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Abstract 
 

Farming in Northwestern Ontario faces unique challenges, including a shorter growing season, 

severe weather conditions, and limited infrastructure and support services. Despite these obstacles, 

the region holds great potential for expanding agricultural production, particularly for crops like 

soybeans. Soybean, a crop of significant economic and nutritional value, is susceptible to pests, 

diseases, and environmental stresses that reduce productivity. Effective health monitoring is 

crucial to optimize yields and quality. This study explored the use of low-cost proximal field 

cameras and remote sensing techniques for monitoring soybean leaf chlorophyll. A Mapir 

Survey3W camera was selected to capture high spatial resolution images in the green, red, and 

near-infrared regions of the electromagnetic spectrum. The optimal camera setup was investigated 

by comparing vertical (90º) and oblique (45º) orientation angles and automating image capture 

using a Raspberry Pi 4 Model B powered by a solar panel system. The vertical camera showed 

higher spectral reflectance values, while no significant difference was detected for vegetation 

indices. Once a series of images were captured using the identified optimal camera configurations, 

the images were preprocessed to obtain spectral reflectance values. Vegetation indices, such as the 

Green Normalized Difference Vegetation Index (GNDVI), were calculated from the captured 

images over the growing season. For calibration and validation purposes, at each field visit (within 

7-10 days time), soybean leaf chlorophyll content (LCC) was measured using Apogee Instruments 

MC-100 Chlorophyll Meter. The correlation between GNDVI and LCC was established over time 

using the inverse function of piecewise linear regressions. The robustness of the regression models 

was measured by a Kolmogorov–Smirnov statistical comparison test between the predicted LCC 

over time and the field-measured LCC. The results were statistically not significant, indicating the 

similarity between the two data sets. Finally, a user-friendly prototype software application was 

built to make the proposed model accessible to the public. This study provided valuable insights 

into the optimal setup of field cameras and the use of low-cost remote sensing techniques for 

soybean leaf chlorophyll monitoring. The proposed methodologies and analyses contribute to the 

remote sensing techniques in agriculture using affordable sensors, supporting sustainable 

agriculture practices, and minimizing production risks in soybean cultivation.  
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Chapter 1: General Introduction 
 

Northwestern Ontario (NWO), Canada, has a cold climate with a relatively short growing season 

compared to the southern parts of the province. The continuously changing and unpredictable 

weather makes agricultural practices more challenging (Chapagain, 2017). Despite these 

challenges, NWO holds significant potential for agriculture, with fertile soils, good transportation 

networks, and affordable land (Chapagain, 2017). However, farming in the region faces numerous 

challenges, including a short growing season, unpredictable weather, and a lack of support services 

(Chapagain, 2017). The impact of climate change further exacerbates these challenges, 

necessitating the adoption of new farming techniques. One such technique is precision agriculture, 

which is gaining traction in the region (Shafi et al., 2019). Precision agriculture (PA) offers a suite 

of technologies and methodologies that can significantly mitigate the agricultural challenges faced 

in Northwestern Ontario (NWO), particularly those related to the short growing season, 

unpredictable weather, and the broader impacts of climate change. By integrating advanced 

technologies such as remote sensing, geographic information systems (GIS), and other digital 

tools, PA enables more precise management of field variations, enhancing both the efficiency and 

sustainability of agricultural practices (Rimpika et al., 2023; Shafi et al., 2019).  

The short growing season in NWO limits the window for crop growth and maturation, 

necessitating highly efficient farming practices to maximize yield within this constrained 

timeframe (Sahota et al., 2013). Precision agriculture can address this challenge by optimizing 

planting schedules and crop selection (Sajid & Hu, 2022). Technologies such as remote sensing 

allow for detailed analysis of crop health across different parts of a farm, enabling farmers to 

closely and precisely monitor crop health variations that help them to make better decisions (Omia 

et al., 2023). 

With the advancement of remote sensing technologies, such as satellite imagery, drones, ground 

sensors, and artificial intelligence (AI), a new era of precision agriculture is booming. These 

technologies enable farmers to monitor crop health, growth stages, moisture levels, and other key 

indicators at a much finer spatial and temporal resolution than traditional methods (Omia et al., 

2023; Sishodia et al., 2020). By integrating this real-time data with weather forecasts, soil maps, 
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and crop models, farmers are empowered to make more informed decisions on irrigation, 

fertilization, pest control, and harvest timing. This optimizes yields and quality and minimizes 

inputs and environmental impacts, heralding a more sustainable future for agriculture. (Han et al., 

2024). 

Adopting precision agriculture systems also comes with challenges, especially for small and 

medium-sized farms (Omia et al., 2023). The high upfront costs of equipment and software, the 

need for technical skills and training, and the lack of interoperability between different data sources 

and platforms can be barriers to entry (Omia et al., 2023). Another concern is ensuring data 

privacy, ownership, and security (Kaur et al., 2022). Further research is necessary to develop more 

affordable, user-friendly, and scalable precision agriculture solutions that are adapted to the 

specific needs and constraints of farmers, especially in NWO and nearby regions. 

Climate change has enabled farmers to try new varieties of crops in the NWO region. Soybean is 

such an important crop that is becoming increasingly popular in this region (Pearce, 2024). The 

short growing season of NWO, fewer risks compared to its alternative crops like Canola, and more 

profit margins are some of the reasons behind its increasing popularity (Pearce, 2024). In 2022, 

soybeans were cultivated over a total of 3 million acres of land in Ontario (Pearce, 2024). Soybean 

has a market size of over 4.4 billion dollars in Ontario in 2024 (Kaur et al., 2022). Though the 

main use of Soybean is to produce Soybean oil, it is also considered one of the richest protein 

sources for people and animal diets (Pagano & Miransari, 2016). Soybean oil is used as a key 

ingredient in many industries like paint, adhesives, fire extinguishers, etc. (Johnson & Myers, 

1995). Considering its importance, a continuous monitoring system for Soybeans needs to be built. 

The main aim of this project was to explore the potential of a remote sensing-based precision 

agriculture system that utilizes low-cost remote sensors to deliver robust, easy-to-understand 

information to farmers, enabling the precision application of fertilizers and other inputs for 

soybean crops. To achieve this goal, the identified three specific research objectives were to: a)  

determine the optimal properties and orientation of proximal remote sensors for capturing high-

quality images of soybean canopies; b) correlate remotely sensed data and field observations to 

predict the spatial distribution of leaf chlorophyll content of test plots; and c) design and develop 

a prototype, user-friendly software application to deliver useful information to farmers.  
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1.1 Chapter Synopsis   

Chapter 1: General Introduction 

This chapter provides the theoretical background and historical studies that have led to the research 

reported in the dissertation, followed by the research's significance. A significant gap in the current 

state of knowledge regarding the use of low-cost remote sensors in precision farming is 

demonstrated. The research aim, and three specific objectives were identified in this chapter. 

Chapter 2: Optimizing the image capturing workflow to assess Soybean health properties 

This chapter explored the optimal setup and parameters for using proximal field cameras to 

monitor soybean health (specific objective (a)). The study aimed to determine the optimal camera 

type, setup parameters (orientation angles, camera settings, cost-friendly setup), power supply, 

data storage, and automation of image capture. The work was reported in a format suitable for 

submission as a rapid communication to “Remote Sensing Letters.”  

Chapter 3: Monitoring Soybean Leaf Chlorophyll Using Low-Cost Remote Sensor 

This chapter introduced new data relating to the specific objectives (b) and (c). The work was 

reported as a journal article as it will be submitted to the “International Journal of Remote Sensing” 

in the future. A robust relationship between soybean leaf chlorophyll content and vegetation index 

has been established, which is later used for the development of the prototype web application.  

Chapter 4: Conclusions and Recommendations for Future Research. 

The concluding chapter explicitly detailed the contribution of this thesis to the field of precision 

agriculture and remote sensing. It revisits the main findings and techniques used throughout each 

preceding chapter, describing how the approach and results are significant, new, and innovative. 

Finally, there are some suggestions for study objectives and improvements in future research.   
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Chapter 2: Optimizing the Image Capturing Workflow to 
Assess Soybean Health Properties 

 

2.1 Introduction 

Soybean is a widely cultivated crop used for various purposes, including animal feed, biodiesel 

production, and human consumption (Stein et al., 2008). As a source of protein and other essential 

nutrients, soybeans are an important part of the global food supply (Funk, 2020). However, 

soybean plants are vulnerable to various pests, diseases, and environmental stresses, which can 

significantly reduce their productivity and quality (Haskett et al., 2000; Lal et al., 1999). 

Farmers and researchers use various methods to monitor Soybean health, such as visual inspection 

of plants, laboratory analysis of nutrient levels of plants and soil properties, and remote sensing 

(Omia et al., 2023). Most remote sensing methods include analyzing satellite images and aerial 

photographs for crop monitoring (Sishodia et al., 2020). Satellite imagery fails to provide high 

spatial resolution images for a low or reasonable cost. Temporal resolution is also a drawback to 

satellite imagery. Satellites have their pre-defined orbit and, thus, a fixed revisit time. Low 

temporal resolution can be a problem in regions where the weather changes rapidly, as it can lead 

to inaccurate or delayed crop monitoring and management. Climate studies have shown that certain 

regions, such as Northwestern Ontario, experience more rapid weather changes than others 

(Ahmed et al., 2014, 2022). Another drawback to the satellite imagery is that it is not very useful 

for small-sized farmlands where spatial resolutions are larger than the field size (Sozzi et al., 2018). 

Generally, satellite imagery accessible to the general public lacks adequate spatial or temporal 

resolution to monitor and manage crops throughout their growth cycle. 

Aerial photography is one of the best methods to monitor vegetation health as the technology 

provides high spatial and temporal data on demand (Morgan et al., 2010). However, their 

operational cost is high and requires adequate aircraft, sensors, and skills to acquire, process, and 

extract information from images (Fensham & Fairfax, 2002). Recently, attention was given to 

images acquired from Remotely Piloted Aircraft Systems (RPAS). RPASs are an efficient solution 

to crop health monitoring because of their low operational cost, precision and flexibility, and 
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accessibility to remote areas (Gayathri Devi et al., 2020). Still, there are a few disadvantages to 

using RPAS images. Operating RPAS in an agricultural setting may require compliance with 

regulations like licensing and airspace restrictions. Moreover, safety concerns regarding collisions, 

privacy, and data security must also be addressed (Hafeez et al., 2023). Adverse weather conditions 

such as strong winds, rain, or fog can hinder RPAS operations and data collection, limiting their 

effectiveness. Their power source limits RPAS performance. Even with the latest drone 

technologies, it is tough to get an hour of power backup from a drone battery (Hafeez et al., 2023). 

Although these methods provide accurate results promptly, even in real-time, there are operational 

problems, such as the cost of equipment required and the high level of technical knowledge for 

image acquisition and processing (Sishodia et al., 2020). A low-cost, reliable option is still in 

demand for crop health monitoring. The ideal solution would be a proximal sensing camera (hand-

held or fixed to a frame) for continuous image acquisition throughout the growing season, an 

automated image processing algorithm, and an application to disseminate results. 

Fixed field cameras are stationary cameras installed in specific locations to capture images or data 

over an extended period. Depending on the particular application, they can be equipped with 

various sensors—optical, infrared, or multispectral cameras (Bogue, 2017). They provide 

continuous monitoring capabilities and help long-term trend and pattern analysis in the observed 

area. These cameras offer several advantages over other remote sensing methods, such as higher 

spatial and temporal resolutions and lower operational costs (Mahajan et al., 2017; Nijland et al., 

2014; Peng et al., 2019; Phadikar & Goswami, 2016; Ramos-Giraldo, Reberg-Horton, Locke, et 

al., 2020; Ramos-Giraldo, Reberg-Horton, Mirsky, et al., 2020; Singh & Misra, 2017). Field 

cameras and other sensors are becoming increasingly popular for monitoring crop health, weather 

parameters, and soil conditions, especially for small-sized farms, as they provide a cost-effective 

method for collecting data over a particular area. These sensors have been mounted on farm 

machinery, purpose-built robots, and at fixed locations (Bogue, 2017). A limited number of studies 

have used fixed cameras for crop health monitoring so far; Li et al., 2021 aimed to find the best 

camera viewing angle and setup for capturing the 3D point clouds. The study confirmed that the 

oblique imagery provided the best estimation for leaf length and width, and the oblique and nadir 

angles were the best for modeling canopy and leaf parameters (Li et al., 2021). The study suggested 

that oblique imagery is a promising approach for crop monitoring using a single-camera platform. 
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One of the key properties of proximal sensing cameras that affects their performance in crop 

monitoring is spatial resolution. Higher spatial resolution cameras can capture more detailed crop 

canopy images, improving growth monitoring accuracy (J. Zhang et al., 2020). The ability to 

capture large amounts of data quickly and efficiently is vital to plant phenology monitoring and 

has the ability to detect subtle changes in plant health that might not be visible to the naked eye 

(Kross et al., 2011). Fujiwara et al., 2022 confirmed that the camera angle from an RPAS can affect 

the accuracy of estimating maize plant height. However, how camera angle can affect the captured 

image data from a proximal field camera is still not explored. A research team from North Carolina 

State University used a fixed camera to monitor the drought status of soybean plants in a field 

experiment (Ramos-Giraldo, Reberg-Horton, Locke, et al., 2020). They could predict crop plants' 

drought status with more than 80% accuracy relative to expert-derived visual drought ratings. In 

another experiment, they achieved an accuracy of 74% with the embedded machine-learning 

algorithm when classifying water stress in soybeans (Ramos-Giraldo, Reberg-Horton, Mirsky, et 

al., 2020). 

To date, no study has explored the comprehensive optimal parameters (camera orientation, pole 

height, power supply, etc.) for setting up fixed cameras for Soybean health monitoring. Fixed 

cameras have great potential for assessing soybean health, but their image-capturing workflow for 

this purpose requires further investigation. This study aimed to explore the optimal fixed camera 

setup for capturing high-quality images of soybean plants. The specific objectives were to: (1) 

decide on the suitable low-cost camera that can be used to capture plant variations; (2) set up 

cameras in the field (pole height, attachments, camera parameters); (3) identify the most suitable 

camera orientation angle and sun orientation direction; (4) decide on the power supply and data 

storage; and (5) automate the image capturing process. The second phase of this project would be 

to automate the image analysis process and develop a mobile application that provides Soybean 

health parameters on demand. 
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2.2 Materials and Method 

2.2.1 Study area 

The study was conducted at the Lakehead University Agricultural Research Station (LUARS) 

located in Thunder Bay, Ontario, Canada (48.3052° N, 89.3882° W) (Figure 2.1). The research 

station serves as a principal facility for the establishment, execution, advancement, and 

dissemination of agricultural research to foster expansion and crop diversification within the 

agricultural sector. This is achieved through the utilization of small-plot research and extension 

activities, community-centered agricultural research, and resource management endeavors 

(Lakehead University Agricultural Research Station). 

Thunder Bay is located in Northwestern Ontario (Figure 2.1) and has a humid continental climate. 

The area experiences four distinct seasons, with warm summers and cold winters. Thunder Bay 

has an average annual temperature of 3.2°C, with the warmest month being July, with an average 

temperature of 17.4°C, and the coldest month being January, with an average temperature of -

13.6°C(Ahmed et al., 2014). The area receives an average of 840 mm of precipitation annually, 

with the majority of the precipitation occurring in the summer months. Hence, rainfed agriculture 

is dominant in the region. 

The experimental soybean plots were located in the northeastern section of the LUARS (Figure 

2.1). The Soybean was seeded on June 14, 2022, in a grid block pattern, with each block sizing 

about 1 m x 1.2 m and a 0.33 m buffer zone between each plot on a total area of 87 m x 35 m. The 

crop was harvested on the first week of October 2022. 
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Figure 2.1: A map of the Lakehead University Agriculture Research Station, Thunder Bay, 

Ontario, Canada. The location of the camera (yellow point) and a soybean plot (red polygon) are 

shown on the map. 

 

2.2.2 Camera selection and set up. 

To optimize the establishment of field cameras, we considered several main requirements (1) good 

coverage of the plot; (2) selection of suitable camera and camera settings for image acquisition; 

(3) camera orientation; (4) automated image acquisition and data handling; and (5) continuous 

power supply for the system. 
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i) Ground coverage of the plot 

The plot's ground coverage varies with the pole's height and the camera's orientation angle (Natural 

Resources Canada, 2015). When determining the pole height, the following three factors were 

considered: (a) a footprint of the image should cover at least one soybean plot; (b) Ground 

Sampling Distance (GSD) of images or in other words, the pixel size should be large enough to 

identify details up to leaf level; and (c) the camera system should not act as an obstacle to access 

the plot for agricultural purposes. 

ii) Camera selection and camera settings 

Camera type: When selecting a camera, the preferences were given to cameras sensitive to the 

Near Infrared (NIR) region of the electromagnetic spectrum because plants show unique 

characteristics under exposure to NIR radiation (Lillesand et al., 2015, pp. 14–16). The reflectance 

of the NIR band on the surface of the leaves can be used to estimate the health status of the crops 

by calculating vegetation indices (Ustin & Jacquemoud, 2020, Chapter 7). 

Camera settings: Camera resolution, shutter speed, aperture, and ISO settings are some important 

factors that control how much light energy the camera can capture while taking a picture (Jacobson 

et al. 2013). These parameters were adjusted for capturing images. 

iii) Camera Orientation 

Pole orientation: The solar elevation, azimuth angle, and viewing angle can play an important 

role in capturing optimal images (Lillesand et al., 2015, p. 25). Depending on the location and 

orientation of the pole, plants can be sunlit or shaded. In the northern hemisphere, during the 

summer, the sun rises northeast and sets northwest. We strategically positioned our pole on the 

soybean field's north edge (Figure 2.2). The cameras were oriented towards the south to avoid 

casting shadows during mid-day and receive the maximum amount of sunlight during the day. The 

entire structure was designed to avoid casting shadows that could interfere with the resulting 

images. 

Polyvinyl Chloride (PVC) pipes were used to build the pole structure. PVC is a very cheap and 

lightweight but very strong material that can stand in the windy environment of Northwestern 
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Ontario. To weatherproof the camera, we used some single-use plastic plates as shades to protect 

the cameras from the rain and overheating from the sun (Figure 2.2). 

Camera orientation angles: Camera viewing angle/orientation can play a role in soybean health 

assessment, as it affects the visibility of different layers of leaves. From a vertical viewpoint (90°), 

the camera would primarily capture the top layer of leaves, while lower-level leaves become 

visible from a diagonal/oblique angle. We selected two camera orientation angles: (a) Vertical 

Camera, (90°); and (b) Oblique Camera (45°) to capture different perspectives and gather 

comprehensive information about the soybean plants' health (Figure 2.2). 

iv) Image acquisition and data handling  

The image-capturing system was designed to be fully automated and controlled by a dedicated 

controller system to minimize human intervention. The cameras were effectively controlled by a 

Raspberry Pi 4 Model B computer and Python script. The system was programmed to send the 

Pulse Width Modulation (PWM) signal to the cameras, triggering the shutter and capturing an 

image every 30 minutes. This automated process was scheduled to run continuously from 7 AM 

to 5 PM daily. The camera's specific calibration target images were acquired manually to represent 

different lighting conditions throughout the season. These images were later used to convert DN 

values into surface reflectance values. 

A storage device without data compression or a lossless compression technique is vital to ensure 

optimal storage of the result images. Sufficient storage capacity should be available to store all the 

photos without running out of memory. In our study, the images were stored in a 128 GB micro-

SD memory card attached to each camera, enabling the capture of images throughout all stages of 

soybean growth. Subsequently, the images were transferred to external solid-state drive storage 

for further analysis. This approach ensured the preservation of image quality and allowed for 

efficient storage and access during the analysis phase. 
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v) Power supply  

To ensure a continuous power supply throughout the Soybean growing season, a 60W Solar Panel 

was utilized to charge an 80Ah 12V sealed lead-acid battery. This battery served as the power 

source for the cameras and the Raspberry Pi computer. 

 
Figure 2.2: The camera setup: (a) the camera oriented at 90º; (b) the camera oriented at 45º; (c) the 

power supply (battery and the box); (d) the wooden box for the Raspberry Pi computer, controller 

and other accessories; and (e) solar panel.  

 

2.2.3 Data processing and analysis 

i) Data pre-processing 

The Soybean has two main growth stages: (1) vegetative; and (2) reproductive. There is a total of 

eight (8) reproductive stages denoted by R1 through R8 (Purcell et al., 2014). This study was 

conducted from R4 to R7 reproductive stages.  

The images were downloaded manually and sorted out based on the time of the day, lighting 

conditions, and shadows. Some images were discarded. For instance, images that were too dark to 
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distinguish the subjects or had any unwanted intrusion in a photograph were discarded. Then, the 

images were separated into different Soybean growing seasons.  

Initially, this camera stores images as Digital Numbers (DNs); however, for the remote sensing 

analysis, they were converted to spectral reflectance values using the calibration panel images and 

MAPIR Camera Control (MCC) software (Mapir Camera, 2024). The images were then cropped 

to remove other features (background) and to obtain Soybean only. 

ii) Image processing and analysis 

The purpose of the image processing was to evaluate the orientation angle of the camera. Hence, 

the analysis was done in two different ways: (1) classify images based on NIR reflectance values 

and compare the percentages of different features that appear on the images with two orientation 

angles; and (2) evaluate the spectral reflectance values for both orientation angles. 

a) Image classification 

Spectral reflectance can be different based on the viewing angle and the sun’s position (Ustin & 

Jacquemoud, 2020). Both sets of images (each reproductive stage separately) were classified into 

five classes: (1) Under Exposed Leaves; (2) Properly Exposed Leaves; (3) Over Exposed Leaves; 

(4) Dark Shadow; and (5) Soil. We randomly selected training pixels for the moderately exposed 

leaves class using a NIR reflectance threshold from 0.4 to 0.8 for the range of reproductive stages 

(R4-7). If the value was higher than that, they were labeled as over-exposed; if lower, they were 

labeled as under-exposed. This is based on the spectral profile of Soybean leaves and some existing 

studies; for instance, Durante et al., 2014 and  (Vásquez et al., 2023) found that the NIR reflectance 

for healthy Soybeans was approximately 0.6-0.7. After that, a maximum likelihood classifier 

algorithm (Lillesand et al., 2015, p. 544) was used to classify each image into five classes using 

ENVI 5.6.2 software (Geospatial Image Analysis Software | ENVI). 

b) Spectral Reflectance Analysis 

In order to perform a spectral reflectance analysis, information from each leaf needs to be 

considered. To extract leaf-level reflectance values, individual leaf segmentation is necessary. The 

watershed algorithm (Kornilov & Safonov, 2018) was used to perform the individual leaf 
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segmentation. The watershed algorithm treats the image as a topographic map, where brightness 

represents the height of each point. The algorithm then finds lines that run along the tops of ridges 

and then floods the image from these ridges to generate a partition into distinct regions (Roerdink 

& Meijster, 2000). The flood fills basins around local minima in the image, with each distinct basin 

representing a different object (Kornilov & Safonov, 2018). When the target image contains too 

many objects that are touching or overlapping each other in complex ways, the watershed 

algorithm may fail to separate the individual objects properly. This can lead to under-segmentation, 

where multiple objects are incorrectly merged together (Liu et al., 2023). To address this issue, 

each image was divided into a moving window of 100 x 100 pixels to segment individual leaves 

with 3-4 leaves in each. Then, the watershed algorithm was applied to each windowed region and 

segmented up to leaf level. The same process is applied to all the smaller blocks in the image for 

segmentation. Segmented blocks were merged back to form the original image. Figures 2.3 (a) and 

(b) show an example of the selected nine moving windows, and Figure 2.3 (c) shows that portion 

after segmenting and merging. The process was automated using a Python programming language 

(Python 3.12.3 Documentation). 

 

 
Figure 2.3: Individual leaf segmenting process using the watershed algorithm. (a) the whole image, 

bottom right, shows an outline of nine small moving windows; (b) shows the zoomed area over a 

corner of the blocked image; (c) shows the segmented smaller blocks. 
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After segmenting the image, the spectral reflectance values of individual pixels were extracted, 

and Vegetation Indices (VIs) were derived (Table 2.1) using the rasterio library of Python 

programming language (Mapbox, 2018). The mean VI value for each leaf segment was calculated 

and analyzed against the time. The study used the Normalized Difference Vegetation Index 

(NDVI), Green Normalized Difference Vegetation Index (GNDVI), and Soil Adjusted Difference 

Vegetation Index (SAVI) (Table 2.1). We chose these vegetation indices because the camera we 

used provides us with images in three spectral bands, Red (R), Green (G), and Near Infrared (NIR), 

and these three vegetation indices can be calculated from the R, G, and NIR values. 

Table 2.1: Calculated vegetation indices formula 

Vegetation Index References Remarks 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 −  𝑅

𝑁𝐼𝑅 +  𝑅
 (Tucker, 1979) 

The NDVI compares the amount of 
near-infrared light reflected by 
vegetation to the amount of visible 
red light reflected by vegetation 

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 (da Silva et al., 

2020) 

The Green Normalized Difference 
Vegetation Index (GNDVI) is a 
modified version of the NDVI that 
uses the green and near-infrared 
spectral bands better to indicate the 
variation of chlorophyll content in 
vegetation. GNDVI has a higher 
saturation point than NDVI, which 
means it can be used in crops with 
dense canopies or in more 
advanced stages of development 
(Auravant). 

𝑆𝐴𝑉𝐼 = (1 + 𝐿)
𝑁𝐼𝑅 −  𝑅

𝑁𝐼𝑅 +  𝑅 + 𝐿
 (Huete, 1988) 

SAVI minimizes soil influences on 
canopy spectra by incorporating a 
soil adjustment factor L into the 
index. The value of L = 0.5 for 
Soybeans was adapted from the 
study:  (da Silva et al., 2020). 
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2.3 Results 

2.3.1 Ground coverage and pole structure 

The PVC pole structure provides stability in windy environments, positioned at a height of 152 

cm, to provide good ground coverage without capturing unnecessary objects (Figure 2.4). The 

footprint of the images obtained from the vertical camera was approximately 1.5 m x 1m, which 

just covers one plot and the isle buffer between the adjacent plots (Figure 2.4(a)), and the oblique 

camera was able to see beyond one plot (Figure 2.4(b)). The ground sampling distance of the 

images from the vertical camera was approximately 0.07 cm/pixel. Visually, the oblique image 

(Figure 2.4 (a)) shows both lower and upper-level leaves, but on the contrary, the vertical image 

(Figure 2.4 (b)) shows mostly the upper-level leaves of soybean plants. 

 

 
Figure 2.4: Sample standard false-color images taken from R4 reproductive stage  (a) the image 
from 90° camera and (b) the image from 45° degree camera. 
 

2.3.2 Camera selection and settings  

The Mapir Survey 3W RGN camera was selected for this study. It is sensitive to the 

electromagnetic spectrum's green, red, and near-infrared regions (RGN camera) (MAPIR 

CAMERA, 2023). Table 2.2 shows the central wavelength of each band. The bandwidth of a single 

band is 15nm. 
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Table 2.2: Spectral resolution of MAPIR Survey 3W RGN Camera 
 

Spectral Band Central Wavelength 
(nm) 

Red 660 

Green 550 

Near Infrared 850 

 

The cameras were equipped with a wide-angle lens to capture a larger field of view. In this study, 

the bit depth was set to 16-bit, although there are two other options (8-bit and 12-bit) because 16-

bit depth can capture more variations of reflectance values than the other two options. The aperture 

was set to f/2.8, the exposure time was 1/125 sec, and the ISO-100 speed was set to 100. All the 

images were captured without using a flash or any kind of external light source. The images are 

saved into two formats: RAW and JPEG, because the MAPIR Camera Control software requires 

the RAW and JPEG photos to calculate the calibrated reflectance image (Survey3: Multispectral 

Survey Cameras, 2021). 

The construction of the complete experimental camera setup incurred an approximate expenditure 

of two thousand Canadian Dollars. Detailed estimations of the cost for each component are 

demonstrated in Table 2.3. It is important to note that these figures exclude any applicable taxes 

or shipping fees. The procurement of the equipment was primarily facilitated through Amazon 

Canada, supplemented by purchases from several local stores in Thunder Bay. 

Table 2.3: The estimated cost breakdown of the experimental setup 
 

Components Qty Estimated Unit Price (CAD) 
Estimated 
Total Price 
(CAD) 

Mapir Survey 3W 
RGN Camera 2 

$400.00 USD each (Approx. $514.00 
CAD based on the current exchange 
rate 1 USD = 1.285 CAD on 29 April 
2024) 

$1028 

Raspberry Pi 4 
Model B 1 $100 $100 

60W Solar Panel 1 $150 $150 
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80 Ah Lead Acid 
Battery 1 $180 $180 

PVC pipe for 
structure 

3 m 
approximately $7 per meter $21 

Cables (Approx. 15 
meters) 

7 m  
approximately $4 per meter $28 

Miscellaneous Cost   $200 

Total Cost $1707 

 

2.3.3 Image analysis 

i) Pixel based classification 

Table 2.4 shows the pixel-based classification of five different classes at each reproductive stage. 

When using the vertical camera at the R4 stage, approximately 20% of pixels were overexposed. 

On the other hand, the oblique camera captured only 3.47% of the pixels in the images that are 

overexposed. The pattern remains the same throughout the seasons R4, R5 and R7. 

Table 2.4: Classification results (percentages) for each reproductive stage 

 

Growth 
Stages Classes 

Oblique Camera 

(45°) 

Pixel Coverage % 

Vertical Camera 

(90°) 

Pixel Coverage % 

R4 
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R5 

 

  

R7 

 

  

 

ii) Spectral reflectance analysis 

Figure 2.5 shows how the reflectance value changes over the reproductive stages. Figure 2.3 (a)-

(c) indicates that the vertical camera's spectral reflectance values were consistently higher. In 

Figure 2.5 (a) the differences between the two cameras' red reflectance values are the highest in 

late August but become similar when they mature. Green (Figure 2.5 (b))  and  NIR (Figure 2.5(c)) 

show a minor difference at the beginning of August (R4) but start to show a very big difference in 

the later stages. The best-fitted line for green spectral reflectance shows that the oblique camera 

captures a lot of variations, while the best-fitted line from the vertical camera is more flattened and 

shows less change over the same time. NIR values of both cameras show approximately similar 

curves—increasing values from R4, peaking at R5-6, and decreasing (Figure 2.5(c)). 
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Figure 2.5: Change of spectral reflectance values in (a) Red, (b) Green, and (c) NIR bands over 

time for both 90º and 45° cameras. The dots represent mean spectral reflectance values for each 

leaf segment at a certain time, and the blue and orange lines are the best-fitted line among the 

points. 

Figures 2.6-2.8 show how the vegetation indices change over time. The best-fitted line shows how 

the overall vegetation indices change over time among the crop canopies.  Visually, there is no 

difference between the 90° and 45° angle cameras The best-fitted lines for both cameras showed 

an approximate peak of NDVI value of 0.85, peak GNDVI value of 0.9, and peak SAVI value of 

0.8. NDVI and SAVI reached their peak in mid-August, which falls in the R4-R5 stage, but on the 

other hand, GNDVI kept increasing up until late August, which falls in the R5-R6 stage (late 

August to September). Due to a system failure during the R6 stage, no images were captured. 
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Figure 2.6: NDVI values over time (R4-7 stages): (a) 90º camera and (b) 45° camera.  The blue 

dots represent mean NDVI values for each leaf segment over time, and the blue line is the best-

fitted line for those points. 

 
Figure 2.7: GNDVI values over time (R4-7 stages): (a) 90º camera and (b) 45° camera.  The blue 

dots represent mean GNDVI values for each leaf segment over time, and the blue line is the best-

fitted line for those points. 
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Figure 2.8: SAVI values over time (R4-7 stages): (a) 90º camera and (b) 45° camera.  The blue 

dots represent mean SAVI values for each leaf segment over time, and the blue line is the best-

fitted line for those points. 

2.4 Discussion  

The study selected the Mapir 3W RGN camera, which is a relatively low-cost camera with NIR 

band (around 400 USD). It is significantly lower compared to other spectrometers and sensors 

available in the market. For example, there are RedEdge-MX multispectral cameras by MicaSense 

(Measure), Sequoia multispectral cameras by Parrot (Aeromotus), etc., but they are very expensive 

and sophisticated cameras that are not suitable for general farmers (Barrows & Bulanon, 2017; 

Fensham & Fairfax, 2002; Omia et al., 2023; Raeva et al., 2018). On the other hand, low-cost 

digital commercial cameras are not sensitive to the NIR region of the electromagnetic spectrum 

and do not record data in three separate bands. 

2.4.1 Optimized Camera Parameters 

This study focused on optimizing the image-capturing procedure for Soybean health monitoring. 

Considering factors such as sensor selection, sensor orientation, ground area coverage, power 

supply, and automated image-capturing process, a comprehensive analysis was done to optimize 

the image-capturing workflow. The data capturing was initiated in the summer of 2021. After 

analyzing the performances, the workflow was improved in the summer of 2022. 
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In the summer of 2021, a solar panel with a power output of 6W and a lithium polymer battery 

with a capacity of 26.8 Ah were utilized to provide power to the camera setup. However, it was 

observed that during extended periods of cloudy weather lasting two to three consecutive days, the 

battery failed to receive sufficient charge, leading to an inadequate power supply for the camera 

and Raspberry Pi 4 Model B computer. Additionally, the region of Northwestern Ontario 

experiences low night-time temperatures, even during the summer season, with temperatures 

dropping to around 5°C. These colder temperatures further reduced the battery's capacity. 

Therefore,  it was necessary to enhance the power capacity for the subsequent year in 2022. 

Accordingly, the battery capacity was increased to 80Ah, and the solar panel capacity was 

increased to 60W. This upgrade ensured that the camera setup could be powered for an extended 

duration of two to three days, even in the absence of sunlight due to cloud cover. This sustainable 

power setup enabled the system to operate autonomously throughout the entire Soybean growing 

season. 

2.4.2 Camera orientation 

Our findings indicate that both vertical (90°) and oblique (45°) camera orientations can provide 

accurate measurements of soybean health, with different benefits and limitations. For example, the 

classification results of images from the vertical camera, indicated that more pixels were 

overexposed than the other camera  (Table 2.3).  The vertical camera might capture more radiation 

reflected from the surface of the leaves, which leads to overexposure (Yue et al., 2018). On the 

other hand, a slower shutter speed will provide overexposed images unless the ISO changes 

accordingly (Sony Electronics Inc., 2019). There are no significant differences between the two 

cameras in terms of VIs (Figures 2.6-2.8). VIs are ratios of surface reflectance values of multiple 

bands designed to highlight distinct vegetation properties (Pasimeni et al., 2018). These ratios 

enhance the spectral characteristics of Soybean leaves in the image irrespective of image 

illumination (sun angle and viewing angle). Therefore, both cameras should provide similar 

results. 

Some images were missing in the R6 stage due to a system failure. It was recovered, and therefore, 

images were available for R7. However, according to Vásquez et al., 2023, there was not much 

difference between spectral reflectance values of the R5 and R6 stages of Soybean. The Mapir 
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Survey 3W camera has an optional GPS to tag the camera exposure station location to the images, 

offering valuable assistance when working with various image analysis tools such as ENVI (NV5 

Geospatial Solutions Inc., 2024), ESRI ArcGIS Pro (ESRI, 2023), and similar applications. We 

would recommend attaching the GPS to the camera in the future. 

2.4.3 Operational Cost 

The initial expenditure associated with the assembly of our experimental setup was around 

CA$1707. However, it is imperative to underscore that this investment was specifically designed 

for research purposes. For the end users, primarily the farmers, the acquisition of the camera 

sensors constitutes the essential expenditure. The procurement of additional components remains 

optional. A singular camera unit suffices for the collection of remote sensing data related to the 

analysis of designated areas within soybean fields. Consequently, this strategic reduction in 

requisite hardware diminishes the operational costs significantly, from an initial outlay of 

seventeen hundred Canadian Dollars to a mere five hundred Canadian Dollars. This cost-effective 

approach not only ensures the accessibility of the technology to the end users but also underscores 

the potential for scalability and adaptability in diverse agricultural settings.  

2.5 Conclusions 

This study aimed to analyze the optimal properties and orientations of field cameras for assessing 

soybean health. Despite the abundance of research and scholarly publications about crop health 

monitoring utilizing Remotely Piloted Aircraft Systems (RPASs), aerial photography, and satellite 

technology, there remains a notable lack of comprehensive exploration regarding the potential and 

optimization of proximal field cameras. In this study, we tried to fill that gap by optimizing the 

image-capturing workflow using a proximal field camera. 

An optimally designed structure and system were devised to establish field cameras to evaluate 

soybean health. We gained valuable insights throughout the optimization process, which led to 

notable advancements in the camera setup's design and performance. Besides that, a significant 

improvement was achieved in the power supply system, which now operates efficiently while 

ensuring an uninterrupted power source even in the event of consecutive cloudy weather conditions 

lasting two or three days. The image capturing process has been automated, minimizing the need 
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for human intervention or supervision during operation. Although regular field visits were 

conducted on a weekly basis to verify the system's functionality, no further manual interventions 

were necessary as the system consistently operated smoothly and as intended. 

Typically, expensive, and sophisticated equipment can provide better results. However, 

considering end users as general farmers, it is necessary to optimize the cost of the entire camera 

setup. The Mapir Survey 3 W camera we chose for this setup is capable of capturing images in 

Red, Green, and Near Infrared, which were required. The materials used for the pole structure to 

mount the cameras are very cheap but sufficiently strong to withstand wind and rain. The entire 

setup was automated with a microcontroller system built with Raspberry Pi 4 Model B that does 

not require any external power but can take pictures all day. 

Our findings show that the reflectance values obtained from the two camera orientations recorded 

higher values when captured by the vertical camera (90°). In both cases, a shutter speed of 1/125 

seconds was set. However, while this camera setting proved effective for the oblique camera 

orientation (45°), it resulted in overexposure in the images captured by the vertical camera (90°). 

Consequently, it is recommended to adjust the camera shutter speed to a higher value 

(corresponding to a lower exposure time) specifically for the vertical camera orientation (90°) to 

mitigate the issue of overexposure. 

Vegetation indices do not seem to be affected much by the camera properties because they are the 

ratio of different band reflectance values; however, the accuracy of the vegetation indices can be 

affected by the spectral performance of the camera, which can affect the quality of the reflectance 

values used to calculate the indices. 

Overall, the optimization of the soybean image-capturing procedure through the refinement of the 

power supply, camera settings, and the inclusion of GPS georeferencing capabilities has 

significantly improved the effectiveness and reliability of the camera setup. These advancements 

contribute to more accurate assessments of soybean health and enable informed decision-making 

in crop management, all while considering cost efficiency. 
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Chapter 3: Monitoring Soybean Leaf Chlorophyll Content 
Using Low-Cost Remote Sensor 

 

3.1 Introduction 

Soybean is an extremely valuable crop globally due to its versatility and wide range of uses 

(Pagano & Miransari, 2016). For instance, it is one of the richest proteins that is used in people's 

and animal diets. Many industries use soybean oil as an ingredient in their products, such as paint, 

wood veneer adhesives, linoleum backing, and fire extinguisher fluids (Johnson & Myers, 1995). 

Hence, this is a vital crop, and monitoring soybean health is crucial for farmers to maximize its 

yields and quality. Annually, about 2 million acres of Soybeans are cultivated in Ontario, Canada, 

for about $4 billion market size (Ministry of Agriculture, Food and Rural Affairs, 2021). However, 

the industry is expected to grow over the next five years time  (Ministry of Agriculture, Food and 

Rural Affairs, 2021). Considering the significant impact and extensive cultivation of Soybeans in 

Canada, closely monitoring the crop’s health became crucial for ensuring maximining the yield.  

Traditional crop health monitoring methods are usually destructive, require lots of experience, and 

are unsuitable for large-scale farms (Omia et al., 2023). Remote sensing plays a vital role in 

reducing the farmers' workload and providing valuable information to farmers to monitor and 

manage their crops. Remote sensing has been used to detect soybean diseases, allowing site-

specific management to reduce pesticide use at the farm level (Omia et al., 2023). For example, a 

study in Brazil aimed to quantify the reduction of pesticides applied to soybean and maize crops 

at various stages of the production cycle by using a precision spraying control system based on 

real-time sensors (Zanin et al., 2022). The system allowed for applying pesticides only where 

necessary, thus reducing the volume of pesticides used and potentially lessening environmental 

contamination. Further, Omnia et al., 2023 discussed the use of various remote sensors at the farm 

level and, thus, the reduced workload of farmers (Omia et al., 2023). However, the most common 

remote sensing data source for Soybean mapping and monitoring are satellite images and images 

from Remotely Piloted Aircraft Systems (RPAS) (Eugenio et al., 2020; Fathi & Shah-Hosseini, 

2023). There are advantages and disadvantages associated with each sensor system. For instance, 
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usually, the affordable and most accessible satellite images have a low spatial resolution, and their 

revisit time is almost two weeks (Borotkanych, 2022; Toth & Jóźków, 2016). They also require 

expert knowledge to extract useful information. Some remote sensing options provide 

instantaneous results, for instance, field spectrometers, but the associated cost is high (Malvern 

Panalytical Inc., 2024; VertMarkets, 2021). Also, the images should be capable of detecting 

parameters that indicate the health of vegetation.  

There are several parameters that can be used to analyze the health of the crops directly or 

indirectly using remote sensing methods such as canopy chlorophyll, nitrogen, phosphorus, and 

potassium contents (Kganyago et al., 2021), soil moisture (Ahmad et al., 2010), soil nutrient levels 

(Samreen et al., 2023), and disease symptoms (Shahi et al., 2023). The estimation of leaf 

chlorophyll content (LCC) in soybeans is a critical aspect of precision agriculture, particularly 

given the unique nitrogen-fixing ability of legumes like soybeans. Soybeans, as legumes, have the 

capacity to fix atmospheric nitrogen (N) through symbiotic relationships with rhizobia bacteria, 

which reduces the necessity for external nitrogen application (Mabrouk et al., 2018; Mylona et al., 

1995). This biological process significantly influences the nitrogen dynamics within the soil and 

the plant (Mabrouk et al., 2018). This biological process can be interrupted by several factors, such 

as atmospheric vapor pressure deficit (VPD) and precipitation during early reproductive growth 

(R1–R4 stages), sowing date, drought stress during seed filling (R5–R6), soil cation exchange 

capacity (CEC), and soil sulfate concentration before sowing (de Borja Reis et al., 2021). 

Estimating leaf chlorophyll content (LCC) can help in detecting problems associated with the 

nitrogen fixation process because LCC is closely related to the plant's nitrogen levels, as nitrogen 

is a crucial component in chlorophyll molecules and combined protein complexes (Y. Zhang et 

al., 2020). A healthy chlorophyll concentration indicates a well-functioning nitrogen fixation 

process, as chlorophyll plays a pivotal role in photosynthesis, the process through which plants 

convert light energy into chemical energy, utilizing nitrogen in the process (Evans & Clarke, 

2019). This makes the monitoring of leaf chlorophyll content an essential indicator not only for 

plant health but also for nitrogen utilization efficiency. 

Multispectral and hyperspectral images acquired using an RPAS can be used to analyze leaf 

chlorophyll content and canopy cover (Z.Zhang & Zhu, 2023). They provide high spatial, spectral, 



27 
 

   
 

and temporal resolutions. Currently, one of the low-cost, multispectral cameras in the market is 

the Mapir Survey 3W camera, which is an alternative to field measurements to monitor agriculture 

crops (Mapir Camera, 2021). So far, limited studies have used this camera for agricultural 

applications. However, (Vásquez et al., 2023) used one of the Mapir Survey 3W cameras (orange, 

cyan and NIR bands) to develop a new vegetation index to assess soybean growth dynamics.  

Vegetation indices combine spectral reflectance of two or more bands of an image to emphasize 

vegetation properties. They are straightforward yet effective for the quantitative and qualitative 

assessment of vegetation cover, health, and growth dynamics (Xue & Su, 2017). Normalized 

Difference Vegetation Index (NDVI) is the most widely used vegetation index that measures the 

difference between near-infrared (NIR), where vegetation strongly reflects, and red (R), which 

vegetation absorbs. It is one of the most popular vegetation indices used for detecting plant health 

status. However, the NDVI value saturates when it approaches its upper limit (close to 1) due to 

high biomass in dense vegetation. The Leaf Area Index (LAI) of a plant is a dimensionless quantity 

that represents the one-sided green leaf area per unit of ground surface area (Liang & Wang, 2020). 

In other words, a higher LAI indicates denser green vegetation. When the LAI is high, NDVI tends 

to plateau or saturate (Wang et al., 2016). NDVI does not increase linearly with increasing 

vegetation density when the plants reach their matured period (Aklilu Tesfaye & Gessesse Awoke, 

2021). There are some other vegetation indices,  such as Simple Ratio (SR) and Transformed 

Vegetation Index (TVI), that use the primary bands of Red, Green, and Near-infrared (Aklilu 

Tesfaye & Gessesse Awoke, 2021); thus, the issue related to the spectral behavior of red and NIR 

that identified with NDVI still persists with these indices. Green Normalized Difference 

Vegetation Index (GNDVI) is a vegetation that uses the primary bands of Green and Near Infrared 

and reaches saturation later than other indices (Gitelson et al., 1996). So, GNDVI was considered 

a better predictor index for the prediction of leaf chlorophylls for dense vegetation like Soybean. 

Gaitán et al., 2013 evaluated the performance of several remote sensing indices to predict the 

spatial variability of ecosystem structure and function. Pereira et al., 2023 found that while 

vegetation indices were useful, their applications were limited by the expense of the equipment, 

technical hurdles, interpretational challenges, and data quality issues. Stamford et al., 2023 

developed a low-cost NDVI imaging system for assessing plant health, demonstrating NDVI's 

application in plant phenotyping and health assessment. One of their limitations is the camera setup 
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they have used. The off-the-shelf modified cameras used in their system can affect the accuracy of 

the NDVI values obtained. Furthermore, the calibration method used is complex and requires 

expert knowledge. So, a much simpler system is needed to make it more viable for end users. In 

the scoping study (Chapter 2), we explored the affordable, reliable, and robust set of equipment, 

set-up parameters, and image-capturing process for Soybeans. A Mapir Survey 3W (Mapir 

Camera, 2024) camera sensitive to red-NIR of the electromagnetic spectrum acquiring images at 

about 6 feet in height could be an ideal solution for monitoring Soybeans. 

The need for software applications to monitor crop health is underscored by several critical factors 

that enhance agricultural productivity and sustainability. These applications leverage advanced 

technologies such as remote sensing, data analytics, and artificial intelligence to provide precise, 

real-time insights into crop conditions, enabling more informed decision-making in agricultural 

management (Omia et al., 2023). In order to visualize the LCC of test plots, a prototype application 

was necessary to be developed. There are many existing sophisticated crop health monitoring 

software in the market. For instance, Crop Monitoring (EOS Data Analytics Inc., 2024) is a very 

advanced satellite-based crop health monitoring application. There are other software such as 

Climate FieldView (Climate LLC, 2023), CropX (CropX Inc., 2024), etc. The problem with most 

of the existing software is that it depends on satellite data, which might be ideal for large-scale 

farms but not very useful for small-scale farms because of the low spatial and temporal resolution 

and high operational cost (Omia et al., 2023). This study proposed a prototype, cost-effective crop 

monitoring system that might be suitable for small-scale farms too. 

The main aim of the study in this chapter was to analyze the images obtained from field cameras 

for site-specific variations. The specific objectives were to (i) set up the Mapir Survey 3W camera 

in the field for imaging; (ii) determine the relationship between the measured leaf chlorophyll 

content and remotely acquired spectral information; (iii) map the spatial distribution of leaf 

chlorophyll using the spectral information over the study area; and (iv) develop a prototype web 

application for the end users to get the leaf chlorophyll content.  
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3.2 Data and Method 

3.2.1 Study area and data collection 

The study was conducted at the Lakehead University Agricultural Research Station (LUARS) 

located in Thunder Bay, Ontario, Canada (48.3052° N, 89.3882° W) (Figure 3.1). Thunder Bay 

has a humid continental climate in Northwestern Ontario (Weather Spark). The area experiences 

four distinct seasons, with warm summers and cold winters. Thunder Bay has an average annual 

temperature of 3.2°C, with the warmest month being July, with an average temperature of 17.4°C, 

and the coldest month being January, with an average temperature of -13.6°C (Ahmed et al., 2014). 

The experimental soybean plots are marked in Figure 3.1. The Soybean was seeded on May 18, 

2023, in a grid block pattern, with each plot sizing about 1.8 m x 3.5 m and a 0.33 m buffer zone 

between each plot on a total area of 29 m x 21 m. In late August, just before harvesting, a deer 

grazed and trampled the entire experimental field. Hence, the harvest information was not 

available.  

A Mapir Survey3W (RGN) camera that is sensitive to red, green, and near-infrared regions of the 

electromagnetic spectrum was used to collect data. The camera was set up according to the 

specifications confirmed by the scoping study of this research (details were outlined in the Chapter 

2 of this thesis). The images were acquired daily from 9 am to 5 pm throughout the growing season 

(June to August). Images of the calibration panel of the camera were obtained frequently to convert 

DN values into spectral reflectance values. Table 3.1 shows the central wavelength of each band. 

The bandwidth of a single band is 15nm. The camera was mounted on a PVC frame looking 

straight down (90°) at a height of about 152 cm. The shutter speed was set to 1/250s, the aperture 

was set to f/2.8, and ISO was set to 100. 

Table 3.1: Spectral resolution of MAPIR Survey 3W Camera (MAPIR CAMERA, 2023). 

Spectral Band Central Wavelength (nm) 

Red 660 

Green 550 

Near Infrared 850 
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Figure 3.1: A map of the Lakehead University Agriculture Research Station, Thunder Bay, 

Ontario, Canada. The location of the camera (yellow points) and a soybean plot (red polygon) are 

shown on the map. 

 

The camera setup was automated to capture images, but images were downloaded manually.  Field 

visits were conducted every 7-10 days (depending on the weather and availability of the researcher) 

to collect sample data. Leaf Chlorophyll Concentration (µmol m-2) was measured on each field 

visit using an Apogee chlorophyll meter (model: MC-100) (Apogee Instruments, 2024). There 

were approximately 220-250 plants per plot. The average of five readings per leaf was considered 

as one leaf’s chlorophyll content. Around 29-35 random leaves were measured at each plot in 

every field visit. 
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3.2.2 Data processing and analysis 

Images were sorted for days when Chlorophyll data were collected and calibrated to obtain spectral 

reflectance using Mapir Camera Control software (Mapir Camera, 2024). Then, the images were 

segmented into individual leaves. The most suitable image segmentation method for Soybean 

images was identified in the scoping study. A Python script was written to divide the entire image 

into smaller blocks images (100 x 100 pixels), allowing a maximum of four leaves in one block. 

The watershed algorithm (Kornilov & Safonov, 2018) was used on each block, and block results 

were combined later to obtain the whole individual leaf segmented image. 

 

Figure 3.2: Individual leaf segment using the watershed algorithm. (a) the whole image divided 

into smaller blocks of windows; (b) shows the zoomed area over a small block; (c) shows the 

segmented smaller blocks using the watershed algorithm; (d) shows the final constructed 

individually segmented image after convolution.  
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Extracting leaf chlorophyll content  

The Green Normalized Difference Vegetation Index (GNDVI) is proposed as an alternative to 

NDVI to overcome the saturation problem. GNDVI uses the green (G) band instead of the red 

band and is calculated as follows (da Silva et al., 2020). 

 𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 (1) 

It can be used at later stages of crop development, as it saturates later than NDVI, providing a more 

linear response to increasing biomass even at higher LAI levels (Prabhakara et al., 2015). For this 

study, GNDVI was selected for analysis, considering the availability of three bands from the 

camera and the saturation effect. 

GNDVI was calculated for each image, and the mean values were extracted for each leaf segment 

using  a Python script. A table was created at the time of image acquisition. A relationship function 

between GNDVI and time (T), where T is expressed as the number of days from seeding, is 

calculated using piecewise linear regression using Python’s scikit learn library (Scikit-Learn, 

2007). 

So, the whole GNDVI variation can be written as a function of time, 

 𝐺𝑁𝐷𝑉𝐼 = 𝐹(𝑇) (2) 

A similar relationship between the ground truth data (LCC) and time (T) can be established. 

 𝐿𝐶𝐶 = 𝐺(𝑇) (3) 

Both LCC and GNDVI are functions of time. By rearranging Equations (2) and (3), the equation 

(4) can be derived. Equation (4) shows the relation between LCC and GNDVI.  

 𝐿𝐶𝐶 = 𝐺(𝐹−1(𝐺𝑁𝐷𝑉𝐼)) (4) 
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By looking at the data pattern in Figures 3.3 and 3.4, it seemed like the relationships could be 

expressed best as a quadratic function; but the inverse of a quadratic function provided two 

possible solutions. Hence, a piecewise linear equation was used to establish a linear relation 

between GNDVI and time (T). The whole Soybean season was divided into three stages: (i) the 

growing stage (first 65 days since seeding), (ii) the matured stage (next 30 days), and (iii) the 

production stage (next remaining days), which lasts till harvest. So, three different linear equations 

were created for each stage. 

There are several statistical tests that compare two distributions to see if the actual and predicted 

LCC vs. time distributions are alike or different. Hence, the robustness of the model was assessed 

using a statistical test: Kolmogorov–Smirnov test.  The field samples of LCC (ground truth LCC) 

over time and the predicted LCC over time were compared. The null hypothesis was that there is 

no difference between the two LCC distributions (Predicted LCC over time and Actual LCC over 

time). The resultant p-value and KS statistics were noted.  

3.2.3 Building the prototype web application  

Finally, a prototype web application was developed so that end users could experience the 

established relationship between LCC and GNDVI. A Django framework (Django Software 

Foundation) is used to build the Representational State Transfer (REST) Application Program 

Interface (API) that takes the calibrated image with some other parameters and returns the LCC 

distribution image as a response. The interface was straightforward. Users can upload their images 

with some field attributes (seeding date, image capturing date, and upload an image). The 

“Analyze” button in the interface will initiate performing the background calculation and produce 

results for the user. The resultant image shows the spatial distribution of LCC at the time of image 

capturing. 
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3.3 Results 

In the segmented images, about 383-750 leaf segments were obtained for each image. The mean 

GNDVI value was recorded for each leaf segment as a corresponding row in a Comma Separated 

Value (CSV) file. 

Figure 3.3 (a) shows the change in GNDVI over time. GNDVI increased from July to mid-August, 

plateaued for about 10-12 days, and decreased at the end of August. Figure 3.3 (b) explains the 

linear relationship between GNDVI (Y axis) and No. of days from seeding (X axis) for three 

different growing stages identified (Growing Stage, Matured Stage, and Production Stage). In this 

figure, each of the blue data points represents the GNDVI value of each of the leaf segments. 

 

Figure 3.3: Geen Normalized Difference Vegetation Index (GNDVI) change over time; (a) 

GNDVI changes with respect to no. of days from seeding; (b) GNDVI values overlayed with the 

best-fitted piecewise linear regression models. 

Figure 3.4 (a) shows how the leaf chlorophyll content changed over time. Leaf chlorophyll content 

didn’t change much in the initial growing season, but after mid-July, it was increased. After the 

mature period, there was a downward trend when the crops were getting prepared for harvesting. 

This is evidenced in Figure 3.4 (b), which superimposed the best-fitted functions with the LCC 

and no. of days from seeding. 
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Figure 3.4: Leaf Chlorophyll Content (LCC) (µmol m-2) change over time; (a) LCC changes with 

respect to no. of days from seeding; (b) LCC values overlayed with the best-fitted piecewise linear 

regression models. 

After rearranging the piecewise linear equations mentioned in Figures 3.3 (b) and 3.4 (b), the 

relationship between LCC and GNDVI was established.  The Equation (5) shows the derived 

relationships for three growing stages.  

 𝐿𝐶𝐶 =  {

286.478 × 𝐺𝑁𝐷𝑉𝐼 + 242.661 (𝐼𝑓 𝑇 < 65)

2006.3 × 𝐺𝑁𝐷𝑉𝐼 − 1359.3 (𝐼𝑓 𝑇 < 95)
1400.16 × 𝐺𝑁𝐷𝑉𝐼 + 819.086 (𝐼𝑓 𝑇 ≥ 95)

 (5) 

where T is the number of days from the seeding date.   

The result of the Kolmogorov–Smirnov (KS statistics) test was not statistically significant (p-value 

= 0.12).  The KS statistic value was 0.0718. 
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Figure 3.5: Predicted Leaf Chlorophyll Concentration (µmol m-2) change over time derived using 

the equation (5). 

Figure 3.6 shows the spatial distribution of chlorophyll at the previously considered growing 

stages. Figure 3.6 (a) represents the initial stage. At that time, leaves were not fully grown, and the 

soil was exposed to the images and shown in the red-orange shade (the lowest values). Figure 3.6 

(b) corresponds to the matured stage (after 84 days of seeding) and the leaves were healthy and 

indicated the highest LCC. (dark green color). The Figure 3.6 (c) was prepared for the production 

stage, by then, leaves were turning to brown and LCC levels were decreased. 
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Figure 3.6: Top row: field photos captured (with a Samsung Note 20 Phone Camera) on the same 

date the corresponding RGN images were captured; Middle row: Corresponding RGN image; 

Bottom row: Corresponding chlorophyll distribution image. 

The developed prototype application titled “Soy Care” features an intuitive, web-based user 

interface designed to facilitate soybean leaf chlorophyll monitoring. The interface is divided into 

several sections, each serving a specific purpose (Figure 3.7). A navigation bar provides access to 

different sections of the application, including “Analytics,” “Information,” and “Credits”. While 

the “Information” section contains some background information about what this application does 

and what the results interpret, the main functionality of this application is under the “Analytics” 

section. 
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Clicking on the “Analytics” section a form appears. Users can specify the date when the image 

was captured and the date when the seeds were sowed. These date inputs allow the application to 

contextualize the data and provide relevant analysis. The application then takes the calibrated 

image as input. If all the inputs were given correctly, the user can click the Analyze button and 

wait until the result image returns. 

The input data is processed in the backend server and returned. The application then shows the 

output chlorophyll distribution image and displays below the upload form. The application is now 

in testing phase and the url: https://samiul-lakehead.github.io/soy-care/ 

Figure 3.7: An example of the web application interface to map the spatial distribution of leaf 

chlorophyll content.  

https://samiul-lakehead.github.io/soy-care/
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3.4 Discussion 

In this study, leaf chlorophyll content was selected as an indicator of plant health instead of canopy 

chlorophyll content mainly due to the capability of the proposed imaging system. The camera setup 

is capable of acquiring high spatial and temporal resolution images over the growing season as 

opposed to using satellite images. For example, the limited spatial and temporal resolution of 

satellite imagery does not provide information up to a leaf level (Borotkanych, 2022; Suwanprasit 

& Srichai, 2012). This identifies the advantages of the proposed system for instance,  the capability 

to capture variations within each plant, making it more precise and allow farmers to treat them 

individually. In addition, the end users don’t need an expensive setup to acquire this information.  

The study selected GNDVI to map the spatial distribution of LCC over time. Though NDVI is a 

more widely used vegetation index, it has a major drawback. NDVI reaches a saturation point 

when the biomass gets denser (Aklilu Tesfaye & Gessesse Awoke, 2021). There are other 

alternative indices as well. For instance, the Soil Adjusted Vegetation Index (SAVI) uses the same 

input bands as NDVI but takes an extra input parameter that varies on the soil adjustment factor, 

which also depends on vegetation cover (da Silva et al., 2020). There are other vegetation indices 

such as Simple Ratio, Transformed Vegetation Index, GNDVI, etc. Among them, GNDVI is 

selected because it is more useful for plant monitoring as it minimizes the limitations associated 

with saturation (Mangewa et al., 2022), and it is calculated using the input bands that the camera 

used in this study (Mapir Survey 3W) can capture and does not depend on any other parameters 

like soil adjustment factors. 

When modeling the relationship between LCC (field samples) change over time and corresponding    

GNDVI values over time, quadratic equations fit the data best (Finnan et al., 1997). However, the 

inverse of the quadratic didn’t work well within this context. The process of inverse function does 

not allow the use of quadratic function. Quadratic functions are many-to-one mapping, and the 

inverse of many-to-one mapping is a one-to-many mapping, and a one-to-many mapping is not a 

function (Mathspace, 2022). The best way to establish the relation between LCC vs. time, GNDVI 

vs. time, and LCC vs. GNDVI is to use a piecewise linear equation that depends on time. This 

allows us to calculate an inverse function because all linear equations are one-to-one mapping, and 

the inverse of a one-to-one mapping is another one-to-one function.  
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Since the p-value was not statistically significant and the KS statistic was 0.07, it can be concluded 

that these two datasets were similar in values. The smaller KS statistics and value and higher p-

value indicate that the compared distributions are very similar (Karson, 1968).   

The spatial distribution of LCC values yielded noteworthy results across three distinct stages. For 

example, leaves at the top level exhibited reduced LCC, while those positioned lower displayed 

elevated LCC values. This observation aligns with the expected pattern, as newly emerged leaves 

at the top may possess lower chlorophyll content compared to mature leaves situated at lower 

levels of the plant canopy (Khan et al., 2018; ŠEsták, 1963). The estimated LCC change over time 

shows a lower chlorophyll at the beginning of the season, reaches a peak, and when it ages to 

harvesting, the leaves lose chlorophyll and turn yellow. This finding matches the chlorophyll 

dynamics explored in a study by Finnan et al., 1997. 

The proposed linear model is now hosted on a website. The application has an intuitive, web-based 

user interface that makes it easy for farmers to input data, view results, and make decisions based 

on the results without requiring extensive technical skills or training. Compared to more 

sophisticated precision agriculture software packages like Crop Monitoring (EOS Data Analytics 

Inc., 2024), which can cost thousands of dollars per year, the application provides an affordable 

option built specifically to the needs and constraints of small and medium-sized soybean farms in 

the region. 

3.4.1 Limitations and further recommendations 

Firstly, the current methodology relies on the Mapir Camera Control software (Mapir Camera, 

2024) for calibrating raw images and obtaining reflectance data. Although this software is user-

friendly and well-documented, integrating the calibration process directly into the web application 

could streamline the workflow and reduce the technical burden on end-users. Collaborating with 

Mapir Camera to develop a public API for image calibration could be a valuable avenue for future 

work. 

Secondly, the spectral bands available in the Mapir Survey 3W camera limit the range of vegetation 

indices that can be explored. While GNDVI has proven effective for minimizing saturation effects 

and capturing LCC dynamics, incorporating additional bands like Orange and Cyan could enable 
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the use of more advanced indices like NDRE and MSAVI. These indices have shown promise in 

assessing soybean growth dynamics (Vásquez et al., 2023) and could potentially improve the 

accuracy and sensitivity of the LCC estimation model. Investigating the use of multi-spectral 

cameras with a wider range of bands is an important direction for future research. 

Another improvement could be in the use of growing degree days as a common variable related to 

LCC and GNDVI. The use of the number of days since seeding might make the model location-

specific and not universally applicable. Growing Degree Days, which incorporates temperature 

data (Neild & Seeley, 1977), could make the relation more site-independent. 

Finally, there is significant scope to expand the functionality and decision support capabilities of 

the web application. Integrating features for storing past plot health information, conducting time-

series analyses, and suggesting appropriate management interventions based on the LCC estimates 

could greatly enhance the value of the tool for farmers. Developing these additional modules would 

require close collaboration with agronomic experts and end-users to ensure that the system meets 

the practical needs and constraints of soybean production in the region. 

3.5 Conclusions 

The study developed a cost-effective, remote sensing-based system for monitoring soybean leaf 

chlorophyll content (LCC) using the Mapir Survey 3W camera sensor. By selecting GNDVI as a 

predictor of LCC and establishing a piecewise linear regression model, the research demonstrated 

a strong relationship between the vegetation index and the key crop health parameter. The 

robustness of the model was confirmed through a Kolmogorov-Smirnov (KS) statistic test, which 

showed no statistically significant difference between the predicted and ground truth LCC 

distributions. 

The results indicated a significant relationship between the vegetation indices derived from the 

camera data and the soybean health parameters. The integration of the LCC estimation model into 

a user-friendly web application highlights the practical potential of this approach for enabling 

precision agriculture practices among soybean farmers in Northwestern Ontario. By providing an 

affordable and accessible tool for monitoring crop health at a fine spatial and temporal resolution, 
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this study contributes to the development of more sustainable and efficient farming practices in 

the region. 

In conclusion, the study underscores the importance of developing accessible remote sensing tools 

for farmers and highlights the potential of such technology to revolutionize crop health monitoring. 

Future research could focus on refining the data analysis methods, exploring the use of additional 

vegetation indices, and expanding the study to include other crops and environmental conditions. 
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Chapter 4: Conclusions and Recommendations for Future 
Research 

 

4.1 Low-cost Remote Sensing System for Soybean Monitoring  

This thesis explored the potential of using a remote sensing-based precision agriculture system for 

monitoring soybeans in Northwestern Ontario. Specifically, it sought to answer three key research 

questions: (a) What are the optimal properties and orientation of proximal field cameras for 

capturing high-quality images of soybean canopies? (b) What is the relationship between remotely 

sensed data and leaf chlorophyll content that can be used to model the spatial distribution of leaf 

chlorophyll content in the test plots? (c) How to build a prototype, user-friendly software 

application to deliver useful information to end users? 

Chapter 2 investigated the optimal camera specifications and mounting configurations for 

monitoring soybean canopies, finding that low-cost Mapir Survey 3W cameras mounted at 

approximately 6 feet height provided the best balance of image quality, coverage, and cost. It also 

investigated the camera orientation between vertical (90°) angle and (45°) camera orientation. It 

was found that the vertical camera captured more sunlight than the oblique orientation. To further 

optimize the operational cost, a polyvinyl chloride (PVC) material was recommended to build the 

frame for mounting the camera to ensure the proper rigidity of the setup. A Raspberry Pi 4 Model 

B controller is recommended for automating the image-capturing procedure, considering its 

potential and low cost. Though the experimental setup costs around CA$1700 in practical 

scenarios, it is just the cost of the cameras that the end users need to bear, which is about CA$500. 

Chapter 3 investigated the relationship between the Green Normalized Difference Vegetation 

Index (GNDVI) and Leaf Chlorophyll Content (LCC). A piecewise linear regression model was 

developed to explain the relationship between LCC and GNDVI. The test results indicated a strong 

relationship between the two variables. From the predicted chlorophyll distribution images, it was 

observed that top-level leaves had less chlorophyll than lower-level leaves, and chlorophyll 

changes over time show lower chlorophyll in the initial stages, peak at the matured stages, and 

again a fall in chlorophyll values in the later stages. A web-based prototype application was 
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developed using the established model so that the end users can use the application to get site-

specific information about crops and take measurements accordingly. 

The integrated precision agriculture system developed in this thesis offers several key 

contributions and benefits. First, it demonstrates the feasibility and value of using low-cost remote 

sensing technologies for soybean monitoring in the challenging growing conditions of 

Northwestern Ontario. Second, it provides new insights into the relationships between remotely 

sensed plant traits and agronomic outcomes, which can inform more targeted and timely 

management interventions. Third, it translates these research findings into a practical, user-friendly 

decision support tool that can help farmers optimize input use, reduce costs, and improve yields 

and sustainability. 

By tailoring the system to the specific needs and constraints of soybean production in this region, 

the research fills some gaps in the precision agriculture literature and offers a promising pathway 

for enhancing the productivity and resilience of local farming systems. The developed system has 

the potential to revolutionize soybean farming in Northwestern Ontario by providing farmers with 

real-time, actionable insights into crop health and management needs. 

4.2 Limitations and Future Recommendations  

It is important to acknowledge the limitations of this study and the need for further research. The 

findings are based on two growing seasons (2022 and 2023) and a limited number of field sites, so 

additional testing across multiple years and locations would help to validate and refine the models 

and tools developed here. The economic feasibility and long-term impacts of adopting this 

precision agriculture system also need to be assessed carefully, considering the specific costs, 

benefits, and risks for different types of farmers and farming systems in the region. 

The other important recommendation is to use growing degree days (GDD) instead of the number 

of days since seeding to establish the relationship between LCC and GNDVI. Since temperature 

data is incorporated to calculate GDD, the model can be used regardless of the area in which it was 

developed. However, the data acquisition process will be complicated for the end-users as they 

have to measure temperature and include it in the application.   
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Another area of future research is the prototype software that has been built to showcase the model 

proposed in this study. A survey could be performed among the farmers to get information on what 

the end users need in the software. Since the software built for this study is just a prototype and 

not a final product, new features could be added. For instance, users could have the ability to store 

and run a time series analysis of soybean growth, which will help to make management decisions.   

Future research could also focus on exploring machine learning and artificial intelligence 

techniques, which could also help improve the accuracy and automation of data analysis and 

decision support. Finally, engaging directly with farmers and other stakeholders through 

participatory research and extension efforts will ensure the relevance, usability, and adoption of 

precision agriculture innovations in Northwestern Ontario. 

In conclusion, this thesis makes a significant contribution to precision agriculture by demonstrating 

the potential of low-cost remote sensing and web-based decision support tools for improving 

soybean production in the challenging growing conditions of Northwestern Ontario. While further 

research and development are needed to fully realize this potential, the findings and innovations 

presented here offer a promising foundation for advancing sustainable, resilient, and profitable 

farming systems in the region.  
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