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ABSTRACT 

Diameter at Breast Height (DBH) is the measure of the diameter of a tree stem 1.3 

meters above the ground. DBH is a key variable measured in Forest Resource 

Inventories (FRIs) and is traditionally measured manually, which is labour-intensive. 

The 2020 Apple iPad Pro 12th Generation is a lightweight, consumer-level tablet with an 

integrated LiDAR scanner with a maximum range of 5 m and a positional accuracy of 

±1 cm. The overall objective was to examine the feasibility of estimating DBH in boreal 

forests with iPad Pro LiDAR. A scoping study was conducted in a plantation forest 

(48.37°N, 89.39°W) near Thunder Bay, ON, Canada, with the specific objective of 

determining an optimal method for DBH estimation with the iPad Pro. Different 

combinations of scanning methods (i.e., circular, figure-8, transect), numbers of stem 

cross-sections (i.e., one or five), sizes of stem cross-sections (i.e., 4 or 10 cm), and curve-

fitting formulas (i.e., Pratt’s circle fit, Taubin’s circle fit, Taubin’s ellipse fit, Szpak’s 

ellipse fit) were tested to identify the combination producing the most accurate 

estimates of DBH. The optimal method was the circular scanning pattern with a single 4 

cm cross-section and a combination of circle- and ellipse-fitting formulas (RMSE = 1.1 

cm; 6.2%). The second specific objective was to determine the accuracy of DBH values 

estimated with the optimal method in natural boreal forests. DBH was estimated for 133 

trees on 15 sites in northern Ontario, Canada, representing a range of natural boreal 

forest site conditions. A secondary objective was to determine if the tested stand- (i.e., 

species composition, age, density, understory density) or tree-level attributes (i.e., 

species, actual DBH) significantly impacted the accuracy of estimated DBH values. An 

RMSE of 1.5 cm (8.6%) was achieved. Estimated DBH was within 1 cm of actual DBH 

for 78 of 133 (59%) measured trees. Stand age had a large effect (> 0.15) on the accuracy 

of estimated DBH values, while density, understory density, and actual DBH had 

moderate effects (0.05-0.15). In both studies, Inertial Measurement Unit (IMU) and 

positional accuracy errors with the iPad Pro LiDAR scanner limited the accuracy of 

DBH estimates. Future studies should incorporate a greater number of natural boreal 

forest sites to better understand the impacts of different stand and tree attributes on the 

accuracy of estimated DBH values. Future studies should also compare the accuracy of 

DBH values estimated from the iPad Pro and those estimated from traditional MLS and 

TLS for the same sites to identify the trade-off between device cost, device size, and 

accuracy. However, the scanning range of the device limits the variables that can be 

estimated from LiDAR data, rendering it unsuitable for use in FRIs until the scanning 

range is improved. 
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CHAPTER 1: INTRODUCTION 

Diameter at Breast Height (DBH) is the measure of a tree stem 1.3 m above the 

ground, and is considered a key attribute that is measured in Forest Resource 

Inventories (FRIs) (Chiappini et al. 2022). DBH is traditionally measured using 

implements such as diameter tape or callipers, which are time-consuming and thus 

expensive (Aijazi et al. 2017). As FRIs have evolved alongside forest management policy 

and legislation, the quantity and depth of information measured in FRIs have increased 

(Bilyk et al. 2021). Data summarized in FRIs represent the foundational information 

used to guide forest management planning and implementation, as well as helping to 

understand changes in forest landscapes over time (White et al. 2016). As a result, 

accurate and timely FRIs are essential to monitor complex and dynamic landscapes. In 

addition to DBH, FRIs also measure or calculate (based on field measurements) other 

variables such as soil conditions, stand understory vegetation species composition, stem 

density, and stand volume (OMNRF 2015). In Ontario, this is done to determine the 

suitability of a site for harvest and to identify specific methods of harvesting and 

regeneration best-suited for the site (OMNRF 2015). 

Since the advent of Light Detection and Ranging (LiDAR) technologies, 

numerous studies have investigated different methods of using LiDAR to measure 

forest parameters (Blanco et al. 2015; Côté et al. 2011; Lovell et al. 2003; Woods et al. 

2011). Airborne Laser Scanning (ALS) from manned aircrafts and ALS from Unmanned 

Aerial Vehicles (UAVs) are recognized as more efficient than terrestrial systems in 

terms of time required to create dense point clouds (Brede et al. 2017). However, unlike 

terrestrial systems, ALS cannot provide below-canopy stem profiles with a high enough 

point density to allow estimation of DBH (Woods et al. 2011; Dassot et al. 2011; Hyyppä 

et al. 2011). UAV LiDAR addresses many of the problems with ALS by capturing a high 

density of points in a versatile, customizable platform that can be flown above or below 
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canopy, albeit with lower point densities than most Terrestrial Laser Scanning (TLS) 

systems (Brede et al. 2017). Therefore, TLS may be best suited for estimating DBH. TLS 

was first used for forest inventory by Hopkinson et al. (2004), who accurately measured 

or derived stem location, tree heights, DBH, site density, and timber volume from point 

cloud data. Bauwens et al. (2016) used TLS to accurately estimate other forest inventory 

metrics, including basal area, gap fraction, and Leaf Area Index (LAI), and confirmed 

that it is more time efficient than manual measurements. A key finding for accurate 

estimation of DBH from LiDAR data have been the necessity to capture tree stems from 

multiple perspectives due to the irregular shapes of tree stems (Pfeifer and 

Winterhalder 2004; Hunčaga et al. 2020). Other studies have shown the use of least-

squares curve-fitting formulas (circle- and ellipse-fit) to produce highly accurate 

estimates of DBH (Wang et al. 2021; Tatsumi et al. 2021; Gülci et al. 2023).  

Tree stem cross-sections were first modelled by Pfeifer and Winterhalder (2004), 

who used free-form b-spline formulas with mean square error to fit irregular curves to 

point cloud data. Later, Hopkinson et al. (2004) estimated DBH with a least-squares 

regression cylinder fit, applied to a single three-dimensional cross-section of each stem 

1.25-1.75 m above ground. Pfeifer and Winterhalder (2004) and other more recent 

studies have suggested that point cloud data should be acquired from multiple 

perspectives and capture much of the tree stem for accurate cross-section modelling due 

to tree stems' irregular, uneven shapes (Hunčaga et al. 2020; Wang et al. 2022). Recently, 

Liang et al. (2018) found in a benchmarking study that using multiple scans of a forest 

plot significantly improved the accuracy of forest metrics estimated from TLS data. 

Despite the high accuracy of DBH estimations derived from TLS reported in recent 

studies, several factors, including device costs, have prevented these systems from 

being widely integrated in forest inventories (Calders et al. 2020; Luetzenburg et al. 

2011).  
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Since the advent of the first terrestrial LiDAR scanners, device weight and size 

have decreased while maintaining a high accuracy of DBH estimates from acquired 

point cloud data (Liu et al. 2018). Modern Mobile Laser Scanners (MLS) weigh less than 

1 kg, although these devices often lack durability for continuous use in remote forest 

environments (Liu et al. 2018).  

In 2020, Apple released the iPad Pro 4th Generation, a consumer tablet with an 

integrated single-photon receptor LiDAR scanner with a maximum scanning range of 

5m and a point accuracy of ±1 cm (Apple 2020; Gollob et al. 2021). If this device can be 

used to reliably estimate forest attributes common in forest inventories, such as stem 

location, DBH, or basal area, this would offer an improvement in efficiency and a 

reduction in operating costs for the undertaker of the inventory, relative to TLS or 

manual measurements. As shown in Table 1.1, this device has been used to estimate 

DBH in natural, urban and plantation forests with an accuracy that varies between 

10.30% (rRMSE) and 27.00% (rRMSE). 
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Table 1.1.  RMSE (cm) and rRMSE (%) values recorded in previous studies that used an 

iPad Pro LiDAR scanner to estimate DBH. 

RMSE 

(cm) 

rRSME 

(%) 

Curve-Fitting 

 Method 

Forest Type Location Species Authors 

2.78 7.00 Circle Fit Urban Park Zvolen, Slovakia N/A Wang et al. 

(2021) 

2.30 10.50 Circle Fit Natural and 

Plantation 

Hokkaido, Japan Coniferous and 

Deciduous 

Tatsumi et al. 

(2021) 

3.13 10.50 Ellipse Fit Research 

Forest 

Forchtenstein, 

Austria 

Coniferous and 

Deciduous 

Gollob et al. 

(2021) 

2.70 10.80 RANSAC 

Algorithm 

Plantation Cesane Forest, 

Italy 

Pinus nigra J.F. 

Arnold and 

Fraxinus ornus L. 

Chiappini et 

al. (2022) 

2.33 11.66 Circle Fit University 

Campus 

Kahramanmaraş, 

Türkiye 

Pinus brutia Ten. 

and Platanus 

orientalis L. 

Gülci et al. 

(2023) 

2.82 12.82 Manual Plantation Thunder Bay, 

Canada 

Pinus resinosa Wang et al. 

(2022) 

5.18 13.03 Circle Fit Urban Park Zvolen, Slovakia N/A Wang et al. 

(2021) 

4.10 16.30 Circle Fit Plantation Cesane Forest, 

Italy 

Pinus nigra and 

Fraxinus ornus 

Chiappini et 

al. (2022) 

6.29 21.23 Cylinder Fit Research 

Forest 

Forchtenstein, 

Austria 

Coniferous and 

Deciduous 

Gollob et al. 

(2020) 

5.90 26.82 Manual Plantation Thunder Bay, 

Canada 

Pinus resinosa Wang et al. 

(2022) 

6.80 27.00 Voxelization Plantation Cesane Forest, 

Italy 

Pinus nigra and 

Fraxinus ornus 

Chiappini et 

al. (2022) 

Despite previous studies demonstrating that LiDAR can be used to accurately 

estimate DBH, LiDAR has not replaced manual methods of DBH mensuration in most 

forest inventories due to several factors, such as high device costs (Calders et al. 2020; 

Luetzenburg et al. 2021). 
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In 2020, Apple (Cupertino, CA, USA) released the 12th Generation iPad Pro, a 

consumer tablet with an integrated single-photon receptor LiDAR scanner, with a 

scanning range up to 5 m and a positional accuracy (for points in acquired point clouds) 

of ±1cm (Apple 2020; Gollob et al. 2021). Several studies have tested this device for DBH 

estimation in a range of forest environments, such as plantation, urban, or natural 

forests (Chiappini et al. 2022; Wang et al. 2021; Tatsumi et al. 2021; Gülci et al. 2023; 

Gollob et al. 2021; Wang et al. 2022). However, the point cloud acquisition and 

processing methods, as well as the methods of extracting DBH from the acquired point 

clouds, vary between these previous studies. As the studies took place in a range of 

environments, direct comparisons of results to identify an optimal method for DBH 

estimation with iPad Pro LiDAR are not readily available. Additionally, no studies to 

date have compared different methods of acquisition, processing, and DBH estimation 

concurrently on a single site.  

As Table 1.1 shows, studies have taken place in urban and plantation forests in 

various forest regions. Differences in accuracies between these studies stem from the 

use of different scanning applications used to acquire point cloud data, different 

methods of scanning visited sites (Individual trees, static whole site, mobile scanning), 

the use of different software and tools to process point clouds to estimate DBH, 

different site conditions (Slope, understory vegetation), and different species of tree 

with varying conditions of bark being scanned. These studies mainly scanned multiple 

trees at once while moving, identified ground features to locate breast height, and 

applied a curve-fitting algorithm to a stem cross-section to estimate DBH. While circle-

fitting algorithms were most commonly used and produced the most accurate results, 

the accuracy of ellipse-fitting formulas demonstrated by Gollob et al. (2021) suggests 

additional investigation is worthwhile.  

Among already tested TLS scanning patterns- circular (Figure 1.1a), figure-8 

(Figure 1.1b;), and transect (Figure 1.1c) provided promising results. For example, the 
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circular pattern was implemented for DBH estimation using the iPad Pro 12th 

Generation and a ZEB HORIZON Personal Laser Scanner (PLS) and achieved 

considerable accuracy (Gollob et al. 2021).

 

Figure 1.1. Data acquisition patterns and walking paths (a) circular; (b) figure-8; 

and (c) transect scanning patterns. The walking path for each scanning method 

is displayed in red and the scanning direction is indicated with a blue arrow. 

The circular scanning pattern involved walking each tree stem's circumference to 

create complete cross-sections of the stem (Figure 1.1 (a)). The figure-8 scanning pattern 

involved walking along the inside axes and half of the outside circumference of the plot, 

to ensure as much of each tree stem was captured as possible while prioritising the 

speed of acquisition (Figure 1.1(b)). The transect scanning method involved walking 

both axes of the plot twice, scanning perpendicularly to the plot in opposite directions 

each time (Figure 1.1(c)). The circular pattern prioritised detailed data, the transect 

method favoured acquisition speed, and the figure-8 pattern sought to balance both. 

The Cloth Simulation Filtering (CSF) plugin for CloudCompare, developed by 

Zhang et al. (2016), can be used to identify ground features in point clouds and 

interpolate the ground surface for areas without data. This algorithm is commonly used 

to segment ground features within LiDAR datasets (Liu et al. 2018; Lee et al. 2020; Yang 

et al. 2020; Yu et al. 2022).  
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There are many different curve-fitting algorithms capable of estimating DBH, 

four of which were examined in this study. For ‘Pratt's direct-least-squares circle fit’ and 

‘Taubin's direct-least-squares circle fit’, the points are assumed to represent a perfect 

circle (Chernov 2022a; Chernov 2022b; Pratt 1987; Taubin 1991). Circle-fitting 

algorithms have been found to produce very accurate estimates of DBH from iPad Pro 

LiDAR data in previous studies (Wang et al. 2021; Tatsumi et al. 2021; Gülci et al. 2023). 

In ‘Taubin's direct-least-squares ellipse fit’ and ‘Szpak's ellipse fit with Sampson 

distance and modified Levenberg-Marquardt step’, the points are assumed to represent 

an ellipsoid (Taubin 1991; Chernov 2022c; Szpak 2016; Szpak et al. 2015). While 

diameter tapes and calipers used to estimate DBH manually assume tree stems to 

represent perfect circles, the irregular nature of tree stems curve leads to an over-

estimation of actual diameter using circles to model the tree stem (Hunčaga et al. 2020; 

Moran and Williams 2002). Ellipse fitting algorithms have been used to produce 

estimates of DBH with accuracies comparable or superior to those estimated with circle-

fitting formulas (Gollob et al. 2021). The formulas developed by Pratt (1987) and Taubin 

(1991) are algebraic fitting formulas, which plot circles or ellipses of radius R around the 

centre point of the dataset (a, b) while minimizing the distance from each point in the 

dataset to the plotted curve; through a least-squares method (Chernov and Lesort 2005). 

The centre points for each fitted curve were calculated as the average X and Y values for 

the dataset (Pratt 1987; Taubin 1991). To solve the least-squares method, it is necessary 

to minimize the following non-linear Gradient-weighted Algebraic Fit (GRAF; Equation 

1.1) (Chernov and Lesort 2005; Turner 1974).  

𝐹4(𝑎, 𝑏, 𝑅) = ∑
[(𝑥𝑖−𝑎)2+(𝑦𝑖−𝑏)2−𝑅2]2

(𝑥𝑖−𝑎)2+(𝑦𝑖−𝑏)2
𝑛
𝑖=1             (1.1) 

Where a, b, represent the coordinates of the centre of the fitted curve, x and y 

represent the X and Y coordinates of point i in the stem shapefile, and R is the radius.  
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The GRAF is approximated differently in Taubin’s and Pratt’s approaches 

(Chernov and Lesort 2005). In Pratt (1987), the GRAF is simplified by assuming that 

(𝑥𝑖 − 𝑎)2 + (𝑦𝑖 − 𝑏)2 ≈ 𝑅2 as follows (Equation 1.2): 

𝐹4
𝑖(𝑎, 𝑏, 𝑅) = 𝑅−2 ∑ [𝑛

𝑖=1 (𝑥𝑖 − 𝑎)2 + (𝑦𝑖 − 𝑏)2 − 𝑅2]2        (1.2) 

In Taubin (1991), the GRAF is approximated by averaging the GRAF 

denominator over 1 ≼ 𝑖 ≼ 𝑛 (Chernov and Lesort 2004) (Equation 1.3):  

𝐹4
𝑖𝑖(𝑎, 𝑏, 𝑅) = (

1

∑(𝑥𝑖−𝑎)2+(𝑦𝑖−𝑏)2)  x ∑ [(𝑥𝑖 − 𝑎)2 + (𝑦𝑖 − 𝑏)2 − 𝑅2]2𝑛
𝑖=1   (1.3) 

Pratt’s approximation better handles datasets where the full circumference is not 

present, while Taubin’s formula is seen as faster and more accurate if the full 

circumference is present (Chernov and Lesort 2005). Formulas 1 and 2 both fit curves to 

a data set of point coordinates using the least-squared method, which has previously 

been used to estimate DBH (Chiappini et al. 2022; Gollob et al. 2021; Wang et al. 2021; 

Tatsumi et al. 2021; Gülci et al. 2023). 

Szpak’s ellipse fit is an iterative geometric fit that uses an implicit barrier to 

separate feasible elliptic regions and infeasible hyperbolic regions, and uses a direct 

algebraic ellipse fit as the starting point (Szpak et al. 2015). The adapted Levenberg-

Marquardt algorithm used by Szpak’s ellipse fit searches for a solution by using the 

implicit barrier to guide subsequent attempts at plotting an ellipse towards the optimal 

solution (Szpak et al. 2015). This formula assumes any noise within the dataset (i.e., 

points not directly on the path of the optimal solution) follow a normal, Gaussian 

distribution about the optimal ellipse (Szpak et al. 2015). A disadvantage of this 

algorithm is that the fitting results may be depreciated ellipses or degenerated 

parabolas if the dataset has a large proportion of noise or is limited to a small area of the 

curve (Szpak et al. 2015). However, a comprehensive study which simultaneously 
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examines the impacts of different combinations of scanning patterns, processing 

methods, and curve-fitting formulas to estimate DBH is still needed.  

If the iPad Pro 12th Generation LiDAR scanner can be used to accurately and 

efficiently estimate DBH across a broad range of natural boreal forest site conditions, 

undertakers of forest inventories and forest managers could benefit. The incorporation 

of the optimal method into forest resource inventories in place of manual mensuration 

of DBH would offer an increase in the efficiency of conducting forest inventories, as 

well as a reduction in the cost of collecting necessary data.  

This thesis include two data chapters.  Chapter 2 is titled: Estimating Tree 

Diameter at Breast Height (DBH) Using iPad Pro Light Detection and Ranging 

(LiDAR) Sensor in Boreal Forests.  The chapter summarizes a scoping study designed 

to compare different point cloud acquisition and processing methods developed based 

on existing literature to evaluate combinations of these options on the same sites 

directly and create an optimized workflow for the future study intended to carry out in 

a natural forest environment.  

The results from this study has been published in Canadian Journal of Remote Sensing. 

Guenther, M.; Heenkenda, M.K.; Leblon, B.; Morris, D.; Freeburn, J. Estimating Tree 

Diameter at Breast Height (DBH) Using iPad Pro LiDAR Sensor in Boreal Forests. 

Canadian Journal of Remote Sensing 2024, 50(1), 2295470, 

doi:10.1080/07038992.2023.2295470. 

Chapter 3 is titled: Tree Diameter at Breast Height (DBH) Estimation Using an iPad 

Pro LiDAR Scanner: A Case Study in Boreal Forests, Ontario, Canada.  The chapter 

summarizes a study designed to examine a range of natural boreal forest sites to 

investigate the feasibility of using the optimal methodology identified in Chapter 2 to 

estimate DBH in natural forest conditions. 

The results from this study have been published in Forests. 
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CHAPTER 2: ESTIMATING TREE DIAMETER AT BREAST HEIGHT (DBH) USING 

IPAD PRO LIGHT DETECTION AND RANGING (LIDAR) SENSOR IN BOREAL 

FORESTS1 

2.1. STUDY INTRODUCTION 

As identified in the introduction (Chapter 1), no previous studies have 

comprehensively tested different combinations of point cloud acquisition and 

processing methods to identify the combination producing the most accurate estimates 

of DBH. Hence, this study is intended as a scoping study to compare different point 

cloud acquisition and processing methods developed based on existing literature to 

evaluate combinations of these options on the same sites directly and create an 

optimized workflow for the future study intended to carry out in a natural forest 

environment.  

Our study expands upon Wang et al. 2022, who applied a singular, static scan 

and manual data processing to data acquired with an iPad Pro 12th Generation to 

estimate DBH in the 25th Sideroad research plantation forest near Thunder Bay, ON, 

Canada.  The specific objectives were: (1) compare different scanning patterns with the 

iPad Pro for acquiring point cloud data for estimating DBH; (2) explore various data 

processing methods to extract DBH from the point cloud; and (3) identify the 

combination of acquisition and processing methods providing the most accurate 

estimates of DBH; and, (4) recommend a procedure for using iPad Pro LiDAR to 

estimate DBH. 

 
1 This chapter was published as Guenther, M.; Heenkenda, M.K.; Leblon, B.; Morris, D.; 

Freeburn, J. Estimating Tree Diameter at Breast Height (DBH) Using iPad Pro LiDAR 

Sensor in Boreal Forests. Canadian Journal of Remote Sensing 2024, 50(1), 2295470, 

doi:10.1080/07038992.2023.2295470. 
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2.2. MATERIALS AND METHODS 

2.2.1. Study Area 

The study was conducted in a research plantation forest, known as the 25th 

Sideroad Spacing Trial, near Thunder Bay, Ontario (48.37°N, 89.39°W) (Appendix 1). 

The Ontario Ministry of Natural Resources and Forestry (OMNRF) established the 

plantation in 1950 and has continuously managed the site (McClain et al. 1994). No 

stand tending operations have taken place. The trial comprises several blocks of 

different tree species, planted at different initial spacing distances. Three circular plots 

with a diameter of 10m were selected for this study, with the following characteristics: 

(a) Plot ‘Pr’, Red Pine (Pinus resinosa) with 1.8 m spacing, planted with a density of 3082 

stems/ha; (b) Plot ‘Sb’, Black Spruce (Picea mariana) with 3.6 m spacing, planted with a 

density of 771 stems/ha; and (c) Plot ‘Sb2’, Black Spruce (Picea mariana) with 1.8 m 

spacing, planted with a density of 3082 stems/ha. For our study, we only used data 

acquired for the plots marked with a gold star in Appendix 1. Below, Figure 2.1 shows 

the site conditions for plots Pr (Figure 2.1(a)), Sb (Figure 2.1(b)), and Sb2 (Figure 2.1(c)).  

 
Figure 2.1. Images of the stands where plots Pr (a), Sb (b), and Sb2 (c) were 

performed. 
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There was no understory or ingrowth in the Pr and Sb sites, while there was 

some understory and ingrowth in the Sb2 site (Figure 2.1(c)). 

2.2.2. Data Acquisition 

Plot centres were randomly located within each selected stand, and marked 

using a metre stick with orange flagging tape. These plots were 10 m in diameter, 

corresponding to an area of 78.54 m2. Each tree in a plot was assigned a number, ‘Tree 1’ 

being the tree closest to the plot centre bearing northeast. Tree position within each plot 

was recorded manually with a compass and measuring tape as the distance (m) and 

bearing (degrees) from the plot centre to the nearest point on each tree stem. The DBH 

of each tree in each plot was then measured manually (with a diameter tape) for 

validation. LiDAR data was acquired for each plot using the iOS application Zappcha 

with an iPad Pro 12th Generation LiDAR scanner, using three different walking patterns 

(Circular, Figure-8, Transect) while scanning (Apple 2020; Veesus 2022). The LiDAR 

device was in continuous motion for the tested scanning patterns while capturing data. 

As the circular scanning pattern captured many points, leading to large file sizes, 

it was necessary to divide each plot into four quadrants (Northeast, Southeast, 

Southwest, Northwest) and capture individual point clouds for each quadrant. Among 

the point cloud capture methods available in the Zappcha app, the ‘continuous 

scanning’ option was used for this project as this option allowed the greatest maximum 

scanning range (5 m) (Veesus 2022). The other methods available (burst scan, timed 

scan) did not capture data continuously, and did so at a maximum scanning range of 2 

m. 

Since the visited stands were established in 1950, tree mortality has resulted in 

stand densities differing from the initial stand densities. As a result, the observed stand 

density (stems/ha) was calculated using the number of trees in each plot. 
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2.2.3. Point Cloud Processing 

Raw point clouds acquired at the site were saved to the Zappcha Cloud service 

and later imported to the CloudCompare software for further processing (Veesus 2022; 

Girardeau-Montaut 2022). 

The point clouds were projected using ArcGIS Pro, and areas of the point cloud 

that fell outside plot boundaries were removed (ESRI 2023). The Point clouds acquired 

with the circular scanning pattern for each quadrant of a plot were combined. Outliers 

were removed from each point cloud in CloudCompare software with the 'Statistical 

Outlier Removal (SOR)' tool (Girardeau-Montaut 2022). The SOR tool calculates the 

mean distance from each point in a point cloud to the nearest k neighbours and 

preserves points within a range of n standard deviations plus the mean neighbour 

distance for the dataset (k=6 and n=1) (Girardeau-Montaut 2022). CSF was used to 

identify the ground elevation of each site, and extract cross-sections of the point cloud 

centred 1.3 m above the identified ground elevation with thicknesses of both 4 cm and 

10 cm (Zhang et al. 2016). These sizes were selected to account for an error of up to 1 cm 

in estimating the breast height elevation due to the cloth mesh resolution and 

classification threshold, as well as to evaluate the accuracy of different cross-section 

sizes. 

For the single slice method, point cloud cross-sections were centred 1.3 m above 

ground. Based on the methods used by Liu et al. (2021), DBH was also estimated using 

the average diameter of each stem at multiple heights. The cross-sections used for this 

method were centred at 0.7 m, 1.0 m, 1.3 m, 1.6 m, and 1.9 m above the ground. The 

cross-sections at 0.7 m and 1.9 m were considered a pair, as were those at 1.0 m and 1.6 

m. For both single- and multiple-cross-section methods, cross-sections of 4 cm and 10 

cm thickness were extracted, and rasterized with a spatial resolution of 0.05 cm. These 

rasters showed a circular/elliptic pattern representing individual trees. For further 

processing, these raster files were converted to point shapefiles.  



15 

 

2.2.4. Extracting Cross-Sections 

Points representing individual trees in the shapefiles were identified and 

segmented using density-based clustering (DBSCAN) in ArcGIS Pro, which can detect 

clusters of points with arbitrary geometries in two or more dimensions (ESRI 2023; 

Wang et al. 2019). Each unique cluster identified by this tool was segmented into a 

separate shapefile (ESRI 2023). Figure 2.2 shows a summary of this process for plot ‘Sb', 

showing a point cloud acquired with the circular scanning method and clipped to plot 

boundaries (Figure 2.2a), the non-ground features point cloud with points in a single 4 

cm cross-section at breast height highlighted in black (Figure 2.2b), as well as the 

DBSCAN output identifying unique clusters of points in each cross-section, with each 

cluster shown in a unique colour and representing a single tree (Figure 2.2c).  

 

Figure 2.2. Processing summary for Plot ‘Sb’: (a) point cloud acquired with 

circular scanning pattern; (b) filtered non-ground point cloud with single 4 cm 

cross-section at breast height highlighted in black; and (c) clusters of points 

representing individual trees identified by HBDSCAN, with each colour 

representing a different tree. 
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In order to pair the shapefiles created for each tree cross-section with the 

validation dataset for that tree, stem maps were created showing the position of each 

tree stem within each plot. These stem maps scaled tree stems according to the 

measured DBH for, as well as numbering each tree to facilitate pairing with the 

shapefile representing that tree. Figure 2.3 shows the stem map created for Plot ‘Pr’ in 

green, as well as a single 4 cm cross-section acquired with the circular scanning pattern 

for each tree.  

 

Figure 2.3. Stem map for Plot ‘Pr’ (Green) and the DBSCAN output showing 

how the validation data was paired to the corresponding tree shapefile. 

2.2.5. Estimating DBH 

X and Y coordinates for each point in the shapefiles were appended to the file 

attribute tables for the shapefiles representing individual trees. For the multiple slice 
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methods, if no points for a tree were present at a given height, the shapefile 

representing cross-section at the paired height was removed to minimize the estimate 

bias. The attribute table for each tree shapefile was exported to (MathWorks 2022). 

Four algebraic curve-fitting formulas were applied to the X and Y coordinates of 

the points in each tree shapefile to estimate the diameter of the cross-section. The 

diameters estimated with each of the four fitting functions were averaged for each tree. 

For the multiple slice methods, DBH was calculated as the average of the diameter 

estimates for all cross-sections of a given tree. If no points were present for a given tree 

at a certain height, the DBH estimate from the paired height were discarded to prevent 

skewing estimates.  

2.2.6. Accuracy Assessment 

The estimated DBH values for each tree were compared with the field-measured 

DBH using two metrics. Absolute error (Difference between field-measured DBH and 

estimated DBH in cm) was calculated for each tree. Root Mean Square Error (RMSE) 

and relative Root Mean Square Error (rRMSE; RMSE as a percentage of the mean DBH 

value of the individual plot) were calculated for each unique combination of plot, 

scanning pattern, cross-section count, cross-section size, and curve-fitting formula. 

Exploratory data analysis was done for individual tree absolute error values 

(LiDAR estimated DBH and field measurements) to check whether they were normally 

distributed. As they were not normally distributed, Kruskal-Wallis tests were 

performed to test if scanning pattern, cross-section count, cross-section size, or curve-

fitting formula had statistically significant impacts on individual tree absolute error. 

Tests were also performed for each combination of two or more of the above 

independent variables. This also quantified the significance of each independent 

variable or pairwise interaction between two or more independent variables. 

Additionally, a Kruskal-Wallis test was performed to determine the significance of the 
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relationship between stand density (stems/ha) and estimate accuracy (Individual tree 

absolute error). 

2.3. RESULTS 

2.3.1. Validation Data 

Table 2.1 presents the number of trees measured in each plot, as well as the initial 

and observed site densities and the mean measured DBH for each plot.  

Table 2.1.  Characteristics of each field plot. 

Plot Number of 

Trees  

Initial Stand 

Density (stems/ha) 

Observed Stand Density 

(stems/ha) 

Mean Measured 

DBH (cm) 

Pr 22 3082 2801 21.71 

Sb 4 3082 2037 25.53 

Sb2 16 771 509 14.69 

 

2.3.2. DBH Estimation 

Table 2.2 displays the minimum, mean, and maximum estimated DBH values 

(averaged for each combination of scan pattern, cross-section size, cross-section count, 

and curve-fitting formula) for each plot, as well as the mean measured DBH. This 

highlights the range of deviation about the mean measured DBH for each plot.  
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Table 2.2.  Mean measured DBH and minimum, mean, and maximum estimated DBH 

(cm) for each plot with associated estimation methods. 

Plot Number 

of Trees 

Mean measured 

DBH (cm) 

Estimated DBH (cm) 

Minimum Mean Maximum 

Pr 22 21.71 15.93 

Transect scan, multiple 

4cm CS, Taubin’s direct 

ellipse fit 

20.88 23.01 

Transect scan, 

single 4cm CS, 

Pratt’s direct circle fit 

Sb 4 25.53 22.55 

Figure-8 scan, single 

10cm CS, Szpak’s ellipse 

fit 

25.28 28.01 

Transect scan, multiple 

4cm CS, Pratt’s direct 

circle fit 

Sb2 16 14.69 

 

9.04 

Figure-8 scan, single 4cm 

CS, Taubin’s direct ellipse 

fit 

14.08 16.86 

Circle scan, multiple 

10cm CS, Pratt’s direct 

circle fit 

 

Table 2.3 presents the distribution of the individual tree absolute error values by 

scanning pattern, showing the minimum, 1st quartile, median, mean, 3rd quartile, and 

max absolute errors (cm) achieved by any processing method. 

Table 2.3.  Distribution of absolute error (cm) values by scanning pattern. 

Scanning Pattern Min. 1st Qu. Median Mean 3rd Qu. Max 

Circular 0.00 0.53 1.05 1.51 1.80 10.26 

Figure-8 0.16 0.90 1.86 2.84 3.63 24.32 

Transect 0.00 0.79 2.01 3.16 4.33 27.52 

 

2.3.3. Evaluating the Significance of Different Experimental Factors 

Table 2.4 presents the results of Kruskal-Wallis tests that were used to determine 

the level of statistical significance that the tested scanning patterns, cross-section counts, 
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cross-section sizes, and curve-fitting formulas had on DBH estimate accuracy 

(individual tree absolute error). Results were reported individually for each 

independent variable and for interactions between two or more independent variables 

with a moderate or significant magnitude of effect.  

Table 2.4.  Kruskal-Wallis Test results testing the significance of Scanning Pattern, 

Cross-Section Size, Cross-Section Count, and Curve-Fitting Formula on individual tree 

absolute error.   

Factor(s) Df Test 

Statistic 

p-Value Effect 

Size 

Magnitude 

Scanning pattern 2 149.12 4.16-33 0.075 Moderate 

Cross-Section Size 1 3.97 0.05 0.002 Small 

Cross-Section Count 1 12.89 3.31-04 0.006 Small 

Fitting Formula 4 29.78 5.43-06 0.013 Small 

Scan pattern x CS Size 5 162.04 3.64-33 0.080 Moderate 

Scan pattern x CS Count 5 188.48 8.26-39 0.094 Moderate 

Scan Pattern x Fitting Formula 14 213.83 8.13-38 0.103 Moderate 

Scan pattern x CS Size x CS Count  11 204.28 9.64-38 0.099 Moderate 

Scan pattern x CS Size x Fitting Formula 29 229.01 5.69-33 0.104 Moderate 

Scan pattern x CS Size x CS Count x Fitting 

Formula 

59 282.97 5.40-31 0.118 Moderate 

*CS= Cross-Section. 

The results highlight that the scanning pattern had a moderate effect on 

individual tree absolute error. Cross-section size, cross-section count, and fitting 

formula had small effects on the accuracy of the DBH estimates. All two- or three-way 

interactions involving scan patterns also had moderate magnitudes of effect. As the 

scanning pattern was the only independent variable to have a moderate effect on 
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absolute error on its own, a Dunn-Bonferroni test was conducted to determine the 

significances of differences between scanning methods. 

Table 2.5.  Dunn-Bonferroni test results showing statistical significances of differences 

between scanning methods. 

Group 1 Group 2 Statistic Adjusted p-Value Adjusted Significance 

Circle Figure-8 8.53 4.29-17 < 0.001 

Circle Transect 11.30 1.09-29 < 0.001 

Figure-8 Transect 0.51 0.61 Not Significant 

 

As Table 2.5 shows, the circular scanning pattern resulted in estimate accuracies 

significantly different from those of both the figure-8 and transect scanning patterns, 

while the figure-8 and transect scanning patterns did not significantly differ in their 

effects on estimate accuracy.  

In addition to the tested independent variables, a Kruskal-Wallis test was also 

performed to test the significance of observed stand density on estimated DBH 

accuracy.  

Table 2.6.  Kruskal-Wallis results showing the significance of stand density on 

individual tree absolute error. 

Factor Df Test Statistic p-Value Effect Size Magnitude 

Stand Density 2 26.36 1.89-06 0.012 Small 

 

Table 2.6 shows that the observed stand density had a small impact on the 

accuracy of DBH estimates. Table 2.7 compares the individual tree absolute error values 

(cm and %), averaged across all plots and curve-fitting formulas for each combination 

of scanning pattern, cross-section count, and cross-section size. The circle scanning 

pattern provided the most accurate DBH estimates, and the transect pattern provided 

the least accurate DBH estimates. When using the circle scanning pattern, the single 4 
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cm cross-section led to the most accurate estimates, while the multiple 10 cm cross-

sections led to the most accurate estimates in both figure-8 and transect patterns.  

Table 2.7.  Mean absolute error at the individual tree level as a function of the scanning 

pattern, cross-section count, and cross-section size. Bold figures represent the optimal 

combination for each scanning pattern. 

Scanning 

pattern 

Cross-Section 

Count 

Cross-Section 

Size (cm) 

Mean Absolute 

Error (cm) 

Relative 

Error (%) 

Circle Single 4 0.99 5.11 

Single 10 1.35 6.95 

Multiple 4 1.90 9.80 

Multiple 10 1.79 9.22 

Figure-8 Single 4 3.51 21.00 

Single 10 2.77 16.53 

Multiple 4 2.72 16.24 

Multiple 10 2.38 13.92 

Transect Single 4 3.57 21.34 

Single 10 2.60 21.34 

Multiple 4 3.32 17.08 

Multiple 10 3.16 16.25 

 

Table 2.8 presents the mean absolute error (cm and %) for each combination of 

scanning pattern and curve-fitting formula, averaged across all plots, cross-section 

counts, and cross-section sizes.  
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Table 2.8.  rRMSE (%) for each combination of scanning pattern and curve-fitting 

formula. Bold values indicate optimal rRMSE (%) for each scanning pattern. 

Scanning pattern  Curve-Fitting Formula Mean Absolute 

Error (cm) 

Relative 

Error (%) 

Circular Pratt's Direct-Least Squares Circle 1.56 8.03 

Taubin's Direct-Least Squares Circle 1.33 6.85 

Taubin's Direct-Least Squares Ellipse 1.48 7.62 

Szpak's Ellipse Fit with Sampson Method 1.81 9.35 

 Combined Formula 1.36 6.99 

Figure-8 Pratt's Direct-Least Squares Circle 2.15 12.81 

Taubin's Direct-Least Squares Circle 2.37 14.07 

Taubin's Direct-Least Squares Ellipse 3.43 20.40 

Szpak's Ellipse Fit with Sampson Method 3.82 22.74 

Combined Formula 2.40 14.30 

Transect Pratt's Direct-Least Squares Circle 2.60 15.48 

Taubin's Direct-Least Squares Circle 2.58 15.48 

Taubin's Direct-Least Squares Ellipse 4.32 22.10 

Szpak's Ellipse Fit with Sampson Method 3.76 19.27 

Combined Formula 2.54 12.98 

 

As stands in a natural forest will vary in density (stems/ha), a weighted average 

of RMSE was calculated for the three plots as follows:  

Average RMSE = [(22 trees * Plot ‘Pr’ mean RMSE) + (4 trees * Plot ‘Sb’ mean 

RMSE) + (16 trees * Plot ‘Sb2’ mean RMSE)] / 42 trees.  

Table 2.9 presents the average and optimal RMSE (in cm) and the rRMSE for 

each scanning pattern, averaged for all plots, cross-section counts, cross-section sizes, 

and curve-fitting formulas. It shows the circular scanning pattern, using a single 4 cm 



24 

 

cross-section and a combination of all four curve-fitting formulas as the combination of 

data acquisition and processing methods provides the most accurate estimates of DBH. 

The use of a single 4 cm cross-section with Pratt's direct least-squares circle fit led to the 

most accurate estimates of DBH with the figure-8 scanning pattern. Processing the data 

with multiple 4cm cross-sections and a combination of all tested curve-fitting formulas 

provided the most accurate estimates of DBH for the transect scanning pattern.  

Table 2.9.  Average and optimal RMSE (cm) and rRMSE as a function of the scanning 

pattern. 

Scanning 

pattern 

RMSE (cm) rRMSE (%) Estimation method producing 

optimal RMSE Mean Optimal Mean Optimal 

Circular 
2.01 1.13 11.24 6.17 

Average of all formulas & 

single 4cm CS. 

Figure-8 
3.85 1.68 24.52 10.17 

Pratt's least-squares circle fit 

& single 4cm CS. 

Transect 
4.29 3.12 23.86 17.05 

Average of all formulas & 

multiple 4cm CS. 

 

In order to model the relationship between actual and estimated DBH, these 

values for all trees were plotted with a line showing a 1:1 relationship (Figure 2.4). 

Figure 2.4 shows that the circular scanning pattern produced estimates consistently near 

the line modelling the 1:1 relationship, with outliers coming from the figure-8 or 

transect scanning patterns using single cross-sections.  
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Figure 2.4. Data acquisition patterns and walking paths (a) circular; (b) figure-8; 

and (c) transect scanning patterns. The walking path for each scanning method 

is displayed in red and the scanning direction is indicated with a blue arrow. 

Based on Figure 2.4, the circular scanning pattern produced most accurate 

estimates of DBH across the range of actual DBH values present in the data. Figure-8 

and transect scanning patterns resulted in the majority of the outliers, especially when 

only one stem cross-section was used. 

2.3.4. Scanning Errors with iPad Pro LiDAR 

Due to the nature of the walking path for the transect scanning pattern (Figure 

2.1c), each tree was scanned on two separate passes around the plot, potentially causing 

accumulated positioning errors. The literature shows there are known Inertial 

Measurement Unit (IMU) drift, rotational, and GPS positional errors with the iPad Pro 

LiDAR scanner that may cause issues in acquired point clouds (Wang et al. 2021; 

Corradetti et al. 2022; Tavani et al. 2019). An example of this is highlighted in Figure 2.5, 

which shows the top view of the 4 cm single cross-sections of the same tree in the Sb 

plot for different scanning patterns: circular (2.5a), figure-8(2.5b), and transect (2.5c). 
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Figure 2.5. Data acquisition patterns and walking paths (a) circular; (b) figure-8; 

and (c) transect scanning patterns. The walking path for each scanning method 

is displayed in red and the scanning direction is indicated with a blue arrow. 

As seen in Figure 2.5a, the circular scanning pattern resulted in a cross-section 

showing the entire circumference of the tree with few outliers. The figure-8 scanning 

pattern (Figure 2.5b) resulted in a cross-section representing most of the stem 

circumference, with some outliers. The transect scanning pattern (Figure 2.5c) showed a 

cross-section consisting of two separate sections, each of which represented only half of 

the stem's circumference, indicating some locational errors.  

Figure 2.6 shows cross-sections of Tree 9 in Plot ‘Pr’, extracted from point clouds 

acquired with the circular scanning pattern (a) and transect scanning pattern (b). For 

both cross-sections, the tree centroid point and results of Pratt’s circle fit (Red line) and 

Szpak’s ellipse fit (Blue line) are shown. 
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Figure 2.6. Plotted stem cross-sections and centroid points (black circle) 

extracted from a circular scanning pattern point cloud (a) and a transect 

scanning pattern point cloud (b), with plotted results for Pratt’s circle fit (red) 

and Szpak’s ellipse fit (blue). 

As Figure 2.6 shows, the circular scanning pattern provided a feasible stem 

centroid location, while the transect pattern did not. Additionally, the fitted curves 

aligned with the stem cross-section extracted from the circular scanning pattern but not 

the transect cross-section. 

2.4. DISCUSSION 

2.4.1. DBH Estimation Accuracy 

The circular scanning pattern produced the lowest optimal and average absolute 

error (Table 2.9), while also resulting in the lowest overall values for individual tree 

absolute error (Table 2.3). Due to the irregular and inconsistent shapes of tree stems, the 

greater the distribution of stem points about the circumference of each tree in the point 

cloud, the more accurate the estimates of DBH were (Hunčaga et al. 2020). When a 

combination of circle- and ellipse-fitting formulas were applied to a single 4cm cross-

section, an RMSE of 1.13 cm (rRMSE of 6.17%) was achieved. This method produced a 
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lower RMSE value than those reported in many other studies using the iPad Pro LiDAR 

scanner for DBH estimation. For example, Gollob et al. (2020) report RMSE (rRMSE) 

values between 3.13 cm (10.50%; ellipse fit) and 6.29 cm (21.23%; cylinder fit) using the 

Polycam and SiteScape iOS Applications for an iPad Pro 12th Generation. They applied 

ellipse- and cylinder-fitting formulas to 15 cm cross-sections and were able to acquire 

point clouds with a scanning pattern similar to the circular scanning pattern (Figure 

2.2a) used in this study. Wang et al. (2021) reported RMSE (rRMSE) values between 2.78 

cm (7.27%) and 5.18 cm (13.03%) in an urban forest using the 3D Scanner iOS 

application for the iPad Pro to acquire data, using the optimal circle fit formula in 

DendroCloud to extract DBH. Chiappini et al. (2022) achieved RMSE (rRMSE) values of 

4.1 cm (16.3%) with the 3D Forest iOS application, 6.8 cm (27.0%) with the VoxR 

package in R, and 2.7 cm (10.0%) using a convex hull fit with the “TreeLS-lidr-rLiDAR” 

package in R. Tatsumi et al. (2021) achieved RMSE (rRMSE) values of 2.3 cm (10.3%) 

using the ForestScanner iOS Application on an iPhone 13 Pro and 2.3 cm (10.5%) using 

the same application with an iPad Pro 2021. A previous study at the 25th Sideroad Site 

obtained RMSE (rRMSE) values between 2.82 cm (12.82%) and 5.9 cm (26.82%) by 

manually fitting curves to point clouds acquired with the iPad Pro 12th Generation 

(Wang et al. 2022).  

Our method did generate results comparable to those achieved with higher-

quality terrestrial LiDAR scanners. For example, Liu et al. (2021) reported RMSE 

(rRMSE) values between 1.97 cm (6.35%; urban forest) and 3.17 cm (13.21%; natural 

forest) using a Velodyne VLP-16 LiDAR sensor, with a range of up 100 m and an 

accuracy of ±3 cm. In their study, they used a RANSAC circle-fitting formula applied to 

7 stem cross-sections. In another study, Gollob et al. (2020) report RMSE (rRMSE) values 

of 1.59 cm (6.29%; circle fit) to 2.07 cm (8.29%; cylinder fit) using a GeoSLAM ZEB 

HORIZON scanner with a maximum range of 100 m and an accuracy of ±3 cm. Our 

results support previous findings that the circular scanning pattern results in the most 
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accurate DBH estimates (i.e., with the lowest rRMSE values). The circular scanning 

pattern also resulted in more consistent DBH estimation accuracies, with a lower 

maximum error than the other scanning patterns (Table 2.3).  

For the circular scanning pattern, both tested single cross-section methods were 

more accurate than the multiple cross-section methods for all tested plots. For the 

figure-8 and transect scanning patterns, the multiple cross-section methods did, 

however, lead to improved DBH estimate accuracy. This is consistent with the findings 

of Liu et al. (2021), who observed improved DBH estimate accuracy using multiple 

stem-cross sections in comparison to single cross-sections.  

Our study allows to conclude that the circular scanning pattern, using a 

combination of different curve-fitting formulas applied to a single 4 cm cross-section of 

the stem represents the optimal combination for extracting DBH using iPad Pro LiDAR 

sensor. 

2.4.2. Scanning Errors with iPad Pro LiDAR 

The irregular geometry of tree stems, the presence of noise (i.e., points in a point 

cloud that did not represent features in the correct location), IMU drift, and rotational 

errors within the acquired point clouds are possible explanations for the low accuracy 

for the figure-8 and transect scanning patterns. Szpak et al. (2015) noted that at least 400 

points representing 50% or more of the curve circumference were necessary for their 

ellipse fit to produce reliably accurate results. Many cross-sections extracted from point 

clouds acquired with the transect scanning pattern tend to have fewer than 200 points, 

with less than 50% of the stem circumference being represented. The figure-8 scanning 

pattern offered an improvement over the transect pattern with respect to both the 

number of points associated with each tree stem cross-section and in the proportion of 

tree circumference represented. However, both patterns resulted in a greater number of 
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inaccurate placement of points in the acquired datasets (Figures 2.6b and 2.6c) 

compared to those of the circular scanning pattern (Figure 2.6a).  

Positional errors, caused by factors such as Inertial Measurement Units (IMUs) or 

the device GPS, may have contributed to inaccurate location of acquired points with the 

iPad Pro LiDAR scanner (Luetzenburg et al. 2021). Previous studies have found iPad 

and iPhone LiDAR scans result in “crude” 3-dimensional models with low surface 

fidelity due to accumulated IMU errors (Corradetti et al. 2022; Tavani et al. 2019). Over 

the course of a scan, previous studies have found the factor by which points are 

incorrectly located within a cloud to reach up to 2 m (Castel and D’Hoedt 2022). While 

Tavani et al. (2019) suggest the use of multiple ground control points and post-

processing to correctly align and scale point clouds, this was not performed in this 

study, potentially contributing to the observed errors.  

The four curve-fitting formulas used in this determined the centroid coordinates 

(a, b) of each fitted curve as the average X and Y values in each dataset (Pratt 1987; 

Taubin 1991; Szpak et al. 2015). As a result, increasing the proportion of noise points 

within each tree cross-section was found to correspond with an increase in the 

misplacement of the stem centroid.  

2.4.3. Impact of Stand Density 

In this study, a Kruskal-Wallis test showed that site density had a small impact 

(p-value =1.89 x 10-6, effect size = 0.012) on estimate accuracy. This was a greater 

significance than the cross-section sizes and counts, but less significant than the 

scanning pattern or fitting formula used. There was additionally no observed pattern in 

the interaction between stand density and estimate accuracy. In a study regarding 

initial tree spacing and DBH at the study site, a highly significant difference (p<0.01) in 

DBH values between initial spacing distances was observed (McClain et al. 1994). Based 

on this result, a regression was performed, testing the relationship between individual 
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tree size and estimate accuracy. A strong, positive correlation was observed between 

estimate accuracy and increases in measured DBH (cm, R=0.98), which is consistent 

with previous findings (Wang et al. 2022; Liu et al. 2021; Chen et al. 2022). The 

differences between correlation versus causation in the relationships between stand 

density, measured stem size, and estimate accuracy were not explored. 

2.5. CONCLUSION 

Our study suggests that the circular scanning pattern with a single 4cm cross-

section and a combination of circle- and ellipse- fitting formulas produced the most 

accurate DBH values over a range of observed stand densities. RMSE values as low as 

1.13 cm (6.17% of mean plot DBH) were achieved with this method. DBH estimate 

accuracy was found to have no correlation with site density (stems/ha; R2=0.18) and a 

strong positive correlation with increases in stem size (cm; R2=0.96).  

Boreal forest landscapes continue to be dominated by natural (wildfire origin) 

stands, as opposed to uniformly-spaced, intensively managed plantations. Therefore, 

our future research to expand on the findings of this study will extend to stands 

representing a range of natural boreal forest conditions to evaluate the feasibility, in 

terms of accuracy and efficiency, of DBH estimation. This research will include an 

examination of how different stand conditions such as the presence of understory 

vegetation (i.e., medium to tall shrubs), stand age (i.e., differences in horizontal and 

vertical complexities), and stand species composition (e.g., broadleaf- or conifer-

dominant and mixed wood) impact the accuracy of DBH estimates. Further, a workflow 

for operationalizing the use of iPad Pro LiDAR for DBH estimation in forest inventories 

should also be developed. 
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CHAPTER 3: TREE DIAMETER AT BREAST HEIGHT (DBH) ESTIMATION USING 

AN IPAD PRO LIDAR SCANNER: A CASE STUDY IN BOREAL FORESTS, 

ONTARIO, CANADA2 

3.1. STUDY INTRODUCTION 

As identified in the Introduction (Chapter 1), no studies have yet used the iPad 

Pro LiDAR scanner to estimate DBH for trees in natural boreal forests in Canada. 

Therefore, this study examined a range of natural boreal forest sites to investigate the 

feasibility of using the optimal methodology identified in Chapter 2 to estimate DBH in 

natural forest conditions. Specific objectives of this study were to: (1) determine if site-

level attributes (Age Class, Species Class, Tree Density, Understory Density) or tree-

level attributes (Tree Species, DBH sizes) have statistically significant impacts on DBH 

estimate accuracy; and, (2) identify site- or tree-level attributes that facilitate or inhibit 

accurate estimates of DBH from LiDAR point cloud data. It is hypothesised that DBH 

estimate accuracy will be reduced in stands with significant leafy tissue at or around 

breast height, either sites with high understory densities or sites with high site densities 

(trees per ha). It is also hypothesised that DBH estimate accuracy at the individual tree 

level will increase as measured DBH increases , as DBH estimate accuracy was found to 

increase as measured DBH increases (Chapter 2).  

3.2. MATERIALS AND METHODS 

3.2.1. Study Area 

LiDAR and model validation data was collected in 15 natural, wildfire-origin 

stands that represented five age classes (20-40 years, 41-60 years, 61-80 years, 81-100 

years, and 101+ years) and three species groups (Broadleaf-dominated sites (BRD): 68-

 
2 This chapter was published as Guenther, M.; Heenkenda, M.K.; Morris, D.; Leblon, B. 

Tree Diameter at Breast Height (DBH) Estimation Using an iPad Pro LiDAR Scanner: A 

Case Study in Boreal Forests, Ontario, Canada. Forests 2024, 15, 214, 

doi:10.3390/f15010214. 
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100% broadleaf, Coniferous sites (CON): 68-100% conifer, and mixed sites (MX): 33-67% 

conifer). The study sites were located in one of three Forest Management Units (FMUs) 

that adjoined each other: the Black Spruce, Dog River-Matawin, and English River 

FMUs. The sites sampled represented a selected sub-sample of the Ontario Ministry of 

Natural Resources and Forestry (OMNRF) Vegetation Sampling Network (VSN) plots. 

VSN plots are circular (400 m2), with a radius of 11.28 m from a fixed plot center to the 

plot boundary. All VSN plot centers are marked on the ground with a metal rod to 

ensure each field crew visiting the site uses the same plot center. Below, Figure 3.1 

shows the location of the sites selected for this study within northwestern Ontario, as 

well as their location within Ontario.  

Figure 3.1. Map showing location of field sites within northwestern Ontario. 

3.2.2. Data Acquisition 

3.2.2.1. Validation Data 

Validation data was collected by two field crews working independently of one 

another. Field crews visited each site within three months of one another to ensure site 
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conditions did not change between visits. The first field crew established the VSN plot 

(e.g., located the plot centers using preassigned GPS coordinates, flagged the plot 

boundary), then numbered each tree within the plot boundary with a DBH greater than 

or equal to 7 cm in the 11.28 m radius VSN plot, and recorded species, status (live 

versus dead), DBH (recorded to the nearest 0.1 cm using a diameter tape) and height. 

The field crew also measured 1.3 m above the point of germination for each tree and 

painted a line at this height, to ensure subsequent measurements of DBH were recorded 

at the same height.  

The second field crew recorded the species, status, and DBH of all trees larger 

than 7 cm within a smaller subplot (5 m radius) of the VSN plot center. The DBH was 

recorded to the nearest 0.1 cm using a diameter tape. An average of the two DBH values 

collected by each of the field crews was used as the validation DBH value for each 

sampled tree. Distance from plot center was recorded to the nearest point on each tree 

stem at breast height using a clinometer. The distance (m) and azimuth (Degrees) from 

the plot center to the nearest point on each tree stem to facilitate correlating validation 

data with trees in the extracted site cross-sections. Azimuth was recorded to the nearest 

degree using a compass. For each field site, understory was classified into one of five 

categories of understory density (Minimal: 0-20% of tree stems between 0 and 2.5 m are 

obscured; Low: 21-40% obscured; Moderate: 41-60% obscured, Dense: 61-80% obscured, 

or Very Dense: 81-100% obscured) based on the amount of leafy vegetation present 

between 0.5 m and 2.5 m above the ground when the point clouds were acquired. 
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Table 3.1. Field Site Overview. 

Site  Age 
Measured 

Trees * 

Density (Stems 

ha-1) ** 

Species  

Composition *** 

Average 

DBH (cm) 

Understory 

Class 

BRD 20-40 35 19 2419 Pt74 Sb26 13.1 Low 

BRD 41-60 45 7 1019 Pt80 Pj10 Bw10 20.9 Dense 

BRD 61-80 74 9 1273 By50 Mr50 16.0 Moderate 

BRD 81-100 91 8 1146 Pt100 29.7 Moderate 

BRD 101+ 114 3 764 Pt100 21.5 Very Dense 

CON 20-40 27 23 2928 Sb91 Pj9 10.4 Low 

CON 41-60 54 12 1528 Bf83 Pt17 19.5 Very Dense 

CON 61-80 74 2 382 Pj100 30.6 Low 

CON 81-100 91 15 1909 Pj100 21.9 Minimal 

CON 101+ 105 7 1146 Cw78 Bf11 Bw11 23.8 Minimal 

MX 20-40 25 8 1401 Pt64 Pj18 Sb16 17.4 Minimal 

MX 41-60 50 8 1146 Bf44 Bw22 Sb22 Ag12 14.9 Moderate 

MX 61-80 70 2 254 Sw50 Bw50 28.4 Very Dense 

MX 81-100 84 6 764 Pt50 Bf30 Sw20 28.4 Dense 

MX 101+ 109 4 764 Pj66 Pt34 25.4 Minimal 

* Number of measured trees includes only living trees (DBH ≥ 7.0 cm) within the 5 m sub-plot. 

** Density calculated using number of living and dead trees (DBH ≥ 7.0 cm) within the 5 m sub-

plot. 

*** Species composition is represented by two-letter species codes: Pt, trembling aspen (Populus 

tremuloides); Sb, black spruce (Picea mariana); Pj, jack pine (Pinus banksiana); Bw, white birch 

(Betula papyrifera); By, yellow birch (Betula alleghaniensis); Mr, red maple (Acer rubrum); Bf, 

balsam fir (Abies balsamea), Cw, eastern white cedar (Thuja occidentalis); Ag, green ash (Fraxinus 

pennsylvanica); Sw, white spruce (Picea glauca). 

3.3.2.2. LiDAR Data 

To prepare sites for LiDAR acquisition, the metal rod at the plot center was 

flagged with both pink and yellow flagging tape. The 5 m radius from plot center to the 

LiDAR subplot boundary in each of the four cardinal directions was measured using a 

30m measuring tape. Tripods were placed at the plot boundary in each of the four 
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cardinal directions to simplify the process of point cloud registration and point 

matching. The base of all measured, living trees located in each plot were marked with 

pink flagging tape to facilitate identification of ‘in’ trees while acquiring LiDAR data. 

Point clouds were acquired using the Zappcha application and an Apple iPad Pro 12th 

Generation . The circular scanning method that was found to provide the most accurate 

estimates of DBH was used for point cloud acquisition (Guenther et al. 2024). Below, 

Figure 3.2 shows the raw point cloud for site BRD 61-80. 

 
Figure 3.2. Raw, unprocessed point cloud for site BRD 61-80. 

3.2.3. Point Cloud Processing 

Point clouds were imported to CloudCompare software from Zappcha app via 

the Veesus Cloud Plugin for further processing (Veesus 2023; Girardeau-Montaut 2023). 

The point clouds were projected and clipped to plot boundaries using ArcGIS Pro (ESRI 

2023). Using the CloudCompare software, point clouds were co-registered for the 

quadrants in each plot, then cleaned using the 'Statistical Outlier Removal (SOR)' tool 
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(Girardeau-Montaut 2023). Figure 3.3 shows the clipped and projected point cloud for 

site BRD 61-80 after the use of the SOR tool. 

 
Figure 3.3. The projected and clipped point cloud for site BRD 61-80 after the use 

of the SOR tool. 

The Cloth Simulation Filtering (CSF) method developed by Zhang et al. (2016) 

was used to identify points related to the ground in each filtered point cloud and 

interpolate the ground surface for areas without data. Using the elevation value for the 

interpolated ground surface, the elevation value representing breast height (1.3 m above 

ground) for each point cloud was calculated. A single 4 cm tall cross-section centered at 

breast height was extracted from each non-ground point cloud. Points representing 

individual features in plot cross-sections were identified and segmented using the 

density-based clustering algorithm (DBSCAN) in ArcGIS Pro (ESRI 2023). By cross-

referencing the identified clusters with stem maps for each plot, the cluster representing 

each measured tree was identified. Clusters representing more than one tree were 

manually split into separate shapefiles. Manual cleaning of the clusters representing 
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measured trees was performed.  The X and Y coordinates of each point in the trimmed 

cluster shapefiles were appended to the attribute tables.  

All tree attributes were imported to R, using the ‘conicfit’ package for curve 

fitting (Bivand et al. 2023). An iterative geometric ellipse fit was applied to the points in 

each stem cross-section (Chernov and Gama 2015). The iterative ellipse fitting formula 

used the results of Taubin’s Direct-Least Squares Ellipse fitting formula as the initial 

estimated ellipse parameters for each tree. The iterative ellipse-fitting formula then used 

the Levenberg-Marquardt method with a maximum of 200 iterations to reduce the error 

metric of the fitted ellipses (Chernov and Gama 2015; Taubin 1991). Using the geometric 

parameters for each fitted ellipse, the average diameter of each ellipse was calculated as 

the estimated DBH (cm). 

3.2.4. Statistical Methods 

The average of the DBH values (cm) recorded by the two field crews for each tree 

were used as the validation DBH values. The difference (cm), absolute error, and 

relative absolute error between the estimated DBH and the validation DBH were 

calculated for each tree. The acceptable accuracy level of OMNRF’s DBH estimation in 

forest inventories is 1cm compared to the actual measurements (OMNRF 2021). Hence, 

this study adapted the same accuracy level. 

The absolute error (cm) and relative absolute error (%) of each individual tree 

were used as measures of accuracy for statistical analyses. Box plots were created for 

the overall dataset to identify skew and distribution of the results. Kruskal-Wallis tests 

were used to determine if any of the tested independent variables at the site level (Site 

type, species class, stand age, stand density, understory class) or individual tree level 

(tree species, measured DBH size) had statistically significant impacts on the accuracy 

of estimated DBH values (relative error). For variables with significant impacts on 
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estimate accuracy, a Dunn-Bonferroni post-hoc test was used to determine how 

different values of that variable impacted estimate accuracy. 

3.3. RESULTS 

3.3.1. Validation Data 

The 15 sites varied considerably for live tree density (254 - 2928 stems ha-1), ranged 

in age from 25-114 years, and had a range of understory densities (Table 3.1). None of 

the 15 study sites had all estimated DBH values within 1 cm of the measured DBH, 

ranging from as high as 83.3% (Site MX 81-100) to as low as 0% (Site MX 61-80). The 

least accurate DBH estimate was a White Spruce (Picea glauca) in plot CON 20-40, with 

an actual DBH of 12.2cm and an estimated DBH of 7.1cm. 

Table 3.2. Comparison between the mean measured and estimated DBH values 

(cm) and associated MAE (cm and %) for the 15 visited sites. 

Site Name Mean Measured DBH (cm) Mean Estimated DBH (cm) MAE (cm) MAE (%) 

BRD 20-40 13.1 12.7 1.1 8.4 

BRD 41-60 20.9 20.9 1.3 6.2 

BRD 61-80 16.0 15.3 1.6 10.0 

BRD 81-100 29.7 29.8 0.6 2.0 

BRD 101+ 18.7 17.7 1.9 10.2 

CON 20-40 10.4 9.4 1.0 9.6 

CON 41-60 14.8 14.6 2.0 13.5 

CON 61-80 30.6 31.3 0.7 2.3 

CON 81-100 21.9 21.9 0.9 4.1 

CON 101+ 23.8 24.8 1.1 4.6 

MX 20-40 17.4 17.3 0.6 3.4 

MX 41-60 14.9 13.9 1.2 8.1 

MX 61-80 28.4 26.9 1.5 5.3 

MX 81-100 26.2 26.1 0.5 1.9 

MX 101+ 25.4 25.6 1.3 5.1 
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3.3.2. Impact of Site- and Tree-Level Factors on Estimation Accuracy 

Overall, an RMSE of 1.5 cm (8.6%), and an MAE of 1.1 cm (6.4%) were achieved 

in this study. The distribution of the individual tree absolute error values was not 

normally distributed, and the results skewed towards zero (Figure 3.4). 

 

Figure 3.4. Histogram showing distribution of the number of trees as a function 

of the relative error values. 

The 81-100 age class produced the most accurate estimates of DBH, with an MAE 

of 0.72 cm (3.01%) (Table 3.3). In terms of stand density effects, the lowest density class 

(250-500 stems ha-1) produced the most accurate estimates of DBH in terms of relative 

MAE, with an MAE of 1.13 (3.92%), although this density class only had 4 measured 

trees. For density classes with 10 or more measured trees, the most accurate estimates of 

DBH (cm) were achieved in the 501-1000 stems ha-1 density class, which had an MAE of 

1.03 cm (4.59%; Table 3.3). The sites with minimal understory produced the most 

accurate estimates of DBH, with an MAE of 0.91 cm (4.06%) (Table 3.3). Generally, the 

MAE were comparable across the understory classes 1 (minimal) to 4 (dense), but 
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increased substantially in the very dense class (MAE: 19.4 cm and relative MAE of 

17.6%). The 25.1-30 cm DBH class produced the lowest MAE (0.82 cm; 3.02%), while the 

30.1-35 cm DBH class produced the lowest relative MAE (0.94 cm; 2.97%) (Table 3.3). 

Table 3.3. Comparison between the mean measured and estimated DBH values 

(cm) and associated MAE (cm and %) for the 15 visited sites. 

Factor Factor Level Number 

of Trees 

Mean Absolute 

Error (cm) 

Relative Mean 

Absolute Error (%) 

Species Class Broadleaf 46 1.19 7.30 

Conifer 59 1.16 9.45 

Mixed 28 0.90 4.91 

Age Class 20-40 50 0.96 8.19 

41-60 27 1.56 13.05 

61-80 13 1.48 8.94 

81-100 29 0.72 3.01 

101+ 14 1.30 5.66 

Density Class 

(Stems ha-1) 

250-500 4 1.13 3.92 

500-1000 13 1.03 4.59 

1001-1500 47 1.09 6.24 

1501-2000 12 1.95 19.66 

2001-2500 34 0.98 6.25 

2501-3000 23 1.00 9.88 

Understory 

Class 

Minimal (1) 34 0.91 4.06 

Low (2) 44 1.01 8.77 

Moderate (3) 25 1.17 7.34 

Dense (4) 15 0.99 4.87 

Very Dense (5) 15 1.94 17.59 

Tree Species Balsam Fir 17 1.31 14.80 
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Factor Factor Level Number 

of Trees 

Mean Absolute 

Error (cm) 

Relative Mean 

Absolute Error (%) 

Tree Species Black Spruce 35 0.92 8.99 

Cedar 5 0.80 3.39 

Green Ash 1 0.80 7.48 

Jack Pine 13 0.92 3.55 

Red Maple 4 2.02 9.21 

Trembling Aspen 46 1.15 5.72 

White Birch 5 1.26 6.30 

White Spruce 2 1.75 6.31 

Yellow Birch 5 1.32 12.74 

DBH Class (cm) 7-10 30 1.08 13.58 

10.1-15 28 1.13 9.49 

15.1-20 23 1.02 5.95 

20.1-25 25 1.32 5.81 

25.1-30 17 0.82 3.02 

30.1-35 5 0.94 2.97 

35.1-40 3 1.13 3.00 

40.1-50 1 4.80 11.46 

 

As highlighted in Figure 3.4, the data did not follow a normal distribution. The 

skewness was 3.17 with a Kurtosis value of 16.56, indicating a highly skewed dataset. 

To determine if any of the above factors had statistically significant impacts on the 

accuracy of DBH estimates (relative MAE; %), Kruskal-Wallis tests were used as this 

test accounts for the abnormal distribution of the results data (Xia 2020). Age class and 

density had large magnitudes of effect on the relative accuracy of the estimated DBH 

values for individual trees (Table 3.4). Understory classes had a moderate magnitude of 
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effect, while species class had a small effect on the accuracy of estimated DBH values. 

Age (0.17) and understory classes (0.13) had the greatest effect sizes when examined 

individually, as well as when examining pairwise interactions (0.23). Species class (0.01) 

had the smallest effect size on the relative accuracy of estimated DBH values. 

Table 3.4. Kruskal-Wallis test results showing the statistical impact of 

individual stand- and site-level attributes and significant pairwise interactions 

on relative accuracy of DBH estimates. 

Factor(s) Df Test Statistic p-Value Effect Size Magnitude Of Effect 

Age Class 4 25.95 3.24E-05 0.17 Large 

Density Class 5 16.26 6.15E-04 0.09 Moderate 

Site Species Class 2 2.78 0.25 0.01 Small 

Understory 4 20.40 4.17E-04 0.13 Moderate 

DBH Class 8 25.67 1.40E-03 0.14 Moderate 

Species 9 12.67 0.18 0.03 Small 

Age Class * Density Class 13 39.08 1.94E-04 0.22 Large 

Age Class * Site Species Class 14 39.69 2.85E-04 0.22 Large 

Age Class * Understory 12 39.34 9.23E-05 0.23 Large 

Density Class * Site Species Class 13 37.86 3.04E-04 0.21 Large 

Density Class * Understory 14 39.69 2.85E-04 0.22 Large 

Site Species Class * Understory 9 25.76 2.23E-03 0.14 Moderate 

DBH Class * Age Class 27 43.99 0.02 0.16 Large 

DBH Class * Density Class 27 37.83 0.08 0.10 Moderate 

DBH Class * Site Species Class 22 39.92 0.01 0.16 Large 

DBH Class * Understory 29 55.36 6.43E-03 0.20 Large 

Age Class * Species 22 45.91 2.03E-03 0.22 Large 

Density Class * Species 22 36.26 0.03 0.13 Moderate 

Species * Understory 21 49.49 4.29E-04 0.26 Large 

 

Individual tree species had a small (0.03) effect on relative accuracy of estimated 

DBH values, whereas DBH size class had a moderate effect (0.14). For the individual 

site-level attributes that had significant effects on the accuracy of estimated DBH values 

(age, density, and understory classes), Dunn-Bonferroni post-hoc tests were conducted 
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to identify interactions between two values for a single variable with a significant 

impact on the accuracy of estimated DBH values (Table 3.5). Dunn-Bonferroni post-hoc 

testing identifies significant differences between different values of an independent 

variable that was found to have a significant impact on the dependent variable using a 

Kruskal-Wallis test (Dinno 2022). 

Table 3.5. Dunn-Bonferroni post-hoc test results showing age classes, DBH 

categories, density categories, and understory classes with significant statistical 

differences. 

Factor Group 1 Group 2 N1 N2 Statistic p-Value 

Age Class 20-40 81-100 50 29 -3.67 2.39E-04 

Age Class 41-60 81-100 27 29 -4.79 1.66E-06 

Age Class 61-80 81-100 18 29 -2.92 3.50E-03 

DBH Class 7-10 cm 25.1-30 cm 30 17 -3.71 2.09E-04 

DBH Class 10.1-15 cm 25.1-30 cm 28 17 -3.65 2.61E-04 

Density Class 1001-1500 1501-2000 47 12 3.23 1.24E-03 

Density Class 1501-2000 2001-2500 12 34 -3.01 2.61E-03 

Density Class 1501-2000 501-1000 12 13 -3.4 6.66E-04 

Understory Minimal (1) Low (2) 34 44 2.85 4.39E-03 

Understory Minimal (1) Very Dense (5) 34 15 4.08 4.45E-05 

Understory Dense (4) Very Dense (5) 15 15 3.17 1.50E-03 

 

Below, Figure 3.5 shows a scatter plot of the estimated DBH (cm) for each 

individual tree (Coloured by site species class), plotted as a function of measured DBH 

(cm), with a line plotted showing a 1:1 relationship (i.e., y = x). 
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Figure 3.5. Histogram showing distribution of the number of trees as a function 

of the relative error values. 

74 trees had estimated DBH values lower than the actual DBH values (55.6% of 

measured trees), with 53 estimated DBH values greater than the actual DBH values 

(39.9% of measured trees), with an additional 6 trees (4.5% of measured trees) having an 

estimated DBH equal to the actual DBH.  

The pairwise interaction with the largest effect size was between individual tree species 

and understory classes (Table 3.4). Interactions between individual tree DBH size class 

and age class, species class, and understory class all had large effects (> 0.10) on the 

relative accuracy of individual tree DBH estimates. Overall, age class, individual tree 

DBH size class, and site understory classes had the largest effects on the accuracy of 

individual tree DBH estimates (Table 3.4). 
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3.3.3. Hypotheses 

This study set out to investigate the effects of various site-level (Age Class, 

Species Class, Tree Density, Understory Density) and tree-level (Tree Species, Actual 

DBH) attributes on the relative accuracy of DBH values estimated using point cloud 

data acquired by an iPad Pro LiDAR scanner. It was found that all tested variables, with 

the exception of species class and individual tree species, had moderate to large 

magnitudes of effect on the relative accuracy of estimated DBH values (Tables 3.10-

3.13). The secondary objective was to identify specific site conditions that facilitate or 

inhibit accurate estimation of DBH using the iPad Pro LiDAR scanner. While some 

trends were identified in the data, the results do not conclusively identify specific site 

conditions that facilitate or inhibit accurate estimation of DBH. Generally, sites with 

lower tree densities and less understory vegetation improved accuracy of DBH 

estimates, as did the measurement of larger trees (Table 3.3). In contrast, individual tree 

species, species composition, and stand age were not found to significantly affect the 

relative accuracy of estimated DBH values (Table 3.4). 

It was hypothesised that DBH estimate accuracy would be lower in stands with 

significant leafy tissue or other obstructions at or around breast height (i.e., stands with 

high understory plant cover or stands with high tree densities). Our results showed that 

DBH estimates were most accurate in stands with minimal understory (Table 3.3). 

However, the results also show the understory class with the second most accurate 

estimates of DBH was the second-densest understory class. Understory class did have a 

moderate magnitude of effect on the relative accuracy of DBH estimates (Table 3.4). 

However, Dunn-Bonferroni post-hoc test for differences between levels of understory 

density suggested differences in the accuracies of estimated DBH values between these 

groups did not follow any trends (Table 3.5).  
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It was also hypothesised that the most accurate estimates of DBH would be 

achieved on sites with lower tree densities. Our results found that the lower three 

density classes (250-500 stems ha-1; 501-1000 stems ha-1; 1001-1500 stems ha-1) had 

more accurate estimates of DBH (Table 3.3). However, significant differences were 

observed between the 501-1000 and 1501-2000 stems ha-1 density classes; the 1001-1500 

and 1501-2000 stems ha-1 classes; and, the 1501-2000 and 2001-2500 stems ha-1 classes. 

The most extreme density classes, 250-500 stems ha-1 and 2501-3000 stems ha-1, were 

not significantly different from one another or any of the other tested density classes. 

The lack of significant differences in estimate accuracy between the lowest and highest 

site density classes and the rest of the dataset suggests that site density alone is not 

sufficient to predict the accuracy of DBH estimates. 

The final hypothesis suggested that the relative error of DBH estimates would 

decrease as tree size increased. With the exception of the sole tree in the 40 cm+ DBH 

class, relative error of DBH estimates decreased as tree size increased. Discarding the 

three size classes with 5 or fewer measured trees (30.1-35 cm; 35.1-40 cm; 40.1-50 cm), 

the 25.1-30 cm DBH class was the size class with the largest measured DBH values, and 

had the lowest relative error (Table 3.3). Dunn-Bonferroni post-hoc testing found 

significant differences between the 25.1-30 cm DBH class and both the 7-10 cm and 10.1-

15 cm DBH classes (Table 3.5). This demonstrates that increases in actual DBH reduced 

the relative error of estimated DBH values in a statistically significant manner. 

3.4. DISCUSSION 

This study achieved an overall RMSE of 1.5 cm (8.6%) for DBH values estimated 

from iPad Pro LiDAR data for 15 sites in the boreal forest. This is a lower RMSE than 

those reported in several previous studies using the iPad Pro to estimate DBH, such as: 

an urban park (Slovakia), 2.8 cm (7.0%) and 5.2 cm (13.0%); a research forest (Austria), 

3.1 cm (10.5%) and 6.3 cm (21.2%); Natural and plantation forests (Japan), 2.3 cm 
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(10.5%); and, a university campus (Türkiye), 2.3 cm (11.7%) (Gollob et al. 2021; Wang et 

al. 2021; Tatsumi et al. 2021; Gülci et al. 2023). A previous study using the same 

methodology as used in this study reported an RMSE of 1.1 cm (6.2%) for a plantation 

forest in Canada (Guenther et al. 2024). 

Understory density was not considered when selecting sites for this study, as 

only site species composition and site age were known during the site selection period. 

As a result, the different combinations of understory density, site species class, and site 

age class were not evenly distributed, potentially causing bias in the results for the 

impact of understory density on the relative accuracy of estimated DBH values. Future 

research should incorporate multiple replicates of each combination of site species/age 

class to capture as much variation in understory density for that species/age class 

combination as possible.  

Common causes of error identified in previous studies using the iPad Pro 

include IMU errors with the iPad Pro, as well as high proportions of misplaced points 

(‘noise’) in acquired point clouds (Gollob et al. 2021; Wang et al. 2021). IMU errors 

contribute to scanned features with low surface fidelities, especially when significant 

movement occurs during the acquisition of a given point cloud (Tavani et al. 2022; 

Corradetti et al. 2022). Other factors contributing to IMU errors include changes in 

walking speed, rapid movements, or turning the iPad during the course of a scan 

(Gollob et al. 2021; Guenther et al. 2024; Wang et al. 2021; Gülci et al. 2023). IMU errors 

were present in this study as well, with misaligned tree cross-sections encountered 

several times. The misalignments were manually corrected, although this introduced a 

potential cause of error. High levels of error in point location (±1 cm) in point clouds 

acquired with the iPad Pro LiDAR scanner have been found to cause trees to appear 

‘fuzzy’ in the point clouds, which caused increased levels of error as tree size decree 
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sed (Gollob et al. 2021). This was also found in this study, with the relative 

accuracy of estimated DBH values lowest in the smallest DBH class and relative 

accuracy improving as actual DBH increased (Table 3.4). 

Comparing the results of this study to previous studies using MLS or TLS in 

natural forests, RMSE values of 2.7 cm (10.8%; RANSAC method), 4.1 cm (16.3%; Circle 

Fit), and 6.8 cm (27.0%; Voxelization) were found in a study in a black pine (Pinus nigra) 

plantation forest in Italy (Chiappini et al. 2022). It was found that the accuracy of 

estimated DBH values was consistent for all sizes of tree recorded in the study. An 

MAE of 4.8 cm (25.9% RMSE) was achieved using MLS and an MAE of 5.0 cm (27.9% 

RMSE) using TLS to estimate DBH in a Ponderosa pine (Pinus ponderosa) forest in 

northern Arizona (Donager et al. 2021). An RMSE of 2.4 cm (5.6%) was achieved using 

TLS in managed Japanese cedar (Cryptomeria japonica) forests in Japan (Shimizu et al. 

2022). Common causes of inaccuracy include occlusion of scanned trees from 

understory vegetation (Donager et al. 2021; Shimizu et al. 2022).   

The results presented here support previous studies that found IMU errors, 

positional accuracy errors, and high levels of noise in point clouds to cause reduced 

accuracy of DBH values estimated using the iPad Pro LiDAR scanner. Factors identified 

as contributing to inaccuracies in previous studies using MLS or TLS to estimate DBH, 

such as high levels of understory vegetation or high site densities, were also found to 

reduce the accuracy of estimated DBH values with the iPad Pro. While tree size was 

found to impact the accuracy of DBH estimates both here and in previous studies using 

the iPad Pro LiDAR scanner, this factor did not impact the accuracy of DBH values 

estimated from TLS or MLS devices in previous studies, suggesting that this limiting 

factor is unique to the iPad Pro. The inclusion of additional site replicates for each 

combination of site age and site species class would further enhance future studies, 

increasing the size of the overall dataset as well as improving the diversity of 
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understory densities, individual tree species, and tree sizes present in each combination 

of site age and site species class. 

3.5. CONCLUSIONS 

Although there were no tested sites where all estimated DBH values fell within 

the acceptable margin of error (±1 cm based on OMNRF standards), this methodology 

estimated DBH values for all 133 scanned trees, with 78 of the estimated DBH values 

(59%) falling within the acceptable margin of error and 11 estimated DBH values (7%) 

within 0.1 cm of the validation value. It was found that site and understory density had 

statistically significant impacts on the accuracy of estimated DBH values, while site 

species class did not (Table 3.4). At the individual tree level, the actual DBH of a tree 

had a moderate effect on the accuracy of estimated DBH values, while individual tree 

species did not (Table 3.4). 

Trends in the data suggested that increased density of both trees and understory 

vegetation on a given site would decrease the accuracy of estimated DBH values on the 

site, as hypothesized. Examining differences between the understory and site density 

classes with Dunn-Bonferroni post-hoc testing, it was found that these factors had 

significant impacts on the relative accuracy of estimated DBH values. However, the 

differences between different classes of these variables did not present a consistent or 

continuous relationship, with no strong trends present. Increases in actual tree size led 

to increases in the relative accuracy of estimated DBH values. Dunn-Bonferroni post-

hoc testing showed that the relative accuracy of estimated DBH values improved as 

measured tree size increased, supporting this hypothesis.  

The results of this study suggest that the significant impacts of site understory, 

actual tree size, age class, and density will impact the accuracy of estimated DBH values 

in future studies using the iPad Pro to estimate DBH, and must be addressed and 

characterized in future studies to better contextualize results in a broader context. At 
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this point in time, the persistent issues with the iPad Pro IMU and positional accuracy 

errors limit accuracy of DBH estimates attainable with the iPad Pro LiDAR scanner in 

natural boreal forests. Additionally, the use of iPad Pro LiDAR for forest inventory is 

limited by an inability to perform well in unfavorable weather conditions, such as rain, 

fog, or wind, limiting the operational feasibility of this method at the industry scale. The 

iPad Pro shows promise, meeting accuracy specifications for 59% of the scanned trees 

across 15 sites representing a range of site conditions in boreal forests. However, current 

limitations prevent this device from being operationalizable in the boreal forest to 

replace manual mensuration of DBH for forest inventories.  
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CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

In Chapter 2, the use of a circular scanning pattern for point cloud acquisition, 

coupled with the application of a combination of circle-fitting and ellipse-fitting 

formulas to a single 4 cm cross-section of a tree stem was found to produce the most 

accurate estimates of DBH. The factors with the greatest effects on the accuracy of 

estimated DBH values were scanning pattern and curve-fitting formula. Cross-section 

size and cross-section count had small effects on the accuracy of estimated DBH values. 

However, the circular scanning pattern with combined curve-fitting formula produced 

the most accurate estimates of DBH using a single 4 cm cross-section. Factors 

contributing to the error in the identified optimal method included the presence of 

noise (points in the acquired point cloud that are not in the correct location as the 

feature they represent), IMU drift, and rotational errors. The curve-fitting formulas used 

are optimized for datasets containing at least 400 points representing 50% of the 

circumference of the curve to be fitted, which was not the case with tree stems extracted 

from point clouds acquired with either the figure-8 or transect scanning patterns.  

 In the case study, Overall, an RMSE of 1.5 cm (8.6%) was achieved, with 78 

(59%) of the estimated DBH values within an acceptable margin of error (±1 cm) of the 

validation values based on OMNRF standards. This level of accuracy is insufficient for 

use in forest inventories, and until DBH can be consistently estimated within the 

acceptable margin of error for a significantly greater percentage of trees, this 

methodology will be unsuitable for use in FRIs. Stand age had the greatest effect size on 

estimated DBH values, followed by actual DBH, understory density, and stand density. 

Tree species or stand species class did not have significant effects on the accuracy of 

estimated DBH values. While some trends were identified in the results, statistical 

analyses showed these were inconclusive. Generally, it was found that estimated DBH 
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values were more accurate on sites with lower tree densities as well as sites with less 

understory vegetation. An alternative remote sensing methods, especially, RADAR, are 

capable of scanning ‘through’ obstacles such as understory vegetation, and mapping 

features beyond the obstacles, data. Accuracy of estimated DBH values also improved 

as the size of the tree being scanned increased to the 30.1-35 cm size class, with 

increased error observed in subsequent size classes. However, Dunn-Bonferroni post-

hoc testing showed that none of these variables alone were sufficient to predict the 

accuracy of estimated DBH values. 

As the case study described in Chapter 3 was limited to a small number of sites, 

the impacts of the tested stand-level and tree-level factors cannot be conclusively 

identified from this limited dataset. Therefore, a future study that tests multiple 

replicates of sites to capture the range of site densities and understory densities within 

each combination of age class and species class is necessary. Additionally, future 

research should compare the accuracy of DBH values estimated from the iPad Pro and 

traditional MLS/TLS using the same processing methodology for a range of boreal 

forest stand conditions. This would allow direct comparisons between the accuracy of 

the iPad Pro and traditional MLS/TLS in natural boreal forests to be made. While DBH 

was estimated in a broad range of natural boreal forest stand conditions, 41% of trees in 

the case study failed to meet OMNRF accuracy specifications for DBH. Future research 

should attempt to improve data acquisition and processing methodologies to improve 

the portion of estimated DBH values meeting minimum standards of measurement 

accuracy. 

Another key factor to be considered in future studies is the efficiency of using the 

iPad Pro LiDAR scanner to estimate DBH. This study did not record the speed of data 

acquisition in the field with either manual methods or with the iPad Pro. It was 

observed that field crews using manual methods to measure DBH, as well as recording 

tree heights, species, and canopies, were able to complete a 400m2 VSN plot in less time 
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than it took to acquire LiDAR data with the iPad Pro. While the literature hypothesizes 

that the use of LiDAR devices to estimate DBH will improve the speed of forest 

inventories relative to manual methods, the opposite was observed in this study. 

Quantitative data should be collected to validate this observation. Additionally, the 

acquired point clouds still need to synced to cloud services and processed to estimate 

DBH after returning from the field, while the manually measured data does not require 

additional man-hours. Until point cloud acquisition with the iPad Pro can be completed 

faster than manual mensuration of DBH, the iPad Pro is entirely impracticable. 

Furthermore, the iPad Pro LiDAR scanner currently uses only near infrared 

wavelength. Incorporating additional wavelengths (green band) as in aerial LiDAR 

would improve the accuracy of features scanned.  

As noted in the Introduction (Chapter 1), DBH is one of many attributes 

measured for forest inventories. An overarching question addressed in this thesis was 

whether the iPad Pro 4th Generation TLS device can be used to reliably estimate DBH, a 

forest attribute common in forest inventories. If so, its use might offer an improvement 

in efficiency and a reduction in operating costs for the undertaker of the inventory, 

relative to TLS or manual measurements. Current results show that DBH cannot be 

estimated with an acceptable level of accuracy. Additionally, future studies must also 

determine if additional tree and stand attributes (e.g., tree species, tree height, stand 

density, etc.) critical to creating new eFRIs can be accurately estimated from iPad Pro 

LiDAR before the device can be considered as a viable alternative method of data 

collection in forest inventories. The current maximum range of the iPad Pro LiDAR 

scanner is only 5m, rendering the device incapable of capturing point clouds that would 

allow estimation of attributes such as tree height (commonly greater than 20m in 

mature boreal stands. 
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