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ABSTRACT

The ability to handle objects and recognize them and their properties by touch is a crucial

ability that humans have. Thanks to tactile sensing, robots can do something similar by

perceiving specific physical characteristics of the objects they are in contact with. However,

to do so in unstructured environments remains a challenge. The present work proposes a

novel method for blind texture classification on uneven surfaces, using data from a robotic

manipulator’s kinematic chain and a compliant tactile sensing module composed of MARG

and barometer sensors. The data from the manipulator’s kinematic chain and the defor-

mation of the sensing module are used to estimate the contact position and the vector

normal to the surface. Contact points and normal vectors are then used to estimate control

points for splines used to generate patches of surfaces. The reconstructions were validated

in experiments with five surfaces, and a comparison with a vision system shows that it

can achieve slightly better estimates. These estimations are used to train a Reinforcement

Learning model for pressure-control, which adjusts the position of the manipulator’s end

effector based on barometer readings, allowing the tactile sensing module to keep in touch

with the surface without applying too much pressure on it. Trajectories for sliding motions

are created by selecting points from the reconstructions and adjusting their position. Tactile

data from trajectories with and without adjustment are collected and used for classification.

Results show that the adjustment leads to an improvement of up to 30% in top-1 accuracy,

reaching 90% on four textures. This work is a first proposal for texture classification on

uneven surfaces where the exploratory motions depend on the object pose and shape, and

could serve as a complementary system where vision is compromised.
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Chapter 1

Introduction

Achieving robust, flexible, and adaptive grasping and manipulation in unstructured envi-

ronments (i.e., dynamic settings that change often) remains a challenge [1, 2]. For robots

to be able to explore unfamiliar environments, it is necessary for them to have systems

capable of exploiting the sense of touch [3,4], but robotic systems aren’t yet fully capable of

applying tactile sensing, an essential capability for object recognition and pose estimation

tasks, which are also essential for applications such as object grasping and manipulation,

and hazardous environment operations [2, 5].

One of the main challenges for robotic manipulation in unstructured environments is

the accurate perception needed to model the environment’s objects’ static and dynamic fea-

tures. Most current robotic applications make use of computer vision perception to acquire

some of such features [6, 7]. But this technology may fail in unstructured environments for

several reasons. For example, different textures, colors, and shapes can be difficult for a

computer vision system to identify and track accurately. Additionally, lighting conditions

in unstructured environments can vary widely, leading to poor image quality and making it

difficult to detect objects or features of interest. Another reason is that unstructured envi-

ronments can be cluttered, with many objects close to one another, making it challenging

to separate and identify individual objects. Lastly, unstructured environments are often not

controlled or predictable, making it difficult for a computer vision system to operate based

on pre-programmed or learned models and rules.

The solution to avoid such drawbacks remains in sensor fusion. Having different sensing

modalities such as vision and touch can provide a more accurate perception of the envi-

ronment to the agent [8]. Redundant information can be used to reduce uncertainties and

have a synergistic effect, where features from the environment can be detected in situations

where using the information from each sensor separately would be impossible [9].

Haptic perception, or the sense of touch, can provide robots with valuable information

about objects’ texture, shape, and compliance in their environment. Attempts to fuse vision
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and touch started in the 1980’s [10], and showed positive results for object recognition,

reconstruction, and grasping [11,12].

Tactile information can improve the precision and robustness of robotic manipulation

tasks, such as object recognition and tracking, particularly in unstructured environments

where objects may have uncertain or variable properties. Additionally, it can allow a robot

to detect and respond to unexpected environmental changes, such as an object slipping out

of its grasp, which may not be immediately apparent through vision alone.

Tactile perception can also aid computer vision by providing information about the

compliance or stiffness of objects, which is helpful for grasping and manipulation tasks. For

example, it can be used to determine if an object is soft, such as a rubber ball, or hard as a

metal cylinder. This information can help the robot to adjust its grip and avoid damaging

the object or environment. Overall, incorporating tactile perception into a robot’s sensor

suite can improve the accuracy and robustness of its computer vision system.

The recent development of new tactile sensors and skins has provided new opportuni-

ties for applying tactile sensing in robotic applications. Nonetheless, the right computing

method to extract the encoded information is just as crucial to an application as the different

types of tactile sensors [2]. Tactile approaches usually need much more time to collect points

of contact at each probe but provide more precise local information regarding the surface

than vision approaches [13–15]. This means that high accuracy and real-time performance

remains an open problem.

Tactile sensing is a very restricted instrumental modality that only captures the local

stimulus surrounding a sensor, despite its strong performance in various scenarios. Fortu-

nately, the restriction can be overcome by combining the sensing with exploratory robotic

movements to increase the contact area, necessitating both spatial and temporal decoding

to understand the signals [16]. In cases where the surface is flat, these movements can be

easily created, but this is not the case when dealing with curved surfaces. In the latter, the

robot needs to know beforehand the position of waypoints and the relative orientation of

the robotic system at these points to create a trajectory. For that, it is necessary to have

an accurate estimation or graphical model of the surface shape and pose. Previous works

have shown that tactile surface reconstruction provides more accurate results than vision

approaches but are less used due to their time-consuming process of collecting data [2].

Thanks to the development of new tactile sensing modules, several works have shown

that dynamic touch using sliding motions can accomplish high accuracy in texture classi-

fication [16, 17]. By executing a trajectory over several different textures, readings from

multiple sensors can capture the features of each texture and be used as time-series data

for classification. However, to this day, no approach for texture classification on non-flat

surfaces was found.
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1.1 Objectives

The present study proposes a first approach for tactile texture classification from

blind tactile surface reconstruction on uneven surfaces, where the exploratory motions

depend on the surface at hand. For that:

• Develop and validate a novel blind surface reconstruction method to generate ex-

ploratory trajectories.

• Develop a system for trajectory adjustment to better capture tactile data.

• Classify different textures from tactile data gathered through exploratory motions on

curved surfaces.

This work combines tactile data from a MARG (Magnetic, Angular-Rate, Gravity) and

barometer sensors, and kinematic data from a robotic manipulator. The tactile sensing

module acts as the manipulator’s end-effector, and is supported by a flexible compliant

frame, offering real-time data for computing orientation and position. The proposed method

generates artificial points from the collected data, called control points, through a geometri-

cal approach. From the grid of collected and generated points, surface patches (2cm×2cm)

are generated using Non-Uniform Rational B-Splines (NURBS), and multiple patches are

stored together forming the overall surface.

These estimations can provide information about the object pose, and its shape, essen-

tial to perform exploratory movements. A subset of the estimations is manually selected

(waypoints), and can be used to form a trajectory on top of the surfaces. As the way-

points are still estimations, a fine adjustment of their position must be performed using

a pressure-control system, keeping the sensing module in contact with the surface while

giving enough space for it to vibrate and collect accurate tactile data. This system is

trained using Proximal Policy Optimization (PPO), a Reinforcement Learning approach

to learn from exploration. It performs fine adjustment of the waypoints positions based

on the barometer sensor level and allows the manipulator to perform smooth exploratory

movements. Sensors readings from three different trajectories are collected on four different

texture and used in a time-series classification model based on Long Short-Term Memory

(LSTM). The present work reduces the amount of contact needed for generating the es-

timation, which significantly reduces the amount of time for collecting data, one of the

most time-consuming steps in tactile approaches in comparison to vision ones. It achieves

90% accuracy on the trajectories with fine adjustment versus 63% on the same trajectories

without any adjustment, and can be used as a first proposal for texture classification on

non-flat surfaces.
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1.2 Thesis organization

This thesis is organized into the following chapters:

1. Chapter 1: Introduction

This chapter provides an overview of the research problem, presents the objectives

and significance of the study, and outlines the structure of the thesis.

2. Chapter 2: Literature review

This chapter reviews the existing literature related to the research topic, highlighting

the key theories, concepts, and previous studies in the field.

3. Chapter 3: Methods

This section presents the methods that will be later employed in the present work.

Benefits and advantages of each methods for surface reconstruction, robotic manipu-

lation, and texture classification are also shown.

4. Chapter 4: Tactile texture recognition from blind surface reconstruction

This chapter describes the research methodology, including the research design, data

collection methods, and analytical techniques employed.

5. Chapter 5: Results & Discussion

This chapter presents the findings of the research, analyzes the collected data, and

discusses the results in relation to the research objectives.

6. Chapter 6: Conclusion

This chapter interprets the results in light of the research questions, and discusses

their implications.
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Chapter 2

Literature Review

2.1 Tactile Perception

For humans, tactile sensing is fundamental for our interactions with the world. It allows us

to perceive texture, pressure, temperature, and vibrations, enabling us to manipulate ob-

jects, recognize shapes, and discern the properties of the surrounding environment. Tactile

sensing also plays a critical role in social interactions, such as conveying emotions through

touch, establishing connections, and providing comfort and reassurance.

In the field of robotics, tactile sensing is an area of active research and development.

Integrating tactile sensors into robotic systems can enhance their perception, manipulation,

and interaction capabilities. Tactile feedback enables robots to interact with objects and

humans in a more dexterous and safe manner. By leveraging tactile information, robots can

improve their object recognition and manipulation skills, adapt to uncertain and dynamic

environments, and ensure the safety of human-robot interactions.

In industrial settings, tactile sensing allows robots to perform delicate tasks that require

precise force control, such as assembly, pick-and-place operations, and quality inspection.

Tactile sensing can provide valuable feedback during these tasks, enabling robots to detect

contact forces, handle fragile objects without damaging them, and ensure proper alignment

and fit. Having accurate tactile sensing systems capable of communicating useful informa-

tion from the environment to the robot is of the utmost importance [3,4]. Tactile perception

is a complementing source of information to visual perception for many robotic activities.

However, developing less time-consuming tactile systems that can deliver real-time estima-

tions precise enough to be used in the field remains a challenge [2]. The rapid development

of tactile sensors has not been fully accompanied by the interpretation of tactile sensor

readings. There are only a few survey articles in the literature that focus on reviewing

computational intelligence methods applied in tactile sensing. The improvement in tactile

sensor spatial resolution and fast temporal response presents an opportunity to leverage
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state-of-the-art techniques from machine learning, signal processing, computer vision, and

sensor fusion for tactile sensing applications.

In previous methods for estimating surfaces, solutions computing the estimates using

visual information [6, 7] are chosen over tactile approaches because they are significantly

faster while providing sufficient accuracy. These techniques are not applicable when external

factors have a negative impact on the visual data quality. Occlusions, which can be caused

by viewing angles and shape concavities, are another problem. In tasks such as object

recognition and grasping, vision has been integrated with tactile sensing but has its usability

limited in in-hand dexterous manipulation of objects [46]and fine surface features perception

[47].

For example, in [19] the authors state that the the main challenges in replicating human

touch sensing mechanisms are the low resolution of artificial tactile images, complex data

interpretation, and the clumsiness of robot hand technology compared to the nimble dexter-

ity of the human hand. They achieve high accuracy in profile recognition tasks but results

are limited to linear motions. They conclude that there are still many challenges to be

overcome in order to achieve human-like tactile perception. The authors in [20] state that

to emulate human-like capabilities, specialized robotic hands with articulated fingers and

various sensors for force, tactile, and kinesthetic feedback are necessary to control the forces

and motions exerted on manipulated objects. Generally, there has been limited interest in

intelligent computational models for interpreting data from such sensors and integrating

human tactile properties into robotic systems.

Haptic exploration of unknown objects is crucial for a robot to autonomously perform

grasping and manipulation tasks [21], as well as recognize their texture and shape. Research

developed from a robotic perspective [22], enhance our understanding of how humans per-

form certain tasks. This justifies the interest in developing improved robot hand capabilities

by drawing inspiration from human tactile perception over the years. The present work ex-

plores the presented gap by proposing an approach for blind surface reconstruction that

is later employed for reinforcement learning training in the real world, and exploratory

motions.

2.2 Robotic Manipulation

Robotic manipulation, the ability of robots to interact with and manipulate objects in

their environment, has witnessed significant advancements in recent years [69–71]. These

advancements have been driven by developments in various areas, including perception,

planning, control, and machine learning. Here are some major advancements in robotic

manipulation:

1. Vision-Based Perception: Robots use advanced computer vision for better envi-
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ronmental understanding, object recognition, and pose estimation, enhancing grasping

and manipulation tasks.

2. Grasping and Manipulation Planning: Research on robotic grasping has led to

improved algorithms for optimal grasps based on object geometry, stability, and task

requirements. Manipulation planning enables complex manipulation tasks.

3. Soft Robotics: Soft robots made of flexible materials offer adaptability, dexterity,

and safe human interaction. They use grippers that conform to various object shapes

for versatile manipulation.

4. Reinforcement Learning: Robots learn manipulation skills through trial and error

using reinforcement learning (RL), allowing complex behaviors and adaptation to

dynamic environments.

5. Force and Tactile Sensing: Robots integrate force/torque and tactile sensors for

better understanding of object interaction, enabling precise manipulation tasks and

monitoring object stability.

6. Collaborative and Dual-Arm Manipulation: Robots collaborate with humans

or other robots to share tasks and assist in complex manipulation scenarios. Dual-arm

manipulation offers improved dexterity.

7. Dexterous Manipulation in Unstructured Environments: Robots can manip-

ulate objects in unstructured environments using advanced perception, planning, and

control, handling clutter, unknown objects, and uncertain object poses.

These advancements in robotic manipulation have opened up new possibilities for robots

to interact with and manipulate objects in various domains, including manufacturing,

healthcare, logistics, and domestic settings. Indeed, the interest to achieve human-like

robotic manipulation is shown by proposals of humanoid robotic hands [31], fingers [33] for

object and texture recognition tasks. Previous work have also shown how its possible to

control robotic grasping using tactile sensing gloves to approximate human and machine

behavior in simple tasks [32]. Ongoing research and technological advancements continue

to push the boundaries of robotic manipulation, enabling robots to perform more complex

tasks with improved dexterity, adaptability, and autonomy.

In unstructured environments, applying too much contact to a surface or losing it alto-

gether is easy. Different objects can have different shapes making a requirement for robotic

manipulation in unstructured environment to understand orientation and position. Authors

in [34, 35] show how a tactile sensing module can be used to predict accurate orientation

combining it with sliding motions. In [34] they perform it without a camera reference during



8

the grasp phase, thus supporting the use of temporal tactile data for orientation estimation

of in-hand objects in unstructured environments. For this, controlling the relative position

between the sensing module and the surface is essential. The authors of [36] explore tactile

object identification under two situations: single grasp, analogous to the haptic glance in

humans, and through brief exploratory procedures where a robotic thumb displaces the

grasped object to excite the sensors. They show the importance of machine learning tech-

niques to process tactile data from grasping motions, and how these movements provide

effective data for object recognition. Despite the interesting results showing the importance

of tactile data for complex tasks in unstructured environments, what can be also extracted

is the need for and the lack of proposals for exploratory motions. Indeed the presented

results are limited to simpler movements in controlled environments.

In [37], the authors perform non-linear motions on flat surfaces. These surfaces are

covered with fabrics and the robotic agent rubs its forearm to gather tactile data for classi-

fication. Other experiments use only linear motions, either by moving the robotic systems

on a flat surface, such as a table, or by keeping the sensor still while moving the surface

underneath. In this work we focus on the task on collecting tactile data for classification

on curved surfaces. A crucial ability to explore objects in unstructured environments where

vision is compromised or can’t be used at all.

The present approach focuses on uneven surfaces where exploratory motions are more

complicated due to the different orientation of the surface at different locations. For that,

this work presents a reinforcement learning approach for adjusting the position of points

in exploratory trajectories, enabling the collection and analysis of tactile data in scenarios

closer to the real life.

2.3 Surface Reconstruction

One of the most important tasks in tactile sensing is the reconstruction of surfaces and

objects with high precision for exploration of terrains and manipulation of objects. Indeed,

tactile sensing has proven its superior accuracy for surface reconstruction in many scenarios.

Earlier tactile proposals date back to the 1980s [10, 13]. On previous works using tactile

data [2], approaches using contact points have more applicability in different scenarios, can

work with a wider variety of tactile sensors, and retrieve arbitrary shapes. This is useful in

unknown environments where the surfaces can assume any shape. Contact points are also

useful for generating a graphical model of the surface shape and the points’ spatial distribu-

tion is revealed. This can be used for pose and location estimation, grasping, manipulation,

and exploration of terrains. This information can be useful in model-based training where

the copied environment must be as close as possible to the real scenario [5, 7], as well as

real world applications where the robot must plan and execute trajectories in an unknown



9

environment.

One downside found in these approaches is the amount of points necessary to generate

the model of the surface. Authors in [14, 15] make use of control points to estimate the

surface shape but need a dense set of points to provide accurate estimations, and are

therefore too time consuming. In [25] the authors show an approach to reconstruct surface

patches using 1-D data from robot finger tracking. They generate three concurrent curves

and from them create a surface patch, achieving good accuracy but limiting the results for

small regions as the complexity for curve-fitting rises with the size of the patch.

Another issue involves the reconstruction of the estimation from the tactile data. Meth-

ods that involve polynomial fitting face a trade-off between the estimation accuracy and

computational complexity. For example, the authors of [7] try to reconstruct shapes using

a multi-fingered dexterous hand. Given the relative position of the fingers on the touched

surface they can estimate the overall shape. Using superquadric functions they fill the gaps

to create the estimations. The drawback is that the more points they use, the more com-

plex becomes the solution to the superquadric function. Another approach fits polyhedral

structures to a set of contact points for object recognition but this solution face problems

when dealing with complex structures that cannot be approximated to polyhedral [26]. Our

proposal does not depend on the size of the studied surface as it estimates one patch at a

time, with a constant number of points per patch, making this solution more suitable for

unknown environments with a wide variety of surfaces.

More recent approaches for surface reconstruction showed the applicability of contact-

based solutions in object recognition. Authors of [27] use a three-finger manipulator with

tactile sensing arrays to touch 100 times an object at several locations, and from that

collection of points they perform object recognition comparing the retrieved cloud to a

known database. Another proposal also uses a three-finger manipulator to touch 5 to 20

times underwater objects [28], collecting features and comparing them to a database for

object recognition. The downside found in these works is the time taken to collect the data,

the manipulators have to touch several times the object to generate sufficient information

for it to be recognized. Our approach differentiates from these proposals as we require much

less contact to reconstruct the surface while also generating a mesh, or graphical model,

essential for exploration and manipulation in unknown environments.

Other recent proposals use a material called Gelsight [29, 30], which can provide high-

resolution estimations of surfaces. By pressing the gel against an object, the surface is

printed on it allowing for a camera to collect the deformation and provide precise graphic

models for pose estimation, texture classification, and other tasks. However, the sensing

modules using this technology are difficult to miniaturize due to the included camera and

LED’s [2], making it a bulky solution that isn’t yet scalable. Some of these sensing modules

also face normal estimation errors due to its high sensitivity to small curvatures. Our
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solution doesn’t focus on high-level visual descriptors but can provide accurate estimates

for larger areas, it uses a much more compact sensing module, with no usage of cameras,

and can be scaled using multiple copies of the same module for faster reconstructions.

These recent achievements through tactile sensing are crucial as a more accurate un-

derstanding of the objects that the robots are interacting with helps to adjust the control

strategy and control parameters, leading to more efficient and possibly safer motions. Un-

fortunately, even if tactile approaches for surface reconstructions offer superior precision

than vision, they demand a long time for collecting tactile data or use bulky sensing mod-

ules. It is necessary then to have a tactile system for estimating an object pose and shape

with less probing without sacrificing too much on precision.

2.4 Texture Classification

Texture classification has witnessed significant advancements over the years, driven by ad-

vancements in machine learning techniques, feature extraction methods, and the availability

of large-scale texture datasets [57–61]. These advancements have greatly enhanced the ac-

curacy and robustness of texture classification systems across various domains. Here are

some major advancements in texture classification:

1. Feature Extraction: Deep learning-based approaches, particularly Convolutional

Neural Networks (CNNs), have demonstrated remarkable success in learning discrim-

inative features directly from raw textures. CNNs can automatically extract hierar-

chical representations capturing both low-level and high-level texture patterns.

2. Transfer Learning: Transfer learning has played a significant role in texture classi-

fication advancements. Pre-trained CNN models, trained on large-scale datasets like

ImageNet, can be fine-tuned or used as feature extractors for texture classification

tasks. This approach leverages the knowledge learned from diverse image categories

and enables better generalization to texture-specific datasets with limited labeled

samples.

3. Spatial Pyramid Pooling: Spatial Pyramid Pooling (SPP) is a technique that al-

lows CNNs to handle textures of various sizes by aggregating features at multiple

spatial scales. SPP enables the classification of textures at different levels of granu-

larity, capturing both local and global texture information effectively.

4. Ensemble Learning: Ensemble methods, which combine multiple classifiers, have

shown improved performance in texture classification. By aggregating the predictions

of multiple classifiers, ensemble models can reduce errors and enhance the overall



11

classification accuracy. Techniques like Random Forests, AdaBoost, and Bagging have

been applied to texture classification, leading to enhanced classification performance.

5. Data Augmentation: Generating augmented data has proven valuable in texture

classification. Techniques such as rotation, translation, scaling, and adding noise to

the texture samples increase the diversity of the training data, leading to improved

generalization and better robustness against variations in texture appearance.

6. Hybrid Approaches: Hybrid approaches that combine multiple texture descriptors

or multiple classification algorithms have gained attention. For example, combining

color and texture information or fusing features extracted using different methods

(e.g., handcrafted and deep learning-based) can yield more discriminative representa-

tions and boost classification accuracy.

7. Domain Adaptation: In real-world scenarios, texture classification may face chal-

lenges due to domain shifts, where the training and test data come from different

distributions. Domain adaptation techniques aim to mitigate this issue by adapting

the learned texture representations from a source domain to a target domain with lim-

ited labeled data. This enables improved generalization and performance on unseen

texture samples.

These advancements in texture classification have propelled the field forward, enabling

more accurate and robust texture analysis across a wide range of applications, including

image retrieval, medical imaging, material recognition, and surveillance systems. Ongoing

research and the application of innovative techniques continue to drive further advancements

in texture classification.

Taking inspiration from how humans attempt to identify textures solely with their skin

by sliding and rubbing fingers on surfaces, multiple works have shown that using exploratory

movements with tactile sensing modules can provide high accuracy in classification tasks

[16, 18, 23]. According to Weber et al. study on human tactile perception [24], certain

invariant tactile features can be retrieved through touching and sliding/rubbing and cannot

be extracted from visual data. Our study aims to classify four different textures on uneven

surfaces using this idea of sliding motion to capture small features through vibrations.

The kind of features that can be derived from tactile data typically depends on the

chosen sensing technology. When it comes to texture classification, there are two main

methodological trends. The first either makes use of a high-resolution vision-based sensor

[29, 30] or crops time-series data [37] to create tactile images and instantly encode the

spatial textures. While the second kind of technique uses vibration-sensitive sensors to

gather tactile signals [16, 17]. In both trends, Deep learning is the tool that has been used
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the most with Convolutional Neural Networks (CNNs) for visual feature extraction and

Recurrent Neural Networks (RNNs) for temporal features.

In [17] the authors perform a tactile profile classification using a sensing module equipped

with barometer and MARG sensors. They show that the 1D signal from barometer and 3D

signals from accelerometer, gyroscope and magnetometer can be used in neural networks for

time-series classification, achieving +90% accuracy on seven surfaces. A similar approach

was found in [39] but both present linear motions for data collection which limits the findings

to this controlled environments [38]. The authors of [16] perform texture classification of

fabrics using sliding motion. They use a finger-shaped sensor to perform linear motions

across the fabric and collect small vibrations as temporal data. They show that the variation

of sliding speed has no effect on the classification results but variation of pressure can greatly

impact the extracted features. Indeed, applying too much pressure on a surface causes the

sensory module not to vibrate during motion, causing the specific features of each material

to change or not appear at all.

This work concludes by providing texture recognition, an importante tasks in robotics,

on uneven surfaces. Using the present blind reconstruction approach and RL-based trajec-

tory adjustment, this work collects tactile data from multiple sensors on different trajecto-

ries, with and without adjustment, performing texture classification.

2.5 Summary

The following text summarizes the gaps and weaknesses found in the areas of Tactile Per-

ception, Robotic Manipulation, Surface Reconstruction, and Texture Classification.

• Tactile Perception:

– Developing less time-consuming tactile systems for real-time estimations remains

a challenge.

– Integration of vision and tactile sensing has limitations in in-hand dexterous

manipulation and fine surface feature perception.

– Replicating human touch sensing mechanisms faces challenges due to low resolu-

tion, complex data interpretation, and limited dexterity of robot hand technology.

• Robotic Manipulation:

– Although significant advancements have been made, challenges remain in manip-

ulating objects in unstructured environments, understanding object orientation,

and handling uncertainties.

– Current tactile approaches for object recognition and manipulation require mul-

tiple touches, making them time-consuming.
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• Surface Reconstruction:

– Existing tactile approaches for surface reconstruction demand a dense set of

points for accurate estimations, which is time-consuming.

– Methods using polynomial fitting face trade-offs between accuracy and compu-

tational complexity.

– Current solutions using cameras or Gelsight technology are bulky and not easily

scalable.

• Texture Classification:

– Texture classification has seen most advancements in vision despite higher accu-

racy in sliding motion methods.

– Existing tactile approaches for texture classification are limited to linear sur-

faces/movements, impacting the generalization of results.

Overall, the challenges and weaknesses identified in these areas indicate the need for efficient

tactile systems capable of real-time estimations, faster and more accurate tactile approaches

for object and surface recognition, and the development of more compact and scalable tactile

sensing modules for robotic manipulation tasks. Additionally, exploring the use of tactile

data in unstructured environments and applying advanced machine learning techniques for

texture classification remain areas of interest for future research.
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Chapter 3

Methods

As seen in the previous sections, tactile texture recognition in unstructured environments

remains a challenge for different reasons. Robotic systems need an accurate method for pose

estimation, required to perform exploratory motions and collect surface data. To do so, an

accurate tactile method to reconstruct surfaces is necessary as the robot needs to know

the position of waypoints belonging to the exploratory trajectories. Also, data collection

depends on the relative position of the end-effector and the surface under study. Given

these challenges, this section will explain methods and notations employed in the present

work to achieve the final objective. The methodology employed for pose estimation, tactile

surface reconstruction, robotic manipulation, and texture classification is presented. Pose

estimation techniques play a pivotal role in deciphering textures as they provide an accurate

spatial understanding of an object’s orientation and viewpoint, enhancing the system’s

ability to identify textures from different angles. Complementing this, robotic manipulation

techniques enable the exploration of textures through tactile sensors, something that is very

important in tactile approaches as tactile sensors only collect local stimulus, mimicking

human touch to gather essential data for recognition. Concurrently, surface reconstruction

methodologies contribute by creating a coherent three-dimensional model of the texture’s

surface, facilitating a more comprehensive analysis and enabling the accurate design of

exploratory trajectories. However, the true finesse of blind texture recognition lies in texture

classification methods, which leverage advanced algorithms to differentiate between intricate

patterns and textures, enhancing the accuracy and versatility of the recognition process.

3.1 Pose Representation

Pose estimation is of utmost importance in robotics [48] as it provides essential information

about the position and orientation of robots in their environment. Accurate pose estimation

enables robots to navigate autonomously, perform object manipulation tasks, interact with
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humans, and create accurate maps of their surroundings. It plays a crucial role in localiza-

tion, mapping, object detection, and collision avoidance, allowing robots to navigate safely

and effectively in dynamic environments. Pose estimation is a fundamental capability that

empowers robots to perceive and understand their environment, enabling them to operate

intelligently and perform complex tasks in various domains such as industrial automation,

service robotics, healthcare, and exploration.

A pose can be represented as a combination of orientation and position. The orientation

is typically represented using a quaternion, and the position is represented as a 3D vector.

Let q = qw + qxi+ qyj + qzk be the quaternion representing the orientation, where qw,

qx, qy, and qz are the scalar and vector components of the quaternion, respectively.

The position vector can be represented as p = [px, py, pz], where px, py, and pz are the

Cartesian coordinates of the position.

Therefore, the pose can be represented as:

orientation =


qx

qy

qz

qw

 position =

pxpy
pz

 (3.1)

All vectors v = [x, y, z] ∈ R3 can be redefined as a pure quaternions v = [x, y, z, 0] ∈ H4

for operations with quaternions.

⊗ represents the quaternion multiplication (Hamiltonian product). Given two quater-

nions p = [p0, p1, p2, p3] and q = [q0, q1, q2, q3], the Hamiltonian product is given by:

p⊗ q =


p0q0 − p1q1 − p2q2 − p3q3

p0q1 + p1q0 + p2q3 − p3q2

p0q2 − p1q3 + p2q0 + p3q1

p0q3 + p1q2 − p2q1 + p3q0


3.1.1 Inertial Measurement Unit

Pose estimation through an Inertial Measurement Unit (IMU) is a valuable technique in

robotics and navigation applications [49]. IMUs consist of sensors such as accelerometers

and gyroscopes that measure linear accelerations and angular velocities, respectively. By

integrating these measurements over time, it is possible to estimate the position, velocity,

and orientation (pose) of a robot or object.

IMUs provide real-time updates and do not rely on external references, making them

suitable for applications where external signals or infrastructure may be unavailable or

unreliable. They are compact, lightweight, and cost-effective, allowing for easy integration



16

into various robotic platforms.

The accelerometer measures the linear acceleration experienced by the device along its

three axes, usually denoted as a = [ax, ay, az]. On the other hand, the gyroscope measures

the angular velocity around each axis, typically represented as ω = [ωx, ωy, ωz].

However, it is important to note that IMUs have inherent limitations, including drift and

errors that accumulate over time due to sensor noise and bias. To address these limitations,

sensor fusion techniques can be employed to combine IMU data with other sensors, such

as magnetometers, cameras, or GPS, for more accurate and robust pose estimation. These

techniques, such as Kalman filters or particle filters, integrate the strengths of multiple

sensors to compensate for the weaknesses of individual sensors and provide enhanced pose

estimation accuracy and reliability.

3.1.2 Kalman Filters

Kalman filters are powerful mathematical algorithms used for optimal state estimation in

dynamic systems [50, 51]. They operate by recursively estimating the state of a system

based on noisy and incomplete measurements. Kalman filters employ a two-step process:

prediction and update. In the prediction step, the filter uses a mathematical model to pre-

dict the system’s state and its uncertainty. Then, in the update step, the filter incorporates

the actual measurements to refine the predicted state estimation.

Madgwick Complementary Filter

The Madgwick filter is an algorithm used for sensor fusion in orientation estimation [52,53].

It’s particularly designed for micro-electro-mechanical systems (MEMS) sensor units like

accelerometers, gyroscopes, and magnetometers. The filter combines sensor data to estimate

the orientation of an object relative to a global reference frame. This is useful in applications

like inertial navigation, robotics, virtual reality, and augmented reality.

Let qt represent the orientation quaternion at time t, the next estimation qt+1 can be

generated through the following equation:

qt+1 = qt +∆t · 1
2
(ωt − β · εt) (3.2)

The orientation is adusting by compensating the error between estimated ât and real

accelerometer at readings, and the gyroscope ωt readings. ∆t is the time step, ωt represents

the gyroscope measurements at time t in the body frame, and εt is the error term.

The error term εt is computed as the difference between the measured acceleration in

the body frame (at) and the predicted acceleration based on the estimated orientation (ât).

It is given by:
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εt = at − ât (3.3)

To calculate the predicted acceleration, the estimated orientation qt is used to rotate

the gravity vector g from the global frame to the local frame:

ât = qt ⊗ g ⊗ q∗
t (3.4)

The scalar parameter β controls the trade-off between the gyroscope and accelerometer

measurements. It determines the rate at which the gyroscope measurements are trusted

relative to the accelerometer measurements. Higher values of β give more weight to the

gyroscope, while lower values favor the accelerometer.

The quaternion qt+1 is then normalized to maintain its unit length, ensuring a valid

orientation representation.

The filter iteratively updates the quaternion estimate using the above equation at each

time step, incorporating new sensor measurements. This iterative process gradually im-

proves the estimated orientation by minimizing the discrepancy between the predicted and

measured accelerations.

By continuously updating the estimated orientation based on gyroscope and accelerom-

eter measurements, the Madgwick filter provides a computationally efficient and effective

solution for orientation estimation in real-time applications.

3.2 Robotic manipulation

Robotic manipulation, particularly when harnessed through reinforcement learning, plays a

pivotal role in advancing blind texture recognition to unprecedented levels of sophistication.

By employing reinforcement learning algorithms, robots can iteratively refine their tactile

exploration strategies, gradually learning to optimize their interactions with textures. This

process not only empowers robots to gather data that captures the nuances of textures

but also allows them to adapt their manipulation techniques to varying surface charac-

teristics and environmental conditions. Reinforcement learning facilitates the development

of adaptive and autonomous systems that continuously enhance their texture recognition

capabilities through real-time interactions.

3.2.1 Reinforcement Learning

In the recent years, Reinforcement Learning has emerged as an effective algorithm for robotic

manipulation [42]. RL is a model-free framework for solving optimal control problems. At

each time step the agent takes an action changing the environment around it, the obser-

vations from the current state are returned and used to generate the next action that the
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agent will take. The actions are chosen by a policy which is trained to get the maximum

reward at each step.

Two main groups exist in RL. The first are model-based methods where new states

and rewards can be predicted based on a modeled environment. The second are model-

free methods where new states and rewards are calculated based on current observations

of the environment. In many cases where RL is used for robotic applications it is not

possible to model the whole environment, that is why many robotic systems are trained

using model-free methods.

In model-free methods there are also two main groups, Q-Learning [43] and Policy

Optimization (PO) algorithms [44]. The main difference between PO and Q-Learning is

that PO algorithms can be used in environments with continuous action space (i.e. where

actions have real values) and can find the optimal policy even if that policy is a stochastic

one (i.e. acts probabilistically), whereas the Q-Learning algorithms cannot do either of

those things. On the other hand, Q-Learning algorithms tend to be simpler, and more

intuitive to train. In this work our action is a real value which is translated to an updated

position in the 3D space so the present work uses a PO algorithm which offers continuous

action space.

Proximal Policy Optimization

Proximal Policy Optimization (PPO) [44] is a reinforcement learning algorithm that com-

bines ideas from policy gradients and trust region methods. The PPO loss function com-

bines the actor and critic components of the actor-critic architectures. The loss function is

composed of two terms: the policy loss (actor loss) and the value function loss (critic loss).

The policy loss term encourages the policy (actor network) to improve by maximizing the

expected advantage. The advantage measures the improvement of taking a specific action

compared to the average action. The policy loss is typically computed using a surrogate

objective function, such as the clipped surrogate objective used in PPO.

The value function loss term updates the critic network to improve its estimation of

the state-value function. The critic loss is typically calculated as the mean-squared error

(MSE) between the estimated state-values and the observed returns.

The combined loss function for PPO can be expressed as follows:

LPPO(θ) = Lactor(θ) + Lcritic(θ) (3.5)

where LPPO(θ) is the PPO loss function parameterized by θ, and Lactor(θ) and Lcritic(θ)

represent the actor and critic loss terms, respectively.
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The actor loss term can be written as:

Lactor(θ) = E
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(3.6)

where rt(θ) is the ratio of the current policy and the old policy probabilities, Ât is the

advantage estimate, and ϵ is a hyperparameter controlling the degree of clipping. The

advantage estimate quantifies how advantageous it is to take action at in state st compared

to the expected return under the current policy. This is usually calculated as:

Ât = Q(st, at)− V (st) (3.7)

The estimated state-action value functionQ(s, a) represents the expected cumulative reward

of taking action a in state s and then following the policy thereafter. In reinforcement

learning, this function helps us quantify the quality of a specific action in a given state.

The formula for the estimated state-action value function can be written as:

Q(s, a) = E

[ ∞∑
t=0

γtrt+1 | s, a

]
(3.8)

Where E represents the expectation, which is taken over all possible future states and

rewards. γ is the discount factor, which represents the degree to which future rewards are

discounted relative to immediate rewards.

The critic loss term can be written as:

Lcritic(θ) =
1

N

N∑
i=1

(V (si)−Ri)
2 (3.9)

where N is the number of data samples, si is the state, V (si) is the estimated state-value

from the critic network, and Ri is the observed return.

By optimizing the combined PPO loss function, the actor and critic components of the

actor-critic architecture can be updated to improve the policy and the estimation of the

state-value function, respectively.

The present work uses this algorithm to train the pressure-control agent for the benefits

of continuous action space, trust-region approach to avoid falling in local minima, and for

being simpler than other PO approaches.

3.3 Surface reconstruction

Surface reconstruction methods hold a critical role in guiding and refining robotic ex-

ploratory motions. These techniques allow robots to transform the tactile data acquired dur-
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ing their interactions with objects and surfaces into coherent and accurate three-dimensional

representations. By reconstructing the surface geometry and topography, robots gain a

comprehensive understanding of the object’s structure, texture variations, and intricacies.

This information is invaluable as it enables robots to adapt their exploratory motions in

real-time, ensuring that subsequent interactions are precisely targeted and yield more in-

formative data.

3.3.1 Non-Uniform Rational B-Splines

NURBS (Non-Uniform Rational B-Splines) offer several benefits for surface modeling and

design. One key advantage is their ability to represent complex and smooth curves and sur-

faces with high accuracy [55, 56]. NURBS provide precise control over shape using control

points and weights, allowing for customizable and visually appealing designs. They also

facilitate efficient computation, enabling real-time or near-real-time operations. NURBS

are widely used in computer-aided design (CAD) and computer graphics industries, with

established tools and libraries available for working with NURBS surfaces. This compati-

bility and standardization make it easier to integrate NURBS-based modeling into existing

workflows. Overall, NURBS provide flexibility, accuracy, smoothness, and efficient compu-

tation, making them a valuable tool for a range of applications, including industrial design,

automotive design, architecture, and animation.

The formula for a NURBS curve of degree ‘p‘ with ‘n+1‘ control points and correspond-

ing weights is given as follows:

C(u) =

∑n
i=0Ni,p(u) · Pi · wi∑n

i=0Ni,p(u) · wi
(3.10)

In this formula:

- C(u) represents the point on the curve at parameter u. Here u can assume any value

within the range of values ’knots’ from the knot vector U .

- Ni,p(u) refers to the B-Spline basis functions of degree p defined on the knot vector.

- Pi denotes the i-th control point of the curve.

- wi represents the weight associated with the i-th control point.

The B-Spline basis functions Ni,p(u) can be recursively defined as:

Ni,0(u) =

1, if ui ≤ u < ui+1

0, otherwise
(3.11)

Ni,p(u) =
u− ui

ui+p − ui
·Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
·Ni+1,p−1(u) (3.12)
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Here, ui denotes the i-th knot value, and u is the parameter value at which we evaluate

the curve.

3.4 Texture Classification

Texture classification methods play a vital role in blind texture recognition by using ad-

vanced algorithms to decipher intricate patterns and characteristics present in textures.

This categorization enables machines to distinguish between different textures based on

their unique features, enhancing recognition accuracy and enabling applications in various

domains, from assisting the visually impaired to improving robotic systems in diverse in-

dustries. These methods are essential for machines to comprehend and navigate the tactile

world effectively, fostering the development of more intuitive and inclusive technologies.

3.4.1 Feature Encoding

Feature encoding plays a critical role in reducing noise and enhancing the efficiency and

accuracy of various data-driven applications, such as machine learning, data analysis, and

signal processing [40, 41]. Noise, in this context, refers to irrelevant or misleading informa-

tion present in the data that can hinder the performance of algorithms and models. By

transforming the data into a more compact and informative representation through fea-

ture encoding, we can significantly improve the quality of the analysis and decision-making

processes. Here are some key reasons why feature encoding is essential to noise reduction:

1. Dimensionality reduction: Feature encoding techniques can effectively reduce the

dimensionality of the data while preserving essential information. High-dimensional

data often contains noise, irrelevant features, and redundancies. By selecting rele-

vant features and compactly representing them, dimensionality reduction reduces the

chances of overfitting, thus enhancing the model’s generalization capabilities.

2. Noise filtering: Certain feature encoding methods can be designed to filter out noise

from the data. For instance, outlier detection techniques can help identify and remove

noisy data points, leading to a cleaner and more reliable dataset. Removing noise at

this stage prevents it from negatively impacting subsequent analysis steps and model

performance.

3. Enhanced generalization: Feature encoding helps create more abstract and repre-

sentative features that capture the underlying patterns and relationships in the data.

These encoded features can generalize better to unseen data, as they focus on essen-

tial characteristics rather than specific noise or local variations. As a result, models

trained on encoded features are more robust and less sensitive to noisy input.
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4. Improved computational efficiency: Noise can introduce unnecessary complexi-

ties into the data, making algorithms and models computationally expensive. Feature

encoding simplifies the data representation, reducing the computational burden and

speeding up the analysis or learning process.

5. Increased model interpretability: Some feature encoding techniques, such as fea-

ture scaling or normalization, can make the model more interpretable. When features

are brought to a common scale, it becomes easier to understand the impact of each

feature on the model’s predictions. This interpretability helps in identifying and mit-

igating any noise-related biases that might be present in the data.

6. Better data visualization: Feature encoding can create visual representations of

data that highlight patterns and relationships effectively. Data visualization is an

essential tool for identifying outliers, spotting noise, and gaining insights into the

underlying structure of the data. By encoding features appropriately, visualizations

become more informative and facilitate better data understanding.

7. Robustness to data collection artifacts: Real-world data often contains artifacts

caused by data collection processes, measurement errors, or missing values. Feature

encoding can handle missing data or outliers, making the analysis more resilient to

data imperfections. It minimizes the adverse effects of data collection errors and

reduces the likelihood of drawing erroneous conclusions.

In summary, feature encoding plays a fundamental role in reducing noise and enhancing

the quality of data analysis and modeling. By selecting, transforming, and representing

relevant features, it helps filter out noise, improves model generalization, increases compu-

tational efficiency, aids data visualization, and enhances the overall accuracy and reliability

of data-driven applications. Noise reduction through feature encoding is a crucial step in

extracting valuable insights and making informed decisions based on data.

Variational Autoencoder

A Variational Autoencoder (VAE) is a generative model that combines an encoder and

decoder [62]. It learns to map data into a latent space and reconstructs data from latent

representations [63]. The VAE is trained to optimize a loss function that balances the re-

construction accuracy and regularization, often using the Kullback-Leibler (KL) divergence.

1. Generative Model: VAEs can generate new data samples by sampling from the

latent space, making them useful for data synthesis and augmentation.

2. Compact Latent Representation: VAEs learn a low-dimensional representation

of complex data, capturing essential features while reducing noise and redundancy.
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3. Probabilistic Interpretation: The VAE’s latent space follows a probabilistic dis-

tribution, allowing for uncertainty estimation and interpolation between data points.

4. Interpolation and Smoothness: VAEs exhibit smooth transitions in the latent

space, enabling meaningful interpolations between different data samples.

5. Regularization: The KL divergence loss encourages a structured latent space, pre-

venting overfitting and improving generalization.

6. Anomaly Detection: VAEs can be used for anomaly detection by assessing data

reconstruction errors.

7. Dimensionality Reduction: VAEs provide an effective method for dimensionality

reduction, simplifying data for downstream tasks.

8. Transfer Learning: Pretrained VAEs can be used as feature extractors for various

other tasks, leveraging the learned representations.

9. Unsupervised Learning: VAEs do not require labeled data, making them applica-

ble to unsupervised learning scenarios.

In summary, VAEs offer a powerful framework for unsupervised learning, feature learn-

ing, and data generation, while providing interpretable latent spaces with various practical

applications. The present work uses the approach proposed in [75] where the authors use

a VAE in the output space of the CNN instead of the input space, they show its capabil-

ity in increasing classifcation results for different datasets and the benefits that it offers

when dealing with noisy images. Previous methods involved working directly with the in-

put which is generally larger, requiring larger models for noise cleaning, or changing the

architecture of feature extractors to be more robust to specific sources of noise. Due to the

easy implementation of the cited method, this work uses it for the final classification task.

The classifier without the encoder is trained first to obtain the top accuracy, then the

feature extractor, is frozen and feature maps of each input are generated. These feature

maps are fed to the VAE. Once the autoencoder reaches top accuracy, the encoder part is

connected to the feature extractor and a final classification layer is connected to the latent

output of the encoder.

3.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are important for their ability to process sequential

data, capture temporal dependencies, and handle variable-length input. They excel in

tasks such as language translation, speech recognition, and sentiment analysis by modeling

context and long-term dependencies [64, 65]. RNNs leverage internal memory, feedback
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connections, and advanced architectures like LSTM and GRU to effectively capture and

utilize sequential information, making them invaluable in fields such as natural language

processing and time series analysis.

The core equation of a Recurrent Neural Network (RNN) is known as the recurrent

step equation. It represents how information flows through the network over time. In its

simplest form, the equation for an RNN at time step ’t’ can be written as:

ht = σ(Wxhxt +Whhht−1 + bh) (3.13)

In this equation: - ht represents the hidden state or memory at time step ’t’

- xt is the input at time step ’t’.

- Wxh and Whh are weight matrices that determine the influence of the current input and

previous hidden state, respectively.

- bh is the bias term.

- σ is the activation function, such as the sigmoid or hyperbolic tangent, that introduces

non-linearity to the output.

The equation essentially combines the current input xt with the previous hidden state

ht−1 to compute the current hidden state ht. This recursive nature allows the network to

capture temporal dependencies and learn from the sequential data. The output of the RNN

at each time step can be further processed or used for various tasks, such as prediction,

classification, or generating sequence outputs. It’s worth noting that this is a simplified

form of the RNN equation, and more advanced variants like LSTM and GRU incorporate

additional components and gating mechanisms to address issues like vanishing gradients

and improve long-term memory.

Long Short-Term Memory

The Long Short-Term Memory (LSTM) model is a type of recurrent neural network (RNN)

architecture that addresses the vanishing gradient problem and allows for better capturing

of long-term dependencies in sequential data [67, 68]. The key component of LSTM is its

memory cell, which controls the flow of information and enables the model to retain or forget

information over time. The main components in the LSTM architecture are the following:

• Forget Gate: The forget gate determines how much of the previous cell state should

be forgotten.

ft = σ(Wf · [ht−1, xt] + bf ) (3.14)

• Input Gate: The input gate decides which new information needs to be stored in the

memory cell. It consists of two parts: the input gate itself and the candidate values.
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The input gate determines the relevance of the new input, and the candidate values

represent potential new information.

it = σ(Wi · [ht−1, xt] + bi) (3.15)

C̃t = tanh(WC · [ht−1, xt] + bC) (3.16)

• Update Cell State: The update of the cell state involves combining the previous cell

state Ct−1 with the new information obtained from the input gate and the candidate

values. The forget gate determines how much of the previous cell state should be

retained, and the input gate determines how much of the new information should be

added.

Ct = ft · Ct−1 + it · C̃t (3.17)

• Output Gate: The output gate determines the relevance of the current hidden state

ht based on the updated cell state Ct.

ot = σ(Wo · [ht−1, xt] + bo)ht = ot · tanh(Ct) (3.18)

In summary, the LSTM model employs the forget gate, input gate, update of the cell

state, and output gate to control the flow of information and update the hidden state and

cell state over time. This architecture allows the LSTM to capture and remember long-

term dependencies in sequential data, making it particularly effective for tasks that involve

temporal patterns and memory retention.
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Chapter 4

Tactile texture recognition from

blind surface reconstruction

This section will explain the methodology used to perform texture classification from blind

surface reconstruction. Following Figure 4.1, the environment for the present work is com-

posed of a 4-DoF manipulator holding a tactile sensing module on its gripper, and a surface

under study. The first step is to create an estimation of the surface using an approach that

doesn’t rely on vision. These graphical models provide a series of coordinates in the 3D

space, which can be used to generate exploratory trajectories. Because the coordinates of

waypoints are still estimations, a reinforcement learning agent adusts the orientation and

position of the manipulator to maintain a constant pressure and angle of approach relative

to the surface. Trajectories are then executed on top of the surface to collect dynamic

tactile data form MARG and barometer readings. This time-series data is classified using a

RNN architecture based on LSTM cells into one of the four available textures. This section

will then start by presenting the surface reconstruction method with the experimental setup

and validation approach. The second part of this section will explore the RL training for

the pressure-control system. Finally, this section will explore the data collection methods

and classification architectures.
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Figure 4.1: 1) Blind surface reconstruction is performed on a surface of interest. 2) Points
are selected to form a trajectory and adjusted through RL pressure-control. 3) Classifi-
cation is performed on the tactile data gathered from exploratory motion on the adjusted
trajectory.

4.1 Surface Reconstruction

This approach proposes a novel method for estimating surface shape using tactile data

provided by the robotic manipulator and tactile sensing module. Following Figure 4.2,

the environment is composed of 4-DoF manipulator holding a tactile sensing module, and

a surface under study. Using the readings from the MARG sensor and the manipulator

inverse kinematic chain, real-time orientation and position can be determined. Thanks to

the flexible frame in the sensing module, the relative position and orientation of the surface

can be estimated at several locations. With orientation and position, the position of new

points can be estimated, called control points. The tactile information together with the

artificial control points are used in a NURBS approach to generate graphical models.
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accelerometer

reference
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Figure 4.2: 1) Environment composed of 4-DoF manipulator, tactile sensing module, and
surface. 2) Orientation is estimated from sensor and robot kinematic data. 3) Manipulator
moves vertically to collect information from surface points. 4) Control points (artificial
data) are generated and used to form a NURBS surface together with surface points.

Validation is performed on five synthetic 3D-printed surfaces by comparing the original

models to the estimations. Results are also compared to a visual approach, using a Kinect

to generate cloud points from the surfaces.

4.1.1 Orientation Estimation

The information collected from surface points are normal orientation and position. Position

can be determined using the robot interface but normal orientation derives from the tactile

data. Let pi = [x, y, z] be the positional representation in the 3D space of a point of

contact. Figure 4.3 shows the robot manipulator and the sensing module. The method 3.1

is employed here.

Given Euler’s rotation theorem, any rotation or sequence of rotations in the 3D space

can be represented as a pure rotation around a single axis. Given an axis of rotation

represented by a unit vector u = [u1, u2, u3] and an angle of rotation θ, the corresponding

quaternion q = q0 + q1i+ q2j + q3k can be calculated using:

q0 = cos

(
θ

2

)
q1 = u1 sin

(
θ

2

)
q2 = u2 sin

(
θ

2

)
q3 = u3 sin

(
θ

2

)
(4.1)
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Figure 4.3: Views of the robotic manipulator joints. Joints 1 to 4 rotate to provide
4-DoF. Gripper and Sub-Gripper joints hold the sensing module.

In this formula, q0 is the scalar part of the quaternion, and q1, q2, and q3 are the vector

parts along the x, y, and z axes, respectively. The unit vector u indicates the axis of

rotation, and θ represents the angle of rotation around that axis.

This axis-angle representation is a concise way to represent rotations in three-dimensional

space using quaternions. It offers several advantages, including the ability to interpolate

smoothly between rotations and avoid certain numerical issues associated with other rota-

tion representations like Euler angles.

To determine the orientation of the sensing module, an approximation is created using

the accelerometer readings. Let a⃗s = [ax, ay, az] be the normalized accelerometer informa-

tion in the sensor frame of reference. In the earth frame of reference (base frame), the

unitary vector representing the normal force can be approximated to g⃗ = [0, 0, 1]. Given

these two vectors, the quaternion representing the orientation of the sensor is the one rep-

resenting the rotation from g⃗ to a⃗s:

qasg = [qx, qy, qz, qw] (4.2)

In this case the axis of rotation [qx, qy, qz] is perpendicular two both a⃗s and g⃗ which can

be easily determined as their cross-product a⃗s × g⃗. Interpolation is performed between the

quaternion that represents zero rotation qcc = [0, 0, 0, 1] with the one representing double the

intended rotation θ. The sum of these two orientation quaternions produces the intended



30

quaternion after normalization [66]:

[qx, qy, qz] = g⃗ × a⃗s + [0, 0, 0]

qw = 1 + cos θ

qw = 1 + g⃗ · a⃗s

(4.3)

The resulting quaternion qasg is then normalized using the following method for quaternion

q normalization:

qnorm =
q

∥q∥
(4.4)

Where ∥q∥=
√

q2w + q2x + q2y + q2z is the magnitude of the quaternion.

As this approach doesn’t take into account the rotation that the robot can perform

around the Z-axis of the base link, this is taken into consideration in the final orientation

estimation. For that, the TF package in the ROS environment publishes the transformations

between the different links in the robot, see Figure 4.3. It is used to create a quaternion

representing the rotation around the base. Let rotsb = [rotx, roty, rotz] be the angles repre-

senting the rotation from the base link to the end effector, provided by the TF package. A

quaternion representing the rotation of rotz degrees around the Z-axis is created:

qrot = [0, 0, sin

(
rotz
2

)
, cos

(
rotz
2

)
] (4.5)

The final orientation is a composition of both rotation quaternions qrot and qasg , as their

multiplication:

qfinal = qrot ⊗ qasg . (4.6)

Once the first estimate is generated, it has to be adjusted using a Madgwick filter, as

mentioned in method 3.1.2, that takes into consideration an initial orientation estimation,

accelerometer a⃗s = [ax, ay, az], and gyroscope ω⃗s = [ωx, ωy, ωz] readings to provide an

updated estimation, using Equation 3.2. This filtering technique is employed using the

AHRS library [72].

Once the final orientation is found, it is used as the orientation of the end effector link

(green arrow), as shown on Figure 4.3. The ROS node that publishes the green marker

keeps track of the orientation of the sensor and awaits for an obstacle signal. When the

robotic manipulator detects an obstacle it sends a signal to the marker node which publishes

the location of the end effector and orientation (small pink arrows) at that given moment.

4.1.2 Calibration

Vibrations from the robotic manipulator and external factors make it necessary to calibrate

the sensor. Before the manipulator starts collecting data on the surface, the sensor is kept
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suspended. During 10 seconds, the accelerometer and gyroscope readings are averaged as

a⃗s,0 and ω⃗s,0. We will calculate the error for both accelerometer and gyroscope as ϵ⃗acc and

ϵ⃗gyr to subtract from all subsequent readings.

In the case of the accelerometer, using the unitary quaternion representing the rotation

from the sensor frame to the base frame qbs (generated by the TF library), the vector is

rotated to generate the average theoretical value in the base frame. Pure quaternions a, ω

are extended from vectors a⃗ and ω⃗ in the hamiltonian products.

a⃗b,0 = qbs ⊗ as,0 ⊗ qbs
∗

(4.7)

The error ϵacc is:

ϵ⃗acc,0 = a⃗b,0 − g⃗ (4.8)

In the gyroscope case, the angular velocity’s theoretical value should be zero when the

manipulator is stopped. Hence,

ω⃗b,0 = qbs ⊗ ωs,0 ⊗ qbs
∗

(4.9)

The error ϵgyr is:

ϵ⃗gyr,0 = ω⃗b,0 (4.10)

Once the errors are averaged in the base frame, they can be rotated at any instant t

using the estimation qfinal,t to retrieve the errors in the sensing module frame of reference.

ϵ⃗gyr,t = qfinal,t ⊗ ϵgyr,0 ⊗ q∗final,t (4.11)

ϵ⃗acc,t = qfinal,t ⊗ ϵacc,0 ⊗ q∗final,t (4.12)

The adjusted accelerometer and gyroscope readings are then given by:

a⃗s,t+1 = a⃗s,t − ϵ⃗acc,t (4.13)

ω⃗s,t+1 = ω⃗s,t − ϵ⃗gyr,t (4.14)

4.1.3 Control points calculation

Given two surface points p1 and p2 in R3, and the respective normal vectors N⃗1 and N⃗2,

the 3D planes plane1 and plane2 can be defined. The objective is to find the control point

cp between the points p1 and p2. This point will define the curvature of the surface patch

between the two surface points p1 and p2. The position of cp depends on the positions of p1

and p2 but also on the orientation of the planes containing the surface points, see Figure 4.4.
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The first control point estimation would be the middle point, but using the middle point

between p1 and p2 as the control point cp, leads to no curvature in the generated surface. To

find a control point that can represent the proper curvature, we project the line between p1

and p2 on both planes, generating two skew lines. The location of smallest distance between

them (point of convergence) gives us a proper estimation of the control point location. Once

this is done, we project the control point on the vertical plane passing through p1 and p2

so that they are all three on the same vertical plane.

P1
'

mn

Vertical plane

P1

P2

N2

N1
plane 1

plane 2

l1

l2

P2
'

CP

z

Figure 4.4: Control point (CP) calculation between surface points p1
and p2. The green line is the generated curvature originating at p1 and
finishing at p2.

The first step is to find the projections of the surface points on their opposite planes.

Let p′1 denote the projection of p1 on plane2, and p′2 the projection of p2 on plane1. From

the four points two vectors are drawn:

l⃗1 = p′2 − p1

l⃗2 = p′1 − p2
(4.15)

Let these two vectors l⃗1 and l⃗1 define two lines in the 3D space as follows:

L1(t) = p1 + t · l⃗1
L2(t) = p2 + t · l⃗2

(4.16)
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These lines are not always concurrent, the location of the points resulting in the smallest

distance between them is found, a perpendicular line passing through L1 and L2. Let m

and n be these points in R3 on L1 and L2, respectively:

m = p1 + t1 · l⃗1
n = p2 + t2 · l⃗2
(m− n) · l⃗1 = 0

(m− n) · l⃗2 = 0

(4.17)

Where t1 and t2 are scalar coeficients to be found. Once the location of points m and

n are found, the middle point (m+ n)/2 is projected on the vertical plane passing through

p1 and p2, which gives the location of the control point between p1 and p2.

P1

P2

CPold

vertical plane

CPnew

z

Figure 4.5: CPold represents the wrong estimation of the control point.
The red line shows the expected curvature if no correction is applied.
CPnew represents the adjusted position after the correction is applied.
The green line represents the corrected curvature.

In some cases where the surface orientation around two neighbor points p1 and p2 is

very similar (i.e.: parallel planes), the two skew lines l1 and l2 will have their points m and

n at an infinite distance of p1 and p2. The projection of (m+n)/2 on the vertical plane will

likely produce an incorrect control point, as shown on Figure 4.5. To avoid this problem we

apply a correction to all control points found, as shown on Algorithm 1.
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Algorithm 1 Control point correction

Require: p1, p2, cp

if dist(cp, p1) ≥ dist(cp, p2) then ▷ Verify which point is farthest to cp

l⃗aux = p1 − cp

else

l⃗aux = p2 − cp

end if

d← |⃗laux|
cpnew ← cp

δ ← 0.0001 ▷ Arbitrary value

if d ≥ |p1 − p2| then
while |cpnew − p1) ̸= |cpnew − p2| do

cpnew ← cpnew + δ · l⃗aux ▷ Move CPold along l⃗aux towards CPnew

end while

end if

4.1.4 Robotic motion

To collect the data on top of the synthetic surfaces and objects, the position of each surface

point is manually selected. Once the surface points are defined, the robotic manipula-

tor moves in a vertical motion to approximate the tactile sensing module to the surface.

When contact is made, the manipulator stops and the tactile information is collected. The

procedure is shown on Figure 4.6.

a) b) c)

Figure 4.6: Collection of points on the surfaces. a) Robotic manipulator approaches point
of contact in a vertical motion. b) Once contact is perceived, manipulator stops at point
of contact. Position and orientation are collected leaving a marker (pink arrow) at the
location. c) Manipulator retreats in a vertical motion.
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4.1.5 NURBS surface generation

To generate the surface patches, the method 3.3.1 is employed. The control points must be

organized in a grid together with the surface points. Each patch is composed of nine points:

four adjacent surface points, four control points calculated using the previously mentioned

method, and one central control point which is the average of the other four. See Figure 4.7.

SP1 SP2

SP3 SP4

CP1

CP2 CP3

CP4

CPcentral

Figure 4.7: Control points layout. Surface and control points are placed
in a grid to generate the surface patches. Each patch is composed of four
surface points (SP1, SP2, SP3, SP4) and five control points (CP1, CP2,
CP3, CP4, and CPcentral). The central control point is an average of the
other four.

CPcentral

CP4

CP1 SP2SP1

SP3
SP4

CP2
CP3

Figure 4.8: Example of a surface patch ar-
ranged in a 3× 3 layout.

To generate the NURBS surface, we must set the parameters such as curves order and

knot vectors. Since the control points of every patch are displayed in a 3× 3 shape, we use
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quadratic curves in both directions (order k = 3). The chosen knot vector is the uniform

one, forcing the curves to pass through the initial and ending control points but not through

the middle ones. Given the number of control points and the order of the curves, the knot

vectors in both directions will be: v = [0, 0, 0, 1, 1, 1].

4.1.6 Experimental setup

The bio-inspired multi-modal sensing module proposed in [73] [74] is used in this work.

It is comprised of a LSM9DS0 MARG (Magnetic, Angular Rate, Gravity) sensor and a

MPL115A2 Barometer pressure sensor.

Figure 4.9: Tactile sensing module compo-
nents: 1—MARG (magnetic, angular rate,
and gravity) system; 2—compliant structure;
3—barometer [74].

These sensors are embedded in a flexible polyurethane and it’s structure is shown in

Figure 4.9 and Figure 4.10. The MARG consists of a triple-axis accelerometer, a triple-axis

gyroscope, and a triple-axis magnetometer. To send the sensors readings in the appropriate

format we use a Teensy 3.2 microcontroller [76]. It sends information via a ROS serial

publisher node at 250000 baud to the Ubuntu 16.04 machine.

The robotic manipulator used in this work is the OpenMANIPULATOR-X RM-X52-

TNM [77]. It contains 5 actuators, with 4 of them being joints and the last one being the

gripper. Joint 1 allows the robot to move around the base while the other joints can only

move in the plane defined by the position of joint 1. This allows for 4 Degrees of Freedom

(DOF). It holds the sensory module with the gripper that fits the 3D-printed structure.

To communicate the commands to the manipulator we use the Robot Operating System

(ROS) [78] and the embedded board OpenCR 1.0 which is an open-source control module

for ROS. See Figure 4.11.



37

2 cm

Figure 4.10: Sensing module encapsulated in
flexible structure.

Figure 4.11: Sytem Layout.Connections between the compliant tactile sensing module
(barometer and MARG) to its respective sensing MCU (ARM Cortex-M7); the robotic
arm (Open Manipulator X) connection to the robot MCU (OpenCR 1.0) and their MCU
connections to a PC running a ROS environment.
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4.1.7 Surfaces

Synthetic surfaces

To test this approach, five artificial surfaces, 3D printed, have been used. They present

different shapes that will be estimated and the comparison will be made between the STL

files of the original surfaces and the ones generated from the estimation. See Figure 4.12.

Figure 4.12: The five synthetic surfaces under study. Surface 1 is 8cm×8cm with 1cm peak
height. Surface 2 is 8cm×8cm×2cm with a lowest height at 1cm. Surface 3 is 16cm×5cm
with highest point at 2.5cm and lowest at 1cm. Surface 4 is 19cm× 4cm with highest point
at 2.5cm and lowest at 1cm. Surface 5 is 20cm× 16cm× 1cm.

The number of total surface points will be different for each surface. The sensing-module

with the flexible frame has 2cm in diameter, so every surface point will be 2cm away from

any other for no overlapping. On surface 5 there will be 11 × 9 = 99 points collected.

Surface 3 and 4 will have 3× 9 = 27 and 3× 10 = 30 points collected, respectively. Surface

1 and 2 will have 5× 5 = 25 points collected.

Everyday objects

Four everday objects are also used to evaluate the present approach. These objects are: a

mug, shampoo bottle, deodorant can, and hair comb. See Figure 4.13. As these surfaces

have no ground truth graphic model, the validation is performed by comparing the tactile

estimations using the present approach with the estimations from a visual method as is



39

explained in the next section.

Figure 4.13: The four common objects used to validate the present approach. Mug has
a lower and higher radius of 4cm and 3cm, respectively, and a height of 13cm. Shampoo
bottle is 8cm × 11cm × 3cm. Hair comb is 11cm × 7cm × 5cm. Aerosol deodorant has a
radius of 2cm.

4.1.8 Validation

Methodology

To validate this approach, we must compare the generated estimation to the original surface.

For that STL files of each surface estimation are generated and compared to the STL

of the original figure. A 3D point cloud and triangular mesh processing software called

CloudCompare is used. CloudCompare [79] provides a set of basic tools for editing and

rendering 3D point clouds and triangular meshes.

The tool randomly samples points on a mesh to generate a point cloud. The original

point cloud and the estimated one must be aligned to accurately measure the error metric.

Two types of alignment are used:

• Manual alignment. Using the “Align (point pairs picking)” tool available in Cloud-

Compare, which allows users to pick several pairs of equivalent points in the two

entities and then align both figures to approximate the equivalent points.

• Fine alignment or Iterative Closest Point (ICP). An algorithm that iteratively revises

the transformation (combination of translation and rotation) needed to minimize an

error metric, usually a distance from the source to the reference point cloud.

After the cloud points and meshes are aligned using the alignment tools above, three

distance metrics are used to evaluate the reconstructions. Cloud-to-Cloud(CC) between the
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original surfaces’ point cloud and the estimated surfaces’ point cloud, and Cloud-to-mesh

(CM) between the original point cloud and the estimated mesh.

To calculate the cloud distance, the chosen metric is the Hausdorff distance H(A,B),

which can be translated as the maximum distance from set A to the nearest point in set B:

H(A,B) = max {h(A,B), h(B,A)} (4.18)

The Hausdorff distance H between two subsets A and B is the maximum of the directed

Hausdorff distances from A to B and from B to A.

Equation for the directed Hausdorff distance from subset A to subset B:

h(A,B) = max
a∈A

min
b∈B
∥a− b∥ (4.19)

The directed Hausdorff distance h from subset A to subset B is calculated by considering

each point a in A and finding the minimum distance to any point b in B. The overall

directed Hausdorff distance is the maximum of these minimum distances. The symbol

∥a− b∥ represents the Euclidean distance between points a and b in three-dimensional

space.

• Cloud-to-Cloud (CC): CC is calculated by first creating partitions of the original

surface using an octree structure. These partitions reduce the number of comparison

between points in each partition, but increase the number of parallel calculation in

each partition. In the present case, the octree level is automatically specified by

CloudCompare. For every partition, a subset Ai of the reconstruction A is aligned

with a subset Bi of the original cloud B to generate (CC)i. The distances in each

partition are averaged to generate the final CC distance. For every octree structure i

there are two points ai in the reference cloud and bi in the mesh that satisfy H(Ai, Bi).

u⃗i =
bi − ai
||bi − ai||

C⃗Ci = H(Ai, Bi) · u⃗i

C⃗C =

k∑
i=1

C⃗Ci

k

CC = ||C⃗C||

(4.20)

• Unsigned Cloud-to-Mesh (uCM): To reduce uncertainties related to measure-

ment, the Cloud-to-Mesh distance is also calculated by comparing the estimated cloud

to the original mesh. In this case distances are all given in absolute value as for the

CC. The same technique using octree structures are used to create aligned partitions

of both the cloud Ai and the mesh Bi. In the same manner as the CC distance uCM
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is given by the following:

(uCM)i = H(Ai, Bi)

uCM =

k∑
i=1

(uCM)i
k

(4.21)

• Signed Cloud-to-Mesh (sCM): Using the same idea as the previous metrics, for

every octree structure i there are two points ai in the estimated cloud and bi in the

reference mesh that satisfy H(Ai, Bi). Let n⃗i be the unitary normal vector to the

mesh at bi. The sCM distance can be computed as the following:

⃗sCM =
k∑

i=1

H(Ai, Bi) · n⃗i

k

sCM = || ⃗sCM ||

(4.22)

Comparison

To evaluate the results, a comparison is performed between the present approach and a

visual one. Using a Kinect, which is equipped with 640×480 pixels 30 Hz RGB camera, and

640×480 pixels 30 Hz Infra-Red depth-finding camera, cloud points are generated from the

five surfaces. In a ROS environment, rosbag files containing the point clouds are collected.

They are then converted to pcl files, and the final isolated point cloud from the surface is

generated on CloudCompare. See Figure 4.14. The alignment is performed and the metrics

are calculated both using the CloudCompare software following the same procedure for the

tactile estimations.

Figure 4.14: Kinect setup for point cloud extraction. The point clouds are generated using
rosbag files in the ROS environment. rosbag files are then converted to pcl files and the
region of interest is isolated on CloudCompare.
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4.2 Pressure-Control System

4.2.1 Waypoints adjustment

The amount of pressure applied on the tactile module will change the extracted features from

the exploratory motions. To maintain a constant pressure throughout the whole trajectory

it is necessary to adjust the goal position of the end-effector on several waypoints to reduce

the impacts of change of pressure on the tactile data. This adjustment of position can be

seen on Figure 4.15.

posold

posnew

N
Su
rfa
ce

Figure 4.15: Calculating new end-effector position posnew based on the old position posold,
and normal direction N⃗ .

Given an estimated position posold of a waypoint, the normal unitary direction N⃗ at the

point of contact, the new position posnew can be calculated on Equation 4.23.

posnew = posold + N⃗ · δ (4.23)

Where δ ∈ R is to be estimated given the current and desired barometer level, and

N⃗ ∈ R3 is the unitary normal vector. Equation 4.23 can be translated to the following:

posnew = posold + N⃗ · step · action (4.24)

In Equation 4.24, the amplitude of movement is limited using a step = 0.005m factor.

This limits the maximum distance that the end-effector can move during the fine-adjustment

phase. This way, our estimated variable becomes action ∈ [−1; 1].
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4.2.2 Exploratory Motions

The position and orientation of several points are collected with an average spacing of 2cm

between each point of contact. Once enough points are collected to cover the whole surface,

the reconstruction is created using NURBS as shown on Figure 4.16. These graphical models

provide several coordinates pi = [xi, yi, zi] of estimated points that can be used as goal poses

for the manipulator to perform exploratory motions.

Figure 4.16: Reconstruction of surface using NURBS. Every col-
ored piece is a single patch created from four surface points.
These patches are put together and form the overall shape.

To perform smooth trajectories on surfaces the manipulator needs to maintain a constant

angle of approach with the surface as well as a constant relative position. See Figure 4.17.

For that we use the graphic model of the surface to manually determine waypoints

p1, p2, p3, ...that will compose the trajectory. For each waypoint, the manipulator moves the

sensing module to its location and aligns itself with the normal direction of the surface. Once

aligned, the relative position between end-effector and surface is adjusted and the current

pose of the manipulator can be stored as a 4D vector posei = [joint1i, joint2i, joint3i, joint4i],

where jointi represents the value in rads of the joint’s position. We adjust waypoints with

an average distance of 1cm between them.
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Figure 4.17: Example of correct trajectory on curved surface. The manipulator maintains
a constant angle of approach and pressure on the surface.

4.2.3 Reinforcement Learning

As we are dealing with a robotic application in the real world, many factors can influence the

true position and orientation of the end-effector making it difficult to model action based on

barometer level only. For that we employ RL on the Gym API [45]. The employed method

is explained in section 3.2.1. The Gym environment is an open-source simplification tool

responsible for the RL framework. Therefore, five main elements are defined for training:

the action and observation spaces, the two methods reset() and step(), and the reward

function.

Algorithm 2 Reset

Require: pi ∈ P, where pi = [xi, yi, zi].

1: Manipulator moves to initial pose home.

2: Manipulator moves to pi.

3: End-effector is aligned with surface normal at pi.

• The observation space obs is dictionary composed of joint efforts effs ∈ R4 in N.m,

barometer level baro ∈ N, and orientation orient ∈ R3. It describes the environment

to the agent and is used to compute actions. These variables var are normalized using

min-max normalization, as shown on Equation 4.25.

varnorm =
var − varmin

varmax − varmin
(4.25)

• The action space contains all actions that can be executed by the agent. In this case

our action is a single value a ∈ [−1; 1].

• The reset() method is responsible for taking the agent back to an initial valid state

where the agent receives the initial observations obsini from the sensing module. In

our case, we are performing a fine-adjustment of the position which implies that the

manipulator is already in contact with the surface. This means that, during this

phase, it first retreats to an initial pose called home, making no contact with the
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surface. Then a point pi is sampled from the graphical model P and the manipulator

moves to the given location on the surface. After aligning the manipulator with the

surface normal vector, the initial observations obsini are sent to the step() function .

See Algorithm 2.

• The step() method is responsible for sending the state St to the policy through the

observations obst and getting and action at back, executing it and calculating the

reward rt based on the resulting observations. Its also responsible for verifying that

the agent has reached its goal, ending the training episode. We condition the end of

episode to happen under two scenarios:

– nsteps = 50.

– baro ≤ 0 or baro ≥ 350.

This allows the manipulator to keep changing the initial position pi at the end of every

episode for generalization purposes, and also avoid loosing contact with the surface

or applying too much pressure on it. See Algorithm 3.

• The reward function f(baro) is a function of the barometer level only, as shown on

Figure 4.18. The barometer levels range from −2 to 500. We select an optimal region

[150− 250] where the reward will be maximal and give zero rewards when the agent

reaches a terminal state (too much pressure or lack of contact). See equation 4.26.


baro > 350 or baro < 0 =⇒ reward = 0

baro ∈ [0; 150] =⇒ reward = baro/150

baro ∈ [250; 350] =⇒ reward = 35
10 −

baro
100

(4.26)

Algorithm 3 Step

Require: obs; pi ∈ P, where pi = [xi, yi, zi].

1: orient, effs, baro← obs ▷ From the observation space the model receives real-time

input.

2: a← Policy(obs) ▷ a ∈ [−1; 1]
3: posnew,i ← pi + orient · step · a ▷ step = 0.005m

4: Move manipulator to posnew ▷ Equation 4.24.

5: reward← f(baro). ▷ Figure 4.18.

6: Checks if terminal state has been reached.

Once the five elements have been defined, the RL training can occur. Each training

iteration is composed of several episodes. The number of episodes can vary depending on
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Figure 4.18: Reward as a function f of the barometer level. The maximum reward occurs
when the barometer level is within an optimal region [150 - 250]. Red regions indicate
terminal states for the manipulator with zero reward.

how soon the agent reaches a terminal state. There are 2048 steps per training iteration,

meaning that the policy will be updated after a total of 2048 steps have been executed over

how many episodes are necessary for that. Each training episode can be described as on

Figure 4.20.

Algorithm 4 Training iteration

Require: obs; pi ∈ P; total timesteps.

1: n← 0

2: done = False

3: while nsteps ≤ total timesteps do ▷ Loop for episodes.

4: obsini ← Reset(P)
5: obst ← obsini

6: while done = False do ▷ Loop for steps.

7: obst+1, rt+1, done← Step(obst)

8: nsteps ← nsteps + 1

9: end while

10: end while

11: Update policy with PPO.
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Figure 4.19: Framework for RL training.

Each training iteration starts with the Reset() function taking the agent back to an

initial state which can be at any position pi given by the graphical model P. The initial

observations are passed to the Step() function which starts looping while the done signal

is set to False. Once the done signal changes to True, the episode is ended, sequences

of states and cumulative rewards are stored and the new episode can begin. Once nsteps

reaches total timesteps the iteration is completed and the policy is updated using PPO.

See Algorithm 4 and FIgure 4.19.
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4) Manipulator retreats following surface 
normal direction at end of episode.

1) Manipulator approaches estimated location 
of surface point.

Manipulator orientation 
(not aligned)

Real-time sensor 
orientation

3) Execute actions (steps)

2) Alignment of manipulator and sensor.

Manipulator orientation
(aligned)

Figure 4.20: Training episode. The manipulator starts moving to the estimated point in a
vertical pose, and adjusts its orientation to face the same direction of the surface normal.
Once aligned, it can start executing steps and eventually end the episode when conditions
are met.

4.2.4 Surface reconstruction with adjustment

The pressure adjustment system was tested on the surface reconstruction approach. Using

the same methodology employed on the previous section, points are collected on the five

synthetic surfaces shown on Figure 4.12. The amount of points and distance between

them was kept the same. The objective is to verify if the surface reconstruction system can

achieve better estimates when the manipulator aligns itself with the surface and the position

is adjusted to maintain acceptable pressure levels from the barometer. Each surface point is

adjusted using the RL system and once all points are collected the estimate can be created

using the same control points calculation and NURBS surface methodology.

4.3 Texture Classification

The last part of this work consists of texture classification using the previous approaches

for surface estimation and pressure-control. See Figure 4.21 that shows the framework
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employed.

Surface

Environment

Texture classifiers
Texture identified

1) Tactile surface estimation

3) Multimodal 
tactile signals

2) Adjusted trajectory points 

Estimation

P = {p1, p2, pi , ...}

P' = {p'1, p'2, p'i , ...}

st

PPO Agent

Actor

Critic

V(St)

at

4-DoF manipulator

Tactile
sensing
module

probabilities = {0.1; 0.7; 0.1; 0.1}
Dynamic tactile data Sequential

Sequential with 
feature encoder

Figure 4.21: 1) Estimations are generated using the present approach. 2) Points are chosen
to form an exploratory trajectory and their position is adjusted through RL. 3) Tactile data
from sensor readings are collected during the exploratory motion. 4) An LSTM classifier
uses the data to identify the texture at hand.

4.3.1 Textures

To perform classification four different textures on identical shapes are used. These figures

are 3D-printed in 16cm by 5cm sizes as shown on Figure 4.22. Textures 3a, 3b, and 3c

have horizontal striped with a spacing of 0.5cm, 0.3cm, 0.2cm, and surface 3d has 0.5cm

hexagons. Each surface is placed at the same position under the manipulator and three

different trajectories are generated from the estimations.
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Figure 4.22: Four identical synthetic surfaces used for classification with
four different textures.

4.3.2 Trajectories

Each trajectory is composed of three surface points (waypoints) with an average distance of

1cm between them. The step-by-step is described on Figure 4.23. The exploratory motions

are executed 25 times for data collection over each of the four textures for training. For

validation purposes we collect again 5 times tactile data from each trajectory on the four

surfaces.
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Figure 4.23: Trajectory generation from a surface patch. 1) Collect surface points
and generate an estimation. 2) Waypoints are chosen to form a trajectory, the
manipulator goes to each of the waypoints to adjust the pressure and store the
current joint values. 3) The trajectory is executed.
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4.3.3 Data collection & preprocessing

The tactile data used for classification comes from 9-DoF MARG:

(ax, ay, az, gx, gy, gz,mx,my,mz)

and 1-DoF barometer (baro) sensors forming a 10-D time-series dataset. Each sample for

the RNN model is composed of 200 frames sampled at 120Hz.

Before classification, the dataset is filtered to only keep data during the manipulator

motion. We also apply a condition on the dataset to only keep frames where the manipulator

is in touch with the surface with the condition baro ≤ 350. We normalize each of the ten

variables var using equation 4.27 where µvar is the mean of the variable, and σvar is the

standard deviation.

varnorm =
var − µvar

σvar
(4.27)

4.3.4 Feature Encoding

To increase the accuracy of the classifier it is necessary to reduce the effects of noise that

can originate from many factors such as bumps during trajectories, sensor noise, vibrations

from the manipulator, etc... For that, the technique employed here uses a Variational

Autoencoder as a feature encoder. The method is explained in section 3.4.1. It can be

trained to encode features from the feature extractor module in a latent space and retrieve

the information in the decoder part. Thanks to the different objective functions of the

classifier and feature encoder it is possible to combine both structures to minimize the

effects of noise and increase classification results.

This technique is easy to implement and the encoding architecture represents a small

increase in parameters in the resulting model. The implementation of the classifier with

feature encoding is shown in the next subsection.

4.3.5 LSTM classifier

Classification is performed with TensorFlow and Keras as the APIs for the neural network

model. The employed method is mentioned in section 3.4.2. The model is composed of an

LSTM layer with 200 units and return sequence = True, a second LSTM layer with 200

units and return sequence = False, a 20% Dropout layer, and an output dense layer with

four neurons. The activation function is Softmax as shown on Equation 4.28 for the output

xi of neuron i and we use categorical cross-entropy as our loss function. The resulting model
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has 1.3M trainable parameters and is trained for 200 epochs.

Softmax(xi) =
exp(xi)∑4
1 exp(xj)

(4.28)

A comparison of the classifier with and without feature encoding is performed to validate

the effects of the feature encoding. For that, initial classification is performed with the

classifier but without the encoder. This methodology was proposed in [75], it consists of

adding a VAE to the classification architecture between the feature extractor and the output

layers. Once the training is finished, the VAE is trained using the features generated by the

frozen LSTM layers. The VAE is frozen and the encoder part of the VAE is used as feature

encoder between the LSTM feature extractor and the classification layers. See Figures 4.24.
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Trainable parameters: 1.14M

Figure 4.24: Both classification architectures without
and with the feature encoder.
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Chapter 5

Results & Discussion

5.1 Surface Reconstruction

5.1.1 Synthetic surfaces

Results from the present approach using tactile date are shown on Table 5.1 and those from

the vision approach using the Kinect are on Table 5.2. The comparison between estimations

and original shapes is shown in Figure 5.3.

In the present method, the average Cloud-to-Mesh (C/M) distance is 0.652 mm and

Cloud-to-Cloud (C/C) is 0.637 mm. The signed C/M and the signed X, Y, Z components

of the C/C distance have significant lower values than the unsigned C/C and C/M. This

shows that there is no apparent bias in the final estimation and no outstanding error towards

any of the scalar fields (X, Y, Z).

Surfaces
Unsigned C/M

(mm)
Signed C/M

(mm)
C/C
(mm)

C/C (X)
(mm)

C/C (Y)
(mm)

C/C (Z)
(mm)

1 0.75 ± 0.53 0.017 ± 0.93 0.75 ± 0.54 -0.009 ± 0.32 0.01 ± 0.38 0.005 ± 0.43
2 0.70 ± 0.52 0.011 ± 0.90 0.69 ± 0.48 -0.005 ± 0.48 0.02 ± 0.42 0.009 ± 0.41
3 0.53 ± 0.42 0.014 ±0.95 0.49 ± 0.37 0.044 ± 0.36 0.004 ± 0.75 0.016 ± 0.12
4 0.72 ± 0.57 0.012 ± 0.88 0.67 ± 0.60 0.003 ± 0.59 0.007 ± 0.72 -0.017 ± 0.14
5 0.55 ± 0.42 0.003 ± 0.75 0.59 ± 0.44 0.012 ± 0.17 0.008 ± 0.25 0.009 ± 0.57

Table 5.1: Validation results from tactile approach, comparing the estimations to the ground
truth. Average distances and standard deviation in millimiters (mm).

Signed C/M distances show an average standard deviation of 0.88 mm. Considering

that the patches have an approximate size of 2×2cm, the percentual error can be estimated

at 4.5% for surfaces 1 to 5.

We compare our results to the Kinect approach, shown on Figure 5.1, and notice an in-

crease in the Unsigned C/M and C/C distances. The average increase is 60% in comparison

to the tactile approach. Signed C/M also show a significant increase of more than 10 times.
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Surfaces
Unsigned C/M

(mm)
Signed C/M

(mm)
C/C
(mm)

C/C (X)
(mm)

C/C (Y)
(mm)

C/C (Z)
(mm)

1 1.05 ± 0.92 0.12 ± 1.13 1.02 ± 0.94 0.01 ± 0.79 0.003 ± 0.85 0.001 ± 0.75
2 0.98 ± 0.89 0.12 ± 1.02 0.99 ± 0.88 -0.009 ± 0.88 0.001 ± 0.87 -0.001 ± 0.5
3 0.96 ± 0.82 0.15 ± 1.31 1.03 ± 0.91 0.013 ± 0.90 -0.001 ± 0.98 0.001 ± 0.61
4 1.02 ± 0.8 0.17 ± 1.25 1.07 ± 0.94 -0.019 ± 0.98 0.005 ± 0.72 0.002 ± 0.93
5 1.23 ± 0.97 0.21 ± 1.127 1.26 ± 1.07 0.01 ± 0.79 0.010 ± 0.85 -0.002 ± 0.75

Table 5.2: Validation results from vision approach, comparing the estimations to the ground
truth. Average distances and standard deviation in millimiters (mm).
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Figure 5.1: Distance comparison between our approach and vision using Kinect. Unsigned
C/M (U C/M), Signed C/M (S C/M), Unsigned C/C (U C/C). Mean ± standard deviation.

Because of the size of the sensor case, the manipulator can touch the surface before the

sensing module, producing wrong measurements (lack of contact) when collecting points

in small concavities. This can be avoided by using a smaller sensor case or distancing

the sensing module from the gripper. This was the case for Surface 2. To better capture

the surface points inside the concavity, we dislocated the sensing module +2cm in the Z

direction of the end-effector link.

Images from the scalar fields generated by CloudCompare, as shown in Figure 5.2 reveal

that points on the border produce some of the largest distances for all the surfaces. This

happens because of the sensing module size. When collecting points on the edge of the

surface, the sensor tilts slightly off the surface, changing the orientation estimate and the

patches attached to those points.

Results in [25] show distances from the generated meshes to the surface ranging from

0.1 mm to 0.23 mm to the three surfaces under study (shell, pear, and dark pebble).

Nonetheless, their overall estimated surface is significantly smaller (around 2× 2 cm) than

the ones being tested here. They also use a larger number of tactile data points (between
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Surface 1

Surface 2

Surface 3

Surface 4

Surface 5

Real Shape Estimation (ours) Alignment (ours) Alignment (Kinect)

Figure 5.2: Original surfaces and estimations comparison. The left col-
umn shows the original STL file of the 3D-printed surfaces. Middle col-
umn shows the estimations. Right column shows the superposition of
the original STL file and the ones generated from the estimations after
scaling and alignment on CloudCompare.

97 and 63 points). In comparison to [29,30], our work uses much less probing, on average 1

point per 2cm, doubling the distance from collected points while also generating a graphic
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model or mesh.

5.1.2 Everyday objects

To evaluate the surface reconstruction approach on everyday objects, alignment between

the tactile and visual reconstructions is performed. Results are show on the next Table 5.3.

Objects
C/C
(mm)

C/C (X)
(mm)

C/C (Y)
(mm)

C/C (Z)
(mm)

Mug 1.4 ± 1.24 0.3 ± 0.8 0.9 ± 1.1 0.3 ± 0.9
Shampoo bottle 1.5 ± 1.4 0.9 ± 1.1 0.7 ± 1.07 1.0 ± 0.6

Hair comb 1.56 ± 1.37 0.5 ± 0.90 1.3± 0.98 0.6 ± 1.15
Aerosol deodorant 1.27 ± 1.35 0.8 ± 0.6 0.8 ± 0.8 0.7 ± 1.17

Table 5.3: Validation results on everyday objects, comparing the tactile estimations to the
visual reconstruction. Average distances and standard deviation in millimiters (mm).

As expected, results of Cloud-to-cloud (C/C) distances between the visual and tactile

estimations are higher than for the synthetic scenario where the comparisons are made with

the ground thruth graphical model used to 3D-print the surfaces 1 to 5. However, the result

on everyday objects represent a small increase when comparing to the previous experiment.

The average C/C distance is 1.4mm and can be considered as positive result given the small

amount of points used to reconstruct portions of everyday objects’ surfaces.

The results also show that the hair comb and shampoo bottle both have higher C/C in

comparison to mug and aerosol deodorant. In the case of the shampoo bottle this is due

to the softness of the material (plastic). Because no pressure adjustment is applied in this

phase of the work, the manipulator deforms the surface of the shampoo bottle causing the

position of the surface point to change, causing deformations on the final estimation. In the

case of the hair comb, the mobile parts cause the object to slightly move when in contact

with the sensing module. The visual results can be seen on Figure 5.3.

If reconstructions errors occur due to bad manipulator placement or bad contact between

the sensing module and surfaces, the reconstruction will be affected as orientation and

position depend on the correct contact. However, if an error occur in a specific contact point

on the surface, it can be corrected by recollecting orientation and position of the erroneous

point, without having to recollect others, making this solution robust to manipulation errors

in unstructured environments.
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Mug

Shampoo botlle

Objects Tactile reconstruction Visual and tactile alignment

Hair comb

Aerosol deodorant

Figure 5.3: Everyday objects visual and tactile reconstructions.



59

5.2 Pressure-control system

5.2.1 RL training

As the training was performed on a real manipulator from scratch with no simulated en-

vironment, conditions must be applied to avoid bad behavior and/or breaking the sensing

module or manipulator. These conditions add safety but decrease the speed of training as

the manipulator has to reset() everytime it reaches a terminal state. The training during

12 iterations can be seen on Figure 5.4. In the first iterations, the manipulator is constantly

executing actions with large amplitude loosing contact between the sensing module and

surface or applying too much pressure. This results in a premature end of episode and

significantly increases the amount of time needed to perform one iteration. Indeed, initial

iterations (1, 2, 3) take an average of seven to eight hours while the last ones (10, 11, 12)

take an average three to four hours.

Figure 5.4: Barometer level per step, at 12 training iterations.

As the policy gets updated after each iteration, the manipulator is more capable of

maintaining the barometer levels in acceptable intervals, increasing the episode length and

also the mean reward per episode as can be seen on Figure 5.5. At iteration 0 the episode
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length has an average of 2 steps with an approximate reward per episode of 0.3. After 22000

iterations we reach an episode length of 30 with an average reward of 12.

Figure 5.5: Mean episode length and reward per step for each of the 12 training iterations.

The maximum episode length that can be achieved is 50 with a mean reward of 50,

which happens when the model learns to reach the optimal region in the first step and stays

in it during all other 49 steps.

As the process for training from scratch using a real manipulator is much slower than

training on a simulation, the training is stopped after 12 iterations when the system is

already capable of attaining the optimal pressure region. Further training on the real

environment or on a simulated environment could lead to better behavior from the agent,

accelerating the process of adjusting position, hence the data collection.

5.3 Surface reconstruction with adjustment

Table 5.4 and Figure 5.6 show the results from the reconstruction of the five synthetic

surfaces, now with alignment of the manipulator and the surface normal and pressure ad-

justment.

On one side, C/M, and C/C distances show small reduction for surfaces 3 and 4 in

comparison to the reconstruction without adjustment. On the other side, surfaces 1, 2 ,

and 5 show a larger increase in the C/M and C/C distances.
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Surfaces
Unsigned C/M

(mm)
Signed C/M

(mm)
C/C
(mm)

C/C (X)
(mm)

C/C (Y)
(mm)

C/C (Z)
(mm)

1 0.96 ± 0.96 0.037 ± 1.15 0.88 ± 0.74 0.01 ± 0.27 0.06 ± 0.38 -0.012 ± 0.51
2 0.99 ± 0.52 0.017 ± 1.02 0.54 ± 0.68 0.01 ± 0.28 0.09 ± 0.74 0.015 ± 0.61
3 0.49 ± 0.40 0.014 ±0.95 0.47 ± 0.37 0.04 ± 0.36 0.003 ± 0.75 0.012 ± 0.12
4 0.70 ± 0.55 0.009 ± 0.78 0.65 ± 0.49 0.007 ± 0.64 -0.008 ± 0.66 0.011 ± 0.10
5 1.03 ± 0.68 0.009 ± 0.95 0.67 ± 0.4 0.011 ± 0.29 0.019 ± 0.37 0.015 ± 0.57

Table 5.4: Validation results from tactile approach with pressure adjustment and alignment
of the manipulator, comparing the estimations to the ground truth. Average distances and
standard deviation in millimiters (mm).

Surface 1

Surface 2

Surface 3

Surface 4

Surface 5

Figure 5.6: Reconstruction from data collection with alignment
and pressure adjustment.
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Indeed, the images show a worst alignment for these three surfaces. This happens due

to the limitations of the manipulator. As it only has 4-DoF, when adjusting the position in

cases where the manipulator can’t properly follow the given orientation, the sensing module

detaches from the surface while keeping contact with it. This produces wrong orientation

estimations and leads to poorer estimations. For surfaces 3 and 4, an increase in performance

can be seen because these surface don’t have inclinations toward the Y direction in the base

frame of the robot. It can be seen on the images that they fit better the original STL which

can lead us to think that the alignment of the manipulator with the surface normal reduces

the errors coming from the position estimation.

5.4 Data Collection

To verify that the pressure-control system offer benefits to the texture classification, data

is collected from the trajectories without adjustment first and then with adjustment to

the waypoints. An initial visual comparison can be made from the barometer tactile data.

Figure 5.7 shows an example of barometer data collected on a trajectory with adjustment

and without it.

With adjustmentWithout adjustment

Figure 5.7: Barometer readings for the cases without and with adjustment.

In the case with adjustment, the sensing module can better vibrate, hence, better capture

the features of each texture. In the case with no adjustment there is almost no difference in

the four textures showing that a system to adjust relative position is crucial to exploratory

motions on non-flat surfaces.
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Figure 5.8: Normalized data from accelerometer, gyroscope, and magnetometer, with no
adjustment to the waypoints.

This difference in the collected data can also be verified, although not in such a transpar-

ent way, in the accelerometer, gyroscope, and magnetometer readings. See Figures 5.8 and

5.9. Excessive pressure applied to the sensing module causes difficulties in the movement

of the manipulator, which can lead to abrupt movements of both the manipulator and the

sensing module, providing inaccurate sensors readings.
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Figure 5.9: Normalized data from accelerometer, gyroscope, and magnetometer, with ad-
justment to the waypoints.

5.5 Classification

The LSTM model reaches a top-1 accuracy of 87%−91% for the data collected with adjust-

ment and a loss of 0.09, while the data without adjustment leads to 57%− 63% with a loss

of 2.4. These validation results are collected after the model achieves maximum training

accuracy. Figure 5.10 shows the confusion matrices for the two scenarios when no feature

encoding is applied. In the case with adjustment its possible to see that the classifier makes

more mistakes between textures 3a and 3d. This result is aligned with the fact that both

these textures have smaller gaps, and as the sensing module is a disk with 2cm diameter its

harder for it to detect these gaps.
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3a

3b

3c

3d

3a

3b

3c

3d

10 0 0 2 83%6 6 0 0 50%

20.8% 0.0% 0.0% 4.2% 17%11.8% 11.8% 0.0% 0.0% 50%

0 11 0 1 92%2 3 4 5 25%

0.0% 22.9% 0.0% 2.1% 8%3.9% 5.9% 7.8% 9.8% 75%

0 1 11 0 92%0 1 11 0 92%

0.0% 2.1% 22.9% 0.0% 8%0.0% 2.0% 21.6% 0.0% 8%

2 0 0 10 83%1 3 0 9 75%

4.2% 0.0% 0.0% 20.8% 17%2.0% 5.9% 0.0% 17.6% 25%

83% 92% 100% 77% 88%67% 23% 73% 64% 57%

17% 8% 0% 23% 13%33% 77% 27% 36% 43%

3a 3b 3c 3d3a 3b 3c 3d
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Figure 5.10: Confusion tables for the cases with adjustment and without when no
feature encoding is applied

Figure 5.11 shows the confusion matrices for the two scenarios when feature encoding is

applied. A slight improvement in the accuracy of the system is perceived with an increase

of accuracy from 88% to 90% in the case with adjustment, and in the case without encoding

is goes from 57% to 63%.

11 0 0 1 92%8 3 1 0 67%

22.9% 0.0% 0.0% 2.1% 8%15.4% 5.8% 8.3% 0.0% 33%

0 11 0 1 92%1 5 3 5 42%

0.0% 22.9% 0.0% 2.1% 8%1.9% 9.6% 5.8% 9.6% 58%

1 1 10 0 83%0 1 10 1 83%

8.3% 2.1% 20.8% 0.0% 17%0.0% 1.9% 19.2% 8.3% 17%

1 0 0 11 92%0 4 0 10 83%

2.1% 0.0% 0.0% 22.9% 8%0.0% 7.7% 0.0% 19.2% 17%

85% 92% 100% 85% 90%89% 38% 71% 63% 63%

15% 8% 0% 15% 10%11% 62% 29% 38% 37%

With adjustmentWithout adjustment
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3a 3b 3c 3d3a 3b 3c 3d

Figure 5.11: Confusion tables for the cases with adjustment and without when
feature encoding is applied

The present approach showed a complete method for texture recognition on uneven

surfaces, starting from a blind surface reconstruction method that can provide accurate

position of surface points for RL training in real scenario. The approach for pressure-

control worked by improving the quality of the tactile data collected on surfaces. These
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results were validated by performing classification on the time-series data and getting higher

accurac for the data with adjustment.
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Chapter 6

Conclusion

In this thesis, a new method for blind surface reconstruction together with a first approach

to texture classification on uneven surfaces was presented. Combining kinematic data from

a robotic manipulator and an IMU sensor, these methods were validated in a series of exper-

iments. This work showed a tactile texture classification on four different textures printed

on curved surfaces. Results with feature encoding showed 90% accuracy with pressure ad-

justment versus 63% without it emphasizing the importance of pressure control to collect

accurate tactile data, essential for robotic manipulation in unstructured environments.

Validation for the surface reconstruction was performed by comparing the tactile recon-

struction obtained with the present method and a visual approach. For that, five 3D-printed

synthetic surfaces, and four everyday objects were used. Results showed a significant im-

provement in comparison to the visual approach for the synthetic surfaces and similar

behavior for everyday objects. The present solution is an alternative to visual surface re-

construction, not suffering from the problems visual systems encounter, and so an ideal

complementary source of information for robotic applications. Furthermore, this solution

uses much less contact points on the studied surface, the most time-consuming step in tactile

solutions. Proposals that use tactile data require much more time to create shape estimates

than vision ones. That is why robotic systems still rely heavily on this sense, which means

that problems such as poor visibility and occlusions still affect these systems and limit their

use in the field. It is, therefore, necessary to develop systems capable of estimating surfaces

much faster and with less collection of points, allowing robotic systems to plan and exe-

cute trajectories in environments where vision is compromised. In this approach, surface

estimation was demonstrated using only one sensing module that collects one surface point

per probe. However, this proposal is scalable since each module is independent and respon-

sible for collecting a single point. Using smaller multiples of these modules would allow a

collection of points in parallel, significantly decreasing the necessary time to generate the

estimates.
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Texture classification was performed on four texture comparing results obtained with

and without pressure-control system. Given the present method for surface reconstruction,

exploratory trajectories are generated using the graphical models. These movements allow

the system to collect data for the classification of four textures with a 90% success rate on a

LSTM classifier, in the case where a pressure-control system was employed for adjusting the

position of the trajectory points. When no adjustment is made, these results drop to 63%

success rate over the same trajectories. Even if the task is quite simple (a single action),

small variations in the end-effector’s position cause a big change in the barometer readings.

Many external/environmental factors can influence the final position of the end-effector

and, consequently, the applied pressure on the sensing module, making straightforward or

model-based solutions based on strict conditions not applicable as desired. Coupled with a

precise and efficient method for blind surface reconstruction, Reinforcement Learning has

proven to be a valuable tool for pressure-control with only joints effort, barometer level, and

orientation as observations. The challenges encountered in this surface exploration part can

be separated into three parts. The first challenge comes from the limitations of the manip-

ulator. Since it has only 4 degrees of freedom, the manipulator cannot follow any direction

provided by the orientation markers, which limits its use on more straightforward surfaces

like the one used here. The second challenge comes from the sensory module, its shape (a

2cm diameter disk) allows it to align with the surface for an accurate orientation estima-

tion. However, it is easy for it to get stuck in the gaps of the surface during exploratory

movements. This is due to the module’s shape and to the flexible material friction with

the surface. The third challenge comes from the pressure adjustment system. Because all

training was performed in the real world, each iteration takes several hours to complete.

The addition of conditions so that neither the manipulator nor the module breaks during

training, significantly delays progress. A simulated environment would allow the training

to advance faster during the initial iterations.

Future work should propose smaller tactile modules to explore smaller concavities and

their use in parallel for faster estimates generation, which will help robotic systems in

planning and execution of trajectories for the exploration of terrains and manipulation of

objects. Additionally, the research will focus on using a manipulator with more degrees of

freedom, allowing the classification to be conducted on more complex surfaces as well as

the RL training. It will also explore different sensing modules for improving data collection

on non-flat surfaces and develop a simulated environment for RL training in this scenario.

The results and methods found here will contribute to the development of robotic systems

that are more capable of exploring unstructured environments using tactile sensing.
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