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ABSTRACT 

Ongoing climate changes can substantially impact soil nitrogen availability through its 

effects on other environmental conditions such as temperature, precipitation, and the frequency 

and intensity of extreme whether events, eventually altering the primary productivity of plants 

and ecosystems. Effects of environmental changes on soil nitrogen cycling and availability vary 

with among season and ecosystem. Nitrogen is a critical factor regulating the photosynthetic 

responses of plants to elevated [CO2] as it is a main component in photosynthetic enzymes and 

apparatus. Thus, changes in soil nitrogen availability will likely affect the ecophysiological 

responses to climate change, particularly elevated [CO2] and the effects can change with species.  

A good understanding of how nitrogen supply affects the physiological and morphological 

responses of plants to elevated [CO2] is critical for predicting plant performance under future  

climate conditions. This study examined the interactive effects of elevated [CO2] and nitrogen 

(N) supply on the physiological and morphological responses in yellow birch (Betula 

alleghaniensis britt.). Seedlings were exposed to two levels of [CO2] (ambient 400 µmol mol-1 

versus elevated 1000 µmol mol-1), and five levels of N supply (25, 50, 100, 150, and 200 mg N 

L-1) for 4 months. Seedling height, root collar diameter, specific leaf area, biomass, biomass 

allocation, and foliar gas exchange parameters were assessed.  The seedlings under higher 

nitrogen levels and elevated [CO2] had greatest height (average increase by 4.31%) and root 

collar diameter (average increase 18%), but smallest specific leaf area (average decrease by 

24.27%). Both [CO2] elevation and increasing nitrogen (N) supply increased the stem dry mass, 

leaf dry mass and total dry mass. Stem mass ratio (SMR) increased (by 13.51%) under elevated 

[CO2]. In contrast, both root to shoot ratio (RSR) (by 11.39%) and root mass ratio (RMR) (by 

6.57%) decreased under elevated [CO2]. However, the low nitrogen treatment did significantly 
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increase the root mass ratio and root to shoot ratio. The elevated [CO2] significantly increased 

rate of net photosynthesis, both Vcmax (by 21.22%) and Jmax (by 21.80%) but the effect on Jmax 

was statistically significant only at the two highest nitrogen (N) treatments. Yellow birch may 

increase their photosynthetic capacity, biomass, and growth in the future when both [CO2] and 

soil nitrogen availability will be higher due to continued increases in [CO2] emissions and 

associated increase in atmospheric nitrogen deposition. The biomass allocation between above 

ground and below ground organs may be altered due to the variation in nitrogen availability in 

soil. Additionally, the results of this study further underline the importance for considering the 

interactive effects of [CO2] and other environmental factors, such as soil nitrogen availability, for 

predicting the growth, survival and productivity of plants and plant communities under the future 

climate conditions. 

Keywords: climate change, yellow birch (Betula alleghaniensis Britt.), elevated [CO2], soil 

nitrogen availability, growth, biomass, photosynthesis. 
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INTRODUCTION 

Continued increases in atmospheric carbon dioxide (CO2) and other greenhouse gases 

will continue to cause long lasting adverse effects on global climate, such as a continued increase 

in global temperatures and changes in precipitation patterns (IPCC 2022). Elevated [CO2] at least 

temporarily stimulatesplantphotosynthetic activities and growth, and influence the species 

competitiveness in ecosystems (Franks et al., 2013, Thompson et al., 2017). The climate  change 

can also affect other environmental conditions such as soil nitrogen availability, eventually 

altering the primary productivity of plants and ecosystems (Shen et al., 2016, Maxwell et al., 

2022). Furthermore, the burning of fossil fuels has substantially increased atmospheric nitrogen 

deposition to the soil  over the last century and the increase is expected to continue in the 

foreseeable future (Erisman et al., 2013, Delgado-Baquerizo et al., 2016, Stevens, 2019). 

Elevated [CO2] generally increases photosynthesis and plant growth and the response tends to 

vary with plant species and site conditions, such as  soil nitrogen (N) availability  (Ambebe et al., 

2009, Vicente et al., 2016, Liang et al., 2020, Hu et al., 2021). A good  understanding of how  

elevated [CO2] and other environmental factors interactively affect the ecophysiological 

performance of plants  is crucial for properly assessing the response of plant communities and 

ecosystems, particularly in regions with  wide variations in environmental conditions in space 

and time (Bradley et al., 2010, Andresen et al., 2014, Fuchslueger et al., 2019, Wild et al., 2018).  

Soil nitrogen is one of most important essential elements to the functioning of plants and 

terrestrial ecosystems (Maxwell et al., 2022). It is a crucial factor to regulate photosynthetic 

responses of plants to elevated [CO2] as it is a main component in photosynthetic enzymes and 

apparatus (Kant et al., 2012). Elevated [CO2] also affects nitrogen availability in the soil by 

influencing plant nitrogen uptake, soil nitrogen transformations such as nitrogen mineralization 
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and nitrification, and the rate of soil nitrogen cycling (Mueller et al., 2013). For instance, 

nitrogen acquisition is increased in the plants that grow under elevated [CO2] directly (Luo et al., 

2006) and by increasing the size and depth of the root system (Finzi et al., 2007, Iversen, 2010). 

Moreover, elevated [CO2] can enhance litter decomposition and nitrogen mineralization 

(Kuzyakov, 2002, Dijkstra et al., 2008, Rütting et al., 2010, Phillips et al., 2011). Plants can 

acquire nitrogen more easily when organic nitrogen is mineralized to inorganic nitrogen (Ashton 

et al., 2010). Climate change influences the rate of organic nitrogen mineralization  (Burke et al., 

1997, Auyeung et al., 2013, Dawes et al., 2017, Liu et al., 2017). 

Photosynthesis is one of the primary physiological processes through which nitrogen 

supply affects plants (Jin et al., 2015, Vicente et al., 2016, Dong et al., 2017). Elevated [CO2] 

generally enhances photosynthesis (Harley et al. 1992, Norby et al., 2005, McCarthy et al. 2010, 

Franks et al., 2013), particularly C3 plants (Leakey et al., 2009, Lee et al., 2011). Many other 

studies have reported increases in photosynthesis by elevated [CO2] (Zhang et al., 2008, Ambebe 

et al., 2010). The increases in carbohydrate production under elevated [CO2] can alter carbon and 

nitrogen metabolisms (Thompson et al., 2017). However, photosynthetic responses to elevated 

[CO2] vary with other physiological and environmental variables (Ainsworth & Long, 2005). 

Low nitrogen supply reduces the positive effect of elevated [CO2] on photosynthesis (Ainsworth 

& Long, 2005, Ribeiro et al., 2021). 

Elevated [CO2] increases photosynthesis because it increases the rate of carboxylation in 

Rubisco and suppresses Rubisco oxygenation (Drake et al., 1997, Makino & Mae, 1999). 

However, long-term exposure to elevated [CO2] can cause the downregulation of photosynthetic 

machinery as has been found in both FACE and controlled-environment experiments (Ainsworth 

& Long, 2005, Warren et al., 2015). Whether photosynthetic downregulation occurs and the 
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degree of it  depend on nutrient availability (Reich et al., 2006, Bloom et al., 2010). Inadequate 

nitrogen supply leads to the downregulation of photosynthetic capacity under elevated [CO2] 

(Warren et al., 2015, Yin et al., 2019). Nitrogen limitation constrains the CO2 fertilization effect 

on plant productivity (Terrer et al., 2019). Photosynthetic downregulation  has been reported for 

many plant species grown under the limited nitrogen availability and elevated [CO2] (Wujeska‐

Klause et al., 2019, Birami et al., 2020, Ainsworth & Long, 2021). Photosynthetic 

downregulation optimizes the allocation of nitrogen among different uses and organs of the plant 

to enhance the nitrogen use efficiency at the whole plant level in terms of growth and fitness 

(Deans et al., 2020). The optimization of nitrogen distribution is considered as the biochemical 

basis of photosynthetic downregulation (Yin et al., 2019). The dilution of tissue nitrogen also 

occurs due to the accumulation of excessive carbohydrates under elevated [CO2] which reduce 

the mass based leaf nitrogen concentration (Rogers & Ellsworth, 2002, Kitaoka et al., 2016). The 

accumulation of nonstructural carbohydrates can lead to  feedback inhibition to photosynthesis 

and subsequent downregulation (Lambers & Oliveira, 2019) and the excessive accumulation of 

nonstructural carbohydrates suppresses the expression of genes for Rubisco synthesis (Ghildiyal 

& Sharma-Natu, 2000, Kelly et al., 2013). The accumulation of nonstructural carbohydrates 

occurs under elevated [CO2] and low nitrogen availability (Sugiura et al., 2017, Zheng et al., 

2019). However, some studies have found no correlation between photosynthetic downregulation 

and leaf nitrogen concentration or nitrogen supply (Pastore et al., 2019, Silva-Pérez et al., 2020). 

Other studies have found that plants increase nitrogen allocation to roots at the expense of above 

ground organs under elevated [CO2] (Cotrufo et al., 1998, Norby et al., 2010, Tobita et al., 2011, 

Xu et al., 2013).  Thus, a good understanding of how nitrogen supply affects the physiological 

and morphological responses of plants to elevated [CO2] is critical for predicting the 
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performance plant species and plant communities under future climate conditions (Tcherkez et 

al., 2017). Moreover, elevated [CO2] can inhibit nitrate assimilation in leaf tissues which in turn 

will increase the nutrient demand of plants (Singh et al., 2014, Li et al., 2015, Hao et al., 2016) 

and may result in the eventual depletion of nutrient pool in the soil (Singh et al., 2014).  

Elevated [CO2] and high nitrogen supply can have synergistic effects on the yield, and total 

biomass of plants (Dong et al., 2018). The synergistic effects result from the increase in 

photosynthetic nitrogen use efficiency under elevated [CO2]. Increases in [CO2] increases Rubisco 

carboxylation in C3 plants because CO2 a substrate for photosynthesis and the photosynthesis of 

C3 plants operates under  unsaturated [CO2] (Lemonnier & Ainsworth, 2018). However, soil 

nitrogen limitation almost always limits the scope of plant growth enhancement by elevated [CO2] 

(Kimball & Mauney, 1993, Poorter et al., 1997, Cotrufo et al., 1998, Ainsworth & Long, 2005, 

Feng et al., 2015).  

Yellow birch (Betula alleghaniensis Britt.) is a deciduous tree species in the north 

temperate zone and has a medium growth rate (Delagrange et al., 2004). Yellow birch has great 

ecological and commercial value, such as quality wood products, pharmaceutical substances, etc. 

(Lavoie & Stevanovic, 2005). The leaf, root, stem biomass, and root biomass ratio in yellow 

birch have been increased under elevated [CO2] conditions (Song & Cheng, 2010). Also, yellow 

birch growth is enhanced under elevated [CO2] conditions in mesic sites (Catovsky & Bazzaz, 

1999). However, yellow birch trees are more sensitive to environmental changes driven by 

climate change, and their mortality rate is also high under drought and freeze thaw conditions 

(Song & Cheng, 2010, Pike & Kern, 2022). Many other studies have reported synergistic effects 

of elevated concentrations of nitrogen (N) and [CO2] on photosynthesis and biomass in other 

birch species (Pettersson et al., 1993, Cao et al., 2008, Esmeijer-Liu et al., 2009, Zhang & Dang, 
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2013). Individual and interactive effects of multiple environmental factors such as elevated 

[CO2], light intensity, temperature on growth and physiology of various birch species have been 

studied so far (Esmeijer-Liu et al., 2009, Song & Cheng, 2010, Wang et al., 2023). Soil nitrogen 

is an essential macronutrient for plant function and climate change will further alter soil nitrogen 

availability in the future. It is, therefore, vital to understand how soil nitrogen availability will 

affect the responses tree physiology and growth to elevated [CO2] and how elevated [CO2] will 

affect trees growing on sites with different soil nitrogen availability. However, such knowledge 

on yellow birch is lacking. The objective of this study was to investigate the interactive effects of 

these two factors on growth and physiology of yellow birch seedlings. I hypothesized that higher 

nitrogen supply would enhance the magnitude of the positive effects of elevated [CO2] on the 

morphological and physiological performance of yellow birch and that trees grown under lower 

nitrogen supply would have a higher relative response to elevated [CO2] because elevated [CO2] 

would increase nitrogen use efficiency and thus reduce the degree of nitrogen stress.  

 

 

 

 

 

 

MATERIALS AND METHODS 

PLANT MATERIAL AND EXPERIMENTAL DESIGN 
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The experiment was conducted in the Lakehead University Forest Ecology Complex in Thunder 

Bay. Yellow birch seeds (Betula alleghaniensis Britt.) were obtained from the National Tree Seed 

Center Fredericton, New Brunswick, Canada (seed origin: 47.45ºN, -67.45 ºW). Seeds were 

stratified at 4 ºC for three weeks and then sown in horticultural trays filled with a mixture of peat 

moss and vermiculite (2:1, v/v). The day/night temperature and photoperiod during germination 

were set to 25/16◦C and 16 h photoperiod, respectively. Seedlings with relatively uniform size (2 

cm average height) were transplanted into pots (14 cm height × 13 cm length × 13 cm width) 

filled with peat moss and vermiculite (2:1, v/v) after ten days from germination.  

The treatment was comprised of two [CO2] treatments (ambient 400 µmol mol-1 versus elevated 

1000 µmol mol-1) and five nitrogen levels (25, 50, 100, 150, and 200 mg N L-1). The phosphorus 

and potassium concentrations were 60 and 150 mg L-1, respectively, for all the nitrogen 

treatments. The seedlings were fertilized once a week. The experiment was a split-plot design 

where the [CO2] treatments were applied to main plots (greenhouses), and nitrogen treatments 

were applied to subplots (location randomized within the greenhouse). Each [CO2] treatment was 

applied independently to two of the four greenhouses (two replications per treatment), whereas 

all the nitrogen treatments were applied to randomly located blocks within each greenhouse. The 

physical dimensions, layout, and environmental sensors and controllers are identical among the 

four greenhouses. There were ten seedlings in each treatment combination (2 levels of [CO2] and 

5 levels of nitrogen concentrations), and 2 replications, 10×2×5×2=200 seedlings. The locations 

of the seedlings were randomized within each greenhouse. The seedlings were spaced far enough 

from each other to avoid mutual shading.  

The [CO2] elevation was achieved using CO2 generators (model GEN-2E; Custom Automated 

Products Inc., Riverside, California, USA). The temperature and photoperiod were changed with 
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time to emulate the natural growing season. The environmental conditions (photoperiod, air 

temperature, [CO2], and humidity) in all the greenhouses were monitored and controlled 

automatically by an Argus Titan Environment-control system (Argus Control Systems Ltd, 

Vancouver, BC, Canada). Natural light was supplemented with artificial light from high-pressure 

sodium lamps. When the natural day length in the greenhouse was less than needed, high-

pressure sodium lamps were employed to extend the natural photoperiod. The volumetric 

moisture content of the growing medium was maintained 40-50% as measured with a HH2 

Moisture Meter (Delta-T Devices, Cambridge, UK). The experiment lasted for 120 days. The 

experiment was carried out for one growing cycle between December 1, 2022, and March 31, 

2023, and the environmental conditions were set to emulate the natural environmental conditions 

of June 4 to September 30. This study investigated the physiological and morphological 

responses of yellow birch seedlings to elevated [CO2] under five different nitrogen (N) levels. 

The highest and the lowest nitrogen (N) concentrations in this study were little bit higher and 

lower respectively than that found for the yellow birch seedlings grown under controlled 

environments (Zhu et al., 2001, Gastaldello et al., 2007, Wang et al., 2023). Seedlings have been 

used in this study as evaluating the performance of seedlings is a good indicator of tree responses 

(Anderson-Teixeira et al., 2013). Also, the younger plants are more responsive to the increased 

[CO2] (Dong et al., 2017). Thus, the consistency in results from different studies, both field 

research and controlled environment research by other researchers suggests that usage of 

seedlings under a controlled environment is suitable for examining the mechanisms of responses 

to multiple factors as several environmental factors can be controlled simultaneously can be a 

powerful tool for examining the responses of trees to the future challenging climate conditions, 

and (or) new locations.   
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FOLIAR GAS EXCHANGE MEASUREMENTS 

Foliar gas exchange was measured using a PP-Systems CIRAS-3 open gas exchange system with 

PLC3 Universal Leaf Cuvette (PP Systems, Amesbury, MA, USA) after 60 days of treatments 

(February 1-14). Three seedlings from each treatment combination were randomly selected for 

the measurements.  A healthy and fully expanded leaf (2nd mature leaf out of mature leaves from 

the top) was measured under the following conditions: 22 ◦C air temperature, 50% relative 

humidity, 800 μmol m−2 s−1 photosynthetically active radiation and sequentially at 400, 40, 20, 

40, 60, 80, 100, 150, 200, 300, 400, 500, 700, 1000, 1100, 1400 and 1600 μmol mol−1 CO2 for 

the ambient [CO2] measurement and sequentially at 1000, 40, 20, 40, 60, 80, 100, 150, 200, 300, 

400, 500, 700, 1000, 1100, 1400 and 1600 μ mol mol−1 CO2 for the elevated [CO2] 

measurements. The measurements were carried out between 7:00 a.m. and 3:00 p.m. when our 

tests showed relatively stable gas exchange measurements (after 3-4 minutes in each leaf). The 

net photosynthetic rate at growth [CO2] (Pn) and the corresponding stomatal conductance (gs), 

transpiration rate (E), and instantaneous water-use efficiency (iWUE) were extracted from the 

above measurements for statistical analyses. The sequence of measurements among different 

treatments were randomized to avoid systematic errors. 

GROWTH, BIOMASS, AND BIOMASS ALLOCATION 

All the seedlings were measured for total height and root-collar diameter. Five mature leaves 

were selected from each seedling for specific leaf area measurement using a WinFolia system 

(Regent Instrument Inc., Canada). The seedlings were then harvested, roots were washed and 

oven-dried at 70 oC for 48 h. The dry mass of foliage, roots, and stem were measured separately 

on an electronic balance. The dry mass of the leaves for the specific leaf area measurement were 

measured separately from other leaves for the determination of specific leaf area (SLA = leaf 
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area/leaf dry mass). The following biomass allocation parameters were calculated: leaf mass ratio 

(LMR = leaf mass/seedling dry mass), stem mass ratio (SMR = stem dry mass/total seedling dry 

mass), root mass ratio (RMR = root dry mass/total seedling dry mass) and root-to-shoot ratio 

(RSR = root dry mass/total leaf and stem dry mass). 

A/CI CURVE FITTING 

A biochemical model of photosynthesis was used to derive photosynthetic parameters from each 

set of gas exchange measurements (Farquhar & von Caemmerer, 1982). The parameters 

estimated were the maximum rate of Rubisco carboxylation (Vcmax) and the maximum rate of 

electron transport for RuBP regeneration under saturating light (Jmax). The model was fit 

employing a “default” fitting method using the “fitaci” function of the “plantecophys” package 

(Duursma., 2015) on the R software package 4.2.2 (R Development Core Team 2023). 

DATA  ANALYSIS 

The data were examined graphically for the normality of distribution (probability plots of 

residuals, Shapiro-Wilk normality test) and homogeneity of variance (scatter plots) using the R 

software (Version 4.2.2, R Development Core Team 2023) before being subjected to the analysis 

of variance (ANOVA). The effects of [CO2] and nitrogen were considered as “fixed effect” in the 

ANOVA. The full model used was: 

Yijk = µ + αi + ηk(i) + βj + (αβ)ij + εijk 

Where, µ = overall mean, 𝛼𝑖 = Fixed effect of CO2 treatment-whole plot factor (i = 1, 2), 𝛽𝑗 = 

Fixed effect of nitrogen treatment-split plot factor (j = 1, 2, 3, 4,5), (αβ)ij= Corresponding 

interaction term, ηk(i)= Whole plot error, εijk = split plot error.  
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An effect was considered significant if P ≤ 0.05. When ANOVA showed a significant (P ≤ 0.05) 

interaction or a significant nitrogen effect, Fisher’s Least Significant Difference (LSD) post hoc 

test was used to compare individual means. The sample size in this study was relatively small, 

which causes to increase the likelihood of real treatment effects being undetected (type II) error. 

LSD post-hoc test reasonably controls type II error for split plot design in this experiment. All 

the analyses were performed using the R studio software (Version 4.2.2, R Development Core 

Team 2023).  

 

 

 

 

 

 

 

 

 

 

RESULTS 

GROWTH 
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[CO2] and nitrogen supply had significant interactive effects on seedling height growth, root 

collar diameter growth (RCD), and specific leaf area (SLA) (Table 1). While seedling height 

generally increased with increasing nitrogen treatment in both [CO2] treatments, the difference in 

height was not statistically significant between the two highest nitrogen levels in seedlings 

grown under elevated [CO2] (Fig. 1a).  Elevated [CO2] significantly increased seedling height 

growth only under the 150 mg N L-1 nitrogen treatment (average increase by 4.31%) (Figure 1a). 

In contrast, the elevated [CO2] increased RCD in all the nitrogen treatments (average increase 

18%) but the increases at the two lowest nitrogen treatments were not statistically significant 

(Figure 1b). Seedling RCD generally increased with increasing nitrogen supply in both ambient 

and elevated [CO2] but the increases were generally greater under the elevated than ambient 

[CO2] (by 18.12%), particularly at higher nitrogen levels (Figure 1b).  

 

 

 

 

 

 

 

 

Table 1. Summary of ANOVA (P-value,  F value and Degree of freedom (DF)) results for height, 
RCD, and specific leaf area (SLA) of yellow birch seedlings grown under two [CO2] (C) (400 
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Vs. 1000 µmol mol−1) and five levels of nitrogen (N) supply. The numbers in bold font are 
statistically significant (P ≤ 0.05). 

Variable C (DF = 1) N (DF = 4) C × N (DF = 4) 
Height 
F  
P 

2.248   
0.137 

127.492 
<0.001 

3.474   
0.011 

Root collar diameter 
F  
P 

75.105 
<0.001   

108.650  
<0.001  

5.817 
<0.001 

Specific leaf area 
F  
P 

150.875   
<0.001 

14.426 
<0.001 

3.708   
0.0076 
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Figure 1: Mean (+SE), (a) height growth, (b) RCD, (c) specific leaf area (SLA) (n=5) of yellow 
birch seedlings grown under two levels of [CO2] (ambient Vs elevated), five levels of nitrogen 
supply for 4 months. Data are pooled across [CO2] for (c) left (n =20): five seedlings with two 
replications per treatment, two levels of [CO2], 5 x 2 x2=20). Means with different letters are 
significantly different from each other based on Fisher’s least significant difference post hoc test 
(p < 0.05). The significance of main effects and interactions are indicated as: ns, not significant; 
and *p <0.05; **p < 0.01; and ***p < 0.001 are indicated on the top of each graph. 
 

The specific leaf area (SLA) generally declined with increases in nitrogen supply but not all the 

differences between two adjacent levels of nitrogen supply were statistically significant (Figure 
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1d).  The elevated [CO2] treatment significantly reduced SLA across all nitrogen treatments 

(average by 24.27%) (Figure 1d).  

BIOMASS AND BIOMASS ALLOCATION 

 

Root, stem, leaf and total biomass all increased with increasing nitrogen supply, but not all the 

differences between adjacent nitrogen levels were statistically significant (between two lowest 

nitrogen levels and between two highest nitrogen levels) (Figure 2). The elevated [CO2] 

significantly increased total seedling biomass (relative increase of 15.95%), stem biomass 

(relative increase of 31.36%), leaf biomass (relative increase of 19.89%), and root biomass 

(relative increase of 6.11%), but the effect on root biomass was not statistically significant 

(Figure 2, Table 2).  

 

Table 2. Summary of ANOVA (P-value,  F value and Degree of freedom (DF)) results for root, 
leaf, stem, and total dry mass of yellow birch seedlings grown under two [CO2] (C) (400 Vs. 
1000 µmol mol−1) and five levels of nitrogen (N) supply. The numbers in bold font are 
statistically significant (P ≤ 0.05). 

Variable C (DF = 1) N (DF = 4) C × N (DF = 4) 
Root DM 
F  
P 

 
0.983   
0.324     

 
38.401 
<0.001 

 
0.030   
0.998 

Leaf DM 
F  
P 

 
12.663 
<0.001 

 
82.495   
<0.001 

 
0.226 
0.922971     

Stem DM 
F  
P 

 
19.135 
<0.001 

 
52.168 
<0.001 

 
1.346  
0.259       

Total DM 
F  
P 

 
9.150 
<0.001 

 
69.304 
<0.001 

 
0.237 
0.91666     
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Figure 2: Mean (+SE), biomass of yellow birch seedlings  grown under two levels of [CO2] 
(ambient Vs elevated), five levels of nitrogen supply for 4 months. Data are pooled across [CO2] 
for (a), (b), (c), (d) left (n =20): five seedlings with two replications per treatment, two levels of 
[CO2], 5 x 2 x2=20). Means with different letters are significantly different from each other 
based on Fisher’s least significant difference post hoc test (p < 0.05). The significance of main 
effects and interactions are indicated as: ns, not significant; and *p <0.05; **p < 0.01; and ***p 
< 0.001 are indicated on the top of each graph. 
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Table 3. Summary of ANOVA (P-value, F value and Degree of freedom (DF)) results for leaf 
mass ratio (LMR), stem mass ratio (SMR), root mass ratio (RMR), root to shoot ratio (RSR) of 
yellow birch seedlings grown under two [CO2] (C) (400 Vs. 1000 µmol mol−1) and five levels of 
nitrogen (N) supply. The numbers in bold font are statistically significant (P ≤ 0.05). 
 

Variable C (DF = 1) N (DF = 4) C × N (DF = 4) 
LMR 
F  
P 

 
0.156 
0.69373    

 
3.863 
<0.001 

 
0.075 
0.98971    

SMR 
F  
P 

 
16.141 
<0.001 

 
1.860 
0.124356     

 
0.393 
0.812843     

RMR 
F  
P 

 
5.638 
0.01970 

 
4.045 
0.00462 

 
0.333 
0.85491    

RSR 
F  
P 

 
5.661 
0.01946 

 
4.916 
0.00125 

 
0.207 
0.93385    
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Figure 3: Mean (+SE) biomass allocation of yellow birch seedlings grown under two levels of 
[CO2] (ambient Vs elevated), five levels of nitrogen supply for 4 months. Data are pooled across 
[CO2] for (a), (b), (c), (d) left (n =20): five seedlings with two replications per treatment, two 
levels of [CO2], 5 x 2 x2=20). Means with different letters are significantly different from each 
other based on Fisher’s least significant difference post hoc test (p < 0.05). The significance of 
main effects and interactions are indicated as: ns, not significant; and *p <0.05; **p < 0.01; and 
***p < 0.001 are indicated on the top of each graph. 
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Root to shoot ratio (RSR) (0.955) and root mass ratio (RMR) (0.478) were significantly greater 

in the lowest nitrogen supply (25 mg N L-1) than in other nitrogen treatments and were not 

significantly different among other nitrogen levels (Figure 3a,3c). In contrast, the leaf mass ratio 

was significantly smaller in the lowest nitrogen treatment (0.322) than other nitrogen levels 

(Figure 3b). The elevated [CO2] significantly decreased RSR (by 11.39%) and RMR (by 6.57%), 

but significantly increased SMR (by 13.51%) (Figure 3a,3c,3d).  

 

FOLIAR GAS EXCHANGE  

Elevated [CO2] treatment significantly increased the rate of net photosynthesis (Pn) (elevated: 

9.43 µ mol m-2 s-1, ambient: 4.65 µ mol m-2 s-1) and instantaneous water use efficiency measured 

at the growth CO2 (iWUE) (by 65.71%) (Figure 4a, Figure 4b, Table 4). Neither [CO2] nor 

nitrogen supply significantly affected stomatal conductance and transpiration rate (Table 4). 
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Table 4. Summary of ANOVA (P-value,  F value and Degree of freedom (DF)) results for rate of 
net photosynthesis (Pn), stomatal conductance (gs), transpiration rate (E), instantaneous water use 
efficiency (iWUE), maximum rate of Rubisco carboxylation (Vcmax), maximum of photosynthetic 
electron transport rate (Jmax) of yellow birch seedlings grown under two [CO2] (C) (400 Vs. 1000 
µmol mol−1) and five levels of nitrogen (N) supply. The numbers in bold font are statistically 
significant (P ≤ 0.05). 

Variable C (DF = 1) N (DF = 4) C × N (DF = 4) 
Pn 
F  
P 

 
161.581 
<0.001 

 
0.476   
0.753     

 
1.374   
0.256     

gs 
F  
P 

 
0.934   
0.338 

 
1.201   
0.322 

 
0.816   
0.521 

E 
F  
P 

 
3.622 
0.0628 

 
0.935 
0.4512   

 
0.226 
0.9224   

WUE 
F  
P 

 
35.281 
<0.001 

 
1.736     
0.157     

 
0.421     
0.792     

Vcmax 
F  
P 

 
11.713 
0.00125 

 
2.548 
0.05065 

 
0.696 
0.59849    

Jmax 
F  
P 

 
26.043 
<0.001 

 
0.931   
0.4536     

 
2.607   
0.0466 
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Figure 4: Mean (+SE) (a) rate of net photosynthesis (Pn), (b) instantaneous water use efficiency 
(iWUE), (c)  photosynthetic carboxylation rate (Vcmax), (d) photosynthetic electron transport rate 
(Jmax), (e) stomatal conductance (gs), (f) transpiration rate (E) of yellow birch seedlings grown 
under two levels of [CO2] (ambient Vs elevated), five levels of nitrogen supply for 4 months. 
Data are pooled across [CO2] for (a), (b), (c) (n =12): three seedlings with two replications per 
treatment, two levels of [CO2], 3 x 2 x2=12). Means with different letters are significantly 
different from each other based on Fisher’s least significant difference post hoc test (p < 0.05). 
The significance of main effects and interactions are indicated as: ns, not significant; and *p 
<0.05; **p < 0.01; and ***p < 0.001 are indicated on the top of each graph. 
 

 

The elevated [CO2] significantly increased both the maximum rate of Rubisco carboxylation (by 

21.22%) (Vcmax, Figure 4c) and the maximum photosynthetic electron transport rate Jmax (by 

21.80%) (Figure 4d). Jmax was significantly higher in the two highest nitrogen treatments than 

other nitrogen levels in seedlings grown under the elevated [CO2] (150 mg L-1: 78.88 µ mol m-2 

s-1, 200 mg L-1: 73.07 µ mol m-2 s-1), but nitrogen treatment had no significant effect on Jmax in 

the ambient [CO2] treatment (Figure 4d).   
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DISCUSSION 

 The elevated [CO2] increased seedling height and root collar diameter growth and the increases 

were greater at higher nitrogen (N) levels. However, this synergistic effect on height growth only 

occurred at 150 mg N L-1 nitrogen supply. The results are in general agreement with Cao et al., 

(2008) on white birch (Betula papyrifera Marsh.). This can be explained as greater stimulation of 

aboveground growth by elevated [CO2] under higher nitrogen supply due to increasing nitrogen 

use efficiency for photosynthesis and plant growth (Radoglou et al., 1992, Zerihun, 2000, 

Mohamed et al., 2013). The lack of significant positive effect of elevated [CO2] on height growth 

has been observed in several other tree species such as Eucalyptus miniata (Duff et al., 1994) and 

Populas (Liberloo et al., 2005). Generally, elevated [CO2] increased the height growth of plant 

species (Cao et al., 2008, Lamichaney et al., 2021). Plant height is vital morphological trait that 

directly related to plant growth (Wang et al., 2018). Height growth is one of the vital determinant 

factor for the survival of plant species and used as an indicator of fitness (Ying & Yanchuk, 

2006). Adequate height growth in early stages is important for the establishment of yellow birch, 

particularly regeneration in hardwood stands (Wang, 1965). 

Growth is generally positively correlated with specific leaf area (SLA) (Poorter et al., 1990, 

Cornelissen et al., 1996, Atkin et al., 1998, Reich et al., 1998, Lambers & Poorter, 2004, Shipley, 

2006). However, the elevated [CO2] treatment in this study significantly reduced specific leaf 

area (SLA) of yellow birch in all the nitrogen treatments. Similar results have been reported for 

white birch (Cao et al., 2008), barley and tomato plants (Chen et al., 2022). The reduction in 

specific leaf area (SLA) caused by elevated [CO2] can be interpreted as evidence for the 

accumulation of carbohydrates in the leaf and the subsequent dilution of nutrients (Roumet et al., 

1999, Zhang et al., 2006). These results suggest that yellow birch may have faster growth 
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resulting with thicker leaves due to the increased carbohydrate production under future [CO2] 

conditions in nitrogen rich sites in soil.  

Both [CO2] elevation and increasing nitrogen (N) supply increased the stem dry mass, leaf dry 

mass and total dry mass. These results are consistent with the findings of several studies 

(Catovsky & Bazzaz, 1999, Dijkstra et al., 2002, Cao et al., 2008b, Song & Cheng, 2010, Arsić 

et al., 2021). The [CO2] effect may be caused by the fertilization effect of elevated [CO2] on plant 

growth and biomass enhancement (Reich et al., 2014). Increased photosynthesis under elevated 

[CO2] lead to enhance the carbohydrate production which serves as building blocks for plant 

biomass production (Körner, 2006). Increasing biomass under higher nitrogen (N) supply also 

has been reported by several studies (Nguyen et al., 2003, Boussadia et al., 2010, Chen et al., 

2018). This may be caused due to nitrogen is a critical factor regulating the photosynthetic 

responses of plants to elevated [CO2] as it is a main component in photosynthetic enzymes and 

structures (Kant et al., 2012). Photosynthetic enhancement under higher nitrogen supply may 

explained as increase in chlorophyll content and Rubisco activity (Evans & Terashima, 1987, 

Fredeen et al., 1991, Fahl et al., 1994, Verhoeven et al., 1997, Tóth et al., 2002) because up to 

75% leaf nitrogen contained in chloroplasts, especially invested in Rubisco (Brown, 1978), 

consequently increasing the biomass production. Elevated [CO2] enhance the root biomass and 

growth by making larger/deeper root system and enhanced whole plant nitrogen sink strength 

(Finzi et al., 2007, Iversen, 2010). However, the elevated [CO2] alone did not have a significant 

effect on root dry mass in this study. While the reason for this result can’t be entirely explained, 

but similar effect has been reported by Benlloch-Gonzalez et al., (2014) on wheat that root 

biomass enhancing effect by elevated [CO2] was constrained by high temperature. These 

contrasting responses of belowground biomass and growth to elevated [CO2] appear to be related 
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to plant genotypic differences (Benlloch-Gonzalez et al., 2014). Therefore, the yellow birch 

biomass may be enhanced under future [CO2] levels along with soil nitrogen rich sites which 

may lead to enhance plant productivity and yield.  

Stem mass ratio (SMR) increased under elevated [CO2]. Similar results can be found in some 

other studies (Butterly et al., 2015, Morita et al., 2016) . For instance, Morita et al. (2016) found 

that stem mass ratio (SMR) is increased under elevated [CO2], which was in line with elevated 

[CO2] promotes stem growth.  Zhang & Dang, (2006) reported that high nutrient supply 

decreased root mass ratio (RMR) under elevated [CO2] in white birch (Betula papyrifera Mash.). 

Yazaki et al. (2001) observed elevated [CO2]-induced stimulation of stem diameter growth 

of Larix sibirica under relatively high nutrient conditions. This can be explained as increased 

biomass density of the stem under elevated [CO2] (Zhang et al., 2006). In contrast, both root to 

shoot ratio (RSR) and root mass ratio (RMR) decreased under elevated [CO2]. Tobita et al., 

(2019) has reported that biomass allocation to roots decreased with elevated [CO2] in Fagus 

crenata, broad leaf tree species. However, the low nitrogen treatment did significantly increase 

the root mass ratio and root to shoot ratio, supporting the theory that low nutrient supply 

stimulates biomass allocation to roots (Walker and Gessel, 1990, Marschner, 1995, Larcher, 

2003). Generally, plants grow under elevated [CO2] exhibit greater leaf thickness, more leaves 

per plant (Pritchard et al., 1999). Interestingly, elevated [CO2] had no effect on the leaf mass 

ratio (LMR) of yellow birch in this study. While this result is inconsistent with the majority of 

the literature, some other studies have reported that the elevated [CO2] had little or no impact on 

leaf initiation in plants which may indirectly affect for reducing the leaf biomass (Ford and 

Thorne, 1967, Rogers et al., 1980, Jones et al., 1984). So, it is suggested that the effect of 

elevated [CO2] on leaf development may depend on other environmental factors or plant 

javascript:;
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developmental stage (Ackerly et al., 1992). Also, these findings support other researchers' 

findings that [CO2] has no effect on biomass allocation among roots and shoots (Bosaca et al., 

1995, Gebauer et al., 1996, Tingey et al., 1996, Tissue et al., 1997, Curtis & Wang, 1998). Long 

term FACE studies suggest that elevated [CO2] has greater positive effects on the growth of 

aboveground than belowground parts of plants under higher nitrogen supply (De Graaff et al., 

2006). Plants adjust the balance between source and sink by altering the biomass allocation 

among different organs to maximize the total carbon gain (Piñero et al., 2016, Wang et al., 2022). 

The greater stimulation of aboveground growth by elevated [CO2] under higher nitrogen supply 

may be attributed to increases in nitrogen use efficiency for photosynthesis and plant growth as 

reported in the literature (Radoglou et al., 1992, Zerihun, 2000, Mohamed et al., 2013).  

The hypothesis that on the enhancing effect of higher nitrogen (N) on the positive effect of 

elevated [CO2] on physiological performance was partially supported: The elevated [CO2] 

significantly increased both Vcmax and Jmax but the effect on Jmax was statistically significant only 

at the two highest nitrogen (N) treatments. Similar findings have been reported about the 

enhancing effect of higher nitrogen supply on photosynthesis under elevated [CO2] (Ceulemans 

et al., 1997, Curtis et al., 2000, Zhang & Dang, 2006, Zhang et al., 2013). Photosynthetic 

enhancement under elevated [CO2] can be explained as increasing the rate of carboxylation in 

Rubisco while decreasing the rate of oxygenation (Drake et al., 1997, Makino & Mae, 1999) 

whereas photosynthetic enhancement under higher nitrogen supply may explained as increase in 

chlorophyll content and Rubisco activity (Evans & Terashima, 1987, Fredeen et al., 1991, Fahl et 

al., 1994, Verhoeven et al., 1997, Tóth et al., 2002) because up to 75% leaf nitrogen contained in 

chloroplasts, especially invested in Rubisco (Brown, 1978). Vcmax represents the maximum [CO2] 

assimilation capacity of the primary photosynthetic enzyme Rubisco and Jmax reflect the 
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maximum capacity of the electron transport chain for photosynthesis (Lambers & Oliveira, 

2019). Tedla et al., (2021) has reported that increased photosynthetic capacity (particularly Jmax) 

under elevated [CO2] condition in white birch (Betula papyrifera Marsh). But, Dang et al., 

(2021) has reported that elevated [CO2] and nitrogen availability interactively affected for the 

photosynthetic capacity via interactive effect on Vcmax, but not Jmax in black spruce seedlings 

Picea mariana [Mill.] which is contradict to my observation. So, plants have various strategies to 

maintain Jmax to Vcmax coordination that prevent from photoinhibition when carboxylation is 

limiting to maximize photosynthetic rates when light is limiting (Walker et al., 2014). This study 

suggests that stimulation of photosynthetic carbohydrate production in yellow birch by elevated 

[CO2] can be enhanced by increasing nitrogen supply through fertilization, improved nutrient 

cycling. Therefore, yellow birch may have higher photosynthesis under future [CO2] conditions 

with higher nitrogen availability in soil as climate change will further alter soil nitrogen 

availability in soil and further increasing atmospheric nitrogen deposition to the soil due to 

burning fossil fuels. However, the long-term exposure to elevated [CO2] cause to the 

downregulation of photosynthesis which has been observed under both FACE studies and 

chamber experiments (Ainsworth & Long, 2005, Warren et al., 2015).  

It is interesting to note that elevated [CO2] had no effect on stomatal conductance and 

transpiration which is contradict to the general findings. Elevated [CO2] generally enhance the 

photosynthesis and consequently plant growth and production (Ainsworth & Rogers, 2007, Xu et 

al., 2013). Elevated [CO2] decrease the stomatal conductance but promote water use efficiency 

(WUE) which benefit for plant growth, especially within climate change context drought 

conditions are expected to rise (Leakey et al., 2009, Sreeharsha et al., 2015). Sreeharsha et al., 

(2015) reported that elevated [CO2] increased the instantaneous iWUE due to simultaneously 
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maintaining both higher photosynthesis and stomatal conductance (gs). While the reasons for this 

result cannot be entirely explained, several studies have reported the several different stomatal 

responses to elevated [CO2]. Elevated [CO2] generally cause to decrease the stomatal 

conductance and leaf transpiration (Ainsworth & Rogers, 2007, Teng et al., 2009, Katul et al., 

2010, Gao et al., 2015). However, few experiments have reported that stomatal conductance (gs) 

did not respond to [CO2] concentrations in an obvious way (Ellsworth et al., 2012, Haworth et 

al., 2013, Ward et al., 2013, Bernacchi & VanLoocke, 2015, DaMatta et al., 2016). In contrast, 

stomatal conductance (gs) increase has been observed under elevated [CO2] in some plant species 

(Uddling et al., 2009, Zinta et al., 2014, Sreeharsha et al., 2015). Thus, stomatal responses under 

elevated [CO2] depend on many factors (Xu et al., 2016). For instance, stomatal behavior may be 

altered by several environmental factors alone or in combination such as water status, 

temperature, light (Lee et al., 2008, Perez-Martin et al., 2009, Hubbart et al., 2013, Laanemets et 

al., 2013, Igut et al., 2015). Also, stomatal short term behavior and long term developmental 

responses to environmental changes might occur together depending on plant species and 

genotypes (Gray et al., 2000, Ainsworth & Rogers, 2007, Haworth et al., 2013, DaMatta et al., 

2016). Thus, it can be concluded that elevated [CO2] effect on decreasing stomatal conductance 

is a general rather than universal response because of some unexpected factor effects (Xu et al., 

2016). Therefore, yellow birch may have higher photosynthesis under future [CO2] conditions 

with higher nitrogen availability in soil.  

In summary, the results of this study suggest that yellow birch may increase their photosynthetic 

capacity, biomass production, and growth in the future when both [CO2] and soil nitrogen 

availability will be higher due to continued increases in [CO2] emissions and associated increase 

in atmospheric nitrogen deposition. However, the biomass allocation between aboveground and 
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belowground organs may be altered due to the variation in nitrogen availability in soil. 

Additionally, the results of this study further underline the importance for considering the 

interactive effects of [CO2] and other environmental factors, such as soil nitrogen availability, for 

predicting the growth, survival and productivity of plants and plant communities under the future 

climate conditions.  
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APPENDIX 

 

Table 5. Growth characteristics (height, RCD, SLA) of yellow birch seedlings grown under two 
CO2 (400 vs. 1000 µmol mol−1) and five levels of N supply (25, 50, 100, 150, and 200 mg N L-

1). 

CO2 N Height 
(cm) 

RCD 
(mm) 

SLA 
(cm2 g-1) 

ambient 25 13.72 ± 0.77 ef 2.95 ± 0.19 f 289.03 ± 9.48 a 
 50 16.21 ± 0.98 de 3.32 ± 0.14 e 245.59 ± 10.08 b 
 100 21.88 ± 0.59 c 3.92 ± 0.13 d 232.16 ± 4.12 bc 
 150 26.62 ± 0.78 b 4.51 ± 0.09 c 215.85 ± 6.02 c 
 200 33.15 ± 0.90 a 4.65 ± 0.05 c 218.24 ± 8.14 c 

elevated 25 11.99 ± 0.95 f 3.24 ± 0.11 ef 194.57 ± 7.89 d 
 50 18.01 ± 0.99 d 3.59 ± 0.07 de 192.40 ± 7.16 d 
 100 23.3 ± 1.08 c 4.68 ± 0.16 c 181.39 ± 7.08 de 
 150 31.4 ± 1.08 a 5.39 ± 0.11 b 169.85 ± 5.63 e 
 200 31.69 ± 1.67 a 5.96 ± 0.16 a 171.25 ± 7.51 e 

Note: Each value represents mean ± SE (n=10). Different letters within the same column indicated 
statistically significant differences between treatments (Fisher’s least significant difference post hoc test 
(p < 0.05).  Variables: Height. RCD (root collar diameter), SLA (specific leaf area). 

 

  

 

Table 6. Biomass characteristics (root, leaf, stem, total dry mass) of yellow birch seedlings 
grown under two CO2 (400 vs. 1000 µmol mol−1) and five levels of N supply (25, 50, 100, 150, 
and 200 mg N L-1). 

CO2 N Root DM 
(g) 

Leaf DM 
(g) 

Stem DM 
(g) 

Total DM 
(g) 

ambient 25 0.70 ± 0.11 d 0.42 ± 0.05 g 0.27 ± 0.04 e 1.39 ± 0.18 e 
 50 0.75 ± 0.12 d 0.59 ± 0.07 ef 0.31 ± 0.05 e 1.65 ± 0.22 e 
 100 1.11 ± 0.12 bc 0.94 ± 0.07 cd 0.48 ± 0.08 cd 2.53 ± 0.26 cd 
 150 1.76 ± 0.14 a 1.37 ± 0.09 b 0.79 ± 0.06 b 3.91 ± 0.27 b 
 200 1.81 ± 0.14 a 1.51 ± 0.08 b 0.83 ± 0.05 b 4.14 ± 0.21 ab 

elevated 25 0.81 ± 0.12 cd 0.53 ± 0.08 fg 0.33 ± 0.04 de 1.66 ± 0.23 e 
 50 0.83 ± 0.09 cd 0.76 ± 0.06 de 0.43 ± 0.04 de 2.01 ± 0.17 de 
 100 1.19 ± 0.13 b 1.07 ± 0.10 c 0.61 ± 0.07 c 2.87 ± 0.27 c 
 150 1.83 ± 0.13 a 1.63 ± 0.11 ab 1.03 ± 0.09 a 4.48 ± 0.28 ab 
 200 1.84 ± 0.08 a 1.81 ± 0.07 a 1.13 ± 0.07 a 4.77 ± 0.15 a 
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Note: Each value represents mean ± SE (n=10). Different letters within the same column indicated 
statistically significant differences between treatments (Fisher’s least significant difference post hoc test 
(p < 0.05).  Variables: Root DM (root dry mass), Leaf DM (leaf dry mass), Stem DM (stem dry mass), 
Total DM (total dry mass).  

Table 7. Biomass allocation (LMR, SMR, RMR, RSR) of yellow birch seedlings grown under 
two CO2 (400 vs. 1000 µmol mol−1) and five levels of N supply (25, 50, 100, 150, and 200 mg N 
L-1). 
 

CO2 N LMR SMR RMR RSR 

ambient 25 0.33 ± 0.03 b 0.20 ± 0.01 cd 0.48 ± 0.03 a 0.97 ± 0.11 a 
 50 0.39 ± 0.03 a 0.18 ± 0.01 d 0.44 ± 0.03 abc 0.81 ± 0.08 abcd 
 100 0.38 ± 0.02 a 0.18 ± 0.02 cd 0.43 ± 0.01 abc 0.78 ± 0.04 bcd 
 150 0.35 ± 0.01 ab 0.20 ± 0.01 bcd 0.45 ± 0.01 ab 0.81 ± 0.03 abc 
 200 0.37 ± 0.02 ab 0.20 ± 0.01 bcd 0.43 ± 0.02 abc 0.78 ± 0.05 bcd 

elevated 25 0.32 ± 0.02 b 0.20 ± 0.02 bcd 0.48 ± 0.02 a 0.94 ± 0.07 ab 
 50 0.38 ± 0.02 a 0.21 ± 0.01 abc 0.41 ± 0.02 bc 0.71 ± 0.07 cd 
 100 0.38 ± 0.02 a 0.21 ± 0.01 abc 0.41 ± 0.02 bc 0.70 ± 0.06 cd 
 150 0.37 ± 0.01 ab 0.23 ± 0.01 ab 0.41 ± 0.02 bc 0.70 ± 0.05 cd 
 200 0.38 ± 0.01 a 0.23 ± 0.01 a 0.39 ± 0.01 c 0.63 ± 0.03 d 
Note: Each value represents mean ± SE (n=10). Different letters within the same column indicated 
statistically significant differences between treatments (Fisher’s least significant difference post hoc test 
(p < 0.05).  Variables: LMR: leaf mass ratio. SMR: stem mass ratio. RMR: root mass ratio. RSR: root to 
shoot ratio.  

 

Table 8. Foliar gas exchange (Pn, gs, E, iWUE, Vcmax, Jmax) of yellow birch seedlings grown 
under two CO2 (400 vs. 1000 µmol mol−1) and five levels of N supply (25, 50, 100, 150, and 
200 mg N L-1). 

CO2 N Pn 
(µ mol m-2 s-1) 

gs 
(µ mol m-2 s-1) 

E 
(µ mol m-2 s-1) 

iWUE 
(µ mol mol-1) 

Vcmax 
(µ mol m-2 s-1) 

Jmax 
(µ mol m-2 s-1) 

ambient 25 0.48 ± 0.48 b 141.17 ± 25.68 ab 1.57 ± 0.25 a 3.42 ± 0.77 bc 30.55 ± 2.82 abc 62.49 ± 3.11 bcd 
 50 4.3 ± 0.33 b 190.5 ± 19.08 ab 1.95 ± 0.15 a 2.31 ± 0.28 c 26.09 ± 2.39 c 59.81 ± 4.08 cd 
 100 5.2 ± 0.37 b 196 ± 22.93 a 1.79 ± 0.07 a 2.94 ± 0.14 bc 26.43 ± 1.65 c 54.86 ± 2.90 d 

 150 4.47 ± 0.52 b 126.83 ± 25.11 b 1.53 ± 0.27 a 3.46 ± 0.61 bc 28.63 ± 1.35 bc 54.29 ± 3.25 d 

 200 4.7 ± 0.44 b 157.17 ± 22.23 ab 1.62 ± 0.24 a 3.46 ± 0.82 bc 26.56 ± 2.05 c 54.67 ± 3.67 d 
elevated 25 9.3 ± 0.46 a 174 ± 26.15 ab 1.98 ± 0.21 a 5.03 ± 0.64 a 36.85 ± 5.36 ab 67.79 ± 3.16 bc 

 50 8.78 ± 0.27 a 184.33 ± 25.40 ab 2.05 ± 0.20 a 4.54 ± 0.57 ab 29.29± 2.58 bc 63.72 ± 4.31 bcd 
 100 8.42 ± 0.65 a 186 ± 22.27 ab 2.03 ± 0.20 a 4.24 ± 0.32 ab 28.19 ± 2.13 bc 65.07 ± 3.78 bcd 
 150 11.03 ± 1.26 a 184.67 ± 23.61 ab 1.88 ± 0.18 a 6.17 ± 0.82 a 38.22 ± 2.87 a 78.88 ± 4.27 a 
 200 9.6 ± 0.82 a 154 ± 19.72 ab 1.72 ± 0.17 a 5.86 ± 0.73 a 35.05 ± 2.28 ab 73.07 ± 5.45 ab 

Note: Each value represents mean ± SE (n=6). Different letters within the same column indicated 
statistically significant differences between treatments (Fisher’s least significant difference post hoc test 
(p < 0.05).  Variables: Pn (rate of net photosynthesis), gs (stomatal conductance), E (transpiration rate), 
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iWUE (instantaneous water-use efficiency), Vcmax (maximum rate of Rubisco carboxylation), Jmax 
(maximum of photosynthetic electron transport rate). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

   

 


