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Abstract 

 

In civil engineering, deep foundation systems, specifically pile foundations, play a critical 

role in transferring the structural loads of heavy constructions from superstructures to deeper 

layers of soil. The consequences of such failures are far-reaching and can incur property damage, 

structural failure, and tragically, loss of human lives. It is imperative to address the potential 

risks associated with pile foundation failure, particularly under seismic conditions. 

Conventionally only dynamic forces with a single frequency are investigated. In many cases of 

Civil Engineering, however, the dynamic force is not periodic with a single frequency but quasi-

periodic with multiple frequencies. While there have been numerous studies on the buckling 

stability of piles, there is a noticeable scarcity of research that considers the influence of seismic 

excitations with two frequencies.  

The primary objective of this research is to study the dynamic stability of pile foundations 

under seismic excitations with two frequencies analytically and numerically. The study 

commences by driving the equation of motion for a pile foundation under earthquake, which is 

decoupled into an ordinary differential equation with variable coefficients of two frequencies.  

The harmonic balance method is used to analytically construct the stability diagrams of the pile. 

A numerical method is also presented to study the stability of columns under dynamic loads with 

two frequencies. The numerical results of instability diagrams can also serve as a calibration of 

other approximate results. As an application example, the dynamic stability of a real pile 

foundation is investigated using both the harmonic balance method and the numerical method. 

This is followed by parametric studies involving factors such as elastic foundation rigidity, 

damping, and dynamic and static loads on the instability regions. The outcomes of this research 

carry significant practical implications, particularly in the domain of designing pile foundations 

for mega-structures. Designers can leverage the findings of this study to incorporate the effects 

of multiple frequencies on pile behavior into their design considerations, thereby enhancing the 

structural age and safety of constructions. 

Keywords:  Pile Foundation, Seismic Excitations with Two Frequencies, Stability Diagram, 

Quasi-Periodic Mathieu Equation, Harmonic Balance Method, Numerical method 
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Chapter 1    Introduction 

1.1   Introduction 

This chapter undertakes a comprehensive investigation into pile foundation engineering, 

encompassing foundational principles and advanced research in the field. The initial section 

systematically introduces the application and significance of pile foundations in megastructures 

and marine constructions. The discourse methodically progresses to encompass various types of 

pile foundations, emphasizing the imperative consideration of seismic excitation and analyzing 

the behavior of piles under such dynamic conditions. The chapter culminates by spotlighting pile 

failure behavior, with specific emphasis on the critical aspect of pile buckling. 

In the second part, the academic focus shifts towards an in-depth exploration of research on 

pile foundation buckling instability. This scholarly inquiry extends to the importance of 

understanding dynamic stability in constructions subjected to multiple-frequency impulses. The 

chapter introduces the quasi-periodic Hill Equation and its related work, offering a sophisticated 

mathematical framework for addressing multiple frequencies. Concluding the academic 

exploration, the chapter delves into the modeling intricacies of building the basis using elastic 

pile modeling, setting the stage for subsequent academic endeavors in pile foundation design. 

This scholarly work serves as a foundational resource for academics, researchers, and 

practitioners seeking a comprehensive understanding of pile foundation design. 

1.2   Pile's Purposes 

The special type of deep footing known as piles use combined surface friction and tip 

resistance to transmit weights from superstructures to the deeper levels of soil while supporting 

highly laden constructions. Additionally, they are used where the soil is delicate clay or scattered 

to fairly dense sand in seismically susceptible places (Rostami et al., 2020). They are widely 

used, especially when the building is to be placed on thin and weak layers of soil, in order to 

transmit tremendous weight from the superstructure into further down, robust levels of soil 

(Madabhushi et al., 2009). 
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1.2.1   A Synopsis of the Role of Pile 

Their usage may be traced all the way back to ancient times if one so chooses. The Neolithic 

dwellers of Switzerland built their homes on logs they pushed into the soft foundations of small 

lakes around 12,000 years ago (Sowers, 1979). Venice was built on piles of timber in the 

swampy Po River delta in order to offer the first Italians shelter from attacks from Eastern 

Europe and to enable them to be nearer to the sea upon which their existence relied. Another case 

study is the Venezuelan Indians, who inhabited the lagoons surrounding Lake Maracaibo and 

resided in homes built on piles. For the purpose of building in locations with unfavorable 

conditions of soil for low-depth foundations, pile bases still have a place today (Prakash and 

Hari, 1991). 

The pile-based foundation technique provides a reliable alternative for sustaining 

constructions in the situation of soft soil. As seen in the illustration that follows, Figure 1.1, this 

method allows the weight from the framework to be transferred to further down, tougher layers 

of soil. The elements of the piles may be required to endure thrusts when sustaining towering 

constructions that subject the base to prolonged periods of flipping. Whereas part of the weights 

are transmitted by shearing procedures that are formed along the shafts of the pile elements 

(shaft resistance), other sections are done so by typical strains that built up at their foundations 

(base resistance). They are referred to as end-bearing piles and drifting heaps, correspondingly 

(Jimenez, 2019). 

 

Figure 1.1   Soil-Pile Structure System (Jimenez, 2019). 
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1.2.2   Typical Functions of Piles 

The most common usage of piles is to shift weights from shallower levels where their 

weight can't be adequately sustained to deeper levels where this is feasible. If a pile crosses 

through feeble substance and momentarily reaches another layer with strong bearing strength, the 

pile is said to be a bearing pile. If using piles in a deep layer with little sustaining capacity, 

frictional piles are employed because the piles get sturdier if placed close to each other. The 

combination of skin friction and point resistance frequently affects a pile's ability to support a 

weight. The rigid integration technique is furthermore considered as an interesting ground 

development method in weak soil conditions. This technique increases the ability of the ground 

to support buildings with simple weak foundations. The inflexible inclusion method and the pile 

foundation technique are equivalent, with the only difference being the inclusions' disconnection 

from the slab base. Nevertheless is important to note that these structures exhibit very distinct 

behaviors. In the solid inclusion structure, an LTP (Load Transfer Plant) sits amid the easily 

compressed layer and its outer structure. This reinforcing approach has a lot of benefits in 

seismic areas because the LTP acts as an energy dispersion area between the construction and the 

vertical rigid parts (Prakash and Hari, 1991). 

1.3   A System of Classifying Piles 

To narrow in on the many pile foundation categories, they might be divided into various 

classes based on how they function and sustain the weight: 

- End-bearing piles: Employing the tip resistance provided by the piles, the framework's 

load is transferred from water or poorer soils to a robust load-bearing foundation 

(Figure 1.2a). 

- Friction piles: The superstructure weight is transferred into the earth via the coefficient 

of friction created along the pile's axis (Figure 1.2b). 

- Compaction piles, which are put into granular, porous soils to displace and compress the 

soil (Figure 1.2c). 

- Tension piles are employed in both vertical and sloping configurations to sustain pull-

out pressures. These piles are widely used for coastal constructions when the 

superstructure is expected to experience lateral stresses from earthquakes or gusts of 
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wind and the piles are used to hold tethers, cables, etc (Figures 1.2d and 1.2e) 

(Madabhushi et al., 2009). 

 

Figure 1.2   Soil-Pile Structure System. a) End Bearing Pile; b) Friction Pile; c) Compaction Pile; 

d) Onshore Tension Pile; d) Offshore Tension Pile (Madabhushi et al., 2009). 

1.4   Pile Foundation Excited by Seismicity 

1.4.1   Earthquake-Related Pile Behavior 

When considering the manner in which a piled foundation responds throughout an 

earthquake, one must be aware of a few of the variables which could affect the piles' projected 

values. On lateral-loaded piles positioned in sandy soil, oscillations have been shown to have a 

considerable effect. When released while vibrating, piles reverted to their initial position. After a 

cycle of lateral pressure, vibration may probably help to reduce any residual bending in the pile. 

In machine bases, weights are placed on atop of the piles, which facilitates the estimate of 

machine instabilities. In clays, the loss of the pile's touch with the ground-level soil is more 

significant than vertical vibrations. Shear along the shaft of the pile is crucial in the torsional 

vibrations of a single pile, whereas the lateral stiffness of the pile and its position from the mass 

center of the pile group regulate the group stiffness and damping in a collection of piles. 
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Examining complex geotechnical issues requires an initial structure that describes a soil's 

behavior under varied loading circumstances. The critical state line is a line in the model where 

soils subjected to shear loads above a yield surface will try to cross before shearing can continue 

without changing the state of the soil (Stringer. 2012). In clays, the absence of soil contact by the 

pile at the ground's level is more significant than vertical vibrations. Shear along the longitudinal 

direction of the pile is crucial for torsional vibrations of a single pile, while group stiffness and 

damping in a set of piles are controlled by the lateral stiffness of the pile and its location from the 

mass core of the whole pile cluster. 

Nonlinear loading during earthquakes will increase the operating loads of the piles. 

Identification of the seismic behavior of pile bases in liquefied soils is significantly more 

challenging owing to inconsistencies in the concepts fundamental to soil-pile-superstructure 

connection (which varies in forces, the rigidity and shear resilience of the soil in the vicinity, and 

the resulting production of pore water pressure). The seismic engineering of pile-supported 

structures has utilized a variety of planning methodologies in practice (Rostami et al., 2020). 

For the soil pile structure, which may be conceived of as having an elastic component (𝑣), 

the modulus of shear (𝐺) and Poisson's proportion are important soil characteristics. The pile 

foundations may be excited by three separate oscillations: vertical tremors, linked horizontal 

sliding and swaying, and torsional tremors.  

A soil element located in the sub-characteristic area will produce significant pressures in the 

pores throughout an earthquake, and the stress track will advance nearer to its origin up until it 

reaches the unique status line. When one reaches the line on one side of the p' axis, the strain's 

path ascends and descends like a wings of a butterfly passing past the point of origin or very near 

it. Pore stress and strain formation will also rise at this stage. If the applied deviator is sufficient 

to impact the usual state boundary on both ends, pore pressure will cycle at double the frequency 

of loading (Prakash and Hari, 1991). 

When the enormous axial stress from the superstructure is applied, the pile would behave 

like an extended, laterally unsupported column and might budge, affecting the base in an 

earthquake. If the soil surrounding the pile loses a significant amount of its firmness and 

durability owing to liquefaction, this will occur during the whole tremors (Rostami et al., 2020). 
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1.4.2   Pile's Failure Types  

The inertia of the foundation and/or kinetic pressures imposed on by lateral soil pressure are 

two possible reasons for pile collapse, as are axial load and bending. Dynamic breakdown 

(bending-buckling connection) of a base of piles may also occur in seismically liquefiable soil 

samples and result in the building collapsing (Figure 1.3). Potential pile types of failure include 

the ones listed below:  

1) A differential in rigidity between liquefiable and non-liquefiable layers of soil that results 

in pile flexing or failure due to shear (Figure 1.3a).  

2) A loss in load-bearing ability caused by liquefaction or stress relaxation in the soil 

combined with movement in the structures, resulting in tension pull-out, construction, or 

punching collapse in the piles (Figure 1.3b).  

3) Pile collapse at the top is caused by substantial shifts and bending pressures at the point of 

contact with the cap or base slab, which often occurs with high constructions (Figure 1.3c) 

(Jimenez. 2019). 

 
Figure 1.3   Types of Pile’s Failure (Jimenez. 2019). 

The bending failure process brought on by soil liquefaction-induced lateral expansion is 

often proven to be among the main causes of piling foundation failures throughout earthquakes. 

Bending failure, which results in the piles acting as fragile, unstable columns, may occur 

whenever soil liquefies and drops a considerable percentage of its rigidity. The strength of 

bending [for example, bending of the pile components] and flexural rigidity [changes in the 

shape of the moment-resisting pile segment] affect how a pile bends. In order to avert bend 

failure caused by lateral stresses when paired momentum and/or lateral distribution), the bulk of 
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modern design methodologies, such as JRA, NEHRP, IS:1893, and Eurocode 8, heavily 

emphasize the pile's flexibility (Rostami et al., 2020).  

1.5   Research on Pile Foundation Buckling Instability 

 Several investigations on the issue of pile buckling have been done in the past few 

decades. Several of them were the subject of the present section of this research; they will be 

further addressed in terms of their predominance in the course of their publication: 

 The paper published by Yang and Ye in 2001 focused on the dynamic elastic local 

buckling of a perfectly geometrical pile subjected to an axial contact force. The importance of 

this computational investigation stems from the reality that buckling of an influenced bar under 

impact forces with temporary velocity often takes place after the wave of stress arrives at the tip 

of the bar, whereas instability frequently develops at the outset of the effect if it is exposed to a 

high-velocity impact force. The bulk of the pile and the impact of the stress waves' transmission 

along the pile's duration to the point where buckling occurs are both taken into account in this 

analysis. A perturbation technique is used to determine the crucial buckling length and the 

associated time frame (Yang and Ye, 2002). 

The results showed that local dynamical elastic buckling occurred before the stress wave 

reached the pile ends. Although the elastic modulus, geometrical scale, and ratio of sub-grade 

reaction had significant effects on the unsteadiness, the impacts of skin friction and pile mass 

were minimal and could be ignored, according to the parametric evaluation resolved by 

differential equation (Yang and Ye, 2002). 

In comparison to the Winkler model with the Euler beam, the suggested model greatly 

outperforms it in terms of the dynamic interaction of piles positioned in stiff soil with low 

slenderness ratios. The relationship between variables generated by the current model may be 

simply applied to the investigation of the changing reaction of pile sets by making use of the 

superposition idea. The existing double-shear model could be extended to take into consideration 

the interaction of piles in the soil if the rigidity variables and damping ratio of the saturated 

substrate were given (Wang et al., 2014). 

Lee's study from 2018 presents a general model that continues to evaluate the flexural 

behavior and buckling of partially immersed end-bearing piles that experience axial compressive 
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force. The Runge-Kutta approach and the Regula-Flasi approach are methods that are suggested 

for analyzing the differential equation that governs the motions. The recommended model's 

accuracy is confirmed through the comparison of the observed findings with the most recent 

numerical solutions, which, in terms of engineering, permits the creation of the optimal soil 

system layout. The results demonstrate that distinct changes in administered compressive force 

have a significant impact on how the behavior of the soil-pile complex behaves in relation to its 

intrinsic frequency. As the axial compressive force reaches the buckling load, the unrestrained 

vibration impact on the structure stops contributing, signaling the buckling (Lee, 2018). In 2020, 

two other studies were carried out in a similar way:  

First is an article published by Liu,  et al (2020) constructed an analytical framework to 

determine the equilibrium equations and boundaries. The boundary value problem was 

subsequently computationally resolved using Matlab software to ascertain the crucial load for 

buckling and buckling form. The buckling behaviors of a curved friction pile submerged in 

mixed soil are carefully examined through taking into consideration both the linear shaft friction 

and linear lateral rigidity of the soft soil because buckling fluctuation of thin, lengthy piles in soft 

soils is an essential consideration in geoengineering layout. The results show that the buckling 

load is significantly influenced by the friction ratio and that the buckling load increases as the 

friction ratio lowers. The maximum dimensionless buckling strain in the curved friction pile with 

linear shaft friction has an optimal tapered ratio as well (Liu et al., 2020). 

Determining if a functionally rated beam with a Terfenol-D covering may be employed as a 

vibration dampening component for a rocket sledge system was another goal of Patil and 

Kadoli's investigation from the same year. This research adds to a series of works that examine 

the use of the Terfenol-D layer with the metal-ceramic functionally graded beam. Terfenol-D is a 

smart material with a high-power density, broad bandwidth, strong force, and enormous strain as 

its inherent properties. Under the influence of linear momentum, shock, trembling, acceleration, 

and aerodynamic impacts, the researchers employ the rocket sledge technique. The researchers 

have constructed the theoretical framework for a dynamically graded Terfenol-D composite 

beam standing on a Winkler-two factor elastic basis and a viscoelastic foundation relying on the 

Euler-Bernoulli beam concept. The answer to the next equation yields the two collections of 

eigenvalues. The slightest one is consistent with the longitudinal movement of the FGMT beams 

(Patil and Kadoli, 2020). 
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Yet, as of 2022, the most current of these studies are outlined below: 

There aren't currently any studies on the evaluation of the dynamic stability of pile sets 

under stress wave, according to Yao and Shi's research. This subject is important given that 

recently, as marine assets have been utilized, there has been a huge increase in the amount of 

offshore constructions. The majority of these structures is pile and pile group bases. It is more 

challenging to manage the relationship between heaps in a set of piles than it is with an 

individual pile. The principle of diffraction, the modified Vlasov foundation model, and the 

concept of dynamics are all used by investigators in the development of the high-order vibration 

differential equation. For the purpose of analyzing pile group settlement, the Poulos approach is 

used. The authors use the relationship component methodology and transfer matrix approach to 

create the dynamic equilibrium equations for the active pile and passive pile. Findings show that, 

for pile groups, displacement develops linearly with increasing wave height H and nonlinearly 

with increasing wavelength L (both variations being significantly lower than those of the single 

pile) (Yao and Shi, 2022). 

Gu, et al, along with others completed one more of the aforementioned investigations in 

which they showed that pile foundations are widely used to provide reinforcement for offshore 

constructions. The study shows that wave pressures and ship collisions can cause a pile-soil 

system to become unstable or fail. To assess the dynamic stability of piling foundations for 

offshore structures, they employ wave loads and SIs. The two-parameter foundation model and 

Galerkin integral technique have been used to generate the nonlinear dynamic differential control 

formulae for offshore structures. Likewise, the pile body's dislocation function and instability 

load are calculated using the fourth-order Runge-Kutta technique and the shift time-history 

curve, respectively (Gu et al., 2022). 

Lastly, Shan et al. (2022) concentrated on several shortcomings in earlier studies on floating 

piles. As of right now, the two primary modes are the Winkler model and the overlay virtual rod 

model. The spring rigidity and damping factor of the Winkler model, on the other hand, were 

mainly calculated by tests and do not correspond to normal soil dynamic parameters. The impact 

of the pile end soil thickness and specific attributes on the behavior of vibration cannot be taken 

into thought in this model simply because of the difficulty of accounting for the unsaturated 

nature of soils. On top of that, nothing is known about the soil's three-phase medium. In light of 
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this, the researchers provide in their study a sophisticated analytical approach to the vertical 

behavior of a floating pile in homogeneous unsaturated soils (Shan et al., 2022). 

1.6   Dynamic stability of constructions undergoing quasi-periodic frequency 

1.6.1   The objective of employing Quasi-Periodic Waves in Structural Design to Model 

Seismic Dynamic Loads 

In the realm of professional academic studies, the investigation of seismic events takes 

center stage due to the significant real-world impact of earthquakes, marked by high Richter 

magnitudes resulting in widespread destruction, financial implications, and loss of life. The 

pivotal consideration lies in designing structures resilient to seismic waves, particularly in 

regions prone to such geological activities. Two fundamental parameters influencing the 

behavior of seismic waves are the magnitude of the dynamic load and the frequency of the wave. 

Traditional studies have often assumed seismic waves to be periodic, but the actual earthquake 

excitation, as visually demonstrated, defies periodicity. This deviation from periodic behavior 

necessitates a more nuanced approach to modeling seismic waves to capture their true nature. To 

address this, the study advocates for the utilization of quasi-periodic frequencies as a more 

accurate representation of the non-periodic nature of earthquake excitations. This approach 

challenges the conventional assumption and offers a more realistic perspective in understanding 

seismic phenomena. (Liu, 2001; Plaut et al., 1986; Plaut and Hsieh, 1985). 

Ground acceleration records, vital for this research, are obtained from various online 

repositories, with a particular emphasis on excitation data. A notable illustration is the ground 

motion record presented in Figure 1.4, stemming from the Treasure Island earthquake that 

occurred on September 3, 2000. Figure 1.4 visually presents the ground motion record, 

encompassing both horizontal and vertical components. The accessibility of each record at 0.01-

second intervals, amounting to a minute-long record, provides a wealth of data for in-depth 

analysis. This methodology not only contributes to a more comprehensive understanding of 

seismic waves but also enhances the potential for designing structures capable of withstanding 

the dynamic challenges posed by real-world seismic events (Liu, 2001). 
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Figure 1.4   Elements of the seismic event on Treasure Island. (Liu. 2001) 

Moreover, incorporating quasi-periodic frequencies into seismic wave modeling aligns with 

the cutting-edge advancements in seismic studies. It reflects an interdisciplinary approach, 

drawing on insights from geophysics, structural engineering, and data science. The integration of 

diverse knowledge domains facilitates a holistic exploration of seismic dynamics, enriching the 

academic discourse and advancing the practical applications of seismic research. In conclusion, 

this professional academic study not only highlights the pressing need for resilient structural 

design in seismic regions but also advocates for a paradigm shift in modeling seismic waves 

through the incorporation of quasi-periodic frequencies. The utilization of real-world seismic 

data and the exploration of non-periodic characteristics contribute to a more accurate 

representation of seismic events, fostering advancements in seismic research and applications 

(Liu, 2001; Plaut et al., 1986; Plaut and Hsieh, 1985). 
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1.6.2   Study on Quasi-Periodic and Its Application Rationale 

Linear ordinary differential equations with time-periodic factors are used in a wide variety 

of scientific and engineering fields. Examples include periodic load-bearing structures, helicopter 

rotor blades that fly forward, unbalanced rotor-carrying systems, monotonous job robots, ship 

dynamics, satellite attitude balancing, heartbeats, and quantum physics. These systems are 

sometimes referred to as "parametrically stimulated systems" since the system properties in 

computational models are no longer static but have changed into periodic functions of time. 

"Parametric resonance" is a situation that may result from these functions. In order to anticipate 

the stability and behaviour of linear ordinary differential equations with recurring parameters, 

M.G. Floquet developed a thorough theory in 1883. The "Floquet Theory" is the name given to 

this hypothesis. Since then, several computational, mathematical, and symbolic methods for 

determining the stability and responsiveness of periodic systems have made use of this notion. 

Some authors used piecewise constant, linear, and quadratic matrices (functions) to approximate 

the periodic coefficient matrix (periodic functions). Friedmann et al. created a quantitatively 

efficient method that only requires one integrator pass scheme by combining Hsu's approach 

with Hammond's increased coupling method. A few papers have evaluated the stability of 

periodic systems using analytical techniques like perturbation and norm aging. However, its 

usefulness is constrained by the requirement for an insignificant variable and producing results. 

To overcome the aforementioned limitations, Sinha and his colleagues developed an efficient 

approach for computing the transition state matrix (STM) of such systems in semi-analytical as 

well as figurative formats. The development of control systems that compel chaotic, erratic 

movements into periodic orbits also uses the Floquet theory (Sharma and Sinha, 2018). 

The academic literature contains a wealth of contributions pertaining to usage. Mathieu or 

Hill equations have traditionally been employed to model systems because Floquet theory may 

be utilized to forecast a system's stability and responsiveness. However, in many cases, they are 

oversimplified models since the parametric stimulation is quasi-periodic rather than cyclic 

because it consists of inconsistent frequencies. Parametric stimulation occurs, for instance, when 

a ship is moving in the course of the waves or when the sea waves are passing over the whole 

breadth of the ship. When the vertical pull brought on by the sea waves is taken into account as a 

periodic force, the formula for the equation of motion is determined to be a Mathieu/Hill 

equation. On the other hand, sea waves have discordant frequencies and are not by definition 
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periodic. The motion of a heart and the basilar membrane (BM) in the cochlea of the inner ear 

are two other examples where the parametric driving terms would not be thought of as periodic. 

A proper cardiac model can be used to identify any abnormalities or illnesses. The BM 

fluctuations of the cochlea of the inner ear have been unknown for a long time. Following this, 

several researchers established that BM receives parametric stimulation and that dynamic 

computing using the Floquet theory may be done in the context of single-tone (frequency) inputs. 

Considering the structure of sound (speech signal) is often complex, two or three-tone motions 

must first be investigated in order to understand what happens under complex stimulus. 

Deformation consequences (mixtures of tones) were discovered by Robles et al. and Ruggero et 

al. in their investigations of the brain's response to two-tone stimulation. The genesis of quasi-

periodic motion may alternatively be explained by the first Hopf bifurcation (also known as the 

Neimark-Sacker bifurcation) of a fixed position, which yields a periodic response (limit cycle). 

A periodic motion or a quasi-periodic motion may occur from this secondary Hopf bifurcation. 

When attempting to investigate the stability of the associated quasi-periodic motion, one must 

first construct the variational equation pertaining to this motion. (Sharma and Sinha, 2018). 

The control of instabilities in such structures is just as important as determining which 

sections are stable or unstable. To create an efficient control system, one must take into account 

the quasi-periodic behavior of these parametrically stimulated systems. Control tools are also 

used during heart surgery to reduce the motion of a beating heart component over which the 

operation must be performed. Even though all of these problems require a conceptual framework 

to describe how they behave and govern, there isn't a full framework for linear differential 

equations with quasi-periodic coefficients (Sharma and Sinha, 2018). 

1.6.3   Research on dual-frequency excitation in the realm of civil engineering 

Research into dual-frequency excitation within the field of civil engineering has been 

undertaken. Presented below are instances of some of the more recent studies. 

Sahoo et al. (2016) investigated the intricate nonlinear dynamics of an axially moving 

viscoelastic beam when subjected to dual-frequency parametric stimulation, with an emphasis on 

the interaction of combination resonances between the first two modes under a 3:1 internal 

resonance scenario. By applying the direct method of multiple scales, the complex nonlinear 

integral-partial differential equation that controls the beam's lateral movement is simplified, 
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unveiling behaviors such as stability, quasi-periodicity, and chaos, which vary according to the 

system's parameters, including frequency detuning and pulsation amplitude. The numerical 

analyses underscore the depth of nonlinear phenomena not previously discussed in the literature 

on axially moving systems, presenting findings with tangible benefits for the design and 

analytical assessment of these structures. Through exhaustive parametric research, this study 

reveals previously unidentified zones of instability, a range of bifurcations, and a variety of 

dynamic actions, thereby greatly enriching the comprehension of nonlinear dynamics in axially 

moving viscoelastic beams exposed to complex stimulations (Sahoo et al., 2016). 

Zhao et al., 2018 is delved into by exploring how fluctuations in temperature are affected on 

the nonlinear vibrational responses of hanging cables when exposed to dual-frequency 

stimulations, with both combined and concurrent resonance effects being particularly 

highlighted. A mathematical formulation that incorporates the impact of thermal variations on 

cable tension is introduced, with the Galerkin technique being utilized for the discretization of 

nonlinear dynamic equations. Through perturbation analyses and stability assessments being 

conducted, it is indicated that shifts in temperature are found to considerably alter both the 

qualitative and quantitative dynamics of cable vibrations, which are influenced by the sag-to-

span ratio and the extent of temperature change. Computational findings illustrate how the 

vibrational attributes of cables, such as resonance amplitude and phase, are significantly 

impacted by temperature, being intricately linked to the sag-to-span ratio. The intricate 

relationship between thermal fluctuations, nonlinear vibrational characteristics, and the structural 

parameters of hanging cables is underscored by this investigation, with valuable perspectives for 

their design and evaluation in diverse environmental scenarios being provided (Zhao et al., 

2018). 

Cong et al., 2021 have been investigated the complex dynamics exhibited by cable-stayed 

cantilever beams, which are subjected to dual-frequency stimulations, and delve into various 

types of resonances such as primary, sub-harmonic, and super-harmonic. The Galerkin 

technique, along with a multiscale approach, is employed, demonstrating how crucial roles are 

played by fluctuations in temperature in influencing the vibrational behavior of these structures, 

thereby underscoring the profound links that are found between climatic changes and structural 

dynamics. How varied responses are elicited from the cable and beam by different types of 

excitations is further exposed by the research, noting how significant effects are had by the 
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amplitude and frequency of excitations on the system's stability and vibrational patterns. 

Through detailed parametric analyses that are conducted, the intricate dynamics of cable-stayed 

structures under complex excitations are showcased, with crucial insights being offered for their 

design and analytical evaluation towards improving structural robustness (Cong et al., 2021). 

The research has been investigated by Zhang et al., (2021) delves into the dynamic 

equilibrium of viscoelastic beams that are axially transported, subject to parametric excitation at 

two frequencies alongside a 1:3 internal resonance. By employing the direct method of multiple 

scales, the study examines the repercussions of such stimulations and resonance on the system's 

stability frontiers. Noteworthy discoveries encompass the detection of irregular and multiple-

valued stability frontiers, underscoring the profound influence of dual-frequency stimulation and 

internal resonance on the stability of the system. The research showcases that an enhancement in 

the coefficients of viscoelasticity can diminish zones of instability, and it stresses the necessity of 

accounting for non-uniform boundary conditions to prevent an overestimation of system 

stability. Confirmations through numerical methods, specifically the differential quadrature 

method, affirm the theoretical findings, highlighting the intricacies and susceptibilities of axially 

transported viscoelastic beams to such parametric excitations and internal resonances (Zhang et 

al., 2021). 

The research has been investigated by Zhang et al. (2022) delves into the nonlinear behavior 

of viscoelastic beams in axial motion, subjected to excitation at two frequencies, with a particular 

focus on 3:1 internal resonance. Employing the Kelvin-Voigt model for viscoelasticity 

characterization, a mathematical structure is established to examine how the beam's vibrational 

characteristics are influenced by material attributes and external excitations. Through both 

analytical and numerical investigations, which utilize the method of multiple scales for deriving 

approximate solutions and the differential quadrature method for empirical confirmation, the 

study uncovers various complex vibrational phenomena. These include interactions across 

multiple modes, alterations in stability, and the emergence of bifurcation patterns. The results 

highlight how the dynamics of the system are significantly impacted by the coefficients of 

viscoelasticity, illustrating that an increase in these coefficients can promote system stability 

through the dissipation of vibrational energy. By offering new insights into the complex 

vibrations of axially moving viscoelastic beams, this research makes a valuable contribution to 
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the field, providing knowledge that is crucial for the design and management of such systems 

within engineering contexts (Zhang et al., 2022). 

1.7   Quasi-Periodic Hill Equation and Related Work 

A modified damped Mathieu/Hill equation with the following solution can be used to 

represent one of the most basic types of linear differential equations with quasi-periodic 

coefficients. 

�̈� + 𝑑�̇� + (𝑎 + 𝑏1cos 𝜔1𝑡 + 𝑏2cos 𝜔2𝑡)𝑥 = 0.                                                                                       (1.1) 

where 𝑎, 𝑏1, 𝑏2 and d are system parameters; 𝑡 is the time; and 𝜔1 and ω2 are the two 

parametric frequencies (Sharma and Sinha, 2018). 

Numerous authors have looked into the stability of this kind of system in the past. Using the 

multiple scale technique, Davis and Rosenblat investigated the QP Hill equation and calculated 

the stability boundaries in 1980 (Davis and Rosenblat, 1980). 

They claim that stability boundaries for both types of families, 𝑎 = (𝑘1𝜔1)2/4 and 𝑎 =

(𝑘2𝜔2)2/4, originate from an axis where 𝑘1, 𝑘2 = 0,1,2 … .The relationship between the rotation 

number (a) of a nearly periodic function and the frequency component (M) in the spectral gaps 

was demonstrated by Johnson and Moser, 2𝛼 ∈ 𝑀 (Johnson and Moser, 1982). 

The whole parametric field is consistent with this relationship. Rotation number has been 

employed by various researchers to depict the stability diagrams since it is independent of the 

specific solution and equals √𝑎 when 𝑏1 = 𝑏2 = 0. Using the findings of Johnson and Moser 

(Johnson and Moser, 1982) as a starting point, Zounes and Rand explored the QP Hill equation 

computationally (Zounes and Rand, 1998).  

First, the Lyapunov parameters were calculated and straight computation was used to create 

the stability diagrams. An excellent fit between analytical and computational results was 

observed later in their study when formulas for transition curves were generated using normal 

perturbation and an approach resembling Hill's method of infinite determinants. 

These authors claimed that zones of instability in the 𝑎 ∼ 𝑏 plane come from the axis at 𝑎 =

(𝑘1𝜔1 ± 𝑘2𝜔2)2/4; 𝑘1, 𝑘2 = 0,1,2, … where the primary areas of instability are caused by the 

expressions 𝑎 = 𝜔1
2/4(𝑘1 = 1, 𝑘2 = 0) and 𝑎 = 𝜔2

2/4(𝑘1 = 0, 𝑘2 = 1).  
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Additionally, they claimed that the damping has a greater impact on the higher-order 

resonances contrasted with the lower-order resonances. The QP Hill equation was statistically 

investigated by Broer and Simo (1998) with two parametric frequencies: 𝜔1 = 1 and 𝜔2 =

(√5 + 1)/2. Using the maximum Lyapunov exponent and rotation number, they numerically 

tested the stability boundaries for rather large parameter values (in comparison to Zounes and 

Rand, 1998). In 2011, Puig and Simo looked into the stability bounds in a QP Hill's equation 

with three parametric (𝜔1 =1, 𝜔2 = √2 and 𝜔3 = √3) and they plotted the bounds employing 

rotation number and maximal Lyapunov coefficient (Puig and Simó, 2011). 

While the implementation of Hill's infinite determinants technique to the QP Hill equation 

grows increasingly laborious with systems of greater complexity and with a greater number of 

terms in the generalized Fourier series, perturbation and averaging strategies demand a number 

of minor variables and providing solutions. The infinite determinants of the Hill are recognized 

to not merge in all circumstances (Broer and Simó, 1998; Davis and Rosenblat, 1980; Johnson 

and Moser, 1982; Puig and Simó, 2011; Sharma and Sinha, 2018; Waters, 2010; Zounes and 

Rand, 1998). Lyapunov coefficients and rotation numbers can be used to create stability graphs, 

however, this requires a lot of computing resources and fails to offer you any statistical data. 

Deng (2023b) introduced a novel numerical method for analyzing the stability of columns 

under dynamic loads with multiple frequencies. The equation of motion for columns with fixed-

fixed connections under parametric loads was derived and decoupled into an ordinary differential 

equation with variable coefficients representing multiple frequencies. The first step of the 

numerical method involves approximating the system with multiple frequencies by an equivalent 

system with a single frequency (or period 𝑇) as closely as possible. Subsequently, the period 𝑇 is 

divided into a sufficient number of equal time intervals. On each interval, the system is 

approximated by an equation of motion with constant coefficients, which can be readily solved. 

The responses on each interval within one period 𝑇 are accumulated. Stability analysis can then 

be conducted using the state transition matrix. 

1.8   Building the Basis with an Elastic Pile Modelling 

The type of foundation significantly influences how a beam interacts with it. Several articles 

have provided a detailed analysis of the interaction between a beam and a foundation. During the 
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nineteenth century, beams on elastic bases were initially used for examining railway tracks. 

(Ahuja and Duffield, 1975; Gabr et al., 1997; Iwatsubo et al., 1973; Shahroudi, 2023; Tanahashi 

and Suzuki, 2020; Yokoyama, 1988) 

Following, several other mechanical representations have been proposed for studying stable 

soil-structure relations. The mechanical systems of soil were summarized, and their uses were 

discussed by Tanahashi (Tanahashi and Suzuki, 2020). Table 1.1 provides the controlling 

formula and design graphic for every mechanical model. 

Table 1.1   Models for mechanical soil (Liu et al., 2020). 

Soil’s Model Deflection Curve of the Surface 

 

Model with one parameter 

 

Winkler 

 

 

Model with two parameters 

 

 

Filonenko - Borodich 

 

 

 

Hetenyi 

 

 

 

Pasternak 
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The source is the juncture at which the soil is loaded, whereas 𝑥 stands for distance and 𝑦 for 

deflection. They fall into one-parameter designs and two-parameter model categories based on 

their parameters. 

According to the Winkler method, which is the most basic possible one-parameter model for 

perpetual systems (Engel, 1991), an ongoing system is made up of distinct, isolated longitudinal 

springs whose response forces are equivalent to their shifts. Further examples are the Pasternak 

Model (with shear component), Hetenyi Model (with torsional element), and Filonenko-

Borodich Model (with tensile element) (Tanahashi and Suzuki, 2020). These include a 

component over the springs in an effort to remedy the Winkler Model's interruption flaw. 

Mastering these sorts of bases' static performance is crucial when trying to comprehend their 

dynamic activity. Additionally, it is essential to investigate how the outside environment affects 

dynamic equilibrium in order to comprehend how these substances will respond to various kinds 

of time-dependent pressures.  

Sugiyama stated that it is feasible to estimate an ongoing structure with a distinct system 

(Iwatsubo et al., 1973). Ahuja investigated the measured reaction of a beam with a varying cross-

section that was supported by an elastic base and exposed to the dynamic axial stress condition 

using combined empirical and theoretical methods (Ahuja and Duffield, 1975). Using the 

Winkler-type basis, he claimed that both theoretical and empirical results reveal the precise 

bounds of the unstable zone. Employing finite element techniques, Yokoyama examined the 

behavior of a Timoshenko beam supported by an elastic base modeled by Winkler in 1987 

(Yokoyama, 1988). The natural rates, stable buckling weights, and dynamic oscillations induced 

by elastic bases of Timoshenko beams with various endpoint circumstances were examined. In 

1997, created a model to assess the essential buckling performance of long, thin piles of friction 

with horizontal foundation soil based on the subgrade response concept. The measurement value 

of the subgrade response (𝑘ℎ) is calculated within the model using a generic power distribution. 

The integrity of a thin pile with various tip and top stabilizers (pinned, set, or loose termination) 

was the subject of the investigation (Gabr et al., 1997). 

A beam supported by viscoelastic bracing was employed by Engel (1991). Engel has 

included the fluid damping of the bearing substance into the Winkler, Hetenyi, and Pasternak 

basis models. He identified the unstable zones and the crucial dynamic forces using the Floquet 
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concept. He provided an example of how the basis's characteristics of viscous damping affected 

its rigidity behavior. Additionally, he contrasted the instability limit under the various buckling 

displacement types and the results of the various soil pile interface theories. 

1.9   Thesis Outline 

The preceding thesis commenced in Chapter 1 with an exploration of pivotal considerations 

in pile foundation design, highlighting their critical role in megastructures and marine 

construction. The two-part investigation covered fundamental aspects of pile foundations, 

seismic influences, and pile behavior, with a specific focus on buckling. The second part delved 

into sophisticated research on pile foundation buckling instability, emphasizing dynamic stability 

and introducing the Quasi-Periodic Hill Equation. The opening chapter underscored the 

imperative need to comprehend these aspects as a foundational requirement for subsequent 

chapters on pile foundation design. 

Moving forward, the second chapter will be dedicated to intricately modeling pile 

foundations under dynamic loads, encompassing both single and dual frequencies. The central 

focus will involve constructing a beam model supported by a Winkler foundation, incorporating 

a pair of frequencies. The derivation of the equation of motion will utilize equilibrium formulas 

and transform a partial differential equation into an ordinary one through the Galerkin technique. 

This chapter will set the stage for subsequent discussions by presenting the fundamental equation 

that will be refined in later chapters. 

The third chapter will shift the exploration towards the investigation of the stability diagram 

of a pile foundation under dual-frequency dynamic loading. Utilizing the Harmonic Balance 

technique, the chapter will employ Hill's infinite variables to formulate transition curves, 

revealing instabilities within the V-shaped region. This chapter will stand as a substantial 

contribution to understanding pile foundation dynamics and the phenomena of instability under 

dual-frequency excitations. 

Chapter four will build upon the step function method as a numerical method for 

investigating stability diagrams with dual frequency. It will first convert a two-frequency system 

into a Hill equation with a single primary frequency. The chapter will introduce a computational 
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algorithm using step functions for the undamped Mathieu-Hill equation, providing insights into 

dynamic stability. 

The fifth chapter will provide an in-depth exploration of dynamic instability regions in pile 

foundations by offering a case study, with a focus on seismic events. Utilizing the Harmonic 

Balance method and the numerical Step Function method, the chapter will systematically analyze 

stability diagrams under dual-frequency excitations. It will emphasize the accuracy of the 

computational modeling, showcasing insights into the dynamic behavior of pile foundations 

under various conditions. 

 In conclusion, Chapter 6 marks the culmination of this research endeavor, summarizing the 

exploration into dynamic stability and vibration reactions of piles on elastic bases subjected to 

oscillating axial forces. The proposed computational algorithm's precision and reliability, 

compared to the traditional Harmonic Balance method, are emphasized. The chapter focuses on 

calibrating rough instability limits using Hill infinite factors, addressing their accuracy and 

limitations. Vibration reactions are analyzed, validating computational instability charts and 

comparing results with the fourth-order Runge-Kutta method. The study's significance in 

mechanical and civil engineering is underscored, hinting at potential future research directions. 

1.10   Summary 

This chapter elucidates the critical considerations in pile foundation design, emphasizing 

their importance in megastructures and marine construction. Divided into two parts, the first part 

covers the basics of pile foundations, seismic influences, and pile behavior, particularly focusing 

on buckling. The second part delves into advanced research on pile foundation buckling 

instability, emphasizing dynamic stability, and introducing the Quasi-Periodic Hill Equation. The 

chapter underscores the significance of understanding these aspects as a prerequisite for 

subsequent chapters on pile foundation design. 



 

 
 

Chapter 2  A Model of Pile Foundations Under Seismic Excitations 

2.1   Introduction  

This chapter will delve into the modeling of pile foundations under dynamic excitation, 

considering both single and dual frequencies. The aim is to systematically analyze the structural 

response of pile foundations in these dynamic scenarios, providing valuable insights and 

contributing to the scholarly understanding of pile foundation dynamics. 

2.2   Problem formulation 

In order to study buckling unsteadiness, piles encased in soil adjacent to them can be thought 

of as beams supported by alternatively a flexible or a viscoelastic basis. The fixed flexure and 

dynamic responses of these beams, which are supported by various elastic and viscoelastic bases, 

have drawn the attention of many investigators. Many scholars choose the Winkler model in 

their dynamic studies notwithstanding it showing an absence between loaded and unloaded 

modes because of its simple method for solving problems (Engel, 1991). The Winkler model is 

used in the present research to illustrate the soil circumstances encircling the pile foundation. 

We evaluate a tiny vertical section in a pile and create a motion formula for that specific 

section to test the sturdiness of the pile. The unique qualities of the vertical piece and the 

surrounding substance are taken into consideration when creating this formula. For this specific 

inquiry, we will use the force equilibrium technique. Usually, the motion equation is derived 

from one of the force balance or energy equilibrium formulas. 

A pile with a stable cross-sectional form, a length of 𝐿, and 𝐸𝐼 as its flexural stiffness is 

shown in Figure 2.1 which is a first-order approximation. The pile is restricted by the nearby 

earth composition to prevent lateral deformation while receiving straightforward assistance at its 

dismissals and maintaining a pin-pin shape. 𝑝(𝑥, 𝑡) represents the subgrade response for every 

pile length in the setting of Figure 2.1, taking into account the effects of springs and dampers. 

Furthermore, the force (𝑚𝑎) is equivalent to the energy force (D'alembert's force), which 

opposes particle dislocation and is denoted by the symbol (𝜌𝐴𝛥𝑥�̈�). In this formula, 𝐴 stands for 

the cross-sectional area and 𝜌 stands for the mass concentration of the pile per unit capacity. 
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Given the dynamic axial stress, 𝑣 additionally describes an estimate that depends on both 𝑥 and 

𝑡. 

 
 

 

 

 

 

 

Figure 2.1   Pile foundation under axial load surrounded by soil. (Engel, 1991; Deng et al., 2023) 

Consider the formulae for the micro pile segment's balance. It is presumed that 𝛥𝑃 = 0 

when adding the loads across the vertical line 𝑥. The subsequent formula is produced by 

averaging the loads horizontally in vector 𝑣. 

(𝑆 + Δ𝑆) + (𝜌𝐴𝛥𝑥)�̈� − 𝑆 + 𝑝(𝑥, 𝑡) × 𝛥𝑥 = 0 ⇒
Δ𝑆

Δ𝑥
= −𝜌𝐴�̈� − 𝑝(𝑥, 𝑡).                                       (2.1) 

Bringing together the instant at the pile segment's halfway results in: 

 (𝑀 + Δ𝑀) + 𝑃(𝑡) × [(𝑣 + Δ𝑣) − 𝑣] − 𝑀 − (𝑆 + Δ𝑆) × 𝛥𝑥 − (𝜌𝐴Δ𝑥)�̈� ×
𝛥𝑥

2
− 𝑝(𝑥, 𝑡)Δ𝑥 ×

Δ𝑥

2
= 0.

 ⇒  Δ𝑀 + 𝑃(𝑡) × Δ𝑣 − (𝑆 + Δ𝑆) × Δ𝑥 − (𝜌𝐴Δ𝑥)�̈� ×
Δ𝑥

2
− 𝑝(𝑥, 𝑡)Δ𝑥 ×

Δ𝑥

2
= 0.                                    (2.2)  

 

 
Δ𝑀

Δ𝑥
+ 𝑃(𝑡) ×

Δ𝑣

Δ𝑥
= (𝑆 + Δ𝑆) −

Δ𝑆

2
.                                                                                                                (2.3) 

The formulas of Equation (2.1) within Equation (2.3) are altered to have the limit of Δx 

approaches zero.  

∂𝑆

𝜕𝑥
= −𝜌𝐴�̈� − 𝑝(𝑥, 𝑡), and                                                                                                                               (2.4) 

𝜕𝑀

𝜕𝑥
+ 𝑃(𝑡) ×

𝜕𝑣

𝜕𝑥
= 𝑆.                                                                                                                                          (2.5) 

•  
•  
•  
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After concluding Equation (2.5) with regard to 𝑥, we get: 

𝜕2𝑀

𝜕𝑥2 =
𝜕𝑆

𝜕𝑥
− 𝑃(𝑡) ×

𝜕2𝑣

𝜕𝑥2.                                                                                                                                    (2.6) 

In Equation (2.6), replacing (2.4) results in: 

𝜕2𝑀

𝜕𝑥2 = −𝜌𝐴�̈� − 𝑝(𝑥, 𝑡) − 𝑃(𝑡) ×
𝜕2𝑣

𝜕𝑥2 .                                                                                                          (2.7) 

On the other hand, with a flexible beam, the connection between Moment and Curvature 

(Xie. 2006) is: 

𝑀 = 𝐸𝐼
𝜕2𝑣

𝜕𝑥2.                                                                                                                                                         (2.8) 

The formula for the rate of velocity for the pile can be written by substituting Equation (2.8) 

for Equation (2.7). This equation only valid for constant E and I. 

𝐸𝐼
∂4𝑣

∂x4 + 𝑃(𝑡)
𝜕2𝑣

𝜕𝑥2 + 𝜌𝐴
∂2𝑣

𝜕𝑡2 + 𝑝(𝑥, 𝑡) = 0.                                                                                                  (2.9) 

Piles are usually subjected to variable axial stresses in addition to static axial loads. 

Dynamic loads can take a variety of shapes, including earthquakes, vibrations from mechanical 

components, and engineering explosives (Shahroudi, 2023; Deng et al., 2019). 

The soil's responsive pressure throughout the length of the pile is determined through taking 

into consideration the damping impact within the soil around the pile. 

𝑝(𝑥, 𝑡) = 𝑘𝑠𝑣 + 𝑐𝑠
𝑑𝑣

𝑑𝑡
 .                                                                                                                                    (2.10) 

In this instance, ks stands for the longitudinal foundation's rigidity, and 𝑐𝑠 stands for the soil 

foundation's dampening viscous ratio. Furthermore, 𝑐𝑠𝑣 represents the soil-derived damping 

force. Borrowing from Equation (2.10) and Figure 2.1, it can be seen that the soil on the opposite 

end of the pile causes the pulling force of springs to be transferred to the left while the pile 

deflects to the right (in the positive 𝑣 orientation). In contrast, the spring force is directed to the 

right once the pile rotates to the left (in the negative 𝑣  orientation) because of the soil on the 

pile's left edge. The mechanics of soil modeling takes into account the integrated response of the 

soil medium on each side of the pile, as shown in Figure 2.1. 

Formula (2.10) is changed into Equation (2.9), and the result is: 
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𝐸𝐼
𝜕4𝑣

𝜕𝑥4 + 𝑃(𝑡)
𝜕2𝑣

𝜕𝑥2 + 𝜌𝐴
𝜕2𝑣

𝜕𝑡2 + (𝑘𝑠𝑣 + 𝑐𝑠
d𝑣

𝑑𝑡
) = 0.                                                                         (2.11) 

The following is how the boundary conditions for piles with plain reinforcements are 

defined: 

{
 at 𝑥 = 0: 𝑣(0, 𝑡) = 0,

𝜕2𝑣(0,𝑡)

𝜕𝑥2 = 0.

 at 𝑥 = 𝐿: 𝑣(𝐿, 𝑡) = 0,
𝜕2𝑣(𝐿,𝑡)

𝜕𝑥2 = 0.
                                                                                                      (2.12) 

When examining the stability of dynamic variables, Equation (2.11) is one based on partial 

differential equations (PDE) that better to be transformed into an ordinary differential equation 

(ODE) for studying the stability. To do this, we approach 𝑣(𝑥, 𝑡) in the following manner: 

𝑣(𝑥, 𝑡) = ∑  ∞
𝑖=1 𝑞𝑖(𝑡)𝜙𝑖(𝑥),     𝜙𝑖(𝑥) = sin 

𝑖𝜋𝑥

𝐿
 (𝑖 = 1,2, … ).                                                      (2.13) 

In this instance, the expressions 𝜙𝑖(𝑥) represent the orthogonal modality functions of a 

singly maintained column that satisfies the requirements stated in Equation (2.12). 

∫  
𝐿

0
𝜙𝑖(𝑥)𝜙𝑗(𝑥)d𝑥 = {

0, 𝑖 ≠ 𝑗,
1

2
𝐿, 𝑖 = 𝑗.

                                                                                                              (2.14) 

The result that follows is as such: 

𝐸𝐼 ∑  ∞
𝑖=1  𝑞𝑖(𝑡) (

𝑖𝜋

𝐿
)

4
sin (

𝑖𝜋𝑥

𝐿
) − 𝑃(𝑡) × ∑  ∞

𝑖=1  𝑞𝑖(𝑡) (
𝑖𝜋

𝐿
)

2
sin (

𝑖𝜋𝑥

𝐿
) +

𝜌𝐴 ∑  ∞
𝑖=1   �̈�𝑖(𝑡) sin (

𝑖𝜋𝑥

𝐿
) + (𝑘𝑠 ∑  ∞

𝑖=1  𝑞𝑖(𝑡) sin (
𝑖𝜋𝑥

𝐿
) + 𝑐𝑠 ∑  ∞

𝑖=1   �̇�𝑖(𝑡) sin (
𝑖𝜋𝑥

𝐿
)) = 0.

                 (2.15) 

The subsequent result is obtained by multiplying Equation (2.15) by 𝛷𝑛(𝑥) = sin (
𝑛𝜋𝑥

𝐿
) 

incorporating the equation across the spectrum of 𝑥 from 0 to 𝐿, and using the orthogonality 

assumption as stated in Equation (2.14). 

𝐸𝐼𝑞𝑛(𝑡) (
𝑛𝜋

𝐿
)

4
− 𝑃(𝑡) × 𝑞𝑛(𝑡) (

𝑛𝜋

𝐿
)

2
+ 𝜌𝐴�̈�𝑛(𝑡) + (𝑘𝑠𝑞𝑛(𝑡) + 𝑐𝑠𝑞𝑛(𝑡)) = 0.  

𝜌𝐴�̈�𝑛(𝑡) + 𝑐𝑠�̇�𝑛(𝑡) + [𝐸𝐼 (
𝑛𝜋

𝐿
)

4
− 𝑃(𝑡) × (

𝑛𝜋

𝐿
)

2
+ 𝑘𝑠] 𝑞𝑛(𝑡) = 0.                                             (2.16) 



    Chapter 2   A Model of Pile Foundations Under Seismic Excitations                                                                   26    

 
 

2.2.1   Dynamic load with one frequency 

One needs to consider the dynamic axial strain with the period 𝑇 =
2𝜋

𝜃
  being identical to: 

 𝑃(𝑡) = 𝑃𝑠 + 𝑃𝑑 cos 𝜃𝑡.                                                                                                                                (2.17) 

The axial pressure transmitted to the pile is represented by 𝑃𝑠 and 𝑃𝑑 which accordingly 

stand for both static and dynamic elements. Taking into consideration the subsequent data, 

𝜆 =
𝑃𝑠

𝑃𝑐𝑟
=

𝑃𝑠𝐿2

𝜋2𝐸𝐼
,   𝜖 =

𝑃𝑑

𝑃𝑐𝑟
=

𝑃𝑑𝐿2

𝜋2𝐸𝐼
,   𝜂 =

𝑘𝑠𝐿4

𝜋2𝐸𝐼
,    𝛽 =

𝑐𝑠

2𝜌𝐴
=

𝛿⋅𝜔

2𝜋
=

𝛿𝛺√𝑛4−𝜆𝑛2+𝜂

2𝜋
.                            (2.18) 

The non-dimensional static force variable 𝜆, the non-dimensional dynamic load variable ϵ, 

the non-dimensional foundation stiffness parameter 𝜂 , the damping factor 𝛽, and the logarithmic 

reduction of damping 𝛿 are all worth mentioning in light of the information supplied. Likewise 

𝑃𝑐𝑟 and 𝛺 represent, the natural frequency of a plainly sustained pile in the first mode and the 

critical Euler buckling load with the following connection: 

𝑃𝑐𝑟 =
𝐸𝐼𝜋2

𝐿2 ,  𝛺 =
𝜋2

𝐿2 √
𝐸𝐼

𝜌𝐴
.                                                                                                                                (2.19) 

Employing the dimensionless variables from Equation (2.18) and then condensing the 

formula results in the following: 

�̈�𝑛(𝑡) + 2𝛽�̇�𝑛(𝑡) + 𝜔2(1 − 2𝜇cos 𝜃𝑡)𝑞𝑛(𝑡) = 0.                                                                                 (2.20) 

Here, 

𝜔2 = 𝛺2(𝑛4 − 𝜆𝑛2 + 𝜂),  2𝜇 =
𝛺2𝜖𝑛2

𝜔2 =
𝜖𝑛2

𝑛4−𝜆𝑛2+𝜂
.                                                                      (2.21) 

With regard to displacement sensibility, the first mode is the most significant. Consequently, 

Equation (2.20) can be written in the following manner when 𝑛 = 1 and the subscript are taken 

out: 

�̈�(𝑡) + 2𝛽�̇�(𝑡) + 𝜔2(1 − 2𝜇cos 𝜃𝑡)𝑞(𝑡) = 0.                                                                                        (2.22) 

Here, 

𝜔2 = 𝛺2(1 − 𝜆 + 𝜂),  𝛽 =
𝛿⋅𝜔

2𝜋
,  2𝜇 =

𝛺2𝜖𝑛2

𝜔2 =
𝜖𝑛2

𝑛4−𝜆𝑛2+𝜂
..                                                                    (2.23) 
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Equation (2.22) showcases the well-known damped Mathieu equation. Xie proposed a 

variable transformation to remove the damping term (Xie. 2006). When 𝑞(𝑡) = 𝑒(−𝛽𝑡)𝑢(𝑡), the 

first and second derivatives of become, the renowned damped Mathieu formula is demonstrated 

in Equation (2.22). A factor conversion was suggested by Xie to get rid of the damping factor. 

The first and second variants of 𝑞(𝑡) turn into the following when (Xie. 2006) 

𝑞(𝑡) = 𝑒(−𝛽𝑡)𝑢(𝑡), 

�̇� = −𝛽𝑒(−𝛽𝑡)𝑢 + 𝑒(−𝛽𝑡)�̇�,    

�̈� = 𝛽2𝑒(−𝛽𝑡)𝑢 − 2𝛽𝑒(−𝛽𝑡)�̇� + 𝑒(−𝛽𝑡)�̈�.                                                                                                  (2.24) 

Substituting equation (2.24) into (2.22) to get the following standard representation of the 

undamped Mathieu equation. 

𝛽2𝑒(−𝛽𝑡)𝑢 − 2𝛽𝑒(−𝛽𝑡)�̇� + 𝑒(−𝛽𝑡)�̈� + 2𝛽(−𝛽𝑒(−𝛽𝑡)𝑢 + 𝑒(−𝛽𝑡)�̇�) + 𝜔2(1 −

2𝜇𝑐𝑜𝑠 𝜃𝑡)𝑒(−𝛽𝑡)𝑢 = 0,

�̈� + 𝜔2 [(1 −
𝛽2

𝜔2) − 2𝜇cos 𝜃𝑡] 𝑢 = 0.

                      (2.25) 

The standard representation of an undamped Mathieu equation is Equation (2.25). 

2.2.2   Dynamic load with two frequencies 

In order to take into account two dynamic frequency needs to consider the dynamic axial 

strain with the period 𝑇1 =
2𝜋

𝜃1
,  𝑇2 =

2𝜋

𝜃2
  being identical to: 

 𝑃(𝑡) = 𝑃𝑠 + 𝑃𝑑1cos 𝜃1𝑡 + 𝑃𝑑2cos 𝜃2𝑡,   𝑃𝑑 = 𝑃𝑑1 = 𝑃𝑑2,  

𝑃(𝑡) = 𝑃𝑠 + 𝑃𝑑cos 𝜃1𝑡 + 𝑃𝑑cos 𝜃2𝑡.                                                                                           (2.26) 

The axial pressure transmitted to the pile is represented by 𝑃𝑠, 𝑃𝑑1 and 𝑃𝑑2 which accordingly 

stand for both static and two dynamic elements.  

Employing the dimensionless variables from Equations (2.18, 2.19) and then condensing the 

formula results in the following: 

�̈�𝑛(𝑡) + 2𝛽�̇�𝑛(𝑡) + 𝜔2[1 − 2𝜇(cos 𝜃1𝑡 + cos 𝜃2𝑡)]𝑞𝑛(𝑡) = 0,                                                (2.27) 

Here, 
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𝜔2 = 𝛺2(𝑛4 − 𝜆𝑛2 + 𝜂),       2𝜇 =
𝛺2𝜖𝑛2

𝜔2 =
𝜖𝑛2

𝑛4−𝜆𝑛2+𝜂
.                                                                  (2.21) 

With regard to displacement sensibility, the first mode is the most significant. Consequently, 

Equation (2.27) can be written in the following manner when 𝑛 = 1 and the subscript are taken 

out: 

�̈�(𝑡) + 2𝛽�̇�(𝑡) + 𝜔2(1 − 2𝜇(cos 𝜃1𝑡 + cos 𝜃2𝑡))𝑞(𝑡) = 0,                                                      (2.28) 

Here, 

𝜔2 = 𝛺2(1 − 𝜆 + 𝜂),      𝛽 =
𝛿⋅𝜔

2𝜋
,       2𝜇 =

𝛺2𝜖𝑛2

𝜔2 =
𝜖𝑛2

𝑛4−𝜆𝑛2+𝜂
.                                                   (2.23) 

Equation (2.28) showcases the well-known Damped Quasi Mathieu equation. This equation 

is identical to the one proposed by Sinha in his research, providing evidence that the final 

Equation (2.28) is accurate (Sharma and Sinha, 2018). 

Xie proposed a variable transformation to remove the damping term by using Equation 

(2.24) “𝑞(𝑡) = 𝑒(−𝛽𝑡)𝑢(𝑡)” and substitute in Equation (2.28), and the result is (Xie. 2006): 

𝛽2𝑒(−𝛽𝑡)𝑢 − 2𝛽𝑒(−𝛽𝑡)�̇� + 𝑒(−𝛽𝑡)�̈� + 2𝛽(−𝛽𝑒(−𝛽𝑡)𝑢 + 𝑒(−𝛽𝑡)�̇�) + 𝜔2(1

− 2𝜇(cos 𝜃1𝑡 + cos 𝜃2𝑡))𝑒(−𝛽𝑡)𝑢 = 0, 

                                                                                                                                           (2.29) 

�̈� + 𝜔2 [(1 −
𝛽2

𝜔2) − 2𝜇(cos 𝜃1𝑡 + cos 𝜃2𝑡)] 𝑢 = 0.                                                      (2.30) 

The standard representation of an Undamped Quasi Mathieu equation is Equation (2.30). 

This equation is identical to the one presented in Sinha’s work and has also been proposed by 

Zounes in their research. This consistency serves as validation for the correctness of the final 

equation in (2.29) (Rand and Hastings, 1995; Rand et al., 1999; Sharma and Sinha, 2018; Zounes 

and Rand, 1998; Zounes, 1997). 

One of the innovations in our research is the implementation of the Mathieu equation for 

axial dynamic loads with both single and dual frequencies, specifically for pile foundations. 
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2.3   Summary 

This chapter is dedicated to the meticulous modeling of pile foundations under dynamic 

loads, considering both single and dual frequencies. The focal point involves constructing a 

model of a beam supported by a Winkler foundation, incorporating a pair of frequencies in the 

analysis. The derivation of the equation of motion, detailed in Equation (2.11), employs 

equilibrium formulas and subsequently transforms the partial differential equation into an 

ordinary differential equation through the Galerkin technique, as demonstrated in Equation 

(2.16). 

Further refinement of the equation takes place by transforming it into a Mathieu differential 

equation with a single frequency, utilizing unspecified variables Equations (2.22, 2.25). 

Additionally, the equation is extended to a Mathieu differential equation with two frequencies 

through the use of undefined variables, as elucidated in Equations (2.28, 2.29). Chapters 3 and 4 

extend the academic discourse by providing estimation techniques and mathematical methods for 

solving the Mathieu differential equation with two frequencies. The chapter concludes by 

elaborating on the practical application of these mathematical tools, demonstrating how reactions 

to vibration aid in determining instability charts. This academic endeavor contributes to the 

advancement of knowledge in structural dynamics and geotechnical engineering. 

 



 

 
 

Chapter 3   Dynamic Stability by Approximate Method 

3.1   Introduction 

To comprehend the stability diagram of a pile foundation subjected to dynamic loading with 

two frequencies, this chapter will present the approach delineated by Zounes and Rand. It 

involves employing the Harmonic Balance technique to address dual-frequency excitation.  

3.2   Dynamic Stability by Harmonic Balance Method 

In this section, we introduce the method outlined by Zounes and Rand for dealing with dual-

frequency excitation, utilizing the Harmonic Balance technique (Rand and Hastings, 1995; Rand 

et al., 1999; Zounes and Rand, 1998; Zounes, 1997). Furthermore, for an in-depth study of the 

stability equation under single-frequency excitation using both undamped and damped Mathieu 

equations, it is advisable to refer to Xie's book (Xie, 2006). 

Utilizing Hill's infinite factors, as described in sources, is one way to obtain mathematical 

formulas for the evolution curves of Mathieu's Equation (3.1). (Byatt-Smith, 1979; Nayfeh and 

Mook, 2008; Magnus and Winkler,1966) 

�̈� + (𝛿 + 𝜖 cos 𝑡)𝑥 = 0,                                                                                                                                    (3.1) 

This method uses the Fourier series to represent the constrained values 𝑥(𝑡) across the 

transition curves, which have intervals of 2π or 4π 

𝑥(𝑡) = 𝐴0 + ∑  ∞
𝑘=1 [𝐴𝑘 cos (

𝑘

2
𝑡) + 𝐵𝑘 sin (

𝑘

2
𝑡)].                                                                                     (3.2) 

An endless series of straightforward, uniform formulas for the parameters {𝐴𝑘, 𝐵𝑘}  appears 

by substituting the above statement into Mathieu's equation and equating variables with equal 

harmonics (using the idea of harmonic balancing). The infinite (Hill's) eigenvalue of the 

appropriate factor matrix must turn into zero for 𝑥(𝑡) to have a reasonable answer. The transition 

trajectories inside the 𝛿 –  𝜖 variable domain of Mathieu's equation is tacitly defined by this 

criterion. 

The QP Mathieu equation was successfully solved using a similar method utilizing Hill's 

infinite variables that aimed to develop mathematical formulations for the transition curves in the 
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𝛿 − 𝜔 parameter range (with a fixed 𝜖). This approach is based on the assumption that the 

answers across transition curves take the shape shown in Equation (3.3), specifically, 

𝑞(𝑡) = ∑  ∞
𝑎=0 ∑  ∞

𝑏=−∞ [𝐴𝑎𝑏cos (
𝑎+𝑏𝜔

2
𝑡) + 𝐵𝑎𝑏sin (

𝑎+𝑏𝜔

2
𝑡)].                                                      (3.3) 

When 𝜔 is limited to rational standards, 𝜔 =
𝑝

𝑞
, where 𝑝 and 𝑞 are positive values without 

any shared variables, the given conclusion has strong evidence. As even a tiny change in 𝜔 

would make it reasonable, it would appear that the inconsistency ω of has no real effect. In 

addition, any irrational amount can be precisely estimated by a rational integer. The QP Mathieu 

equation adopts a version of Hill's Equation (3.4) in light of this restriction on ω : 

�̈� + [𝛿 + 𝜖 (cos 𝑡 + cos 
𝑝

𝑞
𝑡)] 𝑞 = 0.                                                                                                           (3.4) 

Considering 𝜔 < 1, the recurrence of the stimulation component 𝜖 (cos 𝑡 + cos 
𝑝

𝑞
𝑡) with a 

period of 𝑇 = 2𝜋𝑞 is evident. According to the Floquet principle, only when the associated 

values of parameters lie on a transition curve does Hill's equation result in periodic answers with 

a period of either 𝑇 or 2𝑇.  

We can establish, with no loss of generality, that 𝐴−𝑎,−𝑏 is equal to 𝐴𝑎,𝑏 and 𝐵−𝑎,−𝑏 is equal 

to −𝐵𝑎,𝑏. To obtain approximate results, we employ a truncation of the infinite sums in Equation 

(3.3) and replace them with summations ranging from 0 to 𝑁 for n and from −𝑁 to 𝑁 for 𝑚. 

For 𝑁 = 1, we have: the expansion of series 3.10 is shown in Equation (3.5). 

𝐴0,0 + 𝐴0,−1cos (
𝑡𝜔

2
) − 𝐵0,−1sin (

𝑡𝜔

2
) + 𝐴0,1cos (

𝑡𝜔

2
) + 𝐵0,1sin (

𝑡𝜔

2
) + 𝐴1,−1cos (

1

2
𝑡𝜔 −

1

2
𝑡)

−𝐵1,−1sin (
1

2
𝑡𝜔 −

1

2
𝑡) + 𝐴1,0cos (

𝑡

2
) + 𝐵1,0sin (

𝑡

2
) + 𝐴1,1cos (

1

2
𝑡𝜔 +

1

2
𝑡) + 𝐵1,1sin (

1

2
𝑡𝜔 +

1

2
𝑡)

 

                                                                                                                                                          (3.5) 

The QP Mathieu equation for 𝑁 = 1 considering (3.3, 3.4) and assuming 𝐴0,−1 =

𝐴0,1, 𝐵0,−1 = −𝐵0,1 is show in Equation (3.6). 
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𝐴0,0(𝜖cos (𝑡) + 𝜖𝑐𝑜𝑠 (𝑡𝜔) + 𝛿) +
(4𝛿𝐵1,0−2𝜖𝐵1,0−4𝜇𝐴1,0−𝐵1,0)sin (

𝑡

2
)

4

+
(4𝛿𝐴1,0+2𝜖𝐴1,0+4𝜇𝐵1,0−𝐴1,0)cos (

𝑡

2
)

4

+
(−𝜔2𝐵1,1+(−4𝜇𝐴1,1−2𝐵1,1)𝜔−4𝜇𝐴1,1+4𝛿𝐵1,1−𝐵1,1)sin (

(1+𝜔)𝑡

2
)

4

+
(𝜔2𝐵1,−1+(−4𝜇𝐴1,−1−2𝐵1,−1)𝜔+4𝜇𝐴1,−1−4𝛿𝐵1,−1+𝐵1,−1)sin (

(−1+𝜔)𝑡

2
)

4

+
𝜖𝐵1,1sin (

𝑡(3+𝜔)

2
)

2
−

𝜖𝐵1,−1sin (
𝑡(3𝜔−1)

2
)

2
+

𝜖𝐵1,1sin (
𝑡(3𝜔+1)

2
)

2

  

+
𝜖𝐴1,−1cos (

𝑡(3𝜔−1)

2
)

2
+

𝜖𝐴1,1cos (
𝑡(3𝜔+1)

2
)

2
−

𝜖𝐵1,−1sin (
𝑡(−3+𝜔)

2
)

2

+
𝜖𝐴1,1cos (

𝑡(3+𝜔)

2
)

2
+

𝜖𝐴1,−1cos (
𝑡(−3+𝜔)

2
)

2
+ 𝜖𝐵0,1sin (

𝑡(−2+𝜔)

2
)

+𝜖𝐴0,1cos (
𝑡(−2+𝜔)

2
) +

(−8𝜇𝐴0,1𝜔−2𝐵0,1𝜔2+8𝛿𝐵0,1−4𝐵0,1𝜖)sin (
𝑡𝜔

2
)

4

+
(8𝜇𝐵0,1𝜔−2𝐴0,1𝜔2+8𝛿𝐴0,1+4𝐴0,1𝜖)cos (

𝑡𝜔

2
)

4

+
(4𝜖𝐴1,−1−𝜔2𝐴1,1+(4𝜇𝐵1,1−2𝐴1,1)𝜔+4𝜇𝐵1,1+𝐴1,1(4𝛿−1))cos (

(1+𝜔)𝑡

2
)

4

  

+
(4𝜖𝐴1,1−𝜔2𝐴1,−1+(−4𝜇𝐵1,−1+2𝐴1,−1)𝜔+4𝜇𝐵1,−1+𝐴1,−1(4𝛿−1))cos (

(−1+𝜔)𝑡

2
)

4

+𝜖𝐴0,1cos (𝑡 +
1

2
𝑡𝜔) +

𝜖𝐵1,0sin (𝑡𝜔+
1

2
𝑡)

2
−

𝜖𝐵1,0sin (𝑡𝜔−
1

2
𝑡)

2
+

𝜖𝐴1,0cos (𝑡𝜔−
1

2
𝑡)

2

+
𝜖𝐴1,0cos (𝑡𝜔+

1

2
𝑡)

2
+ 𝜖𝐵0,1sin (

3𝑡𝜔

2
) + 𝜖𝐴0,1cos (

3𝑡𝜔

2
) +

𝜖𝐵1,0sin (
3𝑡

2
)

2

+
𝜖𝐴1,0 cos(

3𝑡

2
)

2
+ 𝜖𝐵0,1 sin (𝑡 +

1

2
𝑡𝜔) = 0.

                                 (3.6) 

Because the QP Mathieu equation is zero, the coefficient of sine and cosine will be zero too. 

So, we have eq (1-9) will be zero too. 

𝑒𝑞1:   𝛿𝐴0,0 = 0, 

𝑒𝑞2:   2𝜇𝐵0,1𝜔 −
1

2
𝐴0,1𝜔2 + 2𝛿𝐴0,1 + 𝐴0,1𝜖 = 0,  

𝑒𝑞3:  − 2𝜇𝐴0,1𝜔 −
1

2
𝐵0,1𝜔2 + 2𝛿𝐵0,1 − 𝐵0,1𝜖 = 0,  

𝑒𝑞4:  𝜖𝐴1,1 −
𝜔2𝐴1,−1

4
+

(−4𝜇𝐵1,−1+2𝐴1,−1)𝜔

4
+ 𝜇𝐵1,−1 +

𝐴1,−1(4𝛿−1)

4
= 0,  

𝑒𝑞5:  
𝜔2𝐵1,−1

4
+

(−4𝜇𝐴1,−1−2𝐵1,−1)𝜔

4
+ 𝜇𝐴1,−1 − 𝛿𝐵1,−1 +

𝐵1,−1

4
= 0,  

𝑒𝑞6:  𝛿𝐴1,0 +
1

2
𝜖𝐴1,0 + 𝜇𝐵1,0 −

1

4
𝐴1,0 = 0,  
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𝑒𝑞7:   𝛿𝐵1,0 −
1

2
𝜖𝐵1,0 − 𝜇𝐴1,0 −

1

4
𝐵1,0 = 0,  

𝑒𝑞8:   𝜖𝐴1,−1 −
𝜔2𝐴1,1

4
+

(4𝜇𝐵1,1−2𝐴1,1)𝜔

4
+ 𝜇𝐵1,1 +

𝐴1,1(4𝛿−1)

4
= 0,  

𝑒𝑞9:  −
𝜔2𝐵1,1

4
+

(−4𝜇𝐴1,1−2𝐵1,1)𝜔

4
− 𝜇𝐴1,1 + 𝛿𝐵1,1 −

𝐵1,1

4
= 0.  

Rearrangement of the above nine equations into a matrix leads to 

 

|

|

|

|

−
1

4
𝜔2 −

1

2
𝜔 + 𝛿 −

1

4
0 0 0 0 0 0 0 −𝜇𝜔 − 𝜇

0 𝛿 −
𝜖

2
−

1

4
0 0 0 0 0 −𝜇 0

0 0
1

4
𝜔2 −

1

2
𝜔 − 𝛿 +

1

4
0 0 0 −𝜇𝜔 + 𝜇 0 0

0 0 0 −
𝜔2

2
+ 2𝛿 − 𝜖 0 −2𝜇𝜔 0 0 0

0 0 0 0 𝛿 0 0 0 0

0 0 0 2𝜇𝜔 0 −
𝜔2

2
+ 2𝛿 + 𝜖 0 0 0

0 0 −𝜇𝜔 + 𝜇 0 0 0 −
1

4
𝜔2 +

1

2
𝜔 + 𝛿 −

1

4
0 0

0 𝜇 0 0 0 0 0 𝛿 +
𝜖

2
−

1

4
0

𝜇𝜔 + 𝜇 0 0 0 0 0 𝜖 0 −
1

4
𝜔2 −

1

2
𝜔 + 𝛿 −

1

4

|

|

|

|

×

|

|

|

𝐵1,1

𝐵1,0

𝐵1,−1

𝐵0,−1

𝐴0,0

𝐴0,1

𝐴1,−1

𝐴1,0

𝐴1,1

|

|

|

= 0.  

  (3.7) 

The methodology for creating this matrix is shown here: 

 

By calculating the determinant of the matrix, we have: 
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−4 (
𝜔4

16
+ (𝜇2 −

𝛿

2
) 𝜔2 + 𝛿2 −

𝜖2

4
) 𝛿 (𝛿2 −

1

2
𝛿 −

1

4
𝜖2 +

1

16
+ 𝜇2) (

𝜔8

256
+ (−

1

64
+

𝜇2

8
−

𝛿

16
) 𝜔6

+ (
3𝛿2

8
+ (

1

16
− 𝜇2) 𝛿 +

3

128
+ 𝜇4 −

𝜇2

8
−

𝜖2

16
) 𝜔4 + (−𝛿3 + (

1

4
+ 2𝜇2) 𝛿2 + (

1

16
+ 2𝜇2 +

𝜖2

2
) 𝛿

−
1

64
− 2𝜇4 −

𝜇2

8
+

𝜖2

8
) 𝜔2 + (𝛿2 + (−𝜖 −

1

2
) 𝛿 + 𝜇2 +

𝜖

4
+

1

16
) (𝛿2 + (𝜖 −

1

2
) 𝛿 + 𝜇2 −

𝜖

4
+

1

16
)) .

           

(3.8) 

 

By assuming 𝜇 = 0, we have: 

 

−4 (
1

16
𝜔4 −

1

2
𝜔2𝛿 + 𝛿2 −

1

4
𝜖2) 𝛿 (𝛿2 −

1

2
𝛿 −

1

4
𝜖2 +

1

16
) (

𝜔8

256
+ (−

1

64
−

𝛿

16
) 𝜔6 + (

3

8
𝛿2

+
1

16
𝛿 +

3

128
−

1

16
𝜖2) 𝜔4 + (−𝛿3 +

𝛿2

4
+ (

1

16
+

𝜖2

2
) 𝛿 −

1

64
+

𝜖2

8
) 𝜔2 + (𝛿2 + (−𝜖 −

1

2
) 𝛿 +

1

16

+
𝜖

4
) (𝛿2 + (𝜖 −

1

2
) 𝛿 +

1

16
−

𝜖

4
)) .

 

   (3.9) 

By equating 𝜇 = 0, 𝜔 =
7

𝜋
, 𝛿 =

𝑎

𝜋2 , 𝜖 =
𝑏

𝜋2 , we have: 

−
1

𝜋2 (4(
2401

16𝜋4 −
49𝑎

2𝜋4 +
𝑎2

𝜋4 −
𝑐2

4𝜋4)𝑎(
𝑎2

𝜋4 −
𝑎

2𝜋2 −
𝑐2

4𝜋4 +
1

16
) (

5764801

256𝜋8

+
117649(−

1

64
−

𝑎

16𝜋2)

𝜋6 +
2401(

3𝑎2

8𝜋4+
𝑎

16𝜋2+
3

128
−

𝑐2

16𝜋4)

𝜋4

+

49(−
𝑎3

𝜋6+
𝑎2

4𝜋4+
(

1
16

+
𝑐2

2𝜋4)𝑎

𝜋2 −
1

64
+

𝑐2

8𝜋4)

𝜋2 + (
𝑎2

𝜋4 +
(−

𝑐

𝜋2−
1

2
)𝑎

𝜋2 +
1

16
+

𝑐

4𝜋2) (
𝑎2

𝜋4 +
(

𝑐

𝜋2−
1

2
)𝑎

𝜋2 +
1

16
−

𝑐

4𝜋2))) .

  

   (3.10) 

The instability diagram 𝜔 − 𝛿 for Equation (3.9) is the same result that Zounes and Rand 

have got in their research for instability diagram. (Rand and Hastings, 1995; Rand et al., 1999; 

Zounes and Rand, 1998; Zounes, 1997). The instability diagram (𝑎 − 𝑏) for Equation (3.10) is 

shown in the of Figure 3.4. It is assumed that the first frequency and second frequency of the 

dynamic forces are 𝜋 and 7 respectively. It is a similar result that Sinha has got in their research 

for instability diagram (Sharma and Sinha, 2018). 
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Figure 3.1   Instability Diagram - undamped – N is equal to 1 to 4. 

It means that if the value of a and b is inside of the V shape, the pile will be unstable. In the 

following Figure 3.1, N is equal to 2 up to 4 for the undamped instability diagram ( 𝜔 − 𝛿 ) and 

(𝑎 − 𝑏). It is assumed that the first frequency and second frequency of the dynamic forces are 𝜋 

and 7 respectively for plotting (𝑎 − 𝑏)  diagram. 

3.3   Summary 

The Harmonic Balance technique is utilized to investigate the stability diagram of a pile 

foundation under dual-frequency dynamic loading, employing Hill's infinite variables to 

formulate transition curves. The resulting instability diagrams confirm the presence of 

instabilities within the V-shaped region. This chapter stands as a contribution to the 

understanding of pile foundation dynamics and the phenomena of instability under dual-

frequency excitations. 

a 

b 

Unstable 
Unstable 

Stable 

Stable 

Stable 

N=1 

N=3 

N=4 

N=2 



 

 
 

Chapter 4   Dynamic Stability by Numerical Method 

A mathematical technique for calculating the motion stability of structures 

under two-frequency stimulation. 

4.1   Introduction 

A numerical method known as the step function will be introduced to plot and discuss the 

stability diagram when dealing with multiple frequencies. The mathematical concept for an 

arrangement with multiple frequencies involves converting the two-frequency framework into a 

formula with only one primary frequency (period), 𝑇𝑝, and developing a mathematical procedure 

for stability under the simplified one-frequency condition. 

4.2   The importance of using the numerical method. 

In our rigorous academic inquiry, the Harmonic Balance method assumes a pivotal role in 

deciphering the complexities of the quasi-Mathieu equation, harnessing the computational 

prowess of the Fourier series. However, the inherent infiniteness of the Fourier series introduces 

approximations at each computational step, relegating the Harmonic Balance method to an 

approximation rather than an exact solution for the quasi-Mathieu equation. Moreover, this 

method involves the strategic selection of a core matrix to plot the instability region, with 

subsequent enlargement for improved accuracy, as elucidated in the previous chapter. This 

iterative process, while enhancing accuracy, still retains an element of approximation. To 

transcend these inherent limitations, our scholarly exploration introduces the numerical method, 

a precision tool meticulously applied to secure exact solutions for the intricate quasi-Mathieu 

equation. This methodological fusion enhances the precision of our analytical approach. 

 

The importance of using the numerical method, as discussed in the introduction to Deng's 

paper, is primarily highlighted by the complexity and variability of dynamic systems under 

parametric excitation. These systems, which encompass a wide range of engineering 

applications, often involve linear second-order differential equations with periodically variable 

coefficients. Analytical methods like the Lyapunov, perturbation, averaging, and Floquet 
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methods have their limitations in accurately predicting the stability and responses of these 

systems. For instance, the Lyapunov method can only provide qualitative insights, and the Hill 

Infinite Determinant method, part of Floquet theory, faces challenges in convergence for higher 

order systems or those with complex excitation functions (Deng, 2023a; Deng et al., 2023). 

Numerical methods address these challenges by offering a more versatile and precise 

approach, especially for systems where parametric excitations are not minor and cannot be neatly 

captured by analytical forms. This is critical in engineering, where inaccuracies in understanding 

the dynamic stability and responses of structures can lead to catastrophic failures. By dividing 

the problem into smaller segments and treating the variable coefficients as piecewise constants or 

linear functions, numerical methods simplify the process and enable the analysis of more 

complex, multi-degree-of-freedom systems. The introduction of novel numerical simulation 

methods, as proposed by Deng, is a testament to the evolution in this field, striving to develop 

comprehensive tools that can simultaneously analyze both the stability and responses of complex 

dynamic systems under varied parametric excitations. This progression marks a significant leap 

in the field of dynamic stability analysis, aligning with the need for more sophisticated and 

accurate tools in the face of increasingly complex engineering challenges. 

4.3   Converting the two-frequency system into a Hill equation. 

The goal is to convert an arrangement that has two different frequencies (or intervals) with a 

suitable one (Deng, 2023b). The main period (𝑇𝑝) is a designation given to a single period.  𝑇𝑝 =

𝐾𝑖 ⋅ 𝑇𝑖 (𝑖 = 1,2), When 𝐾𝑖 are numbers with real values, it is the least common multiple that 

ensures (𝑇𝑝) is an integer multiple for every value of the 𝑇𝑖(𝑖 = 1,2), to minimize the time 

required to compute.  

The commensurability of 𝑇𝑖 determines the possibility that 𝑇𝑝 may be attained precisely: 

When 𝑇1 and 𝑇2 have a reasonable proportion of the ratio 𝑇1

𝑇2
, then they are considered to be 

commensurable; if not, they are said to be incommensurable. 

First Case: The precise main period 𝑇𝑝 maybe obtained in the manner described below, 

provided that 𝑇𝑖(𝑖 = 1,2) are commensurable. 

𝑇𝑝 = LCM (𝑇1, 𝑇2) =
𝑇1⋅𝑇2

GCD (𝑇1,𝑇2)
, for 𝑛 = 2 .                                                                                   (4.1) 
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When GCD (𝑇1, 𝑇2) is T1 and T2’s greatest common divisor (GCD). 

An Example provided here has two levels of stimulation: 𝜃1 = 𝜋. (𝑇1 = 2) and 𝜃2 =

2𝜋

3
(𝑇2 = 3). Finding a precise 𝑇𝑝 from Equation (4.1) is possible because 𝑇1 = 2 and 𝑇2 = 3 are 

commensurate. 

𝑇𝑝 = LCM (𝑇1, 𝑇2) = LCM (2,3) =
𝑇1⋅𝑇2

GCD (𝑇1,𝑇2)
=

2⋅3

GCD (2,3)
= 6.                                                      (4.2) 

Therefore, a framework with one frequency, 𝑇𝑝 = 6, and an essential angular rate, 𝜃𝑝 =

2𝜋

𝑇𝑝
=

𝜋

3
, can be used to resemble the structure of the system with two frequencies. 

The second Case: There is no precise principal period 𝑇𝑝 when 𝑇𝑖(𝑖 = 1,2) are 

incommensurable. Nevertheless, the subsequent reduction search procedure can be used to find 

the estimated essential period. 

𝛥2 = 𝑚𝑖𝑛
𝑗=1…𝐻

  𝑚𝑖𝑛
𝑘=1…𝐻

 |𝑗𝑇1 − 𝑘𝑇2|.                                                                                                         (4.3) 

when 𝛥2 is the cumulative variance and 𝐻 is a suitable positive integer that determines 

which pair of (𝑗, 𝑘) will result in 𝛥2. The integer value of |𝑗𝑇1 − 𝑘𝑇2| needs to be as low as 

feasible, i.e., less than a minuscule stated actual number like 10−2 so as to represent the structure 

of a system with two frequencies by a system with a single frequency as precisely as attainable. 

Throughout the search procedure, one ought to raise 𝐻 and try once more if the initial value is 

not fulfilled. The goal of Equation (4.3) reduction is to find the ideal (𝑗, 𝑘). The last approximate 

principal period is 

𝑇𝑝 =
𝑗𝑇1+𝑘𝑇2

2
.                                                                                                                                     (4.4) 

For the second example, it is to follow this instruction: 

�̈� + 𝑑�̇� + [𝑎 + 𝑏1cos (𝜋𝑡) + 𝑏2cos (7𝑡)]𝑞 = 0.                                                                             (4.5) 

Having been noted in Section 3, a structure that includes two frequencies, 𝜃1 = 𝜋(𝑇1 = 2) 

and 𝜃2 = 7 (𝑇2 =
2𝜋

7
), must be converted to a primary frequency in order to examine its 

consistency. 

Eight examples of 𝐻 constants exhibiting rising accuracy but falling computational 

performance for the primary frequency are listed in Table 4.1. For instance, when Case 5 is 
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allocated with 𝐻 = 200, minimising Equation (4.3) results 𝑗 = 57 and 𝑘 = 127, which together 

produce 𝛥2 = 0.005. The main frequency of angulation is 𝜔𝑝 = 0.055117, and the primary 

period is 𝑇𝑝 =
57𝑇1+127𝑇2

2
≈ 113.9974668. Table 4.1 demonstrates that as H increases, the 

amount of Δ2 is reduced. 

Table 4.1 Comparable single-period (𝜃1 = 𝜋, 𝜃2 = 7). 

Case H j k jT1 kT2 Δ2 Tp ωp ω‾ 1 ω‾ 2 

1 10 4 9 8 8.07838 0.078 8.039190555 0.7816 3.126277586 7.034124567 

2 20 9 20 18 17.9520 0.048 17.97597902 0.3495 3.145790708 6.990646018 

3 50 22 49 44 43.9823 0.018 43.99114858 0.1428 3.142224771 6.998591533 

4 120 35 78 70 70.01264 0.013 70.00631815 0.08975 3.141309121 7.000631752 

𝟓 𝟐𝟎𝟎 𝟓𝟕 𝟏𝟐𝟕 𝟏𝟏𝟒 𝟏𝟏𝟑. 𝟗𝟗𝟒𝟗 𝟎. 𝟎𝟎𝟓 𝟏𝟏𝟑. 𝟗𝟗𝟕𝟒𝟔𝟔𝟖 𝟎. 𝟎𝟓𝟓𝟏𝟐 𝟑. 𝟏𝟒𝟏𝟔𝟔𝟐𝟒𝟔𝟔 𝟔. 𝟗𝟗𝟗𝟖𝟒𝟒𝟒𝟑𝟖 

6 350 149 332 298 298.0025 0.003 298.0012516 0.02108 3.141579459 7.000029402 

7 800 355 791 710 709.99994 0.00006 709.99997 0.008849 3.141592786 6.999999702 

8 3000 355 791 710 709.99994 0.00006 709.99997 0.008849 3.141592786 6.999999702 

It is anticipated that the precision of the quantitative approach will improve as 𝑇𝑝 increased. 

A higher 𝑇𝑝, however, would necessitate an extended calculation period. The trade-off involving 

𝑇𝑝 and processing time exists. Since Case 5 of Table 1 shows that the split endpoints merge, 

𝑇𝑝 = 113.9974668, 𝜃𝑝 =
2𝜋

𝑇𝑝
=

2𝜋

113.9974668
= 0.05511688535 can be utilized for studying 

dynamic stability. 

4.4   Computational Algorithm: Step Function 

One can take into consideration the subsequent undamped Mathieu-Hill calculation (Xie, 

2006) since the damped Mathieu-Hill formulas provided in Equation (2.22). can be transformed 

into a comparable undamped solution in Equation (2.25). This section was proposed by Deng 

(Deng et al., 2023). 

𝑑2𝑞(𝑡)

𝑑𝑡2 + 𝜔0
2[1 − 2𝜇𝛷(𝑡)]𝑞(𝑡) = 0, 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑇.                                                                     (4.6) 
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In which 𝛷(𝑡) is a periodical function for period 𝑇, 𝑡0is the starting point of the cycle in the 

structure, typically 𝑡0 = 0, 𝜔0 is the natural frequency, 𝜇 is the amplitude of the excitation, and 

𝑞(𝑡) is the state parameter. 

𝛷(𝑡) = 𝛷(𝑡 + 𝑇).                                                                                                                             (4.7) 

Equation (4.6) is known as the Mathieu equation provided 𝛷(𝑡) is a sinusoidal cyclic 

variable. If 𝛷(𝑡) is an infinite cyclic variable as it occurs more frequently, then Equation (4.6) is 

referred to as the Hill formula. The Step Function (or staircase function) can be used to estimate 

the value of the coefficient function, 𝐴(𝑡) = 𝜔0
2[1 − 2𝜇𝛷(𝑡)], after dividing the stimulation 

period 𝑇 into 𝑚 equally spaced intervals as illustrated in Figure 4.1. Enumerating 𝑚 = 100 

identical gaps might produce sufficiently exact outcomes. (Richards, 1975; Deng, 2021) 

 

Figure 4.1   Parametric stimulation approximated behavior using step functions. 

Assuming the mean elevation of 𝐴(𝑡) is used to calculate the step function on the length of 

the interval [𝑡𝑗, 𝑡𝑗+1], 

ℎ𝑗
2 =

1

𝑇0
∫  

𝑡𝑗+1

𝑡𝑗
𝐴(𝑡)𝑑𝑡 =

1

𝑇0
∫  

𝑡𝑗+1

𝑡𝑗
𝜔0

2(1 − 2𝜇𝛷(𝑡))𝑑𝑡, 𝑇0 =
𝑇

𝑚
  .                                                     (4.8) 

Consequently, the estimated value of Equation (4.6) is 

𝑑2𝑞(𝑡)

𝑑𝑡2 + ℎ𝑗
2𝑞 = 0,    𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1,   𝑇0 = 𝑡𝑗+1 − 𝑡𝑗,   𝑗 = 0,1,2, … , 𝑚 − 1.                                      (4.9) 
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Wherein the unique feature of the formula is located: 

𝜆2 + ℎ𝑗
2 = 0.                                                                                                                                   (4.10) 

The overall response to Equation (4.9) is 𝜆1,2 = ±𝑖ℎ𝑗 , in which 𝑖 = √−1 as the eigenvalues 

are just one set of combined number sequences. 

𝑞(𝜏) = 𝐶1sin (ℎ𝑗𝜏) + 𝐶2cos (ℎ𝑗𝜏), 𝜏 = 𝑡 − 𝑡𝑗.                                                                            (4.11) 

Equation (4.11) can be expressed in a matrix structure provided the starting points, 𝑞(𝑡𝑗) and 

�̇�(𝑡𝑗), 

[
𝑞(𝜏)
�̇�(𝜏)

] = [
sin (ℎ𝑗𝜏) cos (ℎ𝑗𝜏)

ℎ𝑗cos (ℎ𝑗𝜏) −ℎ𝑗sin (ℎ𝑗𝜏)
] [

𝐶1

𝐶2
].                                                                                (4.12) 

or 

[
𝑞(𝜏)
�̇�(𝜏)

] = 𝐺(𝜏) [
𝐶1

𝐶2
] , 𝐺(𝜏) = [

sin (ℎ𝑗𝜏) cos (ℎ𝑗𝜏)

ℎ𝑗cos (ℎ𝑗𝜏) −ℎ𝑗sin (ℎ𝑗𝜏)
].                                                        (4.13) 

In this case, the (local) beginning situation at 𝑡 = 𝑡𝑗, determines the two variables 𝐶1 and 𝐶2: 

[
𝑞(𝑡 = 𝑡𝑗)

�̇�(𝑡 = 𝑡𝑗)
] = [

sin (0) cos (0)
ℎ𝑗cos (0) −ℎ𝑗sin (0)

] [
𝐶1

𝐶2
] = [

0 1
ℎ𝑗 0] [

𝐶1

𝐶2
].                                                     (4.14)  

Resulting in: 

[
𝐶1

𝐶2
] = 𝐺−1(0) [

𝑞(𝑡𝑗)

�̇�(𝑡𝑗)
] =

1

−ℎ𝑗
[

0 −1
−ℎ𝑗 0 ] [

𝑞(𝑡𝑗)

�̇�(𝑡𝑗)
].                                                                        (4.15) 

and 

𝐺−1(0) = [
0 1
ℎ𝑗 0]

−1

=
1

−ℎ𝑗
[

0 −1
−ℎ𝑗 0 ] = [

0
1

ℎ𝑗

1 0
].                                                                      (4.16) 

The solution to Equation (4.9) can be obtained in a matrix configuration by utilizing 

Equation (4.12): 

[
𝑞(𝜏)
�̇�(𝜏)

] = 𝐺(𝜏)𝐺−1(0) [
𝑞(𝑡𝑗)

�̇�(𝑡𝑗)
].                                                                                                       (4.17)  

When 𝑡 = 𝑡𝑗+1, then the results are as follows: 
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[
𝑞(𝑡 = 𝑡𝑗+1)

�̇�(𝑡 = 𝑡𝑗+1)
] = 𝐺(𝑡𝑗+1 − 𝑡𝑗)𝐺−1(0) [

𝑞(𝑡𝑗)

�̇�(𝑡𝑗)
] = [𝑀]𝑗 [

𝑞(𝑡𝑗)

�̇�(𝑡𝑗)
].                                                     (4.18) 

Here, [𝑀]𝑗 is considered a 2 × 2 square matrix. 

[𝑀]𝑗 = 𝐺(𝑡𝑗+1 − 𝑡𝑗)𝐺−1(0) = 𝐺(𝑇0)𝐺−1(0) = [
cos (ℎ𝑗𝑇0)

sin (ℎ𝑗𝑇0)

ℎ𝑗

−ℎ𝑗sin (ℎ𝑗𝑇0) cos (ℎ𝑗𝑇0)
].                        (4.19)  

Through the rth interval ((𝑟 − 1)𝑇0 ≤ 𝑡 ≤ 𝑟𝑇0, 0 ≤ 𝑟 ≤ 𝑚 − 1), the responses are as such: 

[
𝑞(𝑡)
�̇�(𝑡)

] = 𝐺(𝑡 − 𝑟𝑇0 − 𝑡0)𝐺−1(0)[𝑀]𝑟−1 ⋯ [𝑀]1[𝑀]0 [
𝑞(𝑡0)

�̇�(𝑡0)
].                                                    (4.20) 

In this case the (global) starting point is [𝑞(𝑡0), �̇�(𝑡0)]𝑇, and [𝑀]−1 = 𝐼 is an identifier 

matrix of dimension two. 

By looking into the state transition matrix (STM), one can ascertain the consistency of the 

framework in Equation (4.6) as ensues. The result of adding up the entire step-intervals in a 

single period is: 

[
𝑞(𝑇)
�̇�(𝑇)

] = [ℳ] [
𝑞(𝑡0)

�̇�(𝑡0)
].                                                                                                                   (4.21) 

The STM, [ℳ], is thus provided by: 

 [ℳ] = [ℳ]𝑚−1 ⋯ [ℳ]1[ℳ]0 = [
ℳ11 ℳ12

ℳ21 ℳ22
].                                                                         (4.22) 

ℳ11ℳ22 − ℳ12ℳ21 = 1 can be determined. The eigenvalues of matrix M are the roots of 

the following equation: 

|
ℳ11 − 𝜌 ℳ12

ℳ21 ℳ22 − 𝜌
| = 0.                                                                                                            (4.23) 

i.e. 

𝜌2 − (ℳ11 + ℳ22)𝜌 + 1 = 0,                                                                                                       (4.24) 

𝜌1,2 =
ℳ11+ℳ22

2
± √(

ℳ11+ℳ22

2
)

2
− 1.

                                                                                            (4.25) 

Asymptotical unpredictability arises once |ℳ11+ℳ22

2
| > 1, since eigenvalues are real number 

and one of them is greater than 1. Periodic answers can be discovered when |ℳ11+ℳ22

2
| = 1, 



    Chapter 4   Dynamic Stability by Numerical Method                                                                                              43    

 
 

revealing the limits of security and unpredictability. An equilibrium system arises once 

|
ℳ11+ℳ22

2
| < 1, eigenvalues are integers with complex values, and outcomes are restricted. 

By adding up the outcomes across the entire prior time step intervals, one can figure out the 

system-specific reactions in Equation (4.6). After n periods, outcomes are: 

[
𝑞(𝑛𝑇)
�̇�(𝑛𝑇)

] = [ℳ]𝑛 [
𝑞(𝑡0)

�̇�(𝑡0)
].                                                                                                               (4.26) 

Regarding the (𝑛 + 𝑟) th interval, answers are 

[
𝑞(𝑡)
�̇�(𝑡)

] = 𝐺[𝑡 − (𝑛𝑚 + 𝑟)𝑇0 − 𝑡0]𝐺−1(0)[𝑀]𝑟−1 ⋯ [𝑀]1[𝑀]0 [
𝑞(𝑛𝑇)
�̇�(𝑛𝑇)

].                                     (4.27) 

whereas [𝑀]−1 = 𝐼 is the dimension of the two-identity matrix, and (𝑛𝑚 + 𝑟 − 1)𝑇0 ≤ 𝑡 ≤

(𝑛𝑚 + 𝑟)𝑇0, 0 ≤ 𝑟 ≤ 𝑚 − 1, where 𝑛 is a fraction and r is an authentic value. 

4.5   Summary 

In Section 4.2, the focus is on converting a two-frequency system into a Hill equation for a 

single primary frequency (period), denoted as 𝑇𝑝. The process involves determining the least 

common multiple (LCM) to ensure 𝑇𝑝 is an integer multiple for both frequencies (𝑇1 and 𝑇2). 

Two cases are explored: the first case when 𝑇1 and 𝑇2 are commensurable, allowing for a precise 

𝑇𝑝 the calculation, and the second case when 𝑇1 and 𝑇2 are incommensurable, requiring an 

estimated essential period using a reduction search procedure. In Section 4.3, a computational 

algorithm using a step function is introduced for the undamped Mathieu-Hill equation. The 

method involves estimating the coefficient function using step functions and determining the 

stability through matrix calculations. The step-function approach is illustrated with examples, 

and the computational algorithm provides insights into dynamic stability. The chapter 

emphasizes the trade-off between precision and processing time, showcasing the effectiveness of 

the proposed method in studying dynamic stability in pile foundations with multiple frequencies. 

 



 

 
 

Chapter 5    Dynamic Stability Analysis and Vibration Responses 

5.1   Introduction 

This chapter will provide a hands-on examination of a pile foundation, investigating stability 

diagrams through the methodologies outlined in Chapters 3 and 4. Its goal is to employ and 

contrast insights derived from both the Harmonic Balance technique and the numerical approach 

employing step functions. The focus is on gaining a practical understanding of pile foundation 

stability under dynamic loading with multiple frequencies. Finally, this chapter will also 

investigate how parameters like elastic foundation rigidity, damping, and dynamic and static 

loads influence instability regions. 

5.2   Dynamic instability regions of a pile 

During axial dynamic loads, assume a simply sustained pile (pin-pin supports) with a tubular 

cross-section. The pile is 18 meters long (𝐿), 508 millimeters in diameter on the exterior, and 19 

millimeters thick. The cross-sectional area (𝐴) is therefore 0.029m2. The mass density (𝜌) and 

Young's elastic modulus (𝐸) are 7.8 × 103kg/m3 and 2.1 × 1011N/m2, respectively. The 

tubular cross-section's moment of inertia is equal. The used example assumed by Shahroudi 

(2023) in his thesis, 

𝐼 = 𝜋 × (
508−19

2
× 10−3)

3
× (19 × 10−3) = 8.72 × 10−4m4.                                                      (5.1) 

Equation (2.19) states that the Euler buckling load and the pile’s fundamental frequency are 

𝑃𝑐𝑟 = 𝐸𝐼 (
𝜋

𝐿
)

2
= 2.1 × 1011 × 8.72 × 10−4 × (

𝜋

18
)

2
= 5.5781 MN,                                             (5.2) 

𝛺 = (
𝜋

𝐿
)

2

√
𝐸𝐼

𝜌𝐴
= (

𝜋

18
)

2
√

2.1×1011∗8.72×10−4

7.8×103×0.029
= 27.4079

rad

s
= 4.36 Hz,                             (5.3) 

Then the natural period is 𝑇0 = 2𝜋/𝛺 = 0.0697𝑠. Then, the dimensionless base rigidity 

value could be provided by Equation (2.23) 

𝜂 =
𝑘𝑠𝐿4

𝜋2𝐸𝐼
=

𝑘𝑠×184

𝜋2×2.1×1011×8.72×10−4 = 0.00005808.                                                            (5.4) 

Demonstrated below is the formula for the movement of the pile (Winkler's foundation) 

regarding the values mentioned before. 
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�̈� + 2𝛽𝑊�̇� + 𝜔𝑊
2 (1 − 2

𝜖

2(1−𝜆+𝜂)
(cos 𝑡 + cos 𝜃𝑝𝑡)) 𝑞 = 0.                                                          (5.5) 

In which, considering Equation (2.23), 

𝜔𝑊
2 = 𝛺2(1 − 𝜆 + 𝜂) = 27.40792 × (1 − 𝜆 + 𝜂) = 751.2 × (1 − 𝜆 + 𝜂).                                  (5.6) 

𝛽𝑊 =
𝛿⋅𝜔𝑊

2𝜋
= 4.36 × 𝛿√1 − 𝜆 + 𝜂,   2𝜇𝑊 =

𝜖

1−𝜆+𝜂
 .                                                                      (5.7) 

Here, the dimensionless dynamic load factor is represented by 𝜖 whereas the dimensionless 

static load factor is represented by 𝜆. moreover, the coefficient of damping logarithm reduction is 

shown by 𝛿.  

Fundamental principles for the dimensionless base variables 𝜂 and 𝛿 are obtained through an 

analysis of the material characteristics of the soil-encircling pile. According to Richart (1970), 

the spectrum 0.1 ≤ 𝜂 ≤ 10, 0.05 ≤ 𝛿 ≤ 0.8 are reasonable for soil bases. In this work, we take 

into account 0.5 ≤ 𝜂 ≤ 4, 0.1 ≤ 𝛿 ≤ 0.4 (Engel. 1991). In this research It is assumed that 𝜂 =

0.5, 𝛿 = 0.2, and 𝜆 = 0.5 according to this assumption 𝜔𝑊
2 , and 𝛽𝑊 is as follows. 

𝜔𝑊
2 = 751.1949,   𝛽𝑊 = 0.8724.                                                                                (5.8) 

Equation (5.5) turns into the following if 𝜂 = 0.5, 𝛿 = 0.2, and 𝜆 = 0.5 

�̈� + 0.8724�̇� + 751.1949 (1 − 751.1949 𝜖 (cos 𝑡 + cos 𝜃𝑝𝑡))𝑞 = 0.              (5.9) 

It is assumed that 𝜃𝑝 =
𝑝

𝑞
 considered 𝑝 and 𝑞 are frequencies of dynamic loads. 

5.2.1   Dynamic instability from approximate Method (Harmonic Balance – (Hill-ID)) 

In Chapter 3, we have introduced a comprehensive methodology meticulously developed to 

address the intricate challenges associated with dual-frequency excitation. This encompassed the 

application of the sophisticated Harmonic Balance method, along with the application of 

Equation (3.3) on Equation (3.1) as elucidated in Chapter 3, systematically facilitates the 

generation of an instability diagram (𝜃𝑝

2𝜔
 - 𝜖). 

The analytical focus revolves around a derived equation of the form as obtained in the 

previous section resulting from the equation in (5.9): 

�̈� + 0.8724 �̇� + 751.1949 (1 − 751.1949328 𝜖 (cos 𝑡 + cos 𝜃𝑝𝑡))𝑞 = 0               (5.9) 
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For the systematic solution of this equation employing the Harmonic Balance method, we 

assume a functional form for 𝑞(𝑡) as follows in order to Zounes, Rand, and Hasting’s research 

and then do the Harmonic Balance steps. (Rand and Hastings, 1995; Rand et al., 1999; Zounes, 

and Rand, 1998; Zounes, 1997). 

𝑞(𝑡) = ∑  𝑁
𝑎=0 ∑  𝑁

𝑏=−𝑁 [𝐴𝑎𝑏cos (
𝑎+𝑏𝜃𝑝

2
𝑡) + 𝐵𝑎𝑏sin (

𝑎+𝑏𝜃𝑝

2
𝑡)].                                                  (5.10) 

Under the assumption that 𝑁 is equal to 6, we have constructed a coefficient matrix for sine 

and cosine terms, resulting in a matrix of dimensions 169 by 169. This augmented matrix 

provides a nuanced representation of the intricate interplay among the various harmonic 

components, thereby enhancing the analytical capabilities of the model. See more detail in 

Chapter 3. To visualize the first stability region, a systematic approach involves selecting core 

parameters at the center of the matrix. The core matrix, which initially started as 3 by 3 at the 

core and increased in dimension while maintaining a square matrix, plays a pivotal role in 

creating the stability regions. This process includes setting the determinant to zero and 

subsequently plotting the diagram ( 𝜃

2𝜔
 - 𝜖). Expanding the core square matrix becomes 

imperative for plotting subsequent stability regions, where the determinant is equated to zero 

before the generation of corresponding diagrams. The core matrix and determinant, instrumental 

in creating the first stability regions, is delineated as follows.  

 

𝑀𝑙: = [
751.1949328𝜖 − 1502.389866𝑟2 + 1502.389866 0 −95.64510942𝑟

0 751.1949328 0
95.64510942𝑟 0 −751.1949328𝜖 − 1502.389866𝑟2 + 1502.389866

]. 

                                                                                                                                                                (5.11) 

Detl : = −4.238946635 × 108𝜀2 + 0.4𝜖𝑟2 − 0.4𝜖 + 1.695578654 × 109𝑟4 − 3.384285387 × 109𝑟2 + 1.695578654 × 109.          (5.12) 

The outcomes of this method for first, second, third and fourth stability regions are visually 

presented in the subsequent figures. 
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(a) 1st,2nd,3rd, and 6th order Hill ID 

 

 

(b) 3rd,4th,5th, and 6th order Hill ID 
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(c) 6th and 7th order Hill ID 

Figure 5.1   Harmonic Balance Stability regions (Hill-ID regions). 

The identified V-shaped region within the diagram signifies a crucial boundary delineating 

stability and instability. In the context of this analysis, the V-shaped region's interior is marked 

as unstable, implying those solutions within this parameter space exhibit dynamic behavior prone 

to instability. Conversely, points situated outside this V-shaped region are deemed stable, 

indicating a more predictable and controlled system response. 

5.2.2   Dynamic instability from Numerical Method (Step Function Method) 

In Chapter 4, the focus is on a numerical method for evaluating the motion stability of 

constructions subjected to two-frequency stimulation. The chapter introduces a systematic 

approach to convert a dual-frequency system into a Hill equation with a single primary 

frequency, utilizing the least common multiple (LCM). Two scenarios are considered: 

commensurable frequencies leading to a precise period (𝑇𝑝), and incommensurable frequencies 

requiring an estimated essential period obtained through a reduction search procedure.  

The analytical focus revolves around a derived Equation (5.9) of the form below as obtained 

in the 5.2: 
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�̈� + 0.8724216855 �̇� + 751.1949328 (1 − 751.1949328 𝜖 (cos 𝑡 + cos 𝜃𝑝𝑡))𝑞 = 0.              (5.9) 

In the equation, we have: 

𝜆 = 0.5, 𝛿 = 0.2, 𝜂 = 0.5, 𝛽𝑊 =
𝛿⋅𝜔𝑊

2𝜋
= 0.8724216855   

𝜔𝑊
2 = 𝛺2(1 − 𝜆 + 𝜂) = 751.1949328.                                                                                        (5.13) 

Section 4.1 calculates 𝑇𝑝 and 𝜃𝑝 using 𝑝 = 𝜋 and 𝑞 =  
2𝜋

3
 for the first example. The results 

are 𝑇𝑝 = 6  and  𝜃𝑝 =
2𝜋

𝑇𝑝
=

𝜋

3
.   

For the second example, we assume that p and q are incommensurable which is θ1 =

π, θ2 = 7. The results are 𝑇𝑝 = 113.9974668 and 𝜃𝑝 =
2𝜋

𝑇𝑝
=

2𝜋

113.9974668
= 0.05511688535. By 

this, the two-frequency change into one frequency by having θp.  

Subsequently, Equation (5.9) is applied with 𝜃𝑝 =
𝜋

3
 for the first example and 𝜃𝑝 =

0.05511688535 for the second example. in place of 𝑝 and 𝑞, transforming the equation into: 

�̈� + 0.8724216855 �̇� + 751.1949328 (1 − 751.1949328 𝜖 (𝑐𝑜𝑠 𝜃𝑝𝑡))𝑞 = 0.                         (5.14) 

𝑞(𝑡) = 𝑒−0.8724216855/2𝑢(𝑡) could be employed to change Equation (5.14) into a 

comparable undamped Mathieu equation. 

�̈� + 751.1949328 (1 −
𝜖

1−𝜆+𝜂
cos 𝜃𝑝𝑡) 𝑞 = 0.                                                                            (5.15) 

Following this modification, the Step Function Method detailed in Section 4.2 is employed 

to solve the equation and generate a stability diagram. Section 4.2 proposes a computational 

algorithm utilizing the Mathieu-Hill equation, incorporating step functions to approximate 

parametric stimulation behavior. Eigenvalues play a pivotal role in determining system stability, 

ultimately leading to the plotting of the stability diagram. Figure 5.2 depicts the stability diagram 

resulting from the Step Function Method.  
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Figure 5.2   Instability regions from the numerical simulation. 

The delineated V-shaped area in the diagram represents a significant boundary demarcating 

stability from instability. In the context of this examination, the interior of the V-shaped region is 

characterized as unstable, indicating that solutions within this parameter space display dynamic 

behavior susceptible to instability. Conversely, points located outside this V-shaped region are 

considered stable, suggesting a more foreseeable and controlled system response. 

5.3   Calibration of the result from the Harmonic Balance Method 

The Hill ID of the Harmonic Balance approach in Equations (5.9) and (5.10) can be utilized 

used to identify the instability zones of Equation (5.12). Here, both Figures 5.3 and 5.4 display 

the initial levels of Hill ID limitations. 
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(a)    Numerical result and 1st order Hill ID   

 

 

(b)   Numerical result and 2nd order Hill ID   
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(c)   Numerical result and 3rd order Hill ID   

 

(d)   Numerical result and 6th order Hill ID   
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(e)   Numerical result and 1st, 2nd, 3rd, and 6th order Hill ID   

 

(f)   Numerical result and 4th, 5th, and 6th order Hill ID   
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(g)   Numerical result and 6th, and 7th order Hill ID 

Figure 5.3   The Mathematical Simulation's Instability Zones and the orders of Hill ID.  

 

The blue-shaded portions of Figure 5.3 represent the instability zones, leading to being 

statistically determined through the procedure described in Section 4. 

The blank areas in these figures' unfilled zones show stability. Figure 5.3 illustrates the 

manner in which a border is drawn more precisely when the number of Hill ID orders that are 

employed increases. The second-order and third-order Hill ID limits are appropriate for the 

initial instability zone, while the first-order Hill ID limit is erroneous. As seen in Figure 5.4, the 

fourth-order Hill ID boundary is appropriate for the third instability zone, while neither of them 

is precise.  
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0.26). In Figure 5.3.e, the points correspond to these four dynamical structures. The starting 
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𝑞(0) = 0 and �̇�(0) = 0.0001. Figures 5.5a and 5.5c show that as the point till repose increases, 

the vibration reactions of the structures at points A and C also drop, suggesting the presence of 

stability. This demonstrates the inaccuracy of the first-order Hill ID boundary for the first 

instability zone. The third-order Hill ID boundary is imprecise for the third instability region. 

Nonetheless, computational findings can distinguish between instability and stability with 

sufficient accuracy. In contrast, however, as Figures 5.5b and 5.5d demonstrate, the vibration 

reactions of the structures at the two locations B and D improve with time unboundedly, 

resulting in a state of unpredictability. The outcomes of the computational simulations are crucial 

measurement factor findings. 

5.4   Quantitative solutions for vibration reactions 

The vibration reactions of Equation (5.15) can be ascertained by Equation (4.27) from the 

suggested algorithm since the dynamical structure in Equation (5.14) can be transformed into an 

undamped Mathieu formula in Equation (5.15). The standard computations of differential 

equations, like the Runge-Kutta approach, may confirm these vibration reactions (Xie, 2006). 

Using Equation (5.15) and permitting 𝑦1 = 𝑞, y2 = �̇�, one has 

�̇�2 = −2𝛽𝑦2 + 𝜔2(1 − 2𝜇(cos 𝑡 + cos 𝜃𝑝𝑡)𝑦1    ,     𝜃𝑝 =
𝑝

𝑞
                                                        (5.16) 

Executing the initial stage of the step function method outlined in Sections 5.1.2 and 4.1 

results in the convergence of the two frequencies into one frequency, facilitated by the 

incorporation of θp. 

�̇�2 = −2𝛽𝑦2 + 𝜔2(1 − 2𝜇cos 𝜃𝑝𝑡)𝑦1.                                                                                          (5.17) 

in the matrix format, this could be described as the following: 

{
�̇�1

�̇�2
} = {

𝑦2

−2𝛽𝑦2 + 𝜔2(1 − 2𝜇cos 𝜃𝑝𝑡)𝑦1
} = {

𝑓1(𝑡, 𝒚)
𝑓2(𝑡, 𝒚)

} = {
𝑓1(𝑡; 𝑦1, 𝑦2)

𝑓2(𝑡; 𝑦1, 𝑦2)
} ,

𝒚 = {
𝑦1

𝑦2
} .

                              (5.18) 

Applying Equation (5.15) to the instance of point A in Figure 5.2, one obtains the equation 

of motion. 

�̈� + 0.8724�̇� + 751.1949[1 − 2cos (32.8895𝑡)]𝑞 = 0,                                   (5.19) 
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𝑓1(𝑡; 𝑦1, 𝑦2) = 𝑦2,  

𝑓2(𝑡; 𝑦1, 𝑦2) = −0.8724𝑦2 − 751.1949(1 − 2cos 32.8895𝑡)𝑦1.                     (5.20) 

Equation (5.19) can be mathematically accomplished via the fourth-order Runge-Kutta 

approach. According to the starting point, q(t0 = 0) = 0 and q̇(t0 = 0) = 0.001. Figure 5.5a 

displays the vibration reactions' outcome. Our approach in the chapter. 4 yields computational 

findings that are as accurate as the fourth-order Runge-Kutta method. 

 

(a) point A (𝜖 = 2,
𝜃𝑝

2𝜔𝑊
= 0.6). 

 

(b) point B (𝜖 = 2,
𝜃𝑝

2𝜔𝑊
= 0.7). 
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(c) point C (𝜖 = 1.4,
𝜃𝑝

2𝜔𝑊
= 0.24). 

 

(d) point D (𝜖 = 1.4,
𝜃𝑝

2𝜔𝑊
= 0.26). 

Figure 5.5   Vibration response. (Continued) 
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5.5   Impact of the Elastic Foundation 

Figure 5.6 illustrates the impact of dynamic load upon the structure of instability schematics 

based on distinct Winkler foundation rigidity. The critical dimensionless dynamic load increases 

as the rigidity of the Winkler foundation expands, and the unpredictability diagram's area 

dramatically contracts. 

 

 a)   𝜂 = 0   λ = 0.5   𝛿 = 0.2 
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b)    𝜂 = 0.5   λ = 0.5   𝛿 = 0.2 

 

 
 c)  𝜂 = 1.0   λ = 0.5   𝛿 = 0.2 
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d)    𝜂 = 2.0   λ = 0.5   𝛿 = 0.2 

 
e) 𝜂 = 3.0   λ = 0.5   𝛿 = 0.2 
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(f) 𝜂 = 4.0   λ = 0.5   𝛿 = 0.2 

Figure 5.6   Impact of dynamic load at different foundation rigidity levels.  

5.6   Impact of Damping 

Parametric estimation resonances can happen in some situations, as shown in Figure 5.7, despite 

damping. The spectrum of the instability stimulation frequency gradually decreases as long as it 

vanishes as the foundation damping, δ, increases. A significant dynamic element load arises for a 

foundation damping to cause instability, as Figure 5.7 illustrates, for both the first and second 

instability regions. An increased dynamic element load for instability necessitates an increased 

foundation damping. The most important dynamic element load rises from 0.06 to 0.23 for the 

first instability zone as the foundation damping shifts from δ = 0.1 to 0.4.  
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a)   𝛿 = 0.1   𝜂 = 0.1   λ = 0.2. 

 

b)   𝛿 = 0.2   𝜂 = 0.1   λ = 0.2.  
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c)   𝛿 = 0.3   𝜂 = 0.1   λ = 0.2. 

   

 

d)   𝛿 = 0.4   𝜂 = 0.1   λ = 0.2. 

Figure 5.7   Damping Impact.  
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5.7   Impact of dynamic and static component loads 

The vibrating lateral load on the pile, P(t), which consists of a static element, Ps , and a 

dynamic element, Pd, with two frequencies taken into account in Equation (2.26). The dynamic 

element may result from an earthquake or demolition, while the static element can arise from the 

amount of mass of the rock layer (Deng, 2021). 

The instability graphs corresponding to various dimensionless dynamic loads ϵ =

0.2, 0.4, 0.6 are presented in Figure 5.8. The spectrum of the stimulation frequency for instability 

rises substantially with increasing static load. The Hill ID additionally demonstrates the 

perimeters of instability. As illustrated in Figure 5.8.a, there exists an essential static element to 

induce instability as the magnitude of the dynamic element load, ϵ, is limited. As demonstrated 

in Figures 5.8b and 5.8c, a static element might not be necessary to cause instability once ϵ 

increases.  

 

 

a)   𝜖 = 0.2   𝜂 = 0.1   𝛿 = 0.3. 
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b)   𝜖 = 0.4   𝜂 = 0.1   𝛿 = 0.3. 

 

c)   𝜖 = 0.6   𝜂 = 0.1   𝛿 = 0.3. 

Figure 5.8   The static component weight impact.  

The instability charts for several static stresses λ = 0.2,0.4,0.6 are displayed in Figure 5.9. 

When the shifting load grows, the spectrum of the stimulation frequency for instability is 

enhanced almost linearly.  
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a)   λ = 0.2   η = 0.1   δ = 0.3 

 

 

b)   λ = 0.4   𝜂 = 0.1   𝛿 = 0.3 

Fig. 5.9   The dynamic element load impact: (a) λ = 0.2; (b) λ = 0.4; (c) λ = 0.6. 
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c)   λ = 0.6   𝜂 = 0.1   𝛿 = 0.3 

Fig. 5.9   The dynamic element load impact (Continued) 

5.8   Summary 

This chapter provides an in-depth exploration of dynamic instability regions in pile 

foundations by providing a case study, with a focus on seismic events. The chapter demonstrates 

how the Step Function method provides results comparable to the Harmonic Balance method, 

showcasing the accuracy of the computational modeling. Calibration of results from the 

Harmonic Balance method is also presented, emphasizing the identification of instability zones 

using Hill ID limitations. The chapter further explores the impact of parameters such as elastic 

foundation rigidity, damping, and dynamic and static loads on the instability regions. Theoretical 

discussions are complemented by detailed numerical simulations and stability diagrams, 

providing valuable insights into the dynamic behavior of pile foundations under various 

conditions. 
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Chapter 6   Conclusions and Recommendations 

6.1   Conclusions 

Pile foundations are crucial in civil engineering, transferring loads to soil and preventing 

structural failures that could lead to damage, collapse, or loss of life. Traditional studies focus on 

single-frequency dynamic forces, but there is a research gap regarding the effects of dual-

frequency seismic excitations on pile stability. The main results of the thesis include: 

1. Driving Equation of Motion 

The beginning of this thesis is dedicated to intricately modeling pile foundations under 

dynamic loads, encompassing both single and dual frequencies. The central focus involves 

constructing a beam model supported by a Winkler foundation, incorporating a pair of 

frequencies. The derivation of the equation of motion utilizes equilibrium formulas and 

transforms a partial differential equation into an ordinary one through the Galerkin technique.  

2. Approximate Method - Harmonic Balance 

The third chapter shifts the exploration towards the investigation of the stability diagram of a 

pile foundation under dual-frequency dynamic loading. Utilizing the Harmonic Balance 

technique, the chapter employs Hill's infinite variables to formulate transition curves, revealing 

instabilities within the V-shaped region. This chapter stands as a substantial contribution to 

understanding pile foundation dynamics and the phenomena of instability under dual-frequency 

excitations. 

By using the Hill infinite determinant, the Harmonic Balance method approach yields 

approximate stability and instability boundaries of different orders. In order to concurrently gain 

the dynamic stability and vibration reactions of piles on elastic bases using a single matrix 

procedure, an innovative computational simulation algorithm is proposed in this work.  

3. Numerical Method – Step Function 

Chapter four builds upon the step function method as a numerical method for investigating 

stability diagrams with dual frequency, first of all converting a two-frequency system into a Hill 

equation with a single primary frequency. It introduces a computational algorithm using step 

functions for the undamped Mathieu-Hill equation, providing insights into dynamic stability.  
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• The numerical method comprises two essential stages: (1) transforming the dual-

frequency structure into a Hill formula featuring a solitary primary frequency, denoted as 𝑇𝑝; 

(2) establishing a mathematical protocol specifically designed for analyzing the stability of 

motion characterized by a single frequency, which is called the Step Function Method.  

• The research demonstrates that the suggested algorithm may generate precise and 

dependable outcomes, and it may be employed as well to evaluate the applicability of the 

traditional Harmonic Balance method. The different orders of Hill infinite factors from the 

Harmonic Balance method are calibrated using the computationally true stability charts. The 

second and third-order Hill ID boundaries are appropriate for the first instability zone, while 

the first-order Hill ID border is erroneous. The fourth-order Hill ID boundary is appropriate 

for the third instability zone, but neither the second-order nor the third-order Hill ID 

boundaries are precise. The fourth-order Hill ID border for the fifth instability zone is not 

precise. 

• The first-order Hill ID limit for the second instability zone is erroneous and the second 

Hill ID borders lead to differences in the area's lower border, yet the third-order Hill ID 

boundaries are appropriate. The fourth-order Hill ID boundary is appropriate for the fourth 

instability zone, but neither the second-order nor the third-order boundaries are exact. The 

sixth instability zone cannot embrace the fourth-order limit. 

• The vibration reactions, showing instability if growing substantially and stability if 

decreasing to rest, have validated the computational instability charts. Additionally, a 

comparison is made between the vibration reactions and the fourth-order Runge-Kutta method 

outcomes. It can be observed that the reliability of the current mathematical findings obtained 

from the method in Sect. 4 is equal to that of the Runge-Kutta method. 

• The impact of loads on both static and dynamic components is investigated. The 

spectrum of the stimulation rate for instability grows substantially alongside a rise in static 

load. Both the essential dynamic load and the frequency of parametric resonance will decrease 

as the static stress increases. The spectrum of the stimulation rate for instability grows almost 

linearly with a boost in dynamic load. 
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• The current study of dynamic stability and reactions to vibration may shed light on the 

secure and efficient usage of piles on elastic foundations excited with two dynamic loads with 

different frequencies in mechanical and civil engineering fields. Relevant topics that will be 

covered in subsequent research are post-buckling and the nonlinearity of the pile. Yet when 

Mathieu-Hill formulas play a role, the suggested computational approach can be expanded to 

include dynamic stability and vibration assessment of numerous degrees of flexibility systems 

according to arbitrary parameterized stimulation. 

The study primarily focuses on a beam model, with two key assumptions identified as 

limitations: first, the soil is represented as a single layer; second, the modeling uses a Winkler 

foundation model. The implications of this research are highly practical, particularly in the realm 

of designing pile foundations for megastructures. Designers can use the insights from this study 

to incorporate the effects of multiple frequencies on pile behavior into their design 

considerations, thereby enhancing the structural integrity and safety of constructions. 

6.2   Recommendations for future research 

As with any scientific endeavor, we have limitations as same as this study opens several 

avenues for future research, which are essential to further advance this field. 

Firstly, future studies could explore the extension of the numerical methods used in this 

research to more complex pile foundation systems, considering various soil types and pile 

materials. This expansion would provide a more comprehensive understanding of how different 

materials and soil conditions impact the dynamic stability of pile foundations in seismic 

environments. It would be particularly interesting to study the behavior of pile foundations in 

liquefiable soils, which present unique challenges during seismic events.  

Another valuable area of research would involve the application of the findings from this 

study to the design and optimization of pile foundations for megastructures in seismically active 

regions. This would entail using the stability diagrams and response predictions developed in this 

thesis to enhance the structural integrity and safety of such constructions. Additionally, 

investigating the impact of multiple seismic frequencies on the dynamic behavior of other critical 

structures, such as bridges and high-rise buildings, would be beneficial. 
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