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Current 5G networks, primarily built on the cellular massive MIMO physical
layer technology, achieved significant improvement in spectral efficiency as com-
pared to previous generations. Nevertheless, there is always an increasing demand
for higher data rates, and more reliable and uniform service. After successful mas-
sive MIMO deployments, it has become a natural question, "what will the physical
layer in beyond 5G and 6G networks be like?"

Cell-free massive MIMO has emerged as a promising physical layer technology
for supporting future deployments in beyond 5G and 6G networks. The main con-
cept is to go beyond the cellular paradigm by employing an ultra dense deployment
of small-sized multi-antenna access points (APs) which cooperate to serve users in
the coverage area, eliminating the notion of boundaries between cells. The cell-free
architecture has shown the capability of providing uniform service within the cover-
age area, while cellular networks suffer from poor performance at cell edges. It also
has better ability to manage interference due to cooperation between APs which is
not the case in cellular networks with no cooperation.

The most practical form of this paradigm is user-centric cell-free massive MIMO.
Instead of allowing all the APs to serve all the users in the network, each user is
served by a subset of the APs which ensures that network operation is scalable as the
number of users grows. The main objective of this thesis is to provide a structured
approach to design the cluster of APs that serve each user which is known as the
user-centric clustering problem. On the pursuit to solve the clustering problem, there
is another problem which is tightly connected to it, the pilot assignment problem. Both
problems must be solved together to ensure satisfactory network-wide performance.

The thesis provides a mathematical formulation for each of the user-centric clus-
tering and the pilot assignment problems as stochastic non-linear binary integer pro-
grams which are solved using sample average approximation and the genetic algorithm.
The pilot assignment problem is formulated such that it takes into account the user-
centric clusters while choosing the pilot assignments which makes the optimization
more accurate and efficient. Numerical experiments show that the resulting solu-
tions outperform heuristic baseline algorithms from the literature, leading to reason-
able spectral efficiency gains. Furthermore, we propose an approximate approach to
derive closed form expressions of the uplink and downlink SINR which eliminates
the need for sampling.

In future work, more effort shall be directed towards finding more practical ap-
proaches to realize the optimized solutions of both the user-centric clustering and
pilot assignment problems with reasonable time-complexity. For instance, one can-
didate approach is to use machine learning and AI methods to learn structured ap-
proaches to solve both problems, using the optimized solutions as a reference for
learning.
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Chapter 1

Introduction

This chapter provides a general introduction to the cell-free networking paradigm.
Section 1.1 introduces the fundamentals of cell-free networks and discusses their
benefits over cellular networks. Section 1.2 describes the most practical form of
cell-free networks which is user-centric cell-free massive multiple-input-multiple-output
(MIMO). Our main contributions in this thesis are also highlighted. The purpose of
this chapter is to provide a basic background on cell-free networks. Exact system
model and mathematical formulations are presented in subsequent chapters.

1.1 Cell-Free Networks

A cell-free network consists of L geographically distributed access points (APs) thro-
ughout the coverage area, each equipped with N antennas such that the total num-
ber of antennas is M = LN. On the contrary to the cellular paradigm, there are no
boundaries between the APs and they jointly cooperate to serve K single-antenna
users residing in the coverage area. The APs are connected to a central processing
unit (CPU) via high-speed fronthaul links, which is responsible for managing AP

FIGURE 1.1: Illustration of a cell-free network
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cooperation. The CPU is connected to the core network using backhaul links which
enables communication with the internet or other information sources. The cell-free
network is illustrated in figure 1.1. Note that the CPU is a logical entity, there could
be more than one physical CPU connected using fronthaul links which act as the log-
ical CPU. As it has been established in [1], there are three main benefits of cell-free
networks over cellular networks:

1. Providing higher signal-to-noise ratio (SNR) with smaller spatial variations,

2. Better ability to mitigate interference,

3. Transmitting from distributed APs can boost the SNR.

The first benefit comes from the architecture of the network. In a cellular network,
a user equipment (UE) located at cell edges suffers from poor performance due to
inter-cell interference. While in a cell free network, a UE located anywhere in the
network is likely to have multiple APs in close proximity. This allows UEs to receive
a reliable and consistent signal, regardless of their location within the network. The
second benefit comes from the coordination among APs, to avoid significantly inter-
fering with each other, which is not the case in a traditional cellular network with no
cooperation.

FIGURE 1.2: A UE in the vicinity of two APs

The third benefit is best illustrated with an example. Suppose there is a UE in the
vicinity of two APs as illustrated in figure 1.2. The total power budget of each AP
is p and the noise power is σ2. The channel response between AP 1 and the UE is
h1 =

√
α and the channel response between AP 2 and the UE is h2 =

√
α/2. Hence,

the channel between AP 1 and the UE is better than the channel between AP 2 and
the UE. It might seem that the best transmit strategy is to allocate all the power of
AP 1 to the UE which results in the following SNR

pα

σ2 (1.1)

However, if we let both APs transmit with half of their power budget, the SNR is

p
2σ2 (h1 + h2)

2 ≈ 1.46 · pα

σ2 (1.2)

The resulting is SNR is higher for the same total power budget due to coherent combina-
tion between signals transmitted from different APs. For a more detailed discussion
about the benefits of cell-free networks over cellular networks, the reader is encour-
aged to refer to [1].

While cell-free networks provide numerous benefits over traditional cellular net-
works, it is crucial to note that they may not entirely replace cellular networks in all
scenarios. In some cases, the signaling overhead associated with the coordination
among APs may outweigh the gains in performance, making cellular networks a
more viable option.
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Therefore, it is expected that both cell-free and cellular networks will coexist,
each serving specific use cases based on their unique capabilities and requirements.
Cellular networks may be more suitable for applications that require highly reliable
and robust network coverage, such as emergency services, while cell-free networks
may be better suited for delivering high-bandwidth applications in dense urban
areas. Ultimately, the choice between cell-free and cellular networks will depend
on the specific needs of each use case, with both networks offering distinct advan-
tages in different scenarios. In section 1.2, we describe user-centric cell-free massive
MIMO networks.

1.2 User-Centric Cell-Free Massive MIMO

In cellular networks, the coverage area is divided into cells and each cell has a base
station that serves the UEs within the cell. The keyword massive MIMO refers to
an operating regime where the total number of base station antennas is considerably
larger as compared to the number of served UEs. Massive MIMO results in high
spectral efficiency gains which led to it becoming the main physical layer technol-
ogy in the 5G standard. Similarly, the number of APs, in a cell-free massive MIMO
network, is considerably larger as compared to the number of UEs L ≫ K implying
that M≫ K.

In the first form of cell-free published in [2], it is assumed that all APs in the
network cooperate to serve all the UEs. However, it has been shown that such
an approach is both unscalable and impractical in large networks [1]. By limiting
the APs which serve each UE, to only the APs that can reach the UE with a non-
negligible amount of power, we have the user-centric cell-free network [3]–[6]. Each
UE is served by a cluster (subset) of APs. The clusters are selected based on the UE
needs and they are allowed to overlap as illustrated in figure 1.3. The fact that clusters

FIGURE 1.3: Illustration of a user-centric cell-free network where each
UE is served by a cluster of APs.
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can overlap showcases how the network is user-centric. The coverage area cannot
be divided into disjoint sets of APs which serve disjoint subsets of UEs.

Choosing the cluster of APs that serves each UE is referred to as the user-centric
clustering problem. The problem is formalized through the Dynamic Cooperation Clus-
tering (DCC) framework [7]. Each UE k is served by a subset of the APs with in-
dices in the set Mk ⊂ {1, · · · , L} for k = 1, · · · , K. It is dynamic because the sets
are adapted according to time-variant characteristics such as UE locations, channel
state, interference situation and service requirements. For notational convenience, a
set of diagonal matrices are defined Dkl , for k = 1, · · · , K and l = 1, · · · , L which
determine whether AP l serves UE k.

Dkl =

{
IN if AP l serves UE k

0N×N otherwise
(1.3)

where IN is the N-by-N identity matrix and 0N×N is the N-by-N zero matrix.
On the pursuit of solving the user-centric clustering problem, there is another

problem that is closely related - the pilot assignment problem. Channel estimation
is a vital aspect of network operation. It involves the transmission of known pilot
sequences by each UE to estimate the channel response. APs then use the received
pilot sequences, along with a statistical inference model, to estimate the channel. Ide-
ally, the pilot sequence transmitted by each UE is orthogonal to the pilot sequences
transmitted by all other UEs to avoid pilot contamination. However, this is practically
infeasible due to the limited time assigned to pilot transmission. Hence, the num-
ber of orthogonal pilots is much smaller than the number of users in any practical
network. Therefore, sharing pilot sequences is necessary.

Finding a solution to the pilot assignment problem constitutes choosing the pilot
sequence for each UE so that minimal channel estimation error is achieved. The con-
nection between the user-centric clustering and pilot assignment is best illustrated
by an example. Suppose that UE 1 and UE 2 are served by overlapping subsets of
APs, and UE 2 and UE 3 are served by non-overlapping subsets of APs. If the same
pilot sequence is assigned to UE 1 and UE 2, there will be significant pilot contam-
ination because the two UEs are partially served by the same APs. On the other
hand, if the same pilot sequence is assigned to UE 2 and UE 3, pilot contamina-
tion will be less significant because there is no shared APs between the two UEs.
Therefore, to ensure optimal network performance, both the pilot-assignment and
user-centric clustering problems must be addressed together. This is because these
two challenges are closely interconnected and solving them in isolation may lead to
suboptimal solutions.

The majority of research on the user-centric clustering problem [8]–[13] and the
pilot assignment problem [14]–[21] has been centered on designing heuristic algo-
rithms. However, there is a notable lack of optimal benchmarks in these studies. As
a result, our focus is on formulating each problem as an optimization problem and
developing optimized benchmark solutions that can be used to evaluate heuristic
algorithms. By establishing these benchmarks, we can better understand the effec-
tiveness of existing algorithms and develop new approaches that lead to significant
performance gains. Moreover, the optimized solutions can be used as a reference for
machine learning algorithms.

Our contributions in this thesis are summarized as follows.

• Formulation of the user-centric clustering problem as a stochastic non-linear
binary integer program and deriving new signal-to-interference-and-noise ra-
tio (SINR) expressions which are more suited to the problem.
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• Formulation of the pilot assignment problem as a stochastic non-linear binary
integer program which takes into account the user-centric clusters in evaluat-
ing the desirability of pilot assignments.

• Providing nearly optimal benchmarks for both problems through employing
sample average approximation and using the genetic algorithm to solve the
resulting optimization models.

• Proposing a heuristic approach to derive closed form expressions of the stochas-
tic optimization models which eliminates the need for sampling.

The remainder of the thesis is structured as follows: Chapter 2 introduces the
time-division-duplexing (TDD) protocol, block fading model, and develops a system
model for the uplink and downlink. It also describes the correlated Rayleigh fading
channel model that captures spatial channel correlation characteristics. Chapter 3
discusses the centralized network operation, which includes the design of receive
combining vectors and power control in the uplink, as well as the design of trans-
mit precoding vectors and power allocation in the downlink. Chapter 4 defines per
UE and network-wide performance metrics and formulates the user-centric clus-
tering problem as a stochastic non-linear binary integer program. Additionally, it
proposes a heuristic approach to compute closed forms of the developed stochastic
optimization problem model. Chapter 5 provides a formal analysis that highlights
the connection between the user-centric clustering problem and the pilot assignment
problem. It also formulates the pilot assignment optimization problem as a stochas-
tic non-linear binary integer program. Chapter 6 presents baseline heuristic meth-
ods for both problems from the literature and explains the procedure for obtaining
optimized solutions using the genetic algorithm. Chapter 7 discusses numerical ex-
periments to evaluate the proposed methodology. Finally, Chapter 8 concludes the
thesis and includes proposals for future work.
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Chapter 2

Background and System Model

In this chapter, we present the essential background on the system model of user-
centric cell-free massive MIMO networks. Section 2.1 presents the block fading
model of the wireless channel, including a description of the time-division-duplexing
(TDD) protocol. Meanwhile, Section 2.2 describes the correlated Rayleigh fading
channel model, which comprehensively captures the large-scale and small-scale fad-
ing characteristics, as well as the spatial correlation aspect.

2.1 System Model

2.1.1 Block Fading

The wireless communication channel is commonly viewed as a linear time-variant
system that receives the transmitted signal, filters it, and outputs the received signal.
The linearity of Maxwell’s equations makes it a linear system, and its time-variant
nature arises from the movements of the transmitter, receiver, and objects within the
wireless channel.

Time-invariant systems are inconvenient for analysis. Instead, we focus on a suf-
ficiently short time interval wherein the channel remains relatively constant, thus
enabling the usage of a linear time-invariant (LTI) system model. The period in
which the channel remains constant is known as the channel coherence time τc, and its
length depends on the velocity of movement. Within this time frame, the channel
can be characterized using a finite impulse response filter (FIR), where each tap rep-
resents a completely resolvable propagation path with distinct time delay and path
loss. The filter exhibits frequency selectivity, meaning its response changes with vari-
ations in frequency. However, if we concentrate on a narrow frequency range, the
frequency response of the channel can be considered constant. This frequency range
is referred to as the channel coherence bandwidth Bc.

A channel coherence block is a block of time and frequency that spans the coherence
time and bandwidth, respectively. Within this block, the channel response between
a transmit and receive antenna remains constant and frequency-flat, allowing for its
description using a single complex scalar. The channel coherence block is depicted
in figure 2.1. Assuming that the channel realization within each coherence block is
independent of those in other coherence blocks, we obtain the block fading model.

2.1.2 Time-Division-Duplexing (TDD) Protocol

To estimate channels efficiently, it is best to utilize a TDD protocol that employs each
coherence block for both uplink and downlink transmissions. It is then sufficient to
transmit pilots only in the uplink. Based on the received uplink pilots, each AP can
then estimate the channels between itself and its served UEs. The channel estimates
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FIGURE 2.1: Illustration of the channel coherence block.

can be utilized for both uplink and downlink transmissions, thanks to the channel
reciprocity. Each coherence block is split into three parts: τp for transmission of pilots,
τul for transmission of uplink data and τdl for transmission of downlink data.

FIGURE 2.2: TDD protocol

The channel response between UE k and AP l in an arbitrary coherence block
can be represented by an N-dimensional vector hkl ∈ CN where the nth element
represents the coefficient of the channel between the UE and the nth antenna of the
AP. The collective channel hk ∈ CM between UE k and all APs is defined as

hk =

hk1
...

hkL

 (2.1)

2.1.3 Uplink System Model

During the uplink, each UE transmits its signal to the APs. The received signal
yul

l ∈ CN at each AP l is a superposition of the signals transmitted by the UEs

yul
l =

K

∑
i=1

hilsi +nl (2.2)

where si ∈ C is the signal transmitted by UE i of power E{|si|2} = pi and nl is the
independent additive receiver noise nl ∼ NC(0, σ2

ulIN) with NC being the complex
circularly-symmetric Gaussian distribution and σ2

ul is the receiver noise power. The
channel is constant during each coherence block, while the signal and the receiver
noise take new realizations every transmission symbol.
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Utilizing the received signal, AP l applys a receive combining vector vkl ∈ CN to
estimate the signal of UE k, resulting in the computed estimate ŝkl .

ŝkl = vH
kly

ul
l

= vH
klhklsk︸ ︷︷ ︸

desired signal

+
K

∑
i=1
i ̸=k

vH
klhilsi

︸ ︷︷ ︸
interference

+ vH
klnl︸ ︷︷ ︸

noise

(2.3)

However, this computation is done only if AP l serves UE k. Hence, we define the
effective receive combining vector Dklvkl which is equal to the receive combining vector
vkl if AP l serves UE k (Dkl = IN) or 0N otherwise. The estimate ŝkl is generally
written as follows

ŝkl = vH
kl Dkly

ul
l (2.4)

Design of the receive combining vectors should intuitively maximize the power of
the desired signal and minimize the interference. Exact algorithms for designing
receive combining vectors are discussed in chapter 3.

2.1.4 Downlink System Model

During the downlink, each AP l transmits its signal ul which is a precoded super-
position of signals intended for the UEs served by the particular AP.

ul =
K

∑
i=1

Dilwilζi (2.5)

where wil is the transmit precoding vector assigned to UE i by AP l, and ζi is the
signal intended for UE i which is designed to have unit-power E{|ζi|2} = 1.

The received signal ydl
k ∈ C at each UE k is a superposition of the transmitted

signals by the APs

ydl
k =

L

∑
l=1

hH
klul + nk (2.6)

=
L

∑
l=1

hH
kl

(
K

∑
i=1

Dilwilζi

)
+ nk (2.7)

=
L

∑
l=1

hH
kl Dklwklζk︸ ︷︷ ︸

desired signal

+
L

∑
l=1

K

∑
i=1
i ̸=k

hH
kl Dilwilζi

︸ ︷︷ ︸
interference

+ nk︸︷︷︸
noise

(2.8)

wher nk ∼ NC(0, σ2
dl) is the independent additive receiver noise.

The effective transmit precoding vector is defined to be Dklwkl which is equal to the
transmit precoding vector wkl if AP l serves UE k and 0N otherwise. Transmit pre-
coding vectors possess two important features: the direction wkl/∥wkl∥ indicating the
transmission spatial direction and the average squared norm E{∥wkl∥2}, which de-
termines the average transmit power. Design of transmit precoding vectors should
intuitively maximize the power of the desired signal and minimize the interference.
Exact algorithms for designing the transmit precoding vectors will be discussed in
chapter 3
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2.2 Channel Model

2.2.1 Correlated Rayleigh Fading

The most abundant wireless channel model for non-line-of-sight (NLOS) communi-
cation is independent Rayleigh fading where the channel between AP l and UE k is gen-
erated as hkl ∼ NC(0N , βklIN). In a rich scattering environment, the received signal
is the sum of many signal copies arriving from many propagation paths with seem-
ingly random phase shifts which results in small-scale fading. The complex Gaus-
sian distribution can be used to model the constructive and destructive interference
between the paths motivated by the Central Limit Theorem. The variance βkl of
the distribution determines the average channel quality as the UE moves in a small
area. In other words, it describes the large scale fading characteristics: path loss and
shadowing.

While the uncorrelated Rayleigh fading model is widely used in theoretical stud-
ies due to its analytical tractability, empirical measurements indicate that elements
of the channel vector hkl are in reality correlated. This is called spatial correlation
which arises from two phenomena: 1) Some spatial directions are more appropriate
for transmitting signals to the UE compared to other directions; and 2) The antenna
array geometry, which includes the antenna spacing and shape, enables transmis-
sion/reception of signals more effectively in certain directions than in others.

The correlated Rayleigh fading model is a stochastic channel model that accounts
for spatial correlation. It is particulary applicable in a NLOS rich scattering envi-
ronment where the channel vector hkl can be modelled using the complex Gaussian
distribution. The channel between AP l and UE k is generated as hkl ∼ NC(0N , Rkl)
where Rkl is the positive semi-definite spatial correlation matrix of AP l and UE k.
The correlation matrix Rkl , which is defined as E{hklh

H
kl}, captures the large-scale

fading effects, such as path loss, shadowing, antenna gains, and spatial channel cor-
relation. The Gaussian distribution models the small-scale fading, and the large-
scale fading coefficient is determined by the average value of the diagonal elements
of Rkl .

βkl =
1
N

tr(Rkl) (2.9)

where tr is the trace operator. The collective channel of each UE k is generated as
hk ∼ NC(0M, Rk) where Rk = diag(Rk1, · · · , RkL) is the collective spatial channel
correlation matrix.

2.2.2 Modeling of Large-Scale Fading

In line with [1], we assume ultra-dense deployment in an urban area where the APs
are deployed in a plane ten meters above the UEs. This matches the 3GPP Urban
Microcell Model defined in [22]. The path loss coefficient is computed as

βkl [dB] = −30.5− 36.7 log10

(
dkl

1m

)
+ Fkl (2.10)

where dkl is the three dimensional distance between AP l and UE k. Fkl ∼ N (0, 42)
represents the shadow fading. The shadowing terms are correlated as

E{Fkl Fij} =
{

422−δki/9 m l = j
0 k ̸= i

(2.11)
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where δki is the distance between UE k and UE i. Equation (2.11) entails that only
the shadowing terms related to the same AP are correlated, while shadowing terms
related to different APs are uncorrelated which is sensible because the APs are sep-
arated by tens of wavelengths.

2.2.3 Modeling of Spatial Correlation

The spatial correlation matrix is influenced by two primary factors: 1) geometry
of the antenna array; 2) angular distribution of the multi-path components. In the
case of small-sized access points (APs), which are expected to be used in cell-free
networks, a uniform linear antenna array (ULA) is commonly used where the N
antennas are equally spaced with half-wavelength spacing. If all the multipaths
arrive from the far-field of the array, the (m, l) element of a generic spatial correlation
matrix R can be computed as

[R]ml = β
∫ ∫

ejπ(m−l) sin(φ̄) cos(θ̄) f (φ̄, θ̄) dφ̄dθ̄ (2.12)

where β is the common large-scale fading coefficient computed from (2.10), φ̄ de-
notes the azimuth angle and θ̄ denotes the elevation angle with respect to the broad-
side of the array. f (φ̄, θ̄) is the joint probability density function (PDF) of the azimuth
and elevation angles φ̄, θ̄. Therefore, the integral in (2.12) computes the expected
value E{ejπ(m−l) sin(φ̄) cos(θ̄)} for the multipath components distributed as f (φ̄, θ̄). We
assume the joint Gaussian PDF defined as

f (φ̄, θ̄) =
1

2πσφσθ
e
− (θ̄−θ)2

2σ2
θ e
− (φ̄−φ)2

2σ2
φ (2.13)

where θ is the nominal elevation angle, φ is the nominal azimuth angle and σφ and
σθ are the angular standard deviations (ASD) of the azimuth and elevation angles;
respectively.
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Chapter 3

Network Operation

A cell-free network operation is divided into uplink and downlink operation. Up-
link operation involves power control and design of receive combining vectors, while
downlink operation involves power allocation and design of transmit precoding vec-
tors. Receive combining and transmit precoding designs are performed every co-
herence frame, while power allocation and power control are done when there are
significant changes in large-scale fading characteristics. Two operation paradigms
exist: centralized and distributed, with centralized processing being the focus of this
thesis. In section 3.1, we discuss the minimum mean-square-error (MMSE) channel
estimation procedure. Section 3.2 covers centralized uplink operation, including the
definition of centralized uplink spectral efficiency, and design procedures for receive
combining vectors and power control coefficients. Section 3.3 covers centralized
downlink operation, including the definition of centralized downlink spectral effi-
ciency, and design procedures for centralized transmit precoding vectors and power
allocation coefficients.

3.1 Channel Estimation

Channel estimation is done by transmitting pilot sequences which are known to the
APs. For centralized operation, the APs forward their received pilot signals to the
CPU which undergoes channel estimation. Recall from the TDD protocol defined
in section 2.1.2, there are τp samples dedicated for pilots transmission within each
coherence frame. Ideally, each UE is assigned a unique pilot sequence which is or-
thogonal to the pilot sequences assigned to other UEs. However, because each pilot
sequence spans τp samples, there are only τp mutually orthogonal pilot sequences
ϕ1, · · · ,ϕτp ∈ Cτp which are designed to have unit-power.

ϕH
i ϕj =

{
τp i = j
0 i ̸= j (3.1)

Therefore, if τp < K which is the case in a practical network, pilot reuse is inevitable.
Denote the index of the pilot assigned to UE k as tk ∈ {1, · · · , τp} and define

Pk = {i : ti = tk, i = 1, · · · , K} (3.2)

to be the set of UEs that share the same pilot as UE k including UE k. At the start of
the uplink, each UE k transmits its assigned pilot sequence. The received pilot signal
Ypilot

l at AP l is

Ypilot
l =

K

∑
i=1

√
ηihilϕ

H
ti
+ Nl (3.3)
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where ηi is the transmit power of UE i during the pilot transmission phase, and
Nl ∈ CN×τp is the independent receiver noise whose elements are distributed as
NC(0, σ2

ul). To estimate the channel between of AP l and UE k, we project the received
pilot signal onto ϕtk/√τp which is the pilot sequence assigned to UE k. This removes
interference from UEs which do not share the same pilot sequence as UE k.

y
pilot
tk l =

K

∑
i=1

√
ηi

τp
hilϕ

H
ti
ϕti +

1
√

τp
Nlϕti

=
√

ηkτphkl︸ ︷︷ ︸
desired channel

+ ∑
i∈Pk/{k}

√
ηiτphil︸ ︷︷ ︸

interference

+
1
√

τp
Nlϕti︸ ︷︷ ︸

receiver noise

(3.4)

The first term contains the desired channel scaled by √ηkτp, the second term is the
interference generated by the pilot-sharing UEs, and the third term is the receiver
noise 1√

τp
Nlϕti ∼ NC(0N , σ2

ulIN). y
pilot
tk l is sufficient statistics for estimation of hkl

because no information is lost about the desired channel or the pilot-sharing UEs.
The MMSE estimate of hkl given y

pilot
tk l is

ĥkl =
√

ηkτpRklΨ
−1
tk l y

pilot
tk l (3.5)

where Ψtk l is the received pilot correlation matrix defined as

Ψtk l = ∑
i∈Pk

ηiτpRil + σ2
ulIN (3.6)

The relation between the channel estimate ĥkl and the channel hkl is

hkl = ĥkl + h̃kl (3.7)

where h̃kl is the channel estimation error. The channel estimate and the channel
estimation error are independent random variables and their distribution is

ĥkl ∼ NC(0N , ηkτpRklΨ
−1
tk l Rkl) (3.8)

h̃kl ∼ NC(0N , Ckl) (3.9)

where
Ckl = Rkl − ηkτpRklΨ

−1
tk l Rkl (3.10)

The channel estimate ĥkl is computed only if AP l serves UE k.
Since we are interested in centralized operation, having knowledge about the

collective channel hk of each UE k is necessary. Recall that Rk ∈ CM×M is the block
diagonal collective spatial channel correlation matrix defined as diag(Rk1, · · · , RkL).
The collective channel estimate ĥk of UE k is defined as

ĥk =

Dk1ĥk1
...

DkLĥkL

 (3.11)

Since we are operating in a user-centric cell-free network, not all the channel estimate
ĥkl are known, because each AP serves only a subset of the UEs. Hence, an arbitrary
entry Dklĥkl in the collective channel estimate is equal to ĥkl if AP l serves UE k and
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0N otherwise. The collective channel estimate has the following distribution

ĥk ∼ NC(0M, ηkτpDkRkΨ−1
tk

RkDk) (3.12)

where Dk = diag(Dk1, · · · , DkL) is the block diagonal clustering matrix of UE k and
Ψ−1

tk
= diag(Ψ−1

tk1 , · · · , Ψ−1
tk L) is a block diagonal matrix containing the inverses of the

received pilot correlation matrices.

3.2 Centralized Uplink Operation

In centralized uplink operation, the APs transmit their received pilot and data sig-
nals to the CPU. The CPU then uses the received pilots for channel estimation and
channel estimates are subsequently used for designing the receive combining vec-
tors to perform data detection. The received uplink signals from UE k at its respec-
tive serving APs are utilized by the CPU to compute a collective data estimate, de-
noted as ŝk. This is achieved by summing the per-AP estimates, denoted as ŝkl . Re-
call from section 2.1 that the per AP data estimate is computed as the inner product
ŝkl = vH

kl Dkly
ul
l where vkl is the receive combining vector designed for AP l and UE

k. The collective data estimate ŝk of UE k is

ŝk =
L

∑
l=1

ŝkl

=
L

∑
l=1

vH
kl Dkly

ul
l = vH

k Dkyul (3.13)

with vk =
[
vT

k1 · · · vT
k1

]T ∈ CLN is the collective receive combining vector of UE k and
yul ∈ CLN is the collective uplink data signal given by

yul =
K

∑
i=1

hisi +n (3.14)

where n =
[
nT

1 · · ·nT
L
]T is the collective noise vector. We start by defining the spec-

tral efficiency for centralized uplink operation which is the main performance metric
of every UE and is used to obtain optimal receive combining design.

3.2.1 Spectral Efficiency

The spectral efficiency SE measured in bits/s/Hz is an evaluation of how efficiently
a unit of bandwidth is used. Hence, the data rate of UE k can be defined as

Ratek = B · SEk (3.15)

where B is the bandwidth and SEk is the spectral efficiency achieved by UE k.
In this work, we utilize the spectral efficiency expressions derived using the use-

and-then-forget bounding technique. This name comes from the fact that channel
estimates are utilized to design the receive combining vectors, and are subsequently
disregarded before undergoing data detection. The expression is applicable for an
arbitrary fading model and user-centric clusters. However, it has the drawback that
it underestimates the achievable spectral efficiency, so it can be considered as a lower
bound.
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An achievable spectral efficiency SEul
k of UE k in centralized uplink operation is

SEul
k =

τul

τc
log2

(
1 + SINRul

k

)
(3.16)

where

SINRul
k =

pk
∣∣E {vH

k Dkhk
}∣∣2

∑K
i=1 piE

{∣∣vH
k Dkhi

∣∣2}− pk
∣∣E {vH

k Dkhk
}∣∣2 + σ2

ulE {∥Dkvk∥2}
(3.17)

The expectation is computed with respect to the channel realizations.

3.2.2 Centralized Receive Combining

The centralized receive combining vectors vk for k = 1, · · · , K are adapted every
coherence frame. The design rationale is to optimize the SINR which is defined in
equation (3.17). The optimal combining vector which maximizes the SINR is referred
to as MMSE combining and can be written as follows.

vMMSE
k = pk

(
K

∑
i=1

piDk(ĥiĥ
H
i + Ci)Dk + σ2

ulILN

)−1

Dk ĥk (3.18)

where Ci = diag(Ci1, · · · , CiL) is a block diagonal matrix containing channel esti-
mation error correlation matrices of UE i.

The complexity of computing the MMSE combining vector grows linearly with
the number of users K. For the network to be scalable, the complexity associated
with computing the combining vectors has to be finite if the number of users grows
to infinity. A simplified version of MMSE combining can be obtained through partial
MMSE (PMMSE) combining. Define the set

Sk = {i : DkDi ̸= 0LN×LN} (3.19)

which includes the UEs that are partially served by the same APs as UE k. The
PMMSE combining vector can be computed as

vPMMSE
k = pk

(
∑

i∈Sk

piDk(ĥiĥ
H
i + Ci)Dk + σ2

ulILN

)−1

Dk ĥk (3.20)

The complexity of computing the PMMSE combining vector grows linearly with |Sk|
which is the cardinality of the set Sk. A further complexity reduction can be achieved
by using the partial-regularized zero-forcing combining (PRZF) which is computed
as

vPRZF
k = pk

(
∑

i∈Sk

piDkĥiĥ
H
i Dk + σ2

ulILN

)−1

Dk ĥk (3.21)

The simplest scalable combining scheme which maximizes the numerator of the up-
link SINR defined in (3.17) is the maximum-ratio (MR) combining which is com-
puted as

vMR
k = Dkĥk (3.22)

However, this combining scheme is rarely used due its poor interference cancellation
performance.
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3.2.3 Power Control

Every UE k has a power budget pmax which we assume to be equal for all UEs.
During the uplink, every UE transmits its data and has to choose a power pk in
range of 0 to pmax. In most of the cell-free massive MIMO literature, the power
control coefficients are kept fixed unless there is a significant change in the large-
scale fading characteristics. Therefore, they are not adapted to channel realizations.
The design rationale is to determine the amount by which each UE should decrease
its transmit power to maximize a certain network wide utility function. However, in
this thesis, we consider that the UEs transmit with full power in both pilot and data
transmission phases which has been shown to be nearly optimal in many scenarios
[1].

ηk = pk = pmax, k = 1, · · · , K (3.23)

3.3 Centralized Downlink Operation

Recall the signal ul transmitted by each AP l during the downlink is created as a
precoded superposition of the UEs signals

ul =
K

∑
i=1

Dilwilζi (3.24)

where wil is the transmit precoding vector assigned by AP l to UE i, ζi is the data
signal intended for UE i which is designed to have unit-power E{|ζi|2} = 1 and the
effective transmit precoding vector Dilwil is equal to the transmit precoding if AP
l serves UE i and 0N otherwise. Recall from section 3.3 that the received downlink
signal ydl

k at UE k is

ydl
k =

L

∑
l=1

hH
klul + nk (3.25)

=
L

∑
l=1

hH
kl

(
K

∑
i=1

Dilwilζi

)
+ nk (3.26)

which can be written in a more compact form as

ydl
k =

k

∑
i=1

hk1
...

hkL


H Di1wi1

...
DiLwiL

 ζi + nk

=
k

∑
i=1

hH
k Diwiζi + nk (3.27)

where hk =
[
hT

k1 · · ·hT
kL

]T ∈ CLN is the collective channel vector and the collective
precoding vector assigned to UE i is wi =

[
wT

i1 · · ·wT
iL
]T ∈ CLN .
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3.3.1 Spectral Efficiency

An achievable spectral efficiency SEdl
k of UE k in centralized downlink operation

derived using the use-and-then-forget bounding technique is

SEdl
k =

τdl

τc
log2

(
1 + SINRdl

k

)
(3.28)

where

SINRdl
k =

∣∣E {hH
k Dkwk

}∣∣2
∑K

i=1 E
{∣∣hH

k Diwi
∣∣2}− ∣∣E {hH

k Dkwk
}∣∣2 + σ2

dl

(3.29)

The expectation is computed with respect to the channel realizations.

3.3.2 Centralized Transmit Precoding

The centralized transmit precoding vector is generally defined as

wk =
√

ρk
w̄k√

E{∥w̄k∥2}
(3.30)

where w̄k determines the direction of the vector and ρk determines its magnitude. In
other words, choosing ρk amounts to determining the power allocated to each UE k.

Design of transmit precoding vectors poses a greater challenge in comparison
to the design of receive combining vectors, primarily due to the difference in the
mathematical structure of SINR expressions. While receive combining vectors can
be optimized on a per UE basis, this is not the case for transmit precoding vectors.
This is because the selection of a precoding vector for a specific UE k impacts the
performance of other UEs, which is not the case in the uplink. In reality, there is no
single set of optimal transmit precoding vectors, as it involves a trade-off between
different solutions. Therefore, a commonly utilized heuristic for designing transmit
precoding vectors is the uplink-downlink duality theorem which is stated as follows.

Let {Divi : i = 1, · · · , K} and {pi : i = 1, · · · , K} denote the set of combining
vectors and uplink transmit powers; respectively. If the transmit precoding vectors
are selected as

wi =
√

ρi
vi√

E{∥Divi∥2}
(3.31)

then there exists a downlink power allocation policy {ρi : i = 1, · · · , K} with

K

∑
i=1

pi

σ2
ul

=
K

∑
i=1

ρi

σ2
dl

(3.32)

such that
SINRul

k = SINRdl
k (3.33)

Hence, we use the uplink-downlink duality theorem to choose the direction of the
transmit precoding vectors by utilizing the same expressions for the receive combin-
ing methods developed in the uplink. However, power allocation is done separately
because the power allocation coefficients that come from this theorem are usually
impractical to implement.
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3.3.3 Centralized Power Allocation

During the downlink, AP l transmits the signal ul = ∑K
i=1 Dilwilζi which is assumed

to have a maximum power ρmax. Therefore, the APs have to decide how to split their
power among the users. We use the following heuristic to determine the power allo-
cated to each UE which is commonly known as fractional centralized power allocation
[1].

ρk = ρmax

(√
∑l∈Mk

βkl
)−1 (√

ωk
)−1

maxl∈Mk ∑i∈Dl

(√
∑l∈Mi

βil
)−1

(
√

ωi)
(3.34)

with
ωk = max

l∈Mk

E
{
∥w̄kl∥2} (3.35)

where w̄kl is the portion of the centralized precoding vector w̄k assigned to AP l and
Dl is the set of UEs served by AP l.
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Chapter 4

User-Centric Clustering Problem
Formulation

This chapter provides a comprehensive mathematical formulation for user-centric
clustering, presented as an optimization problem. Section 4.1 introduces the no-
tation for the clustering problem and quantifies UE performance. Section 4.2 for-
mulates the user-centric clustering problem as a stochastic multi-objective optimiza-
tion problem (MOP). A subjective solution is proposed that converts the MOP to
a single-objective optimization problem. Section 4.3 introduces new expressions for
the signal-to-interference-plus-noise ratio (SINR) that are better suited to the cluster-
ing problem. Section 4.4 describes an approximate approach to compute the closed
form of the SINR expected value in both the uplink and downlink.

4.1 Preliminaries

Consider a cell-free network with L geographically distributed APs, each equipped
with N antennas, which cooperate to serve K users. In the user-centric approach,
each UE k is served by a subset of the APs which are called clusters. We define K
binary assignment vectors xk ∈ {0, 1}L, k = 1, · · · , K to represent the clusters.

xkl =

{
1 AP l serves UE k
0 otherwise

(4.1)

The user-centric clustering problem is concerned with designing the K clusters to
maximize a utility function or a performance metric. There are two viewpoints for
assessing the performance of a clustering algorithm:

• Each individual UE performance,

• Network-wide performance which is a collection of simultaneously achievable
UE performances.

Each UE k is assumed to have a performance function gk : R → R of the SINR which
measures the degree of satisfaction of the UE by its quality of service. The mathe-
matical structure of the SINR differs between the uplink and downlink, leading to
distinct downlink and uplink performances. Accordingly, we define the individual
performance of each UE k as the following set:{

gk(SINRul
k ), gk(SINRdl

k )
}

(4.2)

The performance function generally depends on the current service being used. For
example, voice traffic requires short delays and a minimum information rate that
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is constantly available (while higher rates are unnecessary). On the contrary, inter-
net traffic can accept long delays and variations in the information rate, while the
satisfaction is strictly increasing with the information rate. Candidates to the perfor-
mance function are:

• Information rate gk(SINRk) = α1 log(1 + α2SINRk) where α1 and α2 are tunable
parameters that account for different channel coding schemes or modulation
types.

• Bit-error rate of a 16-QAM constellation gk(SINRk) = 3/8 · erf
(√

2/5 · SINRk
)

where erf is the Gauss error function.

Design of user-centric clusters is done based on large-scale fading characteristics.
Therefore, it is only adapted if there are significant changes in the positioning of the
UEs leading to variation in the large-scale fading characteristics. Denote the time
interval for which the clusters are kept fixed as T = ncτc where nc is the number of
coherence frames within T which we refer to as the clustering interval. With each
coherence frame, there is a new channel realization for each UE, resulting in changes
in the SINR value.

4.2 Multiobjective Optimization Problem

Without loss of generality, the user-centric clustering problem can be formulated
as the following multi-objective optimization problem (MOP), inspired by the ap-
proach presented in [23].

max
x1, ··· , xK

{
gk

(
SINRul

k (n)
)

, gk

(
SINRdl

k (n)
)

: k = 1, · · · , K ∧ n = 1, · · · , nc

}
(4.3)

where SINRul
k (n) and SINRdl

k (n) are the uplink and downlink SINR at time n; re-
spectively. The MOP can be interpreted as searching for the clusters x1, · · · ,xK that
maximize the performance of all UEs during the clustering interval T.

Since the performances of different UEs are coupled, there is generally not a sin-
gle transmit strategy that simultaneously maximizes the performance of all UEs.
Furthermore, the clusters are designed before the start of the clustering interval T.
Hence, the performance metrics of the UEs defined by the set in (4.3) are unknown.
In such case, we need to deal with the uncertainty in the objective functions. Op-
timization under uncertainty refers to this branch of optimization where there are
uncertainties involved in the data or the model and is popularly known as stochas-
tic programming or stochastic optimization.

Most of the approaches to solve stochastic optimization problems convert the
problem into a deterministic one and then common optimization techniques can be
used. One way to address the uncertainty is to optimize the expected value of the
performance functions rather than the instantaneous value. If we implement that
approach to the objective functions defined in (4.3), we get

max
x1, ··· , xK

{
E
{

gk

(
SINRul

k

)}
, E
{

gk

(
SINRdl

k

)}
: k = 1, · · · , K

}
(4.4)

where E is the expectation operator. The expectation is computed with respect to
the time index n which we dropped for convenience in the notation.
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As with any MOP, there are many operating points1 that we can choose from.
Therefore, we need a way to assess the desirability of each operating point. The
common approach is choose an aggregate system utility function f (g) which takes an
operating point g = (g1, · · · , gK) as an input and outputs a scalar value where gi is
the value of objective i. Candidates of the aggregate system utility function are

• Weighted arithmetic mean f (g) = ∑k wkgk

• Weighted geometric mean f (g) = ∏k gwk
k

• Weighted max-min fairness f (g) = mink gk/wk

The weights wk can be used to prioritize certain objectives over others. We adopt the
ergodic spectral efficiency gk(SINRk) = log2(1 + E{SINRk}) as a performance func-
tion and the sum spectral efficiency as the aggregate system utility function which
is equivalent to the weighted arithmetic mean with all the weights set to one. This
results in the following single objective optimization problem

max
x1, ··· , xK

K

∑
k=1

log2

((
1 + E

{
SINRul

k

}) (
1 + E

{
SINRdl

k

}))
(4.5)

4.3 Mathematical Expressions of the SINR

The SINR expressions defined in chapter 3 are an implicit function of the clustering
assignment vectors x1, · · · ,xK. To make the analysis and classification of the opti-
mization problem simpler, we modify the SINR expressions such that they are an
explicit function of the clustering assignment vectors. We define the following sets
of matrices {

Tul
k ∈ CL×L|k = 1, · · · , K

}
(4.6){

Tdl
k ∈ CL×L|k = 1, · · · , K

}
(4.7){

Qul
ki ∈ CL×L|k, i = 1, · · · , K

}
(4.8){

Qdl
ki ∈ CL×L|k, i = 1, · · · , K

}
(4.9){

Qul
ki ∈ CL×L|k, i = 1, · · · , K

}
(4.10){

ck ∈ CL|k = 1, · · · , K
}

(4.11)

We refer to Tul
k as the uplink signal correlation matrix of UE k, Tdl

k as the downlink signal
correlation matrix of UE k, Qul

ki as the uplink interference correlation matrix between UE
k and UE i, Qdl

ki as the downlink interference correlation matrix between UE k and UE i
and ck as the receive combining correlation vector of UE k. The entries of the matrices

1An operating point is any solution of the MOP which assigns a value for each of the design vari-
ables, hence, assigning a value to each of the objectives.
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are defined as follows.[
Tul

k

]
nm

=
1
2

(
E{vH

knhkn}∗E{vH
kmhkm}+ E{vH

knhkn}E{vH
kmhkm}∗

)
(4.12)[

Tdl
k

]
nm

=
1
2

(
E{hH

knwkn}∗E{hH
kmwkm}+ E{hH

knwkn}E{hH
kmwkm}∗

)
(4.13)[

Qul
ki

]
nm

=
1
2

(
E{(vH

knhin)
∗(vH

kmhim) + (vH
knhin)(v

H
kmhim)

∗}
)

(4.14)[
Qdl

ki

]
nm

=
1
2

(
E{(hH

knwin)
∗(hH

kmwim) + (hH
knwin)(h

H
kmwim)

∗}
)

(4.15)

[ck]n = E{vH
knvkn} (4.16)

Using the definitions above, the single objective user-centric clustering optimiza-
tion problem can be written as follows.

max
x1, ··· , xK

K

∑
k=1

log2

((
1 + E

{
SINRul

k

}) (
1 + E

{
SINRdl

k

}))
(4.17)

with

SINRul
k =

pkx
T
k Tul

k xk

xT
k (∑

K
i=1 piQul

ki − pkTul
k )xk + σ2

ulx
T
k ck

(4.18)

SINRdl
k =

xT
k Tdl

k xk

∑K
i=1 x

T
i Qdl

kixi − xT
k Tdl

k xk + σ2
dl

(4.19)

The proof of the modified SINR expressions in equations (4.18) and (4.19) is avail-
able in appendix A. The problem is classified as a binary integer non-linear program
which belongs to the class of NP-complete problems. It is usually hard to compute
closed forms of the SINR expected values. However, we can generate random real-
izations of the SINR and use them to estimate their expected values.

E
{

SINRul
k

}
≈ 1

Nr

Nr

∑
n=1

SINRul
k (4.20)

E
{

SINRdl
k

}
≈ 1

Nr

Nr

∑
n=1

SINRdl
k (4.21)

where Nr is the number of generated realizations. The technique is known as sample
average approximation. The procedure by which random realizations of the SINR are
generated will be discussed in chapter 7,

4.4 Expected Value of SINR

While expected values of the SINR can be estimated through simulation, closed-
form expressions for these expectations are preferable. Closed forms facilitate the
analysis of the optimization problem and reduce optimization costs by eliminating
the need for sampling. We recall the centralized uplink and downlink SINR expres-
sions defined in (3.17) and (3.29), which we reproduce here for convenience. The
downlink SINR is written as

SINRdl
k =

∣∣E {hH
k Dkwk

}∣∣2
∑K

i=1 E
{∣∣hH

k Diwi
∣∣2}− ∣∣E {hH

k Dkwk
}∣∣2 + σ2

dl

(4.22)
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which is a function of the clustering matrices {Dk : k = 1, · · · , K}, channel real-
izations {hk : k = 1, · · · , K}, power allocation coefficients {ρk : k = 1, · · · , K} and
transmit precoding vectors {wk : k = 1, · · · , K}. While the uplink SINR is written
as

SINRul
k =

pk
∣∣E {vH

k Dkhk
}∣∣2

∑K
i=1 piE

{∣∣vH
k Dkhi

∣∣2}− pk
∣∣E {vH

k Dkhk
}∣∣2 + σ2

ulE {∥Dkvk∥2}
(4.23)

which is a function of the clustering matrices {Dk : k = 1, · · · , K}, channel realiza-
tions {hk : k = 1, · · · , K}, power control coefficients {pk : k = 1, · · · , K} and receive
combining vectors {vk : k = 1, · · · , K}. The clustering matrices, power control, and
power allocation coefficients remain fixed throughout the transmission and can be
considered as deterministic constants. The randomness arises from the randomness
in channel realizations; hence, the randomness in channel estimates. These estimates
are used to design both the receive combining vectors and the transmit precoding
vectors. Thus, to compute a closed-form expression of the uplink and downlink
SINR, we must specify the receive combining and transmit precoding design meth-
ods, respectively.

The simplest scalable form of centralized combining and precoding is the MR.
We derive a closed form of the uplink SINR in case of MR combining in section 4.4.1,
and the downlink SINR in case of MR precoding in section 4.4.2

4.4.1 Closed Form of the Uplink SINR for MR Combining

Recall that the uplink SINR defined in (4.18) can be written as

SINRul
k =

pkx
T
k Tul

k xk

xT
k (∑

K
i=1 piQul

ki − pkTul
k )xk + σ2

ulx
T
k ck

The randomness in this expression comes from randomness in Tul
k , Qul

ki and ck. The
rest of the variables are deterministic. Our approach to derive closed forms for the
SINR is to compute closed forms of the random matrices, which leads to a closed
form of the SINR. Throughout the analysis, we assume perfect channel estimation
ĥk = hk for k = 1, · · · , K. Hence. the centralized MR combining vector can be
written as

vMR
k = hk (4.24)

The portion of the centralized combining vector vMRC
kl assigned to AP l is

vMR
kl = hkl (4.25)

Closed form of the uplink signal correlation matrix Tul
k

As defined in (4.12), an entry in the uplink signal correlation matrix Tul
k is[

Tul
k

]
nm

=
1
2

(
E{vH

knhkn}∗E{vH
kmhkm}+ E{vH

knhkn}E{vH
kmhkm}∗

)
(4.26)
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By substituting equation (4.25) into (4.26), we get[
Tul

k

]
nm

=
1
2

(
E{hH

knhkn}∗E{hH
kmhkm}+ E{hH

knhkn}E{hH
kmhkm}∗

)
(4.27)

=

 tr (Rkn)
2 n = m

tr (Rkn) tr (Rkm) n ̸= m

 (4.28)

where Rkn is the spatial channel correlation matrix of AP n and UE k which is as-
sumed to be known and tr is the trace operator.

Closed form of the uplink interference correlation matrix Qul
ki

As defined in (4.14), an entry in the uplink interference correlation matrix Qul
ki is[

Qul
ki

]
nm

=
1
2

(
E{(vH

knhin)
∗(vH

kmhim) + (vH
knhin)(v

H
kmhim)

∗}
)

(4.29)

By substituting equation (4.25) into (4.29), we get[
Qul

ki

]
nm

=
1
2

(
E{(hH

knhin)
∗(hH

kmhim) + (hH
knhin)(h

H
kmhim)

∗}
)

(4.30)

=



tr
((

IN2 + K(N,N)

)
Rkn

⊗
Rkn

)
k = i, n = m

tr (Rkn) tr (Rkm) k = i, n ̸= m

tr (RknRin) k ̸= i, n = m

0 k ̸= i, n ̸= m


(4.31)

where
⊗

the Kronecker product and K(N,N) is the N2-by-N2 commutation matrix.

Closed form of the receive combining correlation vector ck

As defined in (4.16), an entry in the receive combining correlation vector ck is

[ck]n = E{vH
knvkn} (4.32)

By substituting equation (4.25) into (4.32), we get

[ck]n = E{hH
knhkn} = tr (Rkn) (4.33)

The closed form expressions for Tul
k in (4.28), Qul

ki in (4.31) and ck in (4.33) can be
used to directly compute the uplink SINR for the case of MR combining.

4.4.2 Closed Form of the Downlink SINR for MR Precoding

Recall that the downlink SINR defined in (4.19) can be written as

SINRdl
k =

xT
k Tdl

k xk

∑K
i=1 x

T
i Qdl

kixi − xT
k Tdl

k xk + σ2
dl

(4.34)

We utilize the same uplink approach to derive closed forms for the downlink SINR
by computing closed forms of the random matrices Tdl

k and Qdl
ki . Throughout the

analysis, we assume perfect channel estimation ĥk = hk for k = 1, · · · , K. Hence.



4.4. Expected Value of SINR 27

the centralized MR precoding vector can be written as

wMR
k =

√
ρk

hk√
tr (Rk)

(4.35)

The portion of the centralized combining vector wMR
kl assigned to AP l is

wMR
kl =

√
ρk

hkl√
tr (Rk)

(4.36)

Using the same approach for the uplink, the closed form of Tdl
k and Qdl

ki can be writ-
ten as follows.

[
Tdl

k

]
nm

=


ρk

tr(Rk)
tr (Rkn)

2 n = m

ρk
tr(Rk)

tr (Rkn) tr (Rkm) n ̸= m

 (4.37)

[
Qdl

ki

]
nm

=



ρk
tr(Rk)

tr
((

IN2 + K(N,N)

)
Rkn

⊗
Rkn

)
k = i, n = m

ρk
tr(Rk)

tr (Rkn) tr (Rkm) k = i, n ̸= m
√

ρkρi
tr(Rk)

tr (RknRin) k ̸= i, n = m

0 k ̸= i, n ̸= m


(4.38)

The closed form expressions for Tdl
k in (4.37) and Qdl

ki in (4.38) can be used to directly
compute the downlink SINR for the case of MR precoding.

4.4.3 α− µ SINR expressions

Receive combining and transmit precoding methods, beyond maximum ratio (MR),
often have complex mathematical expressions. Consequently, deriving closed-form
expressions of the SINR for such methods is analytically intractable. To address this
issue, we propose an approximate analytical approach that leverages the closed-
form SINR expressions derived for MR combining and precoding.

The the design rationale of MR is to maximize the energy of the signal which lies
in the numerator of the SINR expression. In the uplink, we use the SINR expression
defined in equation (3.17) which is written as

SINRul
k =

pk
∣∣E {vH

k Dkhk
}∣∣2

∑K
i=1 piE

{∣∣vH
k Dkhi

∣∣2}− pk
∣∣E {vH

k Dkhk
}∣∣2 + σ2

ulE {∥Dkvk∥2}
(4.39)

Formally, the MR combining vector hk (if we assume perfect channel estimation)
maximizes the signal term

∣∣E{vH
k Dkhk}

∣∣2. However, the drawback of this approach
is its poor interference cancellation ability. To achieve higher SINR, better combining
methods balance signal amplification and interference cancellation. Therefore, we
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can approximate the SINR of any other better performing combining method as

SINRul
k ≈

αul
k bMR

k

µul
k f MR

k
(4.40)

with
vk = vMR

k (4.41)

bMR
k = pk

∣∣∣E{vH
k Dkhk

}∣∣∣2 (4.42)

f MR
k =

K

∑
i=1

piE

{∣∣∣vH
k Dkhi

∣∣∣2}− pk

∣∣∣E{vH
k Dkhk

}∣∣∣2 + σ2
ulE

{
∥Dkvk∥2} (4.43)

where αul
k ∈ [0, 1] controls how much of the maximum signal power is kept, and

µul
k ∈ [0, 1] controls how much of the maximum interference power is kept. The

values of αk and µk vary from combining method to another and from one UE to
another. The case of αk = 1 and µk = 1 corresponds to MR combining.

Using the same rationale, the downlink SINR can be approximated as

SINRdl
k ≈

αdl
k b̄MR

k

µdl
k f̄ MR

k + σ2
dl

(4.44)

with
wk = wMR

k (4.45)

b̄MR
k =

∣∣∣E{hH
k Dkwk

}∣∣∣2 (4.46)

f̄ MR
k =

K

∑
i=1

E

{∣∣∣hH
k Diwi

∣∣∣2}− ∣∣∣E{hH
k Dkwk

}∣∣∣2 (4.47)

where αdl
k , µdl

k ∈ [0, 1].

We refer to the expressions in equations (4.40) and (4.44) as the α− µ SINR ex-
pressions. It remains an open problem how to choose the coefficients

(
αul

k , µul
k , αdl

k , µdl
k

)
such that the uplink and dowlink SINR are approximated with a high degree of ac-
curacy. Intuitively, they depend on the combining/precoding method and the large-
scale fading characteristics of the UE. Nevertheless, we run simulations to estimate
these coefficients in an effort to demonstrate the tightness of the approximation.
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Chapter 5

Clustering Aware Pilot Assignment
Problem Formulation

This chapter presents a thorough mathematical formulation for the pilot assignment
problem that considers the user-centric clusters as a factor in assessing the desir-
ability of pilot assignments. Section 5.1 explains the relationship between the pilot
assignment and user-clustering problems. Section 5.2 specifies the optimization cri-
terion, which is the channel estimation error, and provides a detailed explanation of
the formulation of the optimization problem for clustering aware pilot assignment.

5.1 Connection between Pilot Assignment and User-Centric
Clustering

Recall from section 3.1 that channel estimation is done by transmitting pilot se-
quences during the uplink. Ideally, the UEs are assigned mutually orthogonal pilot
sequences which eliminates pilot contamination. However, there are only τp mutu-
ally orthogonal pilot sequences and in any practical network the number of users is
larger than the number of pilots τp < K. Hence, pilot reuse is necessary.

To estimate the channel hkl between of AP l and UE k, the received pilot signal
ytk l is used which can be written as

y
pilot
tk l =

√
ηkτphkl︸ ︷︷ ︸

desired channel

+ ∑
i∈Pk/{k}

√
ηiτphil︸ ︷︷ ︸

interference

+
1
√

τp
Nlϕ

H
tk︸ ︷︷ ︸

receiver noise

(5.1)

where Pk was defined to be the set of pilot-sharing UEs including UE k. From the
expression in equation (5.1), there are four ways to improve channel estimation per-
formance:

1. Increase the energy of the desired channel ηkτp∥hkl∥2 by boosting the transmit
power ηk,

2. Decrease the interference energy by limiting the transmit powers of pilot shar-
ing UEs ηi for i ∈ Pk/{k},

3. Choose AP l to serve UE k if ∥hkl∥2 is large enough,

4. Reduce the number of pilot-sharing UEs.

The first two strategies appear to be conflicting as prioritizing one user by in-
creasing its transmit power while limiting the power of other pilot-sharing users
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may lead to a considerable decrease in network-wide performance. The third strat-
egy involves the selection of user-centric clusters, which is the problem we aim to
solve in this thesis. The fourth strategy pertains to pilot assignment, which is a
separate problem. Nevertheless, both pilot and cluster assignment are closely inter-
twined, as evident from the arguments presented here.

5.2 Problem Formulation

The main purpose of transmitting pilots during the uplink is to utilize the received
pilots in channel estimation. Hence, it is sensible to adopt the channel estimation
error as the optimization criterion. Recall from section 3.1 that the channel between
AP l and UE k can be written as follows

hkl = ĥkl + h̃kl (5.2)

where ĥkl ∼ NC(0N , ηkτpRklΨ
−1
tk l Rkl) is the channel estimate and h̃kl ∼ NC(0N , Ckl)

is the channel estimation error with

Ψtk l = ∑
i∈Pk

ηiτpRil + σ2
ulIN (5.3)

Ckl = E{h̃klh̃
H
kl} = Rkl − ηkτpRklΨ

−1
tk l Rkl (5.4)

We define a set of binary assignment vectors ak ∈ {0, 1}τp , k = 1, · · · , K to represent
the pilot allocation such that

akj =

{
1 pilot j is assigned to UE k
0 otherwise

(5.5)

Using the assignment vectors, we can rewrite equation (5.3) and (5.4) as follows

Ψjl =
K

∑
i=1

ηiτpRilaij + σ2
ulIN (5.6)

Ckl = Rkl − ηkτp

τp

∑
j=1

RklΨ
−1
jl Rklakj (5.7)

j ∈ {1, · · · , τp}

We adopt the expected value of the L2 norm of the channel estimation error as the
optimization criterion which is written as follows

E{h̃H
kl h̃kl} = tr(Ckl)

= tr(Rkl)− tr

(
ηkτp

τp

∑
j=1

RklΨ
−1
jl Rklakj

)
(5.8)

where tr is the trace operator. By substituting (5.6) into (5.8)

E{h̃H
kl h̃kl} = tr(Rkl)− ηkτp

τp

∑
j=1

tr

Rkl

(
K

∑
i=1

ηiτpRilaij + σ2
ulIN

)−1

Rkl

 akj (5.9)
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As discussed in Section 5.1, there is a strong connection between the cluster-
ing and pilot assignment problems. Consequently, our formulation of the pilot as-
signment problem considers the user-centric clusters. Hence, we refer to this as the
clustering aware pilot assignment problem formulation. Assuming that the clusters
x1, · · · ,xK are known, we can formulate the clustering aware pilot assignment opti-
mization problem as follows.

min
a1,···,ak

K

∑
k=1

L

∑
l=1

E{h̃H
kl h̃kl}xkl (5.10)

E{h̃H
kl h̃kl} = tr(Rkl)− ηkτp

τp

∑
j=1

tr

Rkl

(
K

∑
i=1

ηiτpRilaij + σ2
ulIN

)−1

Rkl

 akj (5.11)

τp

∑
i=1

aki = 1 (5.12)

∀k ∈ {1, · · · , K}

The objective function in (5.10) is the sum of channel estimation errors between each
AP l and UE k, only if AP l serves UE k. If we ignore the user-centric clusters (as-
suming xkl = 1 for all k and l), the objective function becomes the sum of all channel
estimation errors between every AP l and UE k, regardless of whether or not AP l
serves UE k. However, by taking into account the user-centric clusters, we gain more
degrees of freedom and potentially improve overall performance. The constraints in
equation (5.12) ensure that each UE is assigned only one pilot. Like the user-centric
clustering problem, the pilot assignment problem is a binary integer non-linear pro-
gram, which is known to be NP-complete. However, a closed-form expression of
the expected value E{h̃H

kl h̃kl}, given in equation (5.11), is available, eliminating the
need for sampling.
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Chapter 6

Solution Methodology

This chapter discusses the methodology for solving the problems of user-centric
clustering and pilot assignment. In section 6.1, we present a baseline algorithm for
jointly solving the pilot assignment and user-centric clustering problems. In sec-
tion 6.2, we describe the genetic algorithm that we employ to obtain the optimized
solution.

6.1 Baselines

This section outlines the baseline algorithm that will be used for comparison with the
optimized solution. Specifically, we utilize the joint pilot assignment and clustering
algorithm proposed in [1].

Algorithm 1: Basic pilot assignment and clustering algorithm

Initalization:
a1 = · · · = aK = 0τp and x1 = · · · = xK = 0N

for k = 1 to τp do
akk ← 1 ▷ Assign orthogonal pilots to first τp UEs

end
for k = τp + 1 to K do

l ← argmax
l∈{1,··· ,L}

βkl ▷ Find best AP for UE k

τ ← argmin
t∈{1,··· ,τp}

∑k−1
i=1
ti=t

βil ▷ Find the pilot with least interference at AP l

akτ ← 1 ▷ Assign pilot τ to UE k
end
for l = 1 to L do

for t = 1 to τp do
i← argmax

k∈{1,··· ,K}: tk=t
βkl ▷ Find the UE that AP l serves best on pilot t

xil ← 1 ▷ Assign AP l to serve UE i
end

end
Output: Pilot Assignments a1, · · · ,aK and Clusters x1, · · · ,xK

Algorithm 1 employs a greedy strategy for pilot assignment and user-centric
clusters design. Initially, it assigns orthogonal pilot sequences to the first τp UEs.
For the remaining UEs, each UE k is assigned a pilot that causes the least interfer-
ence at the best AP. The best AP for UE k is the one with the highest average channel
gain βkl with UE k. Subsequently, each AP l serves only τp UEs to avoid pilot-sharing
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on the same AP. Each UE k is served by AP l on pilot t, if it has the highest channel
gain βkl among all the UEs sharing the same pilot.

6.2 Optimized Solution

Both the user-centric clustering and pilot assignment problems are classified as non-
linear binary integer programs. There is generally no optimization algorithm that can
find the global optimum in a reasonable timeframe. Two potential optimization al-
gorithms are readily available for solving these problems: surrogate optimization and
genetic algorithm. In our experiments, surrogate optimization was incapable of effi-
ciently improving the value of the objective function, therefore, we only focus on the
genetic algorithm.

6.2.1 Genetic Algorithm

The genetic algorithm is a structured random search optimization method inspired by
natural selection which drives biological evolution. The procedure by which the
algorithm generally works is summarized in the following steps.

1. Create a random initial population of solutions, which satisfy the problem con-
straints.

2. Evaluate the fitness value of all the individuals in the population. In genetic
algorithm terminology, the fitness value is the objective function value.

3. Every time-step, the algorithm uses the current population to create a new
population. Any individual in the new population is referred to as a child of
the current population. There are three different types of children:

(a) Elite Children are the individuals in the current population with the best
fitness value.

(b) Crossover Children are created by combining two individuals in the current
population.

(c) Mutation Children are created by making a random modification in one of
the individuals in the current population.

4. The algorithm stops when a stopping condition is met. There are several op-
tions for the stopping condition:

(a) maximum number of function evaluations,

(b) fitness value threshold,

(c) maximum time,

(d) minimum change in the objective function value for a specific number of
generations.
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Chapter 7

Results and Discussion

This chapter presents numerical experiments designed to assess the effectiveness of
optimized solutions for the user-centric clustering and pilot assignment problems,
relative to the baseline algorithm outlined in section 6.1. Section 7.1 introduces the
simulation setup utilized in this thesis and delineates the process of simulating the
network. Section 7.2 presents the numerical experiments conducted to evaluate the
performance of the algorithms.

7.1 Simulation Setup

To evaluate the performance of the optimized solutions, we define a simulation
setup which will be fixed throughout the experiments. The total coverage area is
0.5 km × 0.5 km, the number of APs is L = 30, each equipped with N = 4 antennas,
and the number of users is K = 12. Each coherence block extends for τc = 200 sam-
ples and the length of pilot sequences is τp = 5. Both APs and UEs are uniformly
distributed throughout the coverage area, and wrap-around1 topology is used to
avoid cell-edge effects. The full parameters of the simulation setup are summarized
in table 7.1.

Parameter Value

Network Area 0.5 km × 0.5 km

AP distribution Uniformly distributed

Users distribution Uniformly distributed

Number of APs 30

Number of users 12

Number of antennas per AP 4

Samples per coherence block 200

Samples per pilot 5

Bandwidth 20 MHz

Receiver noise power −94 dBm

Maximum uplink transmit power 100 mW

Maximum downllink transmit power 200 mW

TABLE 7.1: Parameters of the simulation setup

1Wrap-around topology means the north and south edges are connected, and also the west and
east edges are connected such that there is more than one way to draw a straight line between two
coordinates in the coverage area. Whenever a distance is computed, the shortest distance is chosen.
This is done to ensure that all the AP and UEs are at the center of a large network.
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The procedure by which the network is simulated is described in the following steps.

1. Deploy the APs and UEs randomly within the coverage area,

2. Compute the wrap-around distance between the APs and UEs,

3. Calculate the large-scale fading coefficients using the 3GPP urban microcell
model defined in section 2.2.2,

4. Compute the spatial correlation matrices Rkl for every AP l and UE k,

5. Compute the power allocation coefficients using the fractional centralized power
allocation heuristic defined in 3.3.3,

6. Generate channel realizations and compute the corresponding receive combin-
ing and transmit precoding vectors,

7. Use the channel realizations, receive combining and transmit precoding vec-
tors to compute samples of the SINR in both the uplink and downlink,

8. Compute the optimized clusters and pilot assignment by solving the optimiza-
tion problems using the genetic algorithm,

9. Calculate the desired performance metrics,

10. Repeat the procedure for the desired number of network layouts.

7.2 Numerical Results

This section describes two sets of experiments, the first of which, discussed in Sec-
tion 7.2.1, aims to evaluate the performance of the optimized clustering compared
to baseline clustering. Consequently, the pilot assignments remain fixed for this set
of experiments. The second set, elaborated in Section 7.2.2, aims to evaluate the per-
formance of optimized pilot assignments relative to the baseline pilot assignments.
Therefore, the clustering remains fixed for this set of experiments.

7.2.1 Evaluation of Clustering Solutions

This experiment assesses the performance of optimized clustering solutions rela-
tive to the baseline, which is defined in Section 6.1. Figures 7.1 and 7.2 display the
cumulative distribution function (CDF) of uplink and downlink spectral efficiency
achieved by UE k for different combining/precoding schemes, respectively. The op-
timized clusters exhibit superior performance to the baseline clusters in the uplink
for all combining schemes and in the downlink for all precoding schemes. To further
illustrate this observation, we present the 90% likely spectral efficiency for both the
uplink and downlink in Figures 7.3 and 7.4, respectively. The 90% likely SE is com-
puted by drawing a horizontal line CDF = 0.1 on Figures 7.1 and 7.2 and computing
the SE at the intersection point with each curve. The optimized clusters achieve
higher 90% likely SE values. We observe that the uplink experiences a more signifi-
cant improvement in performance than the downlink. This can be attributed to the
different mathematical structures of the SINR, which makes solving the downlink
problem more challenging. For instance, choosing all APs to serve a particular UE
in the uplink does not impact the performance of other UEs, whereas doing the same
in the downlink can significantly degrade the performance of other UEs.
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FIGURE 7.1: CDF of the uplink spectral efficiency of UE k

FIGURE 7.2: CDF of the downlink spectral efficiency of UE k
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FIGURE 7.3: Comparison of the 90% likely uplink spectral efficiency
of UE k achieved by the optimized and baseline clustering solutions

for fixed pilot assignment.
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FIGURE 7.4: Comparison of the 90% likely downlink spectral effi-
ciency of UE k achieved by the optimized and baseline clustering so-

lutions for fixed pilot assignment.
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7.2.2 Evaluation of Pilot Assignment Solutions

We conduct a performance evaluation of the optimized pilot assignment solution
and compare it with the baseline pilot assignment defined in section 6.1. The eval-
uation is based on the CDF of the uplink and downlink spectral efficiency achieved
by a random UE k using different combining/precoding schemes, as depicted in Fig-
ures 7.5 and 7.6, respectively. The results reveal that the optimized pilot assignment
outperforms the baseline pilot assignment in the uplink for all combining schemes
and in the downlink for all precoding schemes except for MR. Furthermore, Fig-
ures 7.7 and 7.8 demonstrate the 90% likely uplink and downlink SE, respectively.
The optimized pilot assignments show superior performance in both the uplink and
downlink. It is worth noting that even small enhancements in spectral efficiency
can translate to significant gains in information rate. For instance, a 0.1 increase in
spectral efficiency corresponds to a 0.1× 20 Mbps increase in the information rate.

7.3 Tightness of α− µ SINR Expressions

Recall the α− µ SINR expressions defined in section 4.4.3 as a closed form approxi-
mation of the uplink and downlink SINR for any combining or precoding method.
We run a simulation to estimate the values of the coefficients (αul

k , µul
k , αdl

k , µudl
k ) which

takes the following steps

1. Generate a set of channel realizations,

2. Compute centralized combining and precoding vectors,

3. Compute the uplink SINR for each of the combining methods,

4. Compute the downlink SINR for each of the precoding methods,

5. Compare the SINR achieved by each combining/precoding method to the SINR
achieved by MR combining/precoding to estimate (αul

k , µul
k , αdl

k , µudl
k ).

After the estimation is done, another phase of the simulation starts.

1. Generate a new set of channel realizations,

2. Compute centralized combining and precoding vectors,

3. Compute the uplink SINR for each of the combining methods,

4. Compute the downlink SINR for each of the precoding methods,

5. Compute the approximate uplink SINR for each of the combining methods
using the α− µ expression,

6. Compute the approximate downlink SINR for each of the precoding methods
using the α− µ expression.

The result is illustrated in figures 7.9 and 7.10 which demonstrates the approxima-
tion is tight. The spectral efficiency of UE k and its approximation are nearly an
exact match. However, there is a need for an efficient way to set the coefficients
(αul

k , µul
k , αdl

k , µudl
k ).
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FIGURE 7.5: CDF of the uplink spectral efficiency of UE k

FIGURE 7.6: CDF of the downlink spectral efficiency of UE k
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FIGURE 7.7: Comparison of the 90% likely uplink spectral efficiency
of UE k achieved by the optimized and baseline pilot assignment so-

lutions for fixed clustering.
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ciency of UE k achieved by the optimized and baseline pilot assign-

ment solutions for fixed clustering.
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FIGURE 7.9: Tightness of the α− µ uplink spectral efficiency expres-
sions

FIGURE 7.10: Tightness of the α− µ downlink spectral efficiency ex-
pressions
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Chapter 8

Conclusion and Future Work

In this thesis, the user-centric clustering and pilot assignment problems in cell-free
networks were studied, where solving both problems together was deemed neces-
sary as described in chapter 5. The main motivation for approaching these problems
is the lack of benchmarks and general formulations, as well as the subjectively de-
signed objective functions and heuristic algorithms used in most literature. Stochas-
tic non-linear binary integer programs were formulated for both the user-centric
clustering in Chapter 4 and the pilot assignment problem in Chapter 5. The pilot
assignment formulation was developed to consider user-centric clusters when eval-
uating the desirability of the pilot assignment, making it more efficient. The user-
centric clustering problem was solved by applying sample average approximation
and using the genetic algorithm, while the pilot assignment problem was solved di-
rectly using the genetic algorithm. However, no algorithm is known to guarantee
optimal solutions. Numerical experiments in chapter 7 showed that the optimized
solutions outperformed baseline solutions, resulting in reasonable spectral efficiency
gains. Additionally, approximate analytical expressions for the uplink and down-
link SINR were developed in Section 4.4.3 to eliminate the need for sampling. It was
demonstrated that these expressions were sufficiently tight, but there was no clear
way of setting their parameters.
There are several research directions which we recommend for future work:

1. Development of more efficient algorithms to solve the optimization problems,
which can approach the optimized solutions with a reasonable time complex-
ity. One promising approach could be to employ machine learning models that
use the optimized solutions as reference data for training.

2. Exploration of the proposed optimization approach in larger networks, non-
uniform distribution of UEs within the coverage area, and using different sys-
tem utility and performance functions.

3. Development of a heuristic approach to determine the parameters of α − µ
SINR expressions, thereby eliminating the need for sampling in the user-centric
clustering problem.

4. The present study assumes an ideal scenario where all UEs synchronize and
join the network simultaneously. However, in practical situations, the network
can operate while new UEs continue to join. Therefore, addressing the prac-
tical aspects of the problem, such as scalability of the clustering algorithm,
accommodating new joining UEs, establishing the first connection, and fre-
quency of cluster adaptation, is critical.
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Appendix A

Uplink and Downlink SINR
Expressions

This appendix aims to simplify the analysis and classification of the user-centric
clustering optimization problem by manipulating the uplink and downlink SINR
expressions. Specifically, the expressions are modified to become explicit functions
of binary assignment vectors x1, · · · ,xK, which represent the user-centric clusters.

A.1 Uplink SINR

Recall from chapter 3 that the uplink SINR of UE k can be written as

SINRul
k =

pk
∣∣E {vH

k Dkhk
}∣∣2

∑K
i=1 piE

{∣∣vH
k Dkhi

∣∣2}− pk
∣∣E {vH

k Dkhk
}∣∣2 + σ2

ulE {∥Dkvk∥2}
(A.1)

The signal part pk
∣∣E {vH

k Dkhk
}∣∣2 can be written as

pk
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Using the following identity∣∣∣∣∣ N

∑
i=1

ai

∣∣∣∣∣
2

=
1
2

N

∑
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N

∑
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where ai ∈ C, we rewrite the signal part in (A.2) as follows
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By using the uplink signal correlation matrix Tul
k of UE k defined in (4.12) which we

rewrite here for convenience.[
Tul

k

]
l j
=

1
2

(
E{vH

klhkl}∗E{vH
kjhkj}+ E{vH
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kjhkj}∗

)
(A.5)

The signal part can be written as the following quadratic form

pk

∣∣∣E{vH
k Dkhk

}∣∣∣2 = pkx
T
k Tul

k xk (A.6)

The interference term piE
{∣∣vH

k Dkhi
∣∣2} of UE i can be written as
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Using the identity defined in (A.3), we can rewrite (A.7) as
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By using the uplink interference correlation matrix Qul
ki between UE k and UE i de-

fined in (4.14) which we rewrite here for convenience.[
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The interference term of UE i can be written as

piE
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The noise term σ2
ulE
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∥Dkvk∥2} can be written as
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Using the receive combining correlation vector ck of UE k defined in (4.16), which
we rewrite here for convenience.

[ck]l = E{vH
klvkl} (A.13)

The noise term can be written as
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Finally, using equations (A.6), (A.10) and (A.14), the uplink SINR of UE k can be
written as

SINRul
k =

pkx
T
k Tul

k xk

xT
k (∑

K
i=1 piQul

ki − pkTul
k )xk + σ2

ulx
T
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which is an explicit function of the clustering assignment vectors x1, · · · ,xK.

A.2 Downlink SINR

Recall from chapter 3 that the downlink SINR of UE k can be written as
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We rewrite the signal part in (A.17) as follows
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By using the downlink signal correlation matrix Tdl
k of UE k defined in (4.13) which

we rewrite here for convenience.[
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The signal part can be written as the quadratic form∣∣∣E{hH
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Using the identity defined in (A.3), we can rewrite equation (A.21) as
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By using the downlink interference correlation matrix Qdl
ki between UE k and UE i

defined in (4.15) which we rewrite here for convenience.[
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The interference term of UE i can be written as

E
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i Qdl
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Finally, using equations (A.20) and (A.24), the downlink SINR of UE k can be written
as

SINRdl
k =

xT
k Tdl

k xk
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which is an explicit function of the clustering assignment vectors x1, · · · ,xK.
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