the

introduction, complete the preliminary understanding of VCD.

Chapter III, introduces how VCD will be used as an analyzer in an autoencoder.

This chapter presents a detailed account of the statistical definition of VCD in the

background, and elaborates on the effective application of VCD to a single-layer neural

network. Moreover, section 3.3 demonstrates the application of VCD principles in

optimizing an autoencoder. It mainly includes how to choose the activation function

and other optimization methods and the final effect display.

Chapter IV, it is further introduced that when VCD is applied by a more novel

neural network, whether the optimization effect similar to the automatic encoder

optimization can be obtained.This section is to elucidate the diverse models required

for VCD implementation in different neural networks, as outlined in the background.

Additionally, sections 4.3 and 4.4 explicate the distinct yet analogous application of

VCD and offer optimization recommendations in two separate neural networks, which

is VGG16 and VGG19 seperately. And whether the same theoretical support can be

provided, and on the premise of theoretical support, how to optimize the new neural

network with a higher utilization rate.

Chapter V explain the method and steps when using VCD to optimize any neural

network in the future. Explain the problems that may arise during the process and

the resulting results.



12

Chapter 2

Background and Related Work

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Statistical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Netural Network . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Medical diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Language Translation . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Self-driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Background

2.1.1 Statistical

Vapnik-Chervonenkis Dimension, in statistical learning theory, the VC dimen-

sion(VCD) is a measure of the capacity of a set of functions to fit a wide range of

input patterns. It is defined as the largest number of points that can be shattered

by the set of functions, meaning that the set can produce all possible dichotomies on

those points.

The VCD plays a key role in understanding the connection between model com-

plexity and generalization performance. Specifically, a set of functions with a higher
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VCD can fit a wide range of functions but may cause overfitting in some situations.

When a set of functions with a lower VCD may have limited the capacity to fit

complex functions,and may also generalize better to new data.[2][3]

In statistical learning theory, VCD is often used to derive bounds on the gen-

eralization error of a learning algorithm, which provides a theoretical guarantee of

its performance on unseen data. These are always based on the size of dataset, the

complexity of model, and the VCD of the set of functions.[1]

In the context of statistical applications, the use of VCD involves a significant

amount of mathematical terminology, which is an important consideration when defin-

ing VCD. It is essential to take note of these key points when citing the definition of

VCD.

Before introducing VCD, it is essential to first understand a key definition: hy-

pothesis space.

In the context of statistical learning theory, the hypothesis space in VCD refers

to the set of all possible functions that can be used to model a dataset. It is a

fundamental concept when analysis the complexity and capacity of machine learning

models.

The specific definition of the hypothesis space can vary depending on the machine

learning algorithm being used and the nature of the problem being addressed. In

general, the hypothesis space includes a family of functions that can be parameterized

and trained on a training dataset to optimize a specific objective function, such as

minimizing the empirical risk or maximizing the likelihood of the data.[2]

The choice of hypothesis space is a critical consideration, as it determines the

model’s ability to approximate complex functions and generalize to new data. The

VCD provides a quantitative measure of the capacity of the hypothesis space and

can be used to analyze the trade-off between model complexity and generalization

performance.

The next definition that needs to be mentioned in VCD is the shatter point.

In VCD, the shatter point refers to the largest number of data points that a

hypothesis space can ”shatter” or separate into all possible binary classifications. This

means that the hypothesis space can produce all possible dichotomies (i.e., partitions

of the data into two sets) on those points.
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Figure 2.1: Examples of points to be shattered[52]

For example, if the shatter point of a hypothesis space is 3, it means that the

space can perfectly separate any three data points into two sets (e.g., positive and

negative). However, for four data points, there may be at least one set of points that

cannot be separated by the hypothesis space. In other words, the hypothesis space is

not powerful enough to correctly classify all possible combinations of four data points.

The shatter point is closely related to the VC dimension of a hypothesis space, as

it provides an upper bound on the VC dimension. The VC dimension is the largest

number of data points that a hypothesis space can shatter for any configuration of

points, while the shatter point is the largest number of points that can be shattered

for a specific configuration.

Understanding the shatter point is important in the analysis of the capacity and

complexity of hypothesis spaces, as it provides a measure of their ability to fit complex

functions and generalize to new data.[4]

How can VC dimension and related statistical definitions be applied in the process

of machine learning? Is there a sound mathematical derivation system that connects

neural networks with the statistical concept of VC dimension?

2.1.2 Netural Network

The neural network is a class of machine learning algorithms that imitate the structure

and function of the human brain. It can learn complex patterns from data. Nowa-

days, NN has become a popular tool from image recognition and natural language

processing to finance and healthcare.

NN is made with neurons that process and transmit information. Basically, each

neuron in the neural network get input, applies an activation function, then produces
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output that is transmitted to other neurons. The connections between each neuron

are typically weighted, meaning that some inputs have a greater influence on the

output than others.

Figure 2.2: Example of Netural Network

One of the key advantages of NN is their learning ability from data. They can be

trained on a dataset with labeled examples, and adjust their weights and parameters

to minimize the difference between their predicted outputs and the true outputs. This

process named backpropagation, involves propagating errors backwards through the

network and adjusting the weights to minimize the error.

There are some typical structures of neural networks. Multilayer perceptrons

(MLPs), are the most common and always used for classification and regression.

Convolutional neural networks (CNNs) are specialized for processing images and other

grid-like data. It is popular with image recognition and object detection. Recurrent

neural networks (RNNs) are designed for processing sequences of data, such as text or

time series, and have been used for such as language modeling and speech recognition

area.

While neural networks have shown impressive performance, they also have limi-

tations. One of the main challenges is overfitting, where the network becomes too

complex and starts to memorize the training data rather than learning general pat-
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terns. Regularization techniques, such as dropout and weight decay, can help to

prevent overfitting.

Another challenge is interpretability, as neural networks are often considered to

be black boxes, which makes trouble when humans want to understand how they can

achieve the predictions. Recently, researchers are focused on developing methods for

interpreting and visualizing neural networks, such as layer-wise relevance propagation

(LRP) and saliency maps.

Now, neural networks are inside many areas of human life and have advances that

can not be ignored in a wide range of applications. However, using them requires

careful consideration, as well as strengths and limitations.[5]

Autoencoder

Among all neural networks, autoencoder is one of those that cannot be ignored. Its

origins date can be found in 1980s, when it was first demonstrated that could learn

representations of compressed data. Since then, autoencoders have gone through some

developments, like some autoencoders based on different variations. It also become

the preferred neural network in many fields.

The main idea of an autoencoder is to reconstruct an input from a low-dimensional

encoding by training. The simple autoencoder shown in the figure can understand its

two parts, an encoder that maps the input data to a lower dimension, and a decoder

that maps the output of encoder can back to its original input dimension. In these

two processes, the activation function used is also changed. The ultimate goal is

that no matter the dimension reduce, its output data has the same dimension as the

input data.[6] During training, the encoder and decoder are trained together by using

backpropagation to minimize the difference between input and output.
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Figure 2.3: Simple Autoencoder example

One of the early goals for autoencoders was image compression. By using a lower-

dimensional encoding, it could compress an image while keeping the most important

features. In the 1990s, autoencoders were also used for feature extraction, in this

case, the lower-dimensional encoding could be used as a set of features for neural

networks.

However, the performance of basic autoencoders was limited because of the acti-

vation functions and optimization algorithms. In the mid-2000s, the rectified linear

unit (ReLU) activation function and the stochastic gradient descent optimization al-

gorithm give a resurgence interest in autoencoders. With these, autoencoders could

be trained much faster and more efficiently than before.

The variational autoencoder (VAE) became popular in the 2010s. It is a neural

network that has gained significant attention because it can generate new data sam-
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ples. VAE is a type of model that can learn to generate new samples by training

on a dataset of existing samples. VAE can also learn to encode data into a lower-

dimensional latent space and then decode it back into the original data space.

Figure 2.4: Structure of VAE[54]

The key difference of VAE is the way in which the latent space is learned. In

a basic autoencoder, the encoder maps input data to a fixed-length vector, then

decoded back into the original data dimension. However, regarding VAE, the learning

process also can involve two main parts. During the encoding, input data is mapped

to a probability distribution over the latent space using a neural network. This

distribution is typically assumed to be a Gaussian distribution with a mean and

variance vector. During the decoding, the sample is drawn from the distribution over

the latent space, and this sample is decoded back into the original data dimension

using another neural network.

The VAE is trained using a variational lower bound on the log-likelihood of the

data. This lower bound is known as the evidence lower bound (ELBO) and is defined

as the sum of two terms: the reconstruction error, which measures how well the

VAE can reconstruct the input data, and the KL-divergence between the learned

distribution over the latent space and a prior distribution over the latent space. The

KL-divergence term acts as a regularizer and encourages the learned distribution to

be close to the prior distribution.

One of the main benefits of using a VAE is that it allows for the generation of new

data samples by sampling from the learned distribution over the latent space. This is

achieved by sampling from the Gaussian distribution over the latent space, which can

be done efficiently using the reparameterization trick. The reparameterization trick

involves sampling from a standard Gaussian distribution and then transforming the
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sample using the mean and variance vectors learned by the encoder.[7]

In conclusion, VAE is a powerful generative model that has been used in a wide

range of applications, including image generation, music generation, and text genera-

tion. The ability to generate new data samples through VAE has significant potential

in areas such as art and music, which areas need the creation of new content.

Another autoencoder that has gained popularity is the denoising autoencoder

(DAE). DAE has been developed to address the issue of noise in input data. The

goal of a traditional autoencoder is to learn a compressed representation of the input

data. It can be used for image classification, dimensionality reduction, and anomaly

detection. However, when the input data has noise, DAE can learn to simply repro-

duce the noise rather than capture the structure of data.

DAE was used the solution that incorporated a noise reduction mechanism into

the training process to fix this problem. The basic idea is to corrupt the input data

with some form of noise before feeding it into the autoencoder. Then trained to

reconstruct the original, clean data from the corrupted input.

One of the key benefits of the DAE is its ability to learn robust feature repre-

sentations that are more resilient to noisy data. By learning to remove the noise

from input, DAE is forced to focus on the underlying structure of the data, rather

than simply memorizing the noisy patterns. This can lead to improved performance

downstream, such as classification or clustering, especially where the input data has

inherently noisy.

Another advantage of the DAE is its flexibility with different types of noise. Noise

includes Gaussian noise, dropout, and salt-and-pepper noise, but other types of noise

can also be used depending on the characteristics of the input data and the task.
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Figure 2.5: Structure of DAE[55]

DAE comes with not only benefits but also limitations. One challenge is deter-

mining the optimal of noise to add to the input data during training. Less noise may

not effectively train the DAE to handle noisy inputs, while too much noise can make

it difficult for the model to recover the underlying structure of the data.

In addition, the DAE may not be suitable for all data. For example, in cases

where the noise is highly structured and related to the underlying data distribution,

DAE maybe struggled to remove it while learning. In this case, adversarial training

or generative models may be better suited. It can not be ignored that DAE is a

powerful tool in the machine learning toolkit for handling noisy data and learning

robust feature representations. [8]

An introduction of these two autoencoders has been shown. Back to the autoen-

coder itself, which has also been used for unsupervised learning, where the goal is

to learn a representation of the data without any labeled examples. By using the

reconstruction error as a measure of similarity between data points, it can learn a

compressed representation of the data that can be used for clustering and other un-

supervised learning goals.



21

Apparently, autoencoder used to have a long history in the field, and it continues

to be active area. With the growth of datasets and computational resources, there

are much exciting new using such as computer vision, natural language processing,

and robotics.

VGG Network

The VGG network is a deep convolutional neural network that was developed by the

Visual Geometry Group (VGG) at the University of Oxford. This network achieved

remarkable performance on the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) in 2014. The VGG network’s success can be attributed to its depth and

simplicity, as well as the use of small convolutional filters.[9]

In the early 2010s, deep neural networks became more and more popular in com-

puter vision community. In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hin-

ton developed the AlexNet, which achieved the greatest performance on the ILSVRC.

The success of AlexNet sparked a new era, and researchers began to focus on devel-

oping deeper and more complex networks.

The VGG network was developed in 2014 and led by Karen Simonyan and An-

drew Zisserman. This team aimed to develop a network that could achieve better

performance on the ILSVRC while being simpler and more modular than previous.

The VGG network builds with several convolutional layers and fully connected

layers. The convolutional layers are organized into blocks, each containing several

convolutional layers with the same number of filters and a max pooling layer. The

researchers used small filters with a stride of 1 and padding of 1, which allowed having

deeper networks without increasing the number of parameters. The use of small filters

are also helped the network capture more fine-grained features.

The VGG network was trained on the ILSVRC dataset, which contains over one

million images from 1,000 classes. The network was trained using stochastic gradient

descent with momentum, with a learning rate schedule that decreased over time. The

researchers also used data augmentation techniques, such as random cropping and

horizontal flipping, to increase the size of the training set and reduce overfitting.

The VGG network achieved remarkable performance on the ILSVRC, achieving a

top-5 error rate of 7.3% on the test set. The network’s performance was significantly

better than previous, such as AlexNet and ZFNet. And it is also highly modular,

which allowed researchers to easily modify and adapt the network for different tasks.
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The success of the VGG network paved the way for deeper and more complex

convolutional neural networks. Researchers continued to develop larger and more

complex networks, such as the ResNet and Inception networks. However, the VGG

network remains a popular and influential model in the computer vision community,

and its modular architecture and use of small filters continue to inspire new research.

2.1.3 Local Search

The relationship between neural networks and VCD has been confused researchers

for many years. NN is a machine-learning algorithm inspired by the structure of

biological neurons. They are composed of layers of nodes that are connected by

weighted edges and are trained on data to learn a function that maps inputs to

outputs. The VCD, is a concept from statistical learning theory that measures the

complexity of a hypothesis space, or the set of possible functions that a learning

algorithm can choose from.

Research between NN and VCD has focused on understanding how the complexity

of a neural network affects its ability to generalize to new data. One of the earliest

works in this area was by Valiant in 1984. In his article, he proved a general upper

bound on the VC dimension of any function class that can be represented by a feed-

forward neural network with a fixed number of hidden units. Since then, researchers

took much time to explore the VCD of different types of neural networks, including

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep

neural networks (DNNs).

One approach to analyzing the VCD of NN is to consider about the hypothesis

space, in another word, the set of all possible functions that can be represented

through network. Understanding the relationship between network architecture and

the size of the hypothesis space can provide insights into the VCD. For example, a

shallow network with a small number of nodes may have a smaller hypothesis space

and lower VC dimension than a deep network with many nodes.

Another approach is to consider the activation function used in the network. The

VC dimension can depend on the smoothness and curvature of the activation function,

as well as the range of values that it can take. For example, a sigmoid activation

function can limit the size of the hypothesis space and reduce the VC dimension

compared to a ReLU activation function.

Researchers had also explored overfitting and the VCD. Overfitting occurs when
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a model becomes too complex and the training data is not that much, so that can not

generalize well to new data. The VCD can provide insights between model complexity

and generalization performance. For example, a network with a high VCD may be

more prone to overfitting than a network with a lower one, so that regularization can

be used to control this.[10][11][12][2][13]

Overall, research between neural networks and VC dimension has contributed to

the understanding of the complexity of machine learning models. While there is still

much to be explored in this area, the insights gained from this research can inform

the design and optimization of neural networks for a variety of applications.

2.2 Related Work

2.2.1 Medical diagnosis

Medical diagnosis applies on specialized knowledge and expertise, which is extremely

complex. It needs medical history, physical examination, laboratory tests, and imag-

ing studies for it. In recent years, a growing interest in the use of AI and ML to help

having the diagnosis of medical conditions. Also, NN has shown particular promise

in medical diagnosis. This part aims to review the literature on the application of

neural networks in medical diagnosis.

Medical diagnosis is a particularly promising area for the application of neural

networks. The complexity of medical data and the large amount of information that

needs to be processed make traditional diagnostic methods need time and afraid of

mistakes. Neural networks can process this data more quickly and accurately when

having a diagnosis.

Plenty of studies have been conducted on neural networks in medical diagnosis.

One of the earliest studies was conducted in 1991 by Storniolo,[23] they used NN to

diagnose breast cancer based on mammography images. The conclusion shows that

NN can diagnose breast cancer with a sensitivity of 95% and a specificity of 91%.

After this, including heart disease, lung cancer, and neurological disorders, a num-

ber of studies have been conducted. In a study conducted by Wang, a neural network

can use for processing in diagnosing Alzheimer’s disease based on MRI images. This

study found that NN was able to accurately diagnose Alzheimer’s disease with a

sensitivity of 84% and a specificity of 88%.[26]

Another area that has shown excellence is the diagnosis of skin cancer. In a study
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conducted by Esteva, a neural network was trained on a dataset of over 130,000

clinical images of skin lesions. And it is able to accurately diagnose skin cancer with

an accuracy of 91%, which was comparable to that of expert dermatologists.[25]

In addition to aiding in diagnosis, neural networks have also been used to pre-

dict the risk of developing certain medical conditions. A study conducted by Rav̀ı

shown that to predict the risk of developing heart disease based on electronic health

records,NN can play an important role with the process.[24] This study found that

the neural network was able to accurately predict the risk of developing heart disease

with an accuracy of 85%.

Figure 2.6: Distribution of published papers that use deep learning in subar-
eas of health informatics. Publication statistics are obtained from Google
Scholar in 2017[24]

The application of NN in medical diagnosis has shown great prospects by improv-

ing the speed and accuracy of diagnoses. However, one of the challenges is the need

for large datasets for training. This can be particularly challenging in rare medical

conditions that may have limited data.

Another challenge is the need for explaining results. Neural networks can be

seen as the ”black box” that is not always clear on how do results are given. It is

also important to understand the reasoning behind a diagnosis, this ca particularly

problematic in the medical field.
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Although neural networks in medical diagnosis have shown great promise by im-

proving speed and accuracy. While there are still some challenges that need to be

addressed, such as the need for large datasets and the interpretability of results,

however, the potential benefits are significant.

2.2.2 Language Translation

Language translation is the process of transferring sentence from one language to

another language but keeping the meaning same. Because different languages have

different syntax, grammar rules, vocabulary, and idioms, this process always shows a

big challenge on the computer area. However, in recent years, neural network-based

machine translation systems can be trained on huge amounts of bilingual corpora for

learning to map between different languages. In this part, a review of the literature

on language translation using the neural network will show, and discuss the different

architectures and techniques has been used.

The language translation systems are originally based on the encoder-decoder

architecture. The encoder takes the sentence needs to be transferred into the source

language and encodes it into a fixed-length vector representation. The decoder then

takes the encoded vector representation and generates the output sentence in the

target language. The training of these neural network models is done using the

backpropagation algorithm and the optimization techniques like Stochastic Gradient

Descent (SGD), Adam, and Adagrad.

One of the popular neural network-based language translation models is the

sequence-to-sequence (seq2seq) model. This model was introduced by Sutskever. in

2014 and has been widely used since then. The seq2seq model consists of two recur-

rent neural networks, namely the encoder and the decoder. The encoder takes the

input sequence and generates a fixed-length vector representation. This vector repre-

sentation is then used by the decoder to generate the output sequence. The seq2seq

model has achieved promising results in machine translation, speech recognition, and

image captioning.[27]

Another popular neural network-based language translation model is the trans-

former model. The transformer model was introduced by Vaswani. in 2017 and

has been the state-of-the-art model for machine translation since then. The trans-

former model uses self-attention to process the input sequence and generate the out-

put sequence. The self-attention mechanism allows the model to attend to different
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parts of the input sequence at different positions, enabling it to capture long-range

dependencies.[28]

The evaluation of machine translation systems is essential to determine the quality

of the output. The most common evaluation metric used for machine translation is

the BLEU (Bilingual Evaluation Understudy) score. The BLEU score measures the

similarity between the machine-generated output and the reference translation. The

BLEU ranges from 0 to 1, higher BLEU better performance. However, it also has

some limitations, as it does not consider the semantic meaning and cannot capture

the quality for rare words.

In recent years, there have been significant advancements in machine translation

systems. One of these is the introduction of the attention mechanism. The attention

mechanism allows the model to focus on specific parts of the input sequence while

generating the output sequence. This attention mechanism has significantly improved

the translation quality of machine translation systems.

Another recent advancement in neural network-based machine translation is the

use of pre-trained language models like BERT (Bidirectional Encoder Representations

from Transformers) and GPT (Generative Pre-training Transformer). These pre-

trained models are trained on massive amounts of text data and can capture the

context and meaning of the language better. The use of pre-trained language models

has significantly improved the translation quality of machine translation systems.

Neural network-based machine translation systems have made significant progress

in recent years, with the transformer model being the state-of-the-art model for ma-

chine translation. The evaluation of machine translation systems is done using the

BLEU score, but it has some limitations. Recent advancements in neural network-

based machine translation include the attention mechanism and the use of pre-trained.

2.2.3 Self-driving

Neural networks are composed of interconnected nodes, or ”neurons,” that receive

inputs from other neurons and produce outputs based on a set of learned weights.

By iteratively adjusting these weights in response on training, neural networks can

learn to recognize and make predictions with high accuracy. In the self-driving area,

neural networks can be used to process sensor data, recognize objects and features,

and make decisions about how to drive on the road.
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Figure 2.7: A modular perception-planning-action pipeline[53]

Early work on self-driving based on NN focused mainly on low-level mission, such

as lane detection and obstacle avoidance. For example, in 2014, researchers from

NVIDIA developed a deep neural network that could detect road features such as

lanes and drivable areas in real time. This is as known as ”End-to-End Learning for

Self-Driving Cars,” trained on a large dataset of images from a front-facing camera

on car, and was able to navigate on different kinds of roads and conditions with high

accuracy.[29]

Since then,self-driving has expanded to complex mission, such as object detection,

pedestrian tracking, and decision-making.

In 2016, Google researchers developed a self-driving car system, which was trained

on a large dataset and can detect objects, including pedestrians, cyclists, and other

vehicles. By combining with other machine learning algorithms, researchers could

develop a fully autonomous driving car that could navigate on both urban and

suburban.[30]

Decision-making is also a huge task for self-driving cars. For instance, a team

from MIT developed a system called ”Social-LSTM” in 2018, which can predict other

drivers’ behavior. This system was trained on true driving behavior and could ac-

curately predict the movements of other vehicles up to five seconds.[31] By put this

predictive ability into a self-driving system, they were able to improve its safety and

reliability.

Convolutional neural networks (CNNs) can be used for object detection,[51]which

can use filters to identify and make them effective for object recognition tasks. [32]

Recurrent neural networks (RNNs)can be used for sequential decision-making, which

can used for predicting where a pedestrian might be gone or whether a vehicle wants to

change lanes. By analyzing sensor data, self-driving cars can make informed decisions
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and respond appropriately to changing road conditions.

In summary, neural networks are a powerful tool in self-driving cars, helping

drivers drive safely, and getting the goal of self-dirving.

2.3 Conclusion

In general, for a single definition of VC dimension and neural networks, optimization

can be achieved from a mathematical definition perspective. Moreover, mathematical

theoretical knowledge has an advanced deductive process for optimizing neural net-

works. As long as restrictions on specialized terms are completed in the definition,

an idealized optimization state can be achieved.
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3.1 Introduction

In this chapter, we exploit VC-dimension techniques to autoencoders for analyzing

the optimal network architecture as section 1.5 shows. We obtain a general solution of

VC-dimension in equation 3.34 for any Autoencoders. Furthermore, by understand-

ing the statistical principle of VC-dimension in Autoencoder, we have calculated a

general solution of VC-dimension to quantify the optimal network structure of Au-

toencoders. In addition, in the process of calculating the VC-dimension, we also

investigate that all the structural factors in Autoencoders significantly influence the

VC-dimension limitations including neuron sizes, activation functions, etc. Therefore,
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the VC-dimension can be used as an evaluation metric to measure the performance

of Autoencoders. There are many factors to consider when building a neural network

system. Although It is still mainly used to test the same neural network with dif-

ferent datasets as evaluation, using VC-dimension for performance analysis is a more

general and theoretical manner.

3.2 Related Work

In the past decades, many important results have been proposed in the field of VC-

dimension to analyze several specific behaviors in neural networks. In 1989, Abu[39]

indicated that VC-dimension could use as a theoretical measurement to quantify the

learning capacity of neural networks. These years, using VC-dimension for evaluation

is also a topic that has been studied. Bartlett[43] and Pinto[44] select sample com-

plexity as assessed by the VC dimension. And transform the data by increasing the

dimension of the input features based on the sample complexity evaluated by the VC

dimension. Chen [38] provided theoretical insights that SVM is actually designed from

both VC-dimension theory and the principle of structural risk minimization, obtain-

ing better generalization performance with small, non-linearity, high-dimensionality

samples.

3.2.1 Statistics concepts on VC-Dimension

It is well known that two of the most important aspects of machine learning models

are how well the model generalizes to unknown data, and how well the model scales

with problem complexity[35]. For a neural network, the influence of variables may

sometimes exceed the architecture of the entire neural network, which is the number

of hidden layers, the number of neurons, the weights, and the activation function.

Moreover, overfitting is a fundamental issue in supervised machine learning which

prevents us from perfectly generalizing the models to well-fit observed data on training

data, as well as unknown data on the testing set. Overfitting occurred[36] because of

the presence of noise, the limited size of training sets, and complexity of classifiers.

Here we firstly introduce several concepts, assuming that the hypothesis space as

H, Ŷ is the ideal output of the model, and Y is the actual output. The expected

error is EX ,the empirical error is EM . The goal is to make Ŷ approximately equal

to Y , and EM(Ŷ ) = 0. Which means that EM(Y ) ≈ 0. The Hoeffding inequality
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that must be mentioned first[37]:

Definition 1. For a group of independent random variables X1, ..., Xn ∈ R, assuming

for all ai ≤ i ≤ bi, which is

P(Xi ∈ [ai, bi)) = 1 (3.1)

The sum of random variables is:

Sn = X1 + ...+Xn (3.2)

The expected value of Sn is E(Sn) So for all t ≥ 0:

P(|Sn − E(Sn| ≥ t) ≤ 2exp(− 2t2∑n
i=1(bi − ai)2

) (3.3)

For one hypothesis h in H, when the number of samples N is large enough, use the

Hoeffding inequality to infer the overall expected error EX(h) through the empirical

error EM(h) on the sample set:

P[|EX(h)− EM(h)| > ϵ] ≤ 2exp(−2ϵ2N) (3.4)

So that, when N is large enough, EX(h) will be close enough to EM(h). This situ-

ation only suit for only one hypothesis in H. Now let us assumed that there are M

hypothesises in H, which is h1, h2..., hM , E[hi] = |EX(h) − EM(h)|. The Hoeffding

inequality will be:

P[|[Eh1| > ϵ ∪ |Eh2| > ϵ ∪ ... ∪ |EhM | > ϵ]

≤ P[Eh1 > ϵ] + P[Eh2 > ϵ] + ...+ P[EhM > ϵ]

≤ 2Mexp(−2ϵ2N)

(3.5)

It can be rewritten as:

∀ Y ∈ H, P[|EX(Y )− EM(Y )| > ϵ] ≤ 2Mexp(−2ϵ2N) (3.6)

The conclusion here is that the number of samples needs to be large enough under

the assumption that the number M is finite. If the number of hypotheses M in the

hypothesis space is infinite, then the limit 2Mexp(−2ϵ2N) will also become infinite,
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which means that learning is meaningless. So equation (3.6) will be:

∀ Y ∈ H, P[|EX(g)− EM(g)| > ϵ] ≤ 2eff(M)exp(−2ϵ2N) (3.7)

In order to define a finite M , and get rid of dataset(No longer limited to any one

particular dataset), a growth function need to be added[46][47][48],

mH(N) = maxX1,X2,...,XN∈X |H(X1, X2, ..., XN)| (3.8)

The growth function’s superior bound is 2N , So that M changed from limit to 2n, to

reduce the magnitude, we need to introduce break point:

Definition 2. For the growth function mH(N) of the hypothesis space H, N is the

sample size. When N = k,mH(N) < 2N, k is the break point of H.

Thus if the break point is available, growth function mH(N) will be a polynomial,

and the magnitude will reduce, which means the learning is meaningful. Using both a

break point and the growth definition, we could change the equation 3.7 of VC bound

as:

∀ Y ∈ H,P[|EX(Y )− EM(Y )| > ϵ] ≤ 4MH(2N)exp(−1

8
ϵ2N) (3.9)

It shows that, as N gradually increases, the exponential exp(·) decreases faster than
the polynomial MH(2N) increases. According to this, we get the definition of the

VC-dimension on the hypothesis space H[47]:

Definition 3. Suppose the VC-dimension of space H is the size of the largest dataset

that can be broken up by H, that is:

V C(H) = max{N : mH(N) = 2N} (3.10)

So, the V C(H) = k − 1, k is the break point of H.

We know that the VC-dimension did not connect with the learning algorithm, the

specific distribution of the dataset or the objective function. It is only influenced by

the model itself and hypothesis space.

3.2.2 Single-layer Network with VC-dimension

The traditional definition for the VC-dimension is for an indicator function set. If

there are H samples that can be separated by the functions in the function set in all
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possible forms of the H power of 2, then the function set is said to be able to break

up the H samples.; The VC-dimension of the function set is the maximum number of

samples H that it can break up. As for the connection between VC-dimension and

neural networks, I have to mention the article published by Sontag in 1998. First,

he pointed out that the VC-dimension is oriented toward binary classification. The

concept of VC-dimension can be generalized in a number of ways to deal with the

problem of “learning” (approximating from data) real-valued functions. This also

leads to pseudo-dimensions, fat-crushing dimensions, and several other concepts[33].

In his paper, he assumed that a set U, which has been called as the input space, U

is also a subset of Rm. The definition of VC-dimension in Neural Networks has been

provided as:

Definition 4. If F is a vector subspace of RU , then VC-dimension of F =dimF

This is directly applied to the perceptron[33] , which is just a linear discriminator

that exists in Rm,and its VC-dimension is defined as:

V CDPm = m+ 1 (3.11)

When this definition is directly applied to Single Hidden Layer Nets with Fixed Input

Weights, it becomes different.

Here is a defined single hidden layer neural network shown in Figure 1,it has been

defined as an n row,m vectors,input-layer weight A1,...,Am, input-layer bias b1,...,bn,

output-layer weight C0,...,Cm, σ(Aiu+Bi), i = 1, ..., n, so the dimension will be[33]:

V CDFn,σ,A,B ≤ n+ 1 (3.12)

The conditions under which the above equations hold are related to the choice of

activation function. This article exemplifies when tanh is selected as the activation

function, and, (Ai,bi) ̸= ±(Aj,bj) for all i ̸= j and thatAi ̸= 0for all i [33]. Here,

the calculation of the VC-dimension of the neural network can be extended to more

complex neural networks, such as Autoencoders, which can automatically generate

weights and biases[34]. It is still important to note that the most important point

in Sontag’s theory is that in this proposition[33, 34], different constraints need to be

matched with different activation functions before the corresponding VC-dimension

can be calculated.
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Figure 3.1: Single-hidden layer neural net
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Figure 3.2: The Autoencoder model [56]

3.3 VC-dimension in Autoencoders

For Autoencoders, it is more efficient to compute the VC-dimension separately for the

encoder and decoder. When discussing the impact of VC-dimension on Autoencoders,

the selected neural network architecture needs to be mentioned. Therefore, even the

number of neurons, the number of hidden layers, and other variables are all the

same, the difference in activation functions will also lead to the difference in the VC-

dimension and the VC bound. Therefore, reducing all the constant factors, and simply

calculating the different representations of VC bounds caused by different activation

functions has become the first topic to be discussed in this section. We first simplify

the structure of the Autoencoder structure as mentioned in Fig. 2, then will extend

the solution to a general network architecture of Autoencoder at the end.

3.3.1 VC dimension of known Autoencoders

This Autoencoder has its input X, target Y and the neutral network output Ŷ .The

dimension of X, Y, Ŷ will be d0. In Section 3.2.1, we learned that if the superior

limit of the number of hypotheses in the hypothesis space can be calculated, it will

be more possible to calculate the VC-dimension. The VC-dimension is a measure

of the capacity (complexity, expressiveness, richness, or flexibility) of the space of

functions that can be learned by statistical classification algorithms. Therefore, for
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Figure 3.3: Encoding layers[56]

the VC-dimension, the space complexity will affect the value to a certain extent, but

this calculation is based on the same conditions as other variables. However, the main

comparison in this article is in the encoder/decoder part, how will the VC-dimension

change, and to what extent will it be affected when the selected activation function

is different. The two activation function that will be used is the sigmoid function[49]:

g(x) =
1

1 + e−x
(3.13)

And the hyperbolic tangent function:

g(x) =
ex − e−x

ex + e−x
(3.14)

First divide this Autoencoder into two parts, encoder and decoder. Given a training

dataset, the dimensionality of the original data (d) will be progressively reduced to d1,

and d2 through the encoding layers, then will be increased to d3, and d respectively.

For the encoder layer, X11,X21,...,Xn1 is the input data, the dimension will be d0.

Y11,Y21,...,Yn1,is on the first layer which will reduced to d1 dimensions, the bias is b1.

Then Y12,Y22,...,Yn2 has the d2 dimensions, the bias is b2, σ as the activation function.

Theorem 1. For this Autoencoder encoder part, the VC-dimension will be:

V CDfσ,b,X,Yn2
≤ d21 + 2 (3.15)



37

Proof. z1 as the first layer, so :

z1 = σ(WXn1 + b1) (3.16)

z2 as the second layer:

z2 = σ(WY n1 + b2) (3.17)

Make X ′ as the output of the encoding layers, which is:

X ′ = σ(WY n1(σ(WXn1 + b1) + b2) (3.18)

It can be written as:

X ′ = σ2WY n1 ·WXn1 + σ2WY n1 · b1 + σb2 (3.19)

Introduce the definition of space complexity that is particular in this neural network

Definition 5. Space complexity can be shown as:

Space ∼ O(
D∑
l=1

K2
l · C(l−1) · Cl) (3.20)

For the space complexity, the theory is usually used in convolutional neural net-

works, which also means that the space complexity affects the VC-dimension, while

the sample size does not affect the space complexity. For this, the dimension for the

first layer is d1,so O(Yn1) = d21 . Therefore, since we know that the essence of encoding

is to reduce the dimension, the dimension of the final output X ′ is d2, which means

O(X ′) = d2, much lower than O(Yn1). So for the encoding part, the O(X ′) = d21.

Based on (3.19), which is a multivariate quadratic equation, it let the VC-dimension

becomes:

V CDfσ,b,X,X′ ≤ d21 + 2 (3.21)

When can the equation holds, and the VC-dimension reaches the maximum value,

which is d21 + 2?
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Theorem 2.

V CDfσ,bm,Xn,Yn3
= d21 + 2, when b2 = 0 while σ = sigmoid ̸= 0

Proof. When the activation function is σ = sigmoid, the equation (3.19) becomes:

σ2WY n1 ·WXn1 + σ2WY n1 · b1 + σ · b2 = 0 (3.22)

Assume σ ̸= 0:

σ ·WY n1 ·WXn1 + σ ·WY n1 · b1 + b2 = 0 (3.23)

Since WY n1 = (WXn1 + b1), so

σ(WXn1 + b1) ·WXn1 + σ(WXn1 + b1) · b1 + b2 = 0 (3.24)

Take b2 into another side:

W 2
Xn1 + 2 ·WXn1b1 + b21 = −b2 · (1 + e−x) (3.25)

So that it can be seen like:

(WXn1 + b1)
2 = −b2 · (1 + e−x) (3.26)

The left side of the equation becomes a quadratic polynomial, which means that the

value of the left side of the equation is ≥ 0. On the right side of the equation, there

are (−b2) and the sigmoid function. The value of the sigmoid function is (0,1). It

is assumed that the sigmoid function is not zero, so the only way to equal is that

b2 = 0.

What if the σ changed? The tanh function also is a popular option as an activation

function. It cannot be ignored that the value of tanh function is [−1, 1] . It is worth

noting that this is an important difference from sigmoid function so:

Theorem 3. When (WXi1, bi1) ̸= ±(WXj1, bj1) for all i ̸= j , and bj2 ̸= 0 for all j

while σ = tanh ̸= 0 in the encoder part, the VC-dimension will be:

V CDfσ,bm,Xn,Yn3
= d2 + 2 (3.27)

The proof process can be found in Sontag[33]. It can be seen from these two
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Figure 3.4: Decoding layers

different activation functions, the constraints on reaching the upper limit of the VC-

dimension are different.

After the derivation of the encoder, for the VC-dimesion of the decoder, the factor

that does not need to be considered is the activation function. In the usual sense, the

decoder uses the inverse function of the encoder as the activation function, which is σ′.

For decoder, X ′
1,X

′
2,...,Xn is the input data,the dimension will be d2. Y13,Y23,...,Yn3,is

the the first decoding layer which will increase to d3 = d1 dimensions, the bias is b3.

Then Y14,Y24,...,Yn4 has the d0 dimensions, the bias is b4. The Ŷ , which is the output

for the decoding part, will be:

Ŷ = σ′(WYn4(σ
′(WX′ + b3) + b4) (3.28)

The space complexity will change. Because the structure of decoding is different

from encoding, 10 neurons in the first layer of decoding will be added to the space

complexity, which is:

O′(Ŷ ) = d21 + d2 (3.29)

Theorem 4. So the VC-dimension of decoding will be:

V CDfσ′,bm,X′,Ŷ
≤ d21 + d2 + 2 (3.30)
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When σ = sigmoid, through Theorem 2,

V CDfσ,bm,X′,Ŷ
= d21 + d2, when b4 = 0 while σ = sigmoid ̸= 0 (3.31)

While the activation function is tanh, when (WY i2, bi3) ̸= ±(WY j2, bj3)for all i ̸= j ,

and bj4 ̸= 0 for all j while σ = tahh ̸= 0, the VC-dimension will be:

V CDfσ′,bm,X′,Ŷ
≤ d21 + d2 (3.32)

So, for this whole Autoender, the VC-dimension will be:

V CDfσ′,bm,X′,Ŷ
≤ d21 + d2 + 2 (3.33)

3.3.2 VC dimension of Autoencoders with unfixed structure

When the number of layers and the number of neurons in the hidden layer are un-

known, how to calculate the VC-dimension becomes to the extended talks. We use an

unfixed Autoencoder structure where N1, N2, ..., Nn are the dimension of each hidden

layer, M is the number of encoding layer, X denotes input data, Y denotes out-

put data, σ is the activation function, and b1, b2, ..., b2M are the bias for each layer.

Through Theorem 4, the VC-dimension will be:

V CDfσ′,bm,X,Y
≤ NM

1 +NM−1
2 + ...+N1

n +M (3.34)

When the activation function is sigmoid function, it will have a limitation, which is:

bM , b2M ̸= 0 while σ ̸= 0. If σ changed as tanh, the limitation is: (WY iM , bi(M+1)) ̸=
±(WY jM , bj(M+1)) for all i ̸= j, and bj(2M) ̸= 0 for all j.

3.4 Conclusion

In this part, the VC-dimension on Autoencoders has been provided. In the case

of choosing different activation functions, there will be other constraints. But in

essence, for the Autoencoder, selecting the appropriate number of neurons for the

hidden layer becomes the best way to optimize itself. When neuron number reaches

a peak, the learning ability of the neural network declines, so selecting a suitable

activation function and the number of neurons has become a way to optimize the
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VC-dimension. Therefore, these provided results could be used to solve the optimiza-

tion problem. VC-dimension still has a massive impact on neural network systems.

Through calculation, we know that when the space complexity of a nervous system

is determined, the analysis of VC-dimension is obvious. However, this paper doesn’t

cover any VC-dimension results for deep networks. It is worth further investigating

the VC-dimension for the deep network such as deep convolutional neural networks.
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VC-dimension in VGG Network
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4.1 Overview

In the preceding chapter, we delved into the impact of various activation functions

on the optimal performance of the Autoencoder. This chapter extends our inquiry

by exploring the influence of the number of hidden layers on the VC-dimension of

deep learning models. As section 1.5 shown, specifically, this chapter investigates the

VC dimension of two comparable models, VGG16 and VGG19, and examines how

the VC dimension is affected by the number of hidden layers, while holding constant
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other variables such as activation function and input data. It also provided a solution

for how to compute VC dimension in a 2D convolution layer. Our objective is to

demonstrate that as the number of hidden layers increases, the VC dimension can

support the model more efficiently from a mathematical perspective. To achieve this,

we perform mathematical calculations to derive the VC dimension of each model and

validate our results through experimental verification. The findings of this chapter

contribute to a better understanding of the relationship between the VC dimension

and the number of hidden layers in deep learning models.

4.2 Related Work

The VGG network, a deep convolutional neural network architecture, was first intro-

duced by the renowned research group, VGG at the University of Oxford, in the year

2014. Its exceptional performance in the Localization Task, where the task was to

accurately locate objects in an image, and the second-place ranking in the Classifi-

cation task, where the objective was to classify objects in images, at the ImageNet

competition that year, established it as a significant milestone in the field of computer

vision.

For the convenience of calculation, in this chapter it is recorded as Min×Nin×Rin

, and the default activation function all is ReLu function. After computing the output

of the entire network, the space complexity of the network is given. Finally, different

VC dimensions of different networks are given. The size formula for the output image

of the convolutional layer is as follows, the Wfilter and Hfilter is the width and height

of the filter respectively. P is the number of boundary pixel layers filled at the edge

of the image. S is for Stride.

Wout =
Win −Wfilter + 2P

S
+ 1 (4.1)

Hout =
Hin −Hfilter + 2P

S
+ 1 (4.2)

For maxpool layers, the size calculation of the output image will use two different

formula, which is:

Wout =
Win −Wfilter

S
+ 1 (4.3)

Hout =
Hin −Hfilter

S
+ 1 (4.4)
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ConvNet Configuration
A A-LRN B C D E
11 weight
layers

11 weight
layers

13 weight
layers

16 weight
layers

16 weight
layers

19 weight
layers

input(224× 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 4.1: The VGG Network

In addition, the sliding window size of the convolution kernel is unified as 3× 3 , and

the step size is unified as 1.

In this section, we will discuss the space complexity function of the convolutional

layer, which is distinct from the space complexity function of the autoencoder dis-

cussed in the previous chapter. This is due to the fact that the VGG16 network

employs a greater number of convolutional layers for computation, as opposed to

the simpler Autoencoder architecture. The space complexity function refers to the

amount of space required to execute a particular algorithm, and in the case of the
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VGG16 network, it is related to the number of parameters used in the convolutional

layers. The more parameters used in the convolutional layers, the greater the space

complexity of the VGG16 network. This distinction is important to consider when

evaluating the computational efficiency of the VGG16 network and its suitability for

different applications. K as the size of the convolution kernel, C is the number of

channels, and D is the number of layers. So the space complexity also needs to be

calculated again, which is shown as:

Definition 6. Space complexity can be calculated as:

Space ∼ O(
D∑
l=1

K2
l · C(l−1) · Cl +

D∑
l=1

M2 · Cl) (4.5)

4.3 VC-dimension of VGG16

For the purpose of calculating and analyzing the VGG16 network, it has been par-

titioned into six distinct blocks. When inputting image data, the first and second

hidden layers, namely conv3-64, along with the first layer maxpool, constitute block

1. Block 2 comprises of two conv3-128 layers and the second maxpool layer. Simi-

larly, block 3 is composed of three conv-254 layers and the third maxpool layer. The

fourth block consists of three conv3-512 layers and the fourth maxpool layer. Block

5 includes the next three conv3-512 layers and the fifth maxpool layer. Finally, block

6 encompasses the last three fully connected layers and the output layer, which will

be computed together for further analysis.

4.3.1 Block 1

input(224× 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

Table 4.2: Block 1 in VGG16

Input layer: the input image will be Min ×Nin ×Rin.

Conv3-64, padding is 1, so:

Wout =
Win −Wfilter + 2P

S
+ 1 =

Min − 3 + 2

1
+ 1 = Min (4.6)
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Hout =
Hin −Hfilter + 2P

S
+ 1 =

Nin − 3 + 2

1
+ 1 = Nin (4.7)

The known depth is 64, so the feature dimension of the output feature map is Min ×
Nin × 64.

Again Conv3-64, padding is 1, so:

Wout =
Win −Wfilter + 2P

S
+ 1 =

Min − 3 + 2

1
+ 1 = Min (4.8)

Hout =
Hin −Hfilter + 2P

S
+ 1 =

Nin − 3 + 2

1
+ 1 = Nin (4.9)

The feature dimension of the output feature map is still Min ×Nin × 64.

Turn to the first maxpool layer, the sliding window size is 2× 2, and the step size is

also 2. This pooling layer sliding window dimension 2× 2× 64. So:

Wout =
Win −Wfilter

S
+ 1 =

Min − 2

2
+ 1 =

Min

2
(4.10)

Hout =
Hin −Hfilter

S
+ 1 ==

Nin − 2

2
+ 1 =

Nin

2
(4.11)

The feature dimension of the output feature map in Block 1 is Min

2
× Nin

2
× 64.

For the space complexity calculation of Block 1, which is 144M2
in + 53824, equation

is as below:

Space ∼ O(
D∑
l=1

K2
l · C(l−1) · Cl +

D∑
l=1

M2 · Cl)

= (32 ·Rin · 64 + 32 · 64 · 64 + 22 · 64 · 64)

+(M2
in · 64 +M2

in · 64 + (
Min

2
)2 · 64)

(4.12)

4.3.2 Block 2

input(224× 224 RGB image)
conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128

conv3-128 conv3-128 conv3-128 conv3-128
maxpool

Table 4.3: Block 2 in VGG16
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First layer is Conv3-128, the padding is 1, so:

Wout =
Win −Wfilter + 2P

S
+ 1 =

Min

2
− 3 + 2

1
+ 1 =

Min

2
(4.13)

Hout =
Hin −Hfilter + 2P

S
+ 1 =

Nin

2
− 3 + 2

1
+ 1 =

Nin

2
(4.14)

So the feature dimension of the output feature map is Min

2
× Nin

2
× 128.

Next layer is still Conv3-128, same as the first layer in Block 2, so the feature di-

mension of the output feature map still Min

2
× Nin

2
× 128. For the second maxpooling

layer,

Wout =
Win −Wfilter

S
+ 1 =

Min

2
− 2

2
+ 1 =

Min

4
(4.15)

Hout =
Hin −Hfilter

S
+ 1 ==

Nin

2
− 2

2
+ 1 =

Nin

4
(4.16)

The feature dimension of the output feature map in Block 2 is Min

4
× Nin

4
× 128.

For the space complexity calculation of Block 2, which is 72M2
in + 286720, equation

is as below:

Space ∼ O(
D∑
l=1

K2
l · C(l−1) · Cl +

D∑
l=1

M2 · Cl)

= (32 · 64 · 128 + 32 · 128 · 128 + 22 · 128 · 128)

+((
Min

2
)2 · 128 + (

Min

2
)2 · 128 + (

Min

4
)2 · 128)

(4.17)

4.3.3 Block 3

input(224× 224 RGB image)
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool

Table 4.4: Block 3 in VGG16

Block 3 has 3 Conv3-256 layer and 1 maxpool layer, so the feature dimension of

the output feature map for the third Conv3-256 will be Min

4
× Nin

4
×256. For the third
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maxpool layer, it will be:

Wout =
Win −Wfilter

S
+ 1 =

Min

4
− 2

2
+ 1 =

Min

8
(4.18)

Hout =
Hin −Hfilter

S
+ 1 ==

Nin

4
− 2

2
+ 1 =

Nin

8
(4.19)

The feature dimension of the output feature map in Block 3 is Min

8
× Nin

8
× 256.

For the space complexity calculation of Block 3, which is 52M2
in + 1736704, equation

is as below:

Space ∼ O(
D∑
l=1

K2
l · C(l−1) · Cl +

D∑
l=1

M2 · Cl)

= (32 · 128 · 256 + 32 · 256 · 256 + 32 · 256 · 256 + 22 · 256 · 256)

+((
Min

4
)2 · 256 + (

Min

4
)2 · 256 + (

Min

4
)2 · 256 + (

Min

8
)2 · 256)

(4.20)

4.3.4 Block 4

input(224× 224 RGB image)
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool

Table 4.5: Block 4 in VGG16

Block 4 has 3 Conv3-512 layer and 1 maxpool layer, so the feature dimension of

the output feature map for the third Conv3-512 will be Min

8
× Nin

8
× 512. For the

fourth maxpool layer, it will be:

Wout =
Win −Wfilter

S
+ 1 =

Min

8
− 2

2
+ 1 =

Min

16
(4.21)

Hout =
Hin −Hfilter

S
+ 1 ==

Nin

8
− 2

2
+ 1 =

Nin

16
(4.22)

The feature dimension of the output feature map in Block 4 is Min

16
× Nin

16
× 512.

For the space complexity calculation of Block 4, which is 26M2
in + 6946816, equation
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is as below:

Space ∼ O(
D∑
l=1

K2
l · C(l−1) · Cl +

D∑
l=1

M2 · Cl)

= (32 · 256 · 512 + 32 · 512 · 512 + 32 · 512 · 512 + 22 · 512 · 512)

+((
Min

8
)2 · 512 + (

Min

8
)2 · 512 + (

Min

8
)2 · 512 + (

Min

16
)2 · 512)

(4.23)

4.3.5 Block 5

input(224× 224 RGB image)
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool

Table 4.6: Block 5 in VGG16

Block 5 has the same construct as Block 4, For the fifth maxpool layer, it will be:

Wout =
Win −Wfilter

S
+ 1 =

Min

16
− 2

2
+ 1 =

Min

32
(4.24)

Hout =
Hin −Hfilter

S
+ 1 ==

Nin

16
− 2

2
+ 1 =

Nin

32
(4.25)

So the feature dimension of the output feature map in Block 5 is Min

32
× Nin

32
× 512.

For the space complexity calculation of Block 5, which is 13
2
M2

in + 8126464, equation

is as below:

Space ∼ O(
D∑
l=1

K2
l · C(l−1) · Cl +

D∑
l=1

M2 · Cl)

= (32 · 512 · 512 + 32 · 512 · 512 + 32 · 512 · 512 + 22 · 512 · 512)

+((
Min

16
)2 · 512 + (

Min

16
)2 · 512 + (

Min

16
)2 · 512 + (

Min

32
)2 · 512)

(4.26)

4.3.6 Block 6

The first layer of Block 6 is a full connected layer, the input image dimension is
Min

32
× Nin

32
× 512, changing to 1× 25088. The output dimension will be 1× 4096. For
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input(224× 224 RGB image)
FC-4096
FC-4096
FC-1000
soft-max

Table 4.7: Block 6 in VGG16

second full conntected layer, the output dimension will be 1× 4096. For the final full

connected layer the dimension changed to 1×1000, which also is the dimenson of final

output. For the space complexity calculation of Block 6, which is 4M2
in + 123638760,

equation is as below:

Space ∼ O(
D∑
l=1

K2
l · C(l−1) · Cl +

D∑
l=1

M2 · Cl)

= (12 · 25088 · 4096 + 12 · 4096 · 4096 + 12 · 4096 · 1000+

+((
Min

32
)2 · 4096 + 1 · 4096 + 1 · 1000))

(4.27)

So for the entire VGG 16 network, the space complexity can be approximately equal

to

Space ∼ OV GG16 ≈ 304M2
in +

1

2
M2

in + 108 (4.28)

Because the most important step in calculating the vc dimension is to calculate the

space complexity of the model, through the above binary equation, it also need con-

sider its layer numbers,finally shows that:

Definition 7.

V CDV GG16 = 304M2
in +

1

2
M2

in + 108 + 2 + 16

4.4 VC dimension of VGG 19

In fact, VGG 16 and VGG 19 are roughly the same, and it will be easier to calculate

the space complexity of VGG 19 under the condition of controlling the input data.

4.4.1 Differences between VGG 16 and VGG 19

On the basis of VGG16, VGG 19 adds a convolution layer before the maxpooling

layer of Block 3, 4, and 5, which makes three more layers in the final calculation of
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the overall space complexity. So:

Space ∼ Odifference = (
D∑
l=1

K2
l · C(l−1) · Cl +

D∑
l=1

M2 · Cl)

= (32 · 256 · 256 + 32 · 512 · 512 + 32 · 512 · 512+

+ (
Min

4
)2 · 256 + (

Min

8
)2 · 512 + (

Min

16
)2 · 512))

= 26M2
in + 5308416

(4.29)

Which means, for the entire VGG 19 network, the space complexity can be approxi-

mately equal to

Space ∼ OV GG19 ≈ 330M2
in +

1

2
M2

in + 108 (4.30)

So the VC-dimension will be:

Definition 8.

V CDV GG19 = 330M2
in +

1

2
M2

in + 108 + 2 + 19

Upon thorough analysis, it can be concluded that under identical conditions such

as input data and activation function, VGG19 surpasses VGG16 in terms of learning

capacity owing to the incorporation of three additional hidden layers. However, it

is noteworthy that merely increasing the number of hidden layers may not be an

optimal approach to efficiently harnessing the potential of deep learning within the

VGG network. Based on the calculation of the VC dimension, it can be inferred

that the addition of an extra fully connected layer or more blocks might prove more

effective in this regard, as compared to adding one convolutional layer per block.

4.5 Conclusion

In conclusion, the VGG network has been a well-established neural network in the

deep learning field, winning several ImageNet competitions and being widely used

in various applications. Its unique network structure, with a stack of convolutional

layers followed by a few fully connected layers, has shown great potential in image

classification and object detection tasks.

Through the analysis of the VC dimension, it has been demonstrated that when

the activation function, input data, and other variables are the same, VGG19 has

a larger limit of learning ability than VGG16 due to the addition of three hidden
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layers. This result supports the claim that the VGG19 network is more efficient in

processing high-density data than VGG16, making it a better choice for complex

tasks that require deeper and more complex neural networks.

Furthermore, this section aims to optimize the VGG neural network at the theo-

retical level. The mathematical reasoning provided in this study could help in devel-

oping more effective and efficient neural networks, particularly those that are capa-

ble of handling high-density data. For instance, the proposed optimization method

through adding more fully connected layers or blocks could be applied to improve the

performance of the VGG network or other deep learning models.

It is worth noting that the VCD approach used in this study is a powerful tool for

analyzing and optimizing deep learning models. By analyzing the VC dimension of a

neural network, researchers can gain insights into its learning ability and generaliza-

tion performance. This information can be used to guide the design and optimization

of neural networks for better performance and efficiency.

Overall, this study provides valuable insights into the VGG network and its opti-

mization through the VCD approach. The findings demonstrate that the addition of

hidden layers can significantly improve the learning ability of deep neural networks,

but it is not necessarily the most efficient way to optimize them. Instead, adding

more fully connected layers or blocks may be a better choice for achieving better

performance and efficiency.

In the future, researchers can apply the VCD approach to explore and optimize

other deep learning models, which may lead to new breakthroughs in various appli-

cations. With the rapid development of deep learning and artificial intelligence, the

optimization of neural networks is becoming increasingly important, and the VCD

approach offers a promising direction for achieving better performance and efficiency

in deep learning models.
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Chapter 5

Conclusion & Future Work

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Overview

This thesis has presented various approaches to address the problem of VC dimension

in different neural network. Although the results have shown good overall accuracy,

there is still room for improvement in order to achieve optimal performance.

The contributions of this thesis can be valuable in the context of future work

when researchers want to solve similar problems related to VCD on different neural

network. By applying the methods in this, researchers and practitioners can improve

the efficiency and accuracy of deep learning algorithms in a wide range.

Moreover, the findings of this thesis provide insights of deep learning, specifically in

terms of VCD in the design and optimization of a new neural network. By deepening

understanding of the mathematical properties of these models, we can further advance

the field of deep learning and unlock new opportunities for innovation.

In summary, the approaches proposed in this thesis have demonstrated their po-

tential to enhance the accuracy and efficiency of neural network by addressing the

issue of VC dimension. These contributions can be used as a basis tool for future
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research, and pave the way for the development of more effective deep learning algo-

rithms.

5.2 Main Contributions

The main focus of this thesis was to provide theoretical support for the utilization

of VC dimension (VCD) in enhancing neural networks. Through the mathematical

calculation method, we were able to identify similar optimization techniques for other

neural networks and provide distinct recommendations for improvement. The aim of

this research was to not only enhance the effectiveness of neural networks through

VCD, but also to provide a framework for future studies on optimizing neural net-

works. There are three key contributions of this thesis:

• First A statistical measure known as VCD was introduced into a single neural

network, and its feasibility was demonstrated in this research. This not only

rationalizes and explains the use of VCD in neural networks, but also provides

ideas and methods for applying it to other types of neural networks.

• Second The feasibility of applying VCD for optimization in Autoencoder has

been demonstrated in this study. Building on the previous application of VCD

for a single neural network, this approach holds significant potential for enhanc-

ing the processing of Autoencoder, a neural network that serves both encoding

and decoding functions.

• Third Through the application of VCD to the VGG neural network, we in-

vestigated the potential for achieving more accurate results through structural

modifications. Our analysis also revealed that VGG19, under the theoretical

framework of VCD, is more efficient in processing high-density data compared

to VGG16. These findings provide theoretical support for improving the per-

formance of the VGG network and shed light on the potential benefits of incor-

porating VCD into the optimization of other neural networks.

5.3 Conclusion

In this thesis, the concept of VC dimension was introduced and its relevance to neural

network optimization was explored. VC dimension is a statistical term that involves
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various mathematical calculations, and it was important to identify the most useful

ones for neural network optimization. Uncertainties in neural networks such as the

number of neurons, layers, and selection of activation functions needed to be taken

into account during this process.

Two examples of neural networks were analyzed in the thesis, namely autoencoders

and the VGG series networks. For autoencoders, the structure was broken down

into encoder and decoder, making it easier to calculate the VC dimension. It was

concluded that a more effective activation function can optimize the results of the

autoencoder at the mathematical level.

For VGG networks, it was hypothesized that changing the number of neural net-

work layers would be a more effective way to improve efficiency. Through mathemat-

ical reasoning and calculations based on VC dimension, it was shown that VGG19

was more efficient in processing high-density data than VGG16.

The thesis also emphasized the importance of considering uncertainties and com-

plexities in neural networks during the optimization process. It is essential to take

into account factors such as the number of neurons and layers, as well as the selection

of activation functions, to achieve more accurate results.

In conclusion, this thesis provides a comprehensive exploration of the application

of VC dimension to neural network optimization. It highlights the potential of this

statistical method in improving the performance and efficiency of neural networks,

and provides useful insights and recommendations for future research in this field.

5.4 Future Work

The future of neural network optimization through the lens of Vapnik-Chervonenkis

Dimension (VCD) is promising. The concept of VCD has been introduced and its

feasibility has been demonstrated in both single neural networks and autoencoders.

Furthermore, it has been shown that VCD can also be used to optimize the widely-

accepted VGG network, specifically through changes in the number of layers.

Moving forward, further research and exploration into the application of VCD to

other neural networks can lead to further optimization and improvements in their

performance. By considering uncertainties in neural network design, such as the

number of neurons and selection of activation functions, more effective optimization

strategies can be developed.

Additionally, the utilization of VCD in neural network optimization can also pro-
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vide theoretical support for the practical design and development of neural networks.

It can aid to identify more effective network structures and create more accurate and

efficient models for different goals.

Overall, the future of neural network optimization through VCD is promising, and

continued research and development in this area can lead to significant improvements

in the performance and practical application of neural networks.
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