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ABSTRACT

The human brain, a marvel of nature, consists of intricate neural networks that have

fascinated and perplexed the scientific community for generations. As scientists and re-

searchers globally endeavour to unravel the mysteries of bioelectrical activities that form

the basis of our cognitive functions and experiences, our research emerges at the nexus

of biology and cutting-edge technology. Specifically, we spotlight the remarkable capabili-

ties of magnetoencephalography (MEG) and electroencephalography (EEG). These potent

neuroimaging tools, celebrated for their unparalleled spatial and temporal precision, are

synergistically combined in our study. We aim to map MEG innovatively signals onto

their EEG replicas, employing avant-garde spintronic devices, with a particular emphasis

on Magnetic Tunnel Junctions (MTJ).

Drawing inspiration from the wonders of nature, such as the awe-inspiring magnetore-

ception abilities exhibited by homing pigeons, our exploration is driven by a desire to

harness and amplify similar bio-magnetic potentials latent within the human brain. Me-

thodically segmented into distinct chapters, our research unfolds a series of groundbreaking

contributions:

• First: Venturing into uncharted territories, we introduce the integration of artificial

intelligence (AI) into MEG/EEG mapping. This novel approach propels our under-

standing of cerebral activities into exciting new directions.

• Second: Taking a deeper plunge, we explore the temporal features of the M/EEG

signals as a further step toward optimizing the mapping solution. This insight paves

the way for envisioning a future where bulky equipment gives way to compact, efficient

neuroimaging devices.

• Third: In a display of our team’s innovative spirit, we simulate the MTJ sensor’s

noise and utilize the AI approaches to denoise that noised dataset.

• Finally: Transitioning to the tangible realm of practical implementations, our focus

gravitates towards the intricate facets of hardware design. We particularly emphasize

the potential of quantizing the BiLSTM model to optimize and revolutionize the

biomagnetic sensing ecosystem.

In essence, this research serves as a confluence of biology and state-of-the-art techno-

logical advancements. It meticulously lays a solid foundation for future explorations, from

early detection and prediction of neurological disorders to pioneering strides in federated

learning. Our fervent hope is that through our findings, we not only expand the horizons

of current knowledge but also inspire a renewed perspective on how we understand and

harness the myriad activities of the human brain.
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Chapter 1

Introduction, Motivation,

Contributions and Structure of

Thesis

The human brain, a miraculous conglomerate of billions of neurons, intrigues and challenges

the scientific community. It is not just the sheer number of neurons but their intricate inter-

connections, leading to the manifestation of thoughts, emotions, and conscious experiences,

that bewilder our understanding. The nuanced bioelectrical activities underlying these phe-

nomena are both the bedrock of our cognitive essence and the subject of intense research

scrutiny.

Amidst the spectrum of neuroimaging tools, magnetoencephalography (MEG) and elec-

troencephalography (EEG) are pillars that stand tall, each offering unique vantage points

to peer into the brain’s electric symphony. MEG’s prowess in capturing the magnetic fields

produced by neuronal activity provides unparalleled spatial resolution. On the other hand,

EEG, recording the electrical potentials as they dance on the scalp, offers exceptional tem-

poral clarity. The harmonization of these techniques through mapping MEG signals to EEG

paves the way for a richer, more comprehensive interpretation of neural activities.

This research endeavours to bridge these two realms at the intersection of biology and

technology. The vision is not merely to comprehend but to transcend to harness the poten-

tial of Artificial Intelligence (AI) and merge it seamlessly with our understanding of brain

activities. This research’s heartbeat is the ambitious aim to map MEG signals to EEG

counterparts, leveraging the might of spintronic devices, with Magnetic Tunnel Junctions

(MTJ) standing as emblematic pillars. Imagine a world where bulky, cumbersome MEG

machines are relics of the past, replaced by sleek, smart bands adorning wrists. These

bands, driven by the innovations presented in this thesis, promise to continuously monitor

and assess brain activities.
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Our expedition through this research is not merely academic. It is a journey filled

with purpose and promise. The vision is noble: empowering individuals with tools that

make life easier and profoundly more meaningful. Every challenge faced, and every solution

devised, has been a step toward laying a foundation - a robust platform upon which future

innovations in brain monitoring can thrive. The following paragraphs delve into the heart

of our inspiration and motivation behind this endeavour.

Nature has always been a reservoir of inspiration for humans. From birds’ flight to

jellyfish luminescence, it is a testament to the myriad ways life has evolved to navigate

its surroundings and communicate. A particularly intriguing adaptation is found in the

seemingly ordinary homing pigeon, which holds clues that resonate profoundly with the

essence of our research.

Researchers have unearthed fascinating insights into the navigational prowess of pigeons.

Embedded in their beaks are tiny fragments of magnetite, a naturally magnetized rock. This

magnetite acts as nature’s GPS, providing the pigeon with positional information concern-

ing Earth’s magnetic poles. Beyond the beak, the pigeon’s eyes harbour specialized cells

believed to allow them to perceive magnetic fields visually. These dual mechanisms em-

power pigeons to traverse vast, landmark-devoid terrains, such as oceans, with an uncanny

sense of direction [1].

Historically, humans have harnessed the pigeon’s impeccable navigational skills since

the times of Babylon, utilizing them to deliver messages across challenging terrains, the

mystique surrounding how pigeons consistently found their way home baffled scientists

for ages. The findings in Science [2] unveil this enigma, emphasizing that pigeons utilize

magnetoreception. This inherent ability to detect Earth’s magnetic fields allows them to

accurately pinpoint their location, as every geographical point on Earth has a distinct

magnetic intensity and inclination.

Intriguingly, humans, too, have traces of magnetite nestled within the bones of our

noses. While it is debatable whether we leverage Earth’s magnetic fields for navigation, it

is a tantalizing hint that perhaps we are not so different from our avian counterparts.

Drawing inspiration from these natural marvels, our research delves deep into the domain

of bio-magnetic signals. Suppose pigeons, with their innate magnetoreception abilities,

can navigate vast distances. How can we, with the boon of modern technology and AI,

not harness the magnetic signals within our brains for greater purposes? If the biological

systems of pigeons can denoise such noisy signals to identify their way, we can do similar.

This research’s objective to map MEG signals to EEG, leveraging spintronic devices like

MTJ, feels like a poetic ode to nature’s magnetic navigators. By synthesizing the wonders

of biology and the potential of technology, we aspire to bring solutions that could reshape

how we perceive and harness our brain’s activities, akin to how pigeons tap into the Earth’s

magnetic symphony to find their way home.
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Building upon this deep-seated inspiration and aspiration, we have made specific, tan-

gible contributions to biomagnetic signal processing and mapping. Let us delve into our

research journey’s key advancements and innovations birthed from our research journey.

• Untapped Potential Exploration: We initiated an investigation into the area of

MEG/EEG mapping using AI, a field that has largely remained untouched. This pro-

vides a new avenue for future research, promising richer insights into brain activities.

• Harnessing Spintronics: Capitalizing on the capabilities of spintronic MTJ sen-

sors, we demonstrated their utility in acquiring MEG data, paving the way for more

compact and efficient data acquisition tools.

• Robust AI-based Mapping: We have successfully developed robust and precise

AI models explicitly tailored for MEG to EEG mapping, setting a new benchmark in

signal translation accuracy.

• Pattern-Driven Mapping Enhancement: We unveiled a groundbreaking ap-

proach that synchronizes spatial and temporal patterns, leading to a remarkable im-

provement in MEG-EEG mapping accuracy.

• Dataset Crafting: We introduced a simulated dataset to recognize the absence of

MTJ-based MEG signal datasets. This dataset not only mimics the inherent noise

found in natural environments but also is a valuable resource for researchers and

practitioners.

• Advanced De-noising Techniques: Our research introduces rigorous models to

de-noise the simulated dataset effectively, ensuring that signal mapping maintains the

highest fidelity possible.

• Edge of Hardware Implementation: We have extended our research to touch

the frontiers of hardware implementation. A key highlight is the quantization of

the BiLSTM model, promising a more efficient and portable bio-magnetic sensing

ecosystem.

• Identification of Challenges: An exhaustive study elucidated the nuanced chal-

lenges associated with spintronic sensory and bio-magnetic signal acquisition, provid-

ing a more precise roadmap for future endeavours.

• Future Outlook: We have set the stage for the next era of bio-magnetic research,

where refined signals can be pivotal in predicting neurological diseases and advancing

federated learning.
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Figure 1.1: Organization of all the chapters of the thesis.

In Figure 1.1, we offer readers a panoramic view of our thesis structure, meticulously

detailing its evolution from one chapter to the next. This illustrative roadmap demystifies

the complexities inherent in our research journey and acts as a compass, guiding readers

toward a deeper understanding. By presenting this organized breakdown, we aim to weave

a cohesive narrative that underscores the synergies and interconnections among various

research facets.

Chapter 2 sets the stage, presenting the cornerstone concepts upon which subsequent

chapters are built. Readers are acquainted with the foundational knowledge of bio-magnetic

signals in this chapter. We navigate the multifaceted landscape of spintronic sensory data

acquisition, demystifying the associated challenges. Additionally, in our quest for compre-

hensive research, we shed light on the gaps that have yet to be bridged within this domain.

Moving forward, Chapters 3 through 5 are the heart of our exploration. These chap-

ters are unified by a singular vision: to establish a ”proof of concept for MEG to EEG

signal mapping in resource-constrained environments.” Nevertheless, they each offer dis-

tinct insights, all seamlessly integrated within the broader framework of software-centric

solutions. Chapter 3 commences this deep dive, emphasizing a data-centric paradigm and

introducing strategies tailored for efficient MEG-EEG mapping, especially in environments

where resources are limited. Following suit, Chapter 4 presents a more intricate perspective,

introducing a combined spatial-temporal pattern detection methodology. This approach,

nuanced in its design, promises enhanced accuracy in MEG-EEG signal correlation. Chap-

ter 5 encapsulates our endeavours in signal quality enhancement. Here, we chronicle our
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strategies for simulating and refining Magnetic Tunnel Junction sensor signals, fortifying

the entire mapping process of MEG to EEG.

With Chapter 6, we pivot our focus, anchoring our discussions on the tangible implica-

tions of our research in hardware. Within these pages, we delve into the futuristic potential

of neuromorphic computing. A spotlight is cast on the quantization of BiLSTM, elucidat-

ing its capacity to usher in transformative shifts within the bio-magnetic sensing hardware

paradigm.

Concluding our research quest, Chapter 7 provides a holistic retrospective, amalga-

mating insights from preceding chapters and contemplating prospective trajectories. As we

reflect upon the research tapestry we have woven, we also cast our gaze forward, speculating

on the broader applications of our findings. This includes the potent capability of utilizing

the refined signals for diagnostic purposes, such as predicting neurological anomalies and

venturing into the dynamic world of federated learning. Through this chapter, we aspire to

leave readers with both a sense of closure and excitement for the untapped potential that

lies ahead.
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2.1 Introduction

Bio-magnetic signals, unique characteristics and significance in physiological and neurolog-

ical processes have emerged as a valuable resource for understanding complex biological

phenomena. In this chapter, we delve into the world of bio-magnetic signals, spintronic

sensors, AI-based models, and the identification of research gaps. By exploring these top-

ics, we aim to pave the way for optimized biomagnetic signal detection, advanced sensing

technologies, and innovative data acquisition and analysis approaches. We pull the strings

together to achieve a higher purpose that has the potential to make the individual’s life

easier.

First, we provide an overview of bio-magnetic signals and their relevance in unravelling

physiological and neurological processes. These signals, including Magnetoencephalography

(MEG), Magnetocardiography (MCG), and others, offer unique insights into brain activity,

cardiac function, and other biological phenomena. By understanding the characteristics

and applications of these biomagnetic signals, we can explore their potential in diverse

fields such as neuroscience, cardiology, and diagnostics.

Next, we introduce spintronic sensors and their importance in bio-magnetic signal de-

tection. These sensors provide an innovative approach to sensing bio-magnetic fields by

leveraging the principles of spintronics. We discuss the fundamental principles of spintron-

ics and highlight how spintronic sensors can revolutionize the detection and analysis of

biomagnetic signals. Furthermore, we explore their advantages, including high sensitivity

and low power consumption, and highlight recent advancements in this rapidly evolving

field. Additionally, we address the challenges of acquiring sensory data from spintronic sen-

sors and the need for tailored approaches to ensure reliable and accurate signal acquisition.

Integrating artificial intelligence (AI) models in bio-magnetic signal analysis is another

exciting research avenue. This chapter examines the potential and limitations of AI-based

models, including deep learning and machine learning used in this work, in extracting mean-

ingful information from bio-magnetic signals. We explore the capabilities of these models

in enhancing signal analysis, identifying patterns, and improving regression accuracy. How-

ever, we also acknowledge the challenges in developing robust AI models for bio-magnetic

signal analysis, such as data availability, model interpretability, and generalizability.

Lastly, we identify research gaps in bio-magnetic signal detection, spintronic sensors, and

AI-based data acquisition. We uncover limitations and shortcomings that call for further

research and innovation by critically evaluating the current approaches, methodologies,

and technologies. Addressing these research gaps becomes essential to advance the field,
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improve signal detection techniques, enhance sensor technologies, and refine AI-based data

acquisition methodologies.

Through the exploration of bio-magnetic signals, spintronic sensors, AI-based models,

and the identification of research gaps, this chapter sets the stage for subsequent discussions.

The following sections delve deeper into each topic, examining their intricacies, potentials,

and challenges. By doing so, we aim to contribute to developing optimized techniques for

biomagnetic signal detection, foster advancements in sensing technologies, and pave the way

for innovative approaches to data acquisition and analysis.

2.2 Biology overview

2.2.1 Action Potential

To comprehend the generation of bio-magnetic signals, it is crucial to understand the con-

cept of the action potential, which serves as the fundamental electrical signal within the

body. The action potential is the brief electrical signals that play a fundamental role in

neuronal communication and are essential for the functioning of the nervous system [3].

Action potentials are generated due to a rapid change in the membrane potential of

excitable cells, such as neurons. This change in membrane potential is triggered by the

motion of ions across the cell membrane, especially sodium and potassium ions. The process

begins with a stimulus that depolarizes the cell membrane, opening voltage-gated sodium

channels and the influx of sodium ions. This influx of positive charge causes a rapid rise in

the membrane potential, resulting in depolarization.

An action potential is triggered once the membrane potential reaches a certain threshold.

This triggers a sequence of events, as shown in Figure 2.1 [4], including the rapid opening

of voltage-gated sodium channels, permitting a massive influx of sodium ions. The influx of

positive charge causes a rapid spike in the membrane potential, generating the rising phase

of the action potential. Following the depolarization phase, the membrane potential rapidly

repolarizes. This happens due to the opening of voltage-gated potassium channels and the

efflux of potassium ions. The repolarization phase returns the membrane potential to its

resting state, briefly hyperpolarizing the cell before reaching equilibrium. The propagation

of action potentials along neurons allows for transmitting electrical signals over long dis-

tances, enabling communication between different nervous system regions. These electrical

impulses generate corresponding magnetic fields, creating the basis for the bio-magnetic

effect [5].

The magnetic field associated with a bioelectrical signal is perpendicular to the electrical

field, resulting in a unique magnetic field pattern for each type of bioelectrical signal [6].

Thus, the bio-magnetic signals are an intrinsic consequence of the electrical activity occur-
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Figure 2.1: Action Potential Stages: 1) Stimulus initiates the threshold event. 2) Depo-
larization sees sodium ions entering the neuron. 3) During Repolarization, potassium ions
exit, restoring internal negativity. 4) The Refractory Period ensures one-way signal travel
by temporarily resisting new potentials.

ring within the body. The coherent relationship between the electrical and magnetic fields

allows bio-magnetic signals to serve as valuable indicators of underlying physiological and

neurological processes.

In neuroscience, for example, Magnetoencephalography provides insights into the spa-

tiotemporal dynamics of brain activity, enabling the mapping of neuronal responses and

studying cognitive processes. Similarly, in cardiology, Magnetocardiography offers a non-

invasive means of assessing cardiac function and diagnosing various heart diseases [7]. By

unravelling the intricate connection between electrical and magnetic fields, we gain a deeper

understanding of the bio-magnetic signals and their potential applications in diverse fields.

The characterization and analysis of these signals hold promise for advancing our under-

standing of physiological processes, aiding in disease diagnosis, and guiding therapeutic

interventions.
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2.2.2 Bio-magnetic Signals

The human body generates various magnetic fields and signals crucial in diagnosing, un-

derstanding, and analyzing internal body activities and interactions. These signals provide

valuable insights into specific physiological processes and contribute to our understanding of

the human body and its functions. Several techniques are employed to measure and analyze

these biomagnetic signals, including Magnetoenterography (MEnG), Magnetooculography

(MOG), and Magnetomyography (MMG).

Magnetoenterography (MEnG) is a technique used to measure the magnetic fields af-

fected by the electrical activity of the gastrointestinal tract. By detecting and analyzing

these magnetic fields, MEnG provides insights into the motility and function of the diges-

tive system. It finds applications in studying gastrointestinal disorders and deepening our

understanding of the physiological processes involved in digestion [8].

Similarly, Magnetooculography (MOG) measures the magnetic fields generated by eye

movements. By capturing these magnetic fields, MOG allows for studying eye movement

patterns and provides valuable insights into visual perception, oculomotor control, and

vestibular function. MOG is employed in disciplines such as ophthalmology, neurology, and

research on eye movement disorders [9].

Magnetomyography (MMG) is another technique that measures the magnetic fields gen-

erated by the electrical activity of skeletal muscles. By detecting and analyzing these mag-

netic fields, MMG provides insights into muscle contraction, neuromuscular diseases, and

motor control. It can be effectively used to study muscle activity patterns and assess muscle

function [10].

In addition to MEnG, MOG, and MMG, other biomagnetic signals offer a wide range of

applications across various research and clinical practice areas. Each signal provides unique

and valuable insights into specific physiological processes, contributing to our understanding

of the human body and its intricate functions. While MEG and MCG are necessary biomag-

netic signals, their significance in this research warrants a separate discussion. While MEG

and MCG are necessary biomagnetic signals, their significance in this research warrants a

separate discussion.

2.2.2.1 Magnetoencephalography (MEG)

Magnetoencephalography is a non-invasive neuroimaging technique that measures the mag-

netic fields generated by neuronal activity in the brain. MEG offers high spatial resolu-

tion, making it a valuable tool for studying the dynamics of brain activity and cognitive

processes [11]. These magnetic fields are fragile and require specialized equipment and

susceptible sensors to detect them accurately.

MEG exhibits several key characteristics that make it a powerful neuroimaging tech-
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nique. Firstly, it offers high sensitivity, allowing it to detect even minute magnetic fields

generated by neuronal activity. This high sensitivity enables researchers to gain insights into

the brain’s functioning with exceptional precision [12]. Additionally, MEG provides out-

standing spatial resolution, enabling researchers to localize brain activity with millimetre-

level precision. This precise localization helps identify specific brain regions involved in

various cognitive processes, such as language processing, memory, attention, and sensory

perception.

MEG also excels in its temporal resolution, capturing the rapid changes in brain ac-

tivity within milliseconds. This temporal resolution is crucial for studying dynamic brain

operations and understanding the precise timing of neuronal activity. MEG also allows for

estimating the sources of neural activity in the brain [13]. By combining the measured

magnetic fields with mathematical modelling techniques, researchers can reconstruct the

underlying neuronal sources, providing insights into the brain’s functional organization.

In clinical settings, MEG has found applications such as pre-surgical mapping of brain

function in patients with epilepsy or brain tumours. It assists in identifying critical brain

functional areas and mapping the epileptic focus, aiding in surgical planning and minimizing

the risk of postoperative deficits.

MEG acquisition systems comprise a helmet-shaped array of susceptible magnetic sen-

sors called Superconducting Quantum Interference Devices (SQUIDs). These systems are

carefully shielded from outer magnetic interference to guarantee accurate measurements of

the weak magnetic fields generated by the brain. The acquired signals are processed and in-

terpreted using advanced computational techniques to extract influential information about

brain activity. The data obtained from MEG provides researchers with valuable insights

into the functioning of the brain and its role in cognitive processes [14].

2.2.2.2 Magnetocardiography (MCG)

Magnetocardiography is a non-intrusive approach that measures the magnetic fields in-

duced by the heart’s electrical activity. By detecting and analyzing these magnetic fields,

MCG provides valuable insights into cardiac function and assists in diagnosing various heart

conditions.

MCG exhibits several key characteristics that make it a powerful tool for investigating

the heart’s electrical activity. Like MEG, MCG offers high sensitivity, allowing it to detect

the weak magnetic fields produced by the electrical currents generated during the cardiac

cycle. This high sensitivity enables precise measurement of cardiac magnetic fields and

provides valuable information about the electrical dynamics of the heart [15]. MCG also

provides excellent temporal resolution, allowing for the capture of rapid changes in the

magnetic fields associated with the heart’s electrical activity. This temporal resolution

enables researchers to analyze the various phases of the cardiac cycle, such as depolarization
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and repolarization, with high precision.

MCG offers several benefits and has a range of applications in cardiology. Firstly, MCG

provides insights into cardiac function and helps assess the heart’s health. It can assist

in diagnosing various heart conditions, including arrhythmias, ischemic heart disease, and

congenital heart defects [16]. Furthermore, MCG aids in localizing cardiac abnormalities

by identifying regions of abnormal electrical activity within the heart. This information

can be crucial for planning interventions, such as ablation procedures, or guiding the place-

ment of implantable devices, such as pacemakers. MCG also offers advantages in specific

patient populations, such as infants, where traditional electrocardiography (ECG) may be

challenging due to their small size or lack of cooperation. MCG provides a non-invasive

alternative to assess cardiac function in these cases [17].

MCG acquisition systems consist of a specialized array of susceptible magnetic sensors

similar to those used in MEG systems. These sensors are strategically placed around the

chest area to capture the magnetic fields generated by the heart’s electrical activity. The

acquired MCG signals are processed and analyzed using sophisticated algorithms to extract

information about the electrical dynamics of the heart. The data obtained from MCG

provides cardiologists and researchers with valuable insights into cardiac function and aids

in diagnosing and managing various heart conditions [18].

2.3 Spintronic sensors

Spintronic sensors have emerged as a groundbreaking technology in biomagnetic signal

detection, offering tremendous potential for revolutionizing how we detect and analyze bio-

magnetic signals. By harnessing the principles of spintronics, these sensors provide unique

advantages such as high sensitivity and low power consumption, making them highly at-

tractive for bio-magnetic signal detection and analysis applications.

Spintronics, an abbreviation for spin electronics, explores the intrinsic spin property of

electrons and their charge to develop new electronic devices. Unlike traditional electronics

that solely rely on electron charge, spintronics utilizes the spin of electrons to encode and

process information [19]. This fundamental principle enables advanced sensors to detect

and measure magnetic fields accurately.

The fundamental component of spintronic sensors is the spin valve structure, which

typically consists of thin layers of magnetic and non-magnetic materials. The magnetic

layers are composed of materials with different magnetic properties, such as ferromagnetic

or antiferromagnetic materials, the blue layers in Figure 2.2. The non-magnetic layers acts

as a spacer between the magnetic layers, the orange layer. When a voltage is applied to

the spin valve structure, an electric current of electrons flows through the structure. These

electrons possess both charge and spin. The spin orientation of electrons can be manipulated
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Figure 2.2: Key Elements of Spintronic Sensor Operation: The upper part showcases the
central spin valve structure, comprising layers of magnetic and non-magnetic materials, the
lower section elucidates the Giant GMR effect

by controlling the magnetic fields within the structure [20].

The spin-dependent phenomena utilized in spintronic sensors are the Giant Magnetore-

sistance (GMR) effect and the Tunnel Magnetoresistance (TMR) effect. Giant Magnetore-

sistance (GMR) Effect: The GMR effect appears when the electrical resistance of a spin

valve structure changes due to the relative alignment between the magnetic layers. When

the magnetic moments of the adjacent layers are parallel, electrons with aligned spins ex-

perience less resistance than when the magnetic moments are antiparallel, as illustrated in

Figure 2.2 [21]. This change in resistance is detected as a change in the electrical signal,

providing information about the magnetic field or the presence of magnetic materials [22].

Tunnel Magnetoresistance (TMR) Effect: The TMR effect is based on the phenomenon

of electron tunnelling through a thin insulating barrier between two magnetic layers. When

the magnetization of the two layers is parallel, electrons tunnel more efficiently, resulting

in a higher electrical current. Conversely, electron tunnelling is inhibited when the mag-
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netization is antiparallel, leading to a lower current. By measuring the electrical current

through the tunnel junction, the relative orientation of the magnetic layers can be deter-

mined, delivering information about the applied magnetic field [23]. The output signal

from a spintronic sensor is typically processed and amplified to provide valuable data about

the measured magnetic field. This data can then be further analyzed and interpreted to

understand the underlying phenomena or to extract relevant information about biological

processes, such as biomagnetic signals.

The extraordinary sensitivity of spintronic sensors makes them significant in biomag-

netic signal detection. Their high sensitivity allows the detection of even extremely weak

magnetic fields, capturing subtle bio-magnetic signals produced by physiological processes.

This sensitivity creates new possibilities for studying various biological phenomena, includ-

ing brain activity, cardiac function, and muscle contractions [24]. Additionally, spintronic

sensors exhibit low power consumption, making them energy-efficient and well-suited for

portable and wearable applications. Their low power requirements extend the battery life of

devices and minimize potential impacts on the biological systems under investigation [25].

In addition, their compatibility with integrated circuits allows for seamless integration

into existing measurement systems and devices. This compatibility enables incorporating

spintronic sensors into conventional electronic circuits, simplifying their implementation

and enhancing their versatility. Moreover, spintronic sensors exhibit a fast response time,

enabling the capture of rapid changes in magnetic fields. This fast response time makes

them well-suited for real-time monitoring of dynamic processes and detecting transient

biomagnetic signals.

Furthermore, spintronic sensors can be scaled to nanoscale dimensions, potentially de-

veloping miniaturized and susceptible sensing devices. This scalability allows for integrating

spintronic sensors into compact and portable platforms, expanding their application in di-

verse settings.

While spintronic sensors offer significant advantages, there are challenges to overcome

for their widespread adoption in bio-magnetic signal detection. These challenges include

optimizing sensor performance, addressing noise sources, improving signal-to-noise ratios,

and ensuring reliable and accurate data acquisition [26].

Future research efforts in spintronics aim to enhance the sensitivity, stability, and in-

tegration of spintronic sensors. This involves exploring new materials, engineering novel

device structures, and developing advanced signal-processing techniques. Additionally, in-

tegrating spintronic sensors with other emerging technologies, such as artificial intelligence

and machine learning, holds potential for further bio-magnetic signal detection and analysis

advancements.
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2.4 AI-Based Models

This section presents a concise overview of the AI-based techniques utilized in this study,

highlighting their algorithms, strengths, and challenges. These techniques, including deep

learning and machine learning, have demonstrated remarkable capabilities in extracting

meaningful information from biomagnetic signals and enhancing signal analysis.

2.4.1 Linear Regression (LR)

Linear regression is a widely used machine learning algorithm that maps the relationship

between a dependent variable and one or more independent variables. The algorithm aims

to find the best-fitting linear equation representing the variables’ linear relationship. The

general form of a linear regression equation can be expressed as:

Y = β0 + β1X1 + β2X2 + . . . + βnXn (2.1)

Here, Y represents the dependent variable, β0 is the intercept term, β1 to βn are the

coefficients corresponding to the independent variables X1 to Xn, and X1 to Xn are the

independent variables.

Strengths of linear regression include its simplicity, interpretability, and computational

efficiency. It provides a straightforward understanding of the relationship between the vari-

ables, as the coefficients indicate the magnitude and direction of each independent variable’s

impact on the dependent variable [27]. Linear regression also functions well when the rela-

tionship between the variables is approximately linear, making it suitable for many practical

applications.

However, linear regression has certain limitations. One major weakness is its assumption

of linearity in the relationship between the variables. If the actual relationship is non-linear,

linear regression may not accurately capture the underlying patterns and may result in

poor predictions [28]. Additionally, linear regression is sensitive to outliers, as they can

disproportionately influence the estimated coefficients and affect the model’s performance.

Another area for improvement is the reliance on the independence of the errors; violating

this assumption can lead to biased or inefficient estimates [29].

2.4.2 K-Nearest Neighbors (KNN) Regressor

K-Nearest Neighbors Regressor is a machine-learning algorithm for regression tasks. It

predicts the value of a continuous target variable based on the values of its neighbouring

data points. The algorithm finds the K nearest data points to a given query point and

averages their target values to make predictions.



16

First, the number of neighbours K is chosen, indicating the nearest data points to be

considered in the prediction process. This value of K can be determined based on the nature

of the problem and the available data. Next, the algorithm computes the distance between

the query point (the point we want to make a prediction) and all data points in the training

set. A distance metric, such as the Euclidean distance, is commonly used to measure the

closeness between points.

After calculating the distances, the K data points with the shortest distances to the

query point are selected. These data points, also known as the nearest neighbours, are

considered to be most similar to the query point. To make a prediction, the algorithm

calculates the average or weighted average of the target values (e.g., the output variable) of

the selected K neighbours. This aggregated value serves as the predicted target value for

the query point.

By following this straightforward process, the KNN Regressor algorithm can provide

predictions for new, unseen data points based on their proximity to existing data points in

the training set. It leverages the notion that similar data points tend to have similar target

values, allowing it to make predictions based on the nearest neighbours [30].

The K-Nearest Neighbors (KNN) Regressor has several strengths, making it a popular

choice in machine learning. First, it offers simplicity in both understanding and implemen-

tation. The basic idea behind KNN is intuitive. It predicts a data point’s value based on

its tightest neighbours’ values. This simplicity makes it accessible to both beginners and

experienced practitioners.

Second, KNN is a non-parametric algorithm, which means it does not make any assump-

tions about the underlying data distribution [31]. This flexibility allows it to handle various

data types, including numeric and categorical variables. This makes KNN a versatile choice

for a wide range of applications.

Furthermore, KNN excels in localized learning. It captures local patterns in the data

and adapts to different local structures. By considering the neighbours closest to a given

data point, KNN can effectively capture local relationships and make accurate predictions

within those regions.

The K-Nearest Neighbors (KNN) Regressor algorithm has some weaknesses that should

be considered. First, the computational complexity of KNN increases as the dataset grows.

Since the algorithm must calculate distances between the query point and all training data

points, the computational cost can become significant, particularly for large datasets. As a

result, the time required for prediction can be considerable [32].

Second, KNN Regressor requires storing the entire training dataset in memory. This can

become memory-intensive, especially for datasets with many instances or high-dimensional

features. As the dataset size increases, the memory usage of the algorithm also increases,

potentially limiting its scalability.
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Another weakness of the KNN Regressor is its sensitivity to noisy or irrelevant features

in the data. Outliers or irrelevant features can significantly impact the distances between

data points and influence the predictions. Therefore, it is crucial to preprocess the data

and remove any noise or irrelevant features to improve the algorithm’s robustness [33].

Determining the optimal value of K is another challenge in KNN Regressor. The choice

of K affects the bias-variance trade-off in the algorithm. A small value of K may lead to

overfitting, where the model captures noise or local variations too closely, resulting in poor

generalization. On the other hand, a considerable value of K may result in underfitting,

where the model oversimplifies the relationships in the data. Selecting the appropriate value

of K requires careful tuning and validation to strike the right balance.

2.4.3 Decision Tree (DT)

The Decision Tree Regressor is a robust machine-learning algorithm used for regression

tasks. It builds a tree-like model to predict continuous numerical values. It recursively

partitions the data based on the values of input features, with each internal node repre-

senting a feature test and each leaf node representing a predicted numerical value. The

algorithm selects the best feature and threshold to split the data, aiming to minimize the

target variable’s variance or mean squared error. Predictions are made by traversing the

tree from the root to a leaf, following the appropriate branches based on the feature values

of the predicted instance [34]. This process allows the model to adapt to complex decision

boundaries and capture non-linear relationships between features and the target variable.

The strength of the Decision Tree Regressor lies in several key aspects. First, it pro-

vides interpretability, allowing an easy understanding of the decision-making process. The

structure of the decision tree, with its if-else conditions at each node, enables a clear inter-

pretation of how the features are used to make predictions. This transparency is valuable

in domains where interpretability and explanation of predictions are crucial [35].

Second, Decision Trees can capture non-linear relationships between features and the

target variable. By recursively splitting the data based on feature thresholds, the algo-

rithm adapts to complex decision boundaries and captures interactions among different

features. This flexibility enables the model to handle non-linear patterns in the data effec-

tively. Furthermore, Decision Trees can handle numerical and categorical features, making

them suitable for various datasets. They can automatically handle feature interactions and

identify relevant features without extensive data preprocessing.

However, Decision Tree Regressors also have some limitations. One drawback is their

tendency to overfit the training data, especially when the tree depth is not properly con-

trolled. Overfitting occurs when the model becomes too complex and captures noise or

peculiarities specific to the training data, resulting in poor generalization to new data.

Regularization techniques, such as setting a maximum depth or pruning the tree, can help
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mitigate overfitting and improve model performance [36].

Another limitation is the instability of Decision Trees to small changes in the data. A

slight variation in the training set can lead to a significantly different decision tree. This

sensitivity to data fluctuations can be addressed using ensemble methods like Random

Forests or boosting algorithms combining multiple Decision Trees to improve stability and

generalization.

2.4.4 Deep Neural Network (DNN)

The Deep Neural Network (DNN) model, also known as a deep learning model, is an artificial

neural network consisting of multiple hidden layers between the input and output layers.

It is designed to learn hierarchical representations of data by successively extracting more

abstract features from the input.

The DNN model passes input data through multiple layers of interconnected nodes

called neurons or units. Each neuron receives weighted inputs from the previous layer and

applies a non-linear activation function to produce an output. The outputs from one layer

are inputs to the next layer until the final layer, producing the model’s prediction [37].

The computation for the weighted sum of inputs to a neuron, denoted as z, can be

represented as:

z = w1x1 + w2x2 + . . . + wnxn + b (2.2)

where w1, w2, . . . , wn are the weights associated with the input features x1, x2, . . . , xn,

and b is the bias term [38].

The output of the neuron, denoted as a, is obtained by applying an activation function,

typically a non-linear function, to the weighted sum:

a = activation(z) (2.3)

Common activation functions used in neural networks include the sigmoid function,

ReLU (Rectified Linear Unit), and tanh (hyperbolic tangent) function.

For a DNN with multiple hidden layers, the outputs from the previous layer serve as

inputs to the next layer. The computations are performed layer by layer, propagating the

information forward until reaching the output layer, where the final prediction is made.

DNN offers several advantages. First, DNNs can learn complex patterns, allowing them

to handle intricate and non-linear relationships in data. This makes them well-suited for

tasks such as image and speech recognition. Second, DNNs excel at automatic feature

extraction, eliminating the need for manual feature engineering. They can automatically

learn and extract relevant features from raw data, simplifying the modelling process. Third,

DNNs are scalable and can handle large datasets with high-dimensional inputs. This scal-

ability makes them suitable for big data applications [39].
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However, the DNN model also has some drawbacks. One challenge is the extensive

training data requirements. DNNs typically require a substantial amount of labelled train-

ing data to achieve good performance. Insufficient training data can lead to overfitting,

where the model becomes too specialized to the training set and performs poorly on un-

seen data. Another consideration is the computational intensity of training deep neural

networks. Complex tasks and large networks can be computationally demanding, requiring

significant computational resources. This requirement can limit the applicability of DNNs

in resource-constrained environments.

Additionally, DNNs are often considered black box models due to their lack of inter-

pretability. Understanding and explaining the internal workings of DNNs can be challeng-

ing, which can be a drawback in domains where interpretability is crucial. Finally, DNNs

are vulnerable to overfitting, especially when the model capacity is high relative to the avail-

able training data. Regularization techniques and careful model selection are necessary to

mitigate overfitting and ensure generalization to unseen data [40].

2.4.5 Convolutional Neural Network (CNN)

The Convolutional Neural Network (CNN) model is a deep learning architecture that is

particularly effective in processing structured grid-like data, such as images. It is designed

to automatically learn and extract hierarchical representations of features directly from the

input data. CNNs leverage convolution, a mathematical operation involving applying a

filter (also known as a kernel) to the input data to extract local patterns and features.

The CNN model works by using convolutional layers, pooling layers, and fully connected

layers. The convolutional layers consist of multiple filters convolved with the input data,

resulting in feature maps that capture different aspects of the input. These feature maps are

created by applying convolutional operations, which involve element-wise multiplication and

summation of the filter weights and the corresponding input values [41]. Mathematically,

the convolution operation can be represented as:

(f ∗ g)(i, j) =
∑
m

∑
n

f(m,n) · g(i−m, j − n) (2.4)

where f represents the input data, g represents the filter, and (i, j) represents the spatial

coordinates of the resulting feature map [42]. Pooling layers are then used to downsample

the feature maps, reducing their spatial dimensions while retaining the most relevant in-

formation. Common pooling operations include max pooling, average pooling, and global

pooling. Finally, fully connected layers are employed to classify or regress the learned fea-

tures. These layers connect every neuron from the previous layer to every neuron in the

current layer, allowing for high-level feature combinations and making the final predictions.

The advantages of CNN models include their ability to automatically learn hierarchi-
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cal representations of features, which makes them highly effective for image and pattern

recognition tasks. CNNs can capture the data’s local patterns and spatial dependencies,

allowing for robust and accurate predictions. Additionally, CNNs can learn and generalize

from many training examples, making them suitable for complex and large-scale datasets.

However, CNNs also have some drawbacks. One challenge is the high computational

requirements, especially for training large networks on resource-constrained devices. Train-

ing CNNs typically involves many parameters and requires substantial computational re-

sources. Additionally, CNNs may be prone to overfitting if the training dataset is limited,

and regularization techniques are necessary to mitigate this issue [43]. Furthermore, the

interpretability of CNNs can be challenging due to their complex and layered architectures,

making it difficult to understand the exact reasoning behind their predictions.

2.4.6 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit model is a recurrent neural network (RNN) architecture widely

used for sequential data processing, such as natural language processing and time series

analysis. It addresses some of the limitations of traditional RNNs, such as the vanishing

gradient problem and the inability to capture long-term dependencies in sequences.

The GRU model works by utilizing gating mechanisms to control the flow of information

within the network. It consists of update and reset gates, which determine how much of the

previous hidden state to retain and how much new information to incorporate. This gating

mechanism allows the GRU to update and propagate information over time selectively [44].

Mathematically, the GRU model can be described as follows:

Update gate: zt = σ(Wz · [ht−1, xt]) (2.5)

Reset gate: rt = σ(Wr · [ht−1, xt]) (2.6)

Candidate hidden state: h′t = tanh(W · [rt · ht−1, xt]) (2.7)

Hidden state update: ht = (1 − zt) · ht−1 + zt · h′t (2.8)

Here, xt represents the input at time step t, ht−1 represents the previous hidden state, zt

is the update gate, rt is the reset gate, h′t is the candidate hidden state, σ is the activation

function, and ht is the updated hidden state at time step t. Wz, Wr, and W are learnable

weight matrices [45].

The advantages of the GRU model include its ability to capture long-term dependencies

in sequences while avoiding the vanishing gradient problem. It achieves this by utilizing

gating mechanisms that allow for selective information propagation and update. The GRU

model also has a simpler architecture than other RNN variants, such as the Long Short-Term

Memory (LSTM) model, making it computationally efficient and easier to train [46].
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However, the GRU model also has some drawbacks. One limitation is its reduced mem-

ory compared to the LSTM model. The GRU has fewer gates and memory cells, which

may limit its ability to capture complex long-term dependencies in some sequences. Addi-

tionally, like other deep learning models, the GRU model requires much-labelled training

data to perform well. Limited training data can lead to overfitting or inadequate model

generalization [47].

2.4.7 Long Short-Term Memory (LSTM)

The Long Short-Term Memory model is a recurrent neural network (RNN) designed to

overcome the vanishing gradient problem and capture long-term dependencies in sequential

data. It is widely used in various fields, including natural language processing, speech

recognition, and time series analysis.

At its core, the LSTM model consists of memory cells that store information over time

and gates that regulate the flow of information within the cells. These gates include the

input gate, forget gate, and output gate, which control the information flow and selectively

update the cell state [48].

Mathematically, the LSTM model can be described as follows:

Input gate: it = σ(Wi · [ht−1, xt]) (2.9)

Forget gate: ft = σ(Wf · [ht−1, xt]) (2.10)

Cell state update: C̃t = tanh(WC · [ht−1, xt]) (2.11)

Cell state: Ct = ft · Ct−1 + it · C̃t (2.12)

Output gate: ot = σ(Wo · [ht−1, xt]) (2.13)

Hidden state: ht = ot · tanh(Ct) (2.14)

Here, xt represents the input at time step t, ht−1 represents the previous hidden state,

it is the input gate, ft is the forget gate, C̃t is the candidate cell state, Ct is the updated

cell state, ot is the output gate, and ht is the hidden state at time step t. Wi, Wf , WC , and

Wo are learnable weight matrices [49].

The advantages of the LSTM model include its ability to capture long-term depen-

dencies, handle variable-length sequences, and alleviate the vanishing gradient problem.

By incorporating the memory cells and gates, LSTMs can store and retrieve relevant in-

formation over extended intervals, making them well-suited for tasks involving long-range

dependencies [50].

However, the LSTM model also has some drawbacks. One drawback is its increased

computational complexity compared to simpler models like standard RNNs. The addi-

tional gates and memory cells contribute to more significant parameters and more intensive
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computations, requiring more resources for training and inference. The LSTM model may

also be susceptible to overfitting, especially when trained on small datasets. Regularization

techniques and careful model selection are necessary to mitigate this issue [47].

2.4.8 Bidirectional LSTM (BiLSTM)

The Bidirectional LSTM model is a variant of the LSTM model that incorporates infor-

mation from both past and future contexts by using two separate LSTM layers: one that

processes the input sequence in the forward direction and another that processes it back-

ward. This allows the model to capture dependencies in both temporal directions, enabling

a more comprehensive understanding of the input sequence.

Typically, the BiLSTM can be described as follows. Given an input sequence, the

forward LSTM layer processes the sequence from left to right, while the backward LSTM

layer processes it from right to left. At each time step, both layers compute their respective

hidden states based on the input at that time step and the hidden states from the previous

time step. The final hidden state concatenates the forward and backward hidden states at

each time step [51].

The BiLSTM model offers several advantages. Firstly, it enhances contextual under-

standing by incorporating information from both past and future contexts. This allows

the model to capture a more comprehensive understanding of the input sequence, which is

beneficial for tasks where the context in both directions is essential, such as part-of-speech

tagging or named entity recognition. Secondly, the BiLSTM model is more robust to vari-

ations in the input sequence. Considering both preceding and succeeding elements, it can

handle sequences with varying lengths and better capture long-range dependencies [52].

Another advantage of the BiLSTM model is its flexibility in architecture. It can be easily

integrated into various architectures for different sequence-based tasks, including sequence

labelling, machine translation, sentiment analysis, and more. Its versatility makes it popular

in natural language processing and sequential data analysis domains.

However, the BiLSTM model also has some drawbacks. Firstly, its bidirectional na-

ture increases computational complexity. Processing the input sequence in both directions

requires more computation than unidirectional models like the LSTM. This can result in

more extended training and inference times, especially for large datasets. Secondly, the

BiLSTM model requires higher memory requirements. It needs to store the hidden states

from both the forward and backward directions, which increases memory usage compared

to unidirectional models. This can be a concern in memory-constrained environments or

when dealing with large-scale models [53].
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2.5 Research Gap

Based on the provided overview of the different components used in the thesis, including bio-

magnetic signals (specifically MEG signals), spintronic sensors (specifically MTJ sensors),

and AI-based models (including various machine and deep learning algorithms), there is

a tremendous opportunity to elevate the project to new heights. The goal is to develop

a portable, intelligent, and user-friendly MEG device that integrates these cutting-edge

technologies.

While previous research has made significant strides in exploring MEG and EEG signals

separately, leveraging deep learning techniques within these modalities remains a critical

research gap in their combined exploration. This gap underscores the need to investigate

the joint mapping of MEG and EEG signals within a unified framework. By undertaking

this ambitious endeavour, the potential exists to revolutionize the field of biomedical devices

and propel our understanding of neuroscience forward.

By embracing the synergistic nature of these signals and harnessing the power of deep

learning and machine learning, this research holds promise in bridging the existing gap and

realizing the substantial benefits and applications of an integrated approach. The upcoming

chapters of the thesis will delve further into the intricacies of this mapping, emphasizing its

importance and exploring its wide-ranging implications in bio-magnetic signal analysis and

neuroscience.

Ultimately, this research aims to venture into uncharted territory by seamlessly com-

bining MEG and EEG signals. This innovative approach not only propels advancements in

biomedical devices but also unravels novel insights into the intricate workings of the human

brain. By pushing the boundaries of interdisciplinary research, this project has the po-

tential to reshape our understanding of neuroscience and pave the way for groundbreaking

discoveries.
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3.1 Introduction

Improvements in brain imaging technologies have revolutionized our knowledge of the hu-

man brain and its intricate functioning. Among those techniques are magnetoencephalogra-

phy (MEG) and electroencephalography (EEG). They are central tools for measuring high

temporal and spatial resolution of neural activity [54]. However, the massive and expensive

nature of the MEG devices and the complexity of EEG recording limit their practicality

in real-life settings. In this chapter, we present an unconventional yet efficient data-driven

approach that seeks to overcome these barriers by introducing the concept of a portable

MEG device enabled by the outstanding capacities of recently emerging, ultra-sensitive

Magnetic Tunnel Junction (MTJ) sensors fabricated by prominent research groups and

industry stakeholders across the world including TDK, MDK, and so forth [55,56].

While MEG and EEG work in tandem in abnormality diagnosis, each modality exhibits

its unique advantage. For instance, EEG is superior to long-term video EEG recordings

and can precisely detect temporal resolution [57]. Several diseases can be detected ef-

fectively by EEG more than MEG alone; for example, sleep abnormalities, such as sleep

apnea, narcolepsy, and parasomnia, and abnormalities in sleep patterns (e.g., disruptions in

sleep stages, sleep spindles, or REM sleep behavior disorder) [58]. There are other certain

neurodegenerative disorders, such as dementia with Lewy body (DLB), that are difficult

to differentiate from Alzheimer’s disease. Diagnosis of such diseases is difficult and ex-

pensive with available imaging and bio-molecular clinical tests [59]. We are motivated by

MTJ/TMR-based bio-magnetic sensing systems which can achieve this much-desired func-

tionality.

Our work, in this chapter, considers an ultra-sensitive MTJ/TMR bio-magnetic sensor

and focuses on developing a robust mapping model that utilizes machine learning and

deep learning algorithms to produce the EEG signals using the MEG channel records.

By harnessing the potential of MTJ sensors and developing innovative signal processing

methods, we pave the way towards a new era of portable and wearable brain imaging,

poised to revolutionize healthcare, neurology, and brain-computer interfaces (BCIs).

To accomplish this mission, we pay attention to the mapping model by employing a

dataset of MEG and EEG signals simultaneously recorded from a subject conducting var-

ious sensory tasks. The data are preprocessed by applying independent component analy-

sis (ICA) to remove artifacts associated with eye movements (EOG) and cardiac activity

(ECG) [60]. Furthermore, we perform bandpass filtering on the EEG and MEG data to

extract relevant frequency details. Next, we separate the channels into EEG and MEG
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channels. Then, we split the data into epochs based on event triggers, allowing us to an-

alyze brain activity associated with specific stimuli. We then reshape the MEG and EEG

data to create suitable input structures for our machine-learning models. The challenge of

this problem is the variance in features between MEG and EEG records. We develop several

models for MEG/EEG mapping and compare the results to suggest the best performance

prototype depending on the mean square error (MSE), mean absolute error (MAE), and

root mean square error (RMSE) evaluation matrices used in the regression tasks.

Our research opens up new prospects for developing portable MEG devices by success-

fully mapping MEG signals to related EEG signals. Integrating MTJ sensors in such devices

enables real-time brain activity tracking in various settings, including clinical environments

and everyday life [61].

The remainder of the chapter is organized as follows. The related research work is

surveyed in Section 5.2. Then, we discuss the dimensions of the problem in Section 5.3.

Next, the solution of the mapping problem is presented in Section 4.4 followed by the

performance evaluation of our proposal in Section 5.4 Finally, we provide concluding remarks

in Section 6.6.

3.2 Related work

Biomedical signal mapping has become an attractive topic for researchers, especially with

the observed revolution in the powerful tools and algorithms in the machine and deep

learning domains. This review [62] monitors the magnitude of the complex data preserved

rapidly in the different healthcare sectors: hospitals, clinics, medical equipment and medical

research. This big data becomes more valuable with the advancement of artificial intelli-

gence/ machine and deep learning tools in a way that enhances healthcare delivery. Their

focus on identifying the research gaps related to healthcare and artificial intelligence helps

us investigate this area of biosignal mapping to utilize the power of such technologies.

We are also inspired by another review whose interest is understanding the relationship

between biosignals and psychological stress. This work [63] has analyzed the consequences

of stress on the human body, using various biosignal measures (EEG, electrocardiography

(ECG), electrodermal activity (EDA), electromyography (EMG), respiratory rate, speech

patterns, skin temperature, pupil size, and eye activity) to capture the physiological and

physical responses associated with stressors. This type of mapping remains limited unless

further investigation arises to unleash a deeper understanding of the multitude of biosignal

features. This chapter uses deep learning models to investigate precisely MEG and EEG

signal mapping.

In the context of our ongoing research, the exploration of mapping between Magneto-

myography (MMG)and Electromyography (EMG) holds tremendous potential in advancing
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our understanding of human physiological processes and enhancing the accuracy and effi-

cacy of our own work [64]. They applied a recently proposed electronic Rotating Neuron

Reservoir (eRNR) model usinng the self-collected MMG data to predict the EMG from the

corresponding noisy MMG signal. Their model successfully maps the MMG signal to EMG

with adequate normalised root mean square error (mse = 0.3894).

In the domain of mapping between different types of biosignals, a remarkable study

by [65] concentrated on mapping cardiac dysfunctions using Electro/Magnetocardiogram

(E/MCG) signals. Their research aimed to solve the inverse problem of estimating activ-

ities at the source level by constructing a spatial matrix based on vectors and utilizing a

Bayesian approach. They incorporate the updates derived from Vectorcardiography signals

to enhance the accuracy of the inverse problem solution. Similarly, the [66] authors used the

ECG signals obtained by the exact position of MCG records to validate the detected signals

by their invented wearable multichannel MCG system based on a spin exchange relaxation-

free regime (SERF) magnetometer array. They applied the independent component analysis

(ICA) and empirical mode decomposition (EMD) techniques to denoise the multichannel

MCG records. They ended up with a robust system that can effectively capture the MEG

signals through this wearable device.

Several endeavours study the relationships between the different biosignals through AI

algorithms. Among those attempts to map such signals, the work in [67] may be regarded

as pioneering. A deep learning model was developed in that work to accurately map the

magnetocardiography (MCG) to the electrocardiography (ECG). They designed a model

comprising a one-dimensional convolution layer, Gated Recurrent Unit (GRU) layer, and

a fully-connected neural layer to learn the relationship between the MCG and ECG. Con-

sequently, their developed model was shown to predict the ECG signal given the MCG

signal acquired by the MTJ sensor. In addition, researchers in [68] mapped the noisy MCG

to obtain an AI-filtered MCG signal by adopting and comparing several deep learning ap-

proaches [69]. As mentioned earlier, the extension of the research is to investigate the

non-linear MEG/EEG mapping to enrich the biomedical signal domain, which has yet to

be studied.

3.3 Motivation and Problem Description

There is no doubt about the qualitative shift in brain imaging brought about by the MEG

technique, which we have benefited from until now; even our research that provides a proof

of concept aims to replace these devices with others that do not suffer from what these

devices suffer from. This section highlights some of the MEG/EEG device’s challenges,

including high cost, complexity, and portability, which necessitate developing alternative

solutions, such as a portable and affordable MEG device based on ultra-sensitive MTJ
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Figure 3.1: Traditional brain activities monitoring vs. our envisioned AI-based MEG mon-
itoring system for brain activity monitoring, including a schematic of the MTJ sensor and
the outline of a lightweight AI pipeline. Note that the core focus of our research in this
chapter is on the MEG to EEG (MEG-EEG) mapping component of the pipeline.

sensors.

3.3.1 High Cost

Conventional MEG machines are known for their high operational cost. The sophisticated

hardware and advanced electronics used in constructing MEG scanners contribute to their

high price tags. The machine cost is around 2.5 million Euros plus the running expenses,

which can be about 70,000 Euros per year for cooling with helium [70]. This cost poses

a significant barrier, particularly for smaller research institutions, clinical settings, and

resource-limited regions. The financial burden of acquiring and maintaining traditional

MEG systems often bounds their availability and hampers the progress of vital neuroscien-

tific research.

Our MEG/EEG mapping work is meaningful since we seek to avoid the constraints

brought about by the high operational cost of MEG devices by creating precise and trust-

worthy mapping methodologies. The ability to map MEG signals to corresponding EEG

signals provides a cost-effective avenue for accessing valuable information about brain ac-

tivity. Researchers and clinicians can gain insights into neural dynamics and brain con-

nectivity without expensive MEG equipment by utilizing EEG systems in conjunction with

our mapping techniques. This reduces the financial burden and expands the accessibility of
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advanced neuroscientific research and clinical applications to a broader range of institutions

and regions.

3.3.2 Complexity

MEG devices typically consist of intricate systems of superconducting materials, cryogenic

cooling mechanisms, and complex data acquisition systems. The design of this machine

necessitates a shielded room to prevent interaction with the other magnetic fields, in addition

to superconducting quantum interference devices (SQUIDs), which require a massive cooling

system to provide connectivity [71]. These features require specialized technical expertise

for installation, function, and maintenance. The complexity of traditional MEG systems

makes them less accessible to researchers and clinicians without extensive training in MEG

technology. Additionally, the complexity introduces portability and ease of use challenges,

limiting their application in various settings beyond dedicated research laboratories.

MEG/EEG mapping is a feasible solution to overcome the complexity associated with

traditional MEG devices. By mapping MEG signals to their corresponding EEG counter-

parts, we effectively bypass the need for intricate superconducting materials, cryogenic cool-

ing systems, and specialized data acquisition mechanisms. The mapping process enables

researchers and clinicians to leverage the accessibility and simplicity of EEG technology

while still harnessing the advantages of MEG by simplifying the experimental setup and

data acquisition process. This approach not only reduces the financial burden of acquiring

and maintaining expensive MEG systems but also eliminates the need for shielded rooms

and complex cooling setups.

3.3.3 Weight and Mobility

The weight of the MEG machines is the primary limitation to portability due to the require-

ments needed to acquire the data and eliminate any magnetic interactions. Despite this,

our proposed technique uses deep learning and machine learning models to perform this

task accurately. The lightest MEG device that exists nowadays is a few hundred kilograms.

Therefore, any attempt to put that vast device into an IoT device and be available to people

24 hours is worth it.

In this chapter, we address the aforementioned challenges by conceptualizing a novel

idea of a portable MEG device. We build our theory on the sensitivity of emerging MTJ

sensors, which have been demonstrated to capture extremely weak bio-magnetic fields that

are associated with the neural activity of humans. The captured signal passes through an

AI-based filtering model to purify the signal from the sensor-added noises similar in the

spirit in the coauthor’s earlier work with denoising MCG signals [67]. Our research focuses

on developing a mapping model between the EEG signals from the pure MEG activities. We
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aim to construct a data-driven model to understand the intricate, non-linear relationship

between MEG and EEG signals, which can be later widely used in many applications, such

as neurology, healthcare, and brain-computer interfaces, as depicted in Figure 3.1

3.4 Proposed MEG-EEG Mapping

In this section, we present our envisioned MEG-EEG mapping technique. First, we describe

the data preprocessing and channel selection process. Next, we perform a systematic in-

vestigation of the relevant data-driven models for MEG-EEG mapping. Then, we delineate

how to post-process the mapped ECG signal for acceptable resolution for visualization and

clinical interpretability purpose.

3.4.1 Data Preprocessing and Channel Selection

This study investigates the MEG/EEG mapping problem using the “sample” dataset avail-

able in the MNE Python library. The following steps and considerations guided our research.

First, we loaded the dataset and carefully examined its characteristics. We identified

the ECG and EOG channels deemed inappropriate for further analysis. Thus, we excluded

it from our subsequent computations. Next, a key step in our approach consisted in the

utilization of Independent Component Analysis (ICA). This technique, known for its ability

to separate mixed signals into their underlying sources, was chosen to address the challenge

of isolating independent components associated with specific brain activity patterns [72].

After applying ICA, we focused on artifact removal to enhance the data quality. Specif-

ically, we targeted the removal of ECG and muscle artifacts by identifying and eliminating

the corresponding components. Since the dataset combined MEG and EEG signals, we

partitioned the data into two files to facilitate the subsequent training process.

The raw data encompassed various essential details. The measurement date was De-

cember 03, 2002, at 19:01:10 GMT. The MEG team experimented, and the participant’s

identity remained unknown. The dataset comprised 146 digitized points, including 204 Gra-

diometers, 102 Magnetometers, 9 Stimulus channels, 60 EEG channels, and 1 EOG channel.

We noted the presence of bad channels, namely MEG 2443 and EEG 053. Furthermore,

EOG channel 061 was identified as an EOG channel, while ECG channels were unavailable.

The sampling frequency was 600.61 Hz, and a highpass filter at 0.10 Hz and a lowpass filter

at 172.18 Hz were applied [73].

Following artifact removal, we applied bandpass filtering to the MEG and EEG signals.

For the MEG data, we employed a bandpass filter ranging from 1 Hz to 100 Hz to contain

all the relevant frequencies, as suggested in the relevant literature [74], aiming to remove

unwanted noise and concentrate on the desired frequency range. Similarly, the EEG data

underwent bandpass filtering within 0.5 Hz to 55 Hz [75].
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We divided the filtered data into training and testing sets to facilitate model training and

evaluation, adopting a 75-25 ratio. Regarding our analysis, we employed five distinct can-

didate models to address the MEG/EEG mapping task that are presented in the following

subsection.

3.4.2 Candidate Models for MEG-EEG Mapping

From hereon, we describe our considered candidate data-driven models to map MEG to EEG

signals that include linear regression, K-nearest neighbours (KNN), decision trees, artificial

neural network (ANN), and convolutional neural network (CNN) models to capture the

complex relationships between the MEG and the EEG signals.

3.4.2.1 Linear Regression (LR)

We applied linear regression, a widely-used supervised learning algorithm, to designate a

linear relationship between the input MEG and output EEG channels [76]. the dependent

variable represents the EEG signal, while the independent variables represent the MEG

signals. The dependent variable, the EEG signal, is the target variable that we want to

predict or map using the MEG signals. It consists of samples measured across 59 channels,

which capture the electrical activity of the brain at specific locations. On the other hand,

the independent variables are the MEG signals, which serve as predictors in the linear

regression model. These MEG signals are measured across 305 channels and represent the

magnetic fields generated by the electrical activity of the brain.

The purpose of the linear regression model is to establish a relationship between the

MEG signals (independent variables) and the corresponding EEG signal (dependent vari-

able). The model learns the coefficients for each MEG channel that best predict the cor-

responding EEG signal across the 59 channels. This model minimizes the mean squared

error between the predicted and actual values. The mapping process can be mathematically

represented as follows:

yeeg = XmegW + b (3.1)

where yeeg is the predicted EEG signals, a 2D array of dimensions (number of samples,

number of EEG channels). Xmeg represents the MEG input signals, a 2D array of dimen-

sions (number of samples, number of MEG channels). W is the weight matrix, a 2D array

of dimensions (305, 59), representing the weights for mapping MEG to EEG. b is the bias

vector, a 1D array of length 59, representing the biases for each EEG channel [77].

In this formulation, the model learns the weight matrix W and bias vector b during

training to map the MEG input signals to the corresponding EEG signals.
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(a) Actual vs predicted signal performance with
the LR model for channel 41.
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(b) Actual vs predicted signal performance with
the KNN model for channel 41
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(c) Actual vs predicted signal performance with
the DNN model for channel 41.
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(d) Actual vs predicted signal performance with
the CNN model for channel 41
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(e) Actual vs predicted signal performance with
the DT model for channel 41

Figure 3.2: Filtered signals of channel 41 and time range 4-5 seconds: Actual vs. predicted
signals by different models.
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3.4.2.2 K-Nearest Neighbors (KNN) Regressor

KNN regressor is a non-parametric algorithm representing a non-linear approach to es-

timating the input/output relationship, especially those that parametric methods cannot

recognize. It calculates the distance between the new data point and all the training data

points. Then, the KNN regressor considers the closest k neighbors to take the average of

their target values and accordingly calculate the output.

The anticipated EEG signal, yeeg, is computed as the average of the target values of

these K neighbours. Mathematically, the KNN Regressor can be represented as:

yeeg =
1

K

K∑
n=1

y(n)
meg (3.2)

where ymeg(n) represents the target values of the K nearest neighbors, and K is the number

of neighbors considered for prediction, we choose k =5 neighbours empirically [78].

3.4.2.3 Decision Tree (DT)

Decision trees are adaptable machine learning models that partition the feature space into

branches based on a hierarchy of if-else conditions. By recursively splitting the data based

on the most independent features, the decision tree regressor predicts the output value by

averaging the target values of the samples within each leaf node [79]. We construct our

tree model with up to 15 split levels before reaching the output leaf node. This design

enhances the capability of the model to capture the complexity within the MEG and the

corresponding EEG features.

ŷeeg = f(xmeg) =

m∑
j=1

Cj · I(xmeg ∈ Rj) (3.3)

In this equation, [80], ŷeeg denotes the predicted EEG signal, xmeg is the input MEG

signal with 305 channels, Ci is the constant weight associated with the i-th leaf node, Ri

represents the region defined by the conditions at the i-th internal node, and I(·) is the

indicator function that returns 1 if the condition is true and 0 otherwise. The equation

sums up the constant values of the leaf nodes for which the input MEG signal falls into the

corresponding regions.

3.4.2.4 Deep Neural Network (DNN)

Since the MEG-EEG mapping deals with a non-linear relationship, neural network struc-

tures may be regarded as a natural candidate model to formulate such a relationship.

Therefore, next, we utilized an artificial neural network with deep structures, also referred
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to as a Deep Neural Network (DNN), which is a versatile and powerful deep learning ap-

proach. The DNN model, as shown in Figure 3.3(a), begins with a dense layer of 128

units, which involves the Rectified Linear Unit (ReLU) activation function to introduce

non-linearity. This layer receives input data corresponding to 305 channels. One additional

dense layer with 256 and 128 units, respectively, and ReLU activation are added to capture

complex patterns in the data. To prevent overfitting, dropout layers are incorporated after

the second dense layer, randomly dropping out 50% of the units during training. The final

dense layer, comprising 59 units and linear activation, provides the regression output for

the EEG signal.

During the training process, the DNN model was compiled using the Adam optimizer

and the mean squared error (MSE) loss function, commonly employed in regression tasks.

The training-validation split of the dataset generates the training loss vs validation loss

curve to evaluate the model’s performance and pinpoint any potential overfitting or under-

fitting issues. In our experiment, we trained the DNN model for 100 epochs using an early

stopping technique with a patience value of 5. If the validation loss did not improve for

five consecutive epochs, the training process would be stopped early to prevent overfitting.

Interestingly, the model showed promising performance and achieved convergence within

relatively few epochs. Specifically, the training stopped at epoch number 24, as shown

in 3.3(b), indicating that the model had already captured the underlying patterns in the

data and that further training was unnecessary. This early stopping mechanism helped us

save computational resources and avoid potential overfitting issues.

3.4.2.5 Convolutional Neural Network (CNN)

CNNs are deep learning models that excel at processing grid-like data, such as images or

sequences [81]. We deploy a CNN model consisting of 5 cascaded layers as shown in Fig-

ure 3.4(a). The temporal and spatial convolutions are performed to capture local patterns

in the data using the ReLU activation function in the first and third layers. The second and

the fourth layers are max pooling layers. They are crucial in extracting the most relevant

features from the signal and abstracting the underlying patterns. Then we apply a flat-

tened layer that reshapes the output into a one-dimensional vector to bridge the previous

convolutional layers and the fully connected dense layer to get a proper outcome that fits

our problem. Our CNN model accepts a 3D input of MEG samples, the number of MEG

channels, and one, and produces 2D output with EEG samples and EEG channels. We use

Adam as an adaptive optimizer and MSE as an evaluation matrix and loss function.

We employ early stopping with a patience 5 to ensure optimal performance while avoid-

ing overfitting, like the DNN model. In our case, the model stops training at epoch number

41. The training and validation loss curves are depicted in Figure 3.4(b), showing the pro-

gression and convergence of the model during training. The decreasing trend of both curves
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(a) DNN model architecture (b) Training vs validation loss curves for the pro-
posed DNN model

Figure 3.3: Fix caption.

(a) CNN model architecture (b) Training vs validation loss curves for the pro-
posed CNN model

Figure 3.4: comparison of Training and Validation Loss Curves and Model Architectures
for the Proposed DNN and CNN Models

indicates that the model learns from the training data and generalizes well to the validation

data.

3.4.3 Postprocessing

After obtaining the predicted EEG signals from each model described in section 3.4.2, we

applied a moving average filter to smooth the signals and reduce high-frequency noise. The

moving average filter takes the input signal and window size as parameters. The function

applies a moving average operation to the signal using a window of ones divided by the

window size. The window of size five smooths out the high-frequency noise in the predicted

signals, resulting in cleaner and more interpretable waveforms. By involving the moving
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Figure 3.5: Performance comparison of MAE and RMSE for different models.

average filter in the predicted EEG signals, we improve the overall signal quality and reduce

the impact of short-term fluctuations, thereby enhancing the interpretability and visual

clarity of the predicted EEG waveforms [82]. This postprocessing step prepares the signals

for further investigation and evaluation of their performance.

Figure 3.2 illustrates the typical EEG test signal along with the prediction results of

different models after the post-processing step for channel number 41. Specifically, Figure

3.2(d) represents the prediction results using the Linear Regression (LR) model, Figure

3.2(b) shows the results obtained from the K-Nearest Neighbors (KNN) model, Figure

3.2(d) displays the predictions from the Convolutional Neural Network (CNN) model, Figure

3.2(e) depicts the predictions made by the Decision Tree (DT) model, and Figure 3.2(c)

showcases the results obtained using the Deep Neural Network (DNN) model. To facilitate

visual interpretation, we focus on a specific time interval of 1 second, specifically between the

second 4 to 5. This selected timeframe allows us to observe the performance of each model

in capturing the EEG signal dynamics and comparing it to the ground truth signal. By

examining these figures, we can gain insights into how well each model predicts the EEG

signal for channel number 41, thereby assessing their effectiveness in MEG/EEG signal

mapping.

3.5 Performance Evaluation

The evaluation measures used in this chapter to assess the proposed models’ effectiveness

for the MEG/EEG mapping task include root mean square error (RMSE), mean absolute

error (MAE), and the prediction time [83]. Figure 4.2 visually represents the performance

comparison among different models in terms of MAE and RMSE. The x-axis represents the

models, including KNN, LR, DNN, CNN, and DT, while the y-axis represents the error

values.

Table 6.1 indicates a detailed summary of each model’s performance metrics and pre-
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Figure 3.6: The first 20 EEG channels filtered based on the LR model’s predictions

Table 3.1: Performance metrics and prediction times for different models.

Model MAE RMSE Prediction

Time (s)

KNN 0.0148 0.0224 29.0600

LR 0.0317 0.0426 0.1255

DNN 0.0395 0.0527 7.1060

CNN 0.0699 0.1011 6.2057

DT 0.0519 0.0672 0.0911

diction times. The MAE and RMSE values are listed for each model, indicating the error

level between the predicted and actual values. Additionally, the prediction times for each

model are included, offering insights into the computational efficiency of the algorithms.

These findings contribute to evaluating and selecting the most fitting (i.e., most appropri-

ate) model for the MEG-EEG mapping task that could be viable for resource-constrained

IoT (Internet-of-Things) capability incorporation with MTJ sensing systems.

The KNN regressor exhibited the best performance in terms of minimization error.

However, it is computationally expensive since it requires the longest prediction time among

all models. On the other hand, the DT model predicted the test samples instantly. However,

it did not demonstrate our expected performance. From the optimization point of view, the

LR model achieved high performance in a reasonable time, as depicted in Figure 5.5.

Figure 3.7 represents the predicted EEG signal after applying the average moving filter
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Figure 3.7: Actual vs. predicted signals for randomly selected EEG channels.

with the actual EEG record for two random channels from the 59 EEG channels within

the selected period, i.e., 1.5-4 seconds. We normalized the signal amplitude for the sake

of better visualization. The results in the figure demonstrate how implemented models are

morphologically similar to the standard version of the EEG signal.

3.6 Conclusion

In this chapter, we proposed the concept of integrating the lightweight IoT-based biomag-

netic sensors with a softwarized mapping model that transfers the captured MEG signals
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into EEG signals that can be used to detect the EEG abnormality. This proof-of-concept is

a baseline to improve the functionality of emerging wearable devices, powered by the MTJ

sensing technology, for spontaneously monitoring and tracking brain health. We focused in

this research on the MEG to EEG mapping component, and will thoroughly investigate the

other elements to discover an optimized system that may provide users with non-intrusive

brain function monitoring at home with accurate, clinical-grade performance with portabil-

ity.

As candidate data-driven solutions, we investigated various machine learning models,

including KNN, LR, DNN, CNN, and DT, to evaluate their respective performances in

terms of MAE, RMSE, and prediction time. The results indicated that the KNN model

outperformed other models in terms of accuracy while incurring a high computation time,

while LR showcased a good balance between accuracy and computational efficiency. On

the other hand, the DNN and CNN models exhibited a promising potential for capturing

complex patterns in the EEG signals that could be leveraged for fast MEG to EEG map-

ping and thereby real-time disease inference on board resource-constrained MTJ-based IoT

devices.
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4.1 Introduction

Magnetoencephalography (MEG) and electroencephalography (EEG) are powerful modal-

ities for recording brain activity and have revolutionized the field of neuroscience. These
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non-invasive techniques provide invaluable insights into the complex workings of the hu-

man brain and have been instrumental in understanding various cognitive processes, neural

dynamics, and brain disorders. MEG excels in capturing the fine-grained spatial details of

neural activity, while EEG provides excellent temporal resolution [84]. The complementary

nature of MEG and EEG signals makes their combined analysis crucial for a comprehensive

understanding of brain function.

However, traditional MEG and EEG systems present challenges that impede widespread

adoption and utilization [85], [86]. The setup and operation of these devices often require

specialized infrastructure, making them accessible only to a limited number of well-equipped

research centers. The complexity and weight of the equipment pose practical limitations,

especially for studies involving special populations or prolonged recording sessions. More-

over, the high costs associated with MEG and EEG devices can further limit their usage

in various research and clinical settings. These challenges necessitate exploring alternative

methods for acquiring MEG signals and mapping them to corresponding EEG signals.

In recent years, spintronic sensors, particularly Magnetic Tunnel Junctions (MTJs),

have emerged promising alternatives for measuring brain activity. These sensors utilize

the unique properties of magnetic materials to detect minute changes in magnetic fields

generated by neural activity. The simplicity, lightweight nature, and integration capabilities

of MTJs make them ideal for portable and wearable applications, offering the potential to

overcome the limitations of traditional MEG and EEG devices [87]. Using MTJs presents

an opportunity for more accessible and user-friendly MEG signal acquisition, enabling wider

adoption of this modality in various research and clinical settings.

Mapping MEG signals to corresponding EEG signals is paramount, as these modalities

provide significant information about brain activity. MEG offers precise localization of brain

regions involved in various cognitive processes [88]. On the other hand, EEG enables the

analysis of brain rhythms and the dynamics of neural activity over time [89]. One modality

may better capture and understand certain brain disorders and cognitive processes. There-

fore, integrating MEG and EEG signals through accurate mapping can enhance our ability

to detect and diagnose neurological disorders more accurately, monitor cognitive processes

in real-time, and develop targeted treatment strategies tailored to individual patients.

Advanced deep learning techniques are employed to address the temporal dependencies

present in MEG and EEG signals. Recurrent Neural Network (RNN)-based models, includ-

ing Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM), and Bidirectional

LSTM (BiLSTM), have proven effective in capturing temporal patterns in sequential data.

Additionally, there has been a growing interest in combining Convolutional Neural Net-

works (CNNs) and RNNs to capture spatial and temporal patterns simultaneously. One

such model is the Recurrent Convolutional Neural Network (RCNN), which incorporates

Recurrent Convolutional Layer (RCL) to process the input data using both CNN and RNN
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operations. The RCNN model offers a unique approach to considering temporal and spatial

patterns in MEG and EEG signals.

Our contribution in this chapter is as follows:

1. Mapping MEG and EEG signals

• Develop a comprehensive framework for mapping MEG signals acquired using MTJ

sensors to corresponding EEG signals.

2. Considering temporal patterns using RNN-based models

• Utilize advanced RNN-based models, including GRU, LSTM, and BiLSTM,to capture

the temporal dependencies within the MEG and EEG signals.

3. Enhancing spatial and temporal resolution through RCL-based model

• Incorporate RCNN to consider the spatial and temporal features together of the

mapped MEG and EEG signals.

This proposed framework combines the advantages of spintronic sensors, such as MTJs,

and the power of RNN-based models to overcome the limitations of traditional MEG and

EEG systems. The aim is to enable accurate mapping between these modalities and develop

more accessible, user-friendly, and comprehensive approaches for studying brain activity.

The study holds great potential for applications in neuroscience research, brain-computer

interfaces, and clinical diagnostics.

The remainder of the chapter is organized as follows. The related research work is

surveyed in Section 5.2. Then, we discuss the dimensions of the problem and the design

considerations 5.3. Next, the solution of the mapping problem is presented in Section 4.4

followed by the performance evaluation of our proposal in Section 5.4 Finally, we provide

concluding remarks in Section 6.6.

4.2 Related work

Few studies have investigated the mapping of different physiological signals using deep

learning techniques, demonstrating the potential of these models in capturing complex rela-

tionships and improving prediction accuracy. One example is mapping magnetocardiogra-

phy (MCG) to electrocardiography (ECG) signals. These studies have successfully employed

deep learning models to establish accurate mappings between MCG and ECG signals, show-

casing these techniques’ effectiveness in physiological signal mapping [61], [69], [68].

In the previous chapter, we focused on the importance of mapping magnetoencephalogra-

phy (MEG) to electroencephalography (EEG) signals and applied various machine learning

and deep learning techniques. We aimed to explore the potential of these models in captur-

ing the complex relationships between MEG and EEG signals. The techniques employed
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included K-nearest neighbours (KNN), decision trees (DT), linear regression (LR), deep

neural networks (DNN), and convolutional neural networks (CNN).

To evaluate the performance of these models, we employed metrics such as root mean

squared error (RMSE) and mean absolute error (MAE), which provided insights into the

prediction error of each model. Additionally, we considered the time required for prediction,

as it was crucial to choose an optimal model suitable for real-time applications, particularly

in an Internet of Things (IoT) system.

Before applying the machine learning and deep learning techniques, we performed pre-

processing on the MEG and EEG data to enhance its quality and prepare it for analysis.

This preprocessing involved noise removal, artifact removal, and feature extraction. By

transforming the raw data into a suitable format, we ensured that the models received

high-quality input data for mapping purposes.

Our experiments also incorporated post-processing techniques to refine the output sig-

nals further. Specifically, we applied an average filter to smooth the output signals generated

by all the models. This post-processing step aimed to enhance the overall quality of the

predicted EEG signals and improve their coherence and interpretability.

Through our comprehensive evaluation, we aimed to identify the optimal model for

MEG-EEG mapping, considering both prediction accuracy and computational efficiency.

Our results demonstrated the linear regression model as an optimal solution that highlights

the potential of machine learning and deep learning techniques in accurately mapping MEG

signals to corresponding EEG signals.

However, despite these achievements, there are still challenges and opportunities for fur-

ther research. For instance, exploring more advanced deep learning architectures, such as

recurrent neural networks (RNNs) or hybrid models combining CNNs and RNNs, may im-

prove the modelling of temporal dependencies within MEG and EEG signals. Additionally,

investigating the potential of transfer learning and domain adaptation techniques could en-

hance the generalizability of the mapping models across different subjects and experimental

settings [90].

In this paper [91], researchers have recognized the impact of incorporating both spatial

and temporal features of EEG signals for tasks such as imagined speech decoding. A

novel model called hybrid-scale spatial-temporal dilated convolution network (HS-STDCN)

was proposed to capture the spatial-temporal reliances and long-range contextual cues in

EEG-based imagined speech recognition. The HS-STDCN integrated feature learning from

temporal and spatial information into a unified end-to-end model, utilizing hybrid-scale

temporal and depthwise spatial convolution layers. By leveraging the spatial-temporal

representation of the input EEG data, the model employed dilated convolution layers to

learn discriminative features for accurate classification.

In this paper, we build upon our previous work by proposing novel approaches to improve
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Figure 4.1: Comparison of machine learning and deep learning models for MEG to EEG
mapping. (a) Spatial pattern models: Linear regression, KNN regressor, Decision tree re-
gressor, DNN, and CNN, which focus on learning the spatial patterns of the signals. (b)
Temporal pattern models: RNN-based models, including GRU, LSTM, and BiLSTM, are
specifically designed to capture the temporal patterns in the signals. (c) Integration of
spatial and temporal patterns: RCNN model seamlessly couples the temporal and spatial
pattern detectors to enhance the mapping accuracy and highlight the importance of con-
sidering both dependencies in the MEG-EEG mapping

the accuracy and efficiency of MEG-EEG mapping. We address the limitations identified in

our earlier studies and introduce new methodologies to achieve superior performance. We

aim to provide a robust and reliable mapping framework for MEG and EEG signals with

potential applications in neuroscience research, clinical diagnostics, and brain-computer

interfaces by integrating advanced machine learning and deep learning techniques, prepro-

cessing strategies, and post-processing refinements.

4.3 Considered System Design and Problem Description

The nature of MEG and EEG signals reveals a unique characteristic in sequential patterns,

which holds the key to understanding the complex relationships between these modalities.

In our study, we leverage this sequential nature by employing RNN-based models to capture

the temporal dependencies in MEG and EEG signals [92]. By doing so, we aim to unlock

new possibilities in neuroscience and brain-computer interfaces (BCIs).

Our proposed system design is driven by the objective of mapping MEG signals to their
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corresponding EEG signals, with a focus on considering the temporal dependencies inherent

in both modalities [93]. To evaluate the feasibility and effectiveness of this approach, we take

a step-by-step process, gradually advancing from more straightforward machine learning

techniques to more sophisticated deep learning methods.

Initially, we investigate the application of classical machine learning techniques, explor-

ing their potential in mapping MEG and EEG signals. This initial exploration provides

worthwhile insights and serves as a foundation for assessing the feasibility of the mapping

problem. Encouraged by promising results and reasonable regression accuracy, we delve

deeper into deep learning, specifically Recurrent Neural Networks (RNNs), as reprented in

fig 4.1.

The utilization of RNNs is driven by the distinctive nature of MEG and EEG signals,

which exhibit temporal dependencies and complex patterns. RNNs, by their ability to rec-

ognize sequential information, are a natural fit for modelling and mapping these signals [94].

Our approach embraces this integration between the temporal nature of MEG and EEG

signals and the power of RNNs, enabling us to explore and optimize our goals further.

Our ongoing efforts focus on optimizing and refining our solution for enriching the neu-

roscience field and improving patients’ quality of life involves continuous discovery and

optimization. We strive to integrate lightweight sensors, such as spintronic sensors, with

the magic of deep learning techniques without putting computing and energy burdens on

the MTJ-IoT system. This integration holds the potential to track and analyze brain ac-

tivities in a more accessible and efficient manner, enabling daily monitoring and facilitating

personalized interventions.

4.4 Envisioned RNN Models Temporal Pattern Detector for

MEG-EEG Mapping

The following sections present a set of data-driven models we have considered for mapping

MEG to EEG signals. These models encompass various RNN-based techniques such as

GRU, LSTM, BiLSTM, CNN-RNN merging, and RCNN. We aim to capture the intricate

connections between the MEG and EEG signals by utilizing these models. Subsequently,

we discuss the post-processing steps involved in refining the mapped ECG signal to ensure

satisfactory resolution for effective visualization and clinical interpretability.

4.4.1 Candidate RNN Models

4.4.1.1 GRU

The Gated Recurrent Unit (GRU) model has demonstrated remarkable potential in mapping

magnetoencephalography (MEG) signals to corresponding electroencephalography (EEG)
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signals, unravelling the intricate relationships between these two modalities. In our pro-

posed GRU model, we incorporate two GRU layers with 128 and 64 units, respectively, as

illustrated in Figure 4.3. This design allows the model to effectively capture the complex

dynamics inherent in MEG and EEG signals, facilitating an accurate mapping process.

By leveraging the GRU layers in our architecture, we empower the model to retain

critical information over longer sequences and effectively model the temporal dependencies

within the MEG and EEG data [95]. These layers capture the nuanced dynamics and

patterns, enabling an accurate and comprehensive mapping from MEG to EEG signals.

We introduce dropout layers with a dropout rate of 0.2 after each GRU layer to enhance

the model’s generalization and mitigate overfitting. The incorporation of dropout regular-

ization aids in mitigating the model’s reliance on specific features or patterns in the data,

improving its robustness and enabling better generalization to unseen MEG and EEG sam-

ples. Adding dropout layers ensures the model captures MEG and EEG signals’ underlying

patterns and dynamics more effectively.

Furthermore, the final layer of our GRU model is a dense layer comprising 59 units,

representing the output dimensions of the EEG signals. This layer acts as a flexible mapping

component, facilitating the transformation of the learned representations from previous

layers into the target output space. By compiling the model with the mean squared error

(MSE) loss function and optimizing it with the Adam optimizer, we aim to minimize the

discrepancy between the predicted and actual EEG signals. Training the GRU model for 100

epochs with a batch size of 128 allows the model to converge to an accurate MEG-to-EEG

mapping, enabling comprehensive insights and analysis of brain activity.

4.4.1.2 LSTM

To develop precise models for mapping MEG signals to corresponding EEG signals, we

explore the potential of Long Short-Term Memory (LSTM) units, a specialized recurrent

neural network (RNN) developed to capture and process temporal reliances in sequential

data [96]. Our proposed model architecture incorporates two LSTM layers, each consisting

of 128 and 64 units. These LSTM layers are vital components for modelling the hierarchical

and temporal characteristics of the MEG-to-EEG mapping.

Our LSTM model’s input shape (samples/10, 10, 305) represents a sequence of 10-time

steps with 305 channels corresponding to the MEG signal channels. By employing multiple

LSTM layers, we aspire to capture the intricate dynamics and temporal patterns inherent

in the MEG and EEG signals, encouraging an exact mapping process.

To ensure better generalization and mitigate overfitting, we introduce dropout layers

with a rate of 0.2 after each LSTM layer. Dropout layers play a vital role in regularization

by randomly deactivating a proportion of the neurons during training. This regularization

technique reduces the model’s dependence on specific features or patterns in the data, en-
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hancing its ability to generalize to unseen MEG and EEG samples. Including dropout layers

in our LSTM model promote robustness and enables the model to capture the underlying

patterns and dynamics in the MEG, and EEG signals more effectively.

The final layer of our LSTM model is a dense layer comprising 59 units, aligning with the

output dimensions of the EEG signals. This dense layer is a flexible mapping component,

enabling the model to accurately convert the learned representations from the preceding

layers into the target output space.

Training the LSTM model involves utilizing the mean squared error (MSE) loss function,

quantifying the discrepancy between the predicted and actual EEG signals. The Adam op-

timizer, known for its adaptive learning rate and efficient convergence properties, optimizes

the model. Training the model over 100 epochs with a batch size of 128 facilitates effective

learning from many MEG-EEG pairs, allowing the model to refine its mapping capabilities

and converge to an accurate representation of the MEG-to-EEG mapping.

4.4.1.3 Bi-directional LSTM

In addition to the GRU and LSTM models, we explore the effectiveness of Bidirectional

Long Short-Term Memory (BiLSTM) units in mapping MEG signals to corresponding EEG

signals. Like the GRU and LSTM models, the BiLSTM model captures temporal depen-

dencies and patterns inherent in the MEG and EEG data.

Our proposed BiLSTM model incorporates two BiLSTM layers with 128 units each. This

architecture allows the model to capture both forward and backward temporal dependencies

simultaneously, providing a comprehensive understanding of the relationship between MEG

and EEG signals [97].

To enhance generalization and mitigate overfitting, dropout layers with a dropout rate

0.2 are introduced after each BiLSTM layer, similar to the GRU and LSTM models. The

BiLSTM model shares the same evaluation metric and loss function as the GRU and LSTM

models. We choose to Optimize the model with the Adam optimizer and train it for 100

epochs with a batch size of 128, aiming to converge to an accurate mapping from MEG to

EEG signals.

Figure 4.3 illustrates the Comparison of the model architectures. The four subfigures,

(a), (b), (c), and (d), represent the structures of the GRU, LSTM, BiLSTM, and RCNN

models, respectively.

4.4.2 Proposed Recurrent Layer based Convolution: Fusion of spatial and

temporal detectors for MEG-EEG mapping

After extensively exploring the application of machine and deep learning models that specifi-

cally focus on capturing spatial patterns and delving into models that effectively utilize tem-



48

poral sequences, we recognized the importance of integrating both patterns in the mapping

task. By harnessing the strengths of both approaches, we aimed to develop a comprehensive

model that leverages the power of convolutional and recurrent layers sequentially. Conse-

quently, we constructed a deep learning model that, in series, combines convolutional and

recurrent layers, enabling the extraction of spatial and temporal dependencies [98]. This

adding approach facilitates a more comprehensive and accurate mapping process between

MEG and EEG signals, taking advantage of the spatial and temporal aspects inherent in

the data.

Inspired by the abovementioned motivation, we designed a novel deep learning model

to effectively capture the complex connections between MEG and EEG signals. The model

architecture combines convolutional and recurrent layers, allowing for the extraction of

spatial and temporal dependencies.

The model begins with a reshape layer, which reshapes the input data to match the

desired dimensions. This is followed by a series of convolutional layers, which apply convo-

lutional operations across the temporal dimension of the data. The LeakyReLU activation

function introduces non-linearity and enhances the model’s ability to capture complex pat-

terns. Incorporating the LeakyReLU activation function is vital in precluding the dying

ReLU problem and allows the network to continue learning even when some neurons be-

come inactive. By introducing a slight negative slope of 0.2, LeakyReLU enables the model

to capture and propagate gradients more effectively. This can lead to improved learning

and convergence during the training step.

For the overfitting issue, Dropout layers are applied after each Conv1D layer, randomly

deactivating a portion of the neurons during training. This regularization technique miti-

gates the risk of relying too heavily on specific features or patterns in the data.

After the convolutional layers, a Flatten layer converts the multidimensional output into

a flat representation. This is followed by a series of recurrent layers, starting with a GRU

layer and then an LSTM layer. These recurrent layers enable the model to capture the

data’s long-term dependencies and temporal patterns.

To further mitigate overfitting, dropout layers are applied after each recurrent layer.

Finally, a dense layer with the appropriate output channels is added to produce the predicted

EEG signals. During training, the model is fed with the reshaped MEG and corresponding

EEG data. The training continues for several epochs with a defined batch size. The model’s

performance is evaluated using MSE loss metric on the entire dataset.

By utilizing this model architecture and training methodology, we aim to achieve an

accurate and comprehensive mapping between MEG and EEG signals, capturing the spatial

and temporal dependencies inherent in the data.

In our pursuit of a more comprehensive understanding and a deeper exploration of the

relationships between spatial and temporal patterns, we initially combined the CNN and
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RNN models in series. This allowed us to capture the individual strengths of each approach

and obtain valuable insights into the data.

As our research progressed, we contemplated the potential of seamlessly integrating

spatial and temporal information within a single layer. This realization motivated us to

explore the concept of recurrent convolution layers (RCL) in the development of our RCNN

model. The RCLs enable the integration of recurrent connections within a convolutional

layer, allowing the network to evolve over time even when the input remains static. These

connections ensure that each unit in the network is influenced by its neighboring units, fa-

cilitating the incorporation of contextual information. By embracing the RCL concept [99],

we have achieved a robust architecture that effectively combines the strengths of both CNN

and RNN models in a unified framework.

By leveraging the RCL, we were able to build a more advanced and sophisticated model

that effectively harnesses the spatial and temporal information within the MEG and EEG

signals. This integration not only improved the performance of our model but also provided

a more detailed and accurate representation of the underlying brain activity.

Our RCNN model is designed to capture both spatial and temporal dependencies in the

MEG and EEG signals. It utilizes a custom RCL, combining convolutional and recurrent

operations within a single layer.

The RCNN model starts with an input layer of shape (4, 305), representing a sequence

of 4-time steps with 305 channels corresponding to the MEG signal channels. The input

data then goes through a series of operations.

First, a 1D convolutional layer with 128 filters and a kernel size of 11 is applied to

extract spatial features from the input signals. The LeakyReLU activation function with an

alpha value of 0.2 introduces the non-linearity. Batch normalization is performed to improve

training stability, followed by dropout regularization with a rate of 0.2 to prevent overfitting.

Next, the RCL is employed, which consists of a convolutional layer and a Simple RNN

layer. This layer further captures temporal dependencies in the data. The convolutional

layer with 64 filters and a kernel size of 5 performs convolutional operations, followed by

the Simple RNN layer with the same number of filters. Again, batch normalization and

dropout regularization are applied after each layer.

To model the temporal dependencies more comprehensively, a GRU layer with 128

units and the LeakyReLU activation function is employed. This layer captures the intricate

dynamics and patterns inherent in the MEG and EEG signals, facilitating an accurate

mapping process. Following the GRU layer, additional batch normalization and dropout

regularization are applied to improve the model’s generalization and robustness. The output

is flattened and passed through a dense layer with 128 units and the LeakyReLU activation

function. Batch normalization and dropout regularization are applied again. Finally, a

dense layer with the output shape of (4*59) is employed to obtain the desired output shape
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Figure 4.2: Performance comparison of MAE and RMSE for different models.

for the EEG signals. The output is then reshaped to (4, 59) to match the original time

steps and EEG channel dimensions.

The RCNN model combines convolutional and recurrent operations within a unified

architecture, effectively capturing both spatial and temporal dependencies in the MEG and

EEG signals. By leveraging the capabilities of both operations, the model can achieve a

more comprehensive understanding of the complex relationships within the data.

4.5 Data Preparation and Performance Evaluation

4.5.1 Data Preprocessing and Channel Selection

This section outlines our proposed MEG-EEG mapping technique, starting with the data

preprocessing and channel selection process. We systematically investigate data-driven

models for effective MEG-EEG mapping and provide post-processing steps for improved

visualization and clinical interpretability.

Our study utilizes the ”sample” dataset available in the MNE Python library. We

examine the dataset’s characteristics and make informed decisions regarding the channels to

include in our analysis. Channels associated with ECG and EOG signals, deemed unsuitable

for further analysis, are excluded. To isolate independent components related to specific

brain activity patterns, we employ Independent Component Analysis (ICA) to separate

mixed signals into their underlying sources [72].

After applying ICA, our focus shifts to artifact removal to enhance the quality of the

data. We specifically target the removal of ECG and muscle artifacts by identifying and

eliminating the corresponding components. As the dataset combines MEG and EEG signals,
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Figure 4.3: Comparison of the model architectures. The four subfigures, (a), (b), (c), and
(d), represent the structures of the proposed GRU, LSTM, BiLSTM, and RCNN models,
respectively.

Figure 4.4: The first 20 predicted EEG channels based on the RCNN model

we partition the data into two files to facilitate the subsequent training process.

The raw data contains essential details, including the measurement date, MEG team

information, and participant identity. It comprises various digitized points, including Gra-

diometers, Magnetometers, Stimulus channels, EEG channels, and an EOG channel. We
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identify and note the presence of bad channels, such as MEG 2443 and EEG 053. Addi-

tionally, we determine EOG channel 061 as an EOG channel, while the ECG channels are

unavailable. The sampling frequency is 600.61 Hz, and the data undergoes highpass and

lowpass filtering at specific frequency ranges [73].

Following artifact removal, we apply bandpass filtering to the MEG and EEG signals.

We utilize a bandpass filter ranging from 1 Hz to 100 Hz for the MEG data to retain relevant

frequencies. Similarly, the EEG data undergoes bandpass filtering within the 0.5 Hz to 55

Hz range [75].

We divide the filtered data into training and testing sets to facilitate model training

and evaluation, following a 75-25 split. With the preprocessed data in place, we explore

and compare five candidate models designed explicitly for the MEG-EEG mapping task, as

detailed in the following subsection.

4.5.2 Evaluation metrics

Before evaluating our models, we employed a moving average filter to enhance the signal

quality and reduce high-frequency noise. The moving average filter takes the input signal

and window size as parameters. It performs a moving average operation on the signal using

a window consisting of ones divided by the window size. To smooth out high-frequency

noise in the predicted signals, we utilized a window size of five. This process resulted

in cleaner and more interpretable waveforms. By incorporating the moving average filter

into the predicted EEG signals, we enhanced the overall signal quality and mitigated the

impact of short-term fluctuations. Consequently, the interpretability and visual clarity of

the predicted EEG waveforms were improved [82]. This postprocessing step was crucial in

preparing the signals for further investigation and evaluation of their performance.

In evaluating regression models, the Root Mean Squared Error (RMSE) and Mean Ab-

solute Error (MAE) serve as valuable metrics for assessing performance. RMSE emphasizes

significant errors more by squaring the differences between predicted and actual values with-

out considering their direction, while MAE treats all errors equally. RMSE estimates the

standard deviation of prediction errors, while MAE represents the average magnitude of

errors [100]. The equations for RMSE and MAE are calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(predictedi − truei)2 (4.1)

MAE =
1

n

n∑
i=1

|predictedi − truei| (4.2)

where n represents the number of the data points or samples used for evaluation.

These metrics quantitatively estimate the accuracy and reliability of predictions, aiding
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in selecting the optimal solution for real-world applications. A lower RMSE or MAE value

indicates improved accuracy, with values closer to zero indicating higher precision. These

metrics offer valuable insights into model performance by assessing the magnitude and

direction of errors.

In addition to RMSE and MAE, prediction time is an essential metric for evaluation. It

measures the computational time required for the model to generate predictions. Minimiz-

ing prediction time is crucial in real-world applications, ensuring efficient and timely data

processing.

By considering RMSE, MAE, and prediction time as evaluation metrics, we comprehen-

sively understand the model’s accuracy, precision, and efficiency. These metrics are pivotal

in selecting the optimal solution that aligns with the requirements of practical use cases.

The table 6.1 presents the performance metrics and prediction times for different models.

The findings show that the GRU model achieved an MAE of 0.0388 and an RMSE of 0.0518,

with a prediction time of 1.9108 seconds. The LSTM model yielded an MAE of 0.0408 and

an RMSE of 0.0544, with a prediction time of 2.3665 seconds. Similarly, the BiLSTM

model also achieved an MAE of 0.0408 and an RMSE of 0.0544, with a slightly higher

prediction time of 2.4893 seconds. In comparison, the CNN+RNN model resulted in an

MAE of 0.0440 and an RMSE of 0.0583, with a prediction time of 4.5880 seconds. Finally,

the RCNN model exhibited the lowest MAE of 0.0370 and the lowest RMSE of 0.0497 but

had a longer prediction time of 6.0500 seconds.

These findings indicate that the RCNN model outperformed the other models regarding

MAE and RMSE, achieving the lowest error values as shown in fig 4.2. However, it also had

the longest prediction time among the models. The GRU model showed the best balance

between performance and prediction time, with relatively low errors and a faster prediction

time than the other models. Moreover, it is worth noting that the models achieved con-

vergence at different rates. The GRU model required 77 iterations to converge, while the

LSTM model converged in 68 iterations. Notably, the BiLSTM model exhibited faster con-

vergence, reaching convergence within 45 iterations when employing the early stop method

with a patience of 10.

Overall, the results demonstrate the effectiveness of the proposed models for the given

task, with varying trade-offs between accuracy and prediction time. Researchers can use

these findings to select the optimal model that best suits their requirements regarding

accuracy and efficiency.

4.6 Conclusion

In conclusion, our research addressed the challenges associated with the high cost, limited

accessibility, invasiveness, and complexity of traditional MEG and EEG modalities for di-
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Table 4.1: Performance metrics and prediction times for different models.

Model MAE RMSE Prediction

Time (s)

GRU 0.0388 0.0518 1.9108

LSTM 0.0408 0.0544 2.3665

BiLSTM 0.0408 0.0544 2.4893

CNN+RNN 0.0440 0.0583 4.5880

RCNN 0.0370 0.0497 6.0500

agnosing various diseases and abnormal brain activities. To overcome these challenges, we

proposed an innovative approach using MTJ-based sensors and leveraging the power of deep

learning techniques in a way to develop user-friendly and daily-based monitoring systems.

We focused on extracting and utilizing the temporal nature of MEG and EEG signals

to create robust models capable of accurately mapping brain activity. We explored several

RNN-based models, including GRU, LSTM, and biLSTM. Additionally, we investigated

models that seamlessly integrated RNN and CNN to capture both spatial and temporal

patterns within the signals.

After thorough experimentation, we discovered that the RCNN model demonstrated

superior performance compared to all other models. It excelled in accurately capturing and

analyzing the complex patterns present in the signals. However, considering efficiency and

time consumption, the GRU model emerged as the optimal choice. It balanced accuracy

and computational efficiency, making it a valuable solution for real-world applications.

By successfully developing and evaluating these models, we have paved the way for

more accessible, cost-effective, and non-intrusive monitoring of brain activity. This research

contributes to advancing the field of neural diagnostics and lays the foundation for future

advancements in brain-computer interfaces and daily monitoring systems.
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5.1 Introduction

Brain activities play a pivotal role in disease diagnosis and overall healthcare manage-

ment. Consequently, ongoing advancements in brain signal capture are crucial and valuable.

While existing modalities like Magnetoencephalography (MEG) and Electroencephalogra-

phy (EEG) have proven effective in capturing brain signals, addressing challenges such as

portability, complexity, and high costs remains a prominent research focus. To overcome

these limitations, researchers have been exploring innovative approaches, and one promising

attempt involves harnessing the power of spintronic devices, specifically Magnetoresistive

Tunnel Junction (MTJ) sensors, for capturing the intricate magnetic fields associated with

brain activity.
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This cutting-edge sensor demonstrates significant promise in detecting magnetic field

signals. Its compact form allows for seamless integration on-chip with silicon logic cir-

cuits, facilitating the development of portable lab/logic-in-sensor diagnostic devices. By its

logic-in-sensor architecture, the sensor effectively addresses critical obstacles, encompassing

communication delay, overhead, and power consumption. As a result, this groundbreaking

technology enables prolonged and accurate monitoring of a patient’s brain activities while

allowing them to maintain their daily activities undisturbed.

Although MTJ sensors offer numerous advantages, they also introduce multiple types of

noise into the captured signals. Separating and removing this noise with traditional signal

processing methods becomes exceptionally challenging, particularly when the noise band

overlaps the signal frequency range. This difficulty hinders the accurate extraction of the

target brain signals from the noise, necessitating novel solutions to enhance brain signal

fidelity.

Fortunately, the remarkable advancements in AI, deep learning, and machine learn-

ing have opened doors to transformative possibilities in this realm. This chapter aims to

contribute to biomedical signal processing and neuroscience to better understand the rela-

tionship between the MEG and EEG by introducing promising machine and deep learning

models. Specifically, we aim to develop models capable of accurately mapping noisy MEG

signals to their corresponding denoised EEG signals. By leveraging the potential of AI, we

envision a new era of brain activity monitoring that can revolutionize healthcare applica-

tions.

The core focus of this research is to explore and evaluate various AI-based models,

including Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), Deep

Neural Networks (DNN), k-Nearest Neighbors (KNN) regressor, Linear Regression (LR),

and Decision Trees (DT). We aim to optimize these models for the task of MEG signal

denoising, thereby enhancing the accuracy and reliability of brain activity measurements.

Through our efforts, we aim to develop a portable MEG device, bridging the gap be-

tween the potential of spintronic sensors and the effective denoising capabilities of AI-based

models. Ultimately, this work strives to foster significant advancements in biomedical signal

processing, opening new avenues for brain activity monitoring and healthcare diagnostics.

The remainder of the chapter is organized as follows. The related research work is

surveyed in Section 5.2. Then, we discuss the dimensions of the problem and the design

considerations 5.3. Next, the solution of the mapping problem is presented in Section 4.4

followed by the performance evaluation of our proposal in Section 5.4 Finally, we provide

concluding remarks in Section 6.6.
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5.2 Related work

Several noteworthy studies have been conducted in the context of denoising biomedical

signals, including the work by [68]. In their research, the authors focused on denoising

noisy MCG (Magnetocardiography) signals captured by MTJ sensors and achieved precise

extraction of pure MCG signals. They further correlated these denoised MCG signals with

corresponding Electrocardiography (ECG)signals.

To accomplish this task, the authors employed a combination of convolutional signal

processing techniques and AI-based models for comparison. Notably, their findings revealed

the superiority of the proposed deep learning approach, incorporating Convolutional Layers,

Gated Recurrent Unit (GRU ) Layer, and Fully Connected Layer, over the conventional

moving average technique. This significant outcome underscores the remarkable power of

AI in denoising MEC signals, surpassing classical methods.

The susceptibility of Electroencephalography (EEG) signals to noise, mainly when

recorded from scalp sensors, has motivated researchers In [101] to explore practical denois-

ing approaches. The authors proposed a novel denoising method based on deep learning,

employing a deep convolutional autoencoder to enhance brain-computer interface diagnosis

and communication. While numerous EEG denoising methods have been suggested, many

of these algorithms tend to be complex.

To evaluate the performance of their proposed approach, the researchers conducted ex-

periments using two types of noise, eye blinks and jaw clenching. Performance assessment

was accomplished using the peak signal-to-noise ratio (PSNR). The results unequivocally

showcased the superiority of their deep learning-based approach over the conventional base-

line bandpass filtering method. Remarkably, the confidence intervals consistently favoured

their approach, demonstrating its effectiveness in reducing noise and enhancing the quality

of EEG signals.

The growing importance of incorporating deep learning techniques into signal processing

has been evident in recent research, exemplified by the study conducted by [102]. Traditional

active noise control (ANC) methods, utilizing adaptive signal processing with the least

mean square algorithm, are inherently limited in handling nonlinear distortions due to their

linear nature. To address this challenge, this paper takes a new approach, treating ANC as

a supervised learning problem, and introduces an innovative deep learning method known

as ”deep ANC.”

The core principle underlying deep ANC revolves around harnessing the strength of

deep learning to encode optimal control parameters tailored to various noise types and

environmental conditions. Through the training of a convolutional recurrent network (CRN)

to estimate the real and imaginary spectrograms of the cancelling signal from the reference

signal, the deep ANC technique enables effective elimination or attenuation of primary noise
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in the ANC system, using the corresponding anti-noise. Ensuring robustness and versatility,

large-scale multi-condition training is employed to facilitate excellent generalization across

diverse noise scenarios.

The deep ANC method proves its adaptability in active noise cancellation, regardless of

whether the reference signal contains noise or noisy speech. Moreover, a delay-compensated

strategy is introduced to mitigate potential latency challenges in ANC systems. Empirical

evidence from experiments highlights the efficacy of deep ANC in achieving wideband noise

reduction, impressively demonstrating its ability to generalize even to untrained noise types.

Furthermore, the proposed approach effectively establishes ANC within a quiet zone and

exhibits resilience in the face of varying reference signals.

5.3 MTJ Sensors and Noise Characteristics in MEG Signal

Acquisition

In this section, we focus on providing an in-depth exploration of the Magnetic Tunnel

Junction (MTJ) sensors used in capturing MEG signals. We discuss their fundamental

principles and functionalities, emphasizing their advantages and relevance in the context of

brain activity monitoring. Additionally, we delve into the various types of noise inherent to

MTJ sensors and their potential impact on the acquired MEG signals.

MTJ sensors consist of two ferromagnetic metals (FMs) separated by an insulating

tunnelling barrier, typically made of materials like magnesium oxide [67]. By applying an

external magnetic field (H), the magnetization angles of the FMs change, resulting in a linear

dependence of MTJ resistance on H. This fascinating property, known as the tunnelling

magnetoresistance effect (TMR), enables straightforward measurement of MTJ sensors and

seamless integration with the fabrication process of integrated circuits. Consequently, MTJ

sensors and structures have become instrumental in driving advancements in spintronics

research and finding innovative applications in information storage, as extensively reviewed

in [103].

One of the primary obstacles sensors face is noise at the lower frequency range of the

spectrum. In MTJ sensors, this noise exhibits a 1/f characteristic akin to numerous other

systems [104]. This problem intensifies in the high-sensitivity region, as indicated by [105].

The relationship can describe the power spectral density (PSD) of low-frequency noise [106]:

Sv ∝ χ

MsV

1

fβ
(5.1)

In this context, the variables χ, Ms, V , f , and β represent specific properties of the

sensor. χ relates to the sensor susceptibility, which is directly proportional to its sensitiv-

ity; Ms denotes the sensor’s saturation magnetization; V represents the sensor volume; f
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indicates the spectral frequency; and β corresponds to the exponent of the noise spectrum.

A critical challenge arises in this context when certain targeted brain activities and

sensor-related noise oscillate within the same frequency band. This overlapping phenomenon

makes the separation of these components notably tricky. Notably, research by [107] em-

phasizes the valuable information embedded in the low-frequency band of MEG signals.

Understanding the dynamics of the brain, as well as detecting and characterizing various

diseases, heavily relies on this low-frequency band. Fig 5.1 demonstrates the frequency

bands of Alpha, Gamma, Beta, Theta, and Delta. The analysis provides valuable insights

into the distribution of power in these frequency bands, shedding light on the characteristics

of our clean MEG signals, and emphasizing the importance of the low-frequency levels.

In this research, our primary objective is to develop a practical and lightweight solution

to address the challenge posed by 1/f noise in MEG signals while accurately providing the

corresponding EEG signals. To achieve this, we propose integrating various deep learn-

ing and machine learning techniques, which hold significant promise in effectively reducing

noise and enhancing the accuracy of denoising processes. By leveraging these advanced tech-

niques, we aim to pave the way for a robust and efficient approach to separate the targeted

brain activities from the interfering noise, facilitating a more comprehensive understanding

of brain dynamics and enabling better disease detection and characterization.

5.4 Performance evaluation

This section serves a dual purpose, encompassing both the simulation of noisy MEG signals

and the performance evaluation of AI-based models used for denoising. The simulation

involves generating a dataset that faithfully emulates the noise characteristics associated

with MTJ sensors. This realistic and diverse dataset plays a pivotal role in effectively

training and evaluating denoising models.

By combining simulation and performance evaluation, we strive to push the boundaries

of denoising capabilities and enhance the accuracy of brain signal restoration. The sim-

ulation process ensures that the denoising models are exposed to a wide range of noise

scenarios, closely mirroring real-world conditions. Subsequently, the performance evalua-

tion of these AI-based models provides valuable insights into their effectiveness, enabling

us to identify the most promising candidates for practical applications.

5.4.0.1 Noise simulation

The simulation approach in this study ingeniously leverages pink noise, an essential com-

ponent in accurately emulating the noise patterns observed in real-world MEG recordings

captured by Magnetoencephalography with MTJ sensors. Pink noise is characterized by a

1/f characteristic, where its power decreases at a rate inversely proportional to frequency.
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Figure 5.1: Bar plot showing the average power levels (in dB) across different frequency
bands of interest, namely Alpha, Gamma, Beta, Theta, and Delta in our clean MEG signal

This unique property closely resembles the noise patterns commonly found in MEG signals,

making it a suitable choice for simulating noise in our dataset.

The carefully chosen simulation parameters effectively create a dataset that precisely

mimics the noise associated with MTJ sensors. We set the sampling frequency to 600

Hz, ensuring sufficient temporal resolution to capture brain activities accurately [108]. The

power spectral density is set at 1×10−4, representing the baseline white noise power spectral

density. White noise, random noise with equal power across all frequencies, forms an integral

part of the simulated dataset.

The simulated pink noise exhibits a characteristic power distribution governed by an

exponent (β) of 1.5, resulting in the 1/fβ behaviour. This careful choice of β imparts

the distinctive property to the pink noise, ensuring it closely resembles the observed noise

patterns in MEG signals. The value of β plays a crucial role in controlling the slope of

the pink noise power spectrum, determining the rate at which its power decreases with

increasing frequency [109].
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Furthermore, to accurately emulate the noise observed in MEG signals captured by

Magnetoencephalography with MTJ sensors, a cutoff frequency of 10 Hz is introduced.

This threshold effectively separates the 1/fβ region from the flat line region, where the

pink noise dominates. As a result, the pink noise takes precedence in the lower frequency

range, reflecting the prominent noise behaviour in this band [110]. Conversely, the white

noise component becomes more pronounced at higher frequencies, as the effects of MTJ

sensor noise predominantly impact the low-frequency band.

The precisely generated pink and baseline white noise is integrated with the clean MEG

signals using Fourier transform techniques. This integration process ensures that the simu-

lated pink and white noise accurately resembles the noise acquired by MTJ sensors during

actual data recording. The result is a comprehensive dataset containing noisy MEG signals

that realistically simulate the impact of MTJ sensor noise on signal quality.

By harnessing this diverse and realistically simulated dataset, various denoising models

can be thoroughly trained and rigorously evaluated. The primary objective is to achieve

high accuracy in effectively separating the targeted brain activities from the noise and ac-

curately predicting the corresponding EEG signals. This novel approach aims to enhance

our understanding of brain dynamics and significantly improve disease detection and char-

acterization through more accurate brain signal analysis.

The successful combination of pink and white noise simulation, alongside advanced AI-

based denoising techniques, opens new avenues for neuroscience. It brings us closer to

realizing highly effective and non-invasive brain activity monitoring, which holds immense

potential to advance our knowledge of brain functions and improve healthcare outcomes.

With robust denoising models and a reliable simulated dataset, this research paves

the way for transformative applications in brain signal processing and healthcare diagnos-

tics. The integration of pink noise simulation, white noise representation, and advanced AI

methodologies brings transformative potential to the field of neuroscience. It significantly

contributes to improving healthcare diagnostics and understanding the complexities of brain

activity.

5.4.0.2 Findings and Analysis

In this section, we present the findings and analysis of the denoising models applied to

the EEG signals. Table 6.1 showcases the performance metrics, including Mean Absolute

Error (MAE), Root Mean Squared Error (RMSE), and Prediction Time, for each model.

We evaluated nine models, namely Linear Regression (LR), K-Nearest Neighbors (KNN)

regressor, Deep Neural Network (DNN), Convolutional Neural Network (CNN), Gated Re-

current Unit (GRU), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM),

CNN combined with RNN (CNN+RNN), and Recurrent Convolutional Neural Network

(RCNN). Figure 6.2 shows the performance of each model compared to the actual signal in
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the range of 20-500 samples.

The table shows that the LR model achieves the lowest MAE of 0.0373, indicating its

ability to approximate the clean EEG signals accurately. However, it is noteworthy that

the LR model’s RMSE is slightly higher at 0.0459 but still the best among the candidate

models. On the other hand, the KNN model shows the highest MAE of 0.0737, indicating

relatively more significant signal approximation errors than other models. The KNN model

also exhibits the highest RMSE of 0.0923, displaying the enormous discrepancy from the

actual signals.

Regarding computation efficiency, the LR model has the lowest prediction time of 0.126

seconds, making it the fastest model among all the models evaluated. Conversely, the KNN

model requires significantly more time, with a prediction time of 30.973 seconds.

To gain deeper insights into the models’ performance, we generated a bar plot in Fig-

ure. 5.2 comparing the RMSE and MAE values across the different models. From the plot,

we can visually compare the error levels of each model for better model selection. The

results demonstrate that the BiLSTM and RCNN models are coming after LR in terms of

both RMSE and MAE, offering a balance between accuracy and efficiency.

Moreover, fig 5.3 visually compares the Power Spectral Density (PSD) between the

prediction models and the clean EEG signals. The PSD is calculated as the average of all

channels, and the plot provides valuable insights into the distribution of power in different

frequency bands, shedding light on the performance of the models, especially in the low-

frequency band.

Besides, we present Figure 5.5, which visually compares the predicted signals generated

by various proposed AI-based denoising models for Channel 40 after applying a moving

average filter with window size 5 to smooth the curves. The models are arranged in de-

scending order based on their cumulative performance, with the best model placed at the

bottom and the worst at the top. The clean EEG signal is also included for reference,

with the time range set from sample 20 to 700. The ordered arrangement of the models in

Figure 5.5 clearly depicts their relative accuracy in capturing the underlying EEG dynam-

ics. The gradual decrease in denoising errors from the bottom to the top demonstrates the

effectiveness of each model, with the best models closely resembling the clean EEG signals.

These findings highlight the potential of the LR, BiLSTM and RCNN models in denois-

ing EEG signals effectively and efficiently, making them promising candidates for further

investigation and application in real-world scenarios. The insights gained from this study

contribute to our understanding of the performance and suitability of various models for

EEG signal denoising, facilitating future advancements in brain signal analysis and related

fields.
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Table 5.1: Performance metrics and prediction times for different models.

Model MAE RMSE Prediction Time (s)

LR 0.0373 0.0459 0.126

KNN 0.0737 0.0923 30.973

DNN 0.0483 0.0588 2.564

CNN 0.0521 0.0633 5.384

GRU 0.0450 0.0551 2.085

LSTM 0.0476 0.0568 1.532

BiLSTM 0.0399 0.0488 1.143

CNN+RNN 0.0444 0.0550 3.308

RCNN 0.0419 0.0497 1.452
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Figure 5.2: Performance comparison of RMSE and MAE for different models.

5.5 Conclusion

This chapter embarks on a trailblazing endeavour to confront the formidable challenges

of denoising MEG signals captured by MTJ sensors. Armed with the power of AI-based

models, we transcend the boundaries of brain signal fidelity, heralding a transformative era

in healthcare diagnostics.

We underscore the profound importance of brain activity monitoring while exposing

the limitations of traditional EEG and MEG methods. With stubborn determination, we

venture into the realm of MTJ sensors, unearthing their potential to conquer portability,

complexity, and cost challenges while capturing the enigmatic magnetic fields of brain ac-
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Figure 5.3: Comparison between the Power Spectral Density (PSD) of Prediction Models
and the PSD of Clean EEG Signals. The PSD is calculated as the average of all channels.

tivity. Yet, within this promise lies the irritating presence of various noise types, impeding

our path to accurate signal analysis.

Through an interdisciplinary exploration, we harness the collective might of AI, deep

learning, and machine learning to forge a cohort of innovative denoising models. RNN,

CNN, DNN, KNN regressor, and LR models converge, unified in their mission to liberate

MEG signals from noise shackles.

The stage is set, and the results unveil the triumph of our models. The LR model

emerges as a beacon of promise, conquering the realm of approximation with the lowest

MAE and unyielding RMSE values, hinting at the nature of the linear relationship between

MEG and EEG. The BiLSTM and RCNN models join this vanguard, striking an exquisite

balance between unwavering accuracy and unrivalled efficiency.

The symphony of success resonates as we unlock the latent potential of spintronic sensors

while the cadence of AI-based denoising resounds through the halls of biomedical signal

processing. The future unfurls before us, where portable MEG devices unfettered by noise

empower us to unravel the mysteries of the mind.

This work is poised to be a step in shaping the future of portable MEG devices and

biomedical signal processing by unlocking the potential of spintronic sensors and harnessing

the denoising capabilities of AI-based models. Integrating cutting-edge technology with

neuroscience holds immense promise for transformative healthcare applications.
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(b) Clean EEG vs. predicted signal performance
with the KNN model for channel 40.
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(c) Clean EEG vs. predicted signal performance
with the DNN model for channel 40.
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(d) Clean EEG vs. predicted signal performance
with the CNN model for channel 40.
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(e) Clean EEG vs. predicted signal performance
with the LSTM model for channel 40.
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(f) Clean EEG vs. predicted signal performance
with the GRU model for channel 40.
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(g) Clean EEG vs. predicted signal performance
with the BiLSTM model for channel 40.
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(h) Clean EEG vs. predicted signal performance
with the RNN&CNN model for channel 40.
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Figure 5.4: Filtered signals of channel 40 within the time range of 20-500 seconds: a com-
parison between clean and denoised predicted signals using various models.
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Figure 5.5: Visual comparison of the predicted signals generated by various proposed AI-
based denoising models for Channel 40, showcasing their cumulative performance from the
best at the bottom to the worst at the top. The clean EEG signal is also included for
reference, with the time range set from sample 20 to 700. The ordered arrangement of the
models offers a clear depiction of their relative accuracy in capturing the underlying EEG
dynamics.
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6.1 Introduction

In recent years, the fusion of deep learning techniques and neuroscience has opened new

avenues for analyzing brain signals, particularly in Magnetoencephalography (MEG) and

Electroencephalography (EEG). These non-invasive neuroimaging methodologies offer un-

precedented perspectives into brain activities and are indispensable in advancing our com-

prehension of cognitive processes and neurological disorders. The efficacy of these techniques

hinges on precise signal processing and formidable predictive models capable of decoding

the intricate temporal and spatial intricacies inherent in brain signals.

Our preceding endeavours tackled pivotal challenges in MEG devices, pioneering the

use of home-temperature sensors like the Magnetic Tunnel Junction (MTJ) as a robust

alternative [111]. Our initial exploration delved into the transformation from MEG to EEG

signals harnessing the prowess of artificial intelligence. Subsequently, we embraced the

potency of Recurrent Neural Network (RNN) models, particularly the BiLSTM architecture,

achieving commendable results in processing sequential data. Furthering our research, we

examined the noise implications in MEG measurements, introducing state-of-the-art AI

methodologies to fortify signal quality.

Building on this foundation, this chapter underscores the significance of adapting deep

learning models, especially the BiLSTM, for seamless deployment on neuromorphic hard-

ware platforms. We emphasize the pivotal role of the Multiply-Accumulate-Activate-Pool

(MAAP) set, ingeniously tailored for efficient operational procedures, resonating with the

paradigms of neuromorphic computing, renowned for energy conservation and parallel pro-

cessing [112].

In this contemporary edge computing epoch, accentuating hardware implementation is

imperative. The proficient adaptation of deep learning models, primarily through quanti-

zation, onto platforms such as Field-Programmable Gate Arrays (FPGAs) signifies mon-

umental strides in real-time analysis, energy efficiency, and proximate AI data process-

ing [113]. Consequently, this manuscript delineates the comprehensive methodology em-

braced in quantizing the BiLSTM model for optimal hardware compatibility. By demon-

strating the practicability and merits of this approach, we envision a robust framework for

IoT integration and energy-conscious MEG signal interpretation.

The chapter unfolds as follows: Section 6.2 delves into the seminal works pertinent to

neuromorphic hardware implementations and BiLSTM. Section 6.3 provides an overview

of existing methodologies and their relevance. Section 6.4 elucidates the nuances of the

model optimization and quantization for the BiLSTM network. Section 6.5 offers a crit-

ical analysis of our results and discusses the effects of varying hyperparameters. Finally,

Section 6.6 encapsulates the chapter, summarizing our contributions and outlining future

research directions. At its core, this study aspires to seamlessly intertwine deep learning
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advancements with pragmatic hardware solutions, heralding a renaissance in brain signal

analytics and its transformative applications across neuroscience, healthcare, and beyond.

6.2 Integration of Model Choices, Neuromorphic Principles,

and Quantization Techniques

This section comprehensively explores model choices, delving into our decision to transition

from Linear Regression to the BiLSTM model. We then traverse the intricate landscape of

quantization, elucidating its methodologies, significance, particularly for BiLSTM networks,

and the inherent trade-offs and mitigations. As we progress, the alignment of quantization

with neuromorphic computing principles is unveiled, spotlighting its pivotal role. Collec-

tively, these discussions illuminate our strategic roadmap toward actualizing AI-driven brain

signal analysis for real-time, real-world applications.

6.2.1 From Linear Regression to Deep Learning: A Deliberate Choice

In our comprehensive investigation into mapping MEG to EEG, we applied traditional ma-

chine learning and avant-garde deep learning models to noisy MEG data. The landscape

of our findings from this exploration was both enlightening and instrumental in shaping

our future endeavours. In our third major study, the humble Linear Regression (LR)

model emerged as a dark horse, outshining many sophisticated models in terms of Root

Mean Square Error (RMSE), Mean Absolute Error (MAE), and prediction time. The Bi-

directional Long Short-Term Memory (BiLSTM) network, though slightly trailing the LR

model in RMSE and MAE metrics, was a close second but required marginally more time

for prediction.

At a cursory glance, due to its superior performance metrics, the apparent choice for

deployment in hardware solutions is the Linear Regression model. However, the decision is

not so black and white on deeper introspection. One of the primary challenges with the LR

model is the necessity for regular calibration [114]. Given the ever-fluctuating nature of the

real-world environment, changes in temperature, pressure, and humidity, to name a few.

It becomes evident that such external factors could have a pronounced impact on sensor

readings and, consequently, the data acquired. Imagine a device equipped with four sensors;

calibrating each sensor’s curve to ensure accurate EEG prediction would be cumbersome and

a logistical nightmare, especially in environments that demand quick, accurate responses.

On the other hand, the BiLSTM model serves as a beacon of stability amidst the chaos.

Its inherent design and architecture bestow upon it the robustness we desperately seek.

The weights and biases within the BiLSTM are constant, eliminating the need for continual

calibration and making it readily usable across multiple sensors without the associated
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recalibration hassle [115].

Moreover, the essence of deep learning, specifically the BiLSTM network, is its capability

to generalize and adapt to varying data patterns, which might not be explicitly linear. While

the LR model might demonstrate superior performance under controlled conditions, its

limitations might become pronounced in real-world, unpredictable scenarios. The BiLSTM,

being more versatile, offers a better promise of consistency across diverse situations.

Furthermore, our commitment to realizing a real-world solution continues after model

selection. We have also embarked on the path of quantizing the BiLSTM model. This

process, aimed at reducing the memory and computational requirements of the model,

ensures that our chosen model is accurate and also efficient and deployable in resource-

constrained hardware environments. The fact that the BiLSTM can be quantized, making

it more amenable to hardware implementations, further cements its place as our choice

model.

6.2.2 Neuromorphic Computing

Neuromorphic computing embodies an avant-garde confluence of neuroscience and artificial

intelligence. Drawing inspiration from the architecture and mechanisms of the biological

brain, it ventures to conceive systems that emulate brain-like computational processes [116].

This approach diverges from traditional von Neumann architectures, characterized by se-

quential information processing and distinct memory units. In stark contrast, neuromorphic

systems echo the parallelism, adaptability, and event-driven essence innate to human neural

networks.

The impetus for neuromorphic computing arises from traditional computational sys-

tems’ constraints, especially when deciphering intricate and dynamic real-world data that

mandate real-time processing with conservative power consumption [117]. By harnessing

the computational prowess of the brain, neuromorphic systems offer salient advantages:

unmatched energy efficiency, scalability, and the capacity for real-time complex cognition.

Central to the neuromorphic ethos are Spiking Neural Networks (SNNs). These are struc-

tured on ”spikes” or action potentials as their fundamental computational entities, mirror-

ing biological neuronal communication. The event-driven core of SNNs facilitates efficient,

sparse calculations, curbing memory needs and processing overheads [118].

Recent strides in hardware, exemplified by Field-Programmable Gate Arrays (FPGAs)

and specialized neuromorphic chips, have catalyzed the tangible manifestation of neuro-

morphic systems. These platforms are tailor-made for the nuances of SNNs, proffering

exceptional speed and power efficiencies over conventional counterparts [119]. Such sys-

tems have demonstrated their mettle in real-world challenges, ranging from brain-computer

interfaces and neuromorphic vision systems to cutting-edge cognitive computing [120]. Em-

bracing the brain’s computational strategies, neuromorphic approaches promise to redefine
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our understanding of brain functions and catalyze leaps in neuroscience.

The essence of this chapter is to elucidate the synergy between neuromorphic computing

and the quest to map MEG signals to EEG. Specifically, the spotlight optimizes the BiL-

STM model, tailored for MEG to EEG signal transformation via MTJ sensors. Venturing

into the vistas of neuromorphic computing, primarily through the lens of the Multiply-

Accumulate-Activate-Pool (MAAP) blueprint, we aspire to supercharge the efficiency and

real-time prowess of deep learning algorithms in MEG data analytics. By weaving neuro-

morphic computing into the tapestry of real-time applications, we envisage groundbreaking

revolutions in neuroscience, healthcare, and myriad other realms, forging an unprecedented

alliance between biological and artificial intelligence.

6.2.3 Quantization of BiLSTM

Bi-directional Long Short-Term Memory networks (BiLSTMs), a particular category of Re-

current Neural Networks (RNNs), have been recognized for their remarkable capability to

discern and represent both past and future context in sequential data, like that found in

MEG and EEG signals. This prowess in temporal data understanding has driven the adop-

tion of BiLSTM models in various applications, especially in neuroscience, where temporal

dynamics are critical.

However, the complexity associated with BiLSTM networks, mainly due to their in-

tricate weight matrices and recurrent architectures, poses challenges for deployment on

conventional and neuromorphic hardware platforms [121]. These models must be optimized

to harness the full potential of neuromorphic computing, primarily its real-time and energy-

efficient processing capabilities. Enter quantization is a pivotal step toward achieving this

goal.

Quantization pertains to constraining or limiting the number of distinct states that a

system, such as a neural network model, can assume. In deep learning models, quantization

typically involves reducing the number of bits representing the neural network’s weights and

biases [122]. The primary motivations for quantizing deep learning models for neuromorphic

hardware deployment include the following:

6.2.3.1 Reduced Memory Footprint

The beauty of quantization lies in its ability to significantly reduce the memory require-

ments of neural models without substantially compromising performance. Neural networks,

incredibly complex architectures like BiLSTM, come with large weight matrices that occupy

substantial memory when represented using standard precision formats like 32-bit floating

numbers. Quantization aims to represent these weights and biases using fewer bits, some-

times as low as 2 to 8 [123]. This drastic reduction implies that the model’s overall size
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shrinks considerably. Consequently, the model can be stored and run on devices with limited

memory capacities. This is particularly essential for IoT devices, often embedded systems

with tight memory constraints. Furthermore, neuromorphic chips, designed to mimic the

parallel processing capabilities of the brain, can benefit immensely from these compressed

models [124], as it allows them to run more models in parallel or allocate memory to other

crucial tasks.

6.2.3.2 Enhanced Processing Speed

The computational performance of deep learning models is closely tied to the precision of

their numerical representations. Higher precision often implies more computational over-

head due to the intricacy of floating-point arithmetic. By reducing the bit width of weights

and biases through quantization, the arithmetic operations become more straightforward

and faster. For instance, operations on 8-bit integers are inherently swifter than those on

32-bit floating numbers [125]. This speed-up is even more pronounced on specialized hard-

ware accelerators, which can perform multiple low-bit-width operations simultaneously. The

cumulative effect is a model that responds rapidly to inputs and meets the stringent re-

quirements of real-time applications, ensuring timely data analysis, inference, and decision-

making.

6.2.3.3 Energy Efficiency

One of the pivotal concerns in today’s electronics is energy consumption, especially as de-

vices become more portable and edge-centric. Every bit of computation and data movement

within a device consumes power. Quantization, by reducing the number of bits involved

in computations, directly impacts the device’s energy efficiency. Fewer bits entail fewer

transistors switching on and off during computation, directly translating to lower power

consumption [126]. This is a tremendous advantage for battery-operated devices, ensuring

longer battery life and extended periods between charges. Moreover, as edge computing

gains traction, where computations are performed closer to the data source, energy-efficient

models become essential for sustainable and scalable growth. Whether a wearable health

monitor or a remote environmental sensor, energy-efficient models ensure these devices

remain operational for prolonged durations, enabling consistent and uninterrupted data

analysis.

Despite the benefits, quantization introduces several challenges that can affect its overall

purpose. One of the primary concerns stems from the reduction of numerical precision in

model parameters. This efficiency-driven reduction can lead to the loss of vital, fine-grained

information. In the intricate architecture of deep networks, even minute imprecisions origi-

nating from initial layers can compound and become magnified in the subsequent ones [127].
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As a result, the model could stray significantly from its expected behaviour, resulting in a

potential dip in overall accuracy.

Moreover, quantization can influence the training dynamics of models. Training with

reduced precision, often termed quantization-aware training, can disrupt gradient propaga-

tion. This disruption could manifest as slower convergence or, in more extreme cases, push

the model’s training into a state of divergence. The complexities do not end there. Making

decisions on the granularity of quantization is a non-trivial task. There is a looming ques-

tion over which components of the model to quantize, should it be limited to the weights,

or should it extend to activations and gradients? Each decision here can have a marked

impact on the model’s final performance and computational efficiency.

Lastly, the realm of hardware introduces its own set of challenges. Different hardware

platforms come equipped with distinct requirements for low-precision arithmetic operations.

Ensuring the compatibility of quantized models with intended devices becomes paramount.

Moreover, due to the inherent constraints in their numerical representation, quantized mod-

els might need help with adaptability. This reduced resilience against changes in data dis-

tribution can be a significant drawback, especially in dynamic real-world scenarios where

the data’s nature can evolve.

In the subsequent sections, we will provide a comprehensive breakdown of our method-

ology for quantizing the BiLSTM model, coupled with experimental results, demonstrating

the optimized model’s effectiveness and feasibility on neuromorphic hardware platforms.

6.3 Related work

The relentless pursuit of efficient, compact, and swift neural network models suited for

real-world scenarios has given rise to many techniques encompassing hardware innovations,

unconventional devices, and architecture-centric modifications.

As an approach, spintronics leverages the intrinsic electron spin and its associated mag-

netic moment to create energy-efficient neural computations. A highlight in this domain

is the Spin Hall Magnetic Tunnel Junction-based spintronic neurons, which are tailored

for concurrent multi-functional neural computations, achieving an impressive 99% preci-

sion [128]. This is further augmented by investigations into Spin-Orbit Torque Magnetic

Tunnel Junction (SOT-MTJ), mainly to optimize ReLU activation and max-pooling, yield-

ing significantly improved energy and area efficiency [129].

Neuromorphic computing offers another paradigm that strives to be more closely aligned

with biology, creating systems that emulate human brain modelling. Intel’s Loihi is a sem-

inal example, demonstrating the potential of spiking neural networks with reduced latency

and energy consumption, especially when deploying brain-inspired networks with nuanced

features like synaptic plasticity and sparsity [130].
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Diving deeper into neuromorphic systems, a fresh perspective emerges with a comprehen-

sive review of the Hopfield algorithm’s model, which has recently been explored extensively

in large-scale hardware projects. This paper [131] underscores the algorithm’s advancements

and potential to shape future artificial intelligence projects. Hardware solutions are gaining

traction for their ability to cater to specific neural operations. This is exemplified in recent

studies proposing time-multiplexed architectures for the convolution layer in CNNs, boast-

ing a staggering 97% reduction in power consumption [132]. Another innovation bridges the

analog and digital realms, resulting in a mixed-signal architecture for CNNs that promises

improved energy-delay metrics [133].

There is also an emergent focus on healthcare applications. A contactless sleep apnea

detection method has been proposed, leveraging snoring signals and hybrid deep neural net-

works. This solution, adapted for real-time applications on embedded hardware platforms,

promises early diagnosis and treatment for sleep apnea in domestic environments [134].

Hand gesture recognition, essential for prosthesis control, also witnessed breakthroughs

with the advent of a real-time gesture recognition system that employs a convolutional

neural network (CNN). This system utilizes a custom 32-channel HDsEMG electrode array,

demonstrating a rapid response time and a 98.15% accuracy, paving the way for advance-

ments in hand prostheses [135].

There has been a surge in breakthroughs in the vast arena of neural networks in health-

care. This is particularly evident when harnessing dedicated deep-learning accelerators and

neuromorphic processors. From memristive devices to FPGAs, researchers are creating DL

accelerators adept at handling diagnostics, pattern recognition, and signal processing [136].

The recent research trajectories in neural network methodologies, algorithms, and hardware

implementations, especially within the healthcare and computer vision domains, reveal a

thriving and rapidly evolving landscape [137].

6.4 Adaptive Precision Quantization for BiLSTM Networks

Adaptive Precision Quantization is a compelling technique to optimize deep neural networks,

especially when considering deployment in real-world scenarios that require efficient, high-

speed computations with memory constraints. This section delves into the meticulous

quantization process implemented in the BiLSTM networks of our study.

Initially, the study utilized reshaped dataset tailored explicitly for our model. It con-

sists of noisy MEG signals with 305 channels and pure EEG signals with 59 channels. This

dataset has been divided into training and testing as a ratio of 0.75 to 0.25 and prepared

to ensure data preprocessing is aptly aligned with the model’s requirements. Essential Ten-

sorFlow libraries and specific modules pertinent to model optimization are invoked. The

TensorFlow Model Optimization Toolkit (‘tfmot‘) is particularly critical, given its robust
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suite of tools tailored for training quantization-aware models [138]. The quantization con-

figuration is defined by the number of sets, set size, and bit widths for inputs, weights,

and outputs. These parameters were pivotal in guiding the subsequent quantization of the

BiLSTM model’s weights.

A bespoke customized function named map-rnn-to-maap-sets is designed to navigate the

quantization process for each BiLSTM layer in the network. This function’s primary role

is to extract the weights of a given BiLSTM layer, apply the defined quantization process,

and restore these adjusted weights to the layer. By doing this for all BiLSTM layers,

the BiLSTM model is retrofitted with quantized weights, aiming for a balance between

performance and computational efficiency.

Once this weight adjustment is complete, a quantization-aware model is birthed. This

model, a mirror image of the original BiLSTM but with an awareness of the quantization

nuances, is compiled and trained. An early stopping mechanism was introduced during

training to ensure convergence and avoid overfitting based on the validation loss.

After the rigorous training phase, evaluating the quantization-aware model’s perfor-

mance using the test dataset is paramount. This step is essential to gauge the model’s

accuracy and understand how well the quantized model generalizes to unseen data, particu-

larly given the changes introduced during quantization. The test dataset, which represents

previously unseen data, is passed through the quantization-aware model to do this. This

resulted in a set of predictions. These predictions, however, are in a quantized format, a

direct consequence of the quantization process. Quantized outputs are advantageous for

computation and storage, but converting them back to their original or conventional format

is crucial for interpretability and further processing.

Enter the decode-predicted function. This function is designed with a clear objective:

translate the quantized outputs into a format that aligns more closely with the original

data’s scale and nature. The decoding mechanism is achieved through scaling, rounding,

and further scaling operations. The predicted outputs are initially scaled based on the

previous configuration’s bit width and number of sets. This transformation aimed to bring

the values from the quantized range to the original data’s range. Subsequently, these scaled

values were rounded to the nearest integers, ensuring the predictions conformed to a precise,

discrete set of values.

This quantization approach in the BiLSTM networks emphasizes the tangible benefits

of marrying computational efficiency with performance, presenting a feasible pathway for

deploying robust models in resource-constrained environments.
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Table 6.1: Performance Metrics RMSE and MAE for Different Models.

Model MAE RMSE

Model 1 0.1843 0.2069

Model 2 0.1849 0.2075

Model 3 0.1847 0.2075

Model 4 0.1840 0.2067

Model 5 0.2380 0.2598

Model 6 0.2388 0.2605

Model 7 0.2389 0.2606

Model 8 0.2374 0.2591

6.5 Performance Evaluation Through Hyperparameter Vari-

ation

In our quest to ascertain the most favourable configurations for quantization, we delved into

a systematic variation of critical hyperparameters. This experiment aimed to determine the

influence of these configurations on the model’s performance. By varying parameters like

the Number of Sets, Set Size, and Bit Widths (for input, weight, and output), we exposed

our model to a spectrum of quantization scenarios.

Each unique configuration was put to the test, with its performance being meticulously

evaluated. This iterative process offered a panoramic landscape view, revealing how different

formats influenced model accuracy and efficiency. The overarching aim was to identify an

’optimal’ design and understand the nuanced interplay between quantization parameters

and their resultant effect on the model’s predictive capabilities.

In Table 6.1, we present the performance metrics of eight different model configura-

tions, evaluated through both Root Mean Squared Error (RMSE) and Mean Absolute Error

(MAE). Among these configurations, Model 4 exhibits the most promising accuracy with an

RMSE of 0.2067, num sets = 4, set size = 6, input bit width = 32, weight bit width = 32,

output bit width = 16, while Model 5 registers a relatively higher error with an RMSE

of 0.2598, num sets = 6, set size = 6, input bit width = 16, weight bit width = 16,

output bit width = 32. Notably, a perceptible performance gap exists when comparing

the RMSE values of these quantized models to the original BiLSTM model’s 0.0488, as

highlighted in our prior research.

This observed disparity in performance between the original and quantized models is

intricately linked to the nature of quantization itself. The process inherently involves ap-

proximations, which could be the source of minor discrepancies. Furthermore, the complex-
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ities and nuances inherent to the original BiLSTM model might not be wholly encapsulated

post-quantization. While methodical, the quantization’s hyperparameter choices may only

sometimes prove optimal across all model configurations. It’s also conceivable that some

models become more sensitive to variations in data after undergoing quantization, result-

ing in escalated error rates. Despite these challenges, the benefits of quantized models

in computational efficiency and memory conservation cannot be understated. The more

optimization is given to fine-tuning step, the better the quantization, which is applicable.

Further illuminating our examination of the model’s performance post-quantization,

Figure 6.2 graphically showcases the performance comparison of actual versus quantized

signals for different configurations. Each subplot vividly demonstrates the disparities and

congruences between the original and the quantized signals after applying a moving average

filter of window 5 to smooth the output. The figures show the first 1000 samples for channel

4 for better visualization. For instance, in Model 1 (Figure 6.2(a)), the quantized signal is

derived from a configuration with parameters such as num sets = 4, set size = 8, and so

forth. Each subsequent subplot, from Model 2 (Figure 6.2(b)) through to Model 8 (Figure

6.2(h)), represents varied configuration settings. As one traverses through these visual plots,

the intricate differences underscored by various hyperparameter combinations become more

evident. Such visualizations are pivotal in comprehending the nuances of quantization

on model performance and how subtle configuration changes can manifest in the model’s

output. While some models appear to mimic the original signal with a commendable degree

of accuracy, others highlight the challenges intrinsic to the quantization process.

Expanding on our investigation into the impact of quantization hyperparameters, Figure

6.1 delves into a granular analysis of RMSE and MAE based on the variation of different

hyperparameters. The visual representation elucidates a clear trend in the model’s perfor-

mance sensitivity concerning each hyperparameter. Predominantly, it is evident that the

number of sets is the paramount hyperparameter that significantly influences the quanti-

zation’s efficacy. Its impact is more pronounced than the other parameters, suggesting its

potential role as a critical determinant in the optimization of quantization processes. In

contrast, variations in different hyperparameters appear to have a more subtle or marginal

effect on the model’s performance. The discernment of such nuances emphasizes the im-

portance of reasonable hyperparameter selection, especially when aiming to maximize the

benefits of quantization without compromising on model accuracy.

6.6 Conclusion

This research journey, predicated on the symbiosis of deep learning techniques and neu-

roscience, has been a testament to the limitless potentialities that emerge when intricate

brain signal analysis meets groundbreaking AI innovations. The landscape of Magnetoen-



79

5 10 15 20 25 30
Hyperparameter Value

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

M
et

ric
 V

al
ue

Trend of RMSE and MAE with Different Hyperparameters

RMSE (Num_Sets)
MAE (Num_Sets)

RMSE (Set_Size)
MAE (Set_Size)

RMSE (Input_Bit_Width)
MAE (Input_Bit_Width)

RMSE (Weight_Bit_Width)
MAE (Weight_Bit_Width)

RMSE (Output_Bit_Width)
MAE (Output_Bit_Width)

Figure 6.1: Analysis of RMSE and MAE based on the variation of different hyperparam-
eters. The line plots illustrate the trend of RMSE and MAE values as a function of each
hyperparameter. The comparative analysis provides insights into the sensitivity of the
model’s performance to changes in the hyperparameter configurations

cephalography (MEG) and Electroencephalography (EEG) signal processing has been pro-

foundly reshaped by our forays into employing Magnetic Tunnel Junction (MTJ) sensors

and exploring the BiLSTM architecture. Our endeavours have highlighted the possibilities

within these realms and underscored the profound impact of precise signal processing on

advancing our understanding of cognitive paradigms.

The essence of this manuscript has been the emphasis on the meticulous quantization

of the BiLSTM model, tailored to resonate harmoniously with neuromorphic hardware

platforms. The detailed performance analysis presented underscores the robustness of our

approach. Rather than presenting a full-fledged hardware implementation, we have laid

down the foundational steps to ensure that the depth and intricacy of applied deep learning

are faithfully represented when translated to a hardware-oriented context.

The world is at the cusp of an edge computing revolution, and our work stands as

a beacon that emphasizes the indispensability of neuromorphic implementations for real-

world applications. As we culminate this exploration, it is imperative to acknowledge the

vast expanse of untapped potential that awaits. While our study has established a robust

framework, the confluence of deep learning and neuromorphic hardware holds promises yet

to be unravelled.

Looking forward, we remain committed to advancing this field. Our goal is to be at the

forefront of brain signal research, using technology as our lens to explore the vast potential
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of the human mind. We dream of a world where our work serves as a catalyst, bridging

technology and neuroscience to benefit sectors like healthcare and cognitive research.
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(a) Model 1: Actual vs quantized signal perfor-
mance with the num sets = 4, set size = 8,
input bit width = 32, weight bit width = 32,
output bit width = 32
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(b) Model 2: Actual vs quantized signal perfor-
mance with the num sets = 4, set size = 8,
input bit width = 32, weight bit width = 32,
output bit width = 16
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(c) Model 3: Actual vs quantized signal perfor-
mance with the num sets = 4, set size = 6,
input bit width = 16, weight bit width = 32,
output bit width = 32
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(d) Model 4: Actual vs quantized signal perfor-
mance with the num sets = 4, set size = 6,
input bit width = 32, weight bit width = 32,
output bit width = 16
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(e) Model 5: Actual vs quantized signal perfor-
mance with the num sets = 6, set size = 6,
input bit width = 16, weight bit width = 16,
output bit width = 32
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(f) Model 6: Actual vs quantized signal perfor-
mance with the num sets = 6, set size = 8,
input bit width = 16, weight bit width = 32,
output bit width = 32
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(g) Model 7: Actual vs quantized signal perfor-
mance with the num sets = 6, set size = 6,
input bit width = 32, weight bit width = 32,
output bit width = 16
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(h) Model 8: Actual vs quantized signal perfor-
mance with the num sets = 6, set size = 8,
input bit width = 16, weight bit width = 32,
output bit width = 16

Figure 6.2: Performance comparison of actual vs Filtered normalized quantized signals using
different configuration settings.
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Chapter 7

Conclusion and Future Work on

Integrating denoised and mapped

signal for disease prediction and

fed learning

The exquisite interplay between the human brain’s complexity and the advancing frontier

of modern technology is the central motif of this research. Embarking on a voyage through

the intricacies of neuroscience intertwined with the possibilities of artificial intelligence,

our efforts have heralded a transformative phase in the domain of Magnetoencephalography

(MEG) and Electroencephalography (EEG) signal analysis. Embarking on this research, we

ventured into the largely unexplored realms of Magnetic Tunnel Junction (MTJ) sensors,

paired with the profound capacities of deep learning. This initial spark of curiosity and

exploration has matured into a pioneering innovation, one that has the potential to signifi-

cantly impact the future trajectory of brain health diagnostics and treatment methodologies.

At the onset of our research expedition, we presented a novel idea that held immense

promise—a seamless integration of nimble, IoT-driven biomagnetic sensors and avant-garde

AI frameworks. Our aim was ambitious yet clear: to adeptly capture MEG signals and

transpose them into their EEG equivalents. This innovative amalgamation highlighted the

latent potential of the next generation of wearable diagnostic devices. As our research

suggests, these tools can usher in an era where monitoring brain functions from the comfort

of one’s home, without any compromise on quality or accuracy, becomes the norm. Diving

into machine learning, we embarked on a meticulous assessment of diverse models. It

became evident that while models like KNN and LR stood out for specific strengths, deep

learning paradigms, especially DNN and CNN, exhibited a remarkable finesse in discerning

the multifaceted patterns embedded within EEG signals.
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As our exploration deepened, we grappled with age-old obstacles that have long cast

shadows over conventional MEG and EEG diagnostic techniques. These challenges—ranging

from prohibitive costs and limited accessibility to the invasive nature of some procedures and

their inherent complexity—were formidable. However, by synergizing the potent capabili-

ties of MTJ-based sensors with state-of-the-art deep learning methodologies, we envisioned

the creation of monitoring systems that are user-friendly and seamlessly integrated into

daily routines. Our scrupulous analysis of RNN models bore fruit when the RCNN model

emerged as a clear front-runner, striking an optimal balance between processing efficiency

and analytical precision. Concurrently, the GRU model also showed significant potential,

marking itself as a viable alternative for specific applications.

Nevertheless, as with any pioneering endeavour, our path was challenged. A recur-

ring nemesis in biomedical signal processing has been ’noise’—unwanted interference that

can obscure actual signal data. This formidable adversary threatened to hinder our quest

for capturing unadulterated MEG signals. However, fortified with an array of AI-driven

denoising algorithms, we met this challenge with unwavering resolve. The results were illu-

minating, with models like LR, BiLSTM, and RCNN showcasing their robust capabilities

in noise mitigation.

On another frontier, our efforts to quantize the BiLSTM model revealed its inherent

compatibility with neuromorphic hardware platforms, signalling the dawn of an age dom-

inated by edge computing. Instead of confining ourselves to presenting a pre-packaged

solution, we took a broader perspective. We meticulously crafted a roadmap—a compre-

hensive blueprint that accentuates the harmonious marriage of deep learning techniques

and neuromorphic hardware architectures.

To encapsulate, our research journey has been monumental in building bridges between

the avant-garde realms of technology and the enigmatic world of neuroscience. A vision fuels

us as we pause at this juncture, poised at the threshold of myriad unexplored possibilities. A

vision of a tomorrow where technological advancements and neuroscience coalesce, heralding

breakthroughs in sectors as pivotal as healthcare and cognitive studies. Guided by this

vision, our mission remains steadfast—to continue our quest, leveraging technology as a

lens, to delve deeper into the mysteries of the human psyche.

7.1 Future Directions

As delineated in our study, the nexus of neuroscience and avant-garde technology has estab-

lished a robust platform for numerous forward-looking ventures. Gazing into the horizon,

distinct and crucial paths beckon, ready to steer our subsequent initiatives and deepen our

dedication to transforming the realm of brain health surveillance. Herein, we outline the

salient pathways our research anticipates venturing into:
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• Transition to HDL Solutions: Building upon our work on the quantized solution,

the next logical stride lies in transitioning to Hardware Description Language (HDL)

solutions. This will enable us to design and simulate the neuromorphic hardware

platforms more intricately, offering a gateway to actual hardware implementation.

Such a move would accelerate the transition from theory to tangible devices and

refine our systems’ performance and efficiency in real-world scenarios.

• Early Detection of Abnormal Brain Activities: With the foundational knowl-

edge garnered from our research, there is an imperative to focus on developing AI-

based models explicitly tailored for detecting abnormalities in brain activities. Such

models leverage deep learning architectures to analyze and predict anomalies at their

nascent stage, enabling timely interventions and potentially mitigating severe medical

conditions.

• Innovations in Real-time Monitoring: Envisioning the future of non-intrusive

brain health monitoring, we are inspired to design a smart band. This wearable

would seamlessly integrate IoT capabilities with our AI-driven denoising and detection

models, presenting a holistic solution that offers real-time insights into brain activity.

Such a device would prioritize user comfort, ensuring continuous monitoring without

disrupting daily activities.

• Cloud Integration for Emergency Alerts: As we advance our real-time moni-

toring solutions, there is an inherent need for safety mechanisms. We can implement

advanced algorithms to identify any life-threatening anomalies by transmitting the

monitored data to cloud infrastructures. Should any dangerous situation be detected,

instant alerts could be dispatched to medical professionals and caregivers, facilitating

rapid response and intervention.

• Embracing Federated Learning: Given the sensitive nature of brain data and the

growing concerns surrounding data privacy, it becomes crucial to incorporate federated

learning techniques. By processing data locally on IoT devices (like the envisioned

smart band) and only sharing model updates rather than raw data, federated learning

promises to uphold user privacy while benefiting from collective data intelligence. This

decentralized approach to machine learning will ensure that our solutions are not only

technologically advanced but also ethically responsible.

In conclusion, the path forward is illuminated with opportunities further to bridge the

chasm between neuroscience and state-of-the-art technology. Our vision for the future is

a world where the confluence of these domains leads to breakthroughs that transcend the

traditional boundaries of healthcare, diagnostics, and cognitive research. With a clear
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roadmap ahead, we remain steadfast in our mission to harness technology’s potential to

shed light on the enigma that is the human brain.
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B. Hillebrands, “Review on spintronics: Principles and device applications,” Jour-

nal of Magnetism and Magnetic Materials, vol. 509, p. 166711, 2020.

[104] F. Hooge, T. Kleinpenning, and L. K. Vandamme, “Experimental studies on 1/f

noise,” Reports on progress in Physics, vol. 44, no. 5, p. 479, 1981.

[105] P. Wisniowski, J. Almeida, and P. Freitas, “1/f magnetic noise dependence on free

layer thickness in hysteresis free mgo magnetic tunnel junctions,” IEEE Transactions

on Magnetics, vol. 44, no. 11, pp. 2551–2553, 2008.

[106] Z. Lei, G. Li, W. F. Egelhoff, P. Lai, and P. W. Pong, “Review of noise sources in

magnetic tunnel junction sensors,” IEEE Transactions on Magnetics, vol. 47, no. 3,

pp. 602–612, 2011.

[107] S. Waldert, H. Preissl, E. Demandt, C. Braun, N. Birbaumer, A. Aertsen, and

C. Mehring, “Hand movement direction decoded from meg and eeg,” Journal of neu-

roscience, vol. 28, no. 4, pp. 1000–1008, 2008.

[108] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck,

R. Goj, M. Jas, T. Brooks, L. Parkkonen et al., “Meg and eeg data analysis with

mne-python,” Frontiers in neuroscience, p. 267, 2013.

[109] W. He, T. Donoghue, P. F. Sowman, R. A. Seymour, J. Brock, S. Crain, B. Voytek,

and A. Hillebrand, “Co-increasing neuronal noise and beta power in the developing

brain,” BioRxiv, p. 839258, 2019.

[110] M. Gerster, G. Waterstraat, V. Litvak, K. Lehnertz, A. Schnitzler, E. Florin, G. Curio,

and V. Nikulin, “Separating neural oscillations from aperiodic 1/f activity: challenges

and recommendations,” Neuroinformatics, vol. 20, no. 4, pp. 991–1012, 2022.

[111] S. Sakib, M. M. Fouda, M. Al-Mahdawi, A. Mohsen, M. Oogane, Y. Ando, and Z. M.

Fadlullah, “Deep learning models for magnetic cardiography edge sensors implement-

ing noise processing and diagnostics,” IEEE Access, vol. 10, pp. 2656–2668, 2022.

[112] N. K. Upadhyay, H. Jiang, Z. Wang, S. Asapu, Q. Xia, and J. Joshua Yang, “Emerg-

ing memory devices for neuromorphic computing,” Advanced Materials Technologies,

vol. 4, no. 4, p. 1800589, 2019.

[113] N. J. Aklo, “Simulation action potential signal based on fpga,” University of Thi-Qar

Journal for Engineering Sciences, vol. 10, no. 1, pp. 163–167, 2019.



97

[114] A. Almeida, M. Castel-Branco, and A. Falcão, “Linear regression for calibration lines

revisited: weighting schemes for bioanalytical methods,” Journal of Chromatography

B, vol. 774, no. 2, pp. 215–222, 2002.

[115] M. Jiao, G. Wan, Y. Guo, D. Wang, H. Liu, J. Xiang, and F. Liu, “A graph fourier

transform based bidirectional long short-term memory neural network for electrophys-

iological source imaging,” Frontiers in Neuroscience, vol. 16, p. 867466, 2022.

[116] B. Sun, T. Guo, G. Zhou, S. Ranjan, Y. Jiao, L. Wei, Y. N. Zhou, and Y. A.

Wu, “Synaptic devices based neuromorphic computing applications in artificial in-

telligence,” Materials Today Physics, vol. 18, p. 100393, 2021.

[117] A. Calimera, E. Macii, and M. Poncino, “The human brain project and neuromorphic

computing,” Functional neurology, vol. 28, no. 3, p. 191, 2013.

[118] R.-J. Zhu, Q. Zhao, and J. K. Eshraghian, “Spikegpt: Generative pre-trained language

model with spiking neural networks,” arXiv preprint arXiv:2302.13939, 2023.

[119] B. Prashanth and M. R. Ahmed, “Fpga implementation of bio-inspired computing

based deep learning model,” in Advances in Distributed Computing and Machine

Learning: Proceedings of ICADCML 2020. Springer, 2020, pp. 237–245.

[120] M. Pals, R. J. P. Belizón, N. Berberich, S. K. Ehrlich, J. Nassour, and G. Cheng,

“Demonstrating the viability of mapping deep learning based eeg decoders to spiking

networks on low-powered neuromorphic chips,” in 2021 43rd Annual International

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE,

2021, pp. 6102–6105.

[121] D. J. Mannion and A. J. Kenyon, “Artificial dendritic computation: The case for

dendrites in neuromorphic circuits,” arXiv preprint arXiv:2304.00951, 2023.

[122] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quantization for

deep neural network acceleration: A survey,” Neurocomputing, vol. 461, pp. 370–403,

2021.

[123] J. Grollier, D. Querlioz, K. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles,

“Neuromorphic spintronics,” Nature electronics, vol. 3, no. 7, pp. 360–370, 2020.
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