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Abstract

Traditional supervised learning methods depend heavily on labeled data, which is both costly and

time-intensive to acquire. Self-supervised learning approaches present a promising alternative to

supervised learning, enabling the utilization of unlabeled data. Thus, this research aims to build

an advanced semi-supervised semantic segmentation model that strikes a balance between self-

supervised and fully supervised paradigms for visual perception applications in an autonomous

driving environment.

In this direction, the thesis is structured into three distinct phases, beginning with self-supervised

image classification and progressing toward bi-level image segmentation, ultimately culminating

in the development of an advanced semantic segmentation model. Initially, this research employs

a simple contrastive learning framework (SimCLR) to classify medical images, specifically focus-

ing on monkeypox diagnosis from skin lesion images, while integrating a federated learning (FL)

framework to ensure data privacy. Monkeypox classification is a simple binary classification task

and the dataset found for this problem, in this thesis, is very manageable on the computational re-

sources that were available at the onset of this research. It paved the way to grasp non-supervised

learning basics and explore how they differ from traditional supervised learning methods.

The subsequent phase involves the development of an efficient convolutional neural network

(CNN) with an attention mechanism, applied to the bi-level segmentation task of road pavement

crack detection. Similar to the Monkeypox classification, this is also a binary classification task,

but at pixel-level, i.e., it is a two-way semantic segmentation problem. Hence, the number of

samples found in the relevant datasets is once again manageable on the computational resources

available during the research. That formed the basis for learning the basics of deep learning (DL)-
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based image segmentation and establishing a solid foundation for the main objective of building

an advanced semantic segmentation model. Note that the segmentation model built to solve this

problem is the architecture that is reused in the generator sub-module of the generative adversarial

network (GAN) developed for the semi-supervised semantic segmentation task in the next phase

of the thesis.

In the final phase, the research leverages insights from previous stages to construct an enhanced

semi-supervised semantic segmentation model. This model incorporates an attention-driven adver-

sarial training strategy within a GAN framework, designed to improve model performance. The

proposed method generates realistic segmentation maps for unlabeled data while enhancing the

model accuracy on labeled data. A novel patch-wise discriminator is introduced to extract rich

contextual information, further boosting model efficacy.

Extensive ablation studies conducted on widely adopted benchmark datasets across all three

phases of the research demonstrate the effectiveness of the proposed models, achieving state-

of-the-art performance. The findings of this research contribute to the advancement of semi-

supervised learning in computer vision, offering a practical approach to improving model per-

formance while reducing reliance on labeled data.
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Chapter 1

Introduction

1.1 Thesis Overview

Computer vision, the field of computing that allows computers to interpret and comprehend the vi-

sual environment, has advanced dramatically with the introduction of deep learning. Deep learning

(DL), particularly convolutional neural networks, has transformed several computer vision appli-

cations, including image classification, object detection, and image segmentation. Recently, in

the realm of computer vision, semi-supervised learning (SSL) has emerged as a pivotal approach

for leveraging both labeled and unlabeled data, addressing the limitations of supervised learning

approaches that require large amounts of labeled datasets. Despite the advancement in SSL, there

are still several challenges in this field. Key issues include the effective integration of labeled and

unlabeled data, the risk of propagating errors from incorrect pseudo-labels, and the need for ro-

bust algorithms that can generalize well across various tasks. Moreover, designing SSL methods

that efficiently utilize computational resources while maintaining high accuracy remains a signifi-

cant challenge. The complexity of these problems is heightened when transitioning from simpler

tasks like classification to more complex ones like image segmentation, which require detailed

pixel-level predictions.

This thesis leverages cutting-edge advancements in DL and SSL to develop improved models

for semantic segmentation—paving the way for transformative applications in computer vision.

1
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Publication #3 –

2024 IEEE PACRIM

Figure 1.1: Illustration of the thesis roadmap. It subsumes three stages, each dedicated to

acquiring essential knowledge needed to achieve the final objective of the thesis.

As illustrated in Fig. 1.1 this thesis adopts a pragmatic approach, systematically building a robust

knowledge base before advancing to the development of an improved semi-supervised semantic

segmentation model, which is the central objective of the thesis. Given the complexity of semantic

segmentation in computer vision, the study begins with an exploration of a self-supervised image

classification model to grasp the fundamental concepts of various machine learning approaches. It

is worth noting that if a self-supervised model is fine-tuned on a small amount of labeled data after

being initially trained on unlabeled data, it can effectively function as a semi-supervised model.

Thus, the first research phase lays the groundwork for understanding general non-supervised learn-

ing approaches and distinguishing them from traditional supervised methods (cf. Chapter 3).

In the second phase, a binary segmentation model is constructed to solidify the principles of

DL-based image segmentation, providing a strong foundation for progressing toward more intricate

semantic segmentation tasks (cf. Chapter 4). Finally, in the last phase by leveraging the insights

gained from the previous two phases, this thesis culminates in the development of an improved

semi-supervised learning framework for image semantic segmentation, specifically tailored for

autonomous driving applications (cf. Chapter 5), thereby achieving the main objective.
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1.2 Motivation

Traditional supervised deep learning approaches require large amounts of labeled data to achieve

high performance. However, acquiring such data often involves human expertise, domain knowl-

edge, and time, making the data acquisition process expensive. In some cases, privacy concerns

make collecting such samples impractical. For example, in medical imaging, annotating each pixel

in a scan to distinguish between tumors and healthy tissue requires substantial time and expertise

from medical professionals. Similarly, in satellite imagery, identifying different land covers or

tracking changes over time necessitates detailed analysis by experts. In autonomous driving, label-

ing road cracks or segmenting different objects in the scene (e.g., roads, pedestrians, and vehicles)

is labor-intensive and costly, as it requires pixel-level annotations across multiple semantic objects.

On the other hand, SSL offers a solution by leveraging a smaller set of labeled data alongside

a larger collection of unlabeled data, thereby reducing the dependency on extensive labeled data

samples to build a deep learning model for a given application. SSL helps models generalize bet-

ter by incorporating unlabeled data, particularly in scenarios with limited labeled data, leading to

improved accuracy and robustness as the models are exposed to a wider range of examples. In

medical imaging, for instance, SSL can use vast amounts of available but unlabeled scans, such as

Magnetic Resonance Imaging (MRI), to enhance the model’s understanding of normal and patho-

logical variations, thereby improving diagnostic accuracy. In satellite image analysis, SSL can

utilize extensive archives of unlabeled images to improve the model’s ability to detect and classify

various land covers and changes, enhancing environmental monitoring and resource management.

For autonomous driving, SSL can employ large volumes of unlabeled driving footage to better

identify road cracks and segment different elements of the driving environment, thus enhancing

vehicle safety and navigation.

Moreover, with the growing availability of unlabeled data, SSL provides a scalable solution for

training models without requiring a proportional increase in labeled data. This efficiency is crucial

as datasets expand in size and complexity. For example, as new medical imaging technologies pro-

duce more detailed and higher-resolution scans, the amount of available unlabeled data increases
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exponentially. Similarly, as satellite imagery continuously captures the Earth’s surface, the volume

of unlabeled data grows rapidly. In autonomous driving, the constant stream of driving data from

sensors and cameras leads to an ever-growing pool of unlabeled data. SSL can effectively harness

this data, enabling the development of more accurate and robust models without a corresponding

increase in labeling efforts.

In conclusion, SSL for image classification and segmentation provides a promising approach

to overcoming the challenges associated with acquiring labeled data. By effectively leveraging un-

labeled data, SSL can enhance model performance, reduce reliance on costly manual annotations,

and offer scalable solutions for managing large and complex datasets. This makes SSL a crucial

technique for advancing fields such as medical imaging, satellite image analysis, and autonomous

driving. However, The development of a model using SSL involves the following key challenges:

effective use of unlabeled data, handling class imbalance and bias in labeled data, inaccuracies in

pseudo-labeling, determining the optimal labeled data proportion, selection of data augmentation

and regularization functions, computational complexity, and interpretability and explainability.

1.3 Technical approach

In this study, the focus is on developing advanced semi-supervised learning models aimed at en-

hancing image classification and segmentation. The approach is structured into three main stages:

feature extractions, model building and training, and evaluation. This research introduces a robust

semi-supervised approach that leverages both labeled and unlabeled datasets to achieve accurate

image semantic segmentation. These solutions are derived from extensive experimental studies

conducted on well-known benchmark datasets. By combining limited labeled data with a larger

pool of unlabeled data, the proposed models are intended to perform the desired tasks more ef-

fectively. Finally, a thorough comparative analysis of the proposed models’ performance against

state-of-the-art methods will be conducted, highlighting their superiority and efficiency.
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1.4 Overview of Computer Vision: Concepts and Applications

Computer vision is a branch of artificial intelligence that aims to enable computers to process and

understand visual information from the world, similar to how humans perceive their surroundings.

Computer vision encompasses several research domains, each of those domains addressing unique

challenges and driving the overall advancement of the field. Fig. 1.4 illustrates the practical ap-

plications of computer vision research. However, this study focuses on two core tasks: image

classification and image segmentation.

1.4.1 Image Classification

Image classification is the process of assigning a label or category to a complete image based on its

contents. For instance, in a dataset of animal photos, the objective is to identify whether an image

depicts a cat, dog, bird, or another animal. For recent advancements in deep learning, especially

with convolutional neural networks, the accuracy and efficiency of image classification have seen

remarkable improvements. These networks can learn to identify complex features within images,

allowing them to accurately distinguish between different classes. Fig. 1.2 shows an example of a

binary classification task performed by a simple neural network.

 ................. ..

 ................. ..

 ................. ..
Output

Cat

Hidden Layers

Figure 1.2: An illustration of deep learning-based image classification using a three-hidden layer

model that performs cat vs dog classification.
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In image classification, usually, the process begins with preprocessing steps such as resizing,

normalization, and data augmentation to prepare the images for the neural network. CNNs then use

multiple layers of filters to extract hierarchical features from the images, starting from low-level

features like edges and textures to high-level features representing specific objects or patterns. The

extracted features are then fed into fully connected layers, culminating in a classification layer that

calculates the probability distribution over the predefined classes.

Recent research has introduced advanced architectures, like the Residual Networks (ResNet) [4],

Densely Connected Convolutional Networks (DenseNet) [5], and Efficiency-focused Networks

(EfficientNet) [6], which have pushed the boundaries of deep learning models for image classifi-

cation and related applications. Meanwhile, transfer learning has also become a popular approach,

where pre-trained models on large datasets, like ImageNet are fine-tuned on selective tasks, signif-

icantly reducing the training time and improving performance.

1.4.2 Image Segmentation

Image segmentation is a more intricate and detailed task than image classification. It is the process

of labeling the target image into regions, whereby pixel-level labels are generated. It has been a

cornerstone for several computer vision-based applications since pixel-level classification captures

intricate details of the input.

However, per-pixel annotations are not readily scalable, especially for large-scale datasets and

complex tasks, due to the following reasons: (i) Labeling each pixel of an image requires a sig-

nificant amount of manual effort and time, which becomes impractical for extensive datasets; (ii)

Accurate per-pixel labeling demands domain expertise and meticulous attention to detail, making

it challenging to ensure consistency and high quality; (iii) The volume of data in semantic segmen-

tation tasks is often large, leading to high computational and storage requirements for supervised

learning; (iv) Maintaining consistency and precision across all pixel labels is difficult, and errors in

labeling can negatively impact model performance. To address these issues, Semi-Supervised and

Self-Supervised Learning approaches are increasingly utilized to reduce reliance on large amounts

of labeled data by leveraging unlabeled data and pre-trained models.

6



Figure 1.3: Types of image segmentation: (a) an input, (b) instance segmentation with per-object

mask and class label, (c) semantic segmentation with per-pixel class labels, and (d) panoptic

segmentation with per-pixel class and instance-level labels.

Referring to Fig. 1.3, image segmentation can be broadly categorized into instance segmenta-

tion that detects and segments individual objects within an image, distinguishing between different

instances of the same class [7–10], semantic segmentation that classifies each pixel in an image

into predefined categories, providing a detailed understanding of the scene’s structure and con-

tent [11, 12], and panoptic segmentation [13–16], which combines the first two approaches to

detect and segment each object instance while simultaneously classifying each pixel into a seman-

tic category, providing a comprehensive understanding of both object identities and their spatial

layout. Semantic segmentation, in particular, has garnered significant interest across sectors, such

as agriculture, healthcare, transportation, and infrastructure management [17].

Various techniques can perform image segmentation, including edge-based, cluster-based, and

region-based methods. These methods can be implemented using supervised (learning from only

labeled data to map inputs to correct outputs), unsupervised (learning patterns and structures en-

tirely from unlabeled data without explicit ground truths), semi-supervised (leveraging a small

amount of labeled data along with a large amount of unlabeled data), or self-supervised (gen-
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erating labels from the data itself, learning useful representations by solving pretext tasks with-

out needing manually labeled data) machine learning approaches [18, 19] as elaborated in Sec-

tion 1.5.1. For medical image segmentation, CNNs are a widely used backbone model [20]. If

CNNs are considered for such medical image segmentation, the following three major challenges

should be overcome: (i) handling issues of high-resolution inputs, (ii) handling multiple objects

with various scales, and (iii) maintaining high object localization accuracy [21]. In this direction,

Chaudhary et al. [22] reported a semi-supervised model for eye image segmentation, in which they

utilized a domain-specific augmentation to perform a pretext task.

On the other hand, self-supervised learning approaches are also used for medical image anal-

ysis. The model developed by Dosovitskiy et al. [23] is one of the earliest such methods that

integrate a discriminative unsupervised feature learning scheme with a CNN, called Exemplar-

Net. Here, the model learns from unlabeled raw data, without needing manually annotated ground

truths. Different pretext tasks were used for pre-training, and then the model will be retrained to

perform a downstream task using a few labeled data. However, the author used self-supervised

learning for segmentation without fine-tuning. It is found in [24] that the model boosts the seg-

mentation performance after fine-tuning with some labeled data. In addition, the existing self-

supervised learning approaches still use manual annotation for fine-tuning the model with some

labeled data. This is because the self-supervised approach follows two steps. In the first step,

the model learns from representation learning using different pretext tasks, like augmentation, and

colorization. After that, it performs a downstream task, i.e., the pre-trained model is tested for a

task-specific operation using supervised or unsupervised learning approaches.

Similarly, image segmentation is also necessary for the agricultural sector, where it is pre-

dominantly used for insect detection, leaf disease segmentation, flower segmentation, and crop

segmentation. For instance, Wang et al. [25] proposed a conventional ML approach using k-means

clustering to segment types of crop insect pests. Similarly, Guldenring and Nalpantidis [26] worked

on agricultural image perception using SSL. They used a contrastive learning approach to perform

required pretext tasks. After that, they performed downstream tasks, including classification and

segmentation.
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In summary, it is found that semi-supervised learning approaches for image segmentation have

gained attention in computer vision applications across various fields, from medical imaging and

autonomous driving to satellite imagery, scene perception, and industrial inspection [22, 27–32].

These approaches leverage large amounts of unlabeled data along with a smaller set of labeled data

to enhance the performance and scalability of segmentation models, making them more robust and

generalizable to diverse tasks.. These approaches leverage large amounts of unlabeled data along

with a smaller set of labeled data to enhance the performance and scalability of segmentation

models, making them more robust and generalizable to diverse tasks.

1.4.3 Applications of Computer Vision

Computer VisionResearch Fields Application Areas

Safety/Security Robotics Self-Driving Face Recognition Health Care Augmented Reality

Image
Classification

Image
Manipulation

Motion 
Tracking

Image
Segmentation

Image 
Recognition

Image 
Detection

Figure 1.4: Overview of computer vision research fields and their applications.

Referring to Fig. 1.4, in safety and security, computer vision technologies are used for surveil-

lance, threat detection, and monitoring, enhancing public safety. In robotics, these technologies

enable robots to interact more effectively with their environment, facilitating navigation and ob-

ject manipulation. Self-driving cars rely heavily on computer vision for real-time perception and

decision-making, using techniques such as image segmentation and detection to navigate and avoid

obstacles. Health care is another significant application area, where computer vision is transform-

ing medical diagnostics and patient care. Techniques like image classification and segmentation

9



are used to analyze medical images, aiding in disease detection and diagnosis. Face recognition

technology, under image recognition, is widely used for identity verification and access control,

enhancing security. Augmented reality leverages computer vision to overlay digital information in

the real world, enriching user experiences in gaming, education, and retail.

In the context of semi-supervised learning, it’s possible to improve the generalization and ro-

bustness of a model by exposing it to a diverse set of examples during training. In medical imaging,

for instance, SSL can utilize vast amounts of unlabeled scans to improve diagnostic accuracy. In

autonomous driving, SSL can better identify and segment road features and obstacles by leverag-

ing the continuous stream of unlabeled driving footage. Overall, SSL in computer vision reduces

the dependency on extensive manual labeling, making it a cost-effective and efficient approach to

handling large and complex datasets.

10



1.5 Deep Learning

1.5.1 The Basic Deep Learning Paradigms

Unlabeled
Data

Train Model Predict Result

Labeled Data Train Model Predict Result

Unlabeled
Data

Train Model Predict Result

Labeled Data Train Model Predict ResultSupervised
Learning

Unsupervised
Learning

Unlabeled
Data

Visual 
Representation

Labeled Data

Fine-tune

Semi-
supervised
Learning

Self-
supervised
Learning

Figure 1.5: An overview illustrating the basic concepts of different machine learning paradigms.

As illustrated in Fig. 1.5, deep learning has experienced tremendous progress and diversified

into supervised, unsupervised, self-supervised, and semi-supervised approaches based on their type

of learning pipeline.

Supervised Learning

The supervised learning strategies rely heavily on large volumes of well-annotated data [33]. Un-

fortunately, obtaining such labeled data can be challenging, costly, and time-intensive. On the other

hand, unlabeled data is often plentiful and more accessible or affordable to collect. Therefore, it

becomes advantageous to harness this vast pool of unlabeled data to enhance learning performance

when only a limited number of labeled samples are available. This need has made semi-supervised

learning a significant focus in machine learning research over the past decade [34]. For readers
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interested in exploring SSL further, the following source is recommended - Deep Learning, An

MIT Press book, by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Unsupervised Learning

Unlike supervised learning, unsupervised learning involves training a model on data without la-

beled responses or outputs, to discover hidden patterns, structures, or relationships within the data.

Common techniques include clustering, where the model groups similar data points together, and

dimensionality reduction, which reduces the number of features while preserving essential infor-

mation. Examples of unsupervised learning algorithms include k-means clustering, hierarchical

clustering, and Principal Component Analysis (PCA). Unsupervised learning is beneficial for tasks

such as anomaly detection, data exploration, and feature extraction, where understanding the data’s

structure is the primary goal without the need for predefined labels. For readers interested in ex-

ploring SSL further, the following source is recommended - Unsupervised Learning: Foundations

of Neural Computation, Edited by Geoffrey Hinton, and Terrence J. Sejnowski.

Self-supervised Learning

Self-supervised learning is a machine learning paradigm where the model learns directly from the

data without relying on explicit labels. Instead, the model generates its own pseudo labels through

pretext tasks, which are specifically designed to help the model uncover useful data representations.

For instance, in image data, a self-supervised model might be trained to predict missing parts

of an image or to infer the context surrounding a specific patch. The features learned during

this process can later be fine-tuned or transferred to supervised tasks, such as classification or

object detection. By leveraging the inherent structure and patterns within the data, self-supervised

learning is particularly valuable in scenarios where labeled data is limited. For readers interested

in exploring SSL further, the following source is recommended - A Cookbook of Self-Supervised

Learning.
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Semi-supervised Learning

Since its introduction in the 1970s, semi-supervised learning has given rise to a wide array of

methodologies, such as generative models, semi-supervised support vector machines, graph-based

methods, and co-training approaches [35]. In recent years, deep neural networks have gained

prominence in many research areas, and there is a growing need to adapt the classic SSL frame-

works to these settings. This adaptation has led to the development of deep semi-supervised learn-

ing (DSSL), which explores how deep neural networks can effectively utilize both labeled and

unlabeled data. Numerous DSSL methods have been proposed and applied across various tasks

and domains, including image classification, object detection, semantic segmentation, text classi-

fication, and sequence learning.

SSL sits between supervised and unsupervised learning, leveraging both labeled and unlabeled

data to boost model accuracy. This approach is especially useful in situations where acquiring

labeled data is challenging or costly. By reducing the need for extensive labeled datasets, SSL has

become a valuable method in various fields. In healthcare, SSL proves highly beneficial, particu-

larly in medical imaging, where obtaining annotated data is both expensive and time-consuming.

For example, radiologists manually label scans to detect conditions such as tumors or fractures, a

process requiring specialized knowledge and significant effort. To tackle this, SSL uses a small set

of labeled medical images along with a larger pool of unlabeled images.

On the other hand, in the realm of self-driving cars, SSL is crucial for refining vehicle percep-

tion systems, which handle tasks like object detection, lane detection, and semantic segmentation.

These capabilities are essential for safe navigation, helping the vehicle understand its environ-

ment, recognize obstacles, and make informed driving decisions. Given that labeled data for rare

or hazardous driving scenarios is often limited, SSL becomes particularly valuable. For example,

a semi-supervised model trained to recognize pedestrians or cyclists can start with a small set of

labeled images and expand its learning using a vast amount of unlabeled driving footage. Tech-

niques such as adversarial training, where one model generates pseudo-labeled images for another

to learn from, and co-training, where multiple models learn from each other’s predictions, are used

to enhance the model’s performance.
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The primary strength of SSL is its capacity to utilize large amounts of readily available unla-

beled data, thus reducing reliance on extensive labeled datasets. While SSL can improve model

generalization and performance, its effectiveness depends on the quality of the pseudo-labels and

the model’s ability to manage noise and inaccuracies. Future advancements in SSL will likely

focus on enhancing the reliability of pseudo-labels and developing computationally efficient meth-

ods, making SSL an even more powerful tool in various applications. In general, generative adver-

sarial networks (GANs) are exploited to build the semi-supervised learning process. For readers

interested in exploring SSL further, the following source is recommended - the SSL book.

1.5.2 Generative Adversarial Networks

The GANs, consisting of a discriminator and a generator subnetworks, have been widely used

for developing semi-supervised learning models. In the context of semi-supervised learning, the

discriminator is often modified to perform two tasks simultaneously: distinguishing between real

and generated data and classifying real data into its respective categories. This dual role allows the

discriminator to benefit from the generated data, even though it’s not explicitly labeled, thereby

improving its ability to generalize from the labeled data. A notable advantage of using GANs in

semi-supervised learning is their capability to enhance performance with limited labeled datasets,

which is especially valuable in fields like medical imaging, where acquiring labeled data is costly

and time-consuming [36]. A seminal work in this area demonstrated that adding a small number

of labeled samples to a GAN could drastically improve classification performance compared to

purely unsupervised or fully supervised methods with the same amount of labeled data [37]. This

approach has inspired various extensions and improvements, further solidifying the role of GANs

as a critical tool for semi-supervised learning in tasks that range from image recognition to natural

language processing. For readers interested in exploring GNNs further, the following source is

recommended - the GAN book.
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Figure 1.6: Overview of a basic two-way classification CNN. It denotes the key layers, like the

convolution, pooling, and dense layers, and the function–ReLU placed for non-linear activation.

1.5.3 The Advancements in Deep Learning Models for Image Classification

Deep learning for image classification and segmentation are advanced neural network models de-

signed to analyze and understand the visual representation of data with high accuracy. For image

perception, CNNs are widely used. A vanilla (i.e., basic) CNN, as shown in Fig. 1.6 consists of

several convolutional layers that detect complex patterns and features with the help of convolution

operations, non-linear activation functions (e.g., ReLU, SiLU), pooling layers that reduce dimen-

sionality while preserving essential information, and fully connected layers that aggregate these

features to produce a classification label for the input image as a whole.

In contrast, image segmentation aims to label each pixel of an image according to its class,

providing a detailed segmentation map. Architectures like the U-Net in [38], are specifically de-

signed for this purpose, employing an encoder-decoder structure with skip connections to retain

spatial information and produce precise segmentation results. The Fully Convolutional Networks

also play a crucial role by applying convolutional operations to the entire image, enabling pixel-

wise predictions. These deep learning models are instrumental in achieving accurate and detailed

analysis of images, leveraging complex patterns and relationships learned from extensive training

data.

Over the past two decades, deep learning has revolutionized several computer vision tasks with

the emergence of CNNs. The following subsections highlight a few milestone models from the

literature.
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AlexNet

AlexNet [39] was one of the pioneering CNN architectures that demonstrated the potential of

deep learning for image classification. It consists of five convolutional layers followed by three

fully connected layers. It uses the ReLU (cf. Section 1.5.5) activation function and incorporates

dropout layers to prevent overfitting. Hence, the application of data augmentation techniques sig-

nificantly contributed to its success in the 2012 ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC).

GoogLeNet (Inception)

GoogLeNet [40], also known as Inception, introduced the concept of inception modules, which

allow the network to capture multi-scale information by performing convolutions with different

kernel sizes within the same layer. This architecture drastically reduced the number of parameters

compared to earlier CNNs while maintaining high accuracy.

ResNet

Residual Networks (ResNet) [4] introduced residual connections, also known as skip connections,

to address the issue of vanishing gradients in particularly deep networks. Gradients can flow

straight across these connections, which makes it possible to train incredibly deep networks. In

several image classification benchmarks, ResNet designs, including ResNet-50 and ResNet-101,

have demonstrated state-of-the-art performance.

DenseNet

Densely Connected Networks (DenseNet) [5] further improved the flow of information and gradi-

ents by connecting each layer to every other layer in a feed-forward fashion. This dense connec-

tivity pattern leads to improved feature reuse and reduced vanishing gradient problems, resulting

in highly efficient and accurate models.
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EfficientNet

With the help of a straightforward yet efficient scaling coefficient, EfficientNet [6] developed a

compound scaling technique that uniformly scales network depth, width, and resolution. With

this method, a family of models that outperform earlier architectures in terms of efficiency and

accuracy can be produced.

1.5.4 The Advancements in Deep Learning Models for Image Segmentation

Classifying each pixel in an image into specified categories is the key aspect of semantic seg-

mentation, which is more complicated than image classification. The following deep learning

architectures have significantly advanced this field.

Fully Convolutional Networks (FCNs)

FCNs [41] were the first deep learning models to replace fully connected layers with convolutional

layers, enabling pixel-wise prediction for semantic segmentation. By using deconvolutional lay-

ers (also known as transposed convolutions) to upsample the feature maps, FCNs produce dense

predictions that match the input image resolution.

U-Net

U-Net [38] is an encoder-decoder architecture with symmetric skip connections that link corre-

sponding layers in the encoder and decoder paths shown in Fig. 1.7. These skip connections help

retain spatial information lost during downsampling, making U-Net highly effective for biomedi-

cal image segmentation and other applications requiring fine-grained segmentation. Overall, U-Net

has become one of the most popular architectures for image segmentation due to its powerful and

efficient design.
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Figure 1.7: A basic architecture of the U-Net-based image segmentation.

SegNet

SegNet [42] is another encoder-decoder architecture designed for semantic segmentation, similar

to the U-Net. It uses a series of convolutional and pooling layers for encoding, followed by upsam-

pling layers using max unpooling layers that utilize the pooling indices from the encoder to ensure

that the spatial information is preserved, resulting in improved segmentation results and computa-

tional efficiency. In SegNet, only the pooling indices are transferred from the encoder path to the

decoder path, requiring less memory. In contrast, U-Net transfers entire feature maps, requiring

more memory.

DeepLab

DeepLab [43] introduced atrous (dilated) convolutions to capture multi-scale context by expanding

the receptive field without increasing the number of parameters. Various versions of DeepLab,

such as DeepLabv3 and DeepLabv3+, have integrated atrous spatial pyramid pooling (ASPP) and

encoder-decoder structures to enhance segmentation performance.
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Mask R-CNN

Although primarily known for instance segmentation, Mask R-CNN [44] can also be used for se-

mantic segmentation. It extends Faster R-CNN by adding a branch for predicting segmentation

masks on each Region of Interest (RoI), providing precise pixel-level object detection and seg-

mentation.

HRNet

High-Resolution Network (HRNet) [45] maintains high-resolution representations throughout the

network by connecting high-to-low resolution convolutions in parallel. This approach allows the

model to capture detailed spatial information and achieve high accuracy in semantic segmentation

tasks.

PSPNet

Pyramid Scene Parsing Network (PSPNet) [46] employs a pyramid pooling module to gather con-

textual information at multiple scales. By aggregating global context features, PSPNet improves

the model’s ability to recognize objects of varying sizes and enhances overall segmentation accu-

racy.

Deep learning models have significantly advanced the fields of image classification and seman-

tic segmentation. Architectures like AlexNet, GoogLeNet, ResNet, DenseNet, and EfficientNet

have set new benchmarks in image classification, while FCNs, U-Net, SegNet, DeepLab, Mask R-

CNN, HRNet, and PSPNet have revolutionized semantic segmentation. These advancements have

enabled a wide range of applications, from autonomous driving and medical imaging to video

surveillance and augmented reality, demonstrating the transformative potential of deep learning in

computer vision.
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1.5.5 Common Activation Functions in Deep Learning

In deep learning, activation functions are crucial for capturing the non-linear relationships between

inputs and outputs, significantly enhancing the network’s ability to model complex patterns. Vari-

ous activation functions have been developed, each offering unique advantages. Fig. 1.8 visualizes

the behavior of the most common activation functions used in modern deep neural networks.
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Figure 1.8: Visualization of the characteristics of common activation functions used in DL.

Choosing the right activation function is often an empirical process, involving experimentation

to find the most suitable function for a specific application. The following subsections elaborate

on the activation functions depicted in Fig. 1.8.
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Sigmoid

The sigmoid activation function maps any input to a value between 0 and 1, making it useful for

binary classification problems. It is mathematically defined as σ(x) in (1.1).

σ(x) =
1

1 + e−x
, (1.1)

where x is the input.

Softmax

The softmax function is commonly applied in the output layer of a neural network for multiclass

classification. It transforms the outputs from multiple neurons into a probability distribution across

various classes. The softmax function, S(zi) is defined in (1.2).

S(zi) =
ezi∑K
j=1 e

zj
, (1.2)

where zi denotes the output of the i-th neuron, K is total number of classes, and j spans all neurons

in the output layer. This ensures that the sum of probabilities equals 1.

Rectified Linear Unit also known as ReLU

It is extensively employed in deep learning due to its simplicity and computational efficiency. It

operates by zeroing out negative input values while preserving positive values unchanged, thereby

introducing non-linearity into the model. This activation function plays a critical role in addressing

the vanishing gradient problem, facilitating more effective learning and convergence in deep neural

networks. The ReLU, F (x) is defined as in (1.3).

F (x) = max(0, x), (1.3)

where x is the input. ReLU helps mitigate the vanishing gradient problem. Note that deep learning

models often encounter vanishing gradients during training using gradient-based backpropagation
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techniques, i.e., optimization algorithms. This occurs when the magnitude of gradients becomes

extremely small, hindering the model’s ability to learn effectively.

Sigmoid Linear Unit or SiLU

It is also known as the Swish activation function, Swish(x) is defined as in (1.4).

Swish(x) = x · σ(x) = x

1 + e−x
, (1.4)

where σ(x) is the sigmoid function defined earlier in (1.1). SiLU has been shown to improve

performance in deep networks by combining the benefits of both linear and nonlinear activations.

On the other hand, the SiLU function effectively gates its input by multiplying it with its sigmoid-

transformed value. This self-gating mechanism allows the network to retain a certain level of

negative input, potentially leading to richer representations and improved learning dynamics, es-

pecially in deeper networks.

Hyperbolic Tangent also known as Tanh

The tanh function maps inputs to a range between -1 and 1, providing a zero-centered output,

which can be beneficial for optimization. It is given by tanh(x) in (1.5).

tanh(x) =
ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
, (1.5)

where x is the input variable, and ex and e−x represent the exponential function and its reciprocal,

respectively.

Leaky ReLU

It is a variant of ReLU to allow a small, non-zero gradient when the input is negative, addressing the

“dying neuron” that often occurs in DNNs with ReLU activation functions, during gradient-based

22



training. It is characterized by the expression (1.6):

F (x) = max(a · x,x), (1.6)

where a is a small positive constant that defines the slope for negative input values, typically set to

0.01. The user can redefine it during the training of a DL model.

1.6 Thesis contribution

The primary contribution of this thesis is the development of a sophisticated framework based

on semi-supervised learning for computer vision applications, mainly targeting image semantic

segmentation. For image segmentation, the proposed model utilizes the Generative Adversarial

Networks framework. It can be seamlessly integrated into existing computer vision workflows,

making it both scalable and practical. The research findings of this thesis pave a path to advance

deep learning techniques, particularly in settings, where labeled data is scarce. The key contribu-

tions of this study are as follows:

• Comprehensive Exploration of Data Preprocessing Techniques: This thesis provides an

in-depth exploration of data preprocessing methods, including strategies for handling miss-

ing labels, normalizing data, and selecting features informed by domain-specific knowledge.

• Optimizing Framework Performance: By exploring and fine-tuning the hyperparame-

ters of the GANs framework, the study optimizes the performance of the image segmen-

tation model. For medical image classification a self-supervised and a secure federated

learning framework is also integrated to get an understanding of the performances of semi-

supervision.

• Versatility Across Diverse Datasets: Several benchmark datasets were used for model eval-

uation to make the model robust and generalized.
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• Comparative Analysis: The effectiveness of the proposed GANs framework is rigorously

evaluated through comparative analyses, highlighting the framework’s improvements over

existing methods.

• Enhanced Efficiency and Reduced Error Rate: The proposed GAN framework signifi-

cantly improves the efficiency and accuracy of image segmentation tasks, showcasing no-

table advancements over current state-of-the-art approaches.
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Chapter 2

Related Works

This chapter reviews existing research and literature, identifying gaps in the field and explaining

how this study addresses them. It covers image classification techniques and semantic segmenta-

tion, providing a comprehensive overview of the current state of research and laying the ground-

work for the study’s contributions.

2.1 Literature Review on Image Classification DL Models

Deep learning models play a vital role in image classification due to their ability to learn and extract

complex patterns from large-scale datasets. In medical diagnosis, like Mpox classification, deep

learning algorithms, particularly CNN can effectively analyze intricate textural and structural fea-

tures that are characteristics of a specific disease from their respective medical imaging [47]. For

example, Pramanik et al. utilize several pre-trained deep CNN image classifiers, viz. Inception-

V3, Xception, and DenseNet169 under an ensemble model for Mpox identification from skin lesion

images [48]. To get a refined final prediction, they introduce a customized score function to aggre-

gate the complementary cues learned by the individual learners. Regardless of its high complexity,

this approach is reported to achieve an average performance of more than 90% in key evaluation

metrics, such as accuracy, precision, recall, and F1-score. Ali et al. [1] also propose an ensemble

model using a majority voting technique to diagnose skin lesion diseases. They combine three
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pre-trained classifiers, such as Inception-V3, VGG16, and ResNet50. Their results show that the

ResNet50 achieves the best results when the models are evaluated individually. However, more in-

vestigation is needed to prove these results, since the dataset used for the experiments was created

using a web-scraping method and contained a limited sample set. Similarly, Sitaula and Shahi [49]

fine-tune thirteen pre-trained CNNs for Mpox classification. By combining the best-performing

models under a majority voting scheme, the framework produces promising performance. Another

fusion-based ensemble model is developed by Liu in [50]. This research focuses on a bi-linear

pooling model with a combination of two pre-trained models EfficientNet and DenseNet, where

the framework uses bi-linear features. On the other hand, to avoid the complexity of an ensemble

model, authors employ Mini-GoogLeNet in [51] with a small training dataset to avoid overfitting

issues. However, to gain trust and deploy it on real-world applications, it is important to train the

models on a diverse and large amount of samples.

To address issues and to create an efficient data-crunching pipeline, self-supervised and semi-

supervised learning-based solutions have gained enormous attention. Because these learning ap-

proaches can generate useful feature maps from unlabeled samples during the training phase. This

property is particularly beneficial in medical image analysis, where expert annotation is costly and

time-consuming. Employing self-supervised and semi-supervised learning can significantly reduce

the burden of data annotation, making it a practical solution for healthcare applications, such as

skin lesion disease diagnosis [52, 53]. Several self-supervised and semi-supervised learning-based

medical image classification approaches are highlighted in [54, 55]. On the other hand, to ensure

the privacy of data, Hossen et al. [56] propose a CNN-based federated learning framework for skin

disease classification and ensuring Internet of Medical Things (IoMT) security. A personalized

federated learning model can also be configured for a specific medical image analysis. For in-

stance, in [57], the authors develop a personalized federated learning system to diagnose prostate

cancer and classify skin lesion disease. Their investigation reveals that the performances of the

client-specific different models vary significantly; because the datasets used to build the client-

specific models may contain varying amounts of data that affect the bias of the trained federated

learning framework.
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2.2 Literature Review on Semantic Segmentation

Deep Learning-based Semantic Segmentation

Recent research efforts have extensively focused on deep convolutional neural networks (DCNNs)

and their variants for semantic segmentation. These networks often use an encoder-decoder archi-

tecture, whereby the encoder decreases the spatial resolution of the input image while extracting an

abstract representation [41]. Particularly convolutional neural networks have emerged as powerful

tools for semantic segmentation, revolutionizing the field’s ability to learn complex hierarchical

representations directly from raw data. This thesis explores recent advancements and challenges in

leveraging deep learning for semantic segmentation tasks. Due to DCNNs’ robust feature learning

capabilities, greater advancements have been achieved in image semantic segmentation tasks [58].

Among the existing works, fully convolutional networks [41, 58] laid an important foundation for

deep learning-based image segmentation.

To address the challenges associated with reduced image resolution and the limitations of a

neuron in a particular layer to capture sufficient context, U-Net-like architectures are considered

one of the most suitable strategies for image segmentation. U-Net excels in medical image segmen-

tation with the help of encoder-decoder concept [59]. Conversely, DeepLab [43] employs dilated

convolutions and pyramid pooling as in PSPNet [46] to capture multi-scale contextual information.

Mask R-CNN extends the Faster R-CNN framework to perform image segmentation, combining

object detection and semantic segmentation [60]. The attention mechanisms commonly employed

in natural language processing (NLP) [61] to model long-distance dependencies have been adapted

for image segmentation tasks and have garnered considerable attention. For example, DANet [62]

integrates an attention module into the ResNet backbone network, whereby parallel spatial and

channel attention mechanisms capture long-range feature dependencies and improve segmentation

accuracy. The local cross-channel interaction strategy was introduced for ECANet in [63]. The

method’s purpose is to attentively select the size of one-dimensional convolution kernels. GANs

are another emerging approach that can be trained for image segmentation with fewer samples [64].

The PSPNet [46] has adopted parallel to construct an atrous spatial pyramid pooling (ASPP) model.
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This module effectively captures contextual information at various scales, enhancing the quality

of descriptors. Other architectures, such as DeepLab [43] and Furthermore, self-attention mecha-

nisms, known for modeling feature dependencies, have garnered considerable attention.

2.2.1 Literature Review on GANs

Generative Adversarial Networks are a powerful tool in the field of generative modeling. Genera-

tive modeling is a type of machine learning where the goal is to learn the underlying distribution

of a dataset and generate new samples that resemble the original data. Here, as a generative model

GAN is capable of creating highly realistic data samples by leveraging the adversarial dynamics

between the generator and discriminator. At the same time, GAN for semi-supervised learning is a

powerful technique that leverages both labeled and unlabeled data to enhance the performance of

machine learning models. In this framework, the GAN comprises two neural networks: a generator

and a discriminator. The generator aims to create realistic data samples, while the discriminator

tries to differentiate between real and generated samples. In semi-supervised learning, the discrim-

inator is further extended to classify labeled data into different categories and identify whether

an input sample is real or generated. This dual objective enables the discriminator to learn from

both labeled and unlabeled data, using the unlabeled data to improve the feature representations

and decision boundaries, thereby enhancing the model’s generalization capability. This approach

is particularly useful in scenarios where labeled data is scarce, allowing the model to make more

accurate predictions and classifications by exploiting the abundance of unlabeled data.

Arguably Goodfellow et al. [65] pioneered GAN, a new class of generative models using ad-

versarial processes. Luc et al. [66], then, advanced the GAN for the application of image semantic

segmentation. This has been further extended to semi-supervised image segmentation scenarios by

several researchers, like Hung et al. [67], and Li et al. [68]. It involves two distinct subnetworks—a

generator and a discriminator. The generator learns from randomly distributed samples and pro-

duces synthetic data, F (x). While, the discriminator assesses whether a given sample, either real,

x or synthetic, F (x)=y, outputting the probability of its authenticity, as illustrated in Fig. 2.1.
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Figure 2.1: A Standard training procedure of GAN. The factors may differ from model to model

w/t noise distribution, loss function, and optimization techniques used.

The loss function (2.1), LGAN consists of the discriminator’s loss D(x), which measures the

ability of the discriminator to distinguish between real and synthetic data, and generator’s objective

function G(z), that evaluates the generator’s strength in creating more realistic output.

LGAN(G,D) = Ex,y[logD(x)]

+ Ex,z[log(1−D(x,G(z)))],
(2.1)

here D(x) represents the discriminator’s output for real data sample x, G(z) is the generator’s

output when given input x and noise factor z, and E denotes the expected value. The discriminator

works towards maximizing Ex,y[logD(x)], the log probability of correctly identifying real data

samples among generated samples, while the generator focuses on minimizing the log-probability

Ex,z[log(1 − D(x,G(z)))]. Generator combines the losses from the discriminator and loss from

itself to minimize the loss of the next step. Therefore, the discriminator can accurately identify the

generated samples. Therefore, the adversarial training process involves the discriminator minimiz-

ing its loss while the generator simultaneously minimizes the GAN loss.

2.2.2 Literature Review on Semi-supervised Learning

Supervised learning approaches have played a dominant role in the machine learning paradigm

for several decades. Yet, acquiring sizable labeled datasets is laborious and time-intensive. Con-

sequently, the demand for models capable of learning from limited data is rapidly growing. In
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response to these challenges, semi-supervised learning has appeared as an effective technique to

address this issue [69]. Deep neural networks were employed to address semi-supervised semantic

segmentation in [69]. Nevertheless, these approaches primarily concentrate on object segmenta-

tion, overlooking the broader semantic context and intricate interconnections within a scene. A

selection mechanism was introduced in [70] by Nartey et al. with the goal of mitigating errors

in reinforcement, a frequent issue encountered in traditional self-training models. They presented

a generative semi-supervised learning model and designed to be robust against outliers and noisy

samples. This model, leveraging a variational autoencoder (VAE), enhances its robustness by ac-

counting for the uncertainty inherent in the input samples. Additionally, a de-noising layer is

incorporated into the VAE architecture to further improve performance. Conversely, contrastive

learning has been implemented recently in semi-supervised semantic segmentation methods with

significant efficiency improvements. Zhou et al. [71] developed a cross-set region-level data aug-

mentation technique to mitigate the feature inequality between labeled and unlabeled data. It

is combined with cross-set pixel-wise contrastive learning to improve the model’s feature rep-

resentation capacity. Similarly, KE-GAN [72] captures semantic consistencies among different

classes through a Knowledge Graph and incorporates a pyramid architecture when designing the

discriminator to obtain multi-scale contextual information. Meanwhile, in [73], the s4GAN uses

the segmentation network as the generator, with actual pixel-level annotations from labeled data

and segmentation predictions from unlabeled data serving as inputs to the discriminator. The goal

of this technique is to closely correlate the real annotated data with the prediction results of the

unlabeled data.

Despite showing encouraging findings, the previous works have some drawbacks. Self-training

and co-training approaches require repeated procedures to identify unlabeled samples, which leads

to a longer execution duration. Furthermore, mislabeling any of these unlabeled data might neg-

atively influence the generalization capacity of supervised learning models. This thesis aims to

overcome these issues by devising a patch-wise discriminator and a self-gated activation-guided

attention mechanism for the generator subnetwork.

30



Chapter 3

Self-supervised Image Classification

This chapter aims to grasp the basics of any non-supervised learning approaches and to explore

how they differ from traditional supervised learning methods. In this direction, this chapter fo-

cuses on developing a self-supervised image classification model tailored for medical image clas-

sification, specifically for diagnosing Monkeypox (Mpox) from skin lesion images. Note that if

a self-supervised model is fine-tuned on a small amount of labeled data after initial training on

unlabeled data, it effectively becomes a semi-supervised model. Thus, building a self-supervised

pipeline will lay the foundation for semi-supervised learning. Hence, the knowledge gained here

will be instrumental in building the semi-supervised semantic segmentation model discussed in

Chapter 5.

3.1 Overview

Mpox is a contagious viral illness that affects both humans and animals, with symptoms ranging

from mild to severe, and its early diagnosis is critical for the effective management and preven-

tion of this disease. The importance of timely identification is underscored by the potential for

outbreaks, particularly in regions where healthcare resources may be limited.

One of the significant challenges in developing accurate diagnostic models is the requirement

for large amounts of annotated data, typically provided by domain experts. However, the demand
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for such expertise can be a bottleneck in rapidly evolving situations. The proposed method ad-

dresses this through a self-supervised learning framework, Simple Contrastive Learning for Rep-

resentations (SimCLR), which is an efficient model to extract general discriminative patterns from

unlabeled data and can be applied to tasks like skin lesion classification, including Mpox. Sim-

CLR helps the model to learn robust representations by contrasting different augmented views of

the same image, enhancing its ability to differentiate between Mpox lesions and other skin condi-

tions.

Federated learning (FL), on the other hand, is integrated into the proposed model to enable a

privacy-preserved collaborative training environment. FL allows the Mpox classifier to be built on

vast and diverse datasets collected from several healthcare institutions across different geographical

regions, without the need to centralize sensitive patient data. This decentralized approach not only

preserves patient privacy but also facilitates the inclusion of data from a wider array of sources,

improving the model’s generalizability and robustness. By training on diverse datasets remotely,

the model becomes more adaptable to varying presentations of Mpox, making it a valuable tool in

global health initiatives.

3.2 Monkeypox Diagnosis

Monkeypox is a viral disease caused by the monkeypox virus. As it has the potential for human-

to-human transmission and affects both humans and animals, it poses a significant public health

concern. As per the report of Disease Control and Prevention (CDC), there is no suitable treat-

ment available for the Monkeypox virus [74]. However, the CDC has authorized two oral drugs,

Brincidofovir and Tecovirimat, which were primarily utilized in treating the smallpox virus, for

the treatment of Mpox. Therefore, early detection and accurate diagnosis are crucial for effective

treatment planning, disease control, and prevention [75].

Nevertheless, the clinical features of Mpox can be similar to other diseases, such as chicken-

pox and smallpox, making an accurate diagnosis of Mpox challenging, especially in regions with

limited access to skilled healthcare professionals and diagnostic facilities [76], [77]. It urges the
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Table 3.1: Existing survey of monkeypox detection and classification.

Models Objectives Dataset Limitations

CNN+Federated [56] Multi-class classification of human
skin diseases.

DermNet Database This model does not measure the
severity of the diseases. Small
amount of data.

DenseNet-201 [81] Develop a new dataset of monkey-
pox with four classes. Multi-class
Monkeypox identification using the
DL model.

MSID An imbalanced dataset.

VGG16[82] Binary classification to detect
Monkeypox.

Monkeypox2022 Followed a similar data organiza-
tion pattern like MSID. But the
dataset has very limited samples
and is smaller than the MSID
dataset.

MobileNetV2 [83] Developed a small dataset. After
that, evaluate the model with the
MSLD dataset.

Data monkeypox
(Kaggle)

Only 117 samples were used to
classify the monkeypox. Where 45
samples represent monkeypox.

ResNet50 [1] An AI-assisted diagnosis system
implemented to detect monkeypox.

MSLD a small dataset for binary classifi-
cation.

MobileNetV2, Effi-
cientNetb0 [84]

Developed an android application
to visualize monkeypox detection
results.

MSLD A Small dataset for binary classifi-
cation.

Ensemble Model
[48]

Detect monkeypox for binary clas-
sification.

MSLD A small dataset for binary classifi-
cation. Only apply Gaussian noise
augmentation.

research community to develop novel alternative methodologies for the aforesaid diagnosis. How-

ever, such developments must meet regulatory compliance, like patient privacy, and data security.

Federated learning provides a distributed and collaborative machine learning approach without

sharing of patient’s raw data [78]. In the context of Mpox diagnosis, the federated learning frame-

work can leverage data from multiple healthcare facilities or regions, allowing the development of

robust and generalized classifiers [79, 80]. A general summary of recent existing models, datasets,

and limitations related to monkeypox classification is listed in Table 3.1.

Recently, successful deep learning models for image classification tasks are largely contingent

on the availability of high-quality annotated samples [85], which can be scarce and challenging to

acquire in the clinical field, particularly for rare diseases like Mpox. But the self-supervised learn-

ing has the ability to extract the intrinsic structure of unlabeled data, mitigating the dependency on

large-scale labeled datasets. Thus, it is a natural progression to exploit the best of the worlds of FL
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and self-supervised learning, enabling rapid and accurate diagnosis, and assisting in public health

interventions.

3.3 Methodology

Fig. 3.1 illustrates the overview of the proposed methodology.
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Figure 3.1: The workflow of the proposed methodology for monkeypox classification using

federated learning framework with semi-supervised and self-supervised approaches.

3.3.1 Benchmark Dataset

Samples from the Monkeypox Skin Lesion (MSL) dataset [1] are used for model building and

validation. The dataset comprises a total of 228 samples of the size of 224× 224 with annotations:

Monkeypox and other. Specifically, the Monkeypox class includes 102 samples, while the other
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class contains 126 samples. From these samples, a mutually exclusive set of training, validation,

and test sets are created with a 70:10:20 ratio. Fig. 3.2 shows eight random samples from the

dataset representing the two classes.

Samples of Monkeypox Class

Samples of Other Class

Figure 3.2: A collection of random samples from the MSL [1] dataset.

3.3.2 Image Pre-processing

In the realm of medical imaging-based prognoses and diagnoses, data pre-processing holds sig-

nificant importance. Here, the application of data augmentation techniques to raw images proves

crucial. By employing fifteen distinct transformations, as depicted in Fig. 3.3, the raw images are

synthetically transformed to generate a diverse set of training samples. This approach not only

enhances dataset diversity but also boosts a model’s generalization capabilities.

• Rotation: Rotating the image by a certain angle. Here, the augmented image is rotated by

90◦ and between −45◦ to −45◦.

• Contrast: Increasing contrast (Value = 2.5) enhances the separation between different image

elements, making the image appear more vibrant and visually appealing.
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Original Image Rotation (90) Rotation (45) Hue Jitter (-0.2,-0.2)

Translation Saturation Zoom In(1.2) Shear

Salt & Pepper Reflection 1 Reflection 2 Gaussian Noise

Synthetic Blur Scaling Brightness Contrast

Figure 3.3: A group of samples generated through augmentation. The top-left image is an

original sample provided to understand the variation created by the data augmentations.

• Brightness: It refers to the overall intensity of light in an image. It determines how light or

dark an image appears. Here, the brightness factor is 0.5.

• Gaussian Blur: This is a popular image filtering technique that applies a blur effect to

an image. It uses a Gaussian distribution to determine the amount of blurring at each pixel.

Gaussian blur smooths out high-frequency details, reducing image noise and creating a softer

appearance. The standard deviation needed to produce Gaussian noise is 20.
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• Hue Jitter: To introduce random variations in the hue (color) of an image. It involves

applying small, random shifts to the hue values of pixels. A natural variation in artistic

effects by using min jitter = −0.2 and max jitter = 0.2.

• Reflection: It refers to the visual effect of an object being mirrored or duplicated on a

reflective surface. In image processing, reflection can be applied to create a mirror-like

(vertical and horizontal) appearance or simulate the reflection of an object on a shiny surface.

• Saturation Jitter: This augmentation helps to enhance or reduce the intensity of colors,

making the model more robust to variations in color saturation. In this study, the saturation

range is 2 to 2.5.

• Translation: It involves shifting the image’s content horizontally and vertically by a certain

number of pixels, the range was −50 to 50 (in pixels). By introducing random translations,

the model learns to recognize objects at different positions in the image, improving its ability

to generalize to unseen data.

• Salt and Pepper Noise: In this augmentation, random pixels in the image are set to either

maximum intensity (salt) or minimum intensity (pepper). In both cases, the salt and pepper

probability was 0.02. It helps the model become more resilient to noisy input and aids in

training it to handle real-world scenarios with varying levels of noise.

• Synthetic Blur: Synthetic Blur is an augmentation technique used to replicate blurriness in

images. For creating a blur effect, apply median blur with a kernel size of 11.

• Scaling: Scaling is a transformation applied to images by resizing them to different dimen-

sions, such as 300×300. Both up-scaling and down-scaling can be used as data augmentation

techniques.

• Shear: Shear augmentation involves altering the shape of an image by slanting or skew-

ing it along either the horizontal or vertical axis using a shear factor (0.2). This creates a

transformed version of the original image that appears as if viewed from a different angle,

enhancing the robustness of machine learning models to various perspectives.
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3.3.3 The proposed DL Model

CNN for Mpox Classification

CNNs for image classification are composed of multiple layers, including convolutional layers,

pooling layers, and fully connected layers. The convolutional layers apply a set of learnable filters

to extract local patterns such as edges, textures, and shapes, by sliding the filters across the image

and computing the dot product between the filter and input patches. The pooling layers reduce the

spatial dimensions of the features, decreasing computational load and helping to make the repre-

sentations invariant to small transformations and distortions. Common pooling operations include

max pooling and average pooling, which summarize regions of the feature map. The extracted

features are then fed into fully connected layers to perform classification based on the high-level

representations. This hierarchical structure of CNNs enables them to automatically learn complex

patterns and relationships in the data, making them highly effective for image classification tasks.

Table 3.2: Layer-wise details of the proposed DL Model

Layer Size Filter Size Stride Activation
Input (224, 224, 3) - - -

Convolutional (224, 224, 256) 3× 3 1 ReLU
256 filters

Max Pooling 112, 112, 256) 2× 2 2 -

Convolutional (112, 112, 128) 3× 3 1 ReLU
128 filters

Max Pooling (56, 56, 128) 2× 2 2 -

Convolutional (56, 56, 64) 3× 3 1 ReLU
64 filters

Max Pooling (28, 28, 64) 2× 2 2 -

Convolutional (28, 28, 32) 3× 3 1 ReLU
32 filters

Max Pooling (14, 14, 32) 2× 2 2 -
Dropout (14, 14, 32) - - -
Flatten Layer (6272) - - -
FC Dense 1 (512) - - ReLU
FC Dense 2 (256) - - ReLU
Dense 3 (2) - - Sigmoid

Learning rate (lr) = 0.001, Batch size = 32, Optimizer = Adam,
Objective function = BCE, Number of trainable parameters = 1,838,706.

Table 3.2 provides the architectural details, including the convolution (Conv) layers with their

respective output feature maps, pooling layers, activation function, and kernel size of the respective
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layers. The convolution layers learn robust invariant features that are specific to Mpox from skin

lesion images using 2-D convolution operations C, as given in (3.1).

C(m,n) = b+
K−1∑
k=0

K−1∑
l=0

f(k, l) ∗ x(m+ k, n+ l), (3.1)

where f is the filter, b is the bias, and x is the input. Hence, ∗, K, {m,n}, and {k, l} denote convo-

lution operation, filter size, input origin, and element index of the filter respectively. The network

rectifies the outputs of each convolution operation through a rectified linear unit (ReLU) defined

as max(c{m,n}, 0), where c{m,n} is a value in the output feature map of a respective convolution.

To extract key feature values from the convolution feature maps and reduce the dimensionality, the

model employs the max pooling operation as defined in equation (3.2).

maxpool(x) = max
(
x{i:j}

)
, (3.2)

where x represents the input feature map, while i and j denote the start and end indices of the

pooling region, respectively. After the third max pooling operation, a flattening layer is introduced

to convert the 2-D feature maps into a 1-D vector that facilitates connectivity toward the densely

connected classifier at the top. Finally, two fully connected layers with ReLU activation functions,

and an FC with Sigmoid activation as expressed in (3.3) to perform the required classification

accurately.

σ(x) =
1

1 + e−x
, (3.3)

where x and σ(x) represent the input vector, and the probability of input to be positive class

is Mpox. Note that before the flattening operation, a dropout of 0.25 is applied to reduce the

interdependence of neurons by randomly deactivating a given percentage of neurons, which helps

the model to fight against overfitting issues. Also, these connections have associated weights (W )

that the network adjusts during training to learn patterns in the input data. This CNN architecture is
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considered for both supervised and self-supervised approaches during the training phase elaborated

in Section 3.3.4.

The Federated Learning Framework

This learning approach is particularly valuable in scenarios, where data cannot be centrally aggre-

gated due to privacy concerns. This property is crucial for dealing with Mpox, as the disease can

emerge in different regions with distinct visual manifestations. A Federated Learning Framework

for medical image classification enables multiple healthcare institutions to collaboratively train a

machine learning model without sharing their sensitive patient data. Each participating institution,

acting as a local node, trains the model on its private data and periodically sends model updates

to a central server. This server aggregates the updates using techniques such as Federated Aver-

aging, improving the model while preserving individual data privacy. The framework is designed

to address challenges like data heterogeneity across different hospitals, ensuring the model can be

generalized across diverse patient populations and imaging devices. Advanced privacy-preserving

methods, such as differential privacy and secure multiparty computation, are employed to further

safeguard patient information. By using efficient communication strategies, including compression

techniques and asynchronous updates, the framework minimizes the data transfer load, facilitating

real-world deployment across varying network conditions and computational resources.

Fig. 3.4 illustrates the FL process begins with the initialization of a global model (Gm) at a

central server. The participating clients independently train their local models on their respective

data samples without sharing raw data with other clients. This training can involve any machine

learning techniques, including deep learning, here, it is a CNN (Section 3.3.3). The aggregation

function to integrate the learned weights at the clients and to update the Gm is defined in (3.4).

Wt =
n∑

i=1

lti
lt
·W t

i , (3.4)

where t and i stand for the current training iteration and the local client’s model, respectively.

Hence, Wt is the updated weight parameter of the global model Gm, lt is the global model’s
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Figure 3.4: A general illustration of FL architecture. The global model aggregates the learned

weights from the clients to update the model’s weight. This new weight is shared with the clients

to update the local models for refinement.

current loss, lti is the current loss of the local model, W t
i is the local model’s current weight, and n

is the total number of clients participating in the FL framework. In this thesis, due to the lack of

computational resources n is set to 5, and the total number of training iterations, t is set to 15.

3.3.4 Training Strategy

Supervised Training

The first CNN is built following a supervision learning approach assisted by the FL framework.

Here the proposed CNN is trained using an Adam optimizer with a learning rate (lr) of 0.001 by
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feeding a mini-batch (b) of 32 samples from the training set (MSLD) to minimize the mini-batch

binary cross-entropy loss defined by (3.5).

E = −1
n

b∑
n=1

[pn log p̂n + (1− pn) log(1− p̂n)], (3.5)

where it takes two arguments: p̂–the output from the top layer of the CNN (cf. Table 3.2), and pn–

the target (pn ∈ [0, 1]). At the end of the 25th epoch, the model is converged as one can observe

the training progress shown in Fig. 3.6 (a) on page no. 43.

Self-Supervised Training

The second CNN is trained using a SimCLR-based SSL technique under the same FL framework

elaborated in Section 3.3.3. SimCLR is a self-supervised learning approach designed to learn use-

ful visual representations without requiring labeled data. Developed by Google Research, SimCLR

leverages contrastive learning to train deep neural networks by maximizing the similarity between

different augmented views of the same image while minimizing the similarity between views of

different images. The approach involves two key components: a base encoder network and a pro-

jection head. The encoder network, typically a convolutional neural network, extracts features

from the input images. Here, the SimCLR works as a pretext task followed by the Mpox classi-

fication performed by the proposed CNN. The SimCLR begins input feature embedding through

an encoder network (the backbone network is a ResNet) followed by a multi-layer perceptron pro-

jection head that maps the embedding into a lower-dimensional space. Fig. 3.5 depicts the basic

structure of the SimCLR and equation (3.6) express the contrastive loss function [86] that indicates

positive pair of samples (i, j) used in SimCLR.

l(i,j) = −log
exp(Si,j)∑2N

k=1 l[k!=i]exp(Si,k)
, (3.6)

where N is the batch size, i, and j is the augmented images of the same image, and k is the negative

sample image. Therefore, Si,j is for the positive sample and Si,k for the negative sample. To find
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Figure 3.5: An illustration of the SimCLR architecture. ResNet works as an encoder network and

a contrastive loss l(i,j) decides the performance of the SimCLR.

the similarity matrix and for getting positive and negative pairs the symbol l[k!=i] represents the

condition that K is not equal to i and this is working as an indicator function.

To evaluate the supervised and self-supervised approaches, the training versus validation accu-

racy and loss during the training phase are monitored as shown in Fig. 3.6.
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Figure 3.6: Training progress of two different learning approaches: (a) supervised, (b)

self-supervision, (c) semi-supervision.

Initially, during the early stage of the training, the training loss exhibits a steep decline, indica-

tive of the model quickly adapting to the training data. Simultaneously, the validation loss demon-

strates a parallel reduction, underscoring the model’s capacity to generalize beyond the training

set. The same observation is also applicable for training and validation accuracy.
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Semi-Supervised Training

In this study, a semi-supervision framework was implemented to enhance the binary classification

of monkeypox skin lesion images. The training process began with the proposed CNN architecture

designed for image classification. Initially, the model was trained using a 30% labeled and 70%

unlabeled dataset of images, where each image was manually annotated as either ‘monkeypox’ or

‘Other’. The model generated the predicted (pseudo) label for the unlabeled dataset.

Subsequently, the trained model can generate predictions on a larger set of unlabeled data,

which contains images without any pre-assigned labels. A label prediction technique was applied

by assigning labels to the unlabeled images based on the model’s predictions, selecting only those

predictions that exceeded a confidence threshold of 50% to ensure label accuracy and minimize

noise. The pseudo-labeled data were then combined with the original labeled dataset, creating an

expanded training set that provided a richer source of information for the model. The CNN model

was retrained using this combined dataset, allowing it to refine its feature extraction and classifica-

tion capabilities. Throughout the training process, the model’s performance was monitored using a

validation set, and key metrics such as accuracy, precision, recall, and F1-score were used to evalu-

ate its effectiveness. This semi-supervised training process not only leveraged the limited available

labeled data but also capitalized on the large volumes of unlabeled data, ultimately enhancing the

model’s ability to generalize and accurately classify monkeypox lesions.

3.4 Experimental Results

3.4.1 Experimental Setup

To speed up the FL-assisted training procedure, an adequate storage capacity is essential on both

the central server and edge devices to accommodate the datasets for model training. In this case,

the proposed model developed developed with Python Ver. 3 and DL libraries, such as Keras and

TensorFlow, and experimented on a computing platform with a Tesla T4 GPU with 12GB memory.
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Figure 3.7: AUC-ROC of the proposed supervised, self-supervised and semi-supervised CNN on

FL framework.

3.4.2 Quantitative Analysis

Accuracy =

(
Number of correctly classified images

Total number of images

)
× 100 (3.7)

Table 3.3 on page no. 46 compares the performance of the proposed approaches with important

few existing works where the comparison metric is accuracy. Accuracy for images refers to the

percentage of correctly classified images out of the total number of images in a dataset defined

by equation (3.7). On the other hand, Fig. 3.7 shows the performance of the proposed model in

terms of AUC-ROC curve. This curve combines two components: ROC and AUC curve. The
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Table 3.3: Comparison of the proposed model with existing solutions for monkeypox binary

classification task on MSL dataset [1]. Note: FL - Federated learning, DA - Data augmentation,

NA - Not available in the literature.

Approach # of DA Input Dimension Dropout Optimizer GFLOPs Accuracy
Ensemble Model [48] 10 (224, 224, 3) NA NA NA 93.4%
ResNet50 [1] 13 (224, 224, 3) 0.3, 0.2 Adam NA 88.0%
EfficientB0 + DenseNet [50] NA (224, 224, 3) NA NA NA 94.6%
MiniGoogLeNet [51] 8 (224, 224, 3) NA NA NA 97.1%
Proposed (FL + supervised CNN) 15 (224,224, 3) 0.25 Adam 2.99 90.0%
Proposed (FL + self-supervised CNN) 15 (224,224, 3) 0.25 Adam 1.42 81.7%
Proposed (FL + semi-supervised CNN) 15 (224,224, 3) 0.25 Adam 2.48 82.9%

ROC curve, which plots the true positive rate (sensitivity) against the false positive rate at various

decision thresholds, and the AUC, which represents the area under the ROC curve. The AUC value

ranges from 0 to 1, with 1 indicating a perfect classifier, 0.5 indicating random guessing, and values

below 0.5 implying worse-than-random performance. A higher AUC score means the model has a

better ability to distinguish between positive and negative classes across different thresholds. For

the monkeypox classification problem, the supervised CNN achieves a 93.00% AUC and 90.00%

accuracy, the self-supervised CNN records an 81.00% AUC and 81.67% accuracy and finally, semi-

supervised approach achieves an 82.90% accuracy with 83.00% AUC. Although these results are

lower than the best of the existing solutions, it must be noted that beyond the imperfection in

the accuracy, the proposed solutions in this work address the key issue of patient data privacy

through federated learning and handle the annotated data scarcity via self-supervision and semi-

supervised approach. Traditional supervised learning requires huge label data to get promising

results, this experiment investigates the impact of self-supervision and semi-supervision for image

classification tasks.

3.5 Conclusion

This work introduces a pioneering approach for Mpox classification, utilizing federated learning

in conjunction with a CNN model. The CNN model incorporates both supervised, self-supervised,

and semi-supervised learning techniques. This method employs federated learning to ensure pri-
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vacy and uses SimCLR as a pretext task to extract feature maps from unlabeled samples. Some

of the existing works report to have a better performance than this work. However, according to

our survey, this is the first time FL has been exploited for Mpox diagnosis. With the consideration

of data privacy as a major concern, the FL approach provides the novelty of this thesis, and that

makes the results obtained in this experiment acceptable. Furthermore, semi-supervised learning

outperforms the self-supervised learning approach. Therefore, this thesis contributes considerably

to the development of advanced diagnostic systems for Mpox, enabling early detection and efficient

disease management. Future research endeavors aim to expand this approach to larger-scale fed-

erated learning frameworks and explore various self-supervised pretext tasks and semi-supervised

frameworks to further enhance the performance of the proposed model.
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Chapter 4

Developing a Binary Segmentation Model:

the Foundation of Semantic Segmentation

This chapter aims to establish the fundamentals of developing and evaluating a deep learning-based

image segmentation model. It investigates and implements a convolutional neural network-based

binary segmentation model to accurately detect and localize pavement cracks in road scene im-

agery. Thus, it lays a strong foundation for advancing toward a semi-supervised semantic segmen-

tation model in the next stage (cf. Chapter 5).

4.1 Pavement Crack Segmentation

Monitoring pavement conditions is pivotal in managing road assets and ensuring the structural

integrity and reliability of highways amidst Canada’s diverse environmental conditions. Early de-

tection of cracks serves as a primary indicator of pavement deterioration, where timely repairs

curtail maintenance expenses, prolong infrastructure lifespans, diminish fuel consumption, and

enhance safety and ride comfort. Various factors, including severe weather fluctuations due to

climate change, natural aging of roads, and escalating heavy traffic loads, contribute to pavement

crack formation. In 2021, the Canadian Automobile Association (CAA) highlighted that inade-

quate road quality costs drivers an additional $126 per vehicle annually, amounting to a staggering
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$3 billion nationwide. Ontario alone bears a significant burden, accounting for $750 million of this

sum [87]. The research underscores the dual financial impact on citizens caused by deteriorating

roads: increased vehicle operation expenses and escalated government expenditure on infrastruc-

ture repairs. Given Ontario’s extensive network of approximately 42,000 kilometers of two-lane

highways and its pioneering initiative in implementing 2+1 highways. Thus, regular pavement as-

sessments are imperative to deploy maintenance crews promptly and prevent irreparable damage.

Yet, manual year-round monitoring and pavement assessments entail substantial labor, resources,

and time. Addressing these challenges requires implementing a robust automated assessment sys-

tem. Investing in artificial intelligence and computer vision-driven solutions for pavement analysis

today could potentially prevent or delay hefty expenditures on future rehabilitation or reconstruc-

tion projects. Although the Ministry of Transportation of Ontario (MTO) currently employs Au-

tomatic Road Analyzer (ARAN) vehicles to scan the entire highway network, there remains an

opportunity for further research into complementary technologies to develop robust models for

detecting and predicting pavement deterioration based on pavement section images and meteoro-

logical data for specific locations or zones. Meanwhile, image segmentation has been a cornerstone

for various applications, including pavement management systems (PMS). As an essential process

of partitioning a digital image into multiple segments, it facilitates the simplification or change of

an image’s representation into something more readable and more accessible to high-level analy-

sis, viz., object detection, recognition, or scene understanding. Meanwhile, the efficiency of the

segmentation directly impacts the performance of the higher-level tasks, making it a critical area

of research in computer vision. For example, pavement crack segmentation is one of the most

demanding fields for regularly maintaining pavement safety and highway infrastructure. How-

ever, a high-precision segmentation model is required to identify and assess the extent of pavement

damage.

Many recent studies have claimed that integrating deep neural networks has significantly ad-

vanced the capabilities of image segmentation models [88, 89]. For instance, the U-Net [38] archi-

tecture has gained prominence for its effectiveness in image segmentation tasks. It was originally

developed for biomedical image segmentation but later adapted for other image segmentation tasks,
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including road crack detection. Meanwhile, pavement surfaces present complex patterns and tex-

tures where cracks vary in size, shape, and visibility. Like U-Net’s ability to capture fine-grained

details through its multi-scale contextual information processing, the DNNs are invaluable in this

context [90, 91].

In this direction, this chapter discusses the implementation of an attention mechanism (a strat-

egy that allows DL models to focus on the most critical features of the input data, improving their

ability to capture complex relationships and patterns) and a self-gated activation-driven pavement

crack segmentation model. The main contributions of this work are listed below:

• It introduces an optimized architecture with an attention block and self-gated activation to

improve pavement crack segmentation accuracy compared to existing counterparts.

• It conducts extensive experiments on two benchmark datasets and systematically compares

the proposed model with recent pavement detection methods to validate the proposed model’s

performances.

4.2 Methodology

This section discusses the dataset, the proposed model, and the training process. To tackle the task

of pavement crack detection, it elaborates on the standard U-Net model to enhance its efficiency.

4.2.1 The Proposed Architecture

Table 4.1 describes the layer-wise connectivity pattern of the proposed pavement crack segmen-

tation model. The baseline and proposed models’ input layer is configured to accept a visible

spectrum (RGB) image as input of 256 × 256. Hence, their encoding and decoding sub-networks

remain the same, where they use a standard convolution with a kernel of size 3 × 3, stride rate

of 1, and padding to be ‘same’ followed by batch normalization (BN) and ReLU operations.

The encoding sub-network uses max-pooling layers with a stride of 2 to down-sample the spatial

50



Table 4.1: The layer-wise architectural description of the proposed segmentation model.

Proposed Model with Attention Block and Self-gated Activation

Layer ID Layer type A(k, s) Output Shape [b,H,W,D] Input
E

nc
od

in
g

ph
as

e
Input Input Layer [b, 256, 256, 3] mini-batch
L1 Conv (3, 1)→ ReLU [b, 256, 256, 32] Input
L2 Conv (3, 1)→ ReLU [b, 256, 256, 32] L1
L3 MaxPooling (2, 2) [b, 128, 128, 32] L2
L4 Conv (3, 1)→ ReLU [b, 128, 128, 64] L3
L5 Conv (3, 1)→ ReLU [b, 128, 128, 64] L4
L6 MaxPooling (2, 2) [b, 64, 64, 64] L5
L7 Conv (3, 1) → ReLU [b, 64, 64, 128] L6
L8 Conv (3, 1)→ ReLU [b, 64, 64, 128] L7
L9 MaxPooling (2, 2) [b, 32, 32, 128] L8
L10 Conv (3, 1)→ ReLU [b, 32, 32, 256] L9
L11 Conv (3, 1)→ ReLU [b, 32, 32, 256] L10
L12 MaxPooling (2, 2) [b, 16, 16, 256] L11
L13 Conv (3, 1)→ ReLU [b, 16, 16, 512] L12
L14 Conv (3, 1)→ ReLU [b, 16, 16, 512] L13

A
tte

nt
io

n
B

lo
ck

L15 Conv (3, 1)→ ReLU [b, 16, 16, 256] L14
L16 Conv (3, 1)→ ReLU [b, 16, 16, 256] L15
L17 Conv (3, 1)→ ReLU [b, 16, 16, 256] L16
L18 Add [b, 16, 16, 256] L16, L17
L19 Conv (3, 1)→ ReLU [b, 16, 16, 256] L18
L20 Conv (3, 1)→f(·) [b, 16, 16, 1] L19
L21 Up-sample (2, 2) [b, 32, 32, 1] L20
L22 Multiply [b, 32, 32, 256] L21, L11
L23 Conv (3, 1)→ ReLU [b, 32, 32, 256] L22

D
ec

od
in

g
ph

as
e

L24 Up-sample (2, 2) [b, 32, 32, 512] L23
L25 Cat [b, 32, 32, 768] L24, L23
L26 Conv (3, 1)→ ReLU [b, 32, 32, 256] L25
L27 Conv (3, 1)→ ReLU [b, 32, 32, 256] L26
L28 Up-sample (2, 2) [b, 64, 64, 256] L27
L29 Cat [b, 64, 64, 384] L28, L8
L30 Conv (3, 1)→ ReLU [b, 64, 64, 128] L29
L31 Conv (3, 1)→ ReLU [b, 64, 64, 128] L30
L32 Up-sample (2, 2) [b, 128, 128, 128] L31
L33 Cat [b, 128, 128, 192] L32, L5
L34 Conv (3, 1)→ ReLU [b, 128, 128, 64] L33
L35 Conv (3, 1)→ ReLU [b, 128, 128, 64] L34
L36 Up-sample (2, 2) [b, 256, 256, 64] L35
L37 Cat [b, 256, 256, 96] L36, L2

To
p

L38 Conv (3, 1)→ SiLU [b, 256, 256, 32] L37
L39 Conv (3, 1)→ SiLU [b, 256, 256, 32] L38
L40 Conv (1, 1)→ f(·) [b, 256, 256, NC] L39

Total number of trainable parameters 8,379,140
A(k, s): A- operation type, k - kernel size, and

s - stride rate; Output shape as [b,H,W,D]: b - mini-batch size,
H - height, W - width, and D - number of channels;

f(·) - classifier (Sigmoid), NC - number of output channels
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dimensions while returning essential features. The decoding sub-network employs an interpola-

tion (nearest neighbor)-based upsampling operation to increase the spatial dimensions of

the input feature maps. However, the proposed network’s bottleneck and top layers are differently

structured compared to the baseline to better capture the intricate features of the cracks from the

pavement visuals. The proposed architecture interspaces an attention block (L15 - L23) be-

tween encoding and decoding sub-networks. This block is a sophisticated gating mechanism to

emphasize the salient features. The top layer in the proposed model exploits the SiLU activation

instead of ReLU; such systematic changes boost the generalized performance of the model. Fi-

nally, the output layers of both architectures employ a convolution operation with a kernel of size

1× 1 and generate a pavement crack probability map predicted by a sigmoid activation.

The Attention Sub-Network

The attention mechanism in DNNs, coupled with its effectiveness in natural language processing,

has achieved significant progress in computer vision, including semantic segmentation [92, 93].

The studies show that the attention mechanism can locate pixels that hold crucial contextual infor-

mation for better visual recognition capability. According to the studies, pixels containing crucial

contextual data can be identified by the attention mechanism, which improves visual recognition.

The attention layer in U-Net involves the calculation of the attention features map and is suc-

cessful in computer vision, such as image classification and segmentation. It performs feature

concatenation and element-wise addition (⊕) to get a rich feature map. The sigmoid function σ

generates a gated weight and performs element-wise multiplication (⊙) with the input feature X

to generate the refined attention feature map X ′ as defined by (5.4).

X
′
= (X ⊙ σ(fg ⊕ fx)), (4.1)

where the feature map is calculated using fg ([bgHgWgDg]) and fx ([bxHxWxDx]). These are out-

puts of upsampling and encoder operation, and they follow element-wise addition. After that, the σ

operation generates the final feature map by using dot-product. The attention block contributes to
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the model’s ability to adaptively weigh the importance of different spatial information, leading to

more precise and context-aware segmentation results. Thus, this chapter incorporates an attention

sub-network as shown in Fig. 4.1 to improve the segmentation results. In this figure, all of the

layers in U-Net are illustrated through blocks visualizing the position of the attention block as well

as the skip connections. The network’s layer-wise details are already given in Table 4.1 on page

no. 51.

256

128

96

646464 192

128128

256

384

256

512 512
Attention 

Block

768

3232 3232

512

256

 

Convolution (ReLU)

 

Max Pooling

Up-sampling

 

 

Convolution (Sigmoid)

Skip Connection & Concatenation

Input Output

 

Convolution (SiLU)

 Skip Connections  

Encoder Decoder

Figure 4.1: The block diagram of the proposed segmentation model with attention block and

self-gated activation function.

The Self-gated Activation

The proposed model improves the full-scale (i.e., the same spatial dimension as the input) fea-

ture maps’ representation capability at the top layers by applying the self-gated activation or the

sigmoid linear unit [94]. The rectified linear unit is the standard activation function commonly

used in DNNs. The ReLU activation function effectively sets all negative input values to zero
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while keeping positive input values unchanged. ReLU is widely used due to its simplicity and

efficiency, as it helps mitigate the vanishing gradient problem that can occur with other activation

functions like the sigmoid or hyperbolic tangent by allowing gradients to flow more effectively

during backpropagation. This results in faster convergence in deep networks. On the other hand,

SiLU combines the linear and sigmoid properties, providing a smooth, non-linear transformation

that can mitigate the dying ReLU problem. SiLU allows for small negative inputs to contribute

to the activation, which can improve the training dynamics and performance of the network. Its

differentiable and non-monotonic nature allows for more nuanced activation behaviors compared

to ReLU, potentially leading to better learning outcomes in deep learning models.

Meanwhile, ReLU introduces non-linearity to the model and helps to mitigate the vanishing

gradient problem. It is defined as

ReLU(x) = max(0, x), (4.2)

where x is the input to the ReLU, representing the weighted sum of inputs in a neural network

neuron. The ReLU function returns the input value itself if it is positive, and 0 if it is negative or

zero. This simple thresholding operation introduces non-linearity into the neural network while

being computationally efficient. On the other hand, the SiLU activation has recently emerged. It is

given by

SiLU(x) = x · σ(x), (4.3)

where x represents the input to the SiLU function, and σ(x) = 1
1+e−x is the sigmoid operation

applied to x. In addition, the implicit gating mechanism of SiLU can be beneficial for captur-

ing complex relationships in the data. Research indicates that SiLU consistently performs better

for computer vision-related tasks than alternative activation functions. This compelling evidence

prompted this work to integrate SiLU into the proposed model for improved segmentation results.
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4.2.2 Training Strategy

For systematic and comprehensive model development and comparison, this study trains and tests

three other configurations besides the proposed model— (i) the baseline (U-Net), (ii) the baseline

with full attention + ReLU, and (iii) the baseline with full attention + SiLU. The second (ii) model

includes an attention block in every residual connection, and it uses ReLU activation throughout

the network, except for the sigmoid used at the output layer. The second experiment focuses on the

third (iii) model, which resamples the second one but replaces the ReLU activation function with

SiLU in every residual connection. Due to constraints on paper length, the configurations of these

two models are not provided here. The Adam optimizer [95] with a learning rate of 0.001, and a

batch size of 8 is employed to train all models by minimizing the binary cross-entropy objective

function, (4.4),

E = − 1

n

b∑
n=1

[pn log p̂n + (1− pn) log(1− p̂n)], (4.4)

were n represents the number of samples, b is the total number of batches or samples, pn denotes

the actual probability for the n-th sample, and p̂n is the predicted two arguments.
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Figure 4.2: Training progress of the four models (cf. Tables 4.2) with respect to accuracy and

loss vs. training epochs on the DeepCrack benchmark dataset.
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Figure 4.3: Training progress of the four models (cf. Tables 4.2) with respect to accuracy and

loss vs. training epochs on the Crack500 benchmark dataset.

Fig. 4.2 and Fig. 4.3 show the overall training progress of all models with respect to loss and

accuracy on two individual benchmark datasets, where one can observe that the models reach a

plateau at the 35th epoch.

4.3 Experimental Study and Discussion

4.3.1 The Environment

To efficiently train and test the models, substantial storage capacity, and a computational platform

are necessary. In this work, all implementations are exclusively developed in Python 3.10 with

the TensorFlow 2.15.1 deep learning framework on the Google Colab cloud. The training

runs on an NVIDIA Tesla T4with 15 GB of GPU support. Every experiment follows the same

hyper-parameter setting for training and testing for consistency and fair comparison.

4.3.2 Datasets

This study uses the publicly available open-source benchmark dataset–DeepCrack [2] 537 road

pavement visuals of size 544 × 384, capturing various crack types and non-crack conditions. A

data preprocessing stage is deployed to resize the samples to a spatial dimension of 256 × 256 to
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match the input layer dimension of the models. To increase the sample size and the diversity of the

data, we apply three types of augmentation techniques: 45◦ rotation, Gaussian blur with sigma 1.5,

and brightness with factor 1.5. Thus, the final training and validation sets take 960 and 240 samples,

while the test set has 237 samples (a hold-out set exists in the benchmark dataset). An extended

experiment is also concluded using another publicly available benchmark dataset–Crack500 [3]. It

contains 500 raw samples with the dimension of each image is 640×360. However, the dataset was

divided into training, validation, and test sets. However, this study uses 1516 images for training,

and 380 samples for validation, while for consistency and fair comparison, it uses the original

200 test samples from the source for testing. The samples are recalled to a spatial dimension of

256× 256 to meet the requirement of the proposed model’s input layer.

4.3.3 Evaluation Metrics

For a binary segmentation problem, like in this work, the robust evaluation metric used is the

mean intersection over union (mIoU) as defined in (4.5). It evaluates the performance of image

segmentation models by measuring the accuracy of their predictions across different classes. It

provides a comprehensive view of how well a model can segment different parts of an image,

making it particularly useful for tasks where distinguishing between various categories is crucial.

mIoU =
1

N

N∑
i=1

TPi

TPi + FPi + FNi

, (4.5)

where N , TPi, FPi, and FNi stand for the total number of samples, the true positives, false posi-

tives, and false negatives for the ith sample. Utilizing these values, other evaluation metrics, such

as precision (Pr) and recall (Re), can be calculated, and f1-score (F1) is a measure that combines

both precision and recall. Note that a standard threshold value of 0.5 is set for calculating the

IoU. It normally takes a value in the range of [0, 1], with 1 indicating a perfect overlap and 0

indicating no overlap between the predicted segmentation and ground truth. Besides, giga-scale

floating-point operations (GFLOPs) is also used to measure the models’ complexity. GFLOPS is

a valuable metric for understanding the computational complexity and efficiency of deep learning
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models. By measuring the number of floating-point operations a model can perform per second, it

helps in comparing and optimizing models for various applications, especially in scenarios where

computational resources are a critical factor. The proposed model’s size is 31.96 MB, consumes

226 GFLOPs, and the per-sample inference time is 239± 7 ms.

4.3.4 Overall Analysis

Table 4.2 quantitatively analyzes the proposed model’s performances as a comparison with other

models on the test set of DeepCrack, where models (1), (6), (7), and (8) are fully trained and tested

as described in Section 4.3.1, while other models’ results are taken from the respective literature.

Table 4.2: Performance comparison of the proposed model with other solutions on the test set of

the benchmark dataset—DeepCrack [2], and Crack500 [3]. Note: ↑ and ↓ denote a positive and

negative improvement compared to the baseline in mIoU, respectively.

Model DeepCrack Crack500
Pr Re F1 mIoU (%) % of Gain Pr Re F1 mIoU (%) % of Gain

1. U-Net (based on [38]) 89 87 83.2 78.0 Baseline 70.2 78.0 75.0 58.2 Baseline
2. ECSNet [90] NA NA 84.5 73.1 6.41 ↓ NA NA NA NA NA
3. DMA-Net [96] 86 87 87.0 NA NA 69.5 80.0 74.4 55.9 3.95 ↓
4. BARNet [97] NA NA NA NA NA 66.7 75.7 70.9 53.1 8.76 ↓
5. FFEDN [93] 87 86 86.1 75.7 2.95 ↓ 71.0 76.9 73.8 58.6 0.70 ↑
6. Attention U-Net + ReLU 90 85 81.3 75.0 3.85 ↓ 62.3 71.0 66.0 55.0 5.50 ↓
7. Attention U-Net + SiLU 90 86 83.0 76.6 1.80 ↓ 68.0 77.1 69.6 57.3 1.54 ↓
8. Proposed Model 91 85 87.1 79.0 1.30 ↑ 72.6 78.0 76.7 59.6 2.40 ↑

The comparative analysis shows that the proposed model surmounts the other models, includ-

ing the state-of-the-art solutions, by achieving a mIoU of 79%, which surpasses the baseline by

1.30% mIoU in the pavement crack segmentation results. In addition, the proposed model’s per-

formances are evaluated on another test set of Crack500. The ground truth of the test dataset in

Crack500 involves some misleading and inaccurate annotations. However, the proposed model

gains 2.40% improvement on this dataset in terms of mIoU compared with the baseline model.

Where as Table 4.3 represents the comparison of the model’s complexity with existing models.

Fig. 4.4 represents the segmentation results of the proposed model on the test set of DeepCrack,

along with the baseline and its two variations for qualitative analysis. In this scenario, input images
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Table 4.3: Comparison of proposed model complexity with existing models.

Model Attention Activation Trainable Parameters GFLOPs
1. U-Net (based on [38]) Null ReLU 7,852,547 223
2. ECSNet [90] Null PReLU 410,000 NA
3. DMA-Net [96] Multi-scale ReLU NA 110
4. BAR-Net [97] All ReLU NA 268
5. FFEDN [93] All ReLU NA 525
6. Attention U-Net + ReLU All ReLU 8,553,191 235
7. Attention U-Net + SiLU All ReLU + SiLU (top) 8,553,191 235
8. Proposed Model Bottleneck ReLU + SiLU (top) 8,379,140 226

(their IDs are given for reproducing purposes) are randomly selected from a hold-out set for anal-

ysis. Here, five images were selected from 237 test samples to display the most obvious results of

ID Input Ground Truth Proposed Model U-Net (baseline) Full Attn. + ReLU Full Attn. + SiLUOriginal Image U-Net (Baseline)Proposed ModelGround Truth Full Attention+ReLU Full Attention+SiLU

[33]

[27]

[48]

[46]

[4]

Figure 4.4: Qualitative results of the proposed model compared to three other models on five

randomly taken input images from the test set of the DeepCrack dataset.

the model. The first two columns represent the original images and the corresponding ground truth

values. The rest of the columns present the experiments. One can observe from the highlighted

yellow boxes that the proposed model shows greater robustness in segmenting out the cracks re-

gardless of the fussiness between foreground and background found in the raw inputs. Hence, its
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results are much closer to the ground truth, while other models fail to make perfect delineations of

the cracks in challenging conditions. Similarly, Fig. 4.5, represents the qualitative results for the

Crack500 dataset.

ID Input Ground Truth Proposed Model U-Net (baseline) Full Attn. + ReLU Full Attn. + SiLU

[15]

[145]

[50]

[87]

[105]

Figure 4.5: Qualitative results of the proposed model compared to three other models on five

randomly taken input images from the test set of Crack500 dataset.

In summary, the experimental study reveals that the proposed model effectively balances com-

plexity and performance. Hence, it is observed that incorporating an attention mechanism with

SiLU activation enhances the segmentation results. However, it is important to note that excessive

use of the attention mechanism may lead to diminished performance.

4.4 Conclusion

As the demand for highway infrastructure usage continues to rise, the deployment of pavement

management systems has become increasingly vital to uphold the longevity and reliability of road
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pavements. The traditional reliance on manual methods for detecting pavement damages is insuffi-

cient to meet the demands. To address this, this work investigates the pavement crack segmentation

problem and proposes an improved model. The ablation study on benchmark datasets demonstrates

that the proposed model achieves competitive performance compared to cutting-edge methods. The

future direction of this work includes the following—(i) It is worth exploring ways to integrate the

proposed models with the current practices used for the pavement management systems by various

transportation ministries, like the Ministry of Transportation (MTO), to validate their applicability

in the practical world; and (ii) Refine the model to work on dynamic video inputs rather than static

images, which could involve the integration of model pruning algorithms to streamline the model.
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Chapter 5

Improved Semi-supervised Semantic

Segmentation

This chapter builds on the insights gained from previous chapters to develop a semi-supervised

semantic segmentation model for autonomous driving applications. It explores the use of synthetic

data generation and GANs within a semi-supervised training framework to improve the accuracy

and effectiveness of semantic segmentation.

5.1 Overview

Semantic segmentation is one of the fundamental problems in the field of computer vision, which

involves classifying each pixel of an image into specific semantic categories such as sky, road, car,

or person. In traditional supervised learning methods, a large amount of labeled data is required

to train models to achieve high accuracy in segmentation tasks. However, obtaining such detailed

labels is often a challenging, costly, and time-consuming process, as it requires meticulous human

annotation of every pixel in an image. Semi-supervised learning approaches offer a promising

solution to this challenge by utilizing both labeled and unlabeled data to enhance segmentation

accuracy and reduce the dependency on large labeled datasets.
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This research proposes an innovative model that leverages an attention-driven adversarial train-

ing strategy within a GAN framework. This method focuses on generating realistic semantic seg-

mentation maps for the unlabeled data while simultaneously improving the segmentation accuracy

of the labeled data. The model incorporates an attention mechanism that helps the GAN prior-

itize significant regions of the image, allowing it to create more accurate segmentation outputs.

Furthermore, this study introduces a patch-wise discriminator that is designed to extract rich con-

textual information from the images, thereby enabling the GAN to produce finer and more coherent

segmentation results.

To evaluate the effectiveness of the proposed model, an extensive analysis was conducted us-

ing two widely recognized benchmark datasets: Cityscapes and CamVid. These datasets are com-

monly used in the research community for assessing semantic segmentation models due to their

complexity and diversity. The results of the experiments demonstrate that the model achieves state-

of-the-art performance in semi-supervised semantic segmentation tasks, significantly surpassing

existing methods. By integrating attention mechanisms and patch-wise discriminators within the

GAN framework, the proposed approach not only enhances the segmentation accuracy but also

contributes to the advancement of semi-supervised learning in the field of semantic segmentation.

This research provides a practical solution for improving segmentation accuracy while minimizing

the reliance on labeled data, thereby addressing one of the major challenges in computer vision.

5.2 GAN-based Semi-supervised Semantic Segmentation

Image segmentation labels individual pixels providing a deeper understanding of a visual than

image-level classification [89]. Semantic segmentation, in particular, has garnered significant in-

terest across sectors, such as agriculture, healthcare, transportation, and infrastructure manage-

ment [17]. For example, in a street scene, semantic segmentation identifies each pixel as a road,

sidewalk, car, pedestrian, building, sky, or tree. For autonomous driving, this information is crucial

for accurate decision-making [98, 99].
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Building segmentation models, such as U-Net– a convolutional neural network using super-

vised learning, is labor-intensive and time-consuming due to the need for labeled data, and often

impractical for certain applications, like medicine [32]. Consequently, there has been an interest in

semi-supervised learning approaches, which try to use publicly available unlabeled data to enhance

the models’ performance. Comparable or even improved segmentation results can be achieved

from this. Meanwhile, integrating semi-supervised learning techniques with GAN has emerged as

a compelling method for semantic segmentation. GANs are renowned for their ability to gener-

ate realistic data samples and their learning scheme, which leverages unlabeled data effectively.

GANs consist of a discriminator network that distinguishes between real and synthesized data and

a generator network to produce semantically meaningful segmentation maps. The integration of

semi-supervised learning in GAN can revolutionize semantic segmentation in various domains,

including medical image analysis, autonomous driving, and object detection [100–102]. Thus,

this work aims to delve into these challenges and opportunities, offering insights into cutting-edge

methodologies and assessing their performance across diverse datasets and application domains.

It also provides a roadmap for future research avenues in the realm of semi-supervised semantic

segmentation utilizing GAN models. Performance investigation on two benchmark datasets for

semantic segmentation reveals the effectiveness of the suggested methodology in comparison with

the state-of-the-art method. The main contributions of this work are as follows.

• Introducing an attention mechanism and self-gated activation in the U-Net architecture,

which is the generator of the proposed patchGAN framework.

• The model training follows a semi-supervised strategy.

• Demonstrating the model’s effectiveness on two benchmark datasets, namely Cityscapes and

CamVid.
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5.3 Methodology

Fig. 5.1 depicts the proposed GAN-based image segmentation network comprising a generator

and a discriminator networks, G and D, respectively. The generator is an encoder-decoder ar-

Discriminator
Network, 

Segmentation Network, 

    Binary
Classification

Results, 

 
Segmentation  Network, 

Segmentation
Map

Encoder Decoder

Residual Block

Real
Image

&
Factors

Fake 
Labels

Fake 
Labels

Supervised Discriminator 

Unsupervised 

Figure 5.1: Overview of the proposed semi-supervised GAN network. A U-net-based model is

used as the generator G. The discriminator D is used for N ×N patch pixel-level segmentation.

chitecture and is a common choice for image segmentation. The input image is compressed by

the encoder into a lower-dimensional representation, and the decoder then reconstructs the input

from that representation. The discriminator network functions as a scene parser with a patch-out

module. It receives the generated samples from G, unlabeled data Xu, and pixel-level annotation

Xl. It outputs a binary classification D(x)—real or fake, for each N × N patch in the input

image. In a semi-supervised adversarial training framework, the discriminator reduces the likeli-

hood of synthetically generated images being classified as real. The generator produces images,

and the discriminator classifies them as real, and a secondary network can be used to promote

high confidence in semantic labels for real images. This framework integrates additional semantic
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knowledge into the adversarial learning process to enhance the generator’s performance through

combined analysis.

5.3.1 The Generator Subnetwork

The generator subnetwork is the segmentation model. In this work, the proposed model in Chap-

ter 4 (cf. Table 4.1) is repurposed as the generator. The input layer of the model is configured

to accommodate visible images of dimensions 256 × 256. Consequently, both the encoding and

decoding paths employ standard convolution operations with a 3× 3 kernel size, a stride rate of 1,

and padding set to ‘same’, followed by leaky rectified linear unit (LeakyReLU) activation. The

LeakyReLU defined as in (5.1) is a computationally efficient non-linear activation that allows the

model to capture complex patterns while mitigating the vanishing gradient problem.

LeakyReLU(x) =


x if x > 0

αx otherwise
, (5.1)

where x represents the input to the LeakyReLU, typically the weighted sum of inputs in a neural

network neuron, and α is a small positive constant determining the function’s slope for negative

inputs. LeakyReLU, in contrast to the conventional ReLU function, allows a small, non-zero

gradient when the input is negative, which might be advantageous for detecting complex general-

ized patterns. To down-sample spatial dimensions and extract crucial features, the encoding path

incorporates max-pooling layers with a stride of 2. Conversely, the decoding sub-network uti-

lizes interpolation-based upsampling (nearest-neighbor) to regain the spatial dimensions.

However, the bottleneck and top layers of the proposed model are specifically tailored to capture

valuable semantic information better. Introducing an attention block (L15 - L23) between the

encoding and decoding sub-networks enhances learned features. Consequently, the top layer in the

proposed architecture employs the SiLU activation in (5.2), contributing to improved generaliza-
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tion performance. The SiLU activation function is defined as follows:

SiLU(x) = x · σ(x), (5.2)

where x represents the input to the SiLU function, and σ(x) = 1
1+e−x is the sigmoid operation ap-

plied to x. Unlike ReLU, which outputs zero for negative inputs, SiLU preserves some information

from negative inputs. Finally, the output layer of the architecture employs a convolution operation

with a 1 × 1 kernel, resulting in a semantic segmentation map predicted by a tanh activation

in (5.3) that ensures useful output range and facilitates stable training.

tanh(x) =
ex − e−x

ex + e−x
. (5.3)

The attention mechanism, as in the previous Chapter (cf. Fig. 4.1 of Chapter 4), enables the

model to dynamically adjust the importance of different spatial locations in the input image. By

incorporating attention mechanisms into the network architecture, the model can selectively attend

to informative regions while filtering out distractions, leading to a more accurate and detailed

segmentation map. It involves feature concatenation and element-wise addition to produce an

information-rich feature map. Specifically, the sigmoid function, σ generates a gated weight; after

that, it is multiplied by the input feature, X to yield the refined attention feature map, X ′, as defined

by (5.4).

X
′
= (X ⊙ σ(fg ⊕ fx)), (5.4)

where fg ([bgHgWgDg]) and fx ([bxHxWxDx]) represent the feature maps obtained from up-

sampling and encoder operations, respectively, followed by element-wise addition. The subse-

quent application of the σ operation generates the final feature map using dot-product operation.

The attention block enhances the model’s adaptability by dynamically adjusting the relevance of

different spatial information, resulting in more precise and context-aware segmentation outcomes.
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Table 5.1: Architectural detail of the patch-wise discriminator

Layer
ID

Layer type
A(k, s)

Output Shape
[b,H,W,D]

Input

Input Input Layer [b, 256, 256, 6] mini-batch
L1 Conv (4,4)→ LeakyReLU [b, 128, 128, 64] Input
L2 Conv (4,4)→ BN+LeakyReLU [b, 64, 64, 128] L1
L3 Conv (4,4)→ BN+LeakyReLU [b, 32, 32, 256] L2
L4 Conv (4,4)→ BN+LeakyReLU [b, 16, 16, 512] L3
L5 Conv (4,4)→ BN+LeakyReLU [b, 16, 16, 1] L4

5.3.2 Discriminator Subnetwork

The discriminator network is formulated to differentiate between authentic and synthetically gen-

erated images. It receives two input images, the source and target images (segmented image).

These images are concatenated channel-wise and fed into the network depicted in Table 5.1. The

network consists of five convolutional (ConV) layers, each employing a 4× 4 kernel with a stride

of 2 × 2, except for the last layer, which uses a stride of 1 × 1. The learned features of each

Conv layer are passed through a LeakyReLU activation with a slope of 0.2. Batch normalization

(BN) is applied after each ConV operation to stabilize training. Eventually, two final outputs are

obtained by applying a sigmoid activation with a 16 × 16 patch size for determining the path’s

authenticity of (real or fake) using discriminator loss D(x). To the next step, apply a softmax

activation with sparse categorical crossentropy (scce) loss, G(z) in (5.5) for pre-

dicting segmentation maps according to respective categories. Thus, the discriminator is trained

using the total loss LGAN(G,D) as defined in (2.1).

G(z) = − 1

N

N∑
i=1

C∑
c=1

yi,c log(pi,c), (5.5)

here the sparse categorical cross-entropy directly uses the true class label yi for each pixel i among

the c number of classes.

5.3.3 Training Details

The stochastic gradient (SGD) optimizer is used to train the proposed segmentation subnetwork

with a momentum of 0.9, a weight decay of 0.0005, and an initial learning rate of 0.0002 with a
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polynomial learning rate schedule. The discriminator subnetwork is optimized using the Adam op-

timizer with a base learning rate of 0.0001 and the exponential decay rates of the moving averages

of the gradient (β1) and the squared gradient (β2) are set to 0.9, and 0.99, respectively. Except for

the batch size, set to 2 for the CamVid dataset and 5 for the Cityscapes dataset, these hyperparame-

ters are the same for all experiments. The mean Intersection over Union (mIoU), specified in (5.6),

is used to evaluate the model’s performance.

mIoU =
1

N

N∑
i=1

TPi

TPi + FPi + FNi

, (5.6)

where N , TPi, FPi, and FNi stand for the total number of samples, the true positives, false

positives, and false negatives for the ith sample. Additionally, giga-scale floating-point operations

(GFLOPs) determine model complexity. A more significant GFLOP indicates more computing

needs. The proposed model has a generator and discriminator with 31.96 MB and 10.67 MB,

respectively, and GFLOPs is 12.1.
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Figure 5.2: Training progress of two benchmark datasets: Cityscapes, and CamVid.

Fig. 5.2 illustrates the training progress of the discriminator to generate fake images (gen-

erated). A total of 200 iterations were performed to generate images according to real images

(ground truth). This shows the effect of discriminator loss, which is useful to understand the per-

formance of generating fake images. For generator training, these images will be considered as

unlabeled data along with the labeled data.
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5.4 Experimental Analysis

5.4.1 Environment Setup

All implementations are completed on Google’s CoLab notebook with Python 3 and other libraries,

such as Keras, TensorFlow, and OpenCV. A substantial amount of RAM or GPU support is neces-

sary to train the proposed model; in this case, we use a Tesla T4 12GB GPU. Finally, the proposed

model was tested on the Jupyter Notebook with 32GB GPU support on a local PC.

5.4.2 Datasets

The Cityscapes [103] dataset consists of 50 recordings of driving scenarios from which 2975, 500,

and 1525 images are extracted and labeled with 19 classes for training, validation, and testing,

respectively. Each annotated frame is the 20th frame in a 30th frame snippet, and the training

process considers these images with annotations. We resized the provided image from 1024×2048

to 256 × 256 without arbitrary cropping or scaling. To evaluate the model, images are collected

from the val set of Cityscapes.

The CamV id [104] has almost 10 minutes of recordings, encompassing over 11K frames, of

which 701 images with a resolution of 960 × 720 are pixel-level annotated. There are thirty-two

semantic labels. In this thesis, we used 468 samples with a dimension of 256 × 256 as a training

dataset for fully supervised learning and different ratios of unlabeled frames for semi-supervised

learning and evaluated the model with the test set of 233 samples.

5.4.3 Overall Discussion

This thesis randomly interleaves labeled and unlabeled data for semi-supervised training and jointly

updates the generator and discriminator sub-networks. In each iteration, only the batch contain-

ing the ground truth data is used to train the discriminator. The experiments are repeated several

times with different random samples to ensure the robustness of the model. During training, the

total training dataset holds labeled samples according to the following fractions: 1/30, 1/8, 1/4,
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Table 5.2: Quantitative analysis of various semi-supervised semantic segmentation methods on

mIoU in % for various ratios of labeled and unlabeled data (1/30, 1/8/,1/4) used in training.

Method 1/30 1/8 1/4 Fully Labeled
Cityscapes Validation Dataset

Hung et al. [67] NA 58.8 62.3 NA
s4GAN [73] NA 59.3 61.9 65.8
C3-SemiSeg [71] 55.1 63.2 65.5 69.5
KE-GAN [72] NA 66.9 70.6 75.3
This work 61.4 67.8 76.3 81.9

CamVid Test Dataset
MSCFNet et al. [58] NA NA NA 69.3
This work 59.8 65.9 73.5 77.6

NA - Result is not found in the literature. The best results are in boldface.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve for Cityscapes

ROC curve (AUC = 0.77)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve for CamVid

ROC curve (AUC = 0.73)

Figure 5.3: AUC-ROC of the proposed semi-supervised model on Cityscapes and CamVid

datasets.

and fully labeled (supervised) as indicated in Table 5.2. Compared to the best existing model–KE-

GAN [72], the proposed model on the Cityscapes dataset achieves 1.35% and 8.92% improvement

for the 1/8 and 1/4 data splits, respectively. On the other hand, the model gets 11.97% improvement

for a fully supervised CamVid dataset compared to MSCFNet [58]. Furthermore, achieving a 75%

and 73% AUC in Fig. 5.3 suggests that the model is able to capture some of the underlying patterns

in the data, although it may struggle with certain classes or in more challenging scenarios, such as

heavily occluded objects or rare classes. Fig. 5.4 on page no. 72 and Fig. 5.5 on page no. 73 present

a few qualitative results on Cityscapes and CamVid datasets, respectively. Note that the outputs

71



are rescaled to maintain the aspect ratio of the original inputs. The samples’ indexes in the actual

datasets are indicated on the left side of the image for better understanding and reproducibility.

A detailed observation proves that segmentation maps are close to the ground truth counterparts.

Images are randomly selected from both datasets to generate the predicted ground truth. In the

end, the proposed U-net as a generator network with a patch-wise discriminator works better for

semantic segmentation.

Input Image Ours (1/4)Ours (1/8) Ground Truth
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Figure 5.4: Qualitative results of the proposed semi-supervised approach for four randomly

selected images from the Cityscapes validation dataset.
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Figure 5.5: Qualitative results of the proposed semi-supervised approach for four randomly

selected images from the CamVid test dataset.

5.5 Conclusion

This work overcomes the attention inefficiencies in existing semi-supervised approaches for image

semantic segmentation. The proposed discriminator and generator networks coordinate the updat-

ing of the segmentation model. A patch-wise discriminator extracts more contextual information

from the input scenes. The extensive experiments on two benchmark datasets prove the effective-

ness of the proposed model. In the future, two key areas will be focused for further investigation:

(i) enhancing the capacity of generator networks to express latent geometric properties, such as

creating a high-quality non-Euclidean feature space, and (ii) developing a few-shot semantic seg-
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mentation technique, which is essential for domains like remote sensing where sample collection

is prohibitively expensive.
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Chapter 6

Concluding Insights and Future Directions

This thesis demonstrates the significant potential of the proposed semi-supervised image segmen-

tation and classification framework using deep convolutional neural networks. By effectively lever-

aging both labeled and unlabeled data, the framework addresses critical challenges in traditional

supervised learning methods, such as data scarcity and high labeling costs. The integration of

adversarial learning and pseudo-labeling techniques has notably enhanced the model’s robustness

and accuracy, achieving state-of-the-art performance on benchmark datasets.

Despite these advancements, there are several limitations inherent to the current approach.

One key limitation is the dependency on the datasets, may not fully represent the diversity of real-

world scenarios. The dataset’s specific domain could restrict the generalizability of the model to

other types of images or environments. Additionally, the limited computational resources available

during this research constrained the ability to experiment with more complex models or perform

extensive hyperparameter tuning. This limitation could impact the overall efficiency and perfor-

mance of the framework.

Moreover, the effectiveness of the semi-supervised learning approach hinges on finding the

optimal balance between labeled and unlabeled data. An inappropriate balance can lead to sub-

optimal performance, with risks of overfitting or inadequate learning from unlabeled data. Over-

reliance on synthetic data in GAN-based approaches and difficulties in generalizing across diverse

domains and image types pose further constraints.
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Future research should focus on expanding the scalability of the framework to larger and more

varied datasets, integrating domain adaptation techniques to enhance generalization, and develop-

ing more accurate pseudo-labeling methods. Exploring alternative neural network architectures

and novel training strategies could further improve efficiency and accuracy in semi-supervised im-

age segmentation and classification. Addressing these research directions will advance the field of

semi-supervised learning in computer vision, leading to more effective and reliable image analysis

systems.

Ultimately, the proposed methods promise to enhance the efficiency and performance of im-

age segmentation and classification applications, contributing to robust solutions in areas such as

medical imaging, autonomous driving, and remote sensing.
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Appendix B: Source Code

The source codes of this thesis are available on GitHub.

For more information about the author’s publications, please refer to Google Scholar and

LinkedIn profiles.

Google Scholar: Google Scholar.

LinkedIn: LinkedIn.
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