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Abstract
With the introduction of Transformers and Large Language Models, the field of NLP has signifi-

cantly evolved. Generative AI, a prominent transformer-based technology for crafting human-like

content, has proven powerful skills across numerous NLP tasks. Simultaneously, social media

emerges as a rich source for NLP explorations, offering vast and diverse datasets that capture

real-time language usage, making it a valuable resource for understanding and advancing NLP

techniques. Given that supervised learning is the most popular Machine Learning training method,

numerous NLP studies necessitate labor-intensive annotation of social media text. However, de-

spite the large amount of data available, the social media data annotation process is usually difficult

for human experts due to unique characteristics of text, such as shortness, lack of context, embed-

ded socio-cultural perspectives, and varied writing styles. The challenges in constructing labeled

social media datasets often result in a scarcity of labeled data and the generation of low-quality

labels. Moreover, these datasets frequently face class imbalance due to the limitations of labeled

samples. Hence, ensuring a balanced, high-quality dataset in sufficient quantities is crucial for the

robust and accurate development of NLP models. To address these challenges, this study has iden-

tified the usage of generative AI for social media labeled text generation. Specifically, this study

focuses on two key objectives: augmenting existing labeled text samples and annotating unlabeled

text samples using generative AI. As the generative AI technology, the Generative Pre-trained

Transformer model, a prevalent choice for AI-based content generation is employed in different

versions throughout the study and evaluated its performance against traditional text augmentation

and annotation methods. While both studies centered around multi-class classification problems,

the text augmentation approach delves into augmenting human wellness dimensions using Reddit

posts, and text annotation tackles stance detection on abortion legalization using Twitter posts. By
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employing various classifiers, the subsequent investigations aim to enhance classification perfor-

mance in social media NLP, emphasizing the common goal of expanding labeled datasets, while

enhancing the quality of labels.
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Chapter 1

Introduction
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1.1 Problem Description and Motivation

In recent years, the field of Natural Language Processing (NLP) has witnessed remarkable ad-

vancements, driven by the introduction of Transformers and the rapid growth in the generation of

Large Language Models (LLMs) [3]. Social media is a valuable data source for NLP research in

various domains, as it provides diverse, real-time, large-scale, user-generated, and multimodal text

with embedded images, videos, and audio data [4]. Researchers can access APIs, such as Twit-

ter API1, Reddit API2, Facebook Graph API3, and YouTube Data API4 to collect these data for

their analyses. Social media serves as an excellent resource for investigating a wide range of soci-

etal problems, offering insights into issues like public opinion, social trends, and even emergency

responses during crises.

However, despite the numerous advantages of leveraging social media text data for NLP re-

search, there are significant challenges that researchers must contend with [5, 6]. Firstly, the data

can be noisy and unstructured, containing slang, abbreviations, misspellings, and grammatical er-

rors, making it challenging to understand [7,8]. Secondly, social media data often lacks context, as

posts are short and may not provide the full story, necessitating context reconstruction for compre-

hension [7, 8]. Moreover, these texts are often embedded with diverse social and cultural beliefs

and perspectives, as the users come from various backgrounds and communities, leading to a wide

range of writing styles, and contextual meanings [6, 8]. These unique characteristics and diversity

introduce complexity to accurately interpret and understand the textual data on social media.

On the other hand, most popular Machine Learning (ML) and NLP training method is super-

vised learning, which necessitates the labeling of social media text for training and evaluation [9].

Labeling the text data is a time-consuming, expensive, and resource-intensive task, often requiring

human annotators to go through vast volumes of content and training sessions [8, 10]. Moreover,

the characteristics mentioned earlier, including brevity, lack of context, and diverse writing styles,

further complicate the labeling process. They make it difficult for annotators to capture the full

1https://developer.twitter.com/en/docs/twitter-api
2https://www.reddit.com/dev/api/
3https://developers.facebook.com/docs/graph-api/
4https://developers.google.com/youtube/v3
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context and nuances of the content, leading to potential labeling errors and ambiguity. Further, the

presence of a wide array of cultural and regional references in social media texts can confuse anno-

tators and introduce cultural bias into labeled datasets. As a result, using human experts to reliably

label large amounts of social media text has posed a significant challenge for NLP researchers.

Besides, ensuring the availability of a class-wise balanced dataset for ML modeling is also cru-

cial, as it enables the development of more accurate and unbiased NLP models [11, 12]. However,

acquiring a balanced dataset is difficult due to the limitations in generating labeled data. These

challenges hinder the development of robust and unbiased NLP models from this rich and varied

data source. Hence, it is necessary to experiment with the scenarios for obtaining quality labeled

data, in balanced and sufficient quantities.

To tackle these issues, researchers are increasingly investigating Artificial Intelligence (AI)

based methods for generating content. In this context, this study has identified two potential solu-

tions for expanding the labeled datasets using generative AI as follows:

1. Augmentation of existing labeled text samples.

2. Automatic annotation of unlabeled text samples.

These strategies are vital in utilizing most of the available data and improving NLP models’

performance on social media text. While both approaches can effectively increase the size of the

labeled dataset, concerns arise regarding label reliability and the quality of the added data. Hence,

this thesis explores how the above two approaches, both of which share common goal despite

being distinct in their approaches, could address this problem. In summary, this study is motivated

by the necessity to address data acquisition issues by harnessing the potential of Generative AI

techniques, particularly in response to the shortage of labeled data in the context of social media

content.
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1.2 Thesis Contribution

The main aim of this study is to investigate how generative AI techniques can respond to text data

augmentation and annotation; two techniques for addressing the shortage of labeled data in the

context of social media content and ultimately for the enhancement of the classification perfor-

mance. To achieve this primary goal, the current study addressed two main problems as follows.

The breakdown of some general objectives for these two studies is also listed here.

1. Study 1: Data augmentation using generative AI.

• Objectives:

– Use textual data augmentation techniques to create new samples.

– Assess the syntactic and semantic similarity of original and augmented text sam-

ples.

– Compare and contrast the traditional and generative AI-based augmentation tech-

niques in terms of classification performances.

2. Study 2: Data annotation using generative AI.

• Objectives:

– Construct a reliable human-annotated dataset and use generative AI models to re-

label the dataset.

– Compare and contrast the performance of models trained on human-labeled datasets

with those trained on generative AI-based labels.

– Compare and contrast the performance of models trained on labels generated using

different AI-based prompting techniques.

Both studies center around a multi-class classification problem. The first focuses on classifying

dimensions of human wellness using Reddit posts, while the second handles a stance classifica-

tion problem using Twitter posts. We selected Twitter and Reddit as the social media platforms,

given their prominence in NLP research, highlighting their extensive user interactions and diverse

4



Table 1.1: Comparison of the studies

Aspect Study 1 Study 2

ML problems
Data Augmentation and
multi-class classification

Data Annotation and
multi-class classification

Data source Reddit text posts Twitter text posts

Problem domain
Human wellness-dimension
identification

Stance detection on abortion
legalization

Generative AI-models GPT-3, GPT-3.5 GPT-4

Classifiers BERT
26 classifiers, including LLMs
and traditional ML models

content. These studies employed Generative Pre-trained Transformer (GPT) models to leverage

generative AI technology, due to their widespread popularity, broad availability, proven expertise,

and effective applicability across a variety of applications.

Moreover, each study evaluates its performance against traditional methods, such as Back-

translation and Easy Data Augmentation (EDA) for data augmentation, and human expert labels

for data annotation. Despite differences in their selected classification problems, data sources, and

methodological approaches, both studies share the common goal of expanding labeled datasets

using generative AI. Table 1.1 provides a concise comparison of the two studies, offering a com-

prehensive overview of the upcoming chapters in this thesis.

This overall work underscores the promise of GPT models as valuable tools for data augmen-

tation and annotation, ultimately contributing to the broader field of ML and NLP. All the work

conducted for this study is open-sourced and publicly available in GitHub repositories5.

1.3 Thesis Organization

This thesis is structured as follows: In Chapter 2, background information on the ML and NLP

technologies employed in this study is presented. Chapter 3 presents the first study, introducing a

novel generative AI approach for augmenting social media text. Chapter 4, outlines the specifics

of the second study, designed to assess and establish a benchmark for generative AI-based data

5https://github.com/Ravihari123
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annotation in social media text classification. Finally, Chapter 5 concludes the research conducted

for this thesis, summarizing the key findings and contributions.

6



Chapter 2

Background
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2.1 Machine Learning Background

This study used a mix of basic and advanced ML techniques to implement and compare various

models and methods related to text generation and classification problems. The goal of this section

is to provide the fundamental details and background necessary to understand the ML methods

used in this study.

Machine learning, a subset of artificial intelligence, empowers systems to obtain insights from

data, recognize patterns, and make decisions with minimal human intervention [13, 14]. ML

scenarios can be categorized into distinct types based on the nature of the training data, the or-

der and method of data reception, and the test data used to assess the learning algorithm [15].

These primary categories include supervised learning, unsupervised learning, semi-supervised

learning, transductive inference, online learning, reinforcement learning, and active learning. Ma-

chine learning techniques have found successful applications in computer vision [16], NLP [17],

speech recognition [18], and many more across a wide spectrum of fields, including but not lim-

ited to finance [19], entertainment [20], education [21], agriculture [22], and medical [23] do-

mains. Despite the wide applications, ML encompasses issues, such as the quality and quantity

of input data, model interpretability, ethical considerations, and the need for large computational

resources [13, 15, 24]. Addressing these challenges is essential for realizing the full potential of

ML in various applications. The subsequent sections will provide a concise overview of the ML

models and techniques used in this study.

2.1.1 Traditional Machine Learning Models

Classification is a fundamental task in ML and data analysis. Traditional ML models have been

widely employed for this purpose, by extracting patterns in data using various feature engineer-

ing techniques [25]. These models are also adept at learning patterns in text data and making

predictions or classifications based on those patterns. Some of the common feature engineering

techniques used to extract patterns in text are word embeddings, named entity recognition (NER),

TF-IDF (Term Frequency-Inverse Document Frequency), and N-grams [25, 26]. This study em-

8



ployed several common traditional ML algorithms, namely Logistic Regression, Random Forest,

Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Gradient Boosting trees, and Ex-

treme Gradient Boosting (XGBoost). Each of these models operates based on distinct principles

and mathematical foundations.

Logistic Regression

Logistic regression is a fundamental statistical and ML technique used for binary classification and,

with slight modifications, for multi-class classification. Unlike Linear Regression (LR), which is

used for continuous target variables, logistic regression is designed to predict the probability of

an instance belonging to one of two classes [27]. The output of a logistic regression model is

a logistic curve (S-shaped curve) that maps input features to a probability score between 0 and

1 [28]. In logistic regression, the model makes use of a logistic function (also called the sigmoid

function) to transform a linear combination of input features into a probability score [27]. The

logistic function ensures that the output is bounded within the [0, 1] range, making it suitable for

binary classification tasks [28]. The model is trained using a technique called maximum likelihood

estimation, which aims to find the parameters that maximize the likelihood of the observed data

given the model.

Logistic regression is not only widely used for classification but also provides insights into the

relationship between input features and the likelihood of an outcome. It is a linear model, which

means it assumes a linear relationship between the input features and the log-odds of the target

variable [29]. Logistic regression is interpretable, computationally efficient, and performs well in

a wide range of scenarios, especially when the classes are well-separated and the data is relatively

simple [27].

Random Forest

A Random Forest is a powerful ensemble learning method in ML, primarily used for classification

and regression tasks [30]. It belongs to the family of decision tree-based algorithms and is known

for its robustness, versatility, and high predictive accuracy [31]. The ”forest” in Random Forest is
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composed of multiple decision trees, hence the term ”ensemble” is used [30, 31]. These decision

trees are constructed independently during training, and they collectively make predictions by

either voting (in classification) or averaging (in regression) their individual outputs.

What sets Random Forest apart is its ability to mitigate the overfitting issues commonly asso-

ciated with single decision trees [32]. Each tree is trained on a bootstrap sample of the original

dataset, and at each node in the tree, only a random subset of the features is considered for splitting.

This randomness introduces diversity among the individual trees, reducing their correlation and

enhancing the model’s generalization capabilities [31]. Random Forests are also well-equipped to

handle high-dimensional data, are robust to outliers, and can effectively capture complex, nonlin-

ear relationships within the data. Additionally, they provide a feature importance score, allowing

users to assess the relevance of each feature in making predictions [33].

Support Vector Machines

SVM is an ML algorithm used for both classification and regression tasks. SVM finds an optimal

hyperplane that best separates data into different classes while maximizing the margin, which is the

distance between the hyperplane and the nearest data points (support vectors) [34, 35]. SVM aims

to achieve the best balance between maximizing this margin and minimizing classification errors

[35]. This technique is particularly effective in scenarios where the data is not linearly separable,

as it can employ kernel functions to map the data into higher-dimensional feature spaces where

separation becomes possible [34, 36]. This property allows SVM to capture complex, nonlinear

relationships between features. SVMs are also robust against overfitting, making them well-suited

for high-dimensional data and scenarios with limited training samples [35,37]. Additionally, SVMs

offer a unique advantage in classification by providing a clear decision boundary and the ability

to handle multi-class classification problems through various strategies. They also provide insight

into feature importance, allowing users to identify the most influential features in their models [36].

10



Multi-Layer Perceptron

MLP is a foundational neural network architecture in ML. It belongs to the class of feedforward

artificial neural networks which consists of multiple layers of interconnected neurons, or artificial

nodes [38]. The MLP typically consists of an input layer, one or more hidden layers, and an

output layer. Each neuron in the network performs a weighted sum of its inputs, followed by the

application of an activation function, and then passes its output to subsequent layers [38].

MLPs are capable of modeling complex, nonlinear relationships in data, making them suitable

for a wide range of tasks, including classification, and regression [39]. They are known for their

ability to approximate arbitrary functions and are effective at feature learning, allowing them to au-

tomatically extract relevant features from the input data. Training an MLP involves optimizing the

weights and biases of the network to minimize a chosen loss function, typically through gradient-

based optimization techniques like backpropagation [38, 40]. The choice of activation functions,

network architecture, and hyperparameters plays a critical role in determining the performance of

an MLP.

Despite their effectiveness, MLPs have some limitations, such as the potential for overfitting,

and their performance can heavily depend on the quality and quantity of training data [40]. Never-

theless, they remain a fundamental building block in deep learning and have been instrumental in

the success of various AI applications, including image and speech recognition, natural language

processing, and many others [39].

Gradient Boosting Trees

Gradient Boosting Trees is an ML technique that can be used for both regression and classification

problems. It belongs to the ensemble learning family, and its primary goal is to create a strong

predictive model by combining the predictions of multiple decision trees [41, 42]. Unlike other

ensemble methods like Random Forest, Gradient Boosting Trees builds trees sequentially, with

each new tree aiming to correct the errors made by the ensemble of the previously built trees [42].

Gradient Boosting Trees are known for their exceptional predictive accuracy and ability to

capture complex relationships within the data. They work by optimizing a loss function, typically
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mean squared error for regression or cross-entropy for classification, by iteratively training weak

decision trees that focus on the instances where the current model performs poorly [41]. The idea

is to find the optimal combination of these trees by assigning weights to each one based on their

performance.

XGBoost, LightGBM, and CatBoost are popular variations of Gradient Boosting Trees, each

with its own optimization techniques and hyperparameters [41]. The models produced by Gradient

Boosting Trees are interpretable, and they also provide feature importance scores, enabling users

to understand the relevance of different features in the predictive process. Despite their exceptional

performance, Gradient Boosting Trees can be computationally intensive and require careful tuning

to prevent overfitting [43].

Xtream Gradient Boosting

XGBoost is a popular ML algorithm, which is an optimized and scalable implementation of the

gradient boosting framework [41]. XGBoost has gained wide attention across a range of tasks,

including classification, regression, ranking, and anomaly detection [44]. XGBoost improves upon

traditional gradient boosting methods by employing several key innovations, such as a regularized

objective function to control overfitting, a specialized algorithm for handling missing values, and

the ability to parallelize and distribute the training process, making it faster and more scalable

[41, 45]. It also incorporates a flexible framework for handling user-defined custom loss functions

and evaluation criteria [45]. The algorithm is known for its capability to handle high-dimensional

data with a large number of features and can automatically learn feature importance for model

interpretability [46].

2.2 Natural Language Processing

NLP is a multidisciplinary field that combines linguistics, computer science, mathematics, and

AI to bridge the gap between human communication and machine understanding [47]. NLP algo-

rithms and models are trained on vast amounts of text data to learn the nuances of human language,
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Figure 2.1: A brief overview of the recent developments in NLP (sourced from [1]).

enabling them to perform a wide range of tasks [48]. Recent breakthroughs in NLP have been

driven by the Transformer technology [49] and the large pre-trained language models built upon

this Transformer architecture [3]. These models, with millions or even billions of parameters,

have achieved unprecedented levels of performance in tasks, such as text generation, text sum-

marization, classification, question answering, and language translation [47]. Figure2.1 depicts

significant advancements in NLP tools and methods, sourced from [1].

NLP has a profound impact on diverse industries, including but not limited to healthcare, fi-

nance, customer support, and content creation. In healthcare, NLP is used for clinical documen-

tation [50], disease diagnosis [51], and medical record analysis [52]. In finance, it aids in fraud

detection [53], sentiment analysis for trading [54], and risk assessment [55]. Customer support
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chatbots employ NLP to provide instant assistance [56], while content creators use NLP to auto-

mate content generation and recommendations [57].

The following sections will discuss the concepts of NLP techniques, which are related to this

study, including language models, their learning approaches, generative AI technology, and models

and prompt-based learning techniques related to generative AI in detail.

2.2.1 Large Langauge Models

Large language models have revolutionized the field of NLP by expanding the boundaries of what

machines can do with human language [58, 59]. The base of the LLMs is Transformers [49], a

deep neural network architecture that captures long-range dependencies by identifying contextual

relationships between the tokens in the input text (sequential data) using self-attention mecha-

nisms [59]. These LLMs, such as GPT by OpenAI [60,61], Bidirectional Encoder Representations

from Transformers (BERT) by Google [62], Large Language Model Meta AI (LLaMa) by Meta

1, and Cross-lingual Language Model (XLM) by Facebook AI Research [63] are characterized by

their massive scale, usually containing tens or hundreds of billions of parameters. There are three

classes of transformer-based LLM architectures; decoder-only(GPT), encoder-only (BERT, XLM-

R), or encoderdecoder(BART, T5) [64]. They excel at a wide range of NLP tasks, from language

translation and text summarization to sentiment analysis and question-answering [59, 65]. By pre-

training on vast corpora of text data and fine-tuning on specific tasks, these models can generalize

and adapt to various linguistic challenges, making them versatile tools for applications in chatbots,

content generation, language understanding, and many more. Presently, there is extensive research

being conducted on LLMs, with a primary focus on areas, such as fine-tuning these models for spe-

cific tasks, optimizing prompts, and assessing their performance across various problem-solving

scenarios [58, 59].

This section discusses the details of the LLMs used in this study, namely BERT, ALBERT,

DeBERTa, MPNet, and RoBERTa. The specific versions of the models and the details of the

datasets that they have been pre-trained on will be further discussed in chapter 3 and 4.

1https://ai.meta.com/blog/large-language-model-llama-meta-ai/
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BERT: Bidirectional Encoder Representations from Transformers

BERT is a multi-layer bidirectional transformer encoder-based language model built for different

downstream NLP tasks, including text classification, question and answering and language trans-

lation [62]. By using the transformer architecture as the feature extractor, BERT has introduced

mask language modeling and prediction of the next sentence from both directions in a sentence,

allowing it to understand the meaning of words in the context of the entire sentence [62, 66].

Through pre-training on a massive corpus of unlabeled text, BERT learned to represent words

and sentences in a continuous vector space, creating contextual embeddings that reflect the rela-

tionships between words and their surrounding context. These pre-trained embeddings can then

be fine-tuned for specific NLP tasks, such as text classification, by only adding a simple clas-

sification layer to the pre-trained model [67]. The original work performed these downstream

tasks using GLUE benchmark datasets, such as Multi-Genre Natural Language Inference (MNLI),

Quora Question Pairs(QQP), Question Natural Language Inference (QNLI), Stanford Sentiment

Treebank (SST-2), and Corpus of Linguistic Acceptability (CoLA). The best hyperparameter con-

figuration recommended for any downstream task is; batch size = 16/ 32, Learning rate (Adam):

5e-5/ 3e-5/ 2e-5, and number of epochs: 2/ 3/ 4 [62].

BERT’s contributions to NLP are various, including state-of-the-art performance on a wide

range of tasks, elimination of the need for task-specific feature engineering, and improved model

generalization.

ALBERT: A Lite BERT

ALBERT is a highly influential model in the field of NLP [68]. ALBERT builds on the archi-

tecture of BERT, however, introduces several innovations to reduce its size and computational

requirements while maintaining or even improving its performance. ALBERT leverages two key

techniques: parameter sharing and cross-layer parameter sharing. The former reduces the number

of model parameters by sharing them across layers, and the latter shares parameters across the

transformer layers, making the model significantly more efficient [68, 69].
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This reduction in model size and the total number of parameters enables ALBERT to be trained

on larger datasets and fine-tuned more effectively for various NLP tasks. Despite its lighter archi-

tecture, ALBERT often outperforms or matches the performance of BERT on tasks, such as text

classification, question and answering, and language understanding [69,70]. ALBERT’s efficiency

and effectiveness have made it a good choice in NLP, particularly for resource-constrained envi-

ronments where computational power and memory are limited [71].

DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa is developed as an enhancement of the BERT model, which incorporates several inno-

vative features that significantly improve its performance and capabilities [72]. One of its main

contributions is the introduction of disentangled attention mechanisms, which allow the model to

separate different types of information during processing, making it more efficient and effective in

understanding context and relationships in text. DeBERTa also introduces the concept of ”masked

sentence prediction,” which aims to predict missing sentences within a paragraph, encouraging

the model to understand more profound contextual relationships. Moreover, DeBERTa takes into

account both a word’s absolute position and its relative position to capture structured information

more effectively, and it incorporates techniques to reduce the training and inference time, mak-

ing it more efficient than some previous models like BERT which simply sums word position and

content [73]. These enhancements lead to better contextual embeddings, which are invaluable for

various NLP tasks.

MPNet

MPNet, which stands for ”Masked and Permuted Pre-training for Language Understanding” is de-

signed to address the limitations of earlier pre-training models, such as BERT and XLNet [66].

While BERT excels in masked language modeling during pre-training, it overlooks dependen-

cies among predicted tokens. XLNet, on the other hand, introduces permuted language modeling

(PLM) to address this issue, however, it does not fully consider the position information of to-

kens in a sentence, resulting in position discrepancies between pre-training and fine-tuning [74].
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In response to these challenges, MPNet is introduced as a novel pre-training approach that com-

bines the strengths of both BERT and XLNet while mitigating their shortcomings. MPNet employs

permuted language modeling, similar to XLNet, to capture token dependencies, thereby enhanc-

ing its contextual understanding of text. Additionally, it leverages auxiliary position information

to ensure that the model processes the full sentence, thus reducing the position discrepancy ob-

served in XLNet [66, 75]. MPNet’s pre-training phase is conducted on a vast dataset consisting of

over 160GB of text corpora, followed by fine-tuning on a diverse set of downstream NLP tasks,

including GLUE and SQUAD.

RoBERTa: Robustly Optimized BERT Pre-training Approach

The RoBERTa is built upon the same pre-training framework as BERT, however, introduces sev-

eral innovative optimizations to improve its performance and robustness [76]. One of its key

enhancements is the use of larger datasets for pre-training, encompassing more web text, books,

and Wikipedia content, which allows RoBERTa to learn more nuanced language representations.

It also incorporates dynamic masking during training, which replaces BERT’s static masking strat-

egy, further improving the model’s contextual understanding. RoBERTa optimizes the hyperpa-

rameters and training schedule, and it removes BERT’s next sentence prediction (NSP) task. This

streamlining of pre-training objectives enables RoBERTa to outperform BERT on a wide range

of NLP benchmarks [77]. Its training techniques also include sentence-level and document-level

training, helping the model capture document-level semantics more effectively.

Models trained on Twitter Data: TweetEval and BERTweet

Twitter is known for its informal language, non-standard abbreviations, hashtags, and a variety

of cultural references, which often pose challenges for traditional NLP models. TweetEval and

BERTweet are two models fine-tuned on two base LLMs, which obtained the ability to handle the

intricacies of Twitter language and the informal nature of tweets. This study uses different versions

of these two models for classifying Twitter text.
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TweetEval is a framework trained for seven different Twitter-specific classification tasks, which

are emoji, hate, offensive, irony, sentiment, emotion, and stance classification [78]. TweetEval is a

retrained version of the RoBERTa-base model [76] which used a nearly 60M tweets dataset and the

same hyper-parameter settings to re-train the models. The choice of RoBERTa was motivated by

two key reasons: it is a high-performing model in the GLUE benchmark, and it is better suited for

tasks involving single sentences like tweets, as it does not employ the Next-Sentence-Prediction

loss. However, to provide a better context on social media text, they experimented with three

training strategies using three different RoBERTa variants, 1) use original pre-trained language

models (RoB-Bs: pre-trained RoBERTa-base), 2) train original architecture from scratch using

Twitter data (RoB-Tw) and 3) use pre-trained models and continue training on more Twitter data

(RoB-RT: RoB-Bs re-trained on Twitter). They used classification finetuning steps similar to the

original RoBERTa, however, added one dense layer at the end and trained all parameters during

fine-tuning.

BERTweet is a specialized pre-trained language model tailored for processing and understand-

ing English language text found in tweets [79]. Developed by the research community, BERTweet

is built upon the BERT architecture, fine-tuned using the RoBERTa pretraining technique specif-

ically for the unique characteristics of tweets. BERTweet, however, is trained on a vast corpus

of Twitter data, allowing it to effectively work on three downstream NLP tasks, Part-of-speech

(POS) tagging, NER and text classification. This makes it particularly well-suited for tasks such as

sentiment analysis, topic classification, and information extraction in the context of social media

data.

2.2.2 Learning Approaches in Large Language Models

Transfer Learning

One of the huge challenges faced by NLP is the difficulty of acquiring large amounts of data

for training big language models. Especially, in practice obtaining labeled data is not an easy

task [80]. Moreover, deep learning models present an additional challenge due to their substan-
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tial need for extensive computational capabilities. These challenges can be effectively addressed

through the application of Transfer Learning, a technique that involves transferring parameters or

knowledge from a pre-trained model to a different one [81]. These pre-trained language models

capture contextual information and sophisticated language features, modeling both syntax and se-

mantics, thereby delivering state-of-the-art performance on a diverse set of tasks [82]. Depending

on the availability of labeled datasets and the type of task, transfer learning can be categorized

into two main types: transductive and inductive transfer learning. In transductive transfer learn-

ing, both source and target domains/tasks are same and we have no or very few labeled data in

the target task. In the context of inductive transfer learning, we utilize insights acquired from one

task or domain to enhance performance in another different, but related task/domain, and we have

labeled data for the downstream task [81]. By utilizing the transfer learning approach, the power

of advanced LLMs can be harnessed on a broader range of downstream tasks to improve their per-

formances. Three of the widely used techniques for employing pre-trained LLMs in downstream

tasks are fine-tuning, few-shot learning, and zero-shot learning [83].

Fine-tuning

Fine-tuning is one of the most common transfer learning techniques in NLP [84]. It is a type of

inductive transfer learning technique, which involves further training of the pre-trained model to

improve its performance on a different related task [62]. This takes advantage of the knowledge

encoded in the pre-trained model’s parameters and adapts it to the new task, often with fewer

training examples than would be required for training a model from scratch. This process allows the

model to transfer its learned features and representations from the source task/domain to the target

task/domain. This fine-tuning process usually involves updating the weights of the pre-trained

model’s layers while keeping the lower layers, which capture more general features relatively fixed,

and updating the higher layers to specialize in the target task. Hence, fine-tuning is considered as

more parameter-efficient approach as the lower layers of a network are shared between source and

target tasks [84]. This technique is useful when training a new model from scratch would be too

costly, or time-consuming [85–87]. It can also help to make the new models more robust and
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improve the performance by using the previous knowledge from the pre-trained model and new

knowledge by training on a small new dataset which can be much smaller in scale compared to the

vast dataset the LLM was initially trained on [78].

Few-shot Learning

Few-shot learning is a specialized subfield of ML that focuses on training models to make accurate

predictions with only a very limited amount of labeled data. Unlike fine-tuning, which requires

a substantial volume of new data for training, the few-shot learning technique typically comes

in a few variations, the most common being one-shot learning and few-shot learning [88]. One-

shot learning involves training a model to recognize new classes with only one example per class,

while few-shot learning generally refers to tasks with a small number of examples, often ranging

from a few to several examples per class [89]. This flexibility is made possible by the transfer

learning ability of LLMs to generalize from their pre-trained knowledge on extensive text data to

the specific task with limited data. Techniques for few-shot learning often involve meta-learning,

which focuses on training models to adapt quickly to new tasks or classes, as well as methods

like siamese networks, matching networks, and prototypical networks that learn to understand the

similarities and differences between classes, even when data is scarce [90, 91]. Few-shot learn-

ing has applications in image recognition, natural language processing, and other domains where

obtaining abundant labeled data is challenging, making it a valuable approach for real-world ML

problems [88].

Zero-shot Learning

Zero-shot learning is a ML approach where a model is trained to recognize and classify objects

or concepts it has never seen or encountered during training [92, 93]. In traditional supervised

learning, a model is trained on a labeled dataset with examples of all the classes it will need to

classify. In contrast, zero-shot learning enables a model to generalize its knowledge to previously

unseen classes by learning to understand the relationships and attributes that describe these classes

[93, 94].
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Zero-shot learning consists of two distinct stages: the training phase, which involves capturing

attribute knowledge, and the subsequent inference phase, where this acquired knowledge is applied

to classify instances within a novel class set [95]. The key to zero-shot learning is the use of se-

mantic embeddings or attributes that provide a description of each class or concept in a continuous

feature space [92]. These attributes capture the characteristics, properties, and relationships of dif-

ferent classes. During training, the model learns to map the visual or textual features of the input

data to these attributes [96]. Next, when presented with a new, unseen class, the model can make

predictions based on the similarity between the attributes of the known and unknown classes, even

if it has never seen specific examples of the new class. Zero-shot learning is particularly useful in

situations where it is impractical or costly to provide labeled data for every possible class, mak-

ing it applicable in various fields such as computer vision, natural language processing, and more,

where novel or rare concepts can emerge [97].

2.2.3 Generative Artificial Intelligence

Generative AI is a subfield of artificial intelligence, which can be defined as a technology that

uses deep learning models to create human-like content (such as images and text) in response

to diverse and complex prompts, including various languages, instructions, and questions [98].

This approach is different from other AI approaches in its capacity to produce novel, human-like

output that goes beyond simple pattern recognition or classification [2]. This technology has seen

remarkable advancements in recent years, with models like OpenAI’s GPT [61] and Google’s

PaLM [99] showcasing the potential of generative AI. Generative AI caused impacts in various

domains, including economic, medical, education, law, and even scientific research [100, 101].

Generative AI, with its capacity to create human-like content across various media, brings sub-

stantial advantages, including automation of content generation, improved translation and localiza-

tion, and personalized recommendations [101, 102]. However, it also poses notable shortcomings,

such as challenges in ensuring the quality and accuracy of generated content, ethical concerns

regarding the potential for misuse, limitations in true creativity, resource-intensive requirements,

and the perpetuation of data biases [100, 102, 103]. Balancing these advantages and shortcomings
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Figure 2.2: A taxonomy of the recent most popular generative AI models classified according to

input and output formats (sourced from [2]).

necessitates responsible use, the development of ethical guidelines, and ongoing efforts to refine

the technology to maximize its benefits while minimizing its risks.

A study has presented a taxonomy of current generative artificial models that outlines the pri-

mary relationships between different types of multimedia inputs and outputs [2]. The outcome is

depicted in Figure2.2. They identified a total of 9 categories, however notably, only six organi-

zations are responsible for developing these models, which include Google Research, Meta AI,

OpenAI, DeepMind, NVIDIA, and Runway.

Generative Pre-trained Transformers

OpenAI’s GPT models which are based on decoder-only Transformer architecture, have been de-

veloped to comprehend both human language and computer code [2]. These GPTs generate textual
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responses based on the input they receive. The utility of GPTs spans a wide spectrum of functions,

encompassing tasks such as generating content or code, text classification, summarizing informa-

tion, engaging in conversations, creative writing, and more 2.

OpenAI introduced the first GPT model (GPT-1) with 117 million model parameters in 2018

trained on a large corpus of books (4.5 GB of text, from 7000 unpublished books of various gen-

res). In the subsequent year, they launched GPT-2, an enlarged model with 1.5 billion parameters,

proficient in generating coherent text. By 2020, the introduction of GPT-3 marked a significant

leap, presenting a model with 100 times as many parameters (175 billion) as GPT-2 [104]. This

GPT-3 has been tested on new NLP tasks to improve the rapid adaptation to different tasks in

new datasets. It introduced fine-tuning, a transfer learning technique to train language models in

downstream tasks by proving many examples, generally, a couple of hundred as recommended3.

Recently in 2022, OpenAI has introduced a chatbot called “ChatGPT”, which is built upon the

GPT-3.5 model series and fine-tuned through Reinforcement Learning from Human Feedback

(RLHF) technique4.This supervised training technique has employed human AI trainers for con-

ducting conversations in both sides as the user and an AI assistant. Despite its powerful language

understanding ability, the researchers have listed several limitations, such as writing incorrect or

nonsensical answers, asking questions when user queries are unclear, and giving wordy answers

by overusing some phrases.

In March 2023, GPT-4 was introduced as the latest addition, featuring a novel capability to

process both text and images, generating text outputs [105]. GPT-4 introduced a rule-based reward

model (RBRM) approach in addition to RLHF to ensure correct behavior and prevent harmful

content generation. While GPT-4 retains the transformer-based architecture of its predecessors,

OpenAI has not released detailed technical reports, including information about the architecture

(including model size), hardware utilization, dataset construction, and training method as they did

with previous models, citing competitive and safety considerations [105, 106].

2https://platform.openai.com/docs/introduction
3https://platform.openai.com/docs/guides/fine-tuning
4https://openai.com/blog/chatgpt
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The primary objective of these models is to enhance their understanding and generation of

natural language text, especially in complex scenarios [107]. GPT-4 was tested on various human-

designed exams and consistently performed well, surpassing the majority of human test takers.

For instance, on a simulated bar exam, it ranked in the top 10%, unlike GPT-3.5, which scored in

the bottom 10%. GPT-4 also outperforms previous language models and state-of-the-art systems

on traditional NLP benchmarks and the MMLU benchmark [105, 106]. When compared to its

predecessor, GPT-4 is reported to be capable of handling approximately eight times more words,

demonstrating greater resilience to deception, exhibiting image comprehension, and showing a

reduced likelihood of responding to requests that are not permitted [107].

Despite its capabilities, GPT-4 shares limitations similar to the earlier GPT models, including

occasional reliability issues, a limited context window, and the inability to learn from experience.

Caution is advised when using GPT-4’s outputs, especially in contexts where reliability is crucial.

Prompt-based Learning

A prompt is a directive or set of instructions given to a language model with the intent of cus-

tomizing its behavior, enhancing its performance, or refining its capabilities to generate desired

outputs [108, 109]. Prompt-based learning represents an innovative approach in the realm of NLP,

offering a more efficient and cost-effective method for leveraging LLMs. As fine-tuning pre-trained

models can be a resource-intensive approach, involving a significant amount of annotated data and

computational power, prompt-based learning introduces a way to empower language models to en-

gage in few or zero-shot learning, adapting to novel scenarios with minimal labeled data [110,111].

The process of prompt-based learning can be divided into five essential steps [110, 112]. First,

the selection of an appropriate pre-training model is crucial. Next, in the prompt engineering phase,

prompts are designed for specific tasks. The third step involves designing responses aligned with

the task’s objectives, ensuring the model generates the desired output. Expanding this paradigm

further to enhance results or adaptability comes as the fourth step. Lastly, designing effective

training strategies is essential for the model to learn efficiently and effectively.
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Prompt engineering assumes a central role in this approach, guiding pre-trained language mod-

els for downstream tasks [112]. Research has highlighted that the effectiveness of prompt design

significantly influences the model’s performance in these tasks [113]. Notably, language models

can produce significantly distinct outputs given different prompts, even if the prompts seem seman-

tically similar [113]. Therefore, prompt engineering is key to aligning the model effectively with

the downstream task. For this, identifying the components of a prompt to design them properly

and optimizing prompt parameters is crucial.

The components of a prompt encompass the following aspects [109]:

1. Instruction: This explains a specific task or directive that serves as a guide for the model’s

behavior, steering it toward the intended output.

2. Context: External information or supplementary context is provided to furnish the model

with background knowledge.

3. Input Data: At the core of the prompt lies the input data or query, which the model is

expected to process and respond to.

4. Output Indicator: This defines the desired output’s type or format, whether it’s a concise

answer, an extensive paragraph, or any other specific format.

Similarly, when using GPT models, crafting a suitable prompt by providing the provision of

guidelines or illustrative instances is important in completing a task effectively5. For this, OpenAI

has instructed to adjust the model parameters, such as model: defines the type of the model,

temperature: a measure that indicates the randomness of the output, and max tokens: a hard

cutoff limit for the tocken generation. Additionally, they provided a set of instructions to design

reliable prompts as listed below6.

• Use the latest model.
5https://platform.openai.com/docs/introduction
6https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
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• Put instructions at the beginning of the prompt and use ### or ””” to separate the instruction

and context.

• Be specific, descriptive and as detailed as possible about the desired context, outcome,

length, format, style, etc.

• Articulate the desired output format through examples (example 1, example 2).

• Start with zero-shot, then few-shot (example), neither of them worked, then fine-tune.

• Reduce ”fluffy” and imprecise descriptions.

• Instead of just saying what not to do, say what to do instead.

• Code Generation Specific - Use “leading words” to nudge the model toward a particular

pattern.

2.2.4 Text Embedding and Sentence Similarity

Text Embedding

Text embedding is a crucial component in NLP that involves converting textual data into numerical

representations, facilitating the analysis and processing of language by ML models. One widely

used technique for text embedding is Word Embedding, which represents words as dense vectors

in a continuous vector space [114]. Models like Word2Vec [115], GloVe (Global Vectors for Word

Representation) [116], and FastText [117] utilize different mechanisms to generate these embed-

dings. Word2Vec employs a shallow neural network to predict context words based on a target

word, while GloVe combines global statistics of the corpus to generate embeddings. FastText, an

extension of Word2Vec, considers sub-word information, enhancing its ability to capture morpho-

logical nuances [118].

Beyond Word Embedding, sentence and document embeddings capture the semantic meaning

of larger text segments [119]. Models like Universal Sentence Encoder (USE), BERT, and sen-
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tenceTransformer 7 generate embeddings for entire sentences. Recently, OpenAI has introduced

embedding-based API endpoints for generating text embeddings 8. These models capture contex-

tual information and relationships between words in a way that traditional word embeddings often

struggle to achieve. The embeddings generated by GPT-based models not only consider the imme-

diate context of a word but also the broader context of the entire text. This results in richer, more

contextually aware representations of language.

Syntactic and Semantic Similarity

In NLP, syntactic and semantic similarity are crucial aspects that contribute to understanding the

structure and meaning of language. The integration of both syntactic and semantic similarity in

NLP is essential for tasks that require a nuanced understanding of language [120]. Syntactic infor-

mation ensures grammatical coherence, while semantic insights contribute to a better comprehen-

sion of meaning.

Syntactic similarity involves assessing the structural likeness between sentences by focusing

on the arrangement and order of words [1, 120]. Techniques for generating syntactic similarity

often include parsing sentences to extract grammatical structures, such as part-of-speech tags, de-

pendency trees, or syntactic constituents [121]. Methods, such as tree edit distance quantify the

similarity between syntactic parse trees, offering a measure of how closely related the structures

are [121]. Applications of syntactic similarity are diverse, ranging from grammar checking and

sentence paraphrasing to machine translation [122], where maintaining syntactic coherence is cru-

cial.

Semantic similarity, on the other hand, focuses on understanding the meaning conveyed by

sentences. This involves identifying keywords crucial for comprehending the interactions between

words or various concepts within the sentence. At the semantic level, words are inspected for their

dictionary definition, or their interpretation is derived from the contextual cues provided by the sen-

tence [1]. Various techniques contribute to measuring semantic similarity, with traditional meth-

ods and advanced neural network-based approaches being prominent [123]. Vector space models,
7https://www.sbert.net/examples/applications/computing-embeddings/README.html
8https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
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a traditional approach, represent words or sentences as vectors in a high-dimensional space, cal-

culating similarity using metrics, such as Cosine, Jaccard, and Manhattan similarity [123]. Ad-

vanced techniques involve the use of deep learning models, such as Siamese Networks [124] or

Transformer-based models like BERT, to generate embeddings that capture semantic relationships

between sentences [125]. Applications of semantic similarity span information retrieval, ques-

tion and answering systems, and sentiment analysis, where discerning the underlying meaning and

context is critical [123].

2.3 Data Imbalance and Augmentation

Class imbalance in ML occurs when the distribution of classes within a dataset is significantly

skewed, with one or more classes having notably fewer instances than others [126]. This im-

balance poses challenges as models tend to be biased toward the majority class, leading to poor

generalization of minority classes. Addressing class imbalance is crucial as in real-world scenar-

ios, certain classes may be rare but still of significant interest [127]. In NLP, the class imbalance

can affect tasks, such as sentiment analysis, medical diagnostics, fraud detection, or rare event pre-

diction [126, 127]. Techniques to mitigate class imbalance include resampling methods (oversam-

pling minority or undersampling majority classes), using different evaluation metrics (precision,

recall, F1-score), and employing ensemble methods that handle imbalanced datasets more effec-

tively [128, 129]. Furthermore, the incorporation of advanced algorithms, such as cost-sensitive

learning and synthetic data generation, contributes to improving model performance on minority

classes in NLP tasks [128, 129].

Data augmentation in NLP involves creating variations of existing training data to enhance the

robustness and generalization ability of ML models. The primary goal is to increase the diver-

sity of the dataset, improving the model’s ability to handle various input scenarios [130]. Data

augmentation serves multiple purposes in NLP, including addressing the scarcity of labeled data,

preventing overfitting/ mitigating bias, and handling class imbalance [131, 132]. Data augmen-

tation methods in NLP can be classified into three main types: paraphrasing, noising, and sam-
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pling [130]. In paraphrasing-based methods, augmented data is generated by creating paraphrases

of the original data, which introduces relatively fewer modifications compared to the original data.

Noising-based methods introduce additional continuous or discrete noises, such as word insertion,

swapping, deletion, or synonym replacement to the original data, resulting in more substantial

changes. Sampling-based methods focus on understanding the distribution of the original data

and use this knowledge to generate new data as augmented data. By introducing variations, data

augmentation exposes the model to a broader range of linguistic patterns, making it more adept at

handling diverse inputs and improving overall performance.

2.3.1 Easy Data Augmentation

EDA is a noising data augmentation technique tailored commonly for NLP tasks [133]. EDA

involves applying operations, such as synonym replacement, random insertion, random deletion,

and random swapping to augment the training data. Synonym substitution involves the random

selection of non-stop words from sentences, which are then replaced with synonyms chosen at

random. Random insertion, on the other hand, entails identifying a non-stop word, selecting a

random synonym, and inserting it at a random position within the sentence. Random swap in-

cludes the random selection of two words in a sentence, with their positions exchanged. Lastly,

random deletion involves the probabilistic removal of each word in a sentence with a probability

P [134]. An example of these four operations are demonstrated in Table 2.1. The input text of ”The

playful kitten chased a colorful ball” has changed into ”small and curious kitty pursued a playful,

vibrant”, after the four types of EDA operations. These simple yet effective operations introduce

variations in the data, making the model more robust and reducing the risk of overfitting. However,

EDA comes with certain weaknesses as well. These include the potential introduction of semantic

inconsistencies, inaccuracies in representing the intended context or sentiment, and the alteration

of sentence structures, thereby affecting syntactic patterns. These limitations suggest that EDA

might not yield significant performance improvements, particularly when applied to pre-trained

large language models used as classifiers. [133].
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Table 2.1: Example of performing four EDA operations on the original text ”The playful kitten

chased a colorful ball”.

Operation Text after the operation
Synonym replacement The playful kitty pursued a vibrant ball
Random Insertion The playful and curious kitty pursued a small, vibrant ball
Random Swapping The small and curious kitty pursued a playful, vibrant ball
Random Deletion small and curious kitty pursued a playful, vibrant

English
The playful kitten
chased a colorful ball

Russian
Игривый котенок
гонялся за
разноцветным мячиком.

English
A playful kitten was
chasing a multi-colored
ball.

Figure 2.3: Backtranslation augments text using language translation approach.

2.3.2 Backtranslation

Backtranslation is a popular data augmentation technique in NLP that involves translating sen-

tences from the target language to a foreign language and then back to the original language

[130, 135]. This can be categorized as a paraphrasing data augmentation technique. For exam-

ple, in Fig2.3, the original English text will be converted into Russian, and again that Russian text

will be converted into English. This process introduces variations in the input data while preserv-

ing the semantic meaning. However, the quality of the augmented text depends on the machine

translation task, where most of the translated data are not accurate [134].

2.4 Data Annotation

Data annotation is a critical process in ML and NLP that involves labeling or tagging data with

specific information to train models effectively. The primary purpose of data annotation is to

create a labeled dataset for supervised learning so that algorithms can use it to learn patterns,

relationships, and associations between different elements in the data. In the context of NLP, data

annotation can involve labeling entities in text (named entity recognition), identifying sentiment in

sentences, or marking syntactic structures [136].
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Traditional approaches to data annotation often involve manual labeling by human annotators

who are experts in the domain. This can be a time-consuming and resource-intensive process,

however, it often ensures high-quality annotations [137]. Guidelines and annotation manuals are

provided to maintain consistency among annotators [88]. Novel approaches in data annotation

leverage advances in technology, including crowdsourcing platforms, to distribute annotation tasks

among a large number of annotators, making the process more scalable and cost-effective [138].

Additionally, active learning techniques are employed, where ML models are used to identify the

most uncertain or challenging instances for human annotators to focus on, optimizing the annota-

tion process [138].

In NLP, specifically, with the increasing complexity and diversity of tasks, advanced annotation

techniques like distant supervision, where weakly labeled data is utilized along with a small set of

strongly labeled data, have gained prominence [139]. Transfer learning through pre-trained lan-

guage models is also a novel approach that leverages existing knowledge to enhance the efficiency

of the annotation process [137, 140]. These approaches contribute to the creation of large, high-

quality annotated datasets, essential for training and improving the performance of sophisticated

NLP models.
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Chapter 3

Augmenting Reddit Posts to Determine

Wellness Dimensions Impacting Mental

Health
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Chapter Abstract

Amid ongoing health crisis, there is a growing necessity to discern possible signs of Wellness Di-

mensions (WD)1 manifested in self-narrated text. As the distribution of WD on social media data

is intrinsically imbalanced, we experiment the generative NLP models for data augmentation to

enable further improvement in the pre-screening task of classifying WD. To this end, we propose

a simple yet effective data augmentation approach through prompt-based generative NLP models,

and evaluate the ROUGE scores and syntactic/semantic similarity among existing interpretations

and augmented data. Our approach with ChatGPT model surpasses all the other methods and

achieves improvement over baselines such as Easy-Data Augmentation and Backtranslation. In-

troducing data augmentation to generate more training samples and balanced dataset, results in

the improved F-score and the Matthew’s Correlation Coefficient for upto 13.11% and 15.95%,

respectively.

1The concept of Wellness Dimensions is often used in holistic approaches to health, recognizing that well-being
encompasses multiple areas of life.
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Original dataset

Class 1:Physical aspect

Class 2: Intellectual and
vocational aspect

Class 3: Social aspect

Class 4: Spiritual and
emotional aspect
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balanced
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BERT
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with
augmented

data

Original imbalanced data for classification

fine-tuned
BERT modelsMeasure syntactic

and semantic
similarity

Models for text
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GPT-based models
M1
M2
M3
M4

Traditional models
EDA

Backtranslation

Original
samples

Augmented
samples

Original data for
augmentation

Original balanced testing data for classification Performance
comparison

Figure 3.1: Overview of the task. Generating balanced dataset through data augmentation to

facilitate the development of classifiers screening Reddit posts through a lens of Wellness

Dimensions.

3.1 Introduction

The social determinants of health (SDOH) refer to various factors present in the surroundings

where individuals are born, reside, acquire knowledge, work, engage in leisure activities, practice

religion, grow older, impacting a broad range of health-related outcomes, risks and quality-of-life

indicators.23 A rapid expansion of research in SDOH 2030 encourages the social NLP research

community to design and develop computational intelligence models for enhancement of an indi-

vidual’s well-being [141]. In this work, we choose to pre-screen human-writings for biomedical

therapy by investigating latent indicators of wellness dimensions in Reddit posts (see illustration in

Figure 3.1).

Wellness dimensions (WD) refer to different aspects of an individual’s overall well-being that

contribute to their physical, spiritual, social, emotional, intellectual, occupational, environmental,

and financial well-being. The disturbed WD, if remains unaddressed, have adverse impact on

mental health of an individual. As social media becomes integral part of our daily lives [142],

2https://health.gov/healthypeople/priority-areas/social-determinants-health
3Social Determinants of Health (SDOH) are the social and economic factors that influence an individual’s health

outcomes.
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studies in the past suggest that individuals tend to express their thoughts and emotions impacted

by one or more wellness dimensions more easily on social media platforms as compared to during

in-person sessions with clinical psychologists and mental healthcare [143, 144]. We construct,

annotate and observe the original (natural) composition of WD dataset as an imbalanced dataset.

In this work, we augment a multi-class dataset on WD to facilitate design and development of

NLP models for classifying WD impacting mental health in Reddit posts during mental health

screening. Pre-screening filters are helpful in biomedical therapy by facilitating early detection of

WD impacting mental health, which if left untreated may cause severe mental disorders. Dunn

highlights the holistic nature of wellness in 1961 as a high-level wellness, denoting a superior level

of healthy living [145].

We reduce multiple WD to four key dimensions of well-being based on the frequency and

recognition in human writings: Physical Aspect (PA), Intellectual and Vocational Aspect (IVA),

Social Aspect (SA), Spiritual and Emotional Aspect (SEA) [146,147]. Our major contributions (as

illustrated in Fig. 3.1) include (i) the applicability of generative NLP models for domain-specific

data augmentation, (ii) examining the diversity among generated and original instances through

semantic and syntactic similarity measure, (iii) test and validate the efficacy of data augmentation

by investigating classifiers’ performance.

3.2 Background

According to Weiss (1975), sociologists put forth a theory that outlines six social needs to pre-

vent loneliness: attachment, social integration, nurturance, reassurance of worth, sense of reliable

alliance, and guidance in stressful situations [148]. The Self-Determination Theory (SDT)4 high-

lights the importance of balancing relatedness, competency, and autonomy for intrinsic motivation

and genuine self-esteem, which contribute to overall well-being. Neglecting mental disturbance

can escalate sub-clinical depression to clinical depression by activating interpersonal risks. This

research seeks to examine the origins and outcomes of mental disturbance to mitigate these risks.

4https://en.wikipedia.org/wiki/Self-determination theory

35

https://en.wikipedia.org/wiki/Self-determination_theory


Corpus Construction: We present a new dataset with 3,092 instances and 72,813 words to iden-

tify wellness dimensions impacting mental disturbance: PA, IVA, SA, and SEA. A senior clinical

psychologist, a rehabilitation councilor, and a social NLP researcher framed annotation schemes

and perplexity guidelines for text annotation through pre-defined wellness dimensions. Our experts

trained three postgraduate students to annotate the data based on predefined dimensions. The anno-

tations were validated using Fleiss’ Kappa inter-observer agreement, resulting in a kappa score of

74.39%. Final annotations were determined through majority voting and expert verification. The

experts achieved a kappa score of 87.32% for the selection of explanatory text spans. Despite slight

confusion between PA and SEA, there was a higher agreement for the selection of explanations.

To facilitate future research and developments, we publicly release our dataset at Github.5

Problem Formulation: We collect and annotate Reddit data from subreddits r/depression

and r/suicidewatch for the task of identifying WD and found imbalanced dataset in its natural

composition, suggesting the need of data augmentation. To evaluate the effectiveness of generative

NLP models for data augmentation, we frame the task of augmenting Reddit posts as a text gen-

eration problem. We compare and contrast the performance of model trained on data augmented

with (i) GPT models [149], and (ii) conventional data augmentation approach for NLP such as

EDA [133] and Backtranslation [135].

3.3 Materials and methods

We first generate the data using two-fold measures: (i) traditional data augmentation methods

for NLP - EDA and Backtranslation, and (ii) prompt-based Generative Pre-trained Transformer

models [150]. We further investigate the diversity of the generated samples in comparison to the

original samples and fine-tune BERT language model to observe improvements in WD classifica-

tion, if any. Hinged on the classification results and similarity measures, we select the best model

for augmenting WD dataset.

5https://github.com/drmuskangarg/WellnessDimensions
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WD α Red RC AS Tot.

PA 740 6.0 695 399 1094
IVA 592 7.6 547 547 1094
SA 1139 4.0 1094 0 1094

SEA 621 7.2 576 518 1094

Table 3.1: The statistics of original composition (α), the reduction percentage (Red), reduced

composition (RC), the number of augmented samples (AS) and total number of samples (Tot.)

3.3.1 Methods: Data Augmentation

We use pre-trained generative models6 [151] for this task: (i) ChatGPT models: gpt-3.5-turbo

and gpt-3.5-turbo-0301, and (ii) other GPT-3 models: text-curie-001 and text-davinci-003. The

original dataset consists of 3092 samples, with 740, 592, 1139 and 621 records from classes PA,

IVA, SA, and SEA respectively. We first split the dataset such that we maximize the number of

training samples required for each WD. After augmentation, the training set comprises a total of

4376 records, with an equal distribution of 1094 records per class.

Training and Testing Split: Consider the data containing D documents representing a collection

of Reddit posts {D = d1, d2, ..., dn} where n = 3092. For each document di, there exist a tuple

representing < Ei, Ci > where Ei is text-span/ explanation and Ci is the aspect class for ith in-

stance. Thus, the original WD dataset consists of three columns for 3092 samples: < Di, Ei, Ci >.

The aspect class Ci ∈ α where α =[PA, IVA, SA, SEA] and the composition of original dataset

contains imbalanced distribution of aspect classes (see Table 3.1). The number of samples for ev-

ery class α[j] where 1 ≤ j ≤ 4 suggests the need of data augmentation to facilitate development

of NLP models over balanced dataset. To this end, we propose the Algorithm 1- Required aug-

mentation count to decide the number of samples that needs to generated for each WD. Given an

input α as a list of the number of text samples for different WD (PA, IVA, SA, SEA) where PA,

IVA, SA, SEA defines the count of instances for each class.
6https://platform.openai.com/docs/models
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As such, our goal is to achieve a balanced dataset by obtaining 1094 samples for each WD,

resulting in 1094 ∗ 4 = 4376 data samples. We observe that all the samples for IVA class must be

augmented while no augmentation is required for SA class.

Algorithm 1: Required Augmentation Count
Result: Return AS=[]
// AS: augmented sample
Input: α : [PA, IVA, SA, SEA]
Set: β= [], R, Red=[], RC=[]
Set: minvalue := min(α) // Get the record count of minority class
for j in count(α) do

β[j] := max(α)− α[j]
/* For each class, get the record count difference from

majority class */
end
// Estimate the size of the test set
R = minvalue −max(β[j])
for j in count(α) do

/* For each class, calculate the Reduction Percentage
(percentage of reduction after separating the testing
set) */

Red[j] = R
α[j]

∗ 100
/* For each class, calculate the Reduced Composition

(number of training records before augmentation) */
RC[j] = α[j]−R

end
/* Get the maximum number of records per class for

augmentation */
maxRC = max(RC)
for j in count(α) do

/* Augment each class up to the maximum record count */
AS[j] = maxRC −RC[j]

end
// return the augmented dataset
return AS

Prompt Design and Parameter Setup: As shown in Figure 3.2, we design following prompts

to produce, a) text similar to the original text (topic and text), and b) an explanation of newly

generated text (text and explanation).
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Prompt Designs for GPT models

Considering the given topic, generate similar text to the given text.
Topic: ≪class label as a string≫
Text: ≪original text sentence≫

Similar text:

Consider the examples and generate a very short explanation of the given text.

text: ≪example1-text≫
explanation: ≪example1-explanation≫
...
text: ≪example5-text≫
explanation: ≪example5-explanation≫
text: ≪original text sentence≫
explanation: ≪original explanation≫

text: ≪augmented text sentence≫
explanation:

Figure 3.2: The prompt designs for generating Text and Explanation.

While designing prompts according to Open-AI prompt design instructions7, we begin with

explanation through instructions and examples or both. During the text creation, we only pro-

vide instructions to the model. As every text belongs to one of the four pre-defined WD, we

provide class name as an input, for example, ”Physical Aspect”, hypothesizing its contribution

towards contextual consciousness required for enhancing similar text generation. Furthermore, the

explanation generation is developed as a few-shot learning approach [85], where we provide five

text-explanation pairs as examples. The selective examples ensure the representation of all four

classes and are made static for every call. We keep temperature as 0.7 to preserve the creativity/

randomness of generated text.

7https://platform.openai.com/docs/guides/completion/prompt-design
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3.3.2 Method: Similarity Measures

First we calculate ROUGE scores <ROUGE-1, ROUGE-2 and ROUGE-L> to examine similar-

ity8. Next, for semantic similarity, we calculate the embedding for each sentence through eleven

pre-trained language models (See Table 3.2), including nine SentenceTransformers and two Ope-

nAI models [152, 153]. SentenceTransformers are a set of state-of-the-art language models imple-

mented in Python for generating text embeddings. The two different GPT-3 models used for this

task accessed the embeddings API endpoint. The resulting sentence embeddings9 of each original

and augmented data instance were then compared using cosine similarity. Lastly, for syntactic

similarity, we first parsed given sentences into syntactic trees and then mapped them into vector

representations using the ”en core web md” English pipeline in the spaCy library10. Next, these

vector representations are used to compute the similarity score between sentences. Furthermore,

we compute the set overlap between the POS tag sequences of the original and augmented sen-

tences to determine their similarity11.

Table 3.2: Language models used to evaluate generate sentence embedding.

Base Model Version
BERT all-MiniLM-L6-v2
BERT all-MiniLM-L12-v2
MPNet all-mpnet-base-v2
MPNet paraphrase-mpnet-base-v2
Albert paraphrase-albert-small-v2
DistilBERT quora-distilbert-base
DistilRoberta all-distilroberta-v1
DistilRoberta paraphrase-distilroberta-base-v1
Roberta msmarco-roberta-base-v3
GPT-3 text-embedding-ada-002
GPT-3 text-similarity-davinci-001

8https://pypi.org/project/rouge/
9https://platform.openai.com/docs/guides/embeddings/what-are-embeddings

10https://spacy.io/models/en
11https://www.nltk.org/api/nltk.tag.pos tag.html
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3.3.3 Classification with BERT

As the final evaluation, we build BERT [62], a baseline classifier, with 6 augmented datasets and

compare its performance with the BERT classifier built over original data. We used the training

data in WD dataset for finetuning for 10 epochs with a batch size of 32 and a learning rate of

3e-5. To preserve the lengths of texts, we set the max length to 256 during tokenization. We use

the validation set (20% of the training set) and testing set (180 samples) to examine the efficiency

and effectiveness of a classifier through F-score and Matthew’s Correlation Coefficient (MCC),

respectively.

3.4 Results and discussion

Similarity Analysis: We report three types of ROUGE scores: ROUGE-1, ROUGE-2 and ROUGE-

L between the original and augmented text. The ChatGPT models show the lowest ROUGE scores

and Backtranslation versions surpass all other augmentation methods (see Figure 3.3). We further

examine semantic and syntactic similarities through average of all 13 models in Figure 3.4(top) and

3.4(bottom). We observe high diversity and low similarity with GPT based models where Chat-

GPT based models illustrate the least similarity. However, compared to the other GPT models,

text-curie-001 shows a notably higher similarities through all the similarity models.

Classification Performances: We obtain the validation accuracy (Val-A), and testing results

with precision (T-P), recall (T-R), F-score (T-F), accuracy (T-A) and MCC value (T-MCC) with

experimental results for evaluation (see Table 3.3). Even though we keep the testing dataset to be a

small chunk of 180 samples, we observe significant difference in the results in training on the orig-

inal imbalanced dataset and augmented dataset. The gpt-3.5-turbo model over testing dataset out-

performs all the baseline models, specifically the original dataset by 13.11% F1-score and 9.52%

Accuracy followed by the second best model: gpt-3.5-turbo-0301. Moreover, compared to the

best traditional augmentation method (Backtranslation), the top ChatGPT model shows 7.81% im-
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Figure 3.3: The ROUGE scores for six different augmentation mechanisms leveraging the

augmented samples in comparison to the original text, averaged over all the texts generated.

Table 3.3: Improvement in classifiers. M1: gpt-3.5-turbo, M2: gpt-3.5-turbo-0301, M3:

text-curie-001, M4: text-davinci-003, BT: Backtranslation

Type Val-A T-P T-R T-F T-A T-MCC
Original 0.427 0.65 0.63 0.61 0.63 0.514

M1 0.504 0.70 0.69 0.69 0.69 0.596
M2 0.499 0.69 0.68 0.67 0.68 0.581
M3 0.498 0.63 0.63 0.62 0.63 0.519
M4 0.502 0.66 0.67 0.66 0.67 0.559

EDA 0.498 0.63 0.63 0.62 0.63 0.518
BT 0.504 0.65 0.64 0.63 0.64 0.527

provement in testing accuracy. Notably, the datasets from text-curie-001 and EDA which gained

higher similarity values have shown lowest performance on all classification measurements.

We further examine the MCC values to determine the effectiveness of the classifier [154]. MCC

values vary between -1 and 1 such that values closer to 0 and 1 suggest increased randomness

and perfect prediction towards decision making correspondingly. Compared to the original, we

found 15.95% improvement in MCC score when model is trained on augmented training samples
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Figure 3.4: (top): Average Textual Similarity among Original and Augmented Text. (bottom):

Average Textual Similarity among Original and Augmented Explanations.
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Table 3.4: Class-vise classification performance. NS: Number of correctly classified samples,

INS: Improvement in NS (in %), OD: Original dataset, AD: Dataset augmented by M1 method.

Class Type T-P T-R T-F NS INS

PA
OD 0.78 0.71 0.74 32

4.44
AD 0.76 0.76 0.76 34

IVA
OD 0.67 0.31 0.42 14

17.78
AD 0.69 0.49 0.57 22

SA
OD 0.61 0.76 0.67 34

2.22
AD 0.69 0.78 0.73 35

SEA
OD 0.53 0.73 0.62 33

2.22
AD 0.65 0.76 0.70 34

with gpt-3.5-turbo model. Overall, the augmented text with lowest ROUGE scores, syntactic and

semantic similarities showed the highest classification performance on BERT.

Moreover, the following Table 3.4 compares the class-vise classification performance between

the original and M1 (best performed dataset) datasets. We notice a significant improvement in all

the measurements of all the classes after augmenting data. Additionally, compared to other classes,

the IVA- class with the least number of original samples shows a significantly higher improvement

in the number of correctly classified samples.

3.5 Conclusion and Future Scope

In this work, we augment the Reddit posts for a four-class classification problem of determining

Wellness Dimensions impacting mental health. The GPT models are outperforming in terms of

generating diverse text by preserving the context of the corresponding original text. In future,

we plan to experiment with different parameter settings and prompts for generating datasets and

develop improved classifiers to determine WD in a well balanced dataset. Furthermore, we will

evaluate the classification performance of short explanation text we generated in this dataset.
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Ethics and Broader Impact

The data used in this study is obtained from Reddit, a platform designed for anonymous posting,

and the user IDs have been anonymized. Furthermore, all sample posts displayed in this study

have been obfuscated, paraphrased, and anonymized to protect user privacy and prevent any mis-

use. As annotation is subjective in nature, we acknowledge that there may be some biases present

in our gold-labeled data and the distribution of labels in Wellness Dimensions dataset. We urge re-

searchers to be mindful of the potential risks associated with WD dataset based on personal textual

information. To prevent this, human intervention by a moderator is necessary. We acknowledge

that we do not release user’s metadata and the augmented samples further increase the privacy. The

dataset and the source code required to replicate the baseline results can be accessed at Github.12
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Chapter 4

GPT-4 as a Twitter Data Annotator:

Unraveling Its Performance on a Stance

Classification Task
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Chapter Abstract

Data annotation in NLP is a costly and time-consuming task, traditionally handled by human ex-

perts who require extensive training to enhance the task-related background knowledge. Besides,

labeling social media texts is particularly challenging due to their brevity, informality, creativity,

and varying human perceptions regarding the sociocultural context of the world. With the emer-

gence of GPT models and their proficiency in various NLP tasks, this study aims to establish a per-

formance baseline for GPT-4 as a social media text annotator. To achieve this, we employ our own

dataset of tweets, expertly labeled for stance detection with full inter-rater agreement among three

annotators. We experiment with three techniques: Zero-shot, Few-shot, and Zero-shot with Chain-

of-Thoughts to create prompts for the labeling task. We utilize four training sets constructed with

different label sets, including human labels, to fine-tune transformer-based large language mod-

els and various combinations of traditional machine learning models with embeddings for stance

classification. Finally, all fine-tuned models undergo evaluation using a common testing set with

human-generated labels. We use the results from models trained on human labels as the bench-

mark to assess GPT-4’s potential as an annotator across the three prompting techniques. Based

on the experimental findings, GPT-4 achieves comparable results through the Few-shot and Zero-

shot Chain-of-Thoughts prompting methods. However, none of these labeling techniques surpass

the top three models fine-tuned on human labels. Moreover, we introduce the Zero-shot Chain-

of-Thoughts as an effective strategy for aspect-based social media text labeling, which performs

better than the standard Zero-shot and yields results similar to the high-performing yet expensive

Few-shot approach.
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4.1 Introduction

Among the LLMs, the GPT series has emerged as a pioneer, showcasing powerful skills on nu-

merous tasks in NLP, such as content generation, completion, translations, summarizations, clas-

sifications, and many more1. However, the ability of GPT models to comprehend and generate

human-like text has not only redefined the landscape of NLP applications but also highlights

significant capabilities related to handling many human jobs, such as data analysts [155], data

evaluators [156, 157], software developers [158, 159], and teaching assistants [160]. Besides,

GPT has proven applications in diverse domains, including finance [161], health [162, 163], so-

cial science [164] and law [165]. Among the potentialities for replacing diverse human tasks,

GPT has demonstrated itself as a remarkably effective tool for data annotation across various do-

mains [164, 166–171]. Its ability to understand context, generate coherent content, and follow

specific guidelines has made it a versatile data annotator, in labeling a wide range of content from

generic to domain-specific text.

Data annotation is the primary step of many NLP tasks. Nevertheless, the process of labeling by

skilled human experts proves to be expensive and time-consuming due to the costs associated with

labor, tools, and the time needed for training and manual annotation [80, 167, 170]. Furthermore,

maintaining a high standard training process through setting perplexity benchmarks and enough

foundation of background knowledge is crucial for high-quality labeling outcomes [172]. Due to

these requirements, the consideration of substituting human annotators with AI tools has become

justifiable.

From another perspective, given the emergence of social media as a significant data source for

various NLP studies, addressing the challenges posed by the inherent traits of brevity, informality,

creativity, and poor grammar in tweets is essential during annotation [172–174]. Additionally,

considering that these texts are embedded within the cultural and social context of human ideas,

values, and perceptions of the world, comprehending them necessitates a thorough understanding

of context and the ability to empathize by adopting different perspectives [171]. Consequently,

the examination and annotation of social media texts, especially those pertaining to social debates,

1https://platform.openai.com/docs/quickstart
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will demand specialized annotation capabilities. This prompts the investigation into the potential

of GPT-based models to replace human annotation tasks.

While existing studies have demonstrated GPT’s effectiveness in data annotation, limited atten-

tion has been paid to its application in social media stance labeling. The challenges encountered by

humans in social media text labeling and stance identification present an opportunity to investigate

the potentiality of AI tools in this context. Hence, this research aims to evaluate the capacity of

the most recent and powerful GPT-4 model [60] in labeling social media text on stance detection.

By comparing GPT-4’s performance against human annotators, and potentially incorporating in-

novative prompting techniques, this study seeks to contribute to the field of NLP and social text

analysis as follows.

1. Create and release a labeled Twitter corpus on stance detection.

2. Benchmark the performance of GPT-4 as a data annotator for labeling social media text on

stance detection tasks compared to human experts.

3. Investigate the applicability of integrating the Chain-of-Thoughts concept into the prompt

design for labeling the stance of social media texts.

4. Conduct a performance comparison among three distinct prompt-designing strategies in the

context of annotating the stance of social media texts.

4.2 Background Motivation

In the literature, many studies have explored the role of GPT as a textual data annotator. A recent

investigation assessed the performance of GPT-4 in annotating domain-specific multi-label legal

text, a task usually requiring individuals well-versed in legal matters for accurate annotation [168].

Utilizing a dataset comprising 256 records with Krippendorff’s inter-annotator agreement of 0.79,

this study demonstrated GPT-4’s capacity to achieve results comparable to human annotators when

provided with almost the same copy of instructions. Further, they explained the cost-effectiveness

of this approach during batch predictions without a major reduction in performance compared to
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manual labeling. Nevertheless, slight adjustments to the prompts led to decreased model robust-

ness, significantly impacting outcomes. Moreover, the authors engaged in a failed attempt to im-

prove the performance with the Chain-of-Thoughts (CoT) prompting technique. Another approach

has developed to label the political affiliation of tweets collected from the USA politicians [171].

The researcher has used 500 records and executed the GPT-4 model 5 times each with different

temperature values; 0.2 and 1.0 to gain both the creativeness and robustness during label predic-

tion. This work achieved better results for accuracy, reliability and bias of GPT-4 compared to

human coders for a Zero-shot learning classification task.

The authors of another study have explored three methods to employ GPT-3 for data anno-

tation [167]. The initial approach employed a Few-shot prompt to generate labels for unlabeled

data, while the second method designed a prompt to guide the GPT-3 model in self-generating

label data. In the third approach, a dictionary was used as an external source of knowledge to

assist GPT-3 in creating domain-specific labeled data. They conducted experiments using text-

davinci-003 and ChatGPT as GPT-3 models, along with Bert-base as the classifier for evaluation.

Findings indicated that the first approach yielded subpar results compared to humans in both accu-

racy and cost, while the third approach achieved higher performance for GPT-3, surpassing both

humans and ChatGPT. Furthermore, the authors highlighted the AI models’ capability to generate

training data from scratch without relying on unlabeled data. Another study has investigated the

application of GPT-3.5 and GPT-4 in automated psychological text analysis, assessing their per-

formance as data annotators [164]. This evaluated GPT’s capability to label psychological aspects

like sentiment, emotions, and offensiveness across 15 datasets encompassing multiple languages.

The results revealed GPT’s remarkable performance compared to dictionary-based analysis and

comparable performance to fine-tuned machine learning (ML) models, suggesting its potential as

a versatile tool for automated text labeling with simple prompts and less programming experience.

Besides the inherited complexities of annotating tweets, some labeling tasks, such as sentiment

labeling are relatively straightforward as they focus on identifying sentiments that are often ex-

pressed explicitly in the text. Whereas stance classification is a more challenging task for humans

as it involves determining the author’s position or perspective toward a particular topic or issue as
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in favor of, against to, or neutral, which is not always explicitly stated in the text [174–176]. In the

existing literature, there are limited studies that have engaged in stance labeling by humans and

common target topics of their studies are Atheism, Climate change, Feminism, Elections, and the

Legalization of abortion [78, 172, 175].

The earliest dataset of English tweets annotated for stance detection became available to the

research community quite recently, in 2016 [172]. This dataset consisted of 4870 tweets, and the

annotation process was conducted through crowdsourcing using the CrowdFlower platform. They

aimed for high-quality labels by offering clear and simple labeling instructions, assigning each

tweet to 8 annotators, and discarding poorly annotated records based on an analysis of annotator

responses. Moreover, they shared the finalized dataset, comprising records where over 60% of the

annotators had agreed on the majority label. Many recent studies have utilized this dataset in their

stance classification tasks [78,175,176]. Another study has annotated a corpus of French tweets for

detecting stances for a fake news recognition problem [173]. They have implemented a novel an-

notation approach by presenting the tweets to the annotators as a bundle, comprising a root tweet

and all thread tweets as children. They argue the advantage of this approach as annotators gain

context from whole threads, improving topic consistency and reducing topic-switching during an-

notation. However, they stated a few limitations of this approach, as cases like unrelated responses

or incomprehensible tweets were not covered by their stance categories, and certain classes lacked

distinctness, potentially creating uncertainty for annotators.

While those studies have only provided the text of tweets for the annotators, a different study

explored utilizing associated metadata to enrich the labeling process [174]. In the context of po-

litical stance detection on Twitter, this study has experimented with a novel labeling approach by

providing 6 pieces of additional information related to the authors of tweets other than the tweets’

texts. Initially, these details were given to human raters (via Amazon Mechanical Turk) during

annotation and revealed that providing insufficient context related to tweets can lead to ambiguous

and noisy annotations, while an excessively strong context might overpower other signals. Con-

sequently, the researchers designed a classifier that employed both individual human annotations
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and author-related information to determine the final tweet label. This classifier outperformed the

common practice of using majority voting to decide the label.

The latest development in LLMs involves utilizing prompts to train these models with very

little or no prior training data. These techniques are known as Few-shot and Zero-shot learning,

and the GPT series of models have proven to excel in these learning scenarios [85]. However,

research has demonstrated that GPT models are significantly influenced by their prompts, often

producing diverse outcomes [168]. The concept of ”Chain-of-Thoughts” was introduced through a

Few-shot method that involves presenting a series of intermediate steps to explain a given example

answer [177]. They conducted experiments using various versions of prompt-based large language

models, including GPT-3, LaMDA, PaLM, UL2 20B, and Codex. Remarkably, the PaLM 540B

model achieved outstanding accuracy on the GSM8K benchmark for math word problems with

only eight CoT exemplars and this performance was even better than a fine-tuned GPT-3 model.

Subsequently, another study has incorporated this mechanism in Zero-shot prompting [178]. In

contrast to the original approach, they omitted to provide examples and instead utilized a two-

prompt method, adding the instruction ”Let’s think step by step” before each answer in the first

prompt. Comparing this Zero-shot approach to the original mechanism, they observed improve-

ments in various reasoning tasks, including arithmetic, symbolic, and logical reasoning. They

highlight the advantage of exploring Zero-shot knowledge prior to employing manually crafted

Few-shot examples.

4.3 Methodology

Initially, we constructed a labeled corpus of Twitter posts related to the stance classification prob-

lem towards abortion legalization. Subsequently, we employed 3 distinct prompting methods to

reassign labels to the training tweets using GPT-4. Utilizing these variedly generated labels, along

with human annotations, we constructed 4 training datasets containing the same tweets for multi-

class classification fine-tuning. Next, the fine-tuned models underwent testing on a shared testing

set equipped with human-annotated labels. Finally, we compared the outcomes from the 4 sets of
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Figure 4.1: Overall methodology of the study.

test results to generate comprehensive findings. The complete research methodology is depicted in

Fig. 4.1.

4.3.1 Dataset Collection

Motivated by the limited datasets for stance detection, we constructed a dataset by downloading

texts related to the topic of abortion legalization from Twitter through Twitter academic API2.

Focusing on the recent Supreme Court decision to ban abortion in the USA3, we extracted tweets

originating from the USA at three distinct time stamps (TS): i) TS1 - before the court decision was

2https://developer.twitter.com/en/use-cases/do-research/academic-research
3https://www.plannedparenthoodaction.org/issues/abortion/roe-v-wade
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leaked (106 days from 16th January 2022 to 1st May 2022), ii) TS2 - following the leak (53 days

from 2nd May 2022 to 23 June 2022), and iii) TS3 - after the court decision (53 days from 24th

June 2022 to 15th August 2022), by yielding 250 records from each time stamp. We determined

these dates by calculating the number of days between May 2nd (the date of the leak) and June

24th (the date of the court decision). For TS1, we extended the period to twice the duration, as the

volume of tweets related to the topic of abortion legalization can be relatively lower. Our research

adhered to ethical guidelines by solely utilizing publicly available tweets without any interest in or

disclosure of author identities, thereby eliminating the need for any ethical considerations related

to human subjects.

4.3.2 Human Data Annotation

Under the guidance of a senior academician in Social Science, three postgraduate students under-

went specialized training using annotation and perplexity guidelines. Through a series of trial ses-

sions by annotating a few samples, they familiarized themselves with the requirements for achiev-

ing a shared understanding. Subsequently, each coder annotated all 750 data points in the corpus

for the multi-class stance classification task, regarding the author’s stance on the legalization of

abortion as a favor, against, or none. Additionally, the label ”uncertain” was provided as an option

to indicate instances where annotators are unsure about the suitable label. In our annotation task,

we only provided the texts of tweets, omitting their associated metadata. To ensure the reliability

of the annotations, we evaluated the results using both Fliess’ Kappa4 and Krippendorf’s alpha5

inter-observer agreements [179]. After removing records with at least one uncertain label among

annotators, the calculated kappa and alpha were found to be 64.54% and 61.26% respectively. Fi-

nally, we employed the majority voting mechanism to finalize the label for each record. We are

releasing this dataset of 533 tweets to the public for research purposes6.

4https://www.statsmodels.org/dev/generated/statsmodels.stats.inter rater.fleiss kappa.html
5https://github.com/surge-ai/krippendorffs-alpha/blob/main/kalpha.py
6https://github.com/Ravihari123/Twitter-Stance-Labeling/tree/main
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4.3.3 GPT-4 Label Generation

As one of the main objectives of our study is to compare GPT-4’s capabilities as an annotator with

respect to humans, we needed to utilize reliable baseline labels. As the original dataset shows only

substantial agreement among 3 annotators [180], we opted to work with a subset of our corpus,

comprising 355 records that achieved 100% inter-reliability agreement among all raters.

We explored three different prompting strategies: 1) Zero-shot, 2) Few-shot, and 3) Zero-shot

with CoT to generate labels for the tweets in our dataset using GPT-4. We set the temperature7 as

0.5 which is a lower temperature value as it makes the model more confident in its predictions and

leads to more deterministic and focused outputs. However, we did not set the temperature to 0.0, as

we needed the model to have some randomness and creativity in predicting our labels [171]. Even

though this can help in generating more conservative and precise responses, this will also lead to

different answers during different runs. Due to this nature, each prompt type was run 3 times to

generate labels for each tweet in the training set and then majority voting was used to finalize the

final labels.

Zero-shot

The first approach is to design a prompt with only instructions (no examples) about the task and

provide the tweets without the human-annotated labels in the training set to GPT-4 API call [181].

Within the prompt, we requested the model to produce an appropriate label for the provided text.

The prompt design employed for generating labels through the Zero-shot mechanism is illustrated

in Fig. 4.2.

Few-shot

The second method uses a Few-shot learning approach that teaches the GPT-4 model to perform the

labeling task utilizing a combination of user instructions and a limited number of examples [181].

To introduce all three classes equally, we provided two fresh examples of tweets and their corre-

sponding human-annotated labels for each class which are mutually exclusive from the training

7https://platform.openai.com/docs/models/overview
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Label the stance of this sentence as "favor" or "against" or "none"
towards the target topic "legalization of abortion".

Sentence: <<provide original text>>.
Stance: <<GPT will generate the label>>

Figure 4.2: Zero-shot prompt for generating labels.

Considering the given few-shots examples, label the stance of the
sentence as "favor" or "against" or "none" towards the target topic
"legalization of abortion".
Examples: 
1. Example 1 (class against)
2. Example 2 (class against)
3. Example 3 (class favor)
4. Example 4 (class favor)
5. Example 5 (class none)
6. Example 6 (class none)

Sentence: <<provide original text>>.
Stance: <<GPT will generate the label>>

Figure 4.3: Few-shot prompt for generating labels.

and testing sets (See Fig. 4.3). The Few-shot approach tends to be more expensive compared to the

Zero-shot method due to the larger number of tokens in each prompt and the requirement of few

samples for the prompt will reduce data from the original dataset.

Zero-shot Chain-of-Thought

This is an extension of Zero-shot prompting where we only provide instructions to the GPT-4

without any examples. The difference between this and the Zero-shot mechanism is that Zero-

shot uses only a single prompt and the model will generate the final output at the end. However, as

shown in Fig. 4.4, for the concept of Zero-shot CoT, we implemented two prompts, 1) to get a step-

by-step explanation of how it decides the author’s stance toward the target topic, and 2) to generate

the final stance based on its own explanation. Similar to the original study [178], we instructed
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Prompt 1
Think step by step and explain the stance (against, favor, or none) of
this sentence towards the target topic "legalization of abortion. 
Sentence: <<provide original text>> 
Explanation: << GPT will generate an explanation>>

Prompt 2
Therefore, based on your explanation, <<GPT generated
explanation>>, what is the final stance? Write it as "against" or "favor"
or "none".
<<GPT will give the final stance>>

Figure 4.4: Zero-shot Chain-of-Thoughts prompt for label generation.

the model to think step by step and explain the answer before determining the final stance of the

text. Through this two-prompt mechanism, we provide an opportunity for the model to reassess its

answer. The advantages of this concept will be further discussed with examples in section 4.5.

4.3.4 Stance Classification

Stance detection is a multi-class classification problem, often with three stance labels. Our initial

dataset with tweets and corresponding human labels was partitioned into an 80:20 ratio as the

training and testing sets. Additionally, as mentioned earlier, we generated 3 more training sets

featuring the same tweets but with new labels obtained through 3 distinct prompting techniques

utilizing GPT-4. Subsequently, we fine-tuned eight transformer-based LLMs, namely Bert [62],

Albert [68], Deberta [72], BerTweet [182], MPNet [66], and three Roberta-based models pre-

trained on i) a general Twitter dataset (TRob) [79], ii) a Twitter sentiment dataset (TRobSen) [78],

and iii) a Twitter stance dataset (TRobStan) [78]. These models were separately fine-tuned using

our four training datasets. The list of model versions employed in the study, along with the datasets

they were pre-trained on is provided in Table4.1.

In addition, 18 multiple combinations of classifiers composed of 6 traditional ML models and

3 embedding techniques, namely OpenAI ADA embedding (ADA), Sentence Transformers em-

bedding (SenTr), and Glove embeddings were individually fine-tuned on our 4 training sets. The

57



Table 4.1: Large language models, their pre-trained versions, and pre-trained datasets.

Model Version Pre-trained dataset
Bert bert-base-uncased BooksCorpus (800M words) and English Wikipedia (2,500M words)
Albert albert-base-v2 Same dataset of Bert

Deberta microsoft/deberta-base-mnli

English Wikipedia (12GB), BookCorpus (6GB),
OpenWebText (public Reddit content of 38GB), and
STORIES (a subset of CommonCrawl of 31GB).
The size of the total data set after deduplication is about 78G.

BerTweet vinai/bertweet-base
850M English Tweets containing 845M Tweets streamed from 01/2012
to 08/2019 and 5M Tweets related to the COVID-19 pandemic.

MPNet microsoft/mpnet-base
160GB data from Wikipedia,
BooksCorpus, OpenWebText, CC-News and Stories.

Roberta cardiffnlp/twitter-roberta-base-2022-154m 154M tweets of general conversations between 2018-01 and 2022-12.
Roberta cardiffnlp/twitter-roberta-base-sentiment-latest 60M tweets were obtained by extracting a large corpus of English tweets

(using the automatic labeling provided by Twitter).Roberta cardiffnlp/twitter-roberta-base-stance-abortion

embedding techniques were used to convert the tweets of the training set to their numerical vectors

before feeding into the models [183]. Finally, all 104 types of fine-tuned models (32 LLMs and 72

traditional classifiers+embeddings) were tested individually on the common testing set to compare

the classification performance of models trained on 4 different label sets.

4.3.5 Selection of Performance Metrics

We reported the testing performance in terms of precision, recall, f1-score, MCC8 and area under

the receiver operating characteristic curve (ROC AUC). Accuracy was not reported due to its in-

ability to account for class distributions, which makes it unsuitable for evaluating an imbalanced

dataset [184, 185].

We used the macro averaging over micro and weighted for calculating precision, recall, f1-

score and ROC AUC as it calculates these metrics for each class independently and then takes the

average across all classes. This approach gives equal consideration to all classes, irrespective of

their frequency in the dataset. Hence, there is no difference between majority and minority classes,

making the evaluations fair for an imbalanced dataset [185]. It is particularly useful in our study

as we lack prior knowledge of the real-world class distribution and need to prevent evaluation bias

towards dominant classes in different training datasets.

8https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews corrcoef.html
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Equations(4.1)and(4.2)showthecalculationofprecisionandrecall,whereTruePositive

(TP)isthecorrectlyclassiiedsamplesfortheclassk,whereasFalsePositive(FP)andFalse

Negative(FN)aretheincorrectlyclassiiedsamplesonthepredictedandactualclassiicationsof

theclassk[185].Equations(4.3),(4.4),and(4.5)representthemacroaverageprecision,recall,

andf1-scorerespectively,whereNisthetotalnumberofclassesinthedataset[185].Theharmonic

meanofmacroprecisionandmacrorecallrepresentsthemulti-classmacroF1-score.

Precisionk=
TPk

TPk+FPk

(4.1)

Recallk=
TPk

TPk+FNk

(4.2)

MacroAveragePrecision(MP)=
N
k=1Precisionk

N
(4.3)

MacroAverageRecall(MR)=
N
k=1Recallk

N
(4.4)

MacroF1−Score=2∗
MP ∗MR

MP−1+MR−1
(4.5)

MCCisametricrangingbetween-1and1,whereavaluecloseto1indicatesexcellentpre-

diction,signifyingarobustpositivecorrelationbetweenpredictedandactuallabels.Conversely,

an MCCof0signiiesnocorrelation,indicatingthattheclassiierassignssamplestoclassesran-

domly,unrelatedtotheirtruevalues.Furthermore, MCCproducesnegativevalues,representing

aninverserelationshipbetweenthepredictedandactualclasses[184,185].Formulti-classclassi-

ication,theMCCcanbeexpressedusing(4.6),basedonthenumberofclassesN,andconfusion

matrixCwithactualresultsonrows(i)andpredictedresultsoncolumns(j)[185].

MCC =
c∗s− N

k Pk∗tk

(s2− N
k P2

k)(s2− N
k t2

k)
(4.6)

Where,

•c= N
k Ckkthetotalnumberofelementscorrectlypredicted
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• s =
∑N

i

∑N
j Cij the total number of elements

• Pk =
∑N

i Cki the number of times that class k was predicted (column total)

• tk =
∑N

i Cik the number of times that class k truly occurred (row total)

ROC AUC is one of the best metrics to measure the performance of imbalanced datasets

and it is regarded as a reliable metric, even when dealing with heavily skewed class distribu-

tions [186, 187]. For calculating ROC AUC9 in multi-class classification, the TP rate or FP rate

is established only after transforming the output into binary form. For this we used the One-vs-Rest

(OvR) method to compare each class to all others, treating the others as a single class.

4.3.6 Hyperparameter tuning

The LLMs underwent fine-tuning using identical hyperparameter configurations: a learning rate

of 3e-5, batch size of 16, maximum epochs set at 10 with early stopping based on validation loss,

and a patience of 2. Conversely, a grid search10 was conducted to determine the optimal hyperpa-

rameter combinations for traditional ML models. However, for boosting algorithms, we utilized

the default setup due to the expected computational complexity associated with hyperparameter

evaluation. The traditional models and their corresponding hyperparameter settings are detailed in

Table 4.2. Additionally, a 5-fold cross-validation11 strategy was employed during model training

to mitigate potential overfitting and yield more precise outcomes. Where possible, we employed

the ”balanced” class weight option to ensure equal significance across all classes to handle class

imbalance. All experiments were conducted using a constant random seed value.

4.3.7 Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a fundamental non-parametric statistical test used to compare

the central tendencies of paired data or matched samples [188]. This test assesses whether there

9https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc auc score.html
10https://scikit-learn.org/stable/modules/generated/sklearn.model selection.GridSearchCV.html
11https://scikit-learn.org/stable/modules/cross validation.html
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Table 4.2: Hyperparameter settings utilized for traditional machine learning models during

hyperparameter tuning.

ML model Hyperparameter settings

Logistic regression (LR)
‘class weight’: [None, ”balanced”]
‘penalty’: [None, ’l2’]
‘solver’: [’lbfgs’, ’newton-cg’]

Random Forest (RF)

’n estimators’: [50, 100, 200]
’max depth’: [None, 5, 10]
’class weight’: [”balanced”,
”balanced subsample”, None]

Support Vector Classifier(SVC)
’C’: [1.0, 2.0]
’class weight’: [’balanced’, None]

Multi-Layer Perceptron (MLP)
’activation’: [’logistic’, ’relu’]
’solver’: [’sgd’, ’adam’]
’hidden layer sizes’: [(100,), (200,), (50,)]

Gradient Boosting Tree (GB) Default settings
Extreme Gradient Boosting (XGBoost) Default settings

is a statistically significant difference between two related groups, often before-and-after mea-

surements or two treatments applied to the same subjects. It accomplishes this by analyzing the

distribution of the signed differences between the pairs, effectively testing whether the median

of these differences is zero [189, 190]. For our study, we used the Wilcoxon signed-rank test12

to assess and summarize the similarity between performance metrics of various combinations of

prompting outcomes.

We utilized the conventional value of 0.05 as the threshold for accepting or rejecting the null

hypothesis, which assumes there is no significant difference between the corresponding perfor-

mance metrics (either, precision, recall, f1-score, or ROC AUC) of any two labeling sets. Here, in

addition to the null hypothesis, we used an alternative hypothesis called ‘greater’ which suggests

that the median of the paired differences is greater than zero. This test produces two main outputs,

1) test-statistics - the sum of ranks of positive differences, which measures the extent to which

the positive differences between paired observations are greater than the negative differences, and

2) P-value - which determines whether this difference holds statistical significance. Consequently,

higher test-statistics (larger positive difference between the two groups) indicate that the first group

12https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
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tends to have higher values than the second group, and the P-values below the selected significance

level of 0.05 present there are statistically significant evidence to prove this difference. Equation

(4.7) and (4.8) represents the calculation of the test-statistic and P-value of the Wilcoxon signed-

rank test with the ’greater’ alternative hypothesis [191].

• The test-statistic (W+):

W+ =
n∑

i=1

sign(di).R
+
i , (4.7)

where, n is the sample size, di represents the paired differences, sign(di) is the sign of the

difference (+1 if di is positive, -1 if di is negative), and Ri+ is the rank of the positive differences

among all the positive differences.

• The P-value (P val):

P−val = P (W+ ≥ Wobserved) (4.8)

Where, W+ is the test-statistic calculated from our data, Wobserved is the test-statistic from the

Wilcoxon signed-rank table13 (based on the chosen significance level of 0.05 and sample size of

26), and P is the probability of observing a W+ value greater than or equal to Wobserved under the

null hypothesis.

4.4 Experimental Results and Initial Discussion

First, we analyze the outcomes of the relabeling process by examining the distribution of class

labels in both the original and new label sets. Following this, we present the classification results

of various ML models which were fine-tuned using the four distinct training sets.

13https://users.stat.ufl.edu/∼winner/tables/wilcox signrank.pdf
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Figure 4.5: The distribution of class labels in the four different label sets.

4.4.1 Results of Label Generation

Fig. 4.5 illustrates the distribution of class labels within the four training sets, created using dif-

ferent labeling techniques. Notably, datasets labeled by humans and the Few-shot approach ex-

hibit a similarity, showcasing almost equal ratios in their ’none’ class and gaining the ’favor’ as

the majority class. However, a significant change has occurred due to the ’against’ class incre-

menting to 37% in the Few-shot labeled dataset, resulting in an almost 1:1 ratio with the ’favor’

class. This contrast stands against the nearly 2:1 ‘favor: against’ ratio seen in the human-labeled

dataset. On the other hand, compared to human labels, the Zero-shot and Zero-shot CoT datasets

have undergone a shift, with their majority classes changing to ’against’ and ’none’, respectively.

Furthermore, the ’favor’ and ’against’ classes in the Zero-shot and Zero-shot CoT datasets have

become the minority respectively, departing from the ’none’ which served as the minority class

in the human-labeled datasets. Nevertheless, the sizes of the ’against’ class in both the Zero-shot

CoT and human-labeled datasets are nearly similar.

Fig. 4.6 displays the percentage of changes observed with new label sets compared to the

human labels. This demonstrates that the highest number of changes in the whole dataset appeared

as 25.35% during the Zero-shot approach, whereas a minimum of 13.73% is recorded at the Few-

shot. Analyzing class-wise percentages14, the ’favor’ class experienced the highest variations,

14The percentage of changes in a given class k is calculated using (the number of changes in new labels compared
to the human labels in class k / total number of records belonging to class k *100). Example: If there are 77 records
of against class in the human-annotated dataset and 6 of the labels have changed to a different label during Zero-shot
labeling, then the percentage of change in against class during Zero-shot is (6/77*100 = 7.79)
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Figure 4.6: The percentages of changes in the three types of new label sets; Zero-shot, Few-shot,

and Zero-shot CoT compared to human labels.

reaching 45.71%, 23.57%, and 30.0% in the Zero-shot, Few-shot, and Zero-shot CoT methods,

respectively. Moreover, the minimum change percentage of the ’against’ class is recorded as 1.30%

in the Few-shot technique, whereas a minimum of 0.0% in the ’none’ class is reported in the Zero-

shot CoT approach.

By considering both the label distribution and the percentage of changes, we observe that, in

comparison to the labels generated by the Zero-shot method, both Few-shot and Zero-shot CoT

approaches produce labels that are more similar to those generated by humans.

4.4.2 Classification Results

The classification results obtained for five evaluation metrics are shown in Table 4.3. The rows

represent all combinations of classification models, including transformer-based LLMs and com-
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binations of embeddings and traditional ML models. Whereas the main columns represent the four

training sets with different labels used to fine-tune these models. By setting the results of models

fine-tuned on human labels as the ground truth, we highlighted (in green) the instances of the other

three labeling sets that surpassed the corresponding baseline value. Overall, the Few-shot and Zero-

shot CoT have obtained better results for many models. According to LLMs’ results, BerTweet;

a model pre-trained on 850M English Tweets (See Appendix) has outperformed the ground truth

when fine-tuned on Few-shot and Zero-shot CoT labels. Similarly, this model has gained better

or equal precision, recall, and MCC when fine-tuned on Zero-shot labels. Besides, MPNet and

TRobStan on Few-shot labels, and Bert on Zero-shot CoT labels, have shown remarkable results

on various metrics.

Noticeably, the traditional ML models have gained surpassing results, when the embedding

techniques are Sentence Transformers or Glove. Besides, many of the embedding and traditional

ML model combinations, such as Random Forest and Gradient Boosting Tree with Sentence Trans-

formers and Gradient Boosting Tree and XGBoost classifier with Golve have exceeded the base-

line margins when they are trained on Zero-shot CoT labels. However, for Few-shot learning, only

SVM with GLove embedding has fully overpassed the human-label performance. On average, we

noticed that the recalls of all the models when trained on Few-shot and Zero-shot CoT labels have

reached or improved upon the baseline performance.

4.4.3 Results of Wilcoxon signed-rank test

Next, to summarize and compare the classification results mentioned above, we conducted a

Wilcoxon signed-rank test by analyzing the performance metrics of different pairs of labeling sets.

The results for each of the six possible pairs of labeling sets are presented in Table 4.4, showing

the corresponding test-statistic and P-values. Here, we calculated the difference between the two

groups as (Training label set ‘a’ - Training label set ‘b’). The test-statistic values, which are larger

and fall within the range of 250 to 350, along with significantly smaller P-values ranging from

E-08 to E-02 for precision, f1-score, MCC, and ROC AUC, indicate that the classification results

for H-Z, H-F, and H-ZC are notably better when the models are trained using human labels com-
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pared to the corresponding three label types. On the contrary, relatively larger P-values (6.91E-01,

9.25E-01) and smaller test-statistic values (144.0, 119.5) for recall in the H-F and H-ZC compar-

isons illustrate that the classification results of Few-shot and Zero-shot CoT label types are closer

to that of human labels.

When comparing Zero-shot to both Few-shot and Zero-shot CoT performances, it is evident

that the test-statistic values are consistently smaller, falling within the range of 2.0 to 78.0. This

observation suggests that Zero-shot generally results in smaller values compared to the other two.

Furthermore, the larger P-values, which range from E-01 to E+00, indicate that there is no statis-

tically significant evidence to support the claim that Zero-shot tends to yield larger values. This

indicates that these two techniques outperform the basic Zero-shot method significantly across all

metrics. Based on the larger P-values obtained for the comparison of Few-shot and Zero-shot CoT,

we describe that the recall, f1-score, MCC, and ROC AUC of these two labeling techniques are

not significantly different. However, due to the smaller P-value, it is clear that the precision of

the Few-shot is significantly larger than that of the Zero-shot ZoT. Besides, the higher test-statistic

values across all these 5 metrics indicate that the Few-shot has performed better than the Zero-shot

CoT.

4.5 Further Discussion

In the subsequent section, we further analyze our primary results to extract more insightful obser-

vations.

4.5.1 Performance of GPT labeling on best classifiers of human labels

Referring to Table 4.3, it is evident that the baseline experiment showcased the highest performance

from models, namely MLP-ADA, SVM-ADA, and TRob (Twitter Roberta) across a majority of

metrics. In Fig. 4.7, we visualize the percentage improvements in performance15 achieved by

GPT-based labeling techniques across the top 12 models that achieved the best f1-scores (f1 ≥
15improvement percentage = (GPT result - human result) * 100
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0.70) with human labels. Additionally, on the graphs, we numerically labeled the differences

in performance for f1-score and ROC AUC, two crucial metrics for evaluating an imbalanced

multi-class classification task [185, 186]. In these graphs, the positive regions signify enhanced

performance, while the negative regions reflect performance that failed to achieve the standards set

by human labeling.

When comparing with Few-shot and Zero-shot CoT, the majority of the area in the Zero-shot

category lies in the negative region, with a more substantial negative difference, reaching as low as

-40.00%. Notably, BerTweet and TRobStan stand out as the top-performing models in the Zero-

shot category, closely aligning with human labels across all metrics. In contrast, the performance

of Few-shot occupies a larger positive area for many ML models. TRobStan and BerTweet emerge

as the leading models, surpassing human labels through all the metrics, while MPNet, LR-ADA,

and MLP-SenTr are a few other models performing at par with human labels. Among these models,

BerTweet is highlighted as the best model for Zero-shot CoT labels, with only a minor decrease in

ROC AUC compared to human labels. Additionally, LR-SenTr and MPNet are two of the models

with considerable performance.

However, it is essential to note that none of the GPT-4 techniques were able to match or surpass

the human benchmark set by the top-performing three models, MLP-ADA, SVM-ADA, and TRob.

Apart from that, out of all the labeling techniques, it is noteworthy that the percentages in the gap

of recall and ROC AUC between GPT and human labels are relatively lower compared to the

other metrics. Moreover, similar to the literature that suggests MLP as one of the robust traditional

classifiers on imbalanced datasets [187], we found MLP with ADA or Sentence Transformers

produced better results when fine-tuned on human labels.

4.5.2 The Best Classifiers of GPT-based Labels

Table 4.5 lists the best-performed classifiers trained on GPT-based training labels, ordered by f1-

score. Noticeably, the LLMs, such as BerTweet, TRob, TRobSen, and TRobStan which were pre-

trained on Twitter datasets were among the top ten of all the three prompting techniques. MPNet,

SVM-ADA, and LR-ADA embedding are the other classifiers commonly performed when trained
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Figure 4.7: The percentage increase in performance compared to human-labeled data, observed

across the top-performing classifiers of human labeling.
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Figure 4.7: The percentage increase in performance compared to human-labeled data, observed

across the top-performing classifiers of human labeling (Continued).

Table 4.5: Top classifiers trained on different GPT-based labeling sets based on f1-score.

Rank Zero-shot Few-shot Zero-shot CoT
1 TRob MPNet BerTweet
2 BerTweet TRobStance MPNet
3 TRobStance LR-ADA TRobSentiment
4 SVM-ADA MLP-SenTrans SVM-ADA
5 MPNet MLP-ADA TRobStance
6 LR-ADA SVM-ADA LR-SenTrans
7 MLP-SenTrans TRob TRob
8 TRobSentiment BerTweet SVM-SenTrans
9 GB-ADA RF-ADA MLP-ADA
10 SVM-SenTrans LR-SenTrans LR-ADA

on any GPT-based labeling set. Additionally, no traditional classifiers with Glove embeddings

are within the best performances and all six combinations of them are listed within the ten worst-

performed classifiers of all three GPT-based labeling methods. Moreover, we noticed Albert as the

model gained the least performance over all the five metrics in all the three labeling approaches.
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Figure 4.8: Performance analysis of classifiers trained on GPT-4’s labeled datasets, which

outperformed ground truth labels.

4.5.3 GPT Performance above the Benchmark

In this section, we focus on highlighting the classifiers trained using GPT-4’s labeled datasets that

have exceeded the performance of ground truth labels. Based on the cells highlighted in Table 4.3,

we selected the models that excelled in at least four out of five metrics compared to the baseline.

However, with Zero-shot labeling, we observed improved performance in a maximum of three out

of five key metrics16. The percentages of performance gaps between GPT-4 techniques and human

labels of these models are presented in Fig. 4.8.

In Zero-shot method, only BerTweet satisfies this criterion. On the other hand, Few-shot label-

ing has exhibited enhanced performance across seven models, with three of them being LLMs. Out

of the seven classifiers that outperformed during Zero-shot CoT, the one using Gradient Boosting

Tree with Sentence Transformer embedding emerged as the best, surpassing human label per-

16Please note that Table II displays the values rounded up to two decimals. Hence, a highlighted cell with equal
performance in Table 4.3 can be displayed as a negative difference percentage of less than 0.5 in Fig. 4.8.
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Original
text

Republicans are the groomers.
Trying to ban books ban
abortion ban free speech by
corporations. They call this
freedom!

There's only two opinions that
matter on abortion, the patient
and the doctor..

Zero-shot CoT Explanation
The sentence is against the target topic
"legalization of abortion". The author
criticizes Republicans for trying to ban
abortion, implying a negative stance
towards the prohibition of abortion, thus
supporting its legalization.

Zero-shot CoT Explanation
The sentence does not explicitly express a
stance for or against the legalization of
abortion. However, it implies a favor
towards legalization as it suggests that the
decision should be between the patient
and the doctor, which is possible only if
abortion is legal.

Labeling
technique Label

Human Favor

Zero-shot Against

Few-shot Against

Zero-shot CoT Favor

Human Favor

Zero-shot None

Few-shot Favor

Zero-shot CoT Favor

Figure 4.9: Two examples explaining the advantage of Zero-shot CoT over the basic Zero-shot

prompting mechanism.

formance. It is worth noting that there were no classifier-embedding combinations using ADA

embedding, despite its presence among the top-performing classifiers based on human labels. Ad-

ditionally, BerTweet consistently delivered impressive results across all three GPT-4 labeling tech-

niques.

Finally, it is noteworthy to compare the models presented in this section and the best classifiers

based on human labels in Fig. 4.7 to understand how GPT-4 labeling techniques have achieved or

exceeded the high standards set by humans. While Zero-shot labeling failed to meet this threshold,

four models in the Few-shot category; BerTweet, MPNet, TRobStan, and MLP-SenTr along with

Bertweet in Zero-shot CoT, surpassed the best ground truth performances across various metrics.

4.5.4 Improvements with Zero-shot CoT Mechanism

This approach has been implemented in generating answers to arithmetic, symbolic, and logical

reasoning problems [178]. In this paper, we applied the Chain-of-Thoughts concept to comprehend

and label social media texts, which exhibit their own unique characteristics. As mentioned, this

prompting approach has the benefit of allowing the model to reassess its answer before determining

the final label. Fig. 4.9 shows a few examples of how GPT-4 has changed its final answer based on

this re-thinking strategy.

73



In both examples, Zero-shot assigns an incorrect label. In contrast, in Zero-shot CoT, it reads

its own explanation and corrects the label. Both explanations clarify how GPT-4 initially generates

incorrect answers for Zero-shot prompts. For instance, in the second explanation, it first states

that the sentence does not explicitly express a stance on the legalization of abortion, leading to

a ‘none’ label. However, it later expands its explanation, understanding an alternative viewpoint,

and correctly labels it as ‘favor’.

4.5.5 Limitations and Future Work

It is worth acknowledging that there is room for improvement in the quality of data annotated

by GPT-4 when compared to human-annotated data. This study has some limitations, including a

smaller dataset size and the use of a single dataset for stance detection, which may not fully capture

the complexities of labeling social media text in stance classification, requiring domain-specific

expertise. Furthermore, GPT models are highly sensitive to prompts and continually evolving,

hence reproducibility of results must be considered. Our future work will involve expanding to

multiple datasets and investigating the impact of the number of examples in Few-shot learning.

Additionally, a comprehensive examination of GPT model robustness will be valuable, given that

our approach employed fixed prompts and was resource-intensive due to the repeated execution of

prompts to balance robustness and creativity in label generation.

4.6 Conclusion

Annotating social media text is a challenging task for humans due to the brevity, informality, and

embedded socio-cultural opinions and perceptions in these texts where insufficient context under-

standing can result in low-quality annotations. To address this challenge, this study explores the

potential of the GPT-4 model as an effective tool for labeling social media text, selecting stance

labeling as the problem due to its relative complexity among other NLP tasks. We compare its

performance across three prompting techniques, Zero-shot, Few-shot, and Zero-shot Chain-of-

Thoughts (CoT) with human-labeled data. By observing the label distribution and the extent of
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alterations made to the original labels, it became evident that the Few-shot approach, followed by

the Zero-shot CoT method, exhibits a higher degree of similarity to human experts in the assign-

ment of labels to tweets. The overall results gained through 26 classifiers highlight the superi-

ority of human labels, achieving higher performance across numerous metrics. However, several

machine learning models fine-tuned on both Few-shot and Zero-shot CoT labels demonstrate en-

hanced or competitive individual performance, showcasing their ability to match human annotators

in this task. Remarkably, we noticed that BerTweet has exhibited outstanding performance across

all three labeling techniques. The Large Language Models, pre-trained on Twitter data, such as

BerTweet, Twitter Roberta (TRob), Twitter Roberta Stance (TRobStan), and Twitter Roberta Sen-

timent (TRobSen), generally yield better results when fine-tuned on GPT-4-based labels or human

labels. Furthermore, Zero-shot CoT demonstrated its strength compared to basic Zero-shot meth-

ods in labeling social media text for stance classification. Moreover, it competes effectively with

the resource-intensive Few-shot approach, highlighting its capacity to produce reliable results with-

out relying on labeled data samples. We anticipate that our findings will shed light on the utility of

the GPT-4 model, for automating data annotation in social media text and inspire future research

aimed at improving the quality and dependability of generated data.
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Chapter 5

Conclusion
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In summary, this work aims to harness the potential of generative AI for overcoming labeled data

challenges in social media NLP. The work explores novel approaches to augmenting and annotating

data, addressing the limitations of traditional methods.

Identification of Wellness Dimensions (WD) in self-narrated text is crucial, especially amid on-

going health crises. By leveraging generative NLP models, specifically ChatGPT, this novel data

augmentation approach enhances the pre-screening task of classifying WD of humans. The results

of this study showcase significant improvements, with up to a 13.11% increase in F-score and a

15.95% boost in Matthew’s Correlation Coefficient. The gpt-3.5-turbo model outperforms base-

lines, displaying a 7.81% improvement in testing accuracy over the best traditional augmentation

method, which is Backtranslation. This study not only enhances the robustness of NLP models but

also contributes to mental health analysis through improved classification.

Data annotation in NLP is a time-consuming task, particularly challenging for social media

texts due to their brevity and varying human perceptions. The second study of this thesis explores

GPT-4’s potential as a social media text annotator for a stance classification task. While GPT-

4 demonstrates promising results through Few-shot and Zero-shot Chain-of-Thoughts prompting

methods, it falls short of surpassing models fine-tuned on human labels. However, the Zero-shot

Chain-of-Thoughts emerges as an effective and resource-efficient strategy for aspect-based social

media text labeling. While addressing the challenges of data annotation, this study also contributes

to the stance classification problem by constructing a novel dataset tailored to the nuances of stance

identification. Furthermore, this work delves into prompt engineering, experimenting with various

prompt-based learning techniques to enhance the effectiveness of the data labeling and classifica-

tion process.

These findings underscore the potential of generative AI to enhance the efficiency and robust-

ness of NLP models, opening new avenues for social media text data augmentation and annotation.

In future studies, there is an opportunity to enhance the methodology and outcomes of both investi-

gations. To improve robustness and reproducibility, future studies could expand on multiple social

media datasets for data augmentation and annotation. Considering variations in refining prompt

engineering strategies, including prompt designs, and parameters is also a possible pathway to ex-
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periment for enhancing performance. Furthermore, investigating other related techniques, such as

leveraging ensemble methods, and active learning could offer alternative pathways for improving

the overall quality and reliability of generative AI-based data annotation. The consideration of

these aspects in future studies will contribute to the continuous refinement and applicability of the

proposed approaches.
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