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1 Introduction

By competing short and long-range interactions, there exists some energies have been intro-

duced and studied in the mathematics. These energies are relevance to the diblock copolymer

microphase separation model. The diblock copolymer is a linear-chain molecule with two

sub-chains. These two sub-chains are covalently linked to each other. One of the sub-chains

is NA monomers of typed A and the other one is NB monomers of types B. The problem

of diblock copolymers was introduced by Ohta and Kawasaki [1] in 1986 at first based on a

density-functional theory. Nowadays, this problem has rekindled the interest of mathemati-

cians.

The following research of the diblock copolymers is about the droplet regime. Further-

more, a continuous study of the sharp interface of the diblock copolymers is addressed as a

study of small volume-fraction asymptotic properties of a nonlocal isoperimetric functional

with a confinement term. This functional is the sharp interface limit with a large number

static nanoparticles as a confinement term and penalize the energy outside of a fixed region

[2].

Then, the research in Gamow’s liquid drop model [3] is a variant model with a general

Riesz kernel and a long-range attractive background potential with weight Z. The back-

ground potential is a regularization for the liquid drop model. Also, it restores the existence

of minimizes for arbitrary mass. This research resurfaced on diblock copolymers and gained

attention in the field of mathematical research. [4] provides a general overview of this prob-

lem and [5, 6, 7, 8, 9, 10, 11, 12, 13] provide the studies in some spesific areas of this problem.

Finally, after studying the diblock copolymers and its related problems, the triblock

copolymer is the following research to focus on. Nakazawa and Ohta address the theory

of triblock copolymers in two dimensions. The triblock copolymer has been studied in [14]

and [15]. The ABC triblock copolymer [16] is a linear-chain molecule with three sub-chains.

These three sub-chains are covalently linked to each other. One of the sub-chains of type A
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is connected to another one of type B monomers. Also, one of the sub-chains of type B is

connected to another subchain of types C monomers.

This thesis paper is organized as follows. Section 2 analyzes the problem of small volume

fraction limit of the diblock copolymers based on [17] and [18]. This problem is studied

by two parts: the sharp interface and the diffuse interface. Section 3 analyzes the nonlocal

isoperimetric problem of the droplet phase based on [2]. Section 4 analyzes a variant of the

Gamow’s liquid drop model with background potential based on [19]. Section 5 analyzes the

energy functional of the triblock copolyerms based on [16].

Acknowledgements: The author wants to thank Professor Liping Liu for her massive

helps during the two years at Lakehead University.

In addition, a special thank goes to Professor Deli Li for his research funds to support

the author.

Finally, there are no words to thank author’s M.Sc. advisor, Professor Xin Yang Lu.

Without his patience and helps, little of this thesis could have been done.
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2 The Diblock Copolymers

2.1 Introduction

Ohta and Kawasaki [1] first propose a density-functional theory and develop it to a nonlocal

Cahn-Hilliard free energy by a long-range interaction term. This long-rang interaction term

has a connection with the sub-chains in the diblock copolymer macromolecule as

ε2

2

∫
Tn

|∇u|2dx+
∫
Tn

u2(1− u2)dx+
σ

2
||u−M ||2H−1(Tn). (2.1.1)

This energy can be minimized by a mass or volume constraint

−
∫
Tn

u =M.

In the above equation, u represents the relative monomer density. When u = 0, it

represents the pure-A region. When u = 1, it represents the pure-B region. As a result, M

represents the relative abundance of the A-part, which is the volume fraction of the region

A.

The fine scale structure is depended on ε, σ andM by a mass constraint, and these three

can not be vanished. Therefore, by choosing the σ = εγ, a rescaled (2.1.1) is given by

Eε(u) := ε

∫
Tn

|∇u|2dx+ 1

ε

∫
Tn

u2(1− u2)dx+ γ||u− −
∫
u||2H−1(Tn) (2.1.2)

The functional E is used to model self-assembly of diblock copolymers [20, 1]. The first

term is a penalized large gradients to balance the second term. It separates the two phases

smoothly. The third term - the nonlocal term is

||u− −
∫
u||2H−1(Tn) =

∫
Tn |∇w|2dx,−∆w = u− −

∫
Tn u,

which favors the rapid oscillation. In addition, its sharp-interface limit in the sense of Γ-
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Figure 1: A two-dimensional cartoon of small-particle structures

convergence is given by [21]

E(u) := ε

∫
Tn

|∇u|+ γ||u− −
∫
u||2H−1(Tn).

The most crucial part in a regime of small volume fraction is that such small regions

called particles. The particles exist when ε
√
σ is small and M is close to zero or one and

both situations combined together since these two parameters control the phase diagram.

The research on this topic gives the description of the energy when the volume fraction tends

to zero but the number of particles in a minimizer remains O(1). To achieve the goal, the

limit off minimizers converge to weighted Dirac delta point measures should be examined

[17]. Then, effective energetic descriptions for their positioning and local structure is able to

be found. The small particle structures of the diffuse-interface are in Figure 1. The size of

the periodic box Tn is 1. The interfacial thickness is O(ε). The size of the droplets l is not

fixed, which is depended on the parameter γ in E and volume fraction.

2.2 Definitions

Before the description of the main results, some definitions are needed to introduce. Tn =

Rn/Zn denotes the n-dimensional flat torus of unit volume where Tn is an additive group with
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neutral element 0 ∈ Tn. v denotes the characteristic function of some set A and for v ∈ BV ,

it is denoted as
∫
Tn |∇v| where BV is Tn; {0, 1}. X denotes the space of Radon measures on

Tn. Furthermore, µη, µ ∈ X and µη → µ denotes the weak-measure convergence.

In addition, Green’s function is necessary to be introduced as GTn for −∆ in dimension

n on Tn is given by

−∆GTn = δ − 1,with

∫
Tn

GTn = 0,

where the δ is the Dirac delta function at the origin. In two dimensions, for all x = (x1, x2) ∈

R2 with max{|x1|, |x2|} ≤ 1/2, the Green’s function is given by

GT2(x) = − 1

2π
log |x|+ g(2)(x).

In three dimensions, for all x = (x1, x2, x3) ∈ R3 with max{|x1|, |x2|, |x3|} ≤ 1/2, the Green’s

function is given by

GT3(x) =
1

4π|x|
+ g(3)(x).

To solve −∆v = µ on Tn for µ ∈ X such that µ(Tn) = 0, the equation is given by

||µ||2H−1(Tn) :=

∫
Tn

|∇v|2dx

if v ∈ H1(Tn), and then µ ∈ H−1(Tn). Furthermore, if µ ∈ L2(Tn) and (u−−
∫
u) ∈ H−1(Tn),

then the norm

||u− −
∫
u||2H−1(Tn) =

∫
Tn

∫
Tn

u(x)u(y)GTn(x− y)dxdy.

Lastly, let f be the characteristic function of a set of finite perimeter on all R3, −∆v = f

on R3 with |v| → 0 as |x| → ∞, and define

||f ||2H−1(R3) =

∫
R3

|∇v|2dx =

∫
R3

∫
R3

f(x)f(y)

4π|x− y|
dxdy.
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2.3 Rescalings

For the sharp interface, to rescale some fixed M , a new parameter η is needed to introduce

to control the vanishing volume in order to set the total mass as ηnM [17]. Then the rescaled

equation is

vη =
u

ηn

This lead to functionals defined over functions vη : Tn → {0, 1/ηn}, and

∫
Tn

u = ηnM while

∫
Tn

vη =M.

Besides, on vη : Tn → {0, 1/ηn}, there exist the following collection of equations

vη =
∑
i

viη, viη =
1

ηn
χAi

, (2.3.1)

which the Ai are disjoint and connected subset of Tn.

Since Ai have a diameter less than 1/2, then it is possible to assume that the Ai do

not intersect the boundary ∂[−1/2, 1/2]n. As a result, it is possible to extend V i
η to Rn by

defining it to be zero for x ∈ Ai. The components viη to functions ziη : Rn → R by the

mass-conservative rescaling to map their amplitude to one as

ziη(x) := ηnviη(ηx)

First, in the case of n = 3, the norm can be written by using the form (2.3.1) as

||vη − −
∫
vη||2H−1(T3) =

∞∑
i=1

∫
T3

∫
T3

viη(x)v
i
η(y)GT3(x− y)dxdy

+
∞∑

i,j=1
i̸=j

∫
T3

∫
T3

vjη(x)v
j
η(y)GT3(x− y)dxdy.
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Therefore, when the limit η → 0, the norm can be written as

||viη − −
∫
viη||2H−1(T3) =

∫
T3

∫
T3

viη(x)v
i
η(y)GT3(x− y)dxdy

= η−1||ziη||2H−1(R3) +

∫
T3

∫
T3

viη(x)v
i
η(y)g

(3)(x− y)dxdy

(2.3.2)

Therefore, the H−1 norm in v is

1

η

∑
i

||ziη||2H−1(R3) = O(
1

η
).

As a result, the energy is defined as

E(u) =
∫
T3

|∇u|+ γ||u− −
∫
u||2H−1(T3)

= η2
(
η

∫
T3

|∇v|+ γη4||v − −
∫
v||2H−1(T3)

)
.

(2.3.3)

By choosing to use γ = 1
η3

and (2.3.2), (2.3.3) can be defined as

E3d
η (v) :=

1

η2
E(u) =

 η
∫
T3 |∇v|+ η||v − −

∫
v||2H−1(T3) if v ∈ BV (T3; {0, 1/η3})

∞ otherwise.
(2.3.4)

Defining the energy in the case n = 2 is similar as case n = 3. When the limit η → 0 the

norm can be written as

||viη − −
∫
viη||2H−1(T2) =

∫
T2

∫
T2

viη(x)v
i
η(y)GT2(x− y)dxdy

=
1

2π

(∫
R2

ziη

)2

| log η| − 1

2π

∫
R2

∫
R2

ziη(x)z
i
η(y) log |x− y|dxdy

+

∫
T2

∫
T2

viη(x)v
i
η(y)g

(2)(x− y)dxdy.

(2.3.5)
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Therefore, the H−1 norm in v is

∑
i

1

2π

(∫
R2

ziη

)2

| log η| = | log η|
2π

∑
i

(∫
T2

viη

)2

. (2.3.6)

As a result, by setting v = u
η2
, the energy is defined as

E(u) =
∫
T2

|∇u|+ γ||u− −
∫
u||2H−1(T2)

= η

(
η

∫
T2

|∇v|+ γη3||v − −
∫
v||2H−1(T2)

)
.

By choosing to use γ = 1
| log η|η3 and (2.3.5), (2.3.6), the energy can be defined as

E2d
η (v) :=

1

η
E(u) =

 η
∫
T2 |∇v|+ | log η|−1||v − −

∫
v||2H−1(T2) if v ∈ BV (T2; {0, 1/η2})

∞ otherwise.

For the diffuse interface, the rescaling process is very similar to the sharp interface. To

rescale the energy ε in (2.1.2) in three dimensions, define

v :=
u

η3

for some η > 0 is needed to be defined. Therefore, the energy ε is defined in v as

εη6
∫
T3

|∇v|2dx+ η6

ε

∫
T3

W̃ (v)dx+ γ η6||v − −
∫
v||2H−1(T3), (2.3.7)

where

W̃ (v) := v2(1− η3v)2.

Besides, on vη : Tn → {0, 1/ηn}, there exist the following collection of equations

vη =
∑
i

viη, viη =
1

ηn
χAi

,
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which the Ai are disjoint and connected subset of Tn. Then by using the Modica-Mortola

convergence theorem [22] linking the perimeter to the scaled Cahn-Hilliard terms, the number

of Ai remains O(1) under the assumption as

η
[
εη3
∫
T3

|∇v|2dx+ η3

ε

∫
T3

W̃ (v)dx
]

ε≪η∼ η

∫
T3

|∇v| = O(1).

The leading order of ||vη−−
∫
vη||2H−1(T3) is 1/η since the self-interactions such that the leading

order of ||viη−−
∫
viη||2H−1(T3) is 1/η. Therefore, for balancing the third term in (2.3.7), choosing

γ ∼ 1/η3 which is

γ =
1

η3
.

As a result, the energy is defined as

E(u) = η2
{
η
[
εη3
∫
T3

|∇v|2dx+ η3

ε

∫
T3

W̃ (v)dx
]
+ η||vη − −

∫
vη||2H−1(T3)

}
.

Besides, since the contents of the outer parenthese is O(1) as η → 0 with ε ≪ η, then the

re-normalized energy is defined as

Eε,η(v) = η
[
εη3
∫
T3

|∇v|2dx+ η3

ε

∫
T3

W̃ (v)dx
]
+ η||vη − −

∫
vη||2H−1(T3) (2.3.8)

2.4 Main Results

Results in Three Dimensions

For the sharp interface, in three dimensions, the results of E3d
η are defined in Γ- convergence.

Therefore, the Γ-limit can be defined over countable sums of weighted Dirac delta measure∑∞
i=1m

iδxi .
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By defining the function [17]

e3d0 (m) := inf

{∫
R3

|∇z|+ ||z||2H−1(R3) : z ∈ BV (R3; {0, 1}),
∫
R3

z = m

}
, (2.4.1)

the limit functional can be defined as

E3d
0 (v) :=


∑∞

i=1 e
3d
0 (mi) if v =

∑∞
i=1m

iδxi , {xi} distinct, and mi ≥ 0

∞ otherwise.

Theorem 2.4.1. Therefore, the first main result is stated as following. Within the space

X,

E3d
η

Γ−→ E3d
0 as η → 0.

Besides, there exists two conditions:

• Condition 1 - the lower bound and compactness: There exists a sequence vη → v0 and

supp v0 is countable such that

lim inf
η→0

E3d
η (vη) ≥ E3d

0 (v0)

when vη is a sequence such that the sequence of energies E3d
η (vη) is bounded.

• Condition 2 - the upper bound: There exists a sequence vη → v0 such that

lim sup
η→0

E3d
η (vη) ≤ E3d

0 (v0)

when E3d
0 (v0) ≤ ∞.

Moreover, there exists only a finite number ofmi are non-zero if {mi}i∈N with
∑

im
i ≤ ∞

satisfies
∞∑
i=1

e3d0 (mi) = e3d0

∞∑
i=1

mi. (2.4.2)
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Therefore, define the set of admissible limit sequences [17]

M :=
{
{mi}i∈N : mi ≥ 0, satisfying (2.4.2), such that e3d0 (mi) admits a minimizer for each i

}
.

(2.4.3)

The global minimizer of E3d
0 is

min

{
E3d
0 (v) :

∫
T3

v =M

}
= e3d0 (M).

Thus, the appropriately rescaled functional as the limit of E3d
η − e3d0 is

F3d
η (vη) := η−1

[
E3d
η (vη)− e3d0

(∫
T3

vη

)]
.

Then, the limiting energy functional F3d
0 can be defined as

F3d
0 (v) :=


∑∞

i=1 g
(3)(0)(mi)2

+
∑

i̸=j m
imjGT3(xi − yj) if v =

∑n
i=1m

iδxi , {xi} distinct, and mi ∈ M

∞ otherwise,

Note that the main part of F3d
0

∑
i̸=j

mimjGT3(xi − yj)

is the two-point interaction energy as known as a Coulomb interaction energy.

Theorem 2.4.2. As a result, within the space X,

F3d
η

Γ−→ F3d
0 as η → 0.

Condition 1 and Condition 2 of Theorem 2.4.1 are still hold with the replacing of E3d
η and

E3d
0 with F3d

η and F3d
0 .
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For the diffuse interface, the small behaviour of Eε,η is the crucial part to be focused on as

well as the description of this behaviour via functionals over Dirac point masses. Therefore,

firstly, define the surface tension as

σ := 2

∫ 1

0

√
W (t)dt. (2.4.4)

By defining the leading order function [18]

e0(m) := inf

{
σ

∫
R3

|∇z|+ ||z||2H−1(R3) : z ∈ BV (R3; {0, 1}),
∫
R3

z = m

}
, (2.4.5)

the limit functional can be defined as

E0(v) :=


∑∞

i=1 e0(m
i) if v =

∑∞
i=1m

iδxi , {xi} distinct, and mi ≥ 0

∞ otherwise.

The global minimizer of E0 is

min

{
E0(v) :

∫
T3

v =M

}
= e0(M).

Therefore, the appropriately rescaled functional as the limit of Eε,η − e0 is

Fε,η(vη) := η−1

[
Eε,η(vη)− e0

(∫
T3

vη

)]
.

Then, the limiting energy functional F0 can be defined as

F0(v) :=


∑∞

i=1 g
(3)(0)(mi)2

+
∑

i̸=j m
imjGT3(xi − yj) if v =

∑n
i=1m

iδxi , {xi} distinct, and mi ∈ M

∞ otherwise,

where M :=
{
{mi}i∈N : mi ≥ 0,

∑∞
i=1 e0(m

i) = e0(
∑∞

i=1m
i), and e0(m

i) admits a minimizer

15



for each i
}
.

Theorem 2.4.3. As a result, one of the main results is stated as

Eε,η
Γ−→ E0 and Fε,η

Γ−→ F0.

Besides, there exists two conditions:

• Condition 1 - the lower bound and compactness: Let εn and ηn be sequences tending

to zero for some ζ > 0 and εn = o(η4+ζ
n ). There exists a sequence vη → v0 and supp v0

is countable such that

lim inf
n→∞

Eεn,ηn(vn) ≥ E0(v0) (2.4.6)

when vη is a sequence such that the sequence of energies Eεn,ηn(vn) is bounded.

Moreover, the limit v0 is a global minimizer of E0 if Fεn,ηn(vn) is bounded and ζ ≥ 1

such that

lim inf
n→∞

Fεn,ηn(vn) ≥ F0(v0). (2.4.7)

• Condition 2 - the upper bound: There exist two continuous functions

C1, C2 : [0,∞) → [0,∞) with C1(0) = C2(0) = 0.

Let εn and ηn be sequences tending to zero and εn ≤ C1(ηn). Then there exists a

sequence vη → v0 such that

lim sup
n→∞

Eεn,ηn(vn) ≤ E0(v0) (2.4.8)

when E0(v0) ≤ ∞.
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Moreover, the limit v0 minimized E and ηn ≤ C2(ηn), then there exists

lim sup
n→∞

Fεn,ηn(vn) ≤ F0(v0). (2.4.9)

In addition, by the sharp interface functionals, the limit functional of Eε,η with ε tend to

zero for fixed η is defined as

Eη :=

 ησ
∫
T3 |∇v|+ η||v − −

∫
v||2H−1(T3) if v ∈ BV (T3; {0, 1/η3})

∞ otherwise.
(2.4.10)

Therefore, the appropriately rescaled functional as the limit of Eη − e0 is

Fη(v) := η−1

[
Eη(v)− e0

(∫
T3

v

)]
.

Theorem 2.4.4. As a result, one of the main results is stated as

Eη
Γ−→ E0 and Fη

Γ−→ F0, as η → 0.

Besides, there exists two conditions:

• Condition 1 - the lower bound and compactness: Let ηn be a sequence tending to zero.

There exists a sequence vη → v0 and supp v0 is countable such that

lim inf
n→∞

Eηn(vn) ≥ E0(v0) (2.4.11)

when vη is a sequence such that the sequence of energies Eηn(vη) is bounded.

Moreover, the limit v0 is a global minimizer of E0 if Fηn(vn) is bounded and v0 =∑
i=1m

iδxi , where mi ∈ M such that

lim inf
n→∞

Fηn(vn) ≥ F0(v0). (2.4.12)
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• Condition 2 - the upper bound: There exists a sequence vη → v0 such that

lim sup
n→∞

Eηn(vn) ≤ E0(v0) (2.4.13)

when E0(v0) <∞ and F0(v0) <∞.

Moreover, there exists a sequence vη → v0 such that

lim sup
n→∞

Fεn,ηn(vn) ≤ F0(v0). (2.4.14)

when F0(v0) <∞.

Results in Two Dimensions

In two dimensions, there are two differences compared to three dimensions. The first dif-

ference is the leading-order limiting behaviour. The second difference is the next-order

behaviour. In addition, the critical point that makes the two-dimensional case special is the

scaling of the H−1 (2.3.6).

Therefore, for the sharp interface, a function [17] is introduced for the local problem in

two dimensions as

e2d0 (m) :=
m2

2π
+ inf

{∫
R2

|∇z| : z ∈ BV (R2; {0, 1}),
∫
R2

z = m

}
,

=
m2

2π
+ 2

√
πm.

The lower-semicontinuous envelope function is defined as

e2d0 (m) := inf

{
∞∑
j=1

e2d0 (mj) : mj ≥ 0,
∞∑
j=1

mj = m

}

since the function e2d0 does not satisfy the lower-semicontinuity condition. Thus, the limit
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functional is defined as

E2d
0 (v) :=


∑∞

i=1 e
2d
0 (mi) if v =

∑∞
i=1m

iδxi , {xi} distinct, and mi ≥ 0

∞ otherwise.

Theorem 2.4.5. As a result, within the space X,

E2d
η

Γ−→ E2d
0 as η → 0.

Condition 1 and Condition 2 of Theorem 2.4.1 are still hold with the replacing of E3d
η and

E3d
0 with E2d

η and E2d
0 .

For the next-order behaviour, the global minimizer of E2d
0 is defined as

min

{
E2d
0 (v) :

∫
T2

v =M

}
= e2d0 (M).

Therefore, the appropriately rescaled functional as the limit of E2d
η − e2d0 is

F2d
η (v) := | log η|

[
E2d
η (v)− e2d0

(∫
T2

v

)]
.

The situation so far looks similar as the three-dimensional case that the limiting weights

mi satisfies the minimality condition and the compactness condition for boundedness of the

sequence F2d
η . The compactness can be simply written as

e2d0 (mi) = e2d0 (mi)

However, in two dimensions, the minimality condition is stronger than in the three dimen-

sions. When {mi}i∈N is a solution of the minimization problem, then

min

{
∞∑
i=1

e2d0 (mi) : mi ≥ 0,
∞∑
i=1

mi =M

}
. (2.4.15)
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Comparing to the three-dimensional case, the functional F2d
η has one additional term as

the limit η → 0 as

1

−2π

∞∑
i=1

∫
R2

∫
R2

ziη(x)z
i
η(y) log |x− y|dxdy. (2.4.16)

Therefore, to calculate the above equation, it is needed to assume ziη to be a characteristic

function of a ball of mass mi since it has only balls as solution. Then. the first term in

(2.4.16) is

f0(m) :=
m2

8π

(
3− 2 log

m

π

)
.

In addition, some notation and optimal sequences need to be defined. For the notation,

when n ∈ N and m > 0, the sequence n⊗m is

(n⊗m)i :=

 m 1 ≤ i ≤ n

0 n+ 1 ≤ i <∞.

Define M̃ as the set of optimal sequences

M̃ := {n⊗m : n⊗m minimizes (2.4.15) for M = nm, and e2d0 (m) = e2d0 (m)}.

Then, the limiting energy functional F2d
0 can be defined as

F2d
0 (v) :=


n
{
f0(m) +m2g(2)(0)

}
+

m2

2

∑
i,j≥1
i̸=j

GT2(xi − xj) if v = m
∑n

i=1 δxi , {xi} distinct, and n⊗m ∈ M̃

∞ otherwise.

(2.4.17)

Theorem 2.4.6. As a result, within the space X,

F2d
η

Γ−→ F2d
0 as η → 0.

Condition 1 and Condition 2 of Theorem 2.4.5 are still hold with the replacing of E2d
η and
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E2d
0 with F2d

η and F2d
0 .

For the diffuse interface, the process to have the results is very similar to the sharp

interface. There is a function [18] for the local problem in two dimensions as

e2D0 (m) :=
m2

4π
+ inf

{
σ

∫
R2

|∇z| : z ∈ BV (R2; {0, 1}),
∫
R2

z = m

}
,

=
m2

4π
+ 2σ

√
πm.

(2.4.18)

The lower-semicontinuous envelope function is defined as

e2D0 (m) := inf

{∑
j∈J

e2D0 (mj) : mj ≥ 0,
∑
j∈J

mj = m

}
(2.4.19)

since the function e2D0 does not satisfy the lower-semicontinuity condition. By rescaling with

v = u/η2 and γ = 1
| log η|η3 , the two-dimensional function of Eε,η is

E2D
ε,η (v) := εη3

∫
|∇v|2 + η3

ε

∫
v2(1− η2v)2 + | log |−1||v − −

∫
v||2H−1.

The analogous sharp-interface limit as ε→ 0 is

E2D
η (v) :=

 ση
∫
T2 |∇v|+ | log η|−1||v − −

∫
v||2H−1(T) if v ∈ BV (T; {0, 1/η2})

∞ otherwise.

where the σ is defined in (2.4.4). As a result, the first-order limit is defined as

E2D
0 (v) :=


∑

i∈I e
2D
0 (mi) if v =

∑
i∈I m

iδxi , I is countable, {xi} distinct, and mi ≥ 0

∞ otherwise.

For the next-order behaviour, the global minimizer of E2D
0 is defined as

min

{
E2D
0 (v) :

∫
T2

v =M

}
= e2D0 (M).
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Therefore, the appropriately rescaled functional as the limit of E2D
η − e2D0 is

F2D
ε,η (v) := | log η|

[
E2D
ε,η (v)− e2D0

(∫
T2

v

)]
.

However, in two dimensions, the minimality condition is stronger than in the three di-

mensions. When {mi}i∈N is a solution of the minimization problem, then

min

{
∞∑
i=1

e2D0 (mi) : mi ≥ 0,
∞∑
i=1

mi =M

}
. (2.4.20)

Therefore, define M̂ as the set of optimal sequences

M̂ := {n⊗m : n⊗m minimizes (2.4.20) for M = nm, and e2D0 (m) = e2D0 (m)}.

Then, the limiting energy functional F2D
0 can be defined as

F2D
0 (v) :=


n
{
f0(m) +m2g(2)(0)

}
+

m2

2

∑
i,j≥1
i̸=j

GT2(xi − xj) if v = m
∑n

i=1 δxi , {xi} distinct, and n⊗m ∈ M̂

∞ otherwise.

(2.4.21)

Theorem 2.4.7. As a result, one of the main results is stated as

Eε,η
Γ−→ E0 and Fε,η

Γ−→ F0.

Besides, there exists two conditions:

• Condition 1 - the lower bound and compactness: Let εn and ηn be sequences tending

to zero such that εnη
−3−ζ
n → 0 for some ζ > 0. There exists a sequence vη → v0 and
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supp v0 is countable such that

lim inf
n→∞

E2D
εn,ηn(vn) ≥ E2D

0 (v0) (2.4.22)

when vη is a sequence such that the sequence of energies E2D
εn,ηn(vn) is bounded.

Moreover, the limit v0 is a global minimizer of E2D
0 if F 2D

εn,ηn(vn) is bounded such that

lim inf
n→∞

F 2D
εn,ηn(vn) ≥ F2D

0 (v0). (2.4.23)

• Condition 2 - the upper bound: Let εn and ηn be sequences tending to zero such that

εnη
−1
n | log ηn| → 0. Then there exists a sequence vη → v such that

lim sup
n→∞

E2D
εn,ηn(vn) ≤ E2D

0 (v) (2.4.24)

when E2D
0 (v) <∞.

Moreover, the limit v minimized E and if εnη
−1
n | log ηn|2 → 0, then there exists

lim sup
n→∞

F 2D
εn,ηn(vn) ≤ F2D

0 (v). (2.4.25)

2.5 Proof

Sharp Interface

Let vη be a sequence in BV (T3; {0, 1/η3}) such that both
∫
T3 vη and E3d

η (vη) are uniformly

bounded. Define the function wη := ηvη satisfy wη → 0 ∈ L1(T3), and |∇wη| = η|∇vη|

bounded in L1(T3). Besides, w
3/2
η = vη is bounded in L1(T3) by definition.

Lemma 2.5.1. As a result, a subsequence has vη → v0 as measures. Then, v0 can be defined
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as

v0 :=
∞∑
i=1

miδxi , mi ≥ 0, xi ∈ T3 distinct, (2.5.1)

such that vη → v0 as measures after implying the Lemma I.1 (i) from [23] with m = p =

1, q = 2/3.

Lemma 2.5.2. To prove the lower bound on E3d
η (vη) and F3d

η (vη), under the same conditions

as previous lemma, assume for some n ∈ N without loss of generality that

vη =
n∑

i=1

viη

with w − lim infη→0 v
i
η ≥ mi

0δxi , supp viη ⊂ B(xi, 1/4), dist (supp viη, supp vjη) > 0 for all

i ̸= j, and diam supp viη < 1/4. Besides, to prove the lower bound on F3d
η (vη), assume

viη → mi
0δxi for each i. Thus,

∫
T3

|x− ξiη|2viη(x)dx ≥ Ciη2, ξiη ∈ T3 (2.5.2)

where the constant Ci > 0.

The details of the proof of this lemma is given in [17] Section 5.4.

Proof of Theorem 2.4.1

Lower bound

Define vη as a sequence such that the sequences of energies E3d
η (vη) and masses

∫
T3 vη are

bounded. Then, a subsequence converge to a limit v0 of the form (2.5.1) by Lemma 2.5.1.

Also, a sequence vη such that vη =
∑n

i=1 v
i
η with w − lim infη→0 v

i
η ≥ mi

0δxi , supp viη ⊂

B(xi, 1/4), and dist (supp viη, supp v
j
η) > 0 for all i ̸= j by Lemma 2.5.2. Therefore, define

ziη(y) := η3viη(x
i + ηy). (2.5.3)
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Then, there exist ∫
T3

viη =

∫
R3

ziη and

∫
T3

|∇viη| =
∫
R3

|∇ziη|,

and

||viη − −
∫
viη||2H−1(T3) = η−1||ziη||2H−1(R3) +

∫
T3

∫
T3

viη(x)v
i
η(y)g

(3)(x− y)dxdy

by (2.3.2). Then, define

mi
η :=

∫
T3

viη =

∫
R3

ziη.

Therefore,

E3d
η (vη) =

n∑
i=1

E3d
η (viη) + η

n∑
i,j=1
i̸=j

∫
T3

∫
T3

viη(x)v
j
η(y)GT3(x− y)dxdy

=
n∑

i=1

[ ∫
R3

|∇ziη|+ ||ziη||2H−1(R3)

]
+ η

n∑
i=1

∫
T3

∫
T3

viη(x)v
i
η(y)g

(3)(x− y)dxdy

+ η
n∑

i,j=1
i̸=j

∫
T3

∫
T3

viη(x)v
j
η(y)GT3(x− y)dxdy

≥
n∑

i=1

e3d0 (mi
η) + η inf g(3)

n∑
i=1

(mi
η)

2 + η inf GT3

n∑
i,j=1
i̸=j

mi
ηm

j
η.

(2.5.4)

Therefore, the continuity and monotonicity of e3d0 imply that

lim inf
η→0

E3d
η (vη) ≥

n∑
i=1

e3d0

(
lim inf
η→0

mi
η

)
≥

n∑
i=1

e3d0 (mi) ≥ E3d
0 (v0)

since the last two terms of (2.5.4) vanish in the limit.
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Upper Bound

Let v0 satisfy E3d
0 (v0) <∞. Then, the infinite sum v0 =

∑∞
i=1m

iδxi can be approximated by

finite sums trivially as

E3d
0

( n∑
i=1

miδxi)

)
=

n∑
i=1

e3d0 (mi) ≤
∞∑
i=1

e3d0 (mi) = E3d
0 (v0).

Thus,

v0 =
n∑

i=1

miδxi .

In addition, let ϵ > 0 and zi be near-optimal in the definition of e3d0 (mi) such that

∫
R3

|∇zi|+ ||ziη||2H−1(R3) ≤ e3d0 (mi) +
ϵ

n
. (2.5.5)

Assume the support of zi is bounded based on the isoperimetric inequality. Then, define

viη(x) := η−3zi
(
η−1(x− xi)

)
. (2.5.6)

Thus, ∫
T3

viη = mi.

Besides, when η is sufficiently small, vη :=
∑

i v
i
η is admissible for E3d

0 since the diameters of

the supports of the viη tend to zero and the xi are distinct. Therefore,

E3d
0 (vη) =

n∑
i=1

[ ∫
R3

|∇ziη|+ ||ziη||2H−1(R3)

]
+ η

n∑
i=1

∫
T3

∫
T3

viη(x)v
i
η(y)g

(3)(x− y)dxdy

+ η
n∑

i,j=1
i̸=j

∫
T3

∫
T3

viη(x)v
j
η(y)GT3(x− y)dxdy.

Therefore,

lim sup
η→0

E3d
η (vη) ≤ E3d

0 (v0) + ϵ.
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Proof of Theorem 2.4.2

Lower Bound

Following the definition of vη in Lemma 2.5.2, converge to

v0 =
n∑

i=1

miδxi , mi
0 ≥ 0and xi are distinct.

Then, define

mi
η :=

∫
T3

viη =

∫
R3

ziη.

Thus, follow (2.5.4)

F3d
η (vη) = η−1

[
E3d
η (vη)− e3d0

(∫
T3

vη

)]
=

1

η

n∑
i=1

[ ∫
R3

|∇ziη|+ ||ziη||2H−1(R3) − e3d0 (mi
η)
]
+

1

η

[ n∑
i=1

e3d0 (mi
η)− e3d0

( n∑
i=1

(mi
η)
)]

+ η
n∑

i=1

∫
T3

∫
T3

viη(x)v
i
η(y)g

(3)(x− y)dxdy + η
n∑

i,j=1
i̸=j

∫
T3

∫
T3

viη(x)v
j
η(y)GT3(x− y)dxdy.

(2.5.7)

As a result, since the boundedness of F3d
η (vη), continuity of e3d0 , and the first two two terms

are non-negative,

0 ≤
n∑

i=1

e3d0 (mi
η)− e3d0

( n∑
i=1

(mi
η)
)
= lim

η→0

[
E3d
η (vη)− e3d0

(∫
T3

vη

)]
≤ 0.

Under the condition (2.5.2), the sequence ziη is tight since it is bounded in BV (R3; {0, 1}).
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Thus, a subsequence converges in L1(R3) to a limit zi0. Then,

0 ≤
∫
R3

|∇zi0|+ ||zi0||2H−1(R3) − e3d0 (mi)

≤ lim inf
η→0

[ ∫
R3

|∇ziη|+ ||ziη||2H−1(R3)

]
− lim

η→0
e3d0 (mi

η) = 0

by (2.5.7) and implies zi0 is a minimizer for e3d0 (mi).

As a result,

lim inf
η→0

F3d
η (vη) ≥ lim inf

η→0

(
n∑

i=1

∫
T3

∫
T3

viη(x)v
i
η(y)g

(3)(x− y)dxdy

+
n∑

i,j=1
i̸=j

∫
T3

∫
T3

viη(x)v
j
η(y)GT3(x− y)dxdy

)

= g(3)(0)
n∑

i=1

(mi)2 +
n∑

i,j=1
i̸=j

mimjGT3(xi − yj) = F3d
0 (v0).

Upper Bound

Let xi be distinct and {mi} ∈ M, define

v0 =
n∑

i=1

miδxi .

zi can be chosen to achieve the minimum in the minimization problem defining e3d0 (mi) by

the definition of M. Based on the isoperimetric inequality, the support of zi is bounded.

Also, by (2.5.6), the function

vη :=
n∑

i=1

is admissible for F3d
η and vη → v0 for some sufficiently small η. Therefore, by the second line

of (2.5.4),

lim
η→0

F3d
η (vη) = F3d

0 (v0).
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Diffuse Interface

To proof Theorem 2.4.3, Theorem 2.4.4 is required. In addition, the following lemma from

[18] is required in the proof.

Lemma 2.5.3. When there is a constant C0(α), α > 0, for any characteristic function χ of

a subset of T3 and δ > 0, there exists an approximation u ∈ H1(Tn, [0, 1]) with

∫
T3

δ|∇u|2 + 1

δ
u2 (1− u2)dx ≤ (σ + α)

∫
T3

|∇χ|,

and ∫
T3

|χ− u| dx ≤ C0(α)δ

∫
T3

|∇χ|.

Lower Bound

For the lower bound, appropriate cutoffs are used to relate the approximate diffuse-interface

sequence to the sharp-interface sequence with the same limit and smaller energy difference.

To prove the condition 1, define εn, ηn and vn be the same sequences in the theorem. Recall

that the energy in the original scaling un = η3nvn. Thus, in terms of un,

Eεn,ηn(vn) =
εn
η2n

∫
T3

|∇un|2dx+
1

η2nεn

∫
T3

W (un)dx+
1

η5n
||un − −

∫
un||2H−1.

Furthermore, define the continuous and strictly increasing function

ϕ(s) := 2

∫ s

0

√
W (t)dt.

Then, there exist

Eεn,ηn(vn) ≥
1

η2n

∫
T3

|∇ϕ(un)|+
1

η5n
||un − −

∫
un||2H−1 (2.5.8)
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since the consequence of the inequality a2 + b2 ≥ 2ab.

In addition, define αn = 1/(σ−ηξn). Recall the previous surface tension σ := 2
∫ 1

0

√
W (t)dt =

ϕ(1)− ϕ(0). Thus,

ϕ(1− 2δn)− ϕ(2δn) = ϕ(1)− ϕ(0)− ηxin =
1

αn

,

where the quadratic behaviour ofW at 0 and 1 implies that δn = O(η
ξ/2
n ). Therefore, δn > 0.

Besides, the notation[n] for the clipping to the interval [0, 1] is defined

[u] := min{1,max{0, u}}.

The size of the set

An :=
{
t ∈ [ϕ(0), ϕ(1)] : H1(∂∗{ϕ([un]) > t} ≥ αn

∫
T3

|∇ϕ([un])|
}

can be estimated by

|An| =
∫
An

1dt ≤ 1

αn

∫
T3 |∇ϕ([un])|

∫ ϕ(1)

ϕ(0)

H1(∂∗{ϕ([un]) > t})dt = 1

αn

.

by using the characterization of perimeter from Theorem 2.1 in [24] as

∫
T3

|∇ϕ([un])| =
∫ ϕ(1)

ϕ(0)

H1(∂∗{ϕ([un]) > t})dt.

Therefore,

H1(∂∗{ϕ([un]) > tn}) ≤ αn

∫
T3

|∇ϕ([un])| (2.5.9)

where tn ∈ [ϕ(δn), ϕ(1− ϕn)]/An by the definition of αn and δn.

In addition, define an auxiliary sequence un. Its corresponding vn = un/ηn is admissible

for the sharp-interface fucntional Eη. Then, map the values of un to {0, 1} with cut off
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ϕ−1(tn) as

un(x) :=

 0 if ϕ(un(x)) < tn

1 if ϕ(un(x)) ≥ tn

Therefore, there exists ∫
|∇un| = H1(∂∗{ϕ([un]) > tn}). (2.5.10)

Then, define ψ as

ψn(u) :=

 u2 if ϕ((u)) < tn

(1− u)2 if ϕ((u)) ≥ tn

since ϕ−1(tn) ∈ [δn, 1− ϕn]. Also,

ψn(u) ≤ Cδ−2
n W (u) ≤ C

′
δ−ξ
n W (u)

for some C and C
′
independent of n, which means that ψn(u) is bounded by an increasing

factor times W . Thus, the sequences un and un are close in L2 and the final estimate results

from the boundedness of Eεn,ηn(vn) is

||un − un|| =
∫
T3

ψn(un) ≤ C
′
η−ξ
n

∫
T3

W (un) = O(εnη
2−ξ) → 0.

Furthermore, they are close in H−1 as

||un − un −−
∫

(un − un)||H−1 ≤ C||un − un −−
∫
(un − un)||L2

≤ ||un − un||L2

= O(ε1/2n η(1−ξ/2)
n ) → 0.

(2.5.11)
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For the squared norms, the same holds and using the hypothesis εn = o(η4+ξ
n ) as

∣∣∣||un −−
∫
un||2H−1 − ||un −−

∫
un||2H−1

∣∣∣
≤
(
||un −−

∫
un||H−1 + ||un −−

∫
un||H−1

)
||un − un −−

∫
(un − un)||H−1

≤
(
||un −−

∫
un||H−1 + ||un − un −−

∫
(un − un)||H−1

)
O(ε1/2n η(1−ξ/2)

n )

= (η5nEεn,ηn(vn))
1/2O(ε1/2n η(1−ξ/2)

n ) +O(εnη
2−ξ
n )

= O(ε1/2n η(7/2−ξ/2)
n ) +O(εnη

2−ξ
n )

= o(η6n).

(2.5.12)

As a result, the lower bound (2.5.8) in the sequence un by (2.5.9) and (2.5.10) is

Eεn,ηn(vn) ≥
1

αnη2n
H1(∂∗{ϕ([un]) > tn}) +

1

η5n
||un −−

∫
un||2H−1

(
by (2.5.8), (2.5.9)

)
=

1

αnη2n

∫
T3

|∇un|+
1

η5n
||un −−

∫
un||2H−1 + o(ηn)

(
by (2.5.10), (2.5.12)

)
=
ηn
αn

∫
T3

|∇vn|+ ηn||vn −−
∫
vn||2H−1 + o(ηn)

≥ 1

σαn

Eηn(vn) + o(ηn)
(
since σαn > 1 (σαn → 1 as n→ ∞)

)
(2.5.13)

Moreover, by combining the above results and Theorem 2.4.4, there exists a subsequence

vnk
converging to a limit v0 with countable support as

lim inf
k→∞

Eηnk
(vnk

) ≥ E0(v0). (2.5.14)

Besides, since φ ∈ C(T3), this subsequence converges weakly to the same limit as

∣∣∣ ∫
T3

(vnk
− vnk

)ϕ
∣∣∣ ≤ 1

η3nk

||(unk
− unk

)||L2||φ||L2 = O(ε1/2nk
η−2−ξ/2
nk

) → 0.

Therefore, the compactness of the sequence vn and the characterization of the support of the
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limit are proved as the lower bound inequality (2.4.3) is proved by (2.5.13) and (2.5.14).

For the lower bound of Fε,η, the boundedness of Fεn,ηn implies the boundedness of Eεn,ηn .

Thus, the characterization also implies. As a result, by (2.5.13),

Fεn,ηn =
1

ηn

[
Eεn,ηn(vn)− e0

(∫ 3

T
vn

)]
≥ 1

ηn

[
Eηn(vn)− e0

(∫ 3

T
vn

)]
+

1

ηn

( 1

σαn

− 1
)
Eηn(vn) + o(1).

As a result, the lower bound for Fη ipmlies

lim inf
n→∞

Fεn,ηn(vn) ≥ F0(v0),

since σαn = 1 + o(ηξn) with ξ > 1. Thus, (2.4.6) is proved.

Upper Bound

For the upper bound, at first, it is needed to deal with Eε,η. By the proof of Theorem 2.4.4,

there exists the v0 as

v0 =
N∑
i=1

miδxi , xi distinct.

Thus, there exists a sequence vn → v0 by (2.4.13) such that

lim sup
n→∞

Eεn,ηn(vn) ≤ E0(v0). (2.5.15)

Then, for Eη such that an admissible sequence vn → v0 with a given v0,

lim
n→∞

Eηn(vn) = E0(v0). (2.5.16)

Moreover, define the characteristic function of a subset of T3 composed of N sets as

un := η3nvn,

33



where diameters are decreasing to zero. By Lemma 2.5.3 (α = ηn), there exsits a C0(ηn) for

any εn > 0 with each n. Therefore, there exists an approximation as

∫
T3

εn|∇un|2 +
1

εn
u2n(1− u2n)dx ≤ (σ + ηn)

∫
T3

|∇un| (2.5.17)

and ∫
T3

|un − un|dx ≤ C0(ηn)εn

∫
T3

|∇un|

for un ∈ H1(T3, [0, 1]). In addition, define

vn =
un
η3n
.

Thus,

||vn − vn||L1(T3) =

∫
T3

|un − un|dx

≤ C0(ηn)εn
η3n

∫
T3

|∇un|

≤ C
C0(ηn)εn

ηn
.

(2.5.18)

Then, the estimated H−1-norm is

||vn − vn −−
∫

(vn − vn)||H−1(T3) ≤ C||vn − vn −−
∫
(vn − vn)||L2(T3)

≤ C||vn − vn||2L2(T3)

≤ C||vn − vn||L∞(T3)||vn − vn||L1(T3)

≤ C
C0(ηn)εn

η4n
.

(2.5.19)
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Then,

Eεn,ηn(vn) =
εn
η2n

∫
T3

|∇un|2 +
1

η2nεn
W (un) +

1

η5n
||un −−

∫
un||2H−1

=
1

η2n

∫
T3

(
εn|∇un|2 +

1

εn
u2n(1− u2n)

)
dx+ ηn||vn −−

∫
vn||2H−1

≤ 1

η2n

∫
T3

(
εn|∇un|2 +

1

εn
u2n(1− u2n)

)
dx+ ηn||vn −−

∫
vn||2H−1

+ ||vn − vn −−
∫

(vn − vn)||H−1(T3)

≤ ηn(σ + ηn)

∫
T3

|∇vn|+ ηn||vn −−
∫
vn||2H−1 + C

C0(ηn)εn
η3n

(
by (2.5.17) and (2.5.19)

)
= Eη(vn) + η2n

∫
T3

|∇vn|+ C
C0(ηn)εn

η3n
.

(2.5.20)

Then, define a function C1 as in the Theorem [18]. Therefore,

C
C0(ηn)εn

η3n
→ 0 as n→ 0 (2.5.21)

such that satisfies εn ≤ C1(ηn). As a result, by taking the lim sup as n→ ∞ in (2.5.20) and

(2.5.16),

lim sup
n→∞

Eεn,ηn(vn) ≤ E0(v0).

Moreover, define

v0 =
N∑
i=1

miδxi , {mi} ∈ M.

Thus, there exists a sequence vn → v0 by (2.4.14) such that

lim
n→∞

Fηn(vn) = F(v0). (2.5.22)

Follow the steps in (2.5.20), there exists

Eεn,ηn(vn) ≤ Eη(vn) + η3n

∫
T3

|∇vn|+ C
C0(η

2
n)εn
η3n

. (2.5.23)
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Besides, let L be the local Lipschitz constant of e0, there exists

Fεn,ηn(vn) = η−1
n

[
Eε,η(vn)− e0

(∫
T3

vn

)]
≤ η−1

n

[
Eη(vn) + η3n

∫
T3

|∇vn|+ C
C0(η

2
n)εn
η3n

− e0

(∫
T3

vn

)
+
(
e0

(∫
T3

vn

)
− e0

(∫
T3

vn

))] (
by (2.5.23)

)
≤ Fηn(vn) +O(ηn) + η−1

n

[
L||vn − vn||L−1 + C

C0(η
2
n)εn
η3n

]
.

Then, define a function C2 as in the Theorem. Therefore,

C
C0(η

2
n)εn
η3n

→ 0 as n→ 0 (2.5.24)

such that satisfies εn ≤ C2(ηn). As a result,

lim sup
n→∞

Fεn,ηn(vn) ≤ F0(v0).

3 The Non-Local Isoperimetric Problem Under Confinement

3.1 Introduction

The droplet regime in the spare A-phase is described effectively by the droplet centers, which

are the particles in the previous study. The droplet regime is in the mass fraction between the

two phases tends to zero with very strong nonlocal interactions [2]. Besides, the minimizing

phases resemble small spherical inclusion of one phase in a large sea of the second phase. The

droplet regime is able to decompose the nonlocal effects into self-effects as a single droplet

and interaction-effects between different particles. Furthermore, since replacing the torus

T3 with the smooth bounded domain D ∈ R3 is reasonable in mathematics and physics,

there is no need to impose periodic boundary conditions to observe the droplet splitting and

confinement. In the previous study, the location of the centers xiη is determined by the next
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order term in the energy expansion and a Coulomb-like repulsion will arise from the nonlocal

term. On the same definitions, define the energy functional

Eη(v) := η

∫
T3

|∇v|+ η||v −M ||2H−1(T3) −
∫
T3

v(x)ρ(x)dx (3.1.1)

for a fixed function ρ ∈ C(T3) in the limit of η → 0 by rescaling the energy functional

from previous study. The confinement term here is at the level of particle interaction. It

is drawing the centers xiη towards the global maximum of the nanoparticle density ρ(x).

Therefore, isolate individual droplets at a much smaller scale is necessary.

Suppose minimizers form n droplets and center at points xin = δpi, i = 1, 2, ..., n; δ =

δ(η) → 0. Therefore, define

νη :=
n∑

i=1

η−3wi

(x− δpi
η

)
, wi ∈ BV (R3; {0, 1}) (3.1.2)

as an admissible test configuration. Define

mi :=

∫
R3

widx.

Then, by expressing the H−1-norm in Green’s function (G(x, y) ∼ 1/4π|x − y|), evaluate

Eη(νη) asymptotically as

Eη(νη) ≃
n∑

i=1

[ ∫
R3

|∇wi|+ η||wi||2H−1(R3)

]
−Mρmax

+

[
η

δ

n∑
i,j=1
i̸=j

mimj

4π|pi − pj|
+ δ2

n∑
i=1

miq(pi)

]
,

(3.1.3)

where the distance between droplet centers δ(η) ≫ η.

Recall (2.4.1), since droplet profiles zi are minimizers for the nonlocal isoperimetric prob-

37



lem in R3, then define

e0(m) := inf

{∫
R3

|∇z|+ ||z||2H−1(R3) : z ∈ BV (R3; {0, 1}),
∫
R3

z = m

}
. (3.1.4)

Therefore, for minimizers of Eη in Gamow functional, define

M0 := {m > 0 : e0(m) admits a minimizer},

for which the nonlocal isoperimetric probelm attains a minimizer. When total massM ∈ M0,

there is no need to split and minimizers vη remain connected as η → 0. However, when total

mass M /∈ M0, minimizers will split into droplets with mass mi ∈ M0. Here is an optimal

droplet blowup. As a result, recall (2.4.3), define a set

M1 :=
{
{mi}ni=1 : n ∈ N,mi ≥ 0,

n∑
i=1

mi =M, such that e0(m
i) admits a minimizer for each i

}

where droplet masses must lie in.

3.2 Main Results

The most important result is to confirm the expected behavior by means of a precise asymp-

totic expansion of the energy of minimizers.

Theorem 3.2.1. Let vη be minimizers of Eη in BV (T3, {0, η−3}). Since mi :=
∫
R3 widx,∫

R3 vηdx =M .

• (I) Supp vη ⊂ Br(0) ⊂ T3 for all sufficiently small η > 0 and any r > 0.

• (II) There exists a subsequence of η → 0 and points yn ∈ T3 with |yn| ≤ Cη1/2 for

M ∈ M0 such that

vη − η−3zM

(x− yn
η

)
→ 0 ∈ L1(T3),

where zM attains the minimum e0(M).
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• (III) There exits a subsequence of η → 0, n ∈ N, {mi}ni=1 ∈ M1, and distinct points

{x1η, ..., xnη} for M /∈ M0 such that

vη −
n∑

i=1

η−3wi

(x− xiη
η

)
→ 0 ∈ L1(T3), wi ∈ BV (T3, {0, 1}),

where wi attains the minimum in e0(mi), i = 1, ..., n. Furthermore,

η−1/3xiη → xi ∈ R3

and

Eη(vη) = e0(M)−Mρmax + η2/3

[
n∑

i,j=1
i̸=j

mimj

4π|xi − xj|
+

n∑
i=1

miq(xi)

]
+ o(η2/3).

In addition, the expression in brackets above is minimized by the choice of points

{x1, ..., xn} given the values {mi}ni=1 ∈ M1.

3.3 Structure of Minimizers

For studying the concentration structure of minimizers, will begin with second-order ap-

proximation since the first-order limit functional and convergence result have been studied

already in the previous section. This limit depends on the specific form of the penalizing

measure ρ. Mass constrained minimizers of Eη concentrate at the origin as η → 0, which

depends on the size of the mass constraint M . When M is very large, a minimizer of e0 fails

to exist and the minimizer split at a scale larger than η as η → 0. When M is very small,

there is no splitting.

Moreover, consider the upper bounds on the minimum energy of Eη.

Lemma 3.3.1. For any n ∈ N, {pi}ni=1 distinct fixed points in R3 and {mi}ni=1 ∈ M1. Thus,

min∫
T3 v=M

Eη(v) ≤ (e0(M)−Mρmax) + η2/3

[
n∑

i=1

miq(pi) +
1

4π

n∑
i,j=1
i̸=j

mimj

|pi − pj

]
+ o(η2/3). (3.3.1)
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Besides, when M /∈ M0,

min∫
T3 vdx=M

Eη(v) ≤ (e0(M)−Mρmax) +O(η). (3.3.2)

As a result, the upper bound is verified. Furthermore, normally, the most difficult part

is to verify the lower bound. First, establish the existence of points in T3 by a compact-

ness result. These points are separated by a scale much larger than η apart. Therefore,

the weighted Dirac-Delta measure at these points approximate vη. Then, it achieves the

minimum of the first-order energy E0 by the existence of components of supp vη, since the

supports are η-resaclings of minimizers of the nonlocal isoperimetric problem. Moreover,

consider that there can only be finitely many distinct components for minimizers of Eη,

there is a strong convergence result and there may be a unique component.

Lemma 3.3.2. For each η > 0, let vη be a minimizer of Eη with
∫
T3 vηdx = M . Therefore,

there exists a subsequence η → 0, n ∈ N, {mi}ni=1 ⊂ (0,∞), {xiη}ni=1 ⊂ T3 and functions

wi
η ∈ BV (T3; {0, 1/η3}) with ||wi

η||L1(T3 = mi + o(1) as η → 0 for n ≥ 2 such

|xiη − xjη|
η

→ ∞ for every i ̸= j; (3.3.3)

∥∥∥vη − n∑
i=1

wi
η

∥∥∥
L1(T3)

→ 0; (3.3.4)

e0(m
i) is attained for each i = 1, 2, ..., n and e0(M) =

n∑
i=1

e0(m
i); (3.3.5)

lim inf
η→0

Eη(vη) ≥ lim inf
η→0

n∑
i=1

Eη(w
i
η) ≥

n∑
i=1

e0(m
i)−Mρmax. (3.3.6)

Besides, when n = 1, then M ∈ M0. Thus, there exist points xη ∈ T3 such that

vη − η−3zM

(x− xη
η

→ 0
)
in L1(T3) as η → 0, zM attains the minimum e0(M). (3.3.7)
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For the detailed proof, please see [Lemma 2.5 [2]].

3.4 Regularity of Minimizers

In addition, there exists a possible error of o(1). It means it is not sharp enough to compute

the interaction between droplets. Therefore, it is necessary to use the regularity theory of

minimizers to refine the decomposition to obtain a lower bound without error term. The

fundamental idea is to show the minimizers vη of Eη blow up to ω−minimizers of perimeter

in R3 which ω is independent of η.

By defining the ω−minimality, there exists a strong regularity result for minimizers vη.

Let O ⊂ R3 be an open set and w > 0. Let A be a set of finite perimeter as A ⊂ R3. Let B

be any set of finite perimeter as B ⊂ R3 any ball Br(x0) ⊂ O. Thus, if A△B ⊂⊂ Br(x0),

then A is an ω-minimizer for the perimeter functional
∫
R3 |∇χA| in O. Therefore, there exists

∫
O
|∇χA| ≤

∫
O
|∇χB|+ wr3.

In addition, the second step is to blow up the minimziers set Aη = supp vη. For any fixed

p ∈ T3 and a R > 0 which is given in [Lemma 2.8 [2]], there exists the Ãp,η as an ω-minimizer

of perimeter in BR(0) for ω > 0, and uniformly for all η ∈ (0, 1
2R
). Besides, by [25], define

an unconstrained functional

Eλ
η(u) := Eη(u) + λ

∣∣∣ ∫
T3

udx−M
∣∣∣,

for any λ > 0 and u ∈ BV (T3; {0, 1}. This functional will penalizes deviations from the usual

mass constraint. Therefore, there exists constants η0, λ0 > 0 such that for every 0 < η < η0

inf{Eλ0
η (u) : u ∈ BV (T3; {0, 1})} = Eλ0

η (vη) = Eη(vη).

Therefore, the following regularity result is the important consequence of ω−minimiality.

Theorem 3.4.1. Let O ⊂ R3 be a bounded open set, and Ω̂η ⊂ O be a sequence of
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ω−minimizers of the perimeter functional such that

∑
η>0

∫
O
|∇χΩ̂η

| < +∞ and χΩ̂η
→ χΩ in L1(O)

for Ω ⊂ O of class C2. Then, for the small enough η, Ω̂η is of class C1,1/2 and

∂Ω̂η = {x+ ψη(x)ν
Ω(x) : x ∈ ∂Ω}

with ψη → 0 in C1,α(∂Ω) for all α ∈ (0, 1/2) where νΩ denotes the unit outward normal to

∂Ω.

As a result, by the regularity theorem to minimizers of Eη, the minimizers split exactly

and disjointly into the sets U i
η found in Lemma 2.5 of [2].

Lemma 3.4.2. Let vη = η−3χAη be minimizers of Eη with |Aη| = Mη3. Let n ∈ N, and uiη

and U i
η ∈ R3, i = 1, 2, ..., n. There exists R > 0 independent of η such that

U i
η ∈ BR(0),

n∑
i=1

|U i
η| =

n∑
i=1

mi
η =M, and vη(x) =

n∑
i=1

uiη(x).

for all sufficiently small η > 0. Moreover, the sharp lower bound on the energy is

Eη(vη) ≥
n∑

i=1

Eη(u
i
η) +

n∑
i,j=1
i̸=j

η

∫
T3

∫
T3

uiηu
j
η

4π|x− y|
dxdy +O(η).

for sufficiently small η > 0.

vη splits into exactly n components and the residual sets exactly vanish. Thus, Ξη, V
n
η = ∅

for small η.

3.5 Proof

To prove the main result - Theorem 3.2.1, one good way is to match the upper bounds and

lower bounds on Eη(vη). The sharp form of the decomposition is used to it.
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Upper Bound

Let n ∈ N, {pi}ni=1 distinct fixed points in R3 and {mi}ni=1 ∈ M1. Recall (3.1.4), then there

exists zi attains the minimum in e0(m
i). In addition, there exists a constant r > 0 for Zi :=

supp zi ⊂ Br(0), i = 1, 2, ..., n by considering a finite number of zi only since the support of

zi are bounded. Then, define

νiη :=
1

η3
zi
(x− η1/3pi

η

)
and

νη :=
n∑

i=1

νiη.

Here, νη is a function on T3 since suppνη ⊂ B1/4(0) for all very small η > 0. Therefore,

Eη(νη) =
n∑

i=1

η

∫
T3

|∇νη|+ η
n∑

i,j=1

∫
T3

∫
T3

νiη(x)ν
j
η(y)G(x− y)dxdy −

n∑
i=1

∫
T3

νiη(x)ρ(x)dx

=
n∑

i=1

e0(mi)−Mρmax + η
n∑

i,j=1
i̸=j

∫
T3

∫
T3

νiη(x)ν
j
η(y)

4π|x− y|
dxdy

+
n∑

i=1

∫
T3

νiη(x)(ρmax − ρ(x))dx+O(η).

(3.5.1)

Moreover, set the change of variables as

ηξ = x− η1/3pi and ηζ = y − η1/3pj.

Thus, to evaluate i ̸= j, by the Dominated Convergence applied to the integral (η → 0),

η

∫
T3

∫
T3

νiη(x)ν
j
η(y)

4π|x− y|
dxdy = η2/3

∫
Zi

∫
Zj

1

4π|η2/3(ξ − ζ)− (pi − pj)|
dξdζ

= η2/3
mimj

4π|pi − pj|
+ o(η2/3).

(3.5.2)
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Similarly,

∫
T3

νiη(x)(ρmax − ρ(x))dx =

∫
Zi

q
(
η1/3[pi + η2/3ξ]

)
dξ + o(η2/3)

= η2/3
∫
Zi

q(pi + η2/3ξ)dξ + o(η2/3)

= η2/3miq(pi) + o(η2/3).

(3.5.3)

As a result, the desired upped bound for n ≥ 2 is by inserting (3.5.2) and (3.5.3) into (3.5.1).

When M ∈ M0, by attaining e0(M), let n = 1, p1 = 0, and z = χZ . Then, define

νη(x) = z(x/η). Therefore, (3.5.1) can be written as

Eη(νη) = e0(M)−Mρmax +

∫
Z

[ρ(ηξ)− ρmax]dξ +O(η)

≤ e0(M)−Mρmax +O(η).

Note that the principal error comes from the regular part of the Green’s function.

Lower Bound

To derive the lower bound, it is appropriate to begin with the droplet centers {xiη}. For each

η > 0, let vη be a minimizer of Eη with
∫
T3 vηdx =M . Define

λη := min
i̸=j

|xiη − xjη| and βη := max
i

|xiη| (3.5.4)

for a finite number of i, j = 1, 2, ..., n. Let {ui − η}ni=1 with vη =
∑n

i=1 u
i
η be the functions

found in Lemma 3.3.2. Thus, βη ≫ η since |xiη − xjη| ≫ η.

The first step is to evaluate the nonlocal and confinement terms. Consider the case n ≥ 2.

There exist ∣∣∣∣∣ 1

|x− y|
− 1

|xiη − xjη|

∣∣∣∣∣ ≤ 4Rη

|xiη − xjη|2

for all x ∈ supp uiη = (ηU i
η + xiη) and y ∈ supp ujη = (ηU j

η + xjη), i ̸= j since U i
η ⊂ BR(0).
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Therefore,

∫
T3

∫
T3

uiηu
j
η

4π|x− y|
dxdy =

mi
ηm

j
η

4π|xiη − xjη|
+O(η|xiη − xjη|−2) =

mi
ηm

j
η

4π|xiη − xjη|
(1− o(1)). (3.5.5)

For the confinement term, set a k in |xkη = βη. Thus, there exits |x| ≥ 1/2βη for

x ∈ (ηUk
η + xkη). Therefore, the rough estimate is

ρ(x)− ρmax ≤ −q(x) + o(|x|2) ≤ −c2β2
η , constant c2 > 0 and independent of η.

by using the hypothesis on the structure of ρ(x) near zero. As a result, a rough lower bound

is

Eη(vη) ≥
n∑

i=1

(e0(m
i
η)−mi

ηρmax) +
n∑

i,j=1
i̸=j

η
mimj

4π|xiη − xjη|
(1− o(1)) + c1m

k
ηβ

2
η

≥ e0(M)−Mρmax +
n∑

i,j=1
i̸=j

η
mimj

4π|xiη − xjη|
(1− o(1)) + c2β

2
η ,

for constant c1, c2 > 0 and independent of η , and M =
n∑

i=1

mi
η.

(3.5.6)

For the scale of concentration when n ≥ 2, let |xkη| = βη and |xkη − xlη| = λη where

k ̸= l ∈ {1, 2, ..., n}. Therefore, by matching the upper bound (3.3.1) with the lower bound

(3.5.6), here exists

e0(M)−Mρmax + η2/3µ0 ≥ Ẽη(vη)

≥ e0(M)−Mρmax + η
mkml

4π|xkη − xlη|
(1− o(1)) + c2β

2
η

≥ e0(M)−Mρmax + η
c1
λη

+ c2β
2
η .

Therefore,

λη ≥ C1η
1/3 and βη ≤ C2η

1/30
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for some constants C1, C2 > 0.

Consider the case n = 1, since there are no interaction terms, there exists a simpler lower

bound as

Eη(vη) ≥ e0(M)−Mρmax) + |yη|2 − o(η) = e0(M)−Mρmax + β2
η − o(η) (3.5.7)

Therefore, be matching the upper bound (3.3.2) with the lower bound (3.5.7), here exists

e0(M)−Mρmax + β2
η −O(η) ≤ Eη(vη) ≤ e0(M)−Mρmax +O(η).

As a result, |yη| = βη ≤ O(η1/2).

Lemma 3.5.1. In conclusion, let n ∈ N is given as in Lemma 3.3.2 . When n ≥ 2, points

{xiη}ni=1 satisfy

xiη = O(η1/3), for each i = 1, 2, ..., n.

When n = 1, points yη from above satisfy

yη = O(η1/2).

Now, everything is ready to prove the main result - Theorem 3.2.1.

Proof of Theorem 3.2.1

Let vη ∈ BV (T3; {0, 1/η3}) with
∫
T3 vηdx = M be a minimizer of Eη for each η > 0. Recall

Lemma 3.3.2, there exists n ∈ N, {mi}ni=1 ∈ M1, {xiη}ni=1 ⊂ T3. Therefore, by the second

part of Lemma 3.5.1 and (3.3.7) of Lemma 3.3.2, (II) holds when n = 1.

When n ≥ 2, there exist xiη = O(η1/3), i = 1, 2, ..., n by the first part of Lemma 3.5.1.

Therefore, there exist bounded sequences {η−1/3xiη}η>0 ⊂ T3, i = 1, 2, ..., n.
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The precise lower bound is

Eη(vη) ≥
n∑

i=1

Eη(u
i
η) +

n∑
i,j=1
i̸=j

η

∫
T3

∫
T3

uiηu
j
η

4π|x− y|
dxdy +O(η)

≥
n∑

i=1

(
G(U i

η)−
∫
U i
η

ρ(xiη + ηξ)dξ
)

+
n∑

i,j=1
i̸=j

η

∫
U i
η

∫
Uj
η

1

4π|(xiη − xjη) + η(ξ − ζ)|
dξdη +O(η)

≥
n∑

i=1

e0(m
i
η)−Mρmax +

n∑
i,j=1
i̸=j

η

∫
U i
η

∫
Uj
η

1

4π|(xiη − xjη) + η(ξ − ζ)|
dξdη

+
n∑

i=1

∫
U i
η

[ρmax − ρ(xiη + ηξ)]dξ +O(η)

≥ e0(M)−Mρmax +
n∑

i,j=1
i̸=j

η2/3
∫
U i
η

∫
Uj
η

1

4π|η−1/3(xiη − xjη) + η2/3(ξ − ζ)|
dξdη

+ η2/3
n∑

i=1

∫
U i
η

q(η−1/3xiη + η2/3ξ)dξ + o(η2/3)

Thus, by Dominated Convergence,

lim
η→0

∫
U i
η

∫
Uj
η

1

4π|η−1/3(xiη − xjη) + η2/3(ξ − ζ)|
dξdη =

mimj

4π|xi − xj|

and

lim
η→0

∫
U i
η

q(η−1/3xiη + η2/3ξ)dξ = miq(xi)

since each η−1/3xiη → xi and U i
η → Ωi globally. Therefore, the desired lower bound is

Eη(vη) ≥ e0(M)− ρmaxM + η2/3

{
n∑

i,j=1
i̸=j

mimj

4π|xi − xj|
+

n∑
i=1

miq(xi)

}
+ o(η2/3).
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4 The Liquid Drop Model with Background Potential

4.1 Introduction

The liquid drop model predicts the spherical shape of small nuclei and the non-existence of

arbitrarily large nuclei. However, the competition between the surface tension and Coulombic

repulsion makes these predictions not accurate.

Consider the variant model as

eZ(M) := inf{EZ(Ω) : Ω ∈ Rd, |Ω| =M}, (4.1.1)

where the energy functional EZ is

EZ(Ω) := Per(Ω) +

∫
Ω

∫
Ω

1

|x− y|s
dxdy − Z

∫
Ω

1

|x|p
dx (4.1.2)

with 0 < p < s < d and d ≥ 2. Per(Ω) is the perimeter of the set Ω in the sense of

Caccioppoli and it is defined as

Per(Ω) = sup
{∫

Ω

div ϕdx : ϕ ∈ C1
0(Rd;Rd), ||ϕ||L∞(Rd) ≤ 1

}
.

The small Z regime from Gamow’s liquid drop model [3] models the shape of an atomic

nucleus. Gamow’ model is equivalent to the variant model (4.1.1) with d = 3, s = 1, and

Z = 0 as

minimize Per(Ω) +

∫
Ω

∫
Ω

1

|x− y|
dxdy over Ω ⊂ R3 with |Ω| =M. (4.1.3)

Note that the non-existence of minimizers for large M is associated with the breakup

of droplets tending to infinity. In physics, for a large M , there is the expectation of other

forces to be involved to restore the existence. Then, it is possible to predict a structured
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configuration of droplets. Thus, add an external attractive potential

V (x) = − Z

|x|p
(4.1.4)

to (4.1.3) for Z > 0 and 0 < p ≤ 1 is a way to introduce the effect. This attractive is the

background nucleus. Set this background nucleus as the center at the origin. They have

slower decay than the Coulombic nonlocal interaction term for longer range. From [26] and

[27], the effect of V increases the critical threshold in M for the non-existence of minimizers

is proved at the case of Coulombic attraction, which is the physical case of p = 1. In addition,

when p < 1, the existence is restored for all M [28]. Therefore, it is possible to think of the

attractive long-range potential as regularizing the generalized liquid drop model. Thus, the

next step is to focus on the structure of minimizers in small Z regime. The following results

are particular configurations of generalized minimizers [[10], Definition 1.1] of the the liquid

drop model.

4.2 Main Results

Theorem 4.2.1. For all Z > 0 and any M > 0, the minimum ez(M) is attained.

This result is a generalization result in [28]. This result confirms that the presence of the

external potential (4.1.4) with p < s indeed restores existence for all masses M > 0. The

continued research is in minimizers of EZ in the limit of Z → 0. For d ≥ 2, there exists

m∗ = m∗(d, s) > 0 such that Z = 0 as

e0(M) := inf{E0(Ω) : Ω ⊂ Rd, |Ω| =M}, (4.2.1)

which does not admit minimizers for M > m∗ and s ∈ (0, 2). Therefore, a sequence of

minimizers ΩZ of the functional EZ lose compactness as Z → 0 when M > m∗. For small

Z > 0, ΩZ is composed of a finite number of disjoint compact components that are separated
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by a distance on the order of Z1/(s−p) [19]. Besides, after rescaling by Z1/(s−p), a discrete

interaction energy is optimized by the way of how the components are arranged

FN,m(y0, y1, ..., yN) :=
N∑

i,j=0
i̸=j

mimj

|yi − yj|s
−

N∑
i=1

mi

|yi|p
, (4.2.2)

where m = (m0,m1, ...,mN) with
∑N

i=0m
i =M , and

∑
N

:= {(y0, y1, ..., yN) ⊂ R3(d+1) : y0 = 0}. (4.2.3)

Theorem 4.2.2. The following is the most important main result that describes the struc-

ture of minimizers of EZ for small Z > 0 [19].

Let ΩZ be minimizers of EZ for Z > 0. Thus, there exists a subsequence Zn → 0 for any

sequence Z → 0 such that either

(I) there exists a set E0 with |E0| = M which minimizes e0(M), for which ΩZn → E0

globally as

χΩZn
→ χE0 ∈ L1(Rd) as n→ ∞;

or

(II) there exist:

(i) N ∈ N;

(ii) (m0,m1, ...,mN),mi > 0 with
∑N

i=0m
i =M ;

(iii) x0n, x
1
n, ..., x

N
n ∈ Rd with x0n = 0, and |xin| → ∞ for i ̸= 0, and |xin − xjn| → ∞ for

i ̸= j as n→ ∞;

(iv) E0, E1, ..., EN compact sets of finite perimeter with |Ei| = mi ̸= 0 for i =

0, 1, ..., N ;

such that Ωn := ΩZn satisfies the following:
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∂∗Ωn ∈ C1,1/2 and for fixed R > 0 such that all Ei ⊂ BR(0),

(∂∗Ωn − xin) ∩BR(0) → ∂∗Ei in C1,α for all α ∈ (0,
1

2
); (4.2.4)

∣∣∣∣∣Ωn△

[
E0 ∪

N⋃
i=1

(Ei + xin)

]∣∣∣∣∣→ 0; (4.2.5)

Ei attains the minimum in (4.2.1) as e0(m
i) = E0(E

i), i = 0, 1, ..., N ; (4.2.6)

Z
1

s−p
n xin → yi as n→ ∞, i = 1, 2, ..., N, where (0, y1, ..., yN) minimize FN,m over

∑
N

.

(4.2.7)

For Gamow’s model, the minimizers are only for small mass M and connected. However,

for Z > 0, the minimizers of EZ are always for any M but not connected for mass M > m∗.

Definition 4.2.1. Then, adapt the definition of EZ from [[10], Definition 4.3] to conclude

the resulting structure (4.2.5) and (4.2.6). Let Z ≥ 0 andM > 0. The generalized minimizer

of EZ is a finite collection (E0, E1, ..., EN) of sets of finite perimeter such that

(i) |Ei| := mi, i = 0, 1, ..., N, with
∑N

i=0m
i =M ;

(ii) E0 attains the minimum in eZ(m
0) and Ei attains e0(m

i), i = 1, 2, ..., N ;

(iii) eZ(M) = eZ(m
0) +

∑n
i=1 e0(m

i).

Therefore, the result is improved from the result in [10] as they proved the existence of

generalized minimizers for the Gamow problem Z = 0. The improvement is that the result

follows immediately from the concentration characterized up to sets of vanishingly small

measure, and along subsequences by a generalized minimzers.
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Corollary 4.2.1. Let Z ≥ 0,M > 0 and {Ωn n ∈ N} be any minimizing sequence for eZ(m).

Thus, there exists a subsequence, N ≥ 0, and a generalized minimizer (E0, E1, ..., EN) of EZ ,

with ∣∣∣∣∣Ωn△

[
E0 ∪

N⋃
i=1

(Ei + xin)

]∣∣∣∣∣→ 0

for a sequnece of translations (xin)
i=1,2,...,N
n∈N .

The above Theorem 4.2.2 shows that the family ΩZ of minimizers of EZ makes a particular

selection of a generalized minimizer for the generalized liquid drop problem E0. Besides, the

special choice of generalized minimizer in this way may not be canonical such that the sets

and the pattern they form as Z → 0 depend on the choice of external potential [19].

Furthermore, in [5], Bonacini and Cristoferi show that there exists a critical value s(d) of

the power in the Riesz kernel such that if s ∈ (0, s(d)). Thus, the minimizers of e0(M) must

be balls. It means that for small s, the critical mass for existence exactly coincides with

the critical value at which minimizers must be balls [19]. As a result, the following theorem

describes minimizers for small Z > 0 as a finite configuration of balls of equal radius.

Theorem 4.2.3. Assume 0 < s < s(d) and 0 < p < s < d. Then, the sets Ei in Theorem

4.2.2 are all balls with equal volume mi =M/(N + 1), i = 0, 1, ..., N .

4.3 Concentration-Compactness Structure

Furthermore, this section focuses on the concentration-compactness structure of minimizing

sequences for EZ . There are some studies in this area from [23] or Chapter 29 of [29]. Here,

the result from [6] by Frank and Lieb is used as it is the well-suited one.

Consider a sequence of sets En → E is globally in Rd, while the measure of the symmetric

difference |En△E| → 0. Thus, similarly, En → E is locally for every compact K ⊂ Rd, (K ∩

En) → (K ∩ E) globally. Therefore, when the local convergence is only L1
loc convergence

of the characteristic functions, the global convergence is equivalent to convergence of the

characteristic functions χEn → χE in L1(Rd).
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Lemma 4.3.1. Let Z ∈ [0,∞) be fixed and {Ωn}n∈N a minimizing sequence for eZ(M).

Thus, there exists a subseqence such that either

(A) there exists a set E0 with |E0| =M that minimizes eZ(M), for which Ωn → E0 globally

such that χΩn → χE0 in L1(Rd) as n→ ∞; or

(B) there exist N ∈ N; {x1n, x2n, ..., xNn }n∈N ⊂ Rd with |xin| → ∞ and sets of finite perimeter

{F 0
n , F

1
n , ..., F

N
n ,Ω

N
n }n∈N such that |xjn − xjn| → ∞, i ̸= j; with

Ωn = F 0
n ∪

[ N⋃
i=1

(F i
n + xin)

]
∪ ΩN

n , (4.3.1)

a disjoint union with components satisfying the following:

(i) ΩN
n → ∅ and F i

n → Ei, globally in Rd, with mi := |Ei| > 0 for all i = 1, 2, ..., N

and |E0| > 0 for Z > 0;

(ii) M =
∑N

i=0 |Ei| = limn→infty(
∑N

i=0 |F i
n + |ΩN

n |);

(iii) Ei attain the minimum for e0(m
i) for each i = 1, 2, ..., N ;

(iv) E0 attains the minimum for eZ(m
0);

(v) eZ(M) ≥ eZ(m
0) +

∑N
i=1 e0(m

i).

Note that the collection of sets {E0, ..., En}n∈N is a generalized minimizer of EZ for any

Z ≥ 0. In [10], the existence of generalized minimizers for the case Z = 0 is proved. The

truncation of energy E0 and obtain density bounds for minimizers of the truncated energy

have been used. Here, to prove this lemma, a better way is obtained by [19] with qualitative

information of the structure of minimizing sequences. The following lemma is needed to deal

with the confinement term.

Lemma 4.3.2. Assume An is a sequence of measurable sets with |An| = M and An → 0
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locally. It means that |An ∩K| → 0 for any compact K. Thus,

lim
n→∞

∫
An

1

|x|p
dx = 0.

There are several steps to prove this lemma. Please see [[19], Section 2] for the detailed

proof.

4.4 Regularity Results

Next, in this section, the research is mainly focused on the limiting finite-dimensional en-

ergy FN,m(y0, y1, ..., yN). It is not clear whether this minimizing sequences for this energy

with some number of points diverging to infinity split or not [19]. However, the following

proposition will show that FN,m attains its minimizer for all choices of N and m.

In (4.2.2), there exists a minimizer of the finite-dimensional energy functional FN,m. Then,

define

µN,m := inf∑
N

FN,m.

Then, consider any minimizing sequence {xin}n∈N, i = 1, 2, ..., N in
∑

N . There exists

µN,m = limn→∞ FN,m(0, x
n
1 , ..., x

n
N). If all the sequences {xin}n∈N are bounded, then they are

convergence to a minimizer along some subsequence. Otherwise, assume there is an integer

k ∈ (0, 1, ..., N − 1) and a subsequence that

 xin
n→∞−→ ai, ∀i = 0, 1, ..., k

|xin|
n→∞−→ ∞, ∀i = (k + 1), ..., N.

(4.4.1)

For the case k ≥ 1, decompose FN,m into

FN,m(0, x
1
n, ..., x

N
n ) = Fk,(m0,m1,...,mk)(0, x

1
n, ..., x

k
n) + FN−k,(mk+1,mk+2,...,mN )(x

k+1
n , ..., xNn ) + Ik,N ,

(4.4.2)
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where

Ik,N =
k∑

i=0

N∑
j=k+1

mimj

|xin − xjn|s
.

Therefore, by using (4.4.1), there exists

µN,m ≥ lim inf
n→∞

[
Fk,(m0,m1,...,mk)(0, x

1
n, ..., x

k
n) +

N∑
i,j=k+1

i̸=j

mimj

|xin − xjn|s

]

≥ lim inf
n→∞

Fk,(m0,m1,...,mk)(0, x
1
n, ..., x

k
n)

= lim inf
n→∞

Fk,(m0,m1,...,mk)(0, a1, ..., ak).

(4.4.3)

In addition, define a new configuration given by the points {a1, ..., ak, Ry1, ..., RyN−k}

with {y1, ..., yN−k} distinct points on the unit sphere |yj| = 1, and R > 0. By the same

decomposition in (4.4.2), there exist

FN,m(0, a1, ..., ak, Ry1, ..., RyN−k) = Fk,(m0,m1,...,mk)(0, a1, ..., ak)

+ FN−k,(mk+1,mk+2,...,mN )(Ry1, ..., RyN−k) + Ĩk,N .

(4.4.4)

Ĩk,N represents the interaction terms. If |ai| < R0, i = 1, 2, ..., k for some R0 > 0 and

R > 2R0, the interaction terms may be estimated by

Ĩk,N ≤ C1(k,N,m)R−s.

Moreover, for some constant C2 > 0, there exists

FN−k,(mk+1,mk+2,...,mN )(Ry1, ..., RyN−k) ≤
N−k∑
i,j=1

i̸=j

mk+imk+j

|Ryi −Ryj|s
≤ C3(k,N,m)R−s
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since |Ryi −Ryj| ≥ C2R, i ̸= j. On the other hand,

N−k∑
i=1

mk+i|Ryi|−p = R−p

N−k∑
i=1

mk+i ≥ C4(k,N,m)R−p.

Thus, by (4.4.4) and some large enough R > R0 > 0, there exits

µN,m ≤ FN,m(0, a1, ..., ak, Ry1, ..., RyN−k)

≤ Fk,(m0,m1,...,mk)(0, a1, ..., ak)− C4(k,N,m)R−p +O(R−s)

< Fk,(m0,m1,...,mk)(0, a1, ..., ak)

(4.4.5)

For the case k = 0, if |xin| → ∞ for each i = 1, 2, ..., N , there exists

µN,m ≥ lim inf
n→∞

N∑
i,j=0

i̸=j

mimj

|xin − xjn|s
≥ 0.

Thus, the same construction is produced as in (4.4.5) yields the contradictory estimate

µN,m < 0. Therefore, the entire minimizing sequence must remain bounded.

Proposition 4.4.1. As a result, for any N ∈ N and m, the functional FN,m attains its

minimum µN,m < 0 on the admissible class
∑

N .

Next, consider the infimum of the regularized energies EZ converges to the infimum of

E0. Let ΩZ be a minimizer of EZ for any Z > 0 and M > 0. Thus, eZ(M) ≤ e0(M) for all

Z > 0. Besides, ωd = |B1(0)| represents the the volume of the unit ball in Rd such that

E0(ΩZ) = EZ(ΩZ) + Z

∫
ΩZ

1

|x|p
dx

≤ EZ(ΩZ) + Z

∫
B1(0)

1

|x|p
dx+ Z|ΩZ ∩ (Rd\B1(0))|

≤ EZ(ΩZ) +
( ωd

d− p
+M

)
Z.

Lemma 4.4.1. As a result, limZ→0 eZ(M) = e0(M).
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Furthermore, the following is the key to obtain regularity properties for a family of

minimizers of the functional EZ .

First, consider the constraint |ΩZ | = M , by [[30], Section 2] and [[5], Theorem 2.7], it

may be replaced by a penalization. For λ > 0, define the penalized functional

Fλ
Z(F ) := EZ(F ) + λ||F | − |ΩZ || = EZ(F ) + λ||F | −M |.

In addition, the unconstrained minimizer of Fλ
Z coincides with the mass-constrained

minimizer of EZ . Thus, λ may be chose independently of Z since the existence of a constant

λ = λZ > 0 for each fixed Z >) satisfies the claim in a minor modification of [[5], Theorem

2.7]. If there does not exist such λ, then there exist sequences Zn → 0, λn → 0, and sets

En ⊂ Rd, |En| ̸=M , with Fλn
Zn
(En) < Fλn

Zn
(ΩZn). Thus, |En| →M since λn → ∞

Furthermore, define sets Ẽn = tnEn, tn = [M/|En|]1/d. Thus, |Ẽn| = M . Therefore, by

scaling, there exists

Fλn
Zn
(Ẽn) = EZn(Ẽn) = td−1

n Per(En) + t2d−s
n D(En, En)− td−p

n Zn

∫
En

|x|−pdx

= Fλn
Zn
(En) + (td−1

n − 1)Per(En) + (t2d−s
n − 1)D(En, En)

− (td−p
n − 1)Zn

∫
En

|x|−pdx− λn|td−1
n − 1||En|

≤ Fλn
Zn
(En) + |td−1

n − 1||En|
[
E0(En)

(td−1
n + t2d−s − 2)

|td−1
n − 1||En|

− λn

]
< Fλn

Zn
(En),

as λn → ∞ since the term in brackets is negative. Therefore, this contradicts the definition

of En as minimizers of Fλn
Zn
. As a result, there exist λ > 0 for all 0 < Z ≤ 1,

minFλ
Z = Fλ

Z(ΩZ) = EZ(ΩZ). (4.4.6)
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Next, define

V(F ) :=
∫
F

1

|x|p
dx,

for any fixed r > 0, and assuming Br(x0) ∩ Bδ(0) = ∅ and F ⊂ Rd with ΩZ△F ⊂ Br(x0).

Then, EZ(ΩZ) = Fλ
Z(ΩZ) ≤ Fλ

Z(F ) implies that

Per(ΩZ) ≤ Per(F ) + (D(F, F )−D(ΩZ ,ΩZ)) + (V(ΩZ)− V(F )) + λ||F | −M |

Per(F ) + (C0 + δ−p + λ)|ΩZ△F |.

The difference of the nonlocal terms is estimated in [[5], Proposition 2.3]. For estimating

the confinement term, use |x|−p ∈ L∞(Rd\Bδ(0)). Thus, ΩZ are (ω, r)-minimizers of the

perimeter functional in Rd\Bδ(0) with ω = C0 + δ−p + λ and any r > 0.

Lemma 4.4.2. As a result, the family of minimizers {ΩZ}Z∈(0,1] of EZ is (ω, r)-minimizers

of the perimeter functional in O := Rd\Bδ(0) for any δ > 0, with ω, r > 0 uniformly chosen

for Z ∈ (0, 1]. For all F ⊂ Rd with ΩZ△F ⊂ Br(x0) ⊂ Rd\Bδ(0), there exists

Per(ΩZ) ≤ Per(F ) + ω|ΩZ△F |.

Lemma 4.4.3. Moreover, the following lemma concludes the regularity results for (ω, r)-

minimizers. From Theorem 21.8, Theorem 21.14 and Theorem 26.6 in [29], let O ⊂ Rd be

an open set:

(i) If E ⊂ Rd is an (ω, r)-minimizer of perimeter in O, then ∂∗E∩O is a C1,α hypersurface

for any α ∈ (0, 1/2).

(ii) If En ⊂ Rd is a sequence of uniformly (ω, r)-minimizers of perimeter in O with En →

E∞ locally in O, then there exists x∞ ∈ ∂E∞ for any any sequence xn ∈ ∂En with

xn → x∞. In addition, if xn ∈ ∂∗En, then x∞ ∈ ∂∗E∞ and the normal vectors satisfy

ν(xn) → ν(x∞).
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4.5 Proof

Proof of Theorem 4.2.1

The proof of Theorem 4.2.1 is given in [28] for the Newtonian case as s = 1 with more general

confinement terms.

Proof of Theorem 4.2.2

The idea to prove the Theorem 4.2.2 is to use the the concentration-compactness lemma to

minimize sequences of EZ . In addition, an expansion of the energy EZ is required up to the

third-order term in Z. Thus, to establish it, there is one approach is similar to the previous

research of the concentration of droplets in a sharp interface model of diblock copolymers

under confinement. Therefore, combine the compactness of a sequence of minimizers ΩZ

with regularity results stemming from the classical regularity properties of the perimeter

functional improving the error estimates in [6].

To prove the Theorem 4.2.2, there are some steps to follow by using the regularity of

minimizing sets to improve the precision of the lower bound defined in the previous lemmas.

Let {Ωn}n∈N be a sequence of minimizers for eZnwhere Ωn := ΩZn is the sequence of mini-

mizers for eZn with Zn → 0. From Lemma 4.4.1, {Ωn} form a minimizing sequence for e0.

From Lemma 4.3.1, there exist either (A) or assertions (i), (ii), and (4.2.5), (4.2.6), in (iii) of

(B) in Theorem 4.2.2. In addition, from Lemma 4.4.2 and Lemma 4.4.3, (4.2.4) is followed.

By using the uniform (ω, r)-minimality to show that

Ωn = F 0
n ∪

[ N⋃
i=1

(F i
n + xin)

]
,
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splits with no error in the perimeter, with the remainder set ΩN
n = ∅. Besides, define

F̃ i
n = F i

n + xin and Ω̂i
n = Ωi−1

n − xin, i = 0, 1, ..., N.

There are essentially bounded domains with smooth ∂∗Ei, Ei, the minimzers of e0(m
i)

[[9], Proposition 2.1 and Lemma 4.1]. Thus, each Ei ⊂ BR/2(0) for each i = 0, 1, ..., N and

R > 0. It is possible to choose the radii rn in [[6], Lemma 2.2] such that rn ∈ (R, 2R) when

defining the F i
n = Ω̂i−1

n ∩ Brn(0) since Ei is bounded. As Ω̂i
n → Ei locally, it converges

globally in O := B2R(0) since Lemma 4.4.2 ensures Ω̂i
n is a family of uniformly (ω, r)-

minimizers inO. By the regularity result (part (ii) of Lemma 4.4.3), for all sufficiently large n,

Ω̂i
n∩O → Ei ⊂ BR/2(0) in Hausdorff norm, and particularly Ω̂i

n∩B2R(0) ⊂ BR(0). Moreover,

when i = 0, define the open set Õ := B2R(0)\Bδ(0) for any δ ∈ (0, R\2). Therefore, Ωn

are uniformly (ω, r)-minimizers in Ô since Ωn are not necessarily (ω, r)-minimizers in a

neighborhood of 0 when i = 0. As a result, Ωn ∩ [B2R(0)\BR(0)] = ∅ for all sufficiently large

n.

Furthermore, assume ΩN
n ̸= ∅ for all n ∈ N. Then ΩN

n → globally since |ΩN
n | → 0 by

Lemma 4.3.1. There exist yn ∈ ∂ΩN
n for each n since Ωn is the (ω, r)-minimizing sequence

each ∂∗ΩN
n is a smooth hypersurface. Besides, by (ii) of Lemma 4.4.3, there is a contradiction

as 0 liew on the boundary of the limit set of the Ω̂N
n . As a result, there exists ΩN

n = ∅ for

large n. As |xin−xjn| → ∞ for i ̸= j and Gi
n∩BR(0) = ∅, the components are well separated

such that for each sufficiently large n, there exists

Per(Ωn) =
N∑
i=0

Per(F i
n). (4.5.1)

Besides,

M =
N∑
i=1

mi =
N∑
i=1

mi
n (4.5.2)

holds for all sufficiently large n as (4.5.1) implies the equality of masses before and after
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passing to the limit.

Next, it is possible to choose k ∈ {1, 2, ..., N} and a subsequence along |xkn| =∈ {|xjn| : j =

1, 2, ..., N} since there are only finitely many components. Thus, consider sets Ω̆n := Ωn−xkn.

The modification only affects the confinement term V since the perimeter and nonlocal terms

in EZ are translation invariant. Thus, there exists a disjoint decomposition

Ω̆n = F 0
n ∪ F k

n ∪
[ N⋃

i=1
i̸=k

(F i
n + yin)

]
∪ ΩN

n ,

where yin = xin − xkn with |yin| → ∞, i ̸= k. Thus, for all j = 1, 2, ..., N and all i ̸= k, when

V(F k
n ) → V(Ek) > 0, there exists V(F j

n + xjn) → 0 and V(F i
n + yin) → 0. Therefore, there

exist the contradictions of the minimality of Ωn such that

EZ(Ω̆n)− EZ(Ωn) = −ZnV(F k
n )− Zn

N∑
i=1
i̸=k

V(F i
n + yin) + Zn

N∑
i=1

V(F i
n + xin)

= −ZnV(Ek) + o(Zn) < 0.

As a result, there exists |E0| ̸= 0.

Furthermore, to have a more refined lower bound is considerable. There exists R > 0 for

which F i
n ⊂ BR(0) for each n ∈ N, i = 0, 1, ..., N . It is possible to decompose the nonlocal

term since
⋃N

i=0(F
i
n + xin) ⊂ Ωn such that

D(Ωn,Ωn) ≥
N∑

i,j=0

D(F̃ i
n, F̃

j
n).

Define

Rn,ij := |xin − xjn| and Rn,i0 := |xin|.

Thus, there exists

|x− y| ≥ Rn,ij − 2R ≥ 1

2
Rn,ij
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for all x ∈ F̃ i
n, y ∈ F̃ j

n, and sufficiently large n. Then, by the mean value theorem for

f(t) = ts, there exists

||xin − xjn|s − |x− y|s| ≤ s
(1
2
Rn,ij

)s−1|xin − xjn − x+ y|

≤ CRs−1
n,ij (|xin − x|+ |xjn − y|)

≤ 2CRRs−1
n,ij .

Thus, ∣∣∣∣ 1

|x− y|s
− 1

|xin − xjn|s

∣∣∣∣ = ||xin − xjn|s − |x− y|s|
|x− y|s|xin − xjn|s

≤ C

Rs+1
n,ij

for all sufficiently large n and all 0 < s < d. Therefore, the off-diagonal terms in the nonlocal

energy can be estimated by

∣∣∣∣D(F̃ i
n, F̃

j
n)−

mi
nm

j
n

|xin − xjn|s

∣∣∣∣ ≤ ∫
F̃ i
n

∫
F̃ j
n

∣∣∣∣ 1

|x− y|s
− 1

|xin − xjn|s

∣∣∣∣dxdy ≤ CR−s−1
n,ij , (4.5.3)

with a constant C independent of n. In addition, for the confinement term, it can be

evaluated in the similar way as

||xin|−p − |x|−p| ≤ sup
ξ∈F̃ i

n

p|ξ|−p−1|x− xin| ≤ C|xin|−p−1 ≤ CR−p−1
n,i0 .

Therefore,

∣∣∣∣ ∫
F̃ i
n

1

|x|p
dx− mi

n

|xin|p

∣∣∣∣ ≤ CR−p−1
n,i0 . (4.5.4)

As a result, by combining the previous estimates and the perimeter splitting, the lower bound

62



is

EZn(Ωn) ≥
N∑
i=0

E0(F
i
n)− ZnV(F 0

n) +
N∑

i,j=0
i̸=j

mi
nm

j
n

|xin − xjn|s
(1−O(R−1

n,ij))

− Zn

N∑
i=1

mi
n

|xin|p
(1 +O(R−1

n,i0))

≥
N∑
i=0

e0(m
i
n)− ZnV(F 0

n) +
N∑

i,j=0
i̸=j

mi
nm

j
n

|xin − xjn|s
(1−O(R−1

n,ij))

− Zn

N∑
i=1

mi
n

|xin|p
(1 +O(R−1

n,i0))

≥
N∑
i=0

e0(m
i
n)− ZnV(F 0

n) +
N∑

i,j=0
i̸=j

mi
nm

j
n

|xin − xjn|s
(1− o(1))

− Zn

N∑
i=1

mi
n

|xin|p
(1 + o(1)) (by the convergence mi

n → mi).

(4.5.5)

Moreover, to have a more refined upper bound is considerable. Suppose Ωt = F 0
n ∪

[
⋃N

i=1(F
i
n+ ta

i)] with sets F i
n as in Lemma 4.3.1 with points {ai}i=1,...,N ⊂ Rd with 0 < |ai| ≤

1. Then, substitute Ωt into EZ to get an upper bound.

eZn(M) ≤ EZn(Ωt)

≤
n∑

i=0

e0(m
i
n)− ZnV(F 0

n) +
N∑

i,j=0
i̸=j

∫
F i
n+tai

∫
F j
n+taj

1

|x− y|s
dxdy

− Zn

N∑
i=1

∫
F i
n+tai

|x|−pdx.

Besides, with the same estimates as in (4.5.3) and (4.5.4), the following holds

∣∣∣∣D(F i
n, F

j
n)−

mimj

ts|ai − aj|s

∣∣∣∣ ≤ Ct−s−1,

∣∣∣∣ ∫
F̃ i
n

1

|x|p
dx− mi

tp|ai|p

∣∣∣∣ ≤ Ct−p−1,

for constant C in dependent of t. The following upper bound of the form holds by choosing
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t = tn := Z
−1/(s−p)
n as

eZn(M) ≤ EZn(Ωtn) ≤
N∑
i=0

e0(m
i
n)− ZnV(F 0

n) + Zs/(s−p)
n FN,m(0, a

1, ..., aN) +O(Z
s+1
s−p
n ).

By Proposition 4.4.1, it is possible to choose (a1, ..., aN) to minimize FN,m such that the best

upper bound is

EZn(Ωtn) ≤
N∑
i=0

e0(m
i
n)− ZnV(F 0

n) + Zs/(s−p)
n µN,m + o(Zs/(s−p)

n ). (4.5.6)

Lastly, an expansion of the energy EZ up to the third-order term in Z is needed. Set F 0
n

are the sets in Lemma 4.3.1 so that

EZn(Ωn) =
N∑
i=0

e0(m
i)− ZnV(F 0

n) + Zs/(s−p)
n FN,m(0, y1, ..., yN) + o(Zs/(s−p)

n ).

Then, set ξin = xinZ
1/(s−p)
n for i = 1, 2, ..., N . Follow the lower bound (4.5.5), by using the

upper bound (4.5.6), there exists

Zs/(s−p)
n µN,m + o(Zs/(s−p)

n ) ≥ EZn(Ωn)−
N∑
i=0

e0(m
i
n) + ZnV(F 0

n)

≥ Zs/(s−p)
n FN,m(0, ξ

1
n, ..., ξ

N
n )(1 + o(1)).

In conclusion, {ξin}i=0,...,N is a minimizing sequence for FN,m. By the Proposition 4.4.1, the

ξin is bounded and up to the extraction of a subsequence for each i = 1, 2, ..., N , ξin → yi,

minimizers of FN,m as n → ∞. Therefore, (4.2.7) is proved. The proof of Theorem 4.2.2 is

complete.
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Proof of Theorem 4.2.3

The idea to proof Theorem 4.2.3 is to make the divergent components of a minimizer of

EZ inherit the same Lagrange multiplier. Therefore, Ei satisfies the same Euler-Lagrange

equation. Besides, the radius of the minimizers (when they are balls) is uniquely determined

by the Lagrange multiplier. It is predictable that the equipartition of mass between the

components of the generalized minimizers is true no matter the minimizers are balls or not.

By the previous proofs and lemmas, the reduced boundary ∂∗Ωn is a disjoint union of

smooth hypersurfaces. Besides, by [[5], Theorem 2.7], ∂∗Ωn is of class C3,β for β < d− 1− s.

Define vΩn(x) as the Riesz potential such that

vΩn(x) :=

∫
Ω

1

|x− y|s
dy.

Thus, the Euler-Lagrange equation

(d− 1)κ(x) + 2vΩn(x)− Zn|x|−p = λn (4.5.7)

is satisfied pointwise on ∂∗Ωn, where κ is the mean curvature in Rd and λn is the Lagrange

multiplier. Furthermore. from the previous proof, Ωn is C1,α close to the sets

Sn :=
[
E0 +

N⋃
i=1

(Ei + xin)
]
,

for all fixed R > 0 with Ei ⋐ BR(0),

∂∗Ω̃i
n := (∂∗Ωn − xin) ∩BR(0) → ∂∗Ei in C1,α for all α ∈ (0,

1

2
).

In addition, the former are expressed as graphs over the limiting sets Ei,

∂∗Ω̃i
n := {y = Ψn(x) := x+ ψn(x)νi(x) : x ∈ ∂∗Ei},
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with ψn(x) → 0 in C1,α[[29], Theorem 4.2]. Therefore, ∂∗Ei is of class C3,α and its normal

vector νEi ∈ C2 by the above regularity theorem, as each Ei is itself a minimizer of E0.

Moreover, the Riesz potentials vΩ̃i
n
are bounded in C1,β(BR(0)) by [[5], Proposition 2.1].

Thus, they converge uniformly to νEi in BR(0).

As the following step, it is possible to integrate the Euler-Lagrange equation (4.5.7) by

parts over ∂∗Ω̃i
n as

∫
∂∗Ω̃i

n

(divτnζ − (2vΩ̃i
n
− Zn|x|−p)(ζ · νn))dHd−1 = λn

∫
∂∗Ω̃i

n

ζ · νndHd−1, (4.5.8)

for any ζ ∈ C∞
0 (BR(0);Rd), νn := νΩ̃i

n
, and the tangential divergence on ∂∗Ω̃i

n is defined as

divτnζ = divζ − νn ·Dζνn.

Then, integrals over ∂∗Ei with Jacobian Jn = | detDΨn| is obtained by using the parametriza-

tion Ψn. There exist divτnζ → divτEi
ζ and Jn → 1 as νn → νEi by the C1,α convergence and

VEi ∈ C2. Therefore, by passing to the limit n→ ∞ in both integrals in (4.5.8), there exist

∫
∂∗Ω̃i

n

(divτnζ − (2vΩ̃i
n
− Zn|x|−p)(ζ · νn))dHd−1 −→

∫
∂∗Ei

(divτEi
ζ − 2vEi(ζ · νEi))dHd−1,

and ∫
∂∗Ω̃i

n

ζ · νndHd−1 −→
∫
∂∗Ei

ζ · νEidHd−1.

As a result, for some limiting Lagrange multiplier λ0, there exists λn → λ0. In addition,

the values of λn are the same for each component of ∂∗Ωn by (4.5.7) and the value of λ0

is independent of i = 0, 1, ..., N . Then, with the same Lagrange multiplier λ0, the limiting

curvature equation is the same for each limiting set Ei. The limiting sets Ei are all balls

since s < s(d) and they are all have same radius as the Lagrange multiplier is uniquely

determined by the mass mi for balls.
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5 The Triblock Copolymers

5.1 Introduction

Nakazawa and Ohta address the theory of triblock copolymers in two dimensions. The

triblock copolymer has been studied in [14] and [15]. As the following, the asymptotic

behaviour of the energy functional from their theory is addressed.

Tn = Rn/Zn = [−1
2
, 1
2
]2 denotes the n-dimensional flat torus of unit volume. Define

u = (u1, u2) and u0 = 1 − u1 − u2. Define the order parameters ui, i = 0, 1, 2 on T2.

Therefore, on BV (T2; {0, 1}), the triblock energy is defined as

E(u) := 1

2

2∑
i=0

∫
T2

|∇ui|+
2∑

i,j=1

γij
2

∫
T2

∫
T2

ui(x)uj(y)GT2(x− y)dxdy (5.1.1)

This energy can be minimized by two mass or area constraints

1

|T2|

∫
T2

ui =Mi, i = 1, 2. (5.1.2)

In (5.1.1), ui represents the relative monomer density. When u1 = 1, it represents the pure-A

region; when u2 = 1, it represents the pure-B region; when u0 = 1, it represents the pure-C

region. The first term of (5.1.1) is the perimeter of the interface and second term is the long

range interaction energy. γij represents a symmetric matrix such that γ = [γij] ∈ R2×2. In

addition, in (5.1.2), M1 represents the area fraction of type-A and M2 represents the area

fraction of type-B.

5.2 Definitions

In addition, Green’s function is necessary to be introduced. GT2 , the zero-mean Green’s

function for −∆ on T2 is given by

−∆GT2(· − y) = δ(· − y)− 1,with

∫
T2

GT2(x− y)dx = 0,
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for each y ∈ T2 and the δ is the Dirac delta function at the origin . In two dimensions, for

max|x− y| < 1/2, the Green’s function is given by

GT2(x− y) = − 1

2π
log |x− y|+RT2(x− y), (5.2.1)

where RT2 ∈ C∞(T2). RT2 is the regular part of the Green’s function.

5.3 The Appropriate Droplet Scaling

For the scaling, it is very similar to the diblock case. First, the new parameter η represents

the characteristic length scale of the droplet components. Then η2 represents the areas scale.

Therefore, define the mass constraints as

∫
T2

ui = η2Mi for some fixed Mi, i = 1, 2.

The rescaled ui is

vi,η =
ui
η2
, i = 0, 1, 2 with

∫
T2

ui,η =Mi, i = 1, 2. (5.3.1)

Besdies, with some fixed constants Γij ≥ 0, the rescaled matrix γ is

γij =
1

| log η|η3
Γij

Define

Γii > 0,with i = 1, 2, Γ12 > 0, and Γ11Γ22 − Γ2
12 > 0

in this section. Define vη = (v1,η, v2,η), then assume vη is in the space

Xη := {(v1,η, v2,η)|η2vi,η ∈ BV (T2; {0, 1}), v1,η, v2,η = 0 a.e.} (5.3.2)
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since the vi,η is finite perimeter and disjoint. Therefore, define the functional

Eη(vη) :=
1

η
E(u) =


η
2

∑2
i=0

∫
T⊭ |∇vi,η|

+
∑2

i,j=1
Γij

2| log η|

∫
T2

∫
T2 vi,η(x)vj,η(y)GT2(x− y)dxdy vη ∈ Xη

∞ otherwise.

(5.3.3)

Note that for large enoughMi, the above choice of parameters will cause fragmentation of

a minimizing sequence vη =
∑K

k=1 v
k
η into K isolated components at a distinct point ξk ∈ T2.

Besides, it is supported on a pair of sets (ωk
1,η, ω

k
2,η) with characteristic length scale O(η),

which is the result showed in the binary case. Therefore, at η-scale, define limiting profile

zki := χAK
i
for pairs of sets Ak = (Ak

1, A
k
2) ∈ R2, then the minimizing components is

vKi,η(ηx+ ξk) = η−2zki (x).

In addition, for mk
i = |Ak

i |, the minimizer vη may be defined as a superposition of point

particles such that

vη ⇀
K∑
k=1

(mk
1,m

k
2)δχk

Moreover, for sets A1, A2,⊂ R2 with |A1 ∩ A2| = 0, define the perimeter of the 2-cluster

A = (A1, A2) as

PerF (A) =
1

2

2∑
i=0

H1(Ai ∩ F ), (5.3.4)

where A0 = (A1 ∪ A2)
C .
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Therefore, the formal expansion of the energy form is

Eη(vη) =
K∑
k=1

2∑
i=0

η

2

∫
T2

|∇vki,η|+
Γij

2| log η|

K∑
k,ℓ=1

2∑
i,j=1

∫
T2

∫
T2

vki,η(x)v
ℓ
j,η(y)GT2(x− y)dxdy

=
K∑
k=1

2∑
i=0

1

2

∫
Ak

i

|∇zki |+
Γij

2| log η|

K∑
k,ℓ=1

2∑
i,j=1

∫
Ak

i

∫
Aℓ

j

GT2(ξk + ηx̃− ξℓηỹ)dx̃dy

=
K∑
k=1

(
PerR2(Ak) +

2∑
i,j=1

Γij

4π
|Ak

i ||Ak
j |
)
+O(| log η|−1).

The expression p(m1,m2) = PerR2(A) represents the perimeter of the minimizing cluster

A = (A1, A2) with mi = |Ai|. Therefore, when both mi > 0, i = 1, 2, the minimizer [31] is at

a double bubble such that

e0(m) = p(m1,m2) +
2∑

i,j=1

Γijmimj

4π
. (5.3.5)

Moreover, the minimizer is single bubble when m1 = 0 or m2 = 0, then p(m1, 0) = 2
√
πm1

or p(0,m2) = 2
√
πm2, such that

e0(m) = e0(m1, 0) = 2
√
πm1 +

Γ11(m1)2

4π

or

e0(m) = e0(0,m2) = 2
√
πm2 +

Γ22(m2)2

4π
.

(5.3.6)

The minimizer of Eη will form an array of either single or double bubbles or both since

the components of Ωη has no other shape, and can be determined by the higher order terms

in a detailed energy expansion. In fact, the quadratic term in e0 may decrease when either

Mi is large that total energy is reduced by splitting into smaller components. Similarly what

have defined in the case of sharp interface of diblock copolymer, to splitting of sets with the

large area effectively, define

e0(M) := inf

{
∞∑
k=1

e0(m
k) : mk = (mk

1,m
k
2),m

k
i ≥ 0,

∞∑
k=1

mk
i =Mi, i = 1, 2

}
(5.3.7)
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5.4 Main Results

Here are some the most important results of the minimizers of e0(M).

Theorem 5.4.1. • Finiteness Theorem: For any M = (M1,M2) with M1,M2 > 0, a

minimizing configuration for e0(M) has finitely many nontrivial components. There

exist K < ∞ and pairs m1, . . . ,mK , with mk = (mk
1,m

k
2) ̸= (0, 0), for e0(M) =∑K

k=1 e0(m
k).

Theorem 5.4.2. • Coexistence Theorem: Given K1 and K2 > 0, and Γ12 = 0, there

exist M1 and M2 such that for all M1 > M1 and M2 > M2 minimizing configurations

of (5.3.7) have at least K1 double bubbles and K2 single bubbles.

• All Single Bubbles Theorem: There exist constants M∗
i depending only on Γii, i = 1, 2,

such that for any given M1 > 4M∗
1 ,M2 > 4M∗

2 . There exists a threshold Γ∗
12 such

that for all Γ12 > Γ∗
12, any minimizing configuration of (5.3.7) has no double bubbles.

Moreover, all single bubbles have the same size.

• One Double Bubble Theorem: There exist constantsm∗
i depending only on Γii, i = 1, 2,

such that for any given Mi < min{m∗
i , πΓ

−2/3
ii }, i = 1, 2, and sufficiently small Γ12 > 0

such that

Γ12

2π
M1M2 + p(M1,M2) < 2

√
π(
√
M1 +

√
M2),

here p represents the perimeter. Therefore, there is a unique minimizer of (5.3.7) made

of one double bubble.

5.5 Convergence Theorems

As a following, the first-order convergence of Eη is defined below. First, let v∗η be the

minimizers of Eη, then the global minimizers of Eη is

Eη(v
∗
η) = min{Eη(vη)|vη = (v1,η, v2,η) ∈ Xη,

∫
T2

vη =M}, (5.5.1)

where
∫
T2 vη =M is the given mass condition and Xη is defined in (5.3.2).
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Theorem 5.5.1. As a result, let v∗η = η−2χΩη be the minimizers of (5.5.1) for all η > 0,

then there exists a sequence η → 0 and K ∈ N such that:

1. there exist connected clusters A1, A2, . . . , AK in R2 and points xkη ∈ T2, k = 1, 2, . . . , K,

for which

η−2
∣∣∣Ωη △

K⋃
k=1

(ηAk + xkη)
∣∣∣ η→0−→ 0; (5.5.2)

2. each Ak, k = 1, 2, . . . , K is a minimizer of G such that

G(Ak) = e0(m
k), mk = (mk

1,m
k
2) = |Ak|, (5.5.3)

and

e0(M) = lim
η→0

Eη(vη) =
K∑
k=1

G(Ak) =
K∑
k=1

e0(m
k). (5.5.4)

3. xkη
η→0−→ xk, ∀k = 1, 2, . . . , K, and {x1, x2, . . . , xK} attains the minimum of FK(y

1, y2,

. . . , yK ; {m1,m2, . . . ,mK}) over all {y1, y2, . . . , yK} ∈ T2.

Moreoever, comparing to the diblock case, this theorem provides a better description of

energy minimizers with more details.

In addition, the limit of Γ-convergence is defined below. First, define a class of measures

with countable support on T2 such that

Y :=
{
v0 =

∞∑
k=1

(mk
1,m

k
2)δxk | mk

i ≥ 0, xk ∈ T2 distinct points
}
.

Therefore, the functional on Y is

E0(v0) :=


∑∞

k=1 e0(m
k), if v0 ∈ Y

∞ otherwise.
(5.5.5)
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Theorem 5.5.2. As a result, the first Γ-convergence theorem is defined:

Eη
Γ−→ E0 as η → 0.

That is,

1. Let vη ∈ Xη be a sequence with supη>0Eη(vη) < ∞. There exists a sequence vη → v0

and v0 ∈ Y such that

lim inf
η→0

Eη(vη) ≥ E0(v0).

2. Let v0 ∈ Y with E0(v0) < ∞. There exists a sequence vη → v0 weakly as measures

such that

lim sup
η→0

Eη(vη) ≤ E0(v0).

Furthermore, for the second Γ-convergence theorem, it is at the level of | log η|−1 in the

energy. It represents the interaction energy between components at the minimal energy

e0(M). Therefore, define

Fη(vη) := | log η|
[
Eη(vη)− e0(

∫
T2

vη)
]
, vη ∈ Xη (5.5.6)

As the similar process in the binary case, for K ∈ N,mk
1 ≥ 0,mk

2 ≥ 0 and (mk
1)

2+(mk
2)

2 > 0,

the sequence K ⊗ (mk
1,m

k
2) is

(K ⊗ (mk
1,m

k
2))

k :=

 (mk
1,m

k
2), 1 ≤ k ≤ K,

(0, 0), K + 1 ≤ k <∞

Therefore, define MM as the set of optimal sequences of all clusters for (5.3.7)

MM :=
{
K ⊗ (mk

1,m
k
2) : K ⊗ (mk

1,m
k
2) minimizes (5.3.7) for Mi, i = 1, 2,

and e0(m
k) = e0(m

k),mk = (mk
1,m

k
2)
}
.
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Then, the limiting energy functional F0 can be defined as

F0(v0) :=



∑2
i,j=1

Γij

2

{∑K
k=1[f(m

k
i ,m

k
j ) +mk

im
k
jRT2(0)]+

∑K
k,ℓ=1
k ̸=ℓ

mk
im

ℓ
jGT2(xki − xℓj)

} if v0 =
K∑
k=1

mkδxk , {x1, . . . , xK}

with distinct points in T2 and

K ⊗mk ∈ MM

∞ otherwise,

(5.5.7)

where

f(mk
i ,m

k
j ) =

1

2π

∫
Ak

i

∫
Ak

j

log
1

|x− y|
dxdy

and Ak are the minimizers of e0(m
k) and defined in the first Γ-limit.

Theorem 5.5.3. As a result,

Fη
Γ−→ F0 as η → 0.

Condition 1 and Condition 2 of Theorem 5.5.2 are still hold with the replacing of Eη and E0

with Fη and F0.

5.6 Geometric Properties of Global Minimizers

In this section, the geometric properties of global minimizers of e0(M) is described [16].

The following lemmas help to overcome the difficulty which there is not such simple formula

for the double bubbles. Besides, for the single bubble case, the prove proofs are analogous

mostly and much easier.

Lemma 5.6.1. Since

∂

∂m1

p(m1,m2) = lim
ε→0+

p(m1 + ε,m2)− p(m1,m2)

ε
= lim

ε→0+

p(m1,m2)− p(m1 − ε,m2)

ε
,

then p(m1 ±−ε,m2) is needed to bound.
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Here are some definitions that need to be introduced [16]. Let B represents the double

bubbles with masses (m1,m2). Let Ci represents the circular arc of the boundary of the lobe

with the mass mi, radius ri, and center Oi, which i = 1, 2. Let C0 represents the central

arc by P , which is one of the triple junction points by the tangent lines τi to Ci at P and

i = 0, 1, 2. In addition, the angle between two tangent lines τi and τj with i ̸= j is 2π/3.

Besides, let Tt(C1) represents the scaling of C1 and center at O1, and t > 0 is the ratio.

Upper Bound

Starting with the upper bound of the double bubble, which is p(m1+ε,m2), and only describe

near P since it is the same construction near the other triple P̃ . Please see Figure 2 [16].
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Figure 2: Construction for the upper bound of p(m1 + ε,m2).

First, set Tt(C1) with t = 1+ δ to enlarge C1 for some δ = δ(ε). Then, connect the triple

junction point P ∈ C0 ∪C2 to Tt(C1) with the segment St := PQt, where Qt := Tt(C1) ∩ τ1.

For the other triple junction point P̃ , the process is very similar that connect to Tt(C1) with

the segment S̃t := P̃ Q̃t, where Q̃t is the reflection of Qt with respect to O1O2.

Moreover, set an admissible competitor Bt with mass x + ε of type I constituent and

mass m2 of type II constituent, and does not need to be a double bubble. Therefore, Bt is
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the region inside

Bt := C0 ∪ C2 ∪ Q̂Qt ∪ St ∪ S̃t.

Set θt := ∠PO1Qt and the triangle △PO1Qt satisfies

|O1 −Qt| = r1t, |O1 − P | = r1, cos θt =
|O1 − P |
|O1 −Qt|

=
1

t
, H1(St) = r1 tan θt.

Therefore, θt =
√
2δ + o(

√
δ) when t = 1 + δ with 0 < δ ≪ 1 since

cos θt = 1− (θt)
2

2
+O((θt)

4) =
1

1 + θ
= 1− θ + o(δ).

Since the arc length of C1 in △PO1Qt is r1θt, thus

|H1(St)−H1(C1 ∩△PO1Qt)| = r1(tan θt − θt) = r1

((θt)3
3

+O((θt)
5)
)
= O(δ

√
δ),

and

|H1(S̃t)−H1(C1 ∩△P̃O1Q̃t)| = O(δ
√
δ).

Therefore, the difference in perimeter is

H1(∂Bt)−H1(∂B)

=
[
H1(Q̂Qt) +H1(St) +H1(S̃t) +H1(C0) +H1(C2)

]
−
[
H1(C1) +H1(C0) +H1(C2)

]
= 2r1(1 + δ)(θ1 − θt)− 2r1(θ1 − θt) +O(δ

√
δ)

= 2θ1r1δ +O(δ
√
δ).
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Therefore, the estimated difference in area is

H2(Bt)−H2(B)

= (θ1 − θt)r
2
1[(1 + δ)2 − 1] + 2

[
H2(△PO1Qt)−

θtr
2
1

2

]
= 2θ1r

2
1δ +O(δ

√
δ) + r21(tan θt − θt)

= 2θ1r
2
1δ +O(δ

√
δ).

As a result, the difference in area between the competitor Bt and the original double bubble

B is

2θ1r
2
1δ +O(δ

√
δ)

Since the difference above has to be equal to ε, then

δ =
ε

2θ1r21
+ o(ε),

and

lim
ε→0+

p(m1 + ε,m2)− p(m1,m2)

ε
≤ lim

ε→0+

H1(∂Bt)− p(m1,m2)

ε
= lim

ε→0+

2θ1r1δ +O(δ
√
δ)

ε
=

1

r1
.

Lower Bound

Furthermore, the set up for the lower bound is very similar as the process of upper bound.

Starting with the lower bound of the double bubble, which is p(m1−ε,m2), and only describe

near P since it is the same construction near the other triple P̃ . Please see Figure 3 [16].

First, set Tt(C1) with t = 1− δ to shrink C1 for some δ = δ(ε). Then, connect the triple

junction point P ∈ C0 ∪C2 to Tt(C1) with the segment St := PQt that is tangent to T1(C1)

at Qt. For the other triple junction point P̃ , the process is very similar that connect to

Tt(C1) with the segment S̃t := P̃ Q̃t, where Q̃t is the reflection of Qt with respect to O1O2.

Moreover, set an admissible competitor Bt with mass x + ε of type I constituent and
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Figure 3: Construction for the lower bound of p(m1 − ε,m2).

mass m2 of type II constituent, and does not need to be a double bubble. Therefore, Bt is

the region inside

Bt := C0 ∪ C2 ∪ Q̂Qt ∪ St ∪ S̃t.

Set θt := ∠PO1Qt and the triangle △PO1Qt satisfies

|O1 −Qt| = r1t, θt = arccos
|O1 −Qt|
|O1 − P |

= t, H1(St) = r1 sin θt.

Therefore, θt =
√
2δ + o(

√
δ) when t = 1− δ. Therefore, the difference in perimeter is

H1(∂B)−H1(∂Bt)

=
[
H1(C1) +H1(C0) +H1(C2)

]
−
[
H1(Q̂Qt) +H1(St) +H1(S̃t) +H1(C0) +H1(C2)

]
= 2θ1r1 − 2(θ1 − θt)r1(1− δ)− 2r1 sin θt +O(δ

√
δ)

= 2θ1r1δ +O(δ
√
δ).
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Therefore, the estimated difference in area is

H2(B)−H2(Bt)

= (θ1 − θt)r
2
1[(1− 1− δ)2] + 2

[θtr21
2

−H2(△PO1Qt)
]

= 2θ1r
2
1δ +O(δ

√
δ) + r21(θt − sinθt cos θt)

= 2θ1r
2
1δ +O(δ

√
δ).

As a result, the difference in area between the competitor Bt and the original double bubble

B is

2θ1r
2
1δ +O(δ

√
δ)

Since the difference above has to be equal to ε, then

δ =
ε

2θ1r21
+ o(ε),

and

lim
ε→0+

p(m1,m2)− p(m1 − ε,m2)

ε
≥ lim

ε→0+

p(m1,m2)−H1(∂Bt)

ε
= lim

ε→0+

2θ1r1δ +O(δ
√
δ)

ε
=

1

r1
.

As a result, it holds

∂

∂mi

p(m1,m2) =
1

ri
, i = 1, 2,

where ri = ri(m1,m2).

Consider two arbitrary different double bubbles Bk, Bh and set xk := mk
1, yk := mk

2

represents the masses of the two lobes of Bk. Then there exists

e0(xk + ε, yk)− e0(xk, yk) = ε
∂e0(xk, yk)

∂xk
+
ε2

2

∂2e0(xk, yk)

∂x2k
+O(ε3),

e0(xh − ε, yh)− e0(xh, yh) = −ε∂e0(xh, yh)
∂xh

+
ε2

2

∂2e0(xh, yh)

∂x2h
+O(ε3),
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since the minimality of B gives the necessary condition as

0 ≤ e0(xk + ε, yk) + e0(xh − ε, yh) +
∑

j≥1,j ̸=k,h

e0(xj, yj)−
∑
j≥1

e0(xj, yj)

= ε
(∂e0(xk, yk)

∂xk
− ∂e0(xh, yh)

∂xh

)
+
ε2

2

(∂2e0(xk, yk)
∂x2k

+
∂2e0(xh, yh)

∂x2h

)
+O(ε3).

Therefore,

∂e0(xk, yk)

∂xk
=
∂e0(xh, yh)

∂xh
,

∂2e0(xk, yk)

∂x2k
+
∂2e0(xh, yh)

∂x2h
≥ 0,∀k ̸= h

since the arbitrariness of ε. In addition, the pure second derivative in yk is analogous.

Lemma 5.6.2. As a result, there are at least two double bubbles in an arbitrary minimizing

configuration B of (5.3.7) represented by Bk, k = 1, 2, · · · . Set mk
1 and mk

2 represent the

masses of the two lobes of Bk. Then the pure second derivatives satisfy

∂2e0(m
k
1,m

k
2)

∂(mk
1)

2
,
∂2e0(m

h
1 ,m

h
2)

∂(mh
2)

2
≥ 0

for all except at most one such index k respect to h.

Moreover, by Lemma 5.6.1, set r1 = r1(m1,m2), then there exist

∂e0(m1,m2)

∂m1

=
Γ11m1 + Γ12m2

2π
+

1

r1
,

∂2e0(m1,m2)

∂m2
1

=
Γ11

2π
+

∂

∂m1

1

r1
.

Therefore, it is necessary to show that

lim
m1→0

∂

∂m1

1

r1
= −∞, (5.6.1)

since there exists a threshold m∗
1 such that

∂

∂m1

1

r1
< −Γ11

2π
,
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for any m1 < m∗
1. Thus, consider an asymmetric double bubble bounded by three circular

arcs of radii r0, r1, r2 with m1 < m2 as shown in Figure 4 [16].

Figure 4: An asymmetric double bubble with radii ri and half-angles θi, i = 0, 1, 2.

Note that r0 is the radius of the common boundary of the two lobes of the double bubbles.

θ0 is half of the angle associated with the middle arc. h is the half of the distance between

two triple junction points. The following equations hold [32]

m1 = r21(θ1 − cos θ1 sin θ1) + r20(θ0 − cos θ0 sin θ0), (5.6.2)

m2 = r22(θ2 − cos θ2 sin θ2) + r20(θ0 − cos θ0 sin θ0), (5.6.3)

h0 = r0 sin θ0 = r1 sin θ1 = r2 sin θ2, (5.6.4)

(r0)
−1 = (r1)

−1 − (r2)
−1, (5.6.5)

0 = cos θ1 + cos θ2 + cos θ0, (5.6.6)

where r0, r1, r2 and θ0, θ1, θ2 are the half-angles associated with the three arcs that depended

on m1 and m2 implicitly. Combine (5.6.4) and (5.6.5), then

sin θ1 − sin θ2 − sin θ0 = 0. (5.6.7)
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Combine (5.6.6) and (5.6.7), then

cos(θ1 + θ0) = −1

2
, cos(θ2 − θ0) = −1

2
. (5.6.8)

Therefore,

θ1 =
2π

3
− θ0, θ2 =

2π

3
+ θ0. (5.6.9)

Considering the case m1 → 0, it implies h → 0 and r2 →
√
m2/π. Therefore, θ2 → π

since θ0, θ1 → π/3 so that θ0 = π/3 − ε, θ1 = π/3 + ε, θ2 = π − ε. Therefore, from (5.6.4),

there exists

h = r2 sin(π − ε) = r1 sin(π/3 + ε) = r0 sin(π/3− ε). (5.6.10)

Then,

r1 = r2
sin ε

sin(π/3 + ε)
, r0 = r2

sin ε

sin(π/3− ε)
. (5.6.11)

As a result, (5.6.2) and (5.6.3) can be written as

m2 = r22

[
π − ε+

1

2
sin(2ε)− sin2 ε

sin2(π/3− ε)

(π
3
− ε− 1

2
sin(

2π

3
− 2ε)

)]
m1 = r22

[ sin2 ε

sin2(π/3 + ε)

(π
3
+ ε− 1

2
sin(

2π

3
+ 2ε)

)
+

sin2 ε

sin2(π/3− ε)

(π
3
− ε− 1

2
sin(

2π

3
− 2ε)

)]
= m2

sin2 ε
sin2(π/3+ε)

(
π
3
+ ε− 1

2
sin(2π

3
+ 2ε)

)
+ sin2 ε

sin2(π/3−ε)

(
π
3
− ε− 1

2
sin(2π

3
− 2ε)

)
π − ε+ 1

2
sin(2ε)− sin2 ε

sin2(π/3−ε)

(
π
3
− ε− 1

2
sin(2π

3
− 2ε)

)
(5.6.12)

Therefore, set

N(ε) :=
sin2 ε

sin2(π/3 + ε)

(π
3
+ ε− 1

2
sin(

2π

3
+ 2ε)

)
+

sin2 ε

sin2(π/3− ε)

(π
3
− ε− 1

2
sin(

2π

3
− 2ε)

)
=O(ε2),

D(ε) :=π − ε+
1

2
sin(2ε)− sin2 ε

sin2(π/3− ε)

(π
3
− ε− 1

2
sin(

2π

3
− 2ε)

)
= π +O(ε2).
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Then, m1 =
N(ε)
D(ε)

m2. Thus,

1

m2

dm1

dε
=
N ′(ε)D(ε)−D′(ε)N(ε)

D(ε)2
=

16

3π

(π
3
−

√
3

4

)
ε+O(ε2),

where

N ′(ε) =
16

3

(π
3
−

√
3

4
)ε+O(ε2), D′(ε) =

8

3

(π
3
−

√
3

4

)
ε+O(ε2).

Furthermore, it is possible to compute the derivative ∂r1
∂ε

from (5.6.11) and (5.6.12) that

r12 = r22
sin2 ε

sin2(π/3 + ε)
=

sin2 ε

sin2(π/3 + ε)D(ε)
m2,

then

1

m2

∂r21
∂ε

=
sin 2ε

sin2(π/3 + ε)D(ε)
− 2 sin2 ε cos(2π/3 + ε)

sin3(π/3 + ε)D(ε)
− sin2 εD′(ε)

sin2(π/3 + ε)D2(ε)
=

8

3π
ε+O(ε2).

Therefore,

∂r1
∂ε

=
1

2r1

∂r21
∂ε
dm1

dε

=
1

2r1

8
3π
ε+O(ε2)

16
3π

(
π
3
−

√
3
4

)
ε+O(ε2)

≥ C

r1
> 0,

for all sufficiently small ε < ε0 with C where ε0 is a universal constants independent of Γij

and Mi, i, j = 1, 2. Since θ1 ∈ (π/3, 2π/3) in a double bubble, then,

π

3
r21 ≤ m1 ≤ πr21.

Therefore, there exists another constant C ′ > 0 such that

∂

∂m1

1

r1
= − 1

r21

∂r1
∂m1

≤ − C ′

m
3/2
1

83



as m1 → 0. Besides, note that

∂2e0(m1,m2)

∂m2
1

=
Γ11

2π
+

∂

∂m1

1

r1
≤ Γ11

2π
− C ′

m
3/2
1

.

Lemma 5.6.3. As a result, there exist constant m∗
i such that

∂2e0(m1,m2)

∂m2
i

< 0, for all mi < m∗
i , i = 1, 2,

with given Γii and m
∗
i only depends on Γii.

In addition, consider a one single bubble with mass m of type I material. Replacing it

with with two single bubbles with mass m/2. Then, the energy will be changed by

∆ = 2
[Γ11m

2

16π
+
√
2mπ

]
−
[Γ11m

2

4π
+ 2

√
mπ
]
= −Γ11m

2

8π
+ 2

√
mπ(

√
2− 1).

Therefore, the minimality of B needs ∆ ≥ 0, which means if and only if

m3/2 ≤ 16π
√
π(
√
2− 1)

Γ11

,

where B is the minimizing configuration of (5.3.7). Moreover, consider a lobe of a double

bubble with mass m of type I material. Replacing it with two single bubbles with mass m/2.

Then, the energy will be changed by

∆ = 2
[Γ11m

2

16π
+
√
2mπ

]
+

Γ22m
2
2

4π
+ 2

√
m2π −

[Γ11m
2 + 2Γ12mm2 + Γ22m

2
2

4π
+ p(m1,m2)

]
≤ −Γ11m

2

8π
+ 2

√
2mπ.

Therefore, the minimality of B needs ∆ ≥ 0, which means if and only if

m3/2 ≤ 16π
√
2π

Γ11

.
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For type II material, the progress is analogous.

Lemma 5.6.4. As a result, there is no single bubble nor lobe of double bubbles of i-th

constituent in a minimizing configuration of (5.3.7), having mass greater than

M∗i :=
8π

Γ
2/3
ii

, i = 1, 2.

Afterwards, consider there is a minimizing configuration with at least two single bubbles

of type I material with mass mk
1 = x ≤ y = ml

1. Replacing it with one single bubble with

mass x+ y. Then, the energy will be changed by

∆ =
Γ11(x+ y)2

4π
+ 2
√
π(x+ y)−

[Γ11(x
2 + y2)

4π
+ 2

√
π(
√
x+

√
y)
]

= −Γ11xy

2π
+ 2

√
π(
√
x+ y −

√
x−√

y).

Therefore, the minimality of the minimizing configuration needs ∆ ≥ 0, which means if and

only if

Γ11xy

2π
≥ 2

√
π(
√
x+

√
y −

√
x+ y).

Then,

Γ11xy

4π
√
π
≥

2
√
xy

√
x+

√
y +

√
x+ y

≥
√
xy

√
x+

√
y

(x≤y)

≥
√
x

2
.

Besides, from the above lemma, it gives x, y ≤M∗
1 and follows

Γ11

√
xM∗

1

2π
√
π

≥
Γ11

√
xy

2π
√
π

≥ 1.

Thus, there exists a constant

m1
s := 4π3/(Γ11M

∗
1 )

2, y ≥ x ≥ m1
s.

Lemma 5.6.5. As a result, at most one single bubble of i-th constituent in a minimizing

configuration has mass mk
i < m1

s, where the constant m1
s > 0, i = 1, 2 and only depends on
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Γii.

In addition, if there exists any other double bubbles when there exists at most one double

bubble with lobe of i-th constituent with mass less than m∗
i , i = 1, 2, then any remaining

double bubbles Bk = (mk
1,m

k
2) satisfying m

k
1 ≥ m∗

1 and mk
2 ≥ m∗

2. The energy will change

by replacing a double bubbles into two single bubbles as

∆ =
2∑

i=1

Γii(m
k
i )

2

4π
+ 2

√
π(
√
mk

1 +
√
mk

2)−
[Γ12m

k
1m

k
2

2π
+

2∑
i=1

Γii(m
k
i )

2

4π
+ p(mk

1,m
k
2)
]

≤ 2
√
π(
√
mk

1 +
√
mk

2)−
Γ12m

k
1m

k
2

2π
.

When M∗
i and m∗

i depend only on Γii, i = 1, 2 as

Γ12 ≤
4π

√
π(
√
M∗

1 +
√
M∗

2 )

m∗
1m

∗
2

,

then by combining the minimalaity of the minimizing configuration and Lemma 5.6.4, the

following holds

0 ≤ ∆ ≤ 2
√
π(
√
mk

1 +
√
mk

2)−
Γ12m

k
1m

k
2

2π
≤ 2

√
π(
√
M∗

1 +
√
M∗

2 )−
Γ12m

∗
1m

∗
2

2π
. (5.6.13)

Therefore, there is not any double bubble with masses mk
1 ≥ m∗

1 and mk
2 ≥ m∗

2 with the

above Γ12 because the splitting will decrease the energy.

Lemma 5.6.6. As a result, any minimizing configuration of (5.3.7) has at most two double

bubbles, and

Γ12 >
4π

√
π(
√
M∗

1 +
√
M∗

2 )

m∗
1m

∗
2

, Γ11 > 0,Γ22 > 0,M1 > 0,M2 > 0.

Lemma 5.6.7. If any minimizing configuration of (5.3.7) has only single bubbles, then

there are finite single bubbles and all the single bubbles are of the same size with the given

Γ11,Γ12,Γ22,M1, andM2. The proof of this lemma follows the binary case [[17], Lemma 6.2].
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5.7 Proof

Proof of Theorem 5.4.1

In conclusion, by combining Lemma 5.6.2 and Lemma 5.6.3, there exists at most one double

bubble whose lobe of the i-th constituent has mass less than m∗
i , i = 1, 2 for any minimizing

configuration for e0(M). As a result, there exist

2 + min
{M1

m∗
1

,
M2

m∗
2

}

at most double bubbles.

Proof of Theorem 5.4.2 (Coexistence)

Based on the research of [31], two single bubbles of different types are more costly than a

double bubbles of the same masses. When Γ12 = 0, the (5.3.5) will be

e0(m) = p(m1,m2) +
Γ11(m1)

2

4π
+

Γ22(m2)
2

4π
. (5.7.1)

Then, (5.3.6) would be

e0(m1, 0) + e0(0,m2) = 2
√
πm1 + 2

√
πm2 +

Γ11(m1)
2

4π
+

Γ22(m2)
2

4π
. (5.7.2)

if there are two single bubbles with different constituents types. Therefore, all single bubbles

must be the same type of constituent. There are two different situations needed to discuss.

• Case I: Choosing M1 = K1M
∗
1 (M∗

i is defined in Lemma 5.6.4 if there exists any single

bubbles and all single bubbles are of type II constituent. Combining Lemma 5.6.2,

Lemma 5.6.3 and Lemma 5.6.4, there is at most one double bubble’s lobe of type I
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constituent has mass less than m∗
1 and other double bubbles’ lobes of type I constituent

must have mass between m∗
1 and M

∗
1 . Therefore, there are at least K1 double bubbles.

Set Kd be the total number of double bubbles and Kd < 1 + M1/m
∗
1. Combining

Lemma 5.6.2, Lemma 5.6.3 and Lemma 5.6.4, there is at most one double bubble’s

lobe of type II constituent has mass less than m∗
2 and other double bubbles’ lobes of

type II constituent must have mass between m∗
2 and M∗

2 . Thus,

M2 ≥ (1 +M1/m
∗
1)M

∗
2 +K2M

∗
2 = (1 + (K1M

∗
1 )/m

∗
1)M

∗
2 +K2M

∗
2 ,

which means thatKdM
∗
2 represents the type II constituent is used by all double bubbles.

Therefore, all the remaining type II constituent have to go into single bubbles and there

are at least K2 single bubbles.

• Case II: Choosing M2 = K2M
∗
2 (M∗

i is defined in Lemma 5.6.4) if there exists any

single bubbles and all single bubbles are of type I constituent. Thus, by the similar

progress,

M2 ≥ (1 +M2/m
∗
2)M

∗
1 +K1M

∗
1 = (1 + (K2M

∗
2 )/m

∗
2)M

∗
1 +K1M

∗
1 .

Then, choose

M1 ≥ max

{
K1M

∗
1 ,
(
1 +

K2M
∗
2

m∗
2

)
M∗

1 +K1M
∗
1

}

=
(
1 +

K2M
∗
2

m∗
2

)
M∗

1 +K1M
∗
1 , ∀ M1 ≥M1

M2 ≥ max

{
K2M

∗
2 ,
(
1 +

K1M
∗
1

m∗
1

)
M∗

2 +K2M
∗
2

}

=
(
1 +

K1M
∗
1

m∗
1

)
M∗

2 +K2M
∗
2 , ∀ M2 ≥M2.
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As a result, the minimizing configuration of (5.3.7) have at least K1 double bubbles and K2

single bubbles.

Proof of Theorem 5.4.2 (All Single Bubbles)

The main idea to prove this theorem is to prove that there is a constant mi
d > 0, which

only depends on Γii that any lobe of i-th constituent of a double bubbles in the minimizing

configuration of (5.3.7) has mass at least mi
d > 0.

Consider a double bubble D = (x,m2) with M1 > 4M∗
1 . Then, combined with Lemma

5.6.6 , there exist at least two double bubbles of type I constituent. In addition, there exists

a single bubble S of type I constituent with mass m ≥ m1
s since Lemma 5.6.5. The energy

will change be removing the the mass ε from the lobe of type I constituent and adding it to

S as

∆ =
[Γ11(x− ε)2

4π
+

Γ12(x− ε)m2

2π
+

Γ22m
2
2

4π
+ p(x− ε,m2) +

Γ11(m+ ε)2

4π
+ 2
√
π(m+ ε)

]
−
[Γ11x

2

4π
+

Γ12xm2

2π
+

Γ22m
2
2

4π
+ p(x,m2) +

Γ11m
2

4π
+ 2

√
mπ
]

= −Γ11xε

2π
− Γ12m2ε

2π
+ p(x− ε,m2)− p(x,m2) +

Γ11mε

2π
+ 2
√
π(m+ ε)− 2

√
πm

=
(Γ11m

2π
+

√
π

m
− Γ11x+ Γ12m2

2π
− 1

r1

)
ε+O(ε2),

where r1 represents the radius of the lobe of mass x. Besides, the following holds since the

minimality of the minimizing configuration of (5.3.7)

0 ≤ Γ11m

2π
+

√
π

m
− Γ11x+ Γ12m2

2π
− 1

r1
≤

Γ11M∗
1

2π
+

√
π

m1
s −

√
π

3x
,

where M∗
1 and m1

s are only depended on Γ11. Thus, the lower bound of x is proved. The

proof for any lobe of type II constituent is the same.

Furthermore, consider a double bubble with lobes of i-th constituent have masses xi, i =
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1, 2. The energy will be changed by splitting it into two single bubbles with masses x1 and

x2 by

∆ =
2∑

i=1

Γiix
2
i

4π
+ 2

√
π(
√
x1 +

√
x2)−

[Γ12x1x2
2π

+
2∑

i=1

Γiix
2
i

4π
+ p(x1, x2)

]
≤ 2

√
π(
√
M∗

1 +
√
M∗

2 )−
Γ12m1

dm2
d

2π
.

The following holds since the minimality of the minimizing configuration of (5.3.7)

0 ≤ 2
√
π(
√
M∗

1 +
√
M∗

2 )−
Γ12m1

dm2
d

2π
.

Define

Γ∗
12 :=

4π
√
π(
√
M∗

1 +
√
M∗

2 )

m1
dm2

d
.

In addition, since the M∗
i and mi

d are only depended on Γii, i = 1, 2 for all sufficiently large

Γ12. Thus, Γ12 > Γ∗
12 and there is not any double bubble.

Proof of Theorem 5.4.2 (One Double Bubble)

Assume there are two double bubbles that each lobe of i-th constituent has mass less than

m∗
i . However, since Lemma 5.6.3, this situation is prohibited. Therefore, there exist at most

one double bubble.

Assume there are two single bubbles of type I constituent with masses m1
1 and m2

1 re-

spectively. The following holds

[e0(m
1
1 − ε, 0) + e0(m

2
1 + ε, 0)]− [e0(m

1
1, 0) + e0(m

2
1, 0)]

=
[ ∂

∂m1

e0(m
2
1, 0)−

∂

∂m1

e0(m
1
1, 0)

]
ε

+
1

2

[ ∂2

(∂m1)2
e0(m

1
1, 0) +

∂2

(∂m1)2
e0(m

2
1, 0)

]
ε2 +O(ε3).
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Besides, since the requirements of the minimality of the minimizing configuration of (5.3.7),

∂

∂m1

e0(m
2
1, 0) =

∂

∂m1

e0(m
1
1, 0) = 0.

Since the proof of Lemma 5.6.7 where m1
1,m

2
1 < M1 < min{m∗

1, πΓ
−2/3
11 }, the following holds

∂2

(∂m1)2
e0(m

1
1, 0) < 0,

∂2

(∂m1)2
e0(m

2
1, 0) < 0.

However, it is prohibited by the minimality of the minimizing configuration of (5.3.7). There-

fore, there exist at most one single bubble of each constituent.

Assume there is a single bubble with mass m of type I constituent without loss of gen-

erality. Also, assume there is double bubble with lobes of masses m1 and m2. Then, the

following holds

[e0(m− ε, 0) + e0(m1 + ε,m2)]− [e0(m, 0) + e0(m1,m2)][ ∂

∂m1

e0(m1,m2)−
∂

∂m1

e0(m, 0)
]
ε+

1

2

[ ∂2

(∂m1)2
e0(m, 0) +

∂2

(∂m1)2
e0(m1,m2)

]
ε2 +O(ε3).

Besides, since the requirements of the minimality of the minimizing configuration of (5.3.7),

the following holds

∂

∂m1

e0(m1,m2) =
∂

∂m1

e0(m, 0) = 0.

Since the combining of the Lemma 5.6.3 and the proof of Lemma 5.6.7 where m1
1,m

2
1 <

M1 < min{m∗
1, πΓ

−2/3
11 }, the following holds

∂2

(∂m1)2
e0(m, 0),

∂2

(∂m1)2
e0(m1,m2).

However, it is prohibited by the minimality of the minimizing configuration of (5.3.7). There-

fore, there exist no coexistence.
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As a result, with the choice of Γ12, there exists

Γ12

2π
M1M2 + p(M1,M2) < 2

√
π(
√
M1 +

√
M2)

by comparing the case of one double bubble with lobes of masses M1 and M2 against the

case of two single bubbles of different constituents with masses M1 and M2.
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