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ABSTRACT 
 
Morris, D.M. 2014. Aquatic habitat use by North American moose (Alces alces) and associated 

richness and biomass of submersed and floating-leaved aquatic vegetation in north-central 

Minnesota. 130 pp. 
 

 

Key words: Alces alces, herbivory; aquatic vegetation communities, beaver, Castor canadensis, 

habitat, moose. 
 

 

The North American moose (Alces alces) is a species of socio-economic importance that has 

undergone recent declines in some areas of its range and may be impacted by climate change 

through effects on physiology or habitat availability. Moose frequently use aquatic habitat during 

summer but the timing, frequency and reasons for this behaviour are not well understood and 

appear to vary geographically. My objectives were to: 1) clarify the importance of aquatic habitat 

to North American moose through a literature review and 2) estimate richness and biomass of 

submersed and floating-leaved vegetation in lakes and beaver ponds potentially used by moose 

in north-central Minnesota through a comparative field study. The literature suggests that moose 

use aquatic habitats to feed and escape biting insects and do not appear to use them to escape 

predators or ameliorate heat stress, though the latter function may be important at the extreme 

southern limits of moose range. Richness and biomass of aquatic plants in aquatic areas 

potentially used by moose in north-central Minnesota was heavily influenced by the presence 

and damming activity of beaver (Castor canadensis). Beaver ponds contained higher richness 

and biomass of aquatic vegetation compared to lakes. The creation and maintenance of large (> 1 

ha) beaver ponds 6-38 years of age facilitate moose in meeting nutritional demands because they 

allow growth and reproduction of species less competitive but potentially more palatable than the 

dominant floating-leaved plant Brasenia schreberi. The maintenance of beaver populations may 

be important for moose conservation in north-central Minnesota. 
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1.0 GENERAL INTRODUCTION 
 

The moose (Alces alces) is a species of socio-economic importance throughout its 

circumpolar boreal range (Reeves and McCabe 1998; Timmermann and Rodgers 2005). This 

herbivore is an important aesthetic resource (Cobus 1972) and game species (Crichton 1998; 

Timmermann and Rodgers 2005). Thus, moose in North America have received much research 

and management attention in the past century and much is known about their habitat needs (Peek 

1998). 
 

 
Ecologists have suggested that climatic factors may limit the range of moose in North 

America (Karns 1998). The moose is the largest cervid on Earth (Bubenik 1998), and as such it 

responds differently to thermal stress when compared to other deer species (Demarchi and 

Bunnell 1995). The moose’s large body size and dark pelage make it ideally suited to cold boreal 

winters, and therefore the northern range limit of the moose is thought to coincide with decreased 

forage availability above the tree line as opposed to extreme cold temperatures (Telfer 1984; 

Karns 1998). Conversely, these adaptations reduce cooling efficiency during the non-winter 

period, particularly in the early spring when moose still possess winter pelage (Renecker and 

Hudson 1986; 1989; Dussault et al. 2004). Evidence from captive moose has confirmed that 

moose are thermally stressed at lower temperatures than have been reported for other cervids 

(Renecker and Hudson 1986, McCann et al. 2013) and bedding or standing in water may limit 

the proportion of total energy expenditure devoted to thermoregulation (Renecker and Hudson 

 
1990). Providing insight based on anecdotal observations of moose bedded in shallow streams 

during hot periods in Alberta, Kelsall and Telfer (1974) suggested that moose populations should 

not persist in areas where daily summer temperatures frequently exceed 26°C because moose are 

not capable of cooling themselves to adequately maintain homeostasis. Following their 
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conclusion that moose southern range limits are dictated by warm climates, Kelsall and Telfer 

(1974) speculated that the existence of thermal refuges (treed wetlands, lakes, ponds, etc.) for 

moose could allow them to survive at latitudes farther south than would be possible in the 

absence of these landscape features. 

 

Moose in central North America will almost certainly experience some level of habitat 

alteration due to climate change (Rempel 2011). Moose at their southern range periphery may 

also experience dramatic increases in daily summer temperatures, which could cause heat stress 

that would compromise energy acquisition (Lowe et al. 2010). Over a 45-year observed period, 

moose populations in Minnesota have declined dramatically and they have been virtually 

extirpated from the northwest region of the state (Murray et al. 2006; Lenarz et al. 2009 ). The 

decline in annual population growth rates in northwestern Minnesota has been correlated with 

increasing atmospheric temperatures from 1961-2006 (Murray et al. 2006). Researchers have 

expressed concern that temperature-mediated decreases in survival of moose near the southern 

periphery of their range (Lenarz et al. 2009) may lead to extirpation from all of Minnesota 

(Lenarz et al. 2010; McGraw et al. 2010) and other southern parts of their current range (Lowe et 

al. 2010). Therefore, the importance of aquatic refuges for ameliorating heat stress in moose 

should be clarified in Minnesota in an effort to identify components of moose habitat where 

moose are the least thermally stressed during the hottest times of the snow-free period. 

 

Moose feed on submersed, floating-leaved and emergent plants that are present in aquatic 

areas during the snow-free period (Belovsky and Jordan 1978; Fraser et al. 1980). In some areas, 

moose consume significant fractions of annual submersed and floating-leaved plant production 

following spring green-up (Aho and Jordan 1979; Fraser and Hristienko 1983; Morris 2002). It is 

plausible, then, that aquatic areas are an essential component of moose habitat at southern range 



3  
 
 

limits in North America because they allow moose to ameliorate heat stress and feed 

simultaneously (Belovsky and Jordan 1978; Belovsky 1981). The hypothesis that moose use 

aquatic habitat for feeding and cooling implies that moose engage in behavioural 

thermoregulation leading to selection of aquatic areas, but that has not been consistently detected 

in North America (e.g., Dussault et al. 2004; Lowe et al. 2010). 

 

The importance of aquatic areas for moose in summer may be a controversial topic 

among wildlife researchers and managers because proportional use of aquatic habitats is often 

quite low across North America (Phillips et al. 1973; Kufeld and Bowden 1996; Leptich and 

Gilbert 1989; Osko et al. 2004; Broders et al. 2012). A biogeographical perspective, similar to 

that employed by Kelsall and Telfer (1974), may be needed to clarify the importance of aquatic 

areas to moose during summer. It is possible that different or multiple mechanisms might drive 

observed aquatic feeding in different areas of the world based on differences in aquatic plant 

availability and nutritional requirements of moose belonging to different sub-populations 

(Boonstra and Sinclair 1984; Butler 1986; Jordan 1987). Moose on Isle Royale, for example, 

have been described as sodium-limited in the spring and early summer (Jordan et al. 1973) and 

moose in Ontario have been shown to select aquatic forage items with higher sodium 

concentrations (Fraser et al. 1984). Alternatively, moose living on the Copper River Delta in 

Alaska appeared to forage in a manner consistent not only with sodium acquisition but also 

maximization of foraging efficiency (MacCracken et al. 1993). 

 

The central hypothesis of this thesis is that aquatic areas are an essential component of 

moose habitat in North America because they allow moose to satisfy their metabolic 

requirements by feeding on aquatic vegetation. My objective was to determine what mechanisms 

(e.g., heat stress amelioration) might plausibly influence aquatic habitat use by North American 
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moose, particularly in the Great Lakes-St. Lawrence region. To accomplish this objective, I first 

report a detailed literature review and synthesis that compares the extent of moose aquatic habitat 

use and the suggested mechanisms driving this use in the Great Lakes-St. Lawrence region 

relative to areas elsewhere in North America that support moose populations. Following this I 

report on a field study in northern Minnesota in which I estimated the annual production of 

important aquatic food items for moose. I further explored local and landscape-level factors that 

may affect the availability of aquatic forage for moose in lakes and beaver ponds of north-central 

Minnesota. 
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2.0 MOOSE AQUATIC HABITAT USE: A REVIEW AND SYNTHESIS 
 
2.1 Moose Aquatic Habitat Use: Hypotheses and Predictions 

 
North American moose (Alces alces) use of aquatic areas such as lakes, rivers, ponds, 

treed wetlands, and other seasonally inundated habitats has long been known (McCabe and 

McCabe 1928; Murie 1934). Use of aquatic habitats does appear to vary geographically (Peek 

1998). Several hypotheses for aquatic habitat use by moose have emerged in the literature: 

minimization of predation risk, insect avoidance, heat stress amelioration, and nutrition. A 

greater understanding of the factors driving regional variability in aquatic habitat use by moose 

should reveal the importance of aquatic areas to moose, particularly at southern range limits 

(Peek 1998; see general introduction). The objective of this chapter is to evaluate the available 

evidence supporting or contradicting hypotheses for aquatic habitat use by moose using 

information from studies in four regions of North America  (Alaska-North, encompassing all of 

moose range north of the prairie provinces of Canada and within Alaska; Mountain-West, 

encompassing all areas of moose range west of Minnesota that are not present in Alaska-North; 

Northeast-Maritimes, encompassing all areas of moose range in Canada and the U.S. lying east 

and south of the lower St. Lawrence River; Great Lakes-St. Lawrence, encompassing all areas of 

moose range in North America not delineated above). In the following sections, the hypotheses 

listed above, which are not necessarily mutually exclusive, are summarized and a suite of 

predictions are generated (Table 1). The predictions are then qualitatively evaluated using 

information obtained from a literature review of studies of moose aquatic habitat use. Each 

prediction conformed to one of the following categories: geographic variation in proportional use 

of aquatic habitat, seasonal variation in aquatic habitat use, diel variation in aquatic habitat use, 

and summer forage preferences. According to this framework, each of the four hypotheses 

possessed a unique set of alternative predictions (justified below) that together represented the 
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Table 1. A hypothetico-deductive framework for examination of mechanisms driving moose use of aquatic habitat in North America. 

Predictions are separated into four categories (geographic, seasonal or diel variation in aquatic use by moose and forage preferences). 

Aquatic forage preferences are defined relative to terrestrial forage and relative to other aquatic items differing in their sodium, protein 

and energy contents. 
 

Hypothesis  Predictions   
 Geographic variation Seasonal variation  Diel variation Forage preferences 

Minimization of direct 
predation risk 

Aquatic use greatest in 

Great Lakes-St. Lawrence 

and least in Northeast- 

Maritimes 

Aquatic use greatest in 

August-September and 

lowest in April-May 

Aquatic use nocturnal 

(greatest between dusk and 

dawn) 

Preference for aquatic 

forage items not 

anticipated 

 

Biting insect avoidance 
 

Could not be determined 
 

Aquatic use greatest mid- 

June to early-July 

 

Aquatic use crepuscular 

(peak at dawn and dusk) 

 

Preference for aquatic 

forage items not 

anticipated 

 

Heat stress amelioration 
 

Aquatic use greatest in 

Northeast-Maritimes and 

Mountain-West. Use least 

in Alaska-North and Great 

Lakes-St. Lawrence 

 

Aquatic use greatest in 

July and August and least 

in May and June 

 

Aquatic use diurnal 

(greatest 1100-1959, least 

2300-0759) 

 

Preference for aquatic 

forage items not 

anticipated 

 

Nutrition (sodium 

acquisition) 

 

Aquatic use greatest in 

Great Lakes-St. Lawrence 

relative to other regions. 

 

Aquatic use greatest in 

May and June relative to 

other summer months 

 

Diel variation in aquatic 

use not anticipated 

 

Terrestrial forage preferred 

over aquatic forage but 

aquatic items commonly 

consumed are higher in 

sodium than aquatic forage 

not typically eaten 

 

Nutrition (foraging 

efficiency) 

 

Aquatic use approximately 

equal in all regions 

 

Seasonal variation in 

aquatic use not anticipated 

 

Diel variation in aquatic 

use not anticipated 

 

Aquatic forage preferred 

over terrestrial forage. 

Aquatic items commonly 

consumed higher in energy 

and protein than aquatic 

forage not typically eaten   
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conditions required for acceptance of a given hypothesis. This framework also provided the 

opportunity for rejection of hypotheses for which support was completely lacking. Multiple 

combinations of hypotheses that were partially supported could emerge from this qualitative 

analysis but it was my intention to first consider, and possibly discount, the most parsimonious 

explanations for aquatic habitat use by North American moose (i.e., that a single hypothesis 

might sufficiently explain this behavioural pattern). 

 

Minimization of Predation Risk 
 

 
Wolves (Canis lupus, Canis lycaon) are well adapted for hunting and killing moose 

(Peterson and Ciucci 2003) and are the principal natural predators of moose in North America 

(Ballard and Van Ballenberghe 1998). Though predation on moose, particularly calves, by ursids 

(Ursus americanus, Ursus arctos) occurs in North America (Ballard and Van Ballenberghe 

1998), I assumed that ursid predation pressure has not been sufficiently consistent and widespread 

to have caused moose behavioral adaptation (to use aquatic areas) when compared to wolf 

predation. Thus, predation risk hereafter refers solely to risk of predation by wolves. Risk of 

predation on moose has potentially led to adaptation to use aquatic areas through natural 

selection because moose occupying areas in close proximity to water may be better able to 

escape or avoid attacks by wolves (Stephens and Peterson 1984). 

 

The hypothesis that moose might remain in close proximity to aquatic areas so as to more 

easily escape attacks by terrestrial predators was not recognized by Peek (1998) as a potential 

mechanism for use of aquatic areas in Ontario, Isle Royale and Quebec (Great Lakes-St. 

Lawrence region) or the Copper River Delta of Alaska (Alaska-North).Yet, Eastman and Ritcey 

(1987) suggested moose in the boreal upland areas of British Columbia (Mountain-West) may 
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use aquatic areas to minimize predation risk. Riverine habitats might be important calving sites 

in Alaska, presumably because dense stands of willow commonly associated with rivers and 

streams provide lateral cover that would obscure bedded post-partum cows from potential 

predators (Lesresche et al. 1974). The majority of active calving sites for moose in Algonquin 

Provincial Park, Ontario, are located on islands compared to on peninsulas or within landlocked 

areas and this may be due to the importance of water in deterring predators (Wilton and Garner 

1991). Calves consistently occupying small islands off the coast of Isle Royale appeared to have a 

greater probability of survival relative to calves living on Isle Royale itself (Stephens and 

Peterson 1984). However, post-partum female moose tended to bed nearer to an island’s center 

than to its shoreline in central Ontario, possibly because cows were avoiding wolves hunting 

along watercourses (Addison et al. 1990). Wolf-killed moose carcasses tended to be found 

clustered near aquatic areas on Isle Royale (e.g., beaver ponds, lakes; Bump et al. 2009) and 

wolves may attack and kill swimming moose (Jordan et al. 2010). Detailed descriptions of moose 

behaviour in Yellowstone National Park (Mountain-West) were provided by McMillan (1954) 

who noted that actions indicating wariness (e.g., frequent lifting of the head, ear swiveling, 

running short distances and stopping) were more frequently observed while moose were in water 

compared to terrestrial habitats. Moose might be aware of their vulnerability to predator attack in 

water because of the apparent difficulty moose have in extricating themselves from aquatic 

substrate (McMillan 1954). Moose movement through aquatic substrates was simulated by 

Belovsky and Jordan (1978) who found evidence in agreement with McMillan’s claim that 

moose may have difficulty rapidly removing themselves from an aquatic area. In the only 

detailed field-based study of moose access routes to aquatic areas, Timmermann and Racey 

(1989) demonstrated that increased substrate solidity and decreased shrub abundance were 
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positively associated with moose access routes to aquatic areas in northwestern Ontario (Great 

Lakes-St. Lawrence), presumably due to greater ease of entry and extrication at these locations. 

Therefore, although suggested as a plausible explanation by some studies, evidence contradictory 

to the minimization of predation risk hypothesis exists in three of four major regions in North 

America (Mountain-West, Alaska-North, and Great Lakes-St. Lawrence). 

 

The probability of an ungulate being attacked and killed by wolves is related to both 

direct and indirect sources of predation risk (Hebblewhite et al. 2005; Kittle et al. 2008). Direct 

predation risk is simply represented by the frequency distribution of predators on the landscape 

(Fortin et al. 2005; Mao et al. 2005) whereas indirect predation risk is a function of prey 

susceptibility and predator presence in different habitat types (Hebblewhite et al. 2005). The 

effects of indirect predation risk on ungulate habitat use are complicated by the existence of 

factors that might improve fitness in areas of apparent high indirect risk (e.g., deterrence of 

wolves by human activity, increased forage availability; Hebblewhite and Merill 2007; Kittle et 

al. 2008). Conversely, direct predation risk constitutes a simple estimate of mortality risk 

irrespective of landscape-level features and may, in fact, be important in structuring ungulate 

habitat use at broad spatial scales (Kittle et al. 2008). Direct predation risk (as measured by wolf 

density) may be a more parsimonious explanation for geographic variation in aquatic habitat use 

by North American moose compared to indirect predation risk that likely operates at finer spatial 

scales. Mean wolf density in the Great Lakes-St. Lawrence, Mountain-West, and Alaska-North 

regions has been estimated at 2.29 (n=6 estimates), 1.66 (n=9 estimates) and 0.71 (n=12 

estimates) wolves/100 km2, respectively (Table 2). Wolves do not appear to inhabit the 

Northeast-Maritimes region (0.00 wolves/100 km2; n=2). 
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Wolves are at their greatest density in the Great Lakes-St. Lawrence region and thus I 

predicted that proportional use of aquatic habitat by moose would be greatest in this region 

relative to all other regions. I predicted that moose would display the least proportional use of 

aquatic habitat in the Northeast-Maritimes region where their primary predator, the wolf, is 

largely absent. I found considerable differences in wolf numbers among areas of high and low 

wolf density within the Alaska-North and Mountain-West regions. For these regions, moose use 

of aquatic areas may be higher in locations supporting denser wolf populations. For example, 

moose on the Kenai Peninsula may be more inclined to use aquatic areas than moose living in 

the Northwest Territories. Moose in Yellowstone National Park (where wolf densities are high) 

might be more inclined toward aquatic habitat use relative to moose living outside the park 

(where wolf densities are lower). 

Seasonal variation in summer activity of wolves is heavily influenced by the reproductive 

cycle of the breeding female (Mech and Boitani 2003). Denning of wolves in North America 

begins in April, with breeding animals making increasingly large forays as the summer 

progresses. In general, breeding animals (and to some extent non-breeders) tend to range farther 

and farther as the pups age throughout the summer (Packard 2003). The onset of denning in the 

Alaska-North region occurs near April 13, with parturition expected to occur May 1-May 11 

(Ballard et al. 1987). Pups in this study were first seen outside the den on June 1. Two breeding 

females living in south-central Alaska began making regular hunting excursions May 27-June 5, 

and increased the length of time spent hunting following June 16 (Ballard et al. 1991). The 

timing of denning onset appears similar in the Great Lakes-St. Lawrence and Mountain-West 

regions (but see Mech 2002) with estimated denning dates of April 12-18 in northern Minnesota 

(Frits and Mech 1981; Fuller 1989) and April 18 in British Columbia and 
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Table 2. Wolf (Canis lupus, Canis lycaon) density (wolves/100 km2) at 30 locations within 4 geographic regions (Alaska-North, 

Mountain-West, Great Lakes-St. Lawrence and Northeast-Maritimes) of North America. Where multiple estimates (i.e., references) 

were used to generate a density for a given location the mean value was used. Each unique location encountered during a literature 

review of geographic variation in wolf density was included in the table. 

 
Region Location Wolves/100 km2

 References 

Alaska-North Northwest Territories 0.32-0.65 Kelsall (1957) 

 
 

South-central Alaska 
 

0.35-0.39 
 

Davis (1978);Ballard et al. 

(1982;1987);Ballard and Miller 

(1990);Ballard et al. (1990) 

 
 

East-central Alaska 
 

0.40 
 

Boertje et al. (1987;1988) 

 
 

Northern Alaska and Yukon 
 

0.51-0.65 
 

Stephenson (1975); 

Singer (1984); Adams and 

Stephenson (1986);Dale et al. 

(1995) 

 
 

Southern Yukon 
 

0.61 
 

Larsen et al. (1989);Hayes et al. 

(1991) 

 
 

Central Yukon 
 

0.65 
 

Sumanik (1987);Hayes and 

Harestad (2000a,b) 

 
 

Denali National Park, AK 
 

0.71 
 

Murie (1944);Haber (1968;1977) 

Singer and Dalle-Molle (1985) 

 
 

Unit 13, AK 
 

0.77 
 

Rausch (1967) 

 
 

Interior Alaska 
 

0.90 
 

Gasaway et al. (1983) 
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Table 2. cont’d. 
 

 
Region Location Wolves per 100 km2

 References 

Alaska-North Southeastern Alaska 1.00-1.54 Atwell et al. (1963) 

 
 

Tanana Flats, AK 
 

1.11 
 

Stephenson (1977) 

 
 

Kenai Peninsula, AK 
 

1.20 
 

Franzmann et al. (1980);Peterson 

et al. (1984);Schwartz and 

Franzmann (1991) 

 

Mountain-West 
 

Greater Yellowstone Area 
 

0.18 
 

Smith et al. (2010) 

  

Central Idaho 
 

0.30 
 

Smith et al. (2010) 

  

Jasper National Park, AB 
 

0.44 
 

Carbyn (1974) 

  

Saskatchewan 
 

0.46-0.96 
 

Banfield (1951) 

  

Southwestern Montana 
 

0.80 
 

Berger and Geese (2007) 

 
 

Northern Alberta 
 

1.27 
 

Fuller and Keith (1980a,b); 

Oosenburg and Carbyn 

(1982);Bjorge and Gunson 

(1989);Gunson (1995) 

 
 

Southwestern Manitoba 
 

2.60 
 

Carbyn (1980;1983) 

 
 

Yellowstone National Park, WY 
 

4.35 
 

Smith et al. (2004) 

 
 

Grand Teton National Park, WY 
 

4.56 
 

Berger et al. (2008) 
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Table 2. cont’d. 
 

 
Region Location Wolves per 100 km2

 References 

Great Lakes-St. Lawrence Ontario 0.20-0.38 Pimlott et al. (1969) 

  

Pukaskwa National Park, ON 
 

1.20 
 

Bergerud et al. (1983) 

  

Southern Quebec 
 

1.67 
 

Messier (1985a,b);Potvin (1988) 

  

Minnesota 
 

2.88 
 

Olson (1938);Stenlund 

(1955);Van Ballenberghe et al. 

(1975);Berg and Kuehn 

(1980);Fuller (1989);Frits and 

Mech (1981);Gogan et al. (2000) 

 
 

Algonquin Provincial Park, ON 
 

3.38 
 

Pimlott et al. (1969);Kolenosky 

(1972);Forbes and Theberge 

(1995) 

 
 

Isle Royale National Park, MI 

(1959-1994) 

 

4.40 
 

Mech (1966);Jordan et al. 

(1967);Peterson (1977);Peterson 

and Page (1988);Peterson et al. 

(1998) 

 

Northeast-Maritimes 
 

New Brunswick 
 

0 
 

Boer (1988) 

 
 

Newfoundland 
 

0 
 

Ballard and Van Ballenberghe 

(1998) 
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Montana (Boyd and Pletscher 1999). Females were first located away from dens in northwestern 

Minnesota on April 18 (Frits and Mech 1981), which coincides approximately with predicted 

time of parturition (April 29) elsewhere in the region (Mills 2006). The attendance of wolves at 

the homesites (dens and rendezvous sites) tends to diminish over the course of a summer (Potvin 

et al. 2004; Ruprecht et al. 2012). Greater distances between breeding females and pups were 

reported beginning in August (Frits and Mech 1981). The pups in the above study emerged from 

the den around June and began ranging farther throughout the summer and eventually abandoned 

homesites by September. Homesites of wolves in northern Minnesota were abandoned by packs 

starting in early-August (Harrington and Mech 1982). Similarly, detection of wolves by howling 

and radio tracking in Algonquin Provincial Park was greatest in July (Joslin 1967; Kolenosky 

and Johnston 1967), possibly owing to reduced movement in July relative to later months. 

Significant declines in percent homesite attendance by breeding adults was related to various 

reproductive stages (86.7% preweaning to 21.6% postweaning, with an abrupt decline of 

approximately 20% immediately following weaning; Ruprecht et al. 2012). Wolves were not 

located within 0.5 km of homesites by September, suggesting onset of nomadic hunting behavior 

at this time (Ruprecht et al. 2012). Abandonment of homesites by wolves appears to begin in 

August, and I surmise that it is at this time that direct risk to large ungulates increases due to 

increased presence of hunting wolves. If direct predation risk drives aquatic habitat use by North 

American moose then I predict low use of aquatic areas in April and May with a subsequent 

increase in August and September concomitant with increased direct predation risk. Indirect 

predation risk may not necessarily conform to the above seasonal pattern (e.g., direct risk is 

lowest in April and May but indirect risk may be higher at this time due to, for example, 
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increased vulnerability of cow-calf pairs in different areas; Patterson et al 2013) but, as discussed 

above, is a less a parsimonious mechanism than direct predation risk. 

 

Wolves in south-central Alaska of the Alaska-North region appeared to show greatest 

activity near monitored dens (i.e., arriving and departing to hunt) between 0600-0800 and 2100- 

2300, with very little activity observed from 1300-2000 (Ballard et al. 1991). Wolves in Denali 

National Park, Alaska, in the Alaska-North region, left dens to hunt most often in the evening, 

with reported departure times of 1600-2200 (Murie 1944). Similarly, wolves living on the Kenai 

Peninsula, Alaska, appear to do most of their travelling (and likely hunting) at night. Wolves in 

Algonquin Provincial Park appeared most active at dusk, and responded to howling slightly more 

from dusk until dawn than during daylight hours (Joslin 1967). Similarly, maximum activity of 

radio tracked wolves in Algonquin Park occurred shortly before and after dusk (Kolenosky and 

Johnston 1967). Wolves in Minnesota were reported to be most active from 2000-0800 (Merill 

and Mech 2003) and wolves on Isle Royale showed greatest homesite attendance during the day 

(0600-1800; Potvin et al. 2004). It appears that wolves tend toward nocturnal hunting activity 

during summer, typically leaving homesites in the evening and returning near dawn. If direct 

predation risk drives aquatic habitat use by North American moose then I predict that moose use 

of aquatic areas would be greatest during nighttime hours, between dusk and dawn, when the 

number of wolves hunting is likely to be highest. 

 

Insect Avoidance 
 

 
Mosquitoes, black flies and deer flies, and horseflies (culicids, simuliids, and tabanids, 

respectively) are major biting insect pests of North American moose (Laurian et al. 2008; 

Renecker and Hudson 1990). Insect avoidance is a potential benefit of aquatic habitat for moose 
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(Kelsall and Telfer 1974). Moose use of river habitat in Ontario (Great Lakes-St. Lawrence), for 

example, was suggested as a strategy to escape the biting attacks of simuliids (Flook 1959). The 

author did not believe that moose were using aquatic habitat for any reason other than insect 

relief and stated that moose were never observed to be feeding on aquatic vegetation while in 

water. Although extensive stands of aquatic vegetation existed within the river, Flook (1959) 

noted that moose were not observed in these areas. Conversely, extensive feeding on aquatic 

vegetation in northwestern Ontario led to the conclusion that insect relief was a less plausible 

hypothesis for aquatic habitat use by moose than aquatic feeding (deVos 1958). Moose showed 

some preference for herbaceous habitats and by extension aquatic areas (11 of 12 herbaceous 

habitat categories were at least seasonally inundated with water though only 2 of 12 were 

permanently flooded) in Voyageurs National Park, Minnesota (Cobb et al. 2004). This apparent 

preference for herbaceous habitat in summer might be related to moose seeking refuge from 

biting insects in open areas (though aquatic feeding was also mentioned as a possible 

mechanism; Cobb et al. 2004). Moose in Minnesota used aquatic habitat prior to typical peak 

densities of large biting insects (e.g., tabanids) but extensive time spent in water by moose during 

 
June may have been related to high densities of simuliids and culicids at this time (Peek et al. 

 
1976). Moose using aquatic areas in Minnesota, however, were most often observed with the 

majority of their bodies above water and thus fully exposed to biting insects (Peek 1971; though 

not discussed was the possibility of increased wind speed in open habitats providing some insect 

relief). 

 

Moose living in northern Alaska might make use of stream beds and the open tundra 

because increased wind speeds in these areas potentially provide relief from biting flies (Mould 

1977). Aquatic feeding depth by moose was influenced by the presence of biting insects in 



17  
 
 

Bowron Lake Park, British Columbia (Ritcey and Verbeek 1969). Moose in that study tended to 

feed in deeper water when harassment from flies appeared to be at its worst. Moose in the 

Northwest Territories were observed “submerging to the neck” and this particular behavior was 

prevalent “especially when the mosquitoes were bad in late June and early July” (Barry 1961). 

Renecker and Hudson (1989) noted energy expenditures of free-ranging moose in the aspen 

parklands region of Alberta approximately doubled between May and July, partially due to 

increased harassment by insects over this period. They later stated that energetic costs associated 

with insect harassment might be reduced when moose enter aquatic areas (Renecker and Hudson 

1990). There does not appear to be much evidence supporting the insect relief hypothesis from 

the Northeast-Maritimes region, though Koitzsch (2002) included insect relief as one potential 

benefit of aquatic areas for moose. Dodds (1955) was skeptical of the importance of aquatic 

areas to moose in Newfoundland and did not observe moose using available aquatic areas for 

insect relief. 

 

An attempt to determine the extent of geographic variation in the abundance of culicids, 

simuliids, and tabanids proved problematic due to a relative scarcity of baseline data in the 

literature (Hocking 1960) and an apparent lack of consistency with respect to sampling protocol 

(Smith et al. 1970; Downs et al. 1986; Toupin et al. 1996; Deans et al. 2005; Butt et al. 2008). 

For example, studies in the Alaska-North region reported mean number of sampled mosquitoes 

per day was 13-19 individuals according to 5-minute landing counts (Downes et al. 1986; Yukon 

Territory) but 35 mosquitoes per day according to 5-minute vacuum sampling of exposed black 

cloth (Toupin et al. 1996; Ungava Region of Quebec). Overall, I was unable to locate sufficient 

information in the literature to determine the extent, if any, of geographic variation of biting 

insects across North American moose range. I, thus, was unable to predict whether moose might 
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be more inclined to use aquatic areas as refuge from biting insects in one region relative to 

another. 

 

The activity of biting insects in the Alaska North region was greatest in mid-July and 

much reduced by the second week of August (Hocking et al. 1950; Miller 1951; Curtis 1953; 

Hocking and Pickering 1954; Corbett and Danks 1973; Downes et al. 1986; Toupin et al. 1996). 

Peak activity of biting insects generally occurred earlier and persisted longer outside of the 

Alaska-North region (mid-June to late July; Beckel and Atwood 1959; Smith et al. 1970; 

Westwood and Brust 1981; Trueman and Maciver 1986; McElligot and Galloway 1991; Butt et 

al. 2008; Laurian et al. 2008). If insect avoidance drives aquatic habitat use by North American 

moose I predict the greatest use of aquatic habitat from mid-June to late-July, with the added 

caveat that moose living in the Alaska-North region would show a later seasonal peak in aquatic 

use than moose in other regions owing to a later peak biting insect season. 

 

Biting insect activity of culicids and simuliids generally showed a crepuscular pattern 

with most studies reporting a primary peak at dusk and a secondary peak near dawn (Haufe 

1952; Curtis 1953; Wolfe and Peterson 1960; Happold 1965; Boyer et al. 2013; Downes et al. 

 
1986; Toupin et al. 1996; Trueman and Maciver 1986). Tabanids, in comparison, have a greater 

tendency to be active during daylight hours, but activity appears to peak closer to the morning 

than midday (e.g., 0900-1200; Miller 1951). If insect avoidance drives aquatic habitat use by 

North American moose I predict that moose use of aquatic areas would be greatest near dusk 

concomitant with a daily peak in biting insect activity. 
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Heat Stress Amelioration 
 

 
The southern range limit of moose may be limited by warm summer temperatures 

because moose have a low upper critical temperature (Kelsall and Telfer 1974; Renecker and 

Hudson 1986; McCann et al. 2013). It follows that aquatic habitat use by moose may be related 

to a need for moose to cool themselves by submersing themselves in water (Peek 1998). Feeding 

time by moose may be constrained by warm ambient temperatures (Belovsky and Jordan 1978; 

Belovsky 1981; Renecker and Hudson 1992) but this constraint may be relaxed when moose are 

feeding in water (Belovsky 1978). Peek (1998) implied that, within the Great Lakes-St. 

Lawrence region, longer periods of aquatic habitat use by moose observed in Minnesota relative 

to Ontario might be explained by greater mean daily temperatures in the former area. Ackerman 

(1987) reported that moose on Isle Royale exhibited a greater tendency toward heat-reducing 

behaviors, including bedding in water, when summer temperatures exceeded 30°C. Moose in the 

Mountain-West region may experience energy debts as a result of a failure to feed in hot weather 

(Renecker and Hudson 1992) and this negative effect of high ambient temperature may be 

ameliorated by moose standing or bedding in water or saturated soil (Eastman and Ritcey 1987; 

Renecker and Hudson 1990; Demarchi and Bunnell 1995). 

 

Broders et al. (2012) tested the heat stress amelioration hypothesis using GPS data from 

collared moose in mainland Nova Scotia (Northeast-Maritimes) but did not detect a significant 

difference in the number of moose locations in water when ambient air temperatures were 20- 

26°C compared to when temperatures were 10-16°C. It should be noted, however, that moose 

locations during the most extreme summer temperatures (i.e., > 26°C) were screened from their 

analysis. Dodds (1955) supported the notion that moose use aquatic areas to cool down in 

Newfoundland and reported that “edges of bogs were often utilized and not infrequently moose 
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would lie in water to a depth of 2”-6” on warm days.” The availability of aquatic habitat that 

might provide thermal relief may be an important determinant of summer habitat quality in 

Maine (Thompson et al. 1995), Vermont (Koitzsch 2002), Massachusetts (Wattles and 

DeStefano 2013a; 2013b) and upstate New York (Haase and Underwood 2013). 

 

I determined geographic variation in maximum summer (May-August) temperatures in 

Canada and USA from two open-access online databases of climatological data (Environment 

Canada and the National Oceanic and Atmospheric Administration, respectively; 

http://climate.weather.gc.ca/; http://www.ncdc.noaa.gov/). Temperature data were obtained for 
 
each location where quantitative data on proportional use of aquatic habitat by North American 

moose were available (see RESULTS below). If monitoring stations were not present within an 

author’s study area, the nearest monitoring station to the study area was used. I computed an 11- 

year average centered on 1992 (the median year of all above mentioned proportional use studies) 

in order to prevent bias associated with inter-annual variation in mean temperatures across broad 

spatial scales (e.g., El Nino events). 

 

The lowest mean maximum summer temperature occurred in the Alaska-North region 

 
(16.2°C; n=2; Table 3). Mean maximum summer temperatures in Alaska-North ranged from 

 
15.2°C at Cordova Airport, AK to 17.2°C in Petersburg, AK. The second lowest mean maximum 

summer temperature occurred in the Great Lakes-St. Lawrence region (21.6°C; n=5). Mean 

maximum summer temperatures in the Great Lakes-St. Lawrence region ranged from 17.9°C in 

Grand Marais, MN to 24.5°C in Agassiz Refuge, MN. Mean maximum summer temperatures 

were higher in the Mountain-West and Northeast-Maritimes region than the Alaska-North and 

Great Lakes-St. Lawrence regions. Mean maximum summer temperature in the Mountain-West 

region was 22.2°C (n=5). Mean maximum summer temperatures in the Mountain-West region 

http://climate.weather.gc.ca/
http://www.ncdc.noaa.gov/
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ranged from 20.3°C in Red Rock, MT to 27.1°C in Fort Howes, MT. Mean maximum summer 

temperature in the Northeast-Maritimes region was 22.3°C (n=5). Mean maximum summer 

temperatures in the Northeast-Maritimes region ranged from 18.2°C in Corner Brook, NL to 

26.1°C in Amherst, Massachusetts. If moose are using aquatic areas to minimize the effects of 

heat stress during temperature maxima then I predict the lowest proportional use of aquatic 

habitat in the Alaska-North and Great Lakes-St. Lawrence regions, as these areas have the lowest 

mean maximum summer temperatures. I also predict moose should show the highest 

proportional use of aquatic habitat in the Northeast-Maritimes and Mountain-West regions, as 

these areas have the highest mean maximum summer temperatures. 

Mean maximum temperatures in North America increased from May to June and from 

June to July and August (Table 3). The mean maximum temperature in May was 16.6°C (n=16). 

Mean maximum temperatures in May ranged from 12.2°C in Corner Brook, NL to 21.3°C in 

Amherst, MA. The mean maximum temperature in June was 21.6°C (n=16). Mean maximum 

temperatures in June ranged from 15.2°C in Cordova, AK to 28.1°C in Fort Howes, MT. The 

mean maximum temperature in July was 23.8°C (n=16). Mean maximum temperatures in July 

ranged from 16.6°C at Cordova Airport, AK to 29.3°C in Fort Howes, MT. The mean maximum 

temperature in August was 23.4°C (n=16). Mean maximum temperatures in August ranged from 

16.8°C at Cordova Airport, AK to 30.2°C in Fort Howes, MT. If moose are using aquatic areas 

as a means to ameliorate heat stress then I predict greater use of aquatic habitat in July and 

August relative to May and June, as the former months would appear to present greater thermal 

challenges for moose than the latter. I also predict lower intensity of use in May relative to other 

months, as May appears to be the least thermally stressful month in all regions. I used a subset of 
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Table 3. Summary of mean maximum temperatures during May-August at 16 locations within 4 geographic regions where North 

American moose use aquatic habitat. Data from Environment Canada and NOAA online databases (http://climate.weather.gc.ca/; 

http://www.ncdc.noaa.gov/). All numerical values represent an 11-year average centered on 1992 (the median year of all proportional 

use studies) except where otherwise indicated. The mean value given is the temperature value for each location averaged across all 4 

months and represents an estimate of mean maximum summer temperature in that location. The references indicated are those for 

which the temperature data were collected. If a temperature monitoring station was not present in an author’s study area then the 

nearest monitoring station was used. 
 

Region Location   Month   Mean References 

  May   June    July   August     
 

Alaska-North 
 

Cordova 

Airport, AK 

 
 

12.4 

 
 

15.2 

  
 

16.6 

 
 

16.8 

 
 

15.2 

 

MacCracken et 

al. (1997) 

  

Petersburg, AK 
 

14.6a
 

 

17.2b
 

 
 

18.7b
 

 

18.2b
 

 

17.2 
 

Doerr (1983) 

 
Great Lakes-St. 

Lawrence 

 
Grand Marais, 

MN 

 

 
12.4 

 

 
17.2 

  

 
20.3 

 

 
21.8 

 

 
17.9 

 
Lenarz et al. 

(2011) 

  
 

North Bay, ON 

 
 

16.3 

 
 

22.0 

  
 

24.1 

 
 

22.5 

 
 

21.3 

 

Kearney and 

Gilbert (1976) 

  
 

Isabella, MN 

 
 

17.4 

 
 

22.8 

  
 

23.7 

 
 

23.2 

 
 

21.8 

 

Peek et al. 

(1976) 

  
 

Huntsville, ON 

 
 

17.8 

 
 

23.1 

  
 

25.4 

 
 

24.1 

 
 

22.6 

 

Lowe et al. 

(2010) 
a=1987-1996 
b=1987-1995 
c=1988-1997 

http://climate.weather.gc.ca/
http://www.ncdc.noaa.gov/
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Table 3. cont’d. 
 

Region Location   Month   Mean References 

  May June  July August   
Great Lakes-St. 

Lawrence 

Agassiz 
Refuge, MN 

 
20.4 

 
25.3 

  
25.9 

 
26.3 

 
24.5 

Phillips et al. 

(1973) 

 
 
Mountain-West 

 
 

Red Rock, MT 

 
 

14.2c
 

 
 

19.4c
 

  
 

23.8c
 

 
 

24.0c
 

 
 

20.3 

 

Dorn et al. 

(1970) 

  
 

Edmonton, AB 

 
 

17.4 

 
 

20.6 

  
 

22.2 

 
 

21.5 

 
 

20.4 

 

Renecker and 

Hudson (1990) 

 
 

Fort Nelson, 

BC 

 
 

16.8 

 
 

21.4 

  
 

22.7 

 
 

21.7 

 
 

20.7 

 

Gillingham and 

Parker (1990) 

  
 

Butte, MT 

 
 

16.6 

 
 

21.9 

  
 

26.0 

 
 

25.9 

 
 

22.6 

 

Knowlton 

(1960) 

 
 

Fort Howes, 

MT 

 
 

20.9c
 

 
 

28.1c
 

  
 

29.3c
 

 
 

30.2c
 

 
 

27.1 

 

Van Dyke et al. 

(1995) 

 

Northeast- 

Maritimes 

 

Corner Brook, 

NL 

 
 

12.2 

 
 

17.5 

  
 

21.6 

 
 

21.7 

 
 

18.2 

 
 

Dodds (1955) 

  
 

Truro, NS 

 
 

15.7 

 
 

21.1 

  
 

24.3 

 
 

24.1 

 
 

21.3 

 

Broders et al. 

(2012) 

  
 

Colebrook, NH 

 
 

18.1 

 
 

23.1 

  
 

25.1 

 
 

23.8 

 
 

22.5 

 

Miller and 

Litvaitis (1992) 

  
 

Berlin, NH 

 
 

18.4 

 
 

23.9 

  
 

25.9 

 
 

25.1 

 
 

23.3 

 

Scarpitti et al. 

(2005) 
a=1987-1996 
b=1987-1995 
c=1988-1997 
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Table 3. cont’d. 
 

Region Location   Month   Mean References 

  May June  July August   

 
Northeast- 

Maritimes 

 

 
 

Amherst, MA 

 

 
 

21.3 

 

 
 

26.6 

 
 

 
 

29.0 

 

 
 

27.6 

 

 
 

26.1 

Wattles and 

deStefano 

(2013a;b) 
a=1987-1996 
b=1987-1995 
c=1988-1997 
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references appearing in Table 3 to determine diel variation in air temperature (°C) among 8 

sequential daily time periods (1=1100 to 1359, 2=1400-1659…8=0800-1059). Hourly 

temperature data were used to determine an average air temperature for each time period (e.g., 

mean of temperatures at 1100, 1200, and 1300, for time period 1). For the five studies conducted 

in the USA, I utilized the 30-year running average hourly climate normals (1981-2010) available 

through NOAA (http://www.ncdc.noaa.gov/).  I selected a single day (the 16th) of each month 
 
(May-August) and calculated the mean value for each daily time period across all four months 

(Table 4). Hourly climate normals were available for fewer stations in the USA than were 

monthly temperature data and thus in some cases a new station had to be selected to represent a 

study area (e.g., Petersburg, AK in Table 3 became Juneau, AK in Table 4). Environment 

Canada does not provide hourly climate normals for the same 30-year period and only began 

providing hourly data in 1990. Subsequently, average values for each hour at Canadian locations 

were computed for the same day (the 16th) in all four months (May-August) for the years 1995- 

1997 (i.e., centered on the median, 1996, of the 30-year period for which the USA climate 

normals were calculated,1981-2010). I then calculated the mean for each daily time period across 

all four months, as above (Table 4). At all locations, the warmest air temperatures occurred in 

time periods 1-3 (1100-1959), with time period 2 exhibiting the highest mean temperatures 

(Table 4). Mean temperatures during time periods 1, 2 and 3 for all locations combined were 

 
17.4°C, 18.1°C and 17.1°C, respectively. The coolest air temperatures occurred in periods 5-7 

(2300-0759), with time period 6 exhibiting the lowest mean temperatures (Table 4). Mean 

temperatures during time periods 5, 6 and 7 for all locations combined were 11.9°C, 10.5°C and 

11.2°C, respectively. Air temperatures intermediate to those above occurred during time period 4 

(13.8°C; 2000-2259) and time period 8 (14.6°C; 0800-1059). If moose are using aquatic areas as 

http://www.ncdc.noaa.gov/
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a means to ameliorate heat stress then I predict that intensity of aquatic habitat use would be 

greater during time periods 1-3 (the hottest period of the day) than time periods 5-7. 

 

Nutrition 
 

 
Aquatic feeding by moose has long been observed throughout North America (McCabe 

and McCabe 1928; Peterson 1955; Denniston 1956; Leresche and Davis 1973; Aho and Jordan 

1979; Joyal and Scherrer 1978; Fraser et al. 1980; Crete and Jordan 1982; MacCracken 1992; 

Morris et al. 2002) and there are two leading hypotheses that attempt to explain aquatic feeding 

by moose based on nutritional requirements: sodium acquisition and improved foraging 

efficiency in aquatic versus terrestrial habitats. Moose are thought to have been responsible for 

marked declines in biomass of aquatic vegetation on Isle Royale (Murie 1934; Krefting 1951) 

and evidence from exclosure experiments in Isle Royale, Ontario and Maine supports the notion 

that moose in some areas consume significant fractions of the annual production of aquatic 

vegetation (Aho and Jordan 1979; Fraser and Hristienko 1983; Morris et al. 2002; Quarnemark 

and Sheldon 2004). 

It has been hypothesized that moose on Isle Royale are sodium limited (Jordan et al. 

 
1973; Jordan 1987) and as a result consumed large quantities of aquatic vegetation that contained 

significantly higher sodium concentrations than terrestrial browse (Botkin et al. 1973). Similarly, 

the sodium content of aquatic vegetation consumed by moose in northwestern Ontario and Maine 

is at least an order of magnitude greater than the sodium content of terrestrial vegetation in the 

same areas (Fraser et al. 1984; Crossley 1985). Furthermore, moose in Ontario tended to 

consume aquatic plants with the highest concentrations of sodium (Fraser et al. 1984). 
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Table 4. Summary of mean summer air temperatures for 8 sequential daily time periods (Time 1=1100-1359, 2=1400-1659…8=0800- 

1059) at 8 locations within 4 geographic regions where North American moose use aquatic habitat. Data were obtained from 

Environment Canada and NOAA online databases (http://climate.weather.gc.ca/; http://www.ncdc.noaa.gov/). Numerical values for 

USA locations represent the mean of hourly climate normals (1981-2010) for the 16th of each month in May-August (n=4) for each 

time period. Values for Canadian locations were computed as above, but due to a lack of data were restricted to a three-year period, 

1995-1997, centered on the median of 1981-2010. 
 

Region Location    Time Period    

  
 

Time 1 
 

Time 2 
 

Time 3 
 

Time 4 
 

Time 5 
 

Time 6 
 

Time 7 
 

Time 8 

Alaska- 

North 

 
Juneau, AK 

 
14.4 

 
13.6 

 
14.2 

 
11.7 

 
10.1 

 
8.0 

 
10.0 

 
12.6 

 
 

Valdez, AK 
 

13.0 
 

14.2 
 

13.5 
 

11.4 
 

9.5 
 

7.2 
 

8.6 
 

10.7 

 

Great 

Lakes-St. 

Lawrence 

 
 
 

Duluth, MN 

 
 
 

19.2 

 
 
 

20.1 

 
 
 

18.5 

 
 
 

14.8 

 
 
 

12.9 

 
 
 

11.9 

 
 
 

12.6 

 
 
 

16.6 

 
 

North Bay, 

ON 

 
 

18.0 

 
 

19.2 

 
 

18.3 

 
 

15.4 

 
 

14 

 
 

13.1 

 
 

12.9 

 
 

15.3 

 

Mountain- 

West 

 

Fort Nelson, 

BC 

 
 

14.2 

 
 

14.9 

 
 

14.4 

 
 

11.9 

 
 

10.9 

 
 

9.7 

 
 

9.9 

 
 

12.6 

 
 

Helena, MT 
 

21.3 
 

23.5 
 

22.2 
 

17.4 
 

14.1 
 

11.7 
 

11.4 
 

16.4 

 

Northeast- 

Maritimes 

 

Concord, 

NH 

 
 

23 

 
 

23.9 

 
 

21.8 

 
 

17.3 

 
 

14.8 

 
 

13.3 

 
 

14.2 

 
 

19.5 

 
 

Corner 

Brook, NL   

 
 

15.7   

 
 

15.6   

 
 

13.5   

 
 

10.8   

 
 

9.2   

 
 

8.8   

 
 

10.2   

 
 

13.4   

http://climate.weather.gc.ca/
http://www.ncdc.noaa.gov/
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The primary mechanism driving aquatic feeding by moose in northern Maine was presumed to 

be a need to acquire sodium (Morris 2002), but close proximity to the Atlantic Ocean, and 

therefore airborne salt, casts some level of doubt on this interpretation. For example, the very 

low level of aquatic feeding exhibited by a tame moose living in Newfoundland might be 

explained by an absence of sodium limitation in moose living in close proximity to airborne salt 

(Butler 1986). Also somewhat contradictory to the sodium limitation hypothesis is the existence 

and extensive use of a mineral lick on Isle Royale that should obfuscate a moose’s need to feed 

on aquatics if the drive to use aquatic areas results simply from sodium limitation (Risenhoover 

and Peterson 1986). 

 

Increased foraging efficiency in aquatic habitats relative to terrestrial habitats was 

potentially responsible for observed patterns of aquatic use on the Copper River Delta in Alaska 

(MacCracken 1992). Aquatic plants consumed by moose tended to be more digestible and 

contained greater crude protein levels than terrestrial vegetation. Available biomass of aquatic 

forage was also greater than available biomass of terrestrial forage. Peak use of aquatic plants by 

moose occurred well in advance of peak aquatic plant biomass in the author’s study area, as has 

been reported in Ontario and Minnesota (Peterson 1955; Peek et al. 1976; Fraser et al. 1982). 

Moose on the Copper River Delta exhibited shortened feeding bouts when feeding on aquatic 

vegetation relative to terrestrial vegetation, implying that the increased quality and availability of 

aquatic vegetation relative to terrestrial vegetation led to increased foraging efficiency 

(MacCracken et al. 1993). Sodium concentrations were not thought to be an important driver of 

aquatic feeding by moose in their study area. It should be noted that, as discussed above, the 

proximity of the North Pacific Ocean to the Copper River Delta might eliminate any sodium 

limitation characteristic of interior sub-populations of moose, such as those in the Great Lakes- 
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St. Lawrence region. Aquatic forage items represented up to 37% of moose summer diet on Isle 

Royale and contained greater crude protein levels and lower C:N ratios (used as an index of 

digestibility) than terrestrial forage species (Tischler 2004). Aquatic feeding by moose might be 

part of a larger strategy to minimize heat loss and acquire essential minerals while 

simultaneously maximizing diet quality in a relatively nutrient-poor boreal ecosystem (Tischler 

2004). 
 

 
If the sodium limitation hypothesis were correct I predict that moose belonging to interior 

sub-populations (i.e., within the Great Lakes-St. Lawrence region) would exhibit greater 

proportional use of aquatic areas relative to other regions, as these populations are the furthest 

distance from ocean-derived salt and thus sodium limitation in these populations is more likely 

than elsewhere in North America. I also predict, under the sodium limitation hypothesis, that 

aquatic habitat use by moose would be greatest in early spring (May and June) when sodium 

hunger is greatest due to ionic imbalances resulting from both a shift from woody to herbaceous 

food and a sodium debt incurred overwinter (Jordan 1987). Under the sodium limitation 

hypothesis, substantial diel variation in moose aquatic habitat use would not exist if the drive to 

use aquatic areas is solely to acquire sodium, since mineral concentrations are very unlikely to 

differ over the course of a 24-hour period. I also expected that moose should exhibit preferences 

for aquatic plants with higher sodium concentrations relative to aquatic plants with lower sodium 

concentrations. Under the sodium limitation hypothesis I do not predict moose to exhibit stronger 

preferences for aquatics than terrestrial forage since aquatic plant ingestion would primarily 

serve to satisfy sodium, but not necessarily energy or protein requirements. 
 

 
A different set of predictions results from the hypothesis that aquatic feeding represents a 

more efficient foraging strategy relative to terrestrial feeding. I predict that moose throughout 
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North America would seek to maximize foraging efficiency through aquatic feeding and thus 

proportional use of aquatic areas by moose would not vary with respect to geographic region. I 

also expected, under the foraging efficiency hypothesis, that substantial seasonal and diel 

variation in aquatic habitat use by moose would not be readily apparent since moose would seek 

to maximize foraging efficiency throughout the summer season and over the course of 24-hour 

cycles. This prediction, however, is complicated by the possibility that aquatic plants in early 

summer are more palatable (presumably due to greater energy or protein content; Fraser et al. 

1984) and that moose might restrict feeding bouts to cooler portions of the day (Belovsky and 

Jordan 1978; Renecker and Hudson 1992; Dussault et al. 2004). Thus, the existence of seasonal 

and diel variation in aquatic habitat use by moose would not necessarily allow for discounting of 

the importance of foraging efficiency. I predict that, under the foraging efficiency hypothesis, 

moose would show preferences for aquatic forage over terrestrial forage and that moose would 

feed most often on aquatic plants with higher crude protein and digestible energy values relative 

to aquatic plants with lower energy and protein values, irrespective of sodium content. 

 

2.2 Literature Search Methods 
 

 
A detailed literature review was conducted to acquire the data needed to test the above 

predictions (i.e., data mining). This literature review focused on gaining information pertaining 

to both the extent and timing of aquatic habitat use and aquatic feeding by moose in North 

America. Specifically, articles were selected for their capacity to provide information pertaining 

to the following topics: seasonal and diel variation in peak use of aquatic habitat by moose, 

proportion of all summer moose locations (as obtained from visual observation, VHF telemetry, 

or satellite tracking) within aquatic habitats, number and identity of aquatic plant taxa consumed, 

relative preferences for aquatic plant species relative to other aquatics in the diet or terrestrial 
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vegetation, and sodium concentrations, crude protein levels, and digestible energy values of 

aquatic vegetation available to moose. I used a modified search method similar to that used by 

Klassen and Rea (2008; see Fig. 1 within) in their review of nocturnal activity of moose. 

 

I first reviewed the summary volume “Ecology and Management of the North American 

Moose” (Franzmann and Schwartz 1998), searching systematically through the entirety of the 

book for any mention of aquatic habitat use or feeding. Any references, based on their title and 

potential for providing useful information (as indicated by Franzmann and Schwartz 1998), were 

considered ‘potentially useful.’ ‘Potentially useful’ references were also identified by 

systematically searching the online article database of the journal Alces. Hard copies of the 

journal, or summary books containing papers from proceedings of the annual North American 

Moose Conference and Workshop and International Symposia on moose ecology and 

management (e.g. volume 101 of Naturaliste Canadienne), were also used where available. 

Finally, ‘potentially useful’ articles were found with Boolean operators and keywords in the 

online search engine, Thomson Reuters Web of Science (formerly ISI Web of Science), as in 

Klassen and Rea (2008). This search was designed to be intentionally very broad initially, and 

the keywords selected for the literature search were chosen accordingly. I utilized the words 

“moose,” “Alces” or ungulate* as the “moose term” in three separate literature searches. These 

literature searches took the following general form: (moose term) AND habitat* OR (moose 

term) AND home range* OR (moose term) AND activit* OR (moose term) and movement* OR 

(moose term) AND time-energy budget* OR (moose term) AND behavio(u)r OR (moose term) 

AND forag* OR (moose term) AND food* OR (moose term) AND diet* OR (moose term) AND 

feed*. I assumed that, given the broad nature of the searches conducted and the detail in which 
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Franzmann and Schwartz (1998) was examined, all references pertinent to stage 1 of the data 

mining procedure were located. 

 

As suggested by Klassen and Rea (2008), the abstracts of ‘potentially useful’ articles 

were scanned and if it became immediately clear that useful data or anecdotal evidence would 

not be obtained from the article it was discarded and not used as part of this literature review. If 

the article was not discarded, the introduction and methods were read and the usefulness of the 

article was reassessed and discarded as above if it did not contain pertinent information. Finally, 

the results section was read and any pertinent information was recorded. If data or other 

information were obtained, the article was read in its entirety and any cited articles within were 

also assessed for their potential usefulness. 

 

2.3 Results 
 

 
Seventeen studies provided information pertaining to the proportional use of aquatic 

habitats by moose during summer and early fall (April – October). Data were expressed as a 

percentage of total summer aquatic habitat use relative to use of other habitats within a given 

study area (Table 5). Percent aquatic habitat use values appearing in Table 5 were calculated by 

pooling proportional use data for all seasons, sexes and study sites within each individual study. 

Areas with saturated soils during summer but without standing water, including treed wetlands, 

were classed as Bog/Meadow habitat. Pond/Marsh areas included all non-lake or non- 

river/stream areas containing standing water during some portion of the annual cycle. “Other” 

wetland habitats included any areas described by the authors as wetlands or aquatic habitat that 

did not fit within the above categories. Also included in the “Other” category were studies in 

which all aquatic habitats were pooled into a single category by the original authors. Overall, the 
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mean percent aquatic habitat use by North American moose during summer and early fall (April 

 
– October) was 9.16% (n=28 estimates of use). 

 

 
Mean percent use of aquatic habitat by moose in summer as reported in studies utilizing 

direct observation, VHF telemetry or GPS collaring was 20.63% (n=6), 5.35% (n=13), and 

7.02% (n=9), respectively (Table 5). Unadjusted mean percent use of Lake, Stream/River, 

Pond/Marsh, Bog/Meadow and Other wetland habitat by moose in summer was 0.5% (n=2), 

11.15% (n=2), 3.0% (n=2), 16.25% (n=10), 5.39% (n=12), respectively. However, visual 

observation of moose in aquatic areas may have provided overestimates of proportional habitat 

use as both VHF and GPS-based studies reported percent use of aquatic habitat to be much lower 

than visual sighting-based studies. This bias might arise from the ease of observation of moose in 

open aquatic areas such as lakes, ponds and rivers relative to forested habitats. Overall, aquatic 

habitat use was lowest in areas with open water such as lakes and ponds, although this finding 

relies on just two estimates. Aquatic habitat use was higher in rivers, streams, bogs, and treed 

wetlands. Stream habitats are often associated with riparian shrub stands (e.g., willow) and thus 

the result may be confounded by a desire for moose to seek out these areas for lateral cover 

and/or terrestrial browse (Barry 1961; Boonstra and Sinclair 1961) and not some suite of 

limnological attributes per se. 

 

Mean percent use of aquatic habitats by moose in summer in Alaska-North, Mountain- 

West, Great Lakes-St. Lawrence, and Northeast-Maritimes regions was 0.46% (n=5), 9.24% 

(n=7), 7.29% (n=8), and 17.31% (n=8), respectively Table 5). Percent use of aquatic habitats was 

greatest in the Northeast-Maritimes region, but this interpretation may be biased by a single large 

estimate based on visual observation of moose in a single aquatic area (80%; Dodds 1955). If 

this outlier is removed, the resultant value for Northeast-Maritimes becomes a more conservative 
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Table 5. Summer and early fall (April – October) aquatic habitat use by moose in North America expressed as percent use of different 

aquatic habitat types relative to other habitat within a given study area. Percent aquatic habitat use values were calculated by pooling 

proportional use data for all seasons, sexes and study sites within each individual study. Areas with saturated soils during summer but 

without standing water, including treed wetlands, were classed as Bog/Meadow habitat. Pond/Marsh areas include all non-lake or non- 

river/stream areas containing standing water during some portion of the annual cycle. “Other” wetland habitats include any areas 

described by the authors as wetlands or aquatic habitat that do not fit within the above categories. Also included in the “Other” 

category are studies in which all aquatic habitats were pooled into a single category by the original authors. 

 
Method Technique Region Type Reference Percent use 

 
VHF 

Percentage of aerial 
survey fixes 

 
Alaska-North 

 
Bog/Meadow 

 
Doerr (1983) 

 
1.16 

 

VHF 
  

 

Lake 
 

Doerr (1983) 
 

0 

 

VHF 
  

 

Pond/Marsh 
 

Doerr (1983) 
 

0 

 

VHF 
  

 

Other 
 

Doerr (1983) 
 

1.16 

 

VHF 
  

 

Stream/River 
 

Doerr (1983) 
 

0 

 
 

VISUAL 

 
Percentage of moose 

pellet plots 

 
Great Lakes-St. 

Lawrence 

 
 

Bog/Meadow 

 
Kearney and Gilbert 

(1976) 

 
 

2.3 

 
 

VHF 

 

Percentage of ground 

survey fixes 

  
 

Pond/Marsh 

 

Berg and Phillips 

(1974) 

 
 

6 

 
 
 

VHF 

 

Percentage of aerial 

survey fixes (third 

order selection) 

  
 
 

Bog/Meadow 

 
 
 

Lenarz et al. (2011) 

 
 
 

15 

 
 
 

VHF 

 

Percentage of aerial 

survey fixes (second 

order selection) 

  
 
 

Bog/Meadow 

 
 
 

Lenarz et al. (2011) 

 
 
 

17 
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Table 5. cont’d. 
 

Method Technique Region Type Reference Percent Use 
 

 
VHF 

Percentage of aerial 

survey fixes (third 

order selection) 

 
Great Lakes-St. 

Lawrence 

 

 
Other 

 

 
Lenarz et al. (2011) 

 

 
5.00 

 
 
 

VHF 

 

Percentage of aerial 

survey fixes (second 

order selection) 

  
 
 

Other 

 
 
 

Lenarz et al. (2011) 

 
 
 

6.00 

 
 
 

VHF 

 

Percentage of 

aerial/ground survey 

locations 

  
 
 

Other 

 
 
 

Phillips et al. (1973) 

 
 
 

2.00 

 
 
 

GPS 

 

Percentage of 

utilization 

distributions 

  
 
 

Other 

 
 
 

Lowe et al. (2010) 

 
 
 

5.00 

 
 

VISUAL 

 

Percentage of 

sightings 

 
 

Mountain-West 

 
 

Bog/Meadow 

 
 

Dorn (1970) 

 
 

6.00 

 
 

VISUAL 

 

Percentage of 

sightings 

  
 

Lake 

 
 

Dorn (1970) 

 
 

1 

 
 

VISUAL 

 

Percentage of 

sightings 

  
 

River/Stream 

 
 

Knowlton (1960) 

 
 

22.30 

 
 

VISUAL 

 

Percentage of 

sightings 

  
 

Bog/Meadow 

 

Renecker and Hudson 

(1992) 

 
 

12.15 

 

 
 
 

VHF   

 
Percentage of 

aerial/ground survey 

locations   

  

 
 
 

Bog/Meadow   

 

 
Van Dyke et al. 

(1995)   

 

 
 
 

14.70   
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Table 5. cont’d. 
 

Method Technique Region Type Reference Percent Use 

 
GPS 

Percentage of fixes at 
6 hr interval 

 
Mountain-West 

 
Bog/Meadow 

Gillingham and 
Parker (2008) 

 
4.25 

 
 

GPS 

 

Percentage of fixes at 

6 hr interval 

  
 

Other 

 

Gillingham and 

Parker (2008) 

 
 

4.31 

 
 

VISUAL 

 

Percentage of 

sightings 

 
 

Northeast/Maritimes 

 
 

Bog/Meadow 

 
 

Dodds (1955) 

 
 

80.00 

 
 
 

VHF 

 

Percentage of 

aerial/ground survey 

locations 

  
 
 

Other 

 
 

Miller and Litvaitis 

(1992) 

 
 
 

1.50 

 
 

GPS 

 

Percentage of fixes at 

2-4 hr intervals 

  
 

Other 

 
 

Broders et al. (2012) 

 
 

6.35 

 
 
 

GPS 

 

Percentage of 

minimum convex 

polygons 

  
 
 

Other 

 
 
 

Scarpitti et al. (2005) 

 
 
 

7.00 

 
 
 

GPS 

 

Percentage of 

utilization 

distributions 

  
 
 

Other 

 
 

Wattles and de 

Stefano (2013a) 

 
 
 

9.00 

 
 
 

GPS 

 

Percentage of 

minimum convex 

polygons 

  
 
 

Other 

 
 

Wattles and deStefano 

(2013a) 

 
 
 

12.00 

 
 

GPS 

 

Percentage of fixes at 

0.75-2.25 hr intervals 

  
 

Bog/Meadow 

 

Wattles and deStefano 

(2013b) 

 
 

9.92 

 
 

GPS   

 

Percentage of fixes at 

0.75-2.25 hr intervals   

  
 

Other   

 

Wattles and deStefano 

(2013b)   

 
 

5.33   
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estimate of 6.86%. Aquatic habitat use by moose in summer appeared lowest in Alaska-North 

relative to other regions of North-America. 

 

Sixteen studies provided information pertinent to seasonal variation in aquatic habitat use 

by North American moose. Of these sixteen studies, four contained quantitative information 

sufficient to estimate the proportion of peak use of aquatic areas by moose during different 

portions of the summer (Dunn 1976, Brusnyk and Gilbert 1983, Van Dyke et al. 1995, Scarpitti 

et al. 2005). Nine studies providing non-quantitative data stated or made reference to the 

perceived peak in aquatic habitat use during the summer within their study areas (Dodds 1955, 

Barry 1961, Boonstra and Sinclair 1984, deVos 1958, Dodds 1960, Simkin 1963, Van 

Ballenberghe and Peek 1971, Kearney and Gilbert 1976, Renecker and Hudson 1989). Three 

studies provided anecdotal information regarding seasonal variation in aquatic habitat use by 

North American moose (Goddard 1970; Dodds 1973; Belovsky and Jordan 1978). Anecdotal 

information followed a trend toward peak aquatic habitat use by moose in mid-summer. Late 

summer declines were mentioned twice. Dodds (1973) observed a “late summer” decline in 

aquatic habitat use in Newfoundland, presumably referring to intensity of use by moose. 

Goddard (1970) stated that aquatic vegetation fed upon by moose in Geraldton, Ontario, was 

present from late June to early July and thought that peak use of aquatic habitats could be 

attributed to the seasonal availability of aquatic plants. Belovsky and Jordan (1978) observed a 

mid-summer minimum (July 13 - August 3) in diversity of deciduous leaves in moose diets and 

attributed this to the relatively high proportion of aquatic plants in the diet at this time (~18%). A 

“dropping off” of aquatic habitat use was observed from August 4 – September 15, with a 

coincident increase in deciduous leaf diversity in the diet (Belovsky and Jordan 1978). 
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To standardize non-quantitative yet discrete information on seasonal peaks of aquatic 

habitat use by moose in North America I divided the snow-free period of the annual cycle into 11 

discrete 2-week time periods, ranging from April 1- April 14 (Time 1) to September 1-14 (Time 

11) and compared peaks in aquatic habitat use reported by different authors (Table 6). Peak use 

occurred solely within the month of June in the Northwest Territories, northern Ontario and 

Newfoundland (Barry 1961, Kearney and Gilbert 1976, Dodds 1960). Peak use overlapped the 

month of June in northeastern Minnesota (May 1 – June 30; Van Ballenberghe and Peek 1971), 

northern Ontario (June 15 – August 14; deVos 1958, and northern Alberta (June 15 – August 31; 

Renecker and Hudson 1989). De Vos (1958) reported an extended period of peak aquatic habitat 

use in Ontario beyond that reported in other studies in that geographic area (Simkin 1963; 

Kearney and Gilbert 1976). The longest span of reported peak aquatic habitat use was from a 

study on free-ranging moose in the aspen parklands of Alberta (Renecker and Hudson 1989). 

 

I used the same time periods for quantitative data, whereby some ‘moose-use metric’ of 

aquatic habitat use provided by the authors was converted to a percentage of peak seasonal use 

for each time period (Table 7). From each of the four quantitative studies I extracted data from 

tables and figures, using the mean value of the ‘moose-use metric’ in situations where more than 

one estimate of moose-use was provided within a time period. If data collection by the authors 

spanned more than one of the above time periods I used the median date of data collection to 

determine the relevant time period. Each reported percentage of peak use represented the 

proportion of the ‘moose use metric’ at that time period divided by the maximum value of the 

‘moose use metric’ reported in that study. These data suggest that geographic region influences 

timing of peak aquatic habitat use, as peak use occurred anywhere from Time 2 (late April in 
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Table 6. Timing of peak seasonal aquatic habitat use by moose from 9 studies at 6 different locations in North America. 

 
Region Location Peak Seasonal Use Reference 

Alaska-North Northwest Territories June 1 - June30 Barry (1961) 

 

Mountain-West 
 

Northern British Columbia 
 

May 1 - May 31 
 

Boonstra and Sinclair (1984) 

 
 

Northern Alberta 
 

June 15 - August 31 
 

Renecker and Hudson (1989) 

 

Great Lakes-St. Lawrence 
 

Northern Ontario 
 

July 1- July 14 
 

Simkin (1963) 

 
 

Northeastern Minnesota 
 

May 1 – June 30 
 

Van Ballenberghe and Peek 

(1971) 

 
 

Northern Ontario 
 

June 15 – June 30 
 

Kearney and Gilbert (1976) 

 
 

Northern Ontario 
 

June 15 – August 14 
 

deVos (1958) 

 

Northeast-Maritimes 
 

Newfoundland 
 

July 15 – July 31 
 

Dodds (1955) 

 
 

Newfoundland   
 

June 1 – June 30   
 

Dodds (1960)   



 

40 
 
 

Table 7. Seasonal variation in aquatic habitat use by moose from 4 studies in 4 separate study areas within North America expressed 

as the percentage of peak daily use in 11 2-week time periods. Time periods correspond to the following portions of the snow-free 

period: Time 1= April 1- April 14; Time 2 = April 15- April 30; Time 3 = May 1 – May 14; Time 4 = May 15 – May 31; Time 5 = 

June 1 – June 14; Time 6 = June 15 – June 30; Time 7 = July 1 - 14; Time 8 = July 15 – July 31; Time 9 = August 1 -14; Time 10 = 

August 15 – August 31; Time 11 = Sept 1 – Sept 14. Peak values for each study area are shown in bold. 

 
Region Location      Time Period      Reference 

  1 2 3 4 5 6  7 8 9 10 11  
Mountain- 

West 

Montana  100%       42%    Van Dyke 

et al. 

(1995) 

 

Northeast- 

Maritimes 

 

New 

Hampshire 

  
 

75% 
      

100% 
   

 

Scarpitti et 

al. (2005) 

  
Maine 

     
22.5% 

 
35% 

 
97.5% 

 
82.5% 

 
35% 

   
Dunn 

(1975) 

 

Great 

Lakes-St. 

Lawrence 

 

Northern 

Ontario 

   
 

33.3% 
 

43.3% 
 

100% 
 

 

71.3% 
 

37.8% 
 

24.5% 
 

40% 
 

24.5% 
 

Brusnyk 

and 

Gilbert 

(1983)   
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Montana) to Time 8 (July 15 – July 31 in New Hampshire; Table 7). It appeared that peak use 

occurred earlier in northern Ontario (Time 6) than in Maine (Time 7) and New Hampshire (Time 

8; Table 7). Overall, the quantitative data agree generally with the non-quantitative information 

presented above in that the greatest intensity of aquatic habitat use by moose in North America, 

with some exceptions, appears to occur during the months of June and July in a variety of 

geographic areas. 

 

Thirteen studies provided information pertinent to diel variation in aquatic habitat use by 

North American moose. Of these thirteen studies, only three contained quantitative information 

sufficient to estimate the proportion of peak use of aquatic areas by moose during different 

portions of the daily cycle (deVos 1958; Ackerman 1987; Cobus 1972). Of the ten studies 

providing pertinent non-quantitative information, five contained some statement regarding peak 

daily use of aquatic areas that could be attributed to a discrete time period (Denniston 1956; 

Simkin 1963; Saunders and Williamson 1972; Dunn 1976; Joyal and Scherer 1978). The 

remaining five studies provided purely anecdotal information on diel variation in aquatic habitat 

use by moose (McCabe and McCabe 1928; Dodds 1955; Goddard 1970; Fraser et al. 1980; 

Renecker and Hudson 1992b). 

 

Overall, moose in North America appear to exhibit crepuscular patterns in aquatic habitat 

use, with some exceptions. Anecdotal information from Newfoundland indicated sightings of 

moose in aquatic areas near midday were rare (Dodds 1955). Goddard (1970) and Fraser et al. 

(1980), working in northwestern Ontario, reported greater frequency of moose sightings and 

aquatic feeding during twilight hours (early morning and late evening). McCabe and McCabe 

(1928) indicated that moose would enter aquatic areas to feed within the Bowron Lake region of 

British Columbia but stated that moose “leave the water with the sun or shortly thereafter” 
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except “during periods of intense heat”. Conversely, Renecker and Hudson (1992) found that 

feeding on cattails and sedges in semi-aquatic meadows by moose appeared restricted to the 

middle of the day in the aspen-parklands of Alberta. 

 

To standardize non-quantitative yet discrete information on daily peaks of aquatic habitat 

use by moose in North America I divided the 24-hr cycle into 8 discrete 3-hr time periods, 

ranging from 1100-1359 (Time 1) to 0800-1059 (Time 8). I used the same time periods for 

quantitative data, whereby some ‘moose-use metric’ of aquatic habitat use provided by the 

authors was converted to a percentage of peak daily use for each time period (availability of data 

permitting). From each of the three quantitative studies I extracted data from tables and figures, 

using the mean value of the ‘moose-use metric’ in situations where more than one estimate of 

moose use was provided within a time period. This provided information on primary and 

secondary daily peaks of aquatic habitat use by moose as well as apparent daily minimums of 

aquatic habitat use. 

 

Non-quantitative data regarding diel variation in aquatic habitat use by moose suggested 

that daily peaks in aquatic habitat use are somewhat variable in North America (Table 8). A 

single study from Wyoming reported a daily peak between 0200 and 1059 hours but this was the 

only study that reported a peak in use within two hours after midnight. Each of the remaining 

non-quantitative studies gave peaks no earlier than 0500 in the morning and no later than 2259 at 

night. Studies from western Quebec and northern Maine suggested that aquatic habitat use peaks 

between 1100 and 1659 whereas two studies from northern Ontario suggested a crepuscular 

pattern in aquatic habitat use with daily peaks at 0500-0759 and 2000-2259. Thus, the non- 

quantitative data on diel variation in aquatic habitat use by moose suggested that moose most 

often use aquatic areas during the day or in the early evening. 
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Table 8. Timing of peak daily summer aquatic habitat use by moose reported in 5 studies from 4 different locations in North America. 
 

Region Location Peak Daily Use Reference 

Mountain-West Wyoming 0200 – 1059 Denniston (1956) 

 

Great Lakes-St. Lawrence 
 

Northwestern Ontario 
 

0500 – 0759  and 2000-2259 
 

Simkin (1963) 

 
 

Northwestern Ontario 
 

0500 – 0759  and 2000-2259 
 

Saunders and Williamson (1972) 

 
 

Western Quebec 
 

1100 – 1659 
 

Joyal and Scherer (1978) 

 

Northeast-Maritimes   
 

Northern Maine   
 

1100 – 1659   
 

Dunn (1976)   

 
 

Table 9. Diel variation in aquatic habitat use by moose reported in 3 studies from 3 separate study areas within the Great Lakes-St. 

Lawrence region expressed as the percentage of peak daily use in 8 3-hr time periods. Parentheses denote mean values of the 

measurement indicated for each time period. Time periods correspond to the following portions of the 24-hr cycle: Time 1= 1100- 

1359; Time 2 = 1400-1659; Time 3 = 1700 – 1959; Time 4 = 2000 – 2259; Time 5 = 2300 = 0159; Time 6= 0200-0459; Time 7 = 

0500 – 0759; Time 8 = 0800 – 1059. Peak values for each study area are shown in bold. 
 

Region Location    Time Period    Measure Reference 

  1 2 3 4 5 6 7 8   
Great 

Lakes-St. 

Lawrence 

Isle 

Royale, 

MI 

26.3% 
(0.25) 

28.4% 
(0.27) 

42.1% 
(0.40) 

100% 

(0.95) 

30.5% 
(0.29) 

32.6% 
(0.31) 

71.6% 
(0.68) 

33.7% 
(0.32) 

Moose 
visits/hr 

Ackerman 
(1987) 

 
 

Sibley, 

ON 

 

26.8% 

(1.02) 

 

48.2% 

(1.83) 

 

50.8% 

(1.93) 

 

100% 

(3.80) 

  
 

97.9% 

(3.72) 

 

50.8% 

(1.93) 

 

# moose 

present 

 

Cobus 

(1972) 

 
 

Chapleau, 

ON   

 
 

44.5% 

(0.15)   

 
 

100% 

(0.35)   

  
 

90.1% 

(0.31)   

 
 

Moose 

seen/hr   

 

deVos 

(1958)   
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The quantitative data regarding diel variation in aquatic habitat use clarified somewhat 

the pattern described above, with aquatic habitat use by moose showing a consistent peak 

between 2000 and 2259 (Table 9). The number of moose visits per hour (0.95; Ackerman 1987), 

number of moose present (3.80; Cobus 1972) and number of moose seen per hour (0.35; deVos 

1958) in aquatic habitats were all greatest between 2000 and 2259 compared to all other time 

periods. A secondary peak in aquatic habitat use was reported for all studies from 0500-0759. It 

should be noted that only Ackerman (1987) conducted observations during nighttime (2300- 

0459) but reported relatively low use of aquatic habitat at these times (30.5%-32.6% of peak 

aquatic habitat use). Therefore, quantitative data on diel variation in aquatic habitat by moose 

appeared to show the greatest intensity of use in the evening (2000-2259) with a secondary peak 

in the early morning (0500-0759). These data indicated a crepuscular pattern in aquatic habitat 

use by moose that agreed with non-quantitative observations from the Great Lakes-St. Lawrence 

region. 

 

Very little information was available for all geographic locations with respect to the 

proportion of aquatics in the summer diet. Using isotopic analysis of moose hooves on Isle 

Royale, Tischler (2004), estimated the percentage of aquatics in the summer diet of moose at 14- 

37%. Conversely, Dungan and Wright (2005) estimated the percentage of aquatics in the summer 

diet of moose at less than 1% according to bite-count and fecal analyses. On the Kenai Peninsula 

in Alaska, 3% of summer bites (July and August, n = 28 423 bites) taken by 3 tame moose 

occurred while feeding on aquatics (Leresche and Davis 1973). It appears plausible moose 

consume a greater proportion of aquatic forage in the Great Lakes – St. Lawrence region than 

elsewhere in North America (e.g., Mountain – West and Alaska – North). 
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Thirty-one studies reviewed provided information pertaining to the number of aquatic 

plant taxa consumed by moose in different geographic areas. These ordinal data were partitioned 

according to five commonly recognized functional groups (submersed, emergent, floating- 

attached, floating unattached, wetland forbs; Cronk and Fennessy 2008; Newmaster et al. 1997). 

In many cases a single or no estimate was available in the literature for a given functional group 

in a certain geographic region. Conversely, as many as eight studies contributed to a given 

functional group within a certain geographic region (i.e., submersed plants in Ontario). In the 

latter cases, the mean number of taxa reportedly consumed by moose was used as the estimate 

for the plant functional group in that region. 
 

 
Greater than one third of all studies on consumption of aquatic plant taxa derived from 

Ontario, Isle Royale and Quebec (11 of 31), with Ontario most strongly represented (Table 10). 

Moose appeared to consume greater numbers of submersed and emergent taxa in all geographic 

areas, followed by floating-attached, floating-unattached, and wetland forb plants, respectively. 

Consumption of wetland forbs was reported only in Alaska, Colorado, and Ontario. 

Consumption of floating-unattached plants (commonly referred to as duckweeds) occurred only 

in Montana, Wyoming and Isle Royale, though moose in Wyoming and Isle Royale were thought 

to be consuming primarily algae (likely Spirogyra spp.) rather than duckweeds (Denniston 1956; 

Belovsky and Jordan 1978). A low diversity of floating-attached plants in the diet was 

consistently observed in Colorado, Wyoming, Ontario, Quebec, and Newfoundland. Moose on 

Isle Royale were not observed to commonly consume floating-attached aquatic vegetation (only 

a single study reported its consumption; Botkin et al. 1973), though the possibility of historic 

extirpation of these types of plants has been suggested elsewhere (Murie 1934; Krefting 1974). 

Overall, submersed and emergent aquatic plants seem to be a fairly consistent component of 
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Table 10. The number of aquatic plant taxa consumed by North American moose at 11 geographic locations. Information was 

partitioned according to aquatic plant type. Parentheses denote the number of studies which contributed to each mean number of 

consumed taxa (rounded to the nearest whole value). 
 

Region Location Submersed Emergent Floating 
Attached 

Floating 
Unattached 

Wetland 
Forb 

Referencesa
 

Alaska - North Alaska 2 (2) 5 (2) 1 (1)  2 (3) 22,24,26,35 

 

Mountain - 

West 

 

British 

Columbia 

 

3 (1) 
 

3 (2) 
   

 

14,27,33 

 
 

Alberta 
 

 

1 (1) 
   

 

32 

 
 

Colorado 
 

1 (1) 
 

1 (1) 
 

1 (1) 
 

 

1 (1) 
 

12,13 

 
 

Montana 
   

 

1 (1) 
 

 

23 

 
 

Wyoming 
 

4 (2) 
 

1 (1) 
 

1 (1) 
 

1 (1) 
 

 

8,28 

 

Great Lakes – 

St. Lawrence 

 

Ontario 
 

4 (8) 
 

4 (5) 
 

2 (7) 
 

 

1 (1) 
 

3,6,11,15,16,18,19,29 

 
 

Isle Royale 
 

3 (3) 
 

 

1 (1) 
 

1 (2) 
 

 

1,2,4,31 

 
 

Quebec 
 

1 (2) 
 

1 (2) 
 

2 (1) 
  

 

5,7,21 

 
 

Minnesota 
 

1 (1) 
 

1 (1) 
   

 

30 

 

Northeast - 

Maritimes 

 

Newfoundland 
 

3 (1) 
 

5 (2) 
 

2 (2) 
  

 

9,10 

a 1 = Aho and Jordan (1979), 2= Belovsky and Jordan (1978), 3= Berube (2000), 4 = Botkin et al. (1973), 5 = Boudreau and Bisson (1983), 6 = Cobus (1972), 7 

= Crete and Jordan (1981), 8=Denniston (1956), 9 = Dodds (1955), 10 = Dodds (1960), 11 = DeVos (1958), 12 = Dungan and Wright (2005), 13 = Dungan et al. 

(2010), 14 = Eastman and Ritcey (1987), 15 = Fraser and Hristienko (1983), 16 = Fraser et al. (1980), Fraser et al. (1982), 1 8 = Fraser et al. (1984), 19 = Goddard 

(1970), 20 = Joyal (1987), 21 = Joyal and Scherrer (1978), 22= Kielland (2001), 23 = Knowlton (1960), 24 = Leresche and Davis (1973), 25 = Linn et al. (1973), 

26 = MacCracken et al. (1993), 27 = McCabe and McCabe (1928), 28 = McMillan (1953), 29 = Peterson (1953), 30 = Ph illips et al. (1973), 31 = 

Quarnemark and Sheldon (2004), 32 = Renecker and Hudson (1985), 33 = Ritcey and Verbeek (1969), 34 = Tischler (2004), 35 = Va n Ballenberghe et al. (1989). 
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moose summer diets throughout North America, with some exceptions (e.g., Alberta and 

 
Montana). 

 

 
Twenty-nine of 31 studies reviewed provided information pertaining to the identity of the 

aquatic plant species consumed by moose in North America. Thirteen studies reviewed provided 

information sufficient to attempt an understanding of the relative levels of consumption for many 

aquatic plant taxa. I used standard competition ranking to generate whole values representing the 

relative contributions of each species, where possible, relative to other aquatic forage items in the 

diet. A rank of 1 represented the highest possible rank, and was indicative of a greater level of 

consumption for a given aquatic plant relative to all other aquatic plants in the diet. In cases 

where multiple estimates of relative consumption were available for a given species in a certain 

geographic region the mean rank was used. Though presenting means is typically not suitable for 

ranked data, I believe that the low number of instances where the number of relative 

consumption estimates exceeded two (this occurred once, with Potamogeton alpinus having 

three estimates from Ontario) led this to be an effective technique in this case. A further five 

studies provided information sufficient to generate estimates of aquatic plant consumption 

relative to all summer food items. 

 

Studies from Alberta, Colorado and Montana identified a very low number of consumed 

taxa but those identified tended toward higher consumption ranks (Table 11). A single study 

from Minnesota reported a low number of aquatic taxa (2) consumed by moose and it was not 

possible to generate consumption ranks for these taxa. Conversely, studies from Ontario and Isle 

Royale identified the greatest number of aquatic plant taxa consumed by moose. Ontario studies 

demonstrated a wider range of preference ranks than Isle Royale, with the latter area seeming to 

have high consumption ranks for a fewer number of species. Studies from British Columbia, 
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Table 11. Identity and consumption rankings of aquatic forage items consumed by North American moose at 11 geographic locations. 

Ranked values are shown relative to other aquatics in the diet and relative to all summer food items, where available, at 10 geographic 

locations. Standard competition ranking was used in all cases, with 1 representing the highest possible level of consumption by moose. 

In the event that multiple studies within the same geographic location were used to generate ranks, the mean value was taken. Bolded 

rows demonstrate an apparently consistent decrease in consumption rank when all summer forage items were used in the standard 

competition ranking procedure. Specific content of sodium and crude protein, expressed as a percentage of 1 g dry matter, were 

included where available. Energy contents of individual plant taxa represent caloric content per g of dry matter. In the event that 

multiple studies within the same geographic location gave different values for sodium, protein, or caloric content, the mean value was 

taken. 
 

Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium Content 
(% Dry Weight) 

Crude 
Protein 

Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Alaska- 
North 

Alaska Carex spp.   0.02 4.90b
  24,26 

  Drosera 
rotundifolia 

     24 

  
 

Eriophorum 

angustifolium 

     
 

24 

  
 

Eriophorum 

russeolum 

     
 

24 

  
 

Equisetum 

spp. 

  
 

0.09 
 

7.70b
 

 
 

24,26 

  
 

Nuphar 

polysepalum 

     
 

24 

  
 

Menyanthes 

trifoliate   

  
 

0.09 
 

9.20b
 

 
 

24,26 
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Table 11. cont’d. 
 

 
Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium Content 
(% Dry Weight) 

Crude 
Protein 
Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Alaska- 
North 

Alaska Pedicularis 
palustris 

     22 

  
 

Petasites sp. 
 

1.0 
 

12.0 
   

 

35 

  
 

Potamogeton 

spp. 

     
 

22 

  
 

Potamogeton 

epihydrus 

     
 

24 

  
 

Potamogeton 

perfoliatus 

     
 

24 

  
 

Potentilla 

palustris 

  
 

0.06 
 

2.80 b 
 

 

24,26 

  
 

Ranunculus 

reptans 

     
 

24 

  
 

Rubus 

chamaemorus 

     
 

24 

Mountain- 

West 

British 

Columbia 

 
Carex spp. 

 
4.0 

     
14 

  
 

Chara sp./ 

Nitella sp. 

(Characeae)   

 

8.0 
    

 

33 
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Table 11. cont’d. 
 

Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium Content 
(% Dry Weight) 

Crude 
Protein 
Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Mountain- 
West 

British 
Columbia 

Equisetum 
spp. 

 
1.0 

     
33 

  
 

Menyanthes 

trifoliata 

 

5.0 
    

 

33 

  
 

Nuphar spp. 
     

 

27 

  
 

Potamogeton 

spp. 

 

3.0 
    

 

27,33 

  
 

Potentilla 

palustris 

 

6.0 
    

 

33 

  
 

Ranunculus 

spp. 

 

6.0 
    

 

27,33 

  
 

Sparganium 

spp. 

 

2.0 
    

 

33 

 
 

Alberta 
 

Typha 

latifolia 

     
 

32 

 
 

Colorado 
 

Nuphar spp. 
 

2.5 
 

9.0 
   

 

12,13 

  
 

Rumex 

aquaticus   

 

1.5 
 

6.5 
   

 

12,13 
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Table 11. cont’d. 
 

Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium Content 
(% Dry Weight) 

Crude 
Protein 
Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Mountain – 
West 

Montana Lemna 
trisulca 

1.0 10.0    23 

 
 

Wyoming 
 

Carex spp. 
 

 

8.0 
   

 

8 

  
 

Chara sp. 
 

6.0 
 

19.0 
   

 

28 

  
 

Heteranthera 

dubia 

 

1.0 
 

3.0 
   

 

28 

  
 

Myriophyllum 

spp. 

 

2.0 
 

4.0 
   

 

28 

  
 

Nymphaea 

spp. 

     
 

8 

  
 

Potamogeton 

alpinus 

 

5.0 
 

13.0 
   

 

28 

  
 

Potamogeton 

pectinatus 

 

4.0 
 

6.0 
   

 

28 

  
 

Potamogeton 

spp. 

     
 

8 

  
 

unknown 

algae   

     
 

8 
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Table 11. cont’d. 
 

Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium Content 
(% Dry Weight) 

Crude 
Protein 
Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Mountain- 
West 

Wyoming Utricularia 
spp. 

3.0 5.0    28 

 

Great Lakes 

– St. 

Lawrence 

 

Ontario 
 

Brasenia 

schreberi 

     
 

29 

  Carex spp.      29 

  
 

Chara sp./ 

Nitella sp. 

(Characeae) 

 

2.0 
 

 

0.30 
 

14.00 
 

2961 
 

15 

  
 

Eleocharis 

spp. 

 

10.0 
 

 

0.23 
 

11.69 
 

4271 
 

3,17,18,29 

  
 

Equisetum 

spp. 

 

9.0 
 

 

0.22 
 

13.60 
 

3896 
 

11,16,17,18,29 

  
 

Glyceria 

borealis 

     
 

11 

  
 

Juncus spp. 
     

 

29 

  
 

Menyanthes 

trifoliata 

     
 

11 

  
 

Myriophyllum 

spp.   

 

1.0 
 

 

0.97 
 

15.69 
 

3965 
 

3,17,18 
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Table 11. cont’d. 
 

Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium Content 
(% Dry Weight) 

Crude 
Protein 
Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Great 

Lakes-St. 

Lawrence 

Ontario Nuphar spp. 5.7  0.50 17.71 4507 3,6,11,16,17,18,19,29 

  Nymphaea 
spp. 

     29 

  
 

Pontedaria 

cordata 

     
 

29 

  
 

Potamogeton 

alpinus 

 

4.5 
 

 

0.64 
 

18.10 
 

3832 
 

15,18 

  
 

Potamogeton 

amplifolius 

 

14.0 
 

 

0.34 
 

13.80 
 

4416 
 

6,11,17,18 

  
 

Potamogeton 

epihydrus 

 

2.0 
 

 

0.65 
 

16.00 
 

4429 
 

11,15,17,18 

  
 

Potamogeton 

filliformis 

 

1.0 
 

 

0.78 
 

16.20 
 

4552 
 

6,17,18 

  
 

Potamogeton 

foliosus 

 

2.5 
 

 

0.83 
 

20.30 
 

4536 
 

15,18 

  
 

Potamogeton 

gramineus 

 

1.0 
 

 

0.61 
 

14.40 
 

4363 
 

11,17,18 

  
 

Potamogeton 

natans   

 

11.0 
 

 

0.42 
 

14.55 
 

4491 
 

11,17,18 
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Table 11. cont’d. 
 

Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium Content 
(% Dry Weight) 

Crude 
Protein 
Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Great 

Lakes-St. 

Lawrence 

Ontario Potamogeton 
perfoliatus 

     11 

  
 

Potamogeton 

praelongus 

 

13.0 
 

 

0.26 
 

15.80 
 

4581 
 

17,18 

  
 

Potamogeton 

pusillus 

     
 

11 

  
 

Potamogeton 

richardsonii 

      
 

11 

  
 

Potamogeton 

robinsii 

 

10.5 
 

 

0.52 
 

15.50 
 

4511 
 

16,18 

  
 

Potamogeton 

zosteriformis 

 

12.0 
 

 

0.41 
 

18.80 
 

4436 
 

6,18 

  
 

Sagittaria 

spp. 

 

4.0 
    

 

11,16,29 

  
 

Scirpus spp. 
 

1.0 
 

 

0.63 
 

17.00 
 

4423 
 

11,18,29 

  
 

Sparganium 

angustifolium 

 

4.0 
 

 

0.65 
 

16.25 
 

4160 
 

3,16,17,18 

  
 

Sparganium 

fluctuans   

     
 

29 
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Table 11.cont’d. 
 

 
Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium Content 
(% Dry Weight) 

Crude 
Protein 
Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Great 

Lakes-St. 

Lawrence 

Ontario Typha 
latifolia 

2.0  0.25 13.10 4400 16,17 

  
 

Utricularia 

spp. 

 

1.0 
 

 

1.35 
 

14.32 
 

3740 
 

3,17,18 

  
 

Vallisneria 

Americana 

     
 

11,19,29 

  
 

Zizania sp. 
     

 

11 

Great 

Lakes – St. 

Lawrence 

Isle 
Royale 

 
Carex spp. 

 
4.0 

  
0.07 

 
5.80 

  
2,4 

  Chara 

sp./Nitella sp. 

(Characeae) 

2.0  0.10 6.80  2,4 

  
 

Eleocharis 

spp. 

 

6.0 
 

 

0.14 
 

13.00 
 

 

2,4 

  
 

Equisetum 

fluviatile 

 

5.0 
 

 

0.16 
 

9.60 
 

 

2,4 

  
 

Lemna minor 
 

2.0 
  

 

13.80 
 

 

1 

  
 

Myriophyllum 

spp.   

 

4.0 
 

 

0.48 
 

14.00 
 

 

4,31 
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Table 11. cont’d. 
 

 
Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium Content 
(% Dry Weight) 

Crude 
Protein 
Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Great 

Lakes-St. 

Lawrence 

Isle Royale Potamogeton 
pusillus 

2.5     1,31 

  
 

Potamogeton 

richardsonii 

 

3.0 
 

 

0.72 
  

 

4,31 

  
 

Potamogeton 

spirillus 

 

4.0 
    

 

31 

  
 

Potamogeton 

spp. 

 

3.0 
  

 

15.30 
 

 

2 

  
 

Sagittaria 

spp. 

 

4.0 
  

 

14.80 
 

 

31 

   
Spirogyra 

spp. 

 
1.0 

    2 

  
 

Nuphar spp. 
  

 

0.94 
 

22.90 
 

 

4 

 
 

Quebec 
 

Brasenia 

schreberi 

     
 

21 

  
 

Nuphar 

variegatum   

     
 

20,21 
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Table 11. cont’d. 
 

 
Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium Content 
(% Dry Weight) 

Crude 
Protein 
Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Great 

Lakes-St. 

Lawrence 

Quebec Sparganium 
angustifolium 

     21 

  
 

Typha spp. 
     

 

20 

  
Minnesotac

 

 
Carex 

lacustrac
 

  
 

 
 

0.02 

 

 
 

8.63 

 
 

 
 

25 

  
 

Carex strictac
 

  
 

0.02 
 

9.96 
 

 

25 

  
 

Chara 

vulgarisc
 

   
 

0.18 

 
 

7.92 

  
 

25 

  
 

Eleocharis 

smalliic
 

   
 

0.76 

 
 

5.78 

  
 

25 

  
 

Myrophyllum 

exalbescens 

   
 

0.77 

 
 

12.28 

  
 

25,30 

  
 

Nuphar 

variegatumc
 

   
 

0.51 

 
 

15.70 

  
 

25 

  
 

Nymphaea 

odoratac  
 

   
 

0.17   

 
 

19.88   

  
 

25   
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Table 11. cont’d 
 

 
Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium Content 
(% Dry Weight) 

Crude 
Protein 

Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Great 

Lakes-St. 

Lawrence 

 
Minnesota 

 
Potamogeton 

amplifoliusc
 

   

 
0.17 

 

 
14.36 

  

 
25 

  
 

Potamogeton 

richardsoniic
 

   
 

0.14 

 
 

11.20 

  
 

25 

  
 

Sagittaria 

cuneatac
 

   
 

0.39 

 
 

21.81 

  
 

25 

  
 

Sagittaria 

rigidac
 

   
 

0.24 

 
 

14.78 

  
 

25 

  
 

Sparganium 

eurycarpumc
 

   
 

0.10 

 
 

7.60 

  
 

25 

  
 

Sparganium 

fluctuansc
 

   
 

0.40 

 
 

13.19 

  
 

25 

   
Typha spp. 

   
0.12 

 
6.92 

  
25,30 

  
 

Vallisneria 

americanac  
 

   
 

0.52   

 
 

15.15   

  
 

25   
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Table 11. cont’d. 
 
 

Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 

rank among 

all summer 

foods 

Sodium 

Content 

(% Dry 

Weight) 

Crude Protein 

Content 

(% Dry 

Weight) 

Energy 

Content 

(Cal./g) 

Referencesd
 

Great Lakes- 

St. Lawrence 

Minnesota Zizania 

aquaticac 0.25 9.88 25 
 

Northeast – 

Maritimes 
Newfoundland  Carex 

rostrate 

9,10 

 

Equisetum 

fluviatile 10 
 

Menyanthes 9 

spp. 
 

Nuphar sp. 9,10 
 

Nymphaea 10 

odorata 
 

Pontedaria 

cordata 

9,10 

 

Potamogeton 10 

  gramineus   
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Table 11. cont’d. 
 

 
Region Location Taxa Consumption 

Rank among 

aquaticsa
 

Consumption 
rank among 

all summer 

foods 

Sodium 
Content 

(% Dry 

Weight) 

Crude Protein 
Content 

(% Dry 

Weight) 

Energy 
Content 

(Cal./g) 

Referencesd
 

Northeast- 
Maritimes 

Newfoundland Scirpus 
cespitosus 

     9,10 

aSpecies listed are those reported to be consumed by moose in different geographic areas. Consumption ranks reflect ordered quantitati ve data where available. 

Species for which quantitative data (e.g., relative biomass consumed, preference indices) were not available were not included in the ranking procedure. 
bValues have been converted to % digestible protein on a dry matter basis. 
cValues from Minnesota were not based on study of moose consumption. Species/genera listed may not be consumed by moose in this location but were reported 

eaten by moose in nearby Ontario. 
d 1 = Aho and Jordan (1979), 2= Belovsky and Jordan (1978), 3= Berube (2000), 4 = Botkin et al. (1973), 5 = Boudreau and Bisson (1983), 6 = Cobus (1972), 7 

= Crete and Jordan (1981), 8=Denniston (1956), 9 = Dodds (1955), 10 = Dodds (1960), 11 = DeVos (1958), 12 = Dungan and Wright (2005), 13 = Dungan et al. 

(2010), 14 = Eastman and Ritcey (1987), 15 = Fraser and Hristienko (1983), 16 = Fraser et al. (1980), Fraser et al. (1982), 1 8 = Fraser et al. (1984), 19 = Goddard 

(1970), 20 = Joyal (1987), 21 = Joyal and Scherrer (1978), 22= Kielland (2001), 23 = Knowlton (1960), 24 = Leresche a nd Davis (1973), 25 = Linn et al. (1973), 

26 = MacCracken et al. (1993), 27 = McCabe and McCabe (1928), 28 = McMillan (195 3), 29 = Peterson (1953), 30 = Phillips et al. (1973), 31 = 

Quarnemark and Sheldon (2004), 32 = Renecker and Hudson (1985), 33 = Ritcey and Verbeek (1969), 34 = Tischler (2004), 35 = Va n Ballenberghe et al. (1989) 
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Wyoming and Newfoundland, though not identifying as many consumed taxa as on Isle Royale 

or in Ontario, tended toward a pattern of broader, higher consumption ranks. An apparently 

consistent and sometimes very large increase in preference ranks occurred when all summer food 

species were included in the ranking scheme in all geographic regions where this information 

was available. The geographic areas with the greatest number of reported aquatic taxa consumed 

by moose (Ontario and Isle Royale) were also the areas where it was most difficult to generate 

consumption ranks for aquatic plant species relative to all summer food items. Ontario boasted 

the greatest number of studies on moose aquatic feeding (9) and the greatest number of aquatic 

food items consumed by moose in a single study (19) but no studies from this area positioned the 

moose’s aquatic foraging behavior within the larger context of moose summer diet composition. 

 

Sodium content ranged from 0.02% dry matter (Carex spp. in Alaska and Carex stricta in 

Minnesota) to 1.35% dry matter (Utricularia in Ontario; Table 11). Myriophyllum sp., Nuphar 

spp., and Potamogeton spp. also exhibited relatively high sodium levels in the Great Lakes – St. 

Lawrence region (on average, 0.74%, 0.65%, and 0.50%, respectively). On average, sodium 

contents of plants consumed by moose were higher in the Great Lakes – St. Lawrence region 

than the Alaska – North region (0.43% versus 0.07%). Within the Great Lakes – St. Lawrence 

region the highest mean sodium contents in plants consumed by moose were observed in Ontario 

(0.556%), followed by Isle Royale (0.37%) and Minnesota (0.30%). Data regarding digestible 

protein content (% dry matter) were only available from Alaska for four species (Potentilla 

palustris = 2.80%, Carex spp. = 4.90%, Equisetum spp. = 7.70%, and Menyanthes trifoliata = 

9.20%; Table 11). Crude protein contents (% dry matter) ranged from 5.78% (Eleocharis smallii 

in Minnesota) to 22.90% (Nuphar spp. on Isle Royale) in the Great Lakes – St. Lawrence region. 

Relatively high mean protein contents were also reported for Nymphaea spp. (19.88%), 
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Sagittaria spp. (17.13%), Potamogeton spp. (15.72%) and Myriophyllum spp. (13.99%) in the 

Great Lakes – St. Lawrence region. The average crude protein content of aquatic plants in the 

Great Lakes – St. Lawrence region was 13.81% (n=45). On average, crude protein contents of 

plants consumed by moose in the Great Lakes – St. Lawrence region were highest in Ontario 

(15.62%) followed by Isle Royale (12.97%) and Minnesota (12.19%). Caloric values (Cal./g dry 

matter) of aquatic plants consumed by moose were only available from Ontario and ranged from 

2961 Cal./g (Chara and/or Nitella spp.) to 4581 Cal./g (Potamogeton praelongus; Table 11). 

Relatively high caloric contents were also reported in Ontario for Nuphar spp. (4507 Cal./g), 

Scirpus spp. (4423 Cal./g), Typha latifolia (4400 Cal./g) and Potamogeton spp. (4415 Cal./g, n= 

10 spp.). On average, aquatic plants consumed by moose in Ontario contained 4235 Cal./g. 

Aquatic plant species consumed by moose are not uniform with respect to their potential 

nutritional value nor does it seem that mean sodium and protein contents are similar in different 

regions of North America, with moose in the Alaska – North region apparently consuming less 

nutritious aquatic forage than moose in the Great Lakes – St. Lawrence region. 

 

2.4 Discussion 
 

 
My review of the literature pertaining to aquatic habitat use by North American moose 

revealed several important patterns related to geographic, seasonal and diel variation in use and 

consumption of aquatic plants. Proportional use of aquatic habitat was markedly lower in the 

Alaska-North region compared to elsewhere in North America but was similar among the 

remaining regions (Mountain-West, Great Lakes-St. Lawrence and Northeast-Maritimes). 

Observational data from the Northeast-Maritimes region suggested the greatest proportional use 

of aquatic habitat by moose in this region relative to all others, but this could be an artifact of a 

single outlying study (Dodds 1955). 
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Seasonal variation in aquatic habitat use by moose was greatest from mid-June to July. 

Outside of this peak period moose showed slightly greater intensity of use later in the summer 

(August to early-September) compared to earlier in the summer (April to May; but see Van Dyke 

et al. 1995). Data pertaining to diel variation in aquatic habitat use by moose suggested a 

crepuscular pattern with a primary daily peak in use from 2000-2259 and a secondary daily peak 

from 0500-0759. 

 

The proportion of aquatic food items in the diet was low in all regions, suggesting that 

moose predominately consumed terrestrial forage during summer (but see Tischler 2004). Moose 

preference for aquatic forage items declined when all summer food items (including terrestrial 

forage) were included in the rankings relative to when only aquatic forage items were 

considered. Aquatic foods with higher preference ranks (e.g., Myriophyllum spp., Potamogeton 

spp.) often had greater sodium content than aquatic foods with lower preference ranks (e.g., 

Eleocharis spp) but this pattern was not consistent. For example, Typha latifolia had a high 

preference rank in the Great Lakes-St. Lawrence and was consumed in the Mountain-West 

region but was low in sodium. Sodium content of aquatic plants consumed in the Alaska-North 

region appeared to be lower than sodium content in aquatic plants consumed by moose in the 

Great Lakes-St. Lawrence region. Crude protein content did not appear to consistently influence 

preference for aquatic forage items by moose, with several species with comparatively high 

levels of protein showing low preference ranks (e.g., Potamogeton natans). Several species with 

high preference ranks, however, also contained high crude protein levels (e.g., Myriophyllum 

spp., Potamogeton foliosus, Nuphar spp.). Data on caloric content of aquatic food items 

consumed by moose was limited to the Great Lakes-St. Lawrence region but generally did not 

show a consistent influence on preference by moose. Potamogeton spp. consumed by moose, for 
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example, generally had similar energy contents but differed widely in their apparent preference 

by moose. Similarly, species with the highest preference ranks (e.g., Utricularia spp. and 

Myriophyllum spp.) actually exhibited some of the lowest caloric values, though it is not clear to 

what extent numerical differences in energy content of aquatic plants translate into ecologically 

meaningful differences in plant quality for moose. In general, moose preferences for aquatic 

vegetation do not follow consistent patterns related to sodium, protein or caloric content but 

moose living in the Great Lakes-St. Lawrence region tended to consume more aquatic forage 

items high in sodium relative to other regions (e.g., Alaska-North). 

 

I did not find sufficient evidence to accept the hypothesis that moose use aquatic areas in 

order to minimize the direct risk of predation by wolves (Table 12). Wolf density in North 

America was greatest in the Great Lakes-St. Lawrence region followed by the Alaska-North 

region and lowest in the Northeast-Maritimes region. Proportional use of aquatic habitat by 

moose, however, was lowest in the Alaska-North region and relatively high in the Northeast- 

Maritimes region. The combination of low aquatic habitat use in areas with dense wolf 

populations (e.g., Alaska, particularly the Kenai Peninsula and south-central Alaska) and high 

aquatic habitat use (or at least moderate relative to other regions) in areas largely lacking canid 

predators (Newfoundland, Maine) suggested that North American moose are not influenced by 

wolf density in their use of aquatic habitat in summer. Similarly, moose showed seasonal peaks 

(mid-June-July) in activity well in advance of presumed peak direct predation risk. Daily patterns 

in aquatic habitat use by moose appeared to coincide partly with peak summer wolf activity (and 

thus greatest presumed direct predation risk). This must be interpreted with caution, however, 

since wolves typically leave the den in the evening to hunt and return sometime near morning 

which would mean that moose should show a nocturnal pattern of aquatic habitat use as opposed 
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Table 12. Qualitative evaluation of evidence for five hypotheses explaining aquatic habitat use by North American moose presented 

according to the predictions outlined by the hypothetico-deductive model appearing in Table 1. 

 
Hypothesis  Predictions  Conclusion 

 Geographic variation Seasonal variation Diel variation Forage preferences  

Minimization of 
direct predation risk 

Aquatic use did not 

correspond to 

geographic variation in 

wolf density 

Aquatic use did not 

correspond to 

seasonal patterns in 

direct predation risk 

Aquatic use only 

partially corresponded 

to daily patterns in 

direct predation risk 

Some preferences for 

aquatic forage items 

that were not 

anticipated 

Hypothesis not 
accepted 

 

Biting insect 

avoidance 

 

Could not be evaluated 
 

Aquatic use 

corresponded to 

seasonal patterns in 

biting insect activity 

 

Aquatic use 

corresponded to daily 

patterns in biting 

insect activity 

 

Some preferences for 

aquatic forage items 

that were not 

anticipated 

 

Hypothesis 

plausible 

 

Heat stress 

amelioration 

 

Aquatic use did not 

correspond to 

geographic variation in 

warm temperatures 

 

Aquatic use did not 

correspond to 

seasonal temperature 

peaks 

 

Aquatic use did not 

correspond to daily 

temperature peaks 

 

Some preferences for 

aquatic forage items 

that were not 

anticipated 

 

Hypothesis not 

accepted 

 

Nutrition (sodium 

acquisition) 

 

Aquatic use for the 

purpose of feeding 

appeared high in Great 

Lakes-St. Lawrence 

region but not 

necessarily low in 

coastal regions as had 

been anticipated 

 

Seasonal patterns in 

aquatic use did not 

correspond to 

presumed sodium 

need but 

interpretation 

complicated by 

seasonal variation in 

plant availability   

 

Apparent crepuscular 

pattern in aquatic use 

that was not 

anticipated 

 

Terrestrial forage 

preferred over aquatic 

forage as anticipated. 

Many aquatic items 

commonly consumed 

were high in sodium 

but moose showed 

apparent preferences 

for low sodium items   

 

Hypothesis 

plausible 
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Table 12. cont’d. 
 

 
Hypothesis  Predictions  Conclusion 

 Geographic variation Seasonal variation Diel variation Forage preferences  

Nutrition (foraging 
efficiency) 

Absence of a 

pronounced 

geographic pattern in 

aquatic use as 

anticipated but many 

studies from the Great 

Lakes-St. Lawrence 

region reported aquatic 

feeding by moose 

Apparent seasonal 

variation in aquatic 

habitat use that had 

not been anticipated 

but this may have 

been due to 

confounding effects 

of plant availability 

and/or palatability 

Apparent crepuscular 

pattern in aquatic use 

could be related to 

strategy for 

minimizing heat gain 

while maximizing 

daily energy intake 

Aquatic forage not 

preferred over 

terrestrial forage as 

had been anticipated. 

Preferred aquatic 

items were not 

consistently high in 

protein or caloric 

content 

Hypothesis 
plausible 
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to a crepuscular pattern if they are predominately using aquatic areas to minimize direct risk of 

predation. Overall, predation risk minimization is not the most likely mechanism driving aquatic 

habitat use by North American moose. In fact, there may be greater reason for moose to avoid 

aquatic areas since there is considerable evidence that wolves actually use the shorelines of 

aquatic areas such as lakes and rivers as travelling avenues while hunting (Paradiso and Nowak 

1982; Bump et al. 2009). Addison et al. (1990) indicated that cow moose might select calving 

sites that, though in relatively close proximity to water, were actually as far away as possible 

from shorelines. Similarly, though Wilton and Garner (1991) suggested that water was an 

important predator deterrent and thus was important for calving site selection, their data 

indicated that elevation might play a more dominant role in determining calving site quality. 

Moose may actually be more, not less, vulnerable to predation when in aquatic habitat because 

they have a difficult time extricating themselves from mucky, aquatic substrates relative to solid, 

terrestrial substrates (McMillan 1954; Belovsky 1978; Timmermann and Racey 1989). 

 

There was insufficient evidence to accept the heat stress amelioration hypothesis (Table 

 
12). If moose were using aquatic areas primarily as thermal relief sites then the greatest 

proportional use of aquatic areas would occur in the hottest regions of North America. Although 

proportional use was lowest in the coolest region (Alaska-North) it did not seem higher in the 

two warmest regions (Mountain-West and Northeast-Maritimes) relative to the Great Lakes-St. 

Lawrence region. This interpretation, however, may be complicated by the arbitrary boundaries I 

set for these regions. As a result I cannot rule out the possibility that aquatic areas might still be 

important thermal relief sites at southern range limits (Kelsall and Telfer 1974). The seasonal 

peak in aquatic habitat use by moose (mid-June to July) does not coincide with the hottest 

portions of the summer. In all geographic regions in North America temperatures are highest in 
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July and August and thus moose were predicted to show peak use at this time. Though it 

appeared that moose had a greater tendency to use aquatic areas in August than in May, the 

pattern was not consistent among all studies reviewed and moose seemed to use aquatic areas in 

early fall as well as summer. Thus, I suggest that this seasonal variation in aquatic use is not 

related solely to increased temperature. Moose also did not show daily peaks in use of aquatic 

areas during the hottest portion of the day (1400-1659), but instead showed a relatively 

crepuscular pattern in aquatic habitat use with a strong peak occurring in the evening at 2000- 

2259. 
 

 
I was unable to reject the insect avoidance hypothesis (Table 12). A lack of information 

in the literature precluded development of a prediction pertaining to geographic variation in 

proportional use of aquatic habitat by moose under an insect avoidance strategy, possibly owing 

to the ubiquity of culicids, simuliids and tabanids throughout North America. The seasonal peak 

in aquatic habitat use by moose described in my review seems to conform well to peak biting 

insect season, particularly for the culicids. Biting insects are relatively rare prior to mid-June, at 

which point they are commonly found until early August (with some exceptions). Thus, it 

appeared plausible that moose might increase their use of aquatic habitat in response to 

increasing seasonal activity of biting insects. Similarly, the approximately crepuscular pattern of 

aquatic habitat use reported here conforms well to the approximately crepuscular pattern 

exhibited by the culicids and simuliids in North America (Haufe 1952; Wolfe and Peterson 1960; 

Happold 1965; Toupin et al. 1996; Boyer et al. 2013). Culicids in particular appeared to show the 

strongest peak in the hours nearest dusk which is exactly when moose showed the greatest 

tendency to use aquatic habitat relative to all other hours of the day. Moose tended to use aquatic 

habitat least during the middle of the day and after nightfall, times when harassment from biting 
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insects is likely to be least intense. The finding that moose might use aquatic areas to avoid 

harassment by biting flies appears to be supported by the work of Flook (1959) who observed 

this behavior and noted an absence of aquatic feeding. Renecker and Hudson (1989) noted that 

biting insect harassment increased energy expenditures of moose living in Alberta. Renecker and 

Hudson (1990) suggested the possibility that aquatic areas might be used for insect relief in their 

study area and I suggest that this explanation may be more plausible than their alternative 

suggestion that this behavior was attributable to heat stress amelioration. Furthermore, it appears 

that moose require suitably deep water in order to avoid biting insects (Ritcey and Verbeek 

1969) and thus water depth may affect the quality of aquatic areas for moose. The presence of 

aquatic areas for moose to avoid biting insects may be an important consideration when 

examining overall habitat quality for North American moose. 

 

I was unable to reject the nutritional hypotheses for aquatic habitat use by moose, though 

it was clear that the available evidence was not fully consistent with either the sodium limitation 

hypothesis or the foraging efficiency hypothesis (Table 12). In a geographic sense, moose should 

be least inclined to use aquatic areas where access to ocean-derived salt is high (i.e., in the 

coastal regions Alaska-North and Northeast-Maritimes). Though proportional use of aquatic 

habitat was low in Alaska-North it was similar in the Northeast-Maritimes relative to the 

remaining regions. Certainly the number of studies mentioning aquatic feeding in the Great 

Lakes-St. Lawrence region (the most likely to be sodium limited) was high (e.g., Fraser et al. 

1980; 1982; 1984; deVos 1958; Belovsky and Jordan 1978) but it is possible that the high 

incidence of aquatic feeding in this region may simply be reflective of the larger number of 

studies devoted to aquatic feeding by moose in this region relative to other regions. 
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In the case of the foraging efficiency hypothesis, the possibility that aquatic habitat use is 

relatively consistent among several geographic regions would be suggestive of a strategy to 

maximize foraging efficiency throughout North America. It is problematic to this interpretation, 

however, that the best evidence for foraging efficiency as opposed to sodium hunger driving 

aquatic habitat use was derived from the Alaska-North region (MacCracken et al. 1993); the 

region where moose showed the lowest proportional use of aquatic habitat. The seasonal peak of 

aquatic habitat use observed in mid-June-early July does not seem to correspond well to either 

hypothesis. If the drive to use aquatic areas were to overcome a sodium deficit in early summer 

then moose should use aquatic areas most during the early summer months (May-June). This 

interpretation may be complicated by the possibility that in some regions of North America 

aquatic plants are not yet available in these early months (Cronk and Fennessy 2001). Perhaps a 

foraging efficiency mechanism is plausible given the observed seasonal peak in aquatic use by 

moose during the portion of the summer when aquatic plants are both palatable and highly 

available (Fraser et al. 1984). The pronounced crepuscular pattern in aquatic habitat use does not 

lend itself to the sodium limitation hypothesis since it would be highly unlikely that mineral 

contents of aquatic plants would differ over the course of the daily cycle (Hutchinson 1975). 

Conversely, a crepuscular aquatic feeding pattern might be related to a tradeoff between 

minimizing heat gain while maximizing energy intake (Belovsky and Jordan 1978; Renecker and 

Hudson 1990). 

 

Moose consumed lower amounts of aquatic relative to terrestrial forage items, though 

moose on Isle Royale consumed greater proportions of aquatics than moose in Alaska or 

Colorado (Leresche and Davis 1973; Dungan and Wright 2005; Tischler 2004). This lends more 

support to the sodium limitation hypothesis than the foraging efficiency hypothesis since moose 
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feeding only to acquire sodium might be able to meet this need by feeding on only a few sodium- 

rich aquatic plants. This interpretation is complicated by a lack of consistent preferences for 

sodium rich plants by moose engaged in aquatic feeding. Though it seemed clear that moose in 

the Great Lakes-St. Lawrence region showed the greatest tendency to consume sodium rich 

aquatic plants compared to other regions (i.e., Alaska-North), many aquatic plants preferred by 

moose were quite low in sodium. This would imply that perhaps moose are simply attempting to 

maximize diet quality under the foraging efficiency hypothesis, but moose did not show 

consistent preferences for aquatic plants with the highest protein or caloric content. Therefore, I 

suggest that aquatic feeding observed by moose throughout North America can be explained by 

some combination of the sodium limitation and foraging efficiency hypothesis, but not by either 

hypothesis acting in isolation. Similarly, aquatic feeding on Isle Royale was likely part of a 

larger strategy to maximize diet quality and acquire essential sodium in a nutrient-poor boreal 

ecosystem (Tischler 2004). I did not find evidence to suggest that sodium limitation is important 

to moose outside of the Great Lakes-St. Lawrence region. It appears plausible that aquatic habitat 

use by moose in North America is related to multiple nutritional factors that are not consistent 

among geographic regions and that biting insects may play a role in this behaviour. Multiple 

mechanisms appear to explain aquatic habitat use by North American moose and this may be 

indicative of different selective pressures acting upon different moose sub-populations leading to 

behavioral plasticity with respect to aquatic habitat use across this species’ range. 

 

If nutritional factors influence the use of aquatic areas by moose then identification of 

aquatic feeding sites may be an important aspect of moose habitat management (Allen et al. 

1987; Adair et al. 1991; OMNR 2010). Moose may select areas for aquatic feeding according to 

the relative availability of aquatic plants (Fraser et al. 1980; 1984; Brusnyk and Gilbert 1983) 
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and may attempt to meet nutritional needs rapidly by foraging in areas of dense aquatic plant 

growth (MacCracken et al. 1993). Fraser et al. (1980) found that the presence of the five most 

abundant aquatic plant species allowed for consistent differentiation between feeding and non- 

feeding sites within a lake in northwestern Ontario. The authors reported that variation in water 

depth commonly led to zonation of the aquatic plant community and later suggested that shallow 

water (< 50 cm) favoured the growth of submersed species that were most consistently preferred 

by moose (Fraser et al. 1984). Aquatic feeding sites most heavily used by moose tended to not 

only have shallow water, but also inorganic sediments associated with recent flooding (Fraser et 

al. 1980; 1984). Fraser et al. (1980) suggested that moose may target recently flooded areas for 

aquatic feeding because these conditions might favour rapid colonization of preferred species. 

Plants growing in inorganic sediments, such as those associated with newly flooded forest floor, 

also appeared to contain greater amounts of chemical constituents (e.g., phosphorous, calcium) 

that might influence palatability for moose (Fraser et al. 1984). Conversely, Adair et al. (1991), 

working in northeastern Minnesota, identified lakes with greater proportions of organic matter 

and beaver ponds as containing the greatest abundance of aquatic plants for moose. The authors 

contended that larger lakes with rocky bottoms typically experienced greater wave action that 

smaller, submersed plant species, thought to be preferred by moose, could not typically 

withstand. The finding that beaver ponds contained the greatest amount of species commonly 

consumed by moose (according to Fraser et al. 1984) provided support for the previous 

contention that newly flooded habitats are highly suitable for moose aquatic feeding. Adair et al. 

(1991) also suggested that beaver ponds might possess greater variance in their ability to provide 

aquatic vegetation for moose relative to lakes, since colonization by aquatic plants might be 

delayed initially and availability might decline in very old ponds. Further research on potential 
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variation in aquatic plant availability between lakes and beaver ponds of various depths and ages 

may usefully inform an understanding of moose aquatic habitat use, particularly in the Great 

Lakes-St. Lawrence region where both sodium and foraging efficiency hypotheses may explain 

moose use of aquatic habitats. 

 

The suitability of aquatic feeding sites for moose may also be determined in part by the 

seasonal availability or quality of aquatic vegetation (Fraser et al. 1982; Brusnyk and Gilbert 

1983). Fraser et al. (1982) found that sodium content of vegetation showed a slight decline in late 

summer (late-July onward) when moose ceased using aquatic areas for feeding. These authors, 

however, felt that the midsummer peak in aquatic feeding that they observed in lakes (late-June 

to early-July, in agreement with other studies in the present review) was most likely associated 

with increased growth of preferred species with high sodium contents at this time rather than 

seasonal changes in the other chemical constituents of aquatic plants. Brusnyk and Gilbert 

(1983), also working in lake habitats, found that peak availability of aquatic plants (measured as 

total percent cover) occurred from 30 July – August 15; after the midsummer peak in aquatic 

habitat use by moose. In general, peak biomass of aquatic plants often occurs late in summer 

(Hutchinson 1975; Cronk and Fennesy 2001) after moose use of aquatic areas has declined. 

MacCracken et al. (1993) suggested that following initial selection of aquatic areas with dense 

plant growth, that moose switch to a time-minimization rather than energy-maximization strategy 

and feed non-selectively on available aquatic plants. Taken together, the above evidence might 

suggest that moose select aquatic areas based on the relative availability of a few important plant 

species (e.g., those with the greatest sodium contents) and time their use of these areas to 

coincide with the greatest seasonal abundance of these preferred species. MacCracken et al. 

(1993) noted that few studies have attempted to quantify aquatic plant availability over the 
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course of the growing season and it remains unclear if seasonal patterns of abundance of aquatic 

plant species preferred by moose might differ in habitats other than lakes (e.g., beaver ponds). 

 

Future directions for research on aquatic habitat use by moose in the Great Lakes-St. 

Lawrence region should include assessment of aquatic plant availability throughout the summer 

in lakes and beaver ponds that vary with respect to limnological characteristics (e.g., depth, wave 

action; disturbance history). Research on aquatic plant availability under various conditions 

could help identify critical summer habitat components for moose living in the Great Lakes-St. 

Lawrence region and help discriminate the relative importance of sodium limitation versus the 

foraging efficiency hypothesis. 
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3.0 RICHNESS AND BIOMASS OF AQUATIC VEGETATION IN LAKES AND BEAVER 

PONDS 

3.1 Introduction 
 

 
Different aquatic patch types are often viewed as being similarly suitable in analyses of 

moose habitat needs and use (Allen et al. 1987; Lenarz et al. 2011) but it is not clear whether all 

aquatic habitat is similar with respect to richness and biomass of aquatic forage. For example, 

Adair et al. (1991) demonstrated that shallow lakes with mucky bottoms and beaver ponds 

provided more aquatic moose forage than other wetland types. Both lake bays and beaver ponds 

typically have been identified as potential moose aquatic feeding areas but increased wave action 

and reduced nutrient availability in lakes may decrease the abundance and diversity of aquatic 

plants relative to calmer, more nutrient-rich habitats provided by beaver ponds (Wetzel 1983; 

Bornette and Puijalon 2011). Therefore, beaver ponds may contain a greater number of preferred 

moose forage species and greater yields (biomass m-2) of submersed and floating-leaved plants 

than lake bays. Furthermore, water depth in lakes may result in zonation of plant communities 

based on the ability of different species to thrive in deep water environments (Hutchinson 1975; 

Bornette and Puijalon 2010). This influence of water depth on plant community composition 

should be considered when assessing richness and biomass of aquatic forage potentially available 

to moose. Increased turbidity, resulting from frequent sediment disturbance, can further reduce 

growth rates of aquatic plants by inhibiting or compromising photosynthesis (Bornette and 

Puijalon 2011). Movement of beavers in these aquatic areas could create these turbid conditions 

when movement through aquatic patches is frequent, and thus, it would be valuable to assess 

whether the presence of beaver activity has a negative impact on the richness and biomass of 

aquatic forage for moose. Beyond these indirect effects on forage production, beaver also 
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consume aquatic vegetation (Milligan and Humphries 2010; Severud et al. 2013), and thus, could 

directly compete with moose for aquatic forage. 

 

As the spatio-temporal mosaic of beaver ponds on the North American landscape is 

extensive and likely influenced by climate change (Johnston and Naiman 1990; Jarema et al. 

2009), more detailed information on richness and biomass of submersed and floating-leaved 

plants in this wetland type may lend itself to improved management of aquatic moose habitat in 

the future. Beaver pond age may influence richness and biomass of aquatic forage in aquatic 

areas that may be used by moose (Adair et al. 1991; Ray et al. 2001). Submersed and floating- 

leaved plant richness and abundance was greater in beaver ponds of intermediate (11-40 years) 

age compared to either newly formed (< 11 years) and older (> 40 years) beaver ponds (Ray et 

al. 2001). These increases in intermediate-aged ponds were attributed to the provision of niche 

space for both early successional aquatic species (e.g., coontail - Ceratophyllum demersum) and 

late successional species (e.g., water shield - Brasenia schreberi). Large (i.e., > 1 ha) surface 

area for colonization by vegetative propagules may also increase species richness and yield in 

beaver ponds (Ray et al. 2001). Open water sites near beaver ponds may serve as sources of 

dispersing vegetative propagules that colonize beaver ponds (Ray et al. 2001). Some measure of 

landscape connectivity between beaver ponds and open water sites should be considered when 

assessing richness and biomass of aquatic forage potentially used by moose. 

 

Ray et al. (2001) went on to suggest the possible existence of alternative stable states of 

late successional beaver pond communities, one with a dense floating-leaved canopy and the 

other dominated by submersed species. The author suggested that beaver herbivory on floating- 

leaved plants (e.g., Nuphar variegatum) was responsible for the creation of a late successional 

community dominated by submersed species. These alternative states could also be due to 
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periodic flooding events resulting from re-colonization by beaver (Fryxell 2001, Vincent 2010). 

It would thus be useful to test for effects of beaver colonization on the richness and biomass of 

floating-leaved and submersed aquatic vegetation in areas potentially used by moose in beaver 

ponds. 

 

The first objective of the current study was to contrast species richness and biomass of 

aquatic forage between open water lake bays and beaver ponds. A secondary component of this 

objective was to determine what effect, if any, beaver presence in an aquatic area might have on 

richness and biomass of aquatic forage. Based on previous studies outlined above, species 

richness and biomass (g m-2 open water) should be significantly higher in beaver ponds 

compared to lake bays (Adair et al. 1991), and beaver presence should have a significant 

negative effect on both species richness and biomass of submersed and floating-leaved 

vegetation through the combined effect of herbivory and frequent sediment disturbance 

(turbidity). 

 

A second objective of the current study was to examine potential effects of variation in 

age and surface area of beaver ponds on richness and biomass of aquatic forage. In this case, 

ponds of intermediate age (21-38 years in this study, relative to young ponds 6-14 years and old 

ponds >50 years) should have significantly higher species richness and biomass of both 

submersed and floating-leaved aquatic species due to higher available niche space for both early 

and late successional species (Ray et al. 2001). In addition, large ponds (i.e., surface areas >1 ha) 

should have significantly higher species richness and biomass levels of floating-leaved aquatic 

vegetation compared to smaller ponds (< 1 ha), as ponds with larger surface areas would have a 

greater probability of being randomly colonized by dispersing propagules of aquatic plants (Ray 

et al. 2001). 
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The final objective of the current study was to determine what effect, if any, seasonal 

timing had on richness and biomass of aquatic forage. For this objective, species richness and 

biomass of submersed and floating-leaved vegetation were compared between two sampling 

periods spanning initial growth of aquatic vegetation and presumed peak biomass of aquatic 

vegetation (June-early July and late July-August, respectively; Cronk and Fennessy 2001). Here I 

predicted that significantly greater amounts of aquatic forage for moose (species richness and 

biomass of submersed and floating-leaved vegetation) would be present in late July-August 

compared to the June-early July period as most aquatic plant species do not reach peak biomass 

until mid to late summer. 

 

3.2 Methods 
 

 
3.2.1 Study Area 

 

 
This study was conducted in Voyageurs National Park (VNP; 882 km2), Minnesota, 

USA, located on the Kabetogama Peninsula (330 km2) and surrounding mainland (210 km2) in 

north-central Minnesota (48o34' N, 93o23' W). The VNP has a complex topography (maximum 

relief of 90 m), and includes four large lakes (Kabetogama, Namakan, Rainy, Sand Point; a total 

of 342 km2) and numerous inland lakes of varying size (13-305 ha). Based on a vegetation 

survey of VNP (Kurmis et al. 1986), tree species composition is a combination of southern 

boreal and northern hardwood species, including jack pine (Pinus banksiana), trembling aspen 

(Populus tremuloides), paper birch (Betula papyrifera), white spruce (Picea glauca), balsam fir 

(Abies balsamea), red pine (Pinus resinosa), white pine (Pinus strobus), red maple (Acer 

rubrum) and green ash (Fraxinus pennsylvanica). 
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Beaver in VNP have created an extensive network of ponds, marshes and meadows (n = 

 
835 in 1986; 13% of land mass) varying with respect to size and the forest type in which they are 

situated (Naiman et al. 1988). All beaver ponds present since 1927 have been aged using an 

aerial photo-sequence taken over a time series (1927,1940, 1948, 1961, 1972, 1981, 1986, 1990, 

 
1997, 2003, and 2005) and these pond ages have been incorporated into a GIS layer (Johnston 

and Naiman 1990a; Host and Meysembourg 2009). Adult moose (n=12) within and adjacent to 

VNP were fitted with GPS collars transmitting via the Argos satellite system as of January 2011 

(Windels 2014), which allowed me to select aquatic patches that were presumably directly 

available to moose. 

 

3.2.2 Aquatic patch selection 
 

 
I identified a number of candidate beaver ponds on the Kabetogama peninsula in VNP 

under the conditions that ponds were within 800 m of Kabetogama or Namakan Lake shorelines 

or hiking trails and were within areas available to moose (i.e., based on known moose locations 

from GPS collar fixes; summer 2011). From this pool of candidate sites, I randomly selected 18 

ponds, stratifying the sample by pond size (< 1 ha or 1-6 ha) and pond age (young: 6-14 years; 

intermediate: 21-38 years, or old: exceeding 50 years). I also selected six mesotrophic lake bays 

on the Kabetogama Peninsula under the same restrictions described above. 

 

3.2.3 Aquatic vegetation surveys 
 

 
I employed a modified rake technique (Ray et al. 2001; Kenow et al. 2007) to assess the 

quantity and species composition of submergent and floating-leaved vegetation within aquatic 

patches of VNP. Plant surveys took place during two discrete sampling periods to compare 

periods of initial plant growth and presumed peak biomass (June 8-July 11 and July 12-August 
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3). Only beaver ponds were sampled during the second period due to logistical constraints. Prior 

to sampling, 20 random sample points were generated within each patch and the coordinates of 

each point were entered into a handheld GPS unit. 

 

A field crew used an inflatable raft to sample each aquatic patch. Any sign of recent 

beaver activity within the patch (e.g., peeled sticks, fresh mud on lodges or dams, fresh cut 

stems, direct observation of beaver) was recorded. Aquatic patches where recent beaver activity 

was observed were deemed ‘beaver present’ patches and aquatic patches where no recent beaver 

activity was observed were deemed ‘beaver absent’ patches. The crew navigated to within 2 m of 

each sampling point using the handheld GPS and anchored the raft to define the sampling point. 

Water depth (cm) was measured using a graduated measuring stick and was considered to be the 

depth at which it just penetrated the flocculent material on the bottom. Depth of organic matter 

was also measured for at least four random points per beaver pond using a soil corer. 

 

A double-sided rake (35 cm wide with 5 cm long tines) was lowered into the water at 

each sampling point, dragged 1 m along the substrate towards the boat and lifted vertically from 

the water column, spinning the rake as it was lifted to prevent loss of submersed and floating 

leaved plants (Ray et al. 2001). I assigned scores 0 - 5 to each rake drag based on total percent 

coverage of the rake tines for each plant species present (0% = 0, 1%-20% = 1, 21%-40% = 2, 

41%-60% = 3, 61%=80% = 4, 81%-100% = 5). If rake drags were impeded by submersed logs, 

the sampling point was repeatedly moved 1 m in a pre-determined arbitrary direction until a 

successful drag was performed. I assumed that all submersed and floating leaved plants were 

collected during each successful drag. 
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3.2.4 Plant Biomass Sampling 
 

 
In summer (June-August) 2012, 6-10 samples of each rake score of three common aquatic 

plant species, (Ceratophyllum demersum, Brasenia schreberi, Nymphaea odorata) were collected 

opportunistically from study bays and ponds. Additional biomass sampling was done in summer 

(July-August) 2013, targeting the less dominant species recorded in the 2012 vegetation surveys. 

For six species (Potamogeton pectinatus, Myriophyllum verticillatum, Utricularia vulgaris, 

Vallisneria americana, Elodea canadensis, and Potamogeton natans) 5-7 samples of each rake 

score were collected from bays and ponds within the study area. Five taxa (Potamogeton 

zosteriformis, Chara vulgaris, Potamogeton spp, Utricularia minor, and Nuphar variegata) were 

only encountered at rake scores of 1-3 during 2012 vegetation surveys. For these species, samples 

were only collected that corresponded to the rake scores for which they 

occurred (e.g., 10 samples of rake score 1 were collected for Potamogeton spp., 6 samples each 

of rake scores 1, 2 and 3 were collected for Nuphar variegata, etc.). In the field, all harvested 

plant material was placed in clear plastic bags, returned to the laboratory and processed the same 

day of collection. Plants were rinsed of all particulate matter and macroinvertebrates (e.g., 

gastropods), placed in paper bags and dried to constant weight at 105oC. For rarely encountered 

species (i.e., recorded in ≤ 3% of all rake drags), it was assumed that their biomass did not 

contribute meaningfully to moose diets in the study area, and they were not included in the 

biomass estimates. These included the floating-leaved species Sparganium fluctuans and the 

submersed species Najas flexilis, Zosterella dubia, Sagittaria graminea, and Myriophyllum 

sibiricum. 

 

For each species, mean biomass values were generated for each rake score and applied to 

the aquatic vegetation survey data (i.e., 20 random sampling points per aquatic patch – 18 ponds; 
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6 lake bays). For example, the mean biomass value for Ceratophyllum demersum with rake 

score=1 was 3.22 g m-2 (see RESULTS) and thus each time Ceratophyllum demersum was 

present at a sample point within a pond or lake bay with rake score = 1 it was assigned a dry 

weight biomass value of 3.22 g m-2 at that point. I summed all submersed and floating-leaved 

biomass values at each point and calculated the total mean biomass (g m-2; n=20) of submersed 

and floating-leaved vegetation in each aquatic patch (lake or beaver pond). Aquatic patches were 

used as the sampling unit in all subsequent statistical analyses. 

 
3.2.5 Statistical analysis 

 

 
Objective 1: Examining the differences in richness and biomass of aquatic forage between 

beaver ponds and lake bays, and evaluating the influence of beaver activity on richness and 

biomass of aquatic forage. 

 

A generalized linear model (GLM) that included aquatic patch type (i.e., beaver pond 

versus lake bay) and beaver activity (binary variable: present versus absent, see above) as 

response variables in a two-factor completely randomized design (CRD) was used to make 

comparisons of forage production. Specifically, the six response variables were: richness*m-2 

and biomass*m-2 of floating leaved aquatic vegetation (hereafter floating-leaved richness and 

floating-leaved biomass, respectively), richness*m-2 and biomass*m-2 of submersed aquatic 

vegetation (hereafter submersed richness and submersed biomass, respectively) and combined 

richness*m-2 and biomass*m-2 of both submersed and floating-leaved vegetation (hereafter, 

combined richness and combined biomass). The GLM was run using the aov function in R 2.14.1 

(R Core Development Team 2008) using the following generalized form: 
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Yijk = µ+ Ai + Bj + ABij + ε(ij) k [1] 

(i=2 j= 2   k=2) 

where: yijk = kth value of y from the ith aquatic patch type and the jth beaver presence, Ai = 

effect of the ith aquatic patch type, Bj= effect of the jth beaver presence-absence, ABij = 

interaction effect of the jth category of beaver presence with the ith patch type, ε(ij)k = effect of 

the kth replicate on the jth beaver presence category with the ith aquatic patch type. In addition, 

mean aquatic patch depth was considered as a potential covariate. Pearson’s product moment 

correlation tests were conducted to determine if depth significantly influenced each of the 

response variables. Only richness of floating-leaved aquatic vegetation was correlated 

significantly with depth (p=0.031, t22=2.309, r=0.44) and was thus the only response variable 

where depth was included as a covariate in the GLM. 

 

Objectives 2 and 3: Examining the differences in richness and biomass of aquatic forage 

between beaver ponds differing in age and size class, as well as time during the summer. 

 

For this examination, the GLM was treated as a 3 factor CRD that included pond age 

class (6-14 year, 21-38 years, > 50 years), size class (surface area < 1 ha, surface area > 1 ha), 

and sample period (early summer = June 8-July 11, mid-summer = July 12-August 3). Similar to 

Objective 1, the response variables were richness and biomass of floating leaved vegetation, 

richness and biomass of submersed vegetation, and combined richness and biomass of aquatic 

vegetation. The generalized form of the GLM was: 

 

yijkl = µ + Ai + Bj + Ck + ABij + ACik + BCjk + ε(ijk)l [2] 

(i=3  j= 2   k=2  l=1) 
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where: yijkl = lth value of y from the ith pond age class, jth pond size class, and kth sample 
 
period, Ai = effect of the ith pond age class, Bj= effect of the jth pond size class, Ck= effect of the 

kth sample period, ABij=effect of the jth size class with the ith age class, ACik= effect of the kth 

sample period category with the ith age class, BCjk= effect of the kth sample period with the jth 

size class, ε(ijk)l= effect of the lth replicate on the jth pond size with the ith age class with the kth 

sample period. The 3-way interaction term was considered to not be ecologically meaningful, 

and was therefore pooled with the experimental error term. 
 

 
For this model, three additional variables were considered as potential covariates: aquatic 

patch depth, the number of hydrologically connected upstream ponds (i.e., potential sources of 

dispersing aquatic plants), and the area of open water within a 1 km2 radius of each pond (i.e., 

reservoir of potential colonizing organisms). Again Pearson product moment correlations were 

run against all response variables, including covariates when p<0.05. Based on this preliminary 

analysis, depth was included with richness of floating-leaved vegetation (p=0.029, t34=2.28, 

r=0.36) and biomass of floating-leaved vegetation (p=0.043, t34=2.11, r=0.34), number of 

upstream ponds was included as a second covariate for richness of floating-leaved vegetation 

(p=0.010, t34=-2.72, r=-0.42), and area of open water within 1 km2 was added as a second 

covariate for biomass of floating leaved vegetation (p<0.001, t34=3.95, r=0.56). 

 

In all cases, data normality was assessed using the Shapiro-Wilk’s test, and homogeneity 

of variance was evaluated using Barlett’s test. In all cases the data conformed to the test for 

normality (p>0.25) and homogeneity of variance (p>0.10), with the exception of biomass of 

submersed vegetation in GLM [1] (Shapiro-Wilk’s W=0.909, p=0.034; Barlett’s k2=4.99, 

p=0.026) and GLM [2] (Shapiro-Wilk’s W=0.926, p=0.019; Barlett’s k2=3.10, p=0.021). In this 

case, the data were transformed (square root transformation of biomass of submersed vegetation 
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data) prior to running the ANOVAs. Post hoc examination of significant factors in the ANOVAs 

were performed using the Least Significant Difference (LSD) multiple range test (p<0.05). 

 

3.3 Results 
 

 
3.3.1 Rake Score to Biomass Values 

 

 
Due to the broad differences in life forms, growth and development strategies, and water 

contents of aquatic plants (Hutchinson 1975; Cronk and Fennessy 2001) there were substantial 

differences in biomass among aquatic plant species (Table 13). There tended to be higher 

variability in biomass of individual species with higher rake scores and some degree of a 

curvilinear increase in biomass between rake scores for some species (e.g., P. pectinatus, M. 

verticillatum, P. natans; Figure 1). This variability is largely a function of the broad rake score 

classes (20% classes of rake tines being covered) and not a true reflection of experimental error. 

Rake scores of 5 are particularly variable since the percent coverage of the rake could increase 

exponentially with no corresponding increase in rake score (e.g., rake scores of 5 with percent 

coverage > 200% was sometimes observed due to overlapping layers of plant material). 

 

3.3.2 Influence of aquatic patch type and beaver presence on species richness and biomass 
 

 
Patch type significantly influenced combined richness (p=0.008) and submersed richness 

(p=0.002), but not floating-leaved richness (p=0.098; Table 14). The combined richness was 

nearly double in beaver ponds compared to lake bays (beaver ponds: 7.0; lake bays: 3.7; Figure 

2). This difference was largely a function of a higher number of submersed species in beaver 
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Table 13. Biomass values (g m-2) for 14 aquatic plant species, belonging to 2 functional groups, 

submersed and floating-leaved plants, for each of 5 categorical rake scores used as part of a 

sampling technique modified from Kenow et al. (2007). 

Species  Statis tic 
 

 
 

Submerged: 

Rake Score 

1  2  3  4  5 

--------------------------- g m-2 ------------------------------- 

Ceratophyllum demersum  Mean  3.22  16.65  35.38  45.77  86.245 

Std Err  0.676  1.712  5.35  4.297  6.41 

n   7   7    7   7     7 

Potamogeton pectinatus  Mean  0.91  4.01  13.12  27.95  71.49 

Std Err  0.166  0.244  1.084  1.524  4.81 

n   6   5     6   6     6 

Myriophyllum verticillatum  Mean  1.07  3.7  10.03  21.91  46.19 

Std Err  0.154  0.372  0.784  1.519  1.133 

n   6   6     6   6      6 

Utricularia vulgaris  Mean  0.476  2.947  9.26  19.29  33.1 

Std Err  0.214  0.22  0.603  2.001  2.558 

n   6   7     6   6      6 

Vallisneria americana  Mean  0.53  3.01  8.01  15.06  31.74 

Std Err  0.091  0.356  0.428  0.325  2.823 

n   6   6     6   6      6 

Elodea canadensis  Mean  0.33  3.024  5.45  10.26  28.257 

Std Err  0.097  0.209  0.361  0.252  2.674 

n   6   6     6   6      6 

Potamogeton zosteriforms  Mean  0.93  4.62  10.83 

Std Err  0.271  0.75  1.213 

n   6   3     6 

Chara vulgaris  Mean  0.5  2.81 

Std Err  0.161  0.602 

n   7   4 

Potamogeton spp .  Mean  0.22 

Std Err  0.058 

n   10 

Utricularia minor  Mean  0.03 

Std Err  0 

n  5 

Floating: 

Brasenia schreberi  Mean  2.68  27.31  62.5  94.32  179.74 

Std Err  0.807  1.207  3.795  6.56  18.175 

n   7   7     7   7   7 

Nymphaea odorata  Mean  1.62  18.79  43.63  77.03  110.79 

Std Err  0.459  2.027  3.473  4.663  13.872 

n   7   7     6   6   10 

Potamogeton natans  Mean  1.162  6.48  15.97  33.7  77.8 

Std Err  0.211  0.353  1.041  1.854  8.116 

n   6   6     6   6      6 

Nuphar variegata  Mean  4.4  16.09  41.97 

Std Err  0.682  1.175  3.083 

  n  6  6  6   
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Figure 1. Box plots (sample sizes in parentheses) depicting the variability associated with the 

biomass estimates for various rake score classes of 6 aquatic plant species encountered during 

summer 2012 aquatic vegetation surveys in Voyageurs National Park. 
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Table 14. ANOVA results summarizing the influence of aquatic patch type (beaver pond versus 

lake bay) and beaver presence (present versus absent) on aquatic plant species richness (# of 

species m-2). Bolded p values are <0.05. 
 

Source df MS F-ratio P value 
 

Richness (all species): 
    

Patch Type (PT) 1 49.53 8.80 0.008 

Beaver Presence (BP) 1 2.25 0.40 0.534 

PT * BP 1 0.78 0.14 0.713 

Error 20 5.63   

Richness(submerged)1:     

PT 1 2.58 11.30 0.002 

BP 1 0.01 0.01 0.933 

PT * BP 1 0.45 1.96 0.169 

Error 20 0.23   

Richness (floating):     

Depth (covariate) 1 3.44 3.68 0.070 

PT 1 2.83 3.03 0.098 

BP 1 5.04 5.39 0.032 

PT * BP 1 0.29 0.31 0.582 

Error 19 0.93   
1 data were square root transformed prior to ANOVA to meet normality and homogeneity of 

variance assumptions. 
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Species Richness Plant Biomass 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The influence of aquatic patch type (beaver pond versus lake bay; n=18 and n=6, 

respectively) on species richness (left panel) and plant biomass (right panel). Vertical bars 

represent standard errors. Different lower case letters signify significant differences (p<0.05), 

based on a post-hoc Least Significant Difference (LSD) multiple range test. 
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ponds (beaver ponds: 4.8; lake bays: 2.3). Beaver presence did not, however, influence combined 

richness (p=0.534) or submersed richness (p=0.933) but did have a positive influence on 

floating-leaved richness (present: 2.5; absent: 1.4; Figure 3). The patch type x beaver presence 

interaction was not significant for any of the three richness response variables (p≥0.17; Table 

14). 

 
Patch type strongly influenced combined biomass (p=0.004), as well as both submersed 

(p=0.003) and floating-leaved (p=0.031) biomass (Table 15). The average biomass estimate for 

beaver ponds was four times greater than in lake bays at nearly 60 g m-2 compared to just over 15 

g m-2 (Figure 2). Similar to richness, beaver presence had a positive influence (p=0.029) on 

floating-leaved biomass (present: 49.8 g m-2; absent: 18.0 g m-2; Figure 3) but not submersed 

biomass. 

 
3.3.3 Influence of beaver pond age, size, and sampling period on species richness and biomass 

 

 
Sampling period (early- versus mid-summer) did not significantly influence (p>0.50) 

 
floating-leaved, submersed or combined richness and biomass in beaver ponds (Tables 16 and 

 
17). Both pond age and size did significantly influence combined richness and submersed 

richness, with only pond size influencing floating-leaved richness (Table 16). In terms of pond 

age effects on species richness, the old ponds (>50 yrs) did not have as many species as either of 

the younger age classes (6-14 yrs: 7.62; 21-38 yrs: 7.21; >50 yrs: 5.40), an effect for both 

submerged and floating species, although only significantly different for the submersed species 

(Figure 4). The larger ponds (>1 ha), also had higher species richness values compared to the 

smaller ponds (<1 ha) for both the submersed (5.2 compared to 4.0) and floating species (2.5 

compared to 1.8; Figure 5). 
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!Figure 3. The influence ofbeaver presence (presence versus absence; n=l2 for each) on species 

richness (left panel) and plant biomass (right panel). Vertical bars represent standard errors. 

Different lower case letters signify significant differences (p<0.05), based on a post-hoc Least 

Significant Difference (LSD) multiple range test. 



92  
 
 

Table 15. ANOVA results summarizing the influence of aquatic patch type (beaver pond versus 

lake bay) and beaver presence (present versus absent) on aquatic plant biomass (g m-2). Bolded p 

values are < 0.05. 
 

 
 

Source df MS F-ratio P value 
 

Biomass (all species): 
    

Patch Type (PT) 1 7874.88 10.55 0.004 

Beaver Presence (BP) 1 2316.98 3.10 0.093 

PT * BP 1 41.10 0.06 0.817 

Error 20 746.57   

Biomass (submerged)1 :     

PT 1 27.96 10.34 0.003 

BP 1 2.24 0.83 0.369 

PT * BP 1 0.01 0.00 0.961 

Error 20 2.70   

Biomass (floating):     

PT 1 3983.25 5.36 0.031 

BP 1 4130.91 5.56 0.029 

PT * BP 1 146.06 0.20 0.662 

Error 20 742.75   
1 data were square root transformed prior to ANOVA to meet normality and homogeneity of 

variance assumptions. 
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Table 16. ANOVA results summarizing the influence of beaver pond age, size class, and 

sampling period on aquatic plant species richness (# species m-2). Bolded p values are < 0.05. 
 

 
Source df MS F-ratio P value 

 

Richness (all species): 
    

Age (A) 2 16.68 4.53 0.021 

Size (S) 1 32.65 8.87 0.006 

Sample Period (SP) 1 2.04 0.55 0.463 

A * S 2 1.84 0.50 0.612 

A * SP 2 1.35 0.37 0.696 

S * SP 1 0.00 0.00 1.000 

Error 26 3.68   

Richness (submerged)1 :     

A 2 0.53 3.33 0.050 

S 1 0.86 5.37 0.029 

SP 1 0.05 0.33 0.571 

A * S 2 0.89 2.77 0.081 

A * SP 2 0.08 0.25 0.782 

S * SP 1 0.00 0.00 0.992 

Error 26 0.16   

Richness (floating):     

Depth (covariate) 1 1.86 2.53 0.125 

Upland Ponds (covariate) 1 1.40 1.91 0.180 

A 2 1.20 1.63 0.217 

S 1 4.29 5.82 0.024 

SP 1 0.10 0.13 0.722 

A * S 2 3.91 5.30 0.012 

A * SP 2 0.17 0.24 0.792 

S * SP 1 0.01 0.01 0.934 

Error 24 0.74   
1 data were square root transformed prior to ANOVA to meet normality and homogeneity of 

variance assumptions. 
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Table 17. ANOVA results summarizing the influence of beaver pond age, size class, and 

sampling period on aquatic plant biomass (g m-2). Bolded p values are < 0.05. 
 

 
 

Source df MS F-ratio P value 
 

Biomass (all species): 
    

Age (A) 2 513.99 0.69 0.510 

Size (S) 1 10831.29 14.56 0.001 

Sample Period (SP) 1 214.90 0.29 0.596 

A * S 2 509.42 0.68 0.513 

A * SP 2 6.70 0.01 0.991 

S * SP 1 0.12 0.00 0.990 

Error 26 743.84   

Biomass (submerged)1 :     

A 2 6.22 2.82 0.078 

S 1 12.44 5.64 0.025 

SP 1 0.47 0.21 0.649 

A * S 2 7.73 3.51 0.045 

A * SP 2 0.24 0.11 0.897 

S * SP 1 0.09 0.04 0.843 

Error 26 2.20   

Biomass (floating):     

Depth (covariate) 1 693.51 0.88 0.358 

A 2 157.56 0.20 0.821 

S 1 6130.73 7.75 0.010 

SP 1 409.24 0.52 0.479 

A * S 2 1760.06 2.23 0.129 

A * SP 2 8.61 0.01 0.989 

S * SP 1 2.71 0.00 0.954 

Error 25 790.91   
1 data were square root transformed prior to ANOVA to meet normality and homogeneity of 

variance assumptions. 
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Figure 4. The influence of pond age (6-14 years, 21-38 years,> 50 years; n=6 for each) on 

species richness (left panel) and plant biomass (right panel). Vertical bars represent standard 

errors. Different lower case letters signify significant differences (p<0.05), based on a post-hoc 

Least Significant Difference (LSD) multiple range test. 
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Figure 5. The influence of pond size (< 1 ha and > 1 ha; n=9 for each) on species richness (left 

panel) and plant biomass (right panel). Vertical bars represent standard errors. Different lower 

case letters signify significant differences (p<0.05), based on a post-hoc Least Significant 

Difference (LSD) multiple range test. 
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The effect of pond age on biomass was not nearly as pronounced as it was for richness, 

with only a slight, non-significant decline with increasing age (Table 17, Figure 4). In contrast, 

the larger ponds consistently had higher biomass values. For example, total aquatic plant 

biomass was nearly double in the larger ponds compared to the smaller ponds (>1 ha: 72.3 g m-2
 

versus <1 ha: 37.6 g m-2). This pattern was consistent for both the submersed and floating-leaved 

 
species (Figure 5). 

 

 
There was a significant or near significant pond age x pond size interaction for both 

richness and biomass (Figure 6). For submersed species, there was a non-significant (p=0.118) 

decline in richness with increasing age in the smaller (<1 ha) ponds, but a significantly higher 

(p=0.043) richness in the intermediate-aged (21-38 yrs), larger (>1 ha) ponds. The opposite 

pattern was true, however, for floating-leaved species, with richness values highest in the young 

(6-14 yrs) ponds and lowest in the intermediate (21-38 yrs) ponds. Submersed biomass was 

significantly higher (p=0.019) in the young, small ponds (22.1 g m-2) compared to the older 

ponds (intermediate: 5.9 g m-2; old: 6.0 g m-2), but highest (27.6 g m-2, compared to 17.8 and 

14.5 g m-2 for the young and old ponds, respectively) in the intermediate-aged, larger ponds. In 
 
contrast, floating-leaved biomass tended to be high (36.2 g m-2) in the intermediate, small ponds 

compared to the other age classes of small ponds (young: 20.8 g m-2; old: 21.8 g m-2). Floating- 

leaved biomass was lowest (34.6 g m-2) in the intermediate, large ponds compared to either the 

young (64.1 g m-2) or old (58.3 g m-2) large ponds. 

 
3.4 Discussion 

 

 
The greater richness and biomass of submersed aquatic plants and the greater biomass of 

floating aquatic plants in beaver ponds relative to lake bays has provided further clarification 
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Figure 6. Differential effects of pond age on species richness (upper panel) and biomass 

availability (lower panel) depending on pond size (n=3 for each of 6 possible age-size 

combinations). Vertical bars represent standard errors. Different lower case letters signify 

significant differences (p<0.05), based on a post-hoc Least Significant Difference (LSD) 

multiple range test. 
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regarding the effect of aquatic patch type on the amount of aquatic forage in aquatic areas 

potentially used by moose in northern Minnesota (Adair et al. 1991). Lake bays with mucky 

bottoms and beaver ponds were reported previously to provide more aquatic forage than lakes 

with rocky bottoms or fast flowing streams, but to my knowledge this is the first study with an 

emphasis on moose habitat quality to reveal increased richness and biomass of submersed and 

floating-leaved aquatic plants in beaver ponds relative to lakes. It is possible that both wind and 

wave action, along with substrate structure, may have played a role in the greater richness and 

biomass of aquatic plants in beaver ponds relative to lakes in this study (Bornette and Puijalon 

2011). Since only sheltered bays with substrates comprised primarily of organic matter were 

sampled, it does not appear that this apparent difference in plant richness and biomass was 

related to substrate quality, as was the case in the reduced abundance of aquatic plants observed 

in large lakes with rocky bottoms by Adair et al. (1991). It is somewhat more plausible that 

increased wave action may have contributed since lake bays are open on at least one side to the 

lake and thus fetch length, representative of wind and wave action, was likely greater in lakes 

relative to ponds. This interpretation is in agreement with previous work on aquatic forage in 

areas used by moose that demonstrated within-lake variation in aquatic plant abundance was 

partially attributed to shoreline exposure (Fraser et al. 1980). Floating-leaved plants represented 

a greater proportion of combined biomass in lakes relative to ponds and this may be because 

floating-leaved plants possess a sturdy stalk that may help anchor these plants more effectively to 

the substrate than less robust submersed species (Hutchinson 1975; Fraser et al. 1980; Cronk and 

Fennessy 2001). 

 

Damming of streams by beaver may promote the growth of submersed and floating- 

leaved aquatic plants (Fryxell 2001; Ray et al. 2001) through creation of aquatic areas with 
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intermediate levels of flow and thus higher nutrient content available to plants (Westlake 1967; 

Naiman et al. 1988). Areas recently flooded by beaver may serve as colonization sites for aquatic 

plants (Ray et al. 2001) and it has been suggested that the presence of early colonizing 

submersed aquatic plant species improves aquatic habitat quality for moose (Fraser et al. 1980; 

 
1984). The combination of a harsher abiotic environment in lakes and the creation of more 

favourable conditions for plant growth through damming of streams by beaver was likely 

responsible for the variation in aquatic plant richness and biomass with respect to aquatic habitat 

type observed in the present study. 

 

A fairly consistent interactive effect of patch type and size on aquatic plant richness and 

biomass was observed, but the nature of the interaction appeared to differ between submersed 

and floating-leaved aquatic plants. Floating-plants showed greatest richness in ponds aged 6-14 

years of either size (< 1 ha and > 1 ha), with slightly more floating-leaved species being found in 

ponds > 1 ha. Floating-leaved biomass was greatest in ponds > 1 ha. Among large ponds, 

floating-leaved biomass appeared markedly lower in ponds 21-38 years old. The most dominant 

species, both submersed and floating, within the present study area was Brasenia schreberi, a 

canopy forming floating-leaved species. B. schreberi was present in greater than 80% of all rake 

drags from ponds > 1 ha and a closed canopy was visually observed to cover large swaths of 

ponds > 1 ha beginning June 15, 2012. The probability that B. schreberi colonizes a pond may be 

positively influenced by the surface area of open water available to dispersing propagules (Ray et 

al. 2001). I suggest that the decreased richness in smaller ponds with respect to floating-leaved 

plants may be because there was a lower probability of colonization by B. schreberi in smaller 

ponds relative to larger ponds. Once established in larger ponds, B. schreberi might show 

improved yield relative to other floating leaved species due to allelopathic effects (Elakovich and 
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Wooten 1987) or improved access to light following canopy establishment (Scheffer 2003). 

Thus, young ponds (6-14 years), especially those <1 ha, are more diverse with respect to 

floating-leaved vegetation because B. schreberi canopies have not yet become established in the 

sections of open water needed by competing floating-leaved plants for survival and reproduction. 

 

It also appears that beaver ponds that are closer to one another show increased probability 

of colonization by dispersing floating-leaved plants as illustrated by a positive effect of nearby 

open water on floating-leaved biomass. This interpretation is in agreement with previous work 

on aquatic plant dispersal by wind and water birds in beaver ponds and other ephemeral bodies of 

water (Figuerola and Green 2002; Vanschoenwinkel et al. 2008; Arthaud et al. 2013). Thus, 

stands of B. schreberi appear to be most readily established within large (> 1 ha) beaver ponds 

that are colonized as a result of B. schreberi dispersal via wind and waterbirds from other, nearby 

beaver ponds. These stands of B. schreberi, once established, become very dense, contain few 

other species and represent very large amounts of floating-leaved biomass. Moose, however, do 

not typically feed on B. schreberi (Ch. 1; but see Joyal and Scherrer 1978) and thus aquatic areas 

where submersed species typically preferred by moose (Fraser et al. 1984; Adair et al. 1991; Ch. 

1) are able to establish themselves might serve as more important feeding sites for moose. 
 

 
Submersed plants showed greater richness but similar biomass in large, young ponds (6- 

 
14 years) relative to small (< 1 ha) ponds 21-38 years of age and older ponds of both sizes (> 50 

years old, < 1 ha and > 1 ha). This agrees with the above interpretation for floating-leaved plants, 

whereby ponds that have been flooded relatively recently (6-14 years) serve as rapid colonization 

sites for submersed plants, many of which are typically preferred by moose, and this 

phenomenon leads to increased richness relative to other aquatic habitat types. That submersed 

biomass was not significantly greater in young ponds relative to the other habitat types listed 
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above is not necessarily surprising when one considers that these smaller, submersed growth 

forms must establish themselves in gaps in the floating-leaved canopy (Ray et al. 2001) and thus 

a limited space for growth might set some initial limit on submersed biomass immediately 

following colonization. This increased space hypothesis is consistent with the finding that larger 

ponds contained greater submersed biomass relative to smaller ponds, irrespective of age, since 

ponds > 1 ha presumably contain more available area for growth and establishment relative to 

ponds < 1 ha. Also, the ability for submersed annual plants to proliferate into dense stands might 

be dependent somewhat on the establishment of a seed bank in the sediment, a process that might 

take many years (Bonis et al. 1995; Combroux et al. 2001), and might also explain lower 

submersed biomass in young ponds relative to intermediate aged ponds. It appears that following 

initial establishment within young ponds submersed plants are able to proliferate to the point of 

increasing significantly with respect to biomass. Ponds 21-38 years old and > 1 ha show the 

greatest submersed biomass relative to all other aquatic habitat types, and this may be partially 

explained by the establishment and proliferation of a submersed seed bank. That this pattern only 

occurred in large ponds would also suggest that zoochorous and anemochorus (waterbirds and 

wind) dispersal might contribute to the increased biomass (and richness) observed in ponds 21- 

28 years old since these mechanisms of dispersal would have a greater likelihood of resulting in 

colonization when surface area of available open water is greater (Ray et al. 2001; Figuerola and 

Green 2002; Vanschoenwinkel et al. 2008; Arthaud et al. 2013). 

 

That beavers, after initial flooding of an area, frequently engage in abandonment- 

recolonization cycles (i.e., pond switching; Fryxell 2008; Vincent 2010) might also explain 

increased growth and biomass in ponds 21-38 years old relative to younger ponds. Pond 

drawdown events that may occur upon abandonment of a pond (Fryxell 2008; Johnston and 
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Naiman 1988) would result in exposure and subsequent oxidation of the sediment that would 

make nutrients, e.g. phosphorous and nitrogen, more available to plants growing annually from 

the established seed bank (Hutchinson 1975; Fraser et al. 1984; Cronk and Fennessy 2001). 

Therefore, I have suggested that beaver ponds initially become colonized by floating-leaved and 

submersed plants at 6-14 years but that these two functional groups follow different trajectories 

in terms of peak richness and biomass. Floating-leaved communities often become low diversity 

stands of B. schreberi under appropriate conditions (large pond surface area for colonization and 

available nearby open water for propagule input), and it is only through rapid initial 

establishment and proliferation in large, young ponds that submersed species (and other floating- 

leaved species) can stave off competitive exclusion in time and space. 

 

The positive relationship between beaver presence and floating-leaved species richness 

and biomass in lakes and beaver ponds must be interpreted with caution as there are multiple 

plausible explanations. Fryxell (2001) reported that beaver ponds occupied for the greatest length 

of time were associated with greater abundance of floating-leaved vegetation and suggested that 

the creation of these ponds produced ideal conditions for growth of these plants. Indeed, beaver 

impoundments undergo succession from newly-flooded forest floor to open water wetlands, 

which favours increased establishment of floating-leaved plants such as water lilies, as discussed 

above (Johnston and Naiman 1990a). Alternatively, the association between beaver and floating- 

leaved plants may be due to beaver habitat selection for stands of floating-leaved plants as these 

plants are consumed by beaver in summer (Milligan and Humphries 2010; Severud et al. 2013; 

Law et al. 2014). This association may be further enhanced if beaver movement between ponds 

(Fryxell 2001; Vincent 2010) leads to floating-leaved plant dispersal between sites or if beaver 

bury floating-leaved vegetative structures (e.g., water lily rhizomes) in food caches (Milligan and 
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Humphries 2010). Perhaps the most parsimonious explanation for the association between beaver 

and floating-leaved plants is that beaver select habitats with preferred terrestrial forage (e.g., 

Populus tremuloides; Vincent 2010), irrespective of aquatic conditions. Aquatic plants growing 

in areas associated with hardwood trees such as P. tremuloides are likely to receive less acidic 

leaf litter input than aquatic areas associated with conifer trees (Gregory et al. 1991; Cronk and 

Fennessy 2001), which might favour growth of floating-leaved aquatic plants. Also, beaver 

foraging decreases the basal area of riparian forest (Johnston and Naiman 1990b), and thus 

decreased canopy cover leading to greater light penetration might also favour growth of floating- 

leaved aquatic plants. Lakes within the present study tended not to be associated with beaver 

dams as beaver living at these sites typically created lodges on sheltered shorelines as opposed to 

within impounded areas (Pers. obs.) Thus, I suggest that the most likely explanation for the 

association between beaver and floating-leaved plants observed in this study is that of habitat 

selection by beaver for areas containing terrestrial hardwood forage, floating-leaved aquatic 

forage or some combination of both forage types rather than the creation of conditions ideal for 

floating-leaved plant growth by beaver. 

 

I did not observe an effect of sampling period on the richness or biomass of floating- 

leaved or submersed aquatic plants. The sampling periods chosen conformed closely to those 

utilized by Brusnyk and Gilbert (1983) who found greater availability of aquatic vegetation in 

late summer relative to early summer. I utilized a more intensive (i.e., greater number of random 

sample points across and within sites) sampling protocol over a larger spatial scale than did 

Brusnyk and Gilbert (1983) and thus I am relatively confident that my results represent 

accurately the conditions in northern Minnesota with respect to richness and biomass of aquatic 

plants. A potential caveat of this study, however, is that because only two functional groups were 
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used (submersed and floating-leaved plants) I may have missed seasonal variability at the species 

level that might be important for moose (Fraser et al. 1982). The submersed group, however, 

contained all genera reported by Fraser et al. (1980; 1984) as preferred by moose and thus it is 

probable that this group conforms well to species that would be eaten by moose if given the 

opportunity. Beyond the scope of my study, however, was an analysis of chemical constituents 

of submersed and floating-leaved aquatic plants that might have showed seasonal variation. 

Fraser et al. (1982), for example, reported a decline in sodium content of preferred aquatic plant 

species in late summer concomitant with a decline in aquatic feeding behavior of moose. Due to 

logistical constraints I was unable to re-sample lake habitats and thus it is possible that seasonal 

variation in aquatic plant availability for moose reported elsewhere (Fraser et al. 1982; Brusnyk 

and Gilbert 1983) might be restricted to lakes, perhaps due to harsher abiotic conditions leading 

to more rapid senescence. This restriction in seasonal variation would suggest that beaver ponds 

may be additionally important to moose relative to lakes because of their ability to provide 

aquatic food throughout the summer, but given data available from the present study this remains 

speculative. 

 

I also determined that water depth did not influence richness and biomass of aquatic 

 
plants in areas potentially used by moose, at least within the ranges of depths present in my study 

area (11 cm – 295 cm). This finding is in agreement with previous work that has suggested 

moose aquatic feeding is restricted to the littoral zone (< 3 m in depth; Adair et al. 1991; Lenarz 

 
et al. 2011). Further research might explore the possibility that greater water depths are important 

for moose for the purpose of avoiding biting insects (Ch. 1; Ritcey and Verbeek 1969). 

 

Further work on aquatic plant biomass might include a third functional group, emergent 

plants, which are also consumed by moose (Aho and Jordan 1979; Fraser et al. 1984; Morris 
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2002) and beaver (Milligan and Humphries 2010; Severud et al. 2013). Emergent plants typically 

form a ring around beaver ponds and the abundance of these plants might also be influenced by 

pond age (Naiman et al. 1988; Johnston and Naiman 1990a). Also important for understanding 

nutritional quality of aquatic vegetation in areas potentially used by moose would be a seasonal 

examination of mineral (especially sodium), protein, and energy content. Tischler (2004) 

combined nutritional analysis of terrestrial and aquatic forage with isotopic analysis of moose 

hooves to estimate the quality and identity of moose diets on Isle Royale. Since geographic 

variation in aquatic moose diets seems likely (Peek 1974; Ch. 1), research surrounding seasonal 

variation in aquatic (submersed, floating-leaved, and emergent) and terrestrial forage quantity, 

quality and moose summer diet composition from a variety of North American locales would 

improve understanding of moose nutritional energetics under a variety of climatic conditions. 

Understanding how moose meet their energy and essential nutrient and mineral requirements in 

different areas of North America would help wildlife managers identify important habitats for 

moose in different geographic regions and to maintain these habitats on the landscape. I have 

suggested that beaver ponds in northern Minnesota may serve as important habitat for moose and 

thus maintenance of beaver on the landscape may help facilitate moose in meeting their 

nutritional needs in summer. 
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4.0 CONCLUSION 

 
I have demonstrated that, though variable across North America, aquatic habitat use by 

moose is characteristic of their summer behaviour especially in the Great Lakes-St. Lawrence 

region. Moose in this region appear to use aquatic habitat for the purpose of feeding, though it is 

not completely clear whether sodium hunger or foraging efficiency drive this pattern. Moose 

may also use aquatic areas to escape biting insects but do not appear to use aquatic areas as part 

of general strategies to minimize predation risk or ameliorate heat stress. It is plausible that 

moose use aquatic habitat to ameliorate heat stress only at southern range limits but it was not 

possible to confirm this hypothesis here. 

 

I have further demonstrated that, within north-central Minnesota, richness and biomass of 

aquatic plants in aquatic areas potentially used by moose is influenced by the presence and 

damming activity of beaver. The creation of beaver ponds appears to quadruple total aquatic 

plant biomass potentially available to moose relative to lakes. Beaver ponds have greater 

richness and available biomass of submersed species often preferred by moose, particularly in 

the case of ponds 21-38 years old possessing established seed banks. Beaver also create newly 

flooded ponds that serve as rapid colonization sites for both floating-leaved and submersed 

aquatic plants consumed by moose. The creation of large (> 1 ha) ponds by beaver provides the 

physical space needed for colonization and establishment of aquatic plants preferred by moose 

and may help maintain landscape level aquatic plant diversity. Without the presence and activity 

of beaver it is plausible that the highly competitive yet not necessarily palatable species Brasenia 

schreberi would dominate ponded areas of north-central Minnesota leading to an overall 

decrease in the diversity and quality of aquatic forage potentially available to moose. 
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