LINKING ENVIRONMENT, BIODIVERSITY, AND ECOSYSTEM FUNCTIONS IN FOREST ECOSYSTEMS

By

Yu Zhang

A Thesis Submitted in Partial Fulfillment of the Requirements for the Doctor of Philosophy of Science in Forestry

Faculty of Natural Resources Management Lakehead University

August, 2014 ©

1	TABLE OF CONTENTS	
2	CONTACT INFORMATION	IV
3	ABSTRACT	V
4	ACKNOWLEDGEMENTS	VI
5	NOTE	VII
6	LIST OF TABLES	VIII
7	LIST OF FIGURES	X
8	OVERVIEW IN BIODIVERSITY AND ECOSYSTEM FUNCTIONING	1
9	CHAPTER 1: MULTIPLE DRIVERS OF PLANT DIVERSITY IN FOREST ECO	DSYSTEMS 5
10	INTRODUCTION	5
11	MATERIALS AND METHODS	7
12	Study area and dataset	7
13	Species diversity	8
14	Explanatory variables	9
15	Statistical analysis	10
16	RESULTS	
17	Canopy tree species richness and Simpson's dominance index	13
18	Total plant species richness and understory stratum-specific richness	14
19	DISCUSSION	16
20	CHAPTER 2: INDIVIDUAL SIZE INEQUALITY LINKS FOREST DIVERSITY	AND
21	PRODUCTIVITY	20
22	INTRODUCTION	20
23	MATERIALS AND METHODS	22

24	Study area and forest inventory data	22
25	Variables used in analyses	22
26	Data analysis	24
27	Assessing possible methodological problems	26
28	RESULTS	
29	DISCUSSION	
30	CHAPTER 3: DOES DIVERSITY OF CANOPY TREES MATTER THI	E MOST IN FOREST
31	ECOSYSTEM?	34
32	INTRODUCTION	
33	MATERIAL AND METHODS	
34	Study area and data	36
35	Response variables: biomass and carbon storage	37
36	Explanatory variables	38
37	Statistical analysis	40
38	RESULTS	41
39	Tree layer biomass and total aboveground biomass	45
40	Biomass of shrub, herb, and bryophyte layers	49
41	Soil carbon storage	49
42	DISCUSSION	
43	CHAPTER 4: IS POSITIVE BIODIVERSITY-ECOSYSTEM FUNCTIO	NING RELATIONSHIP
44	CONSISTENT ACROSS FOREST STRATA?	53
45	INTRODUCTION	
46	MATERIAL AND METHODS	
47	Study area and available data	54
48	Response variables: biomass and carbon storage	54

49	Explanatory variables	55
50	Statistical analyses	55
51	RESULTS	58
52	Biomass of tree layer	58
53	Biomass in shrub and herb combined layer	59
54	Biomass in bryophyte layer	59
55	Aboveground live biomass and total aboveground biomass	61
56	Soil carbon storage	63
57	DISCUSSION	63
58	GENERAL CONCLUSION	67
59	APPENDIX I. SUPPLEMENTAL INFORMATION FOR CHAPTER ONE	69
60	APPENDIX II. SUPPLEMENTAL INFORMATION FOR CHAPTER TWO	74
61	APPENDIX III. SUPPLEMENTAL INFORMATION FOR CHAPTER THREE	78
62	REFERENCE	
(\mathbf{a})		

64 CONTACT INFORMATION

65 Student contact information

- 66 Yu Zhang, Faculty of Natural Resources Management, Lakehead University
- 67 955 Oliver Road, Thunder Bay, ON, Canada P7B 5E1
- 68 e-mail: yzhang5@lakeheadu.ca
- 69 phone: (807) 346-7768
- 70

71 **PhD supervisor contact information**

- 72 Dr. Han Y.H. Chen, Faculty of Natural Resources Management, Lakehead University
- 73 955 Oliver Road, Thunder Bay, ON, Canada P7B 5E1
- 74 e-mail: hchen1@lakeheadu.ca
- 75 phone: (807) 343-8342
- 76
- 77 PhD supervisory committee contact information
- 78 Dr. Kevin Crowe, Faculty of Natural Resources Management, Lakehead University
- 79 955 Oliver Road, Thunder Bay, ON, Canada P7B 5E1
- 80 e-mail: kevin.crowe@lakeheadu.ca
- 81 phone: (807) 343-8348
- 82
- 83

84 ABSTRACT

85 The positive biodiversity and ecosystem functions relationship (BEF) has been well established, 86 especially in controlled experiments. However, a coherent study to examine the multiple 87 relationships in BEF in natural ecosystems is lacking. Using the observational data of Canadian 88 forests, I aim to examine the species diversity-productivity relationships in natural forest 89 ecosystems across forest strata, under the influences of the climate factors and local site 90 conditions. I found the positive effects of energy on tree species diversity while accounting for 91 potentially confounding evolutionary effects and show evidence for the effects of local site 92 conditions and secondary succession on diversity. The positive species diversity effects on 93 productivity were common across forest strata but to different extent while the canopy tree 94 diversity had negative effects on understorey plant biomass. Furthermore, tree size inequality 95 may be a central process for the positive diversity effects on productivity, and potentially as the 96 shared mechanism in regulating productivity and species diversity simultaneously via 97 interactions among individuals in natural forests. This study sheds lights to deepen our 98 understanding of the key features of natural ecosystems. I highlight that relationships between 99 biodiversity and ecosystem functions and services are multifaceted, subject to several covariates 100 including climate, local site conditions, time since stand-replacing disturbances, and the 101 reciprocal interactions between diversity and ecosystem functions and services. However, our 102 findings call for the complementary experiments to evaluate those potential mechanisms and 103 drivers. 104 **Keywords** Biodiversity-ecosystem functioning, species-energy relationship, richness, evenness,

105 life-history traits, productivity, aboveground biomass, soil carbon storage, stand age, soil

106 drainage class, climate, growth form, boosted regression trees, structural equation modeling

107

108 ACKNOWLEDGEMENTS

As with the writing of this thesis, there are many people to whom I owe a great deal of thanks.
First and foremost, I wish to thank Dr. Han Y.H. Chen, my supervisor, for keeping me up to or
exceeding the high performance standard required by the PhD program in Lakehead University. I
cannot express enough thanks to my committee for their continued support and encouragement:
Dr. Kevin Crowe and Dr. Chander Shahi.

114 My completion of this thesis could not have been accomplished without the support of 115 others. First, I would like to thank John Daisley and Lane Gelhorn at Weyerhaeuser 116 Timberlands, the Canadian Forest Service, and to Dr. E.H. (Ted) Hogg for sharing data used in 117 this thesis. I would like to extend my special thanks to Dr. Michael Huston, Dr. Richard Field, 118 Eric Searle, Amber Brant, and Dr. Anthony Taylor for their valuable comments. Financial 119 supports from the Natural Sciences and Engineering Research Council of Canada (DG283336-09 120 and STPGP428641) and the Early Researcher Award from the Ontario Ministry of Research and 121 Innovation are gratefully acknowledged. I also thank Forest Ecosystem Science Co-operative Inc. 122 and the Natural Sciences and Engineering Research Council of Canada for a doctoral research 123 scholarship.

Finally, I extend my deepest gratitude to my lovely wife, Weilun. Your encouragements during the rough time are much appreciated and fully noted. Knowing that you were willing to provide management of all our household activities while I completed my work was an incredible relief and comfort. For that, I owe you the rest of my life.

128

129 **NOTE**

All chapters were written individually according to varying publication requirements of
selected peer-reviewed journals. Efforts have been made to integrate those chapters into one
coherent thesis with caution. However, the styles for writing, references, and organizations of
figures and tables may slightly differ between chapters.

135 LIST OF TABLES

136 Table

136	Table	Page
137	Table 1-1 Results from boosted regression tree analysis (BRT) of diversity indices.	12
138	Predictors' relative influences show the relative contributions of predictors to the	
139	accounted variation of each BRT model. Abbreviations are GDD - growing degree	
140	days (number of days above 5 °C), CMI – climate moisture index (cm), SDC – soil	
141	drainage class, NPP – net primary productivity, approximated by mean annual biomass	
142	increment of canopy trees (Mg ha ⁻¹ yr ⁻¹), SA – stand age (yrs), PS – plot size (m ²), MH	_
143	management history (managed vs. unmanaged), TC – tree complexity, n – number of	
144	sample plots, and PE – model prediction error. Moran's I global tests were conducted	
145	on the residual for each fitted model.	
146	Table 2-1 Direct, indirect, and total standardized effects on aboveground biomass of	27
147	canopy trees based on structural equation models (SEMs). Significant effects are at	
148	P < 0.05 (*), < 0.01 (**), and < 0.001 (***).	
149	Table 3-1 Results from boosted regression tree analysis (BRT) to test the effects of	43
150	canopy tree species diversity on aboveground biomass and soil carbon storage.	
151	Predictors' relative influences represent the percentage contributions of predictors	
152	in the accounted variation of each BRT model. Abbreviations are GDD - growing	
153	degree days (number of days above 5 °C), CMI – climate moisture index (cm),	
154	SDC – soil drainage class, SA – stand age (yrs), S – canopy tree richness,	
155	J' – canopy tree evenness index, FDis – canopy tree life-history trait index,	
156	TC – tree complexity, n – number of sample plots, and PE – model prediction error.	
157	All numerical variables were natural log transformed except for SDC.	

- **Table 4-1** Results from boosted regression tree analysis (BRT) of aboveground
- 159 biomass and soil carbon storage. (a) models with plant richness of each plant
- 160 layer. (b) models with tree richness as predictor. (c) models with total plant richness
- 161 as predictor. Predictors' relative influences represent the percentage contributions of predictors

- 162 in the accounted variation of each BRT model. Abbreviations are
- 163 GDD growing degree days (number of days above 5 °C), CMI climate moisture
- 164 index (cm), SDC soil drainage class, SA stand age (yrs), S plant richness,
- 165 TC tree complexity, n number of sample plots, and PE model prediction error.
- 166 All numerical variables were natural log transformed except for SDC.

LIST OF FIGURES

169	Figure	Page
170	Figure O-1 A conceptual map demonstrates the hypothesized causal paths studies in	3
171	this thesis.	
172	Figure 1-1 Observed and predicted responses of diversity indices to growing degree	14
173	days, climate moisture index, soil drainage class, and natural logarithm of stand age on	
174	the canopy tree layer. (a) Canopy tree species richness. (b) Simpson's dominance index.	
175	Soil drainage classes from A to G represent very rapidly, rapidly, well, moderately well,	
176	imperfectly, poorly, and very poorly drained, respectively. Scatter points are observed	
177	values plotted by the respective response and explanatory variables.	
178	Figure 1-2 Observed and predicted responses of diversity indices to growing degree	15
179	days (GGD), climate moisture index (CMI), soil drainage class (SDC), and natural	
180	logarithm of stand age on species richness. (a) Total plant species richness. (b) Shrub	
181	layer richness. (c) Herbaceous layer richness. (d) Bryophyte richness. Soil drainage class	s from A
182	to G represent very rapidly, rapidly, well, moderately well, imperfectly, poorly,	
183	and very poorly drained, respectively. Scatter points are observed values plotted by the	
184	respective response and explanatory variables.	
185	Figure 2-1 Univariate relationships between endogenous (dependent) and exogenous	28
186	(independent) variables ($n = 448$). All variables were natural log-transformed except	
187	aboveground biomass. Significant regression lines were plotted using linear regression.	
188	Parametric assumptions were checked. (a) $y = 101.2 + 153.1x - 150.2x^2$, $R^2 = 0.07$,	
189	(b) $y = 199.8 + 59.2x$, $R^2 = 0.13$, (c) $y = -1.42 + 0.612x$, $R^2 = 0.24$,	
190	(d) $y = -1343.7 + 608.4x - 61.8x^2$, $R^2 = 0.24$; (e) $y = -2.4 + 0.281x$, $R^2 = 0.1$; and	

191	(f) not significant. All fitted regressions are significant at $P < 0.001$. The assumptions of
192	normality and homogeneous variance were validated for all fitted regressions ($P > 0.05$)
193	with an exception of marginal violation of normality of the fitted regression in c ($P = 0.04$).
194	Figure 2-2 Structural equation models linking aboveground biomass (AGB) and29
195	species diversity. (A) Effects of species diversity, soil nutrient regime, and stand age
196	on AGB. (B) The model with tree size inequality, represented by DBH variation, as the linking
197	mechanism. The coefficients are standardized prediction coefficients for each
198	causal path. Solid lines represent significant paths ($P \le 0.05$) and dash lines for non-significant
199	paths ($P > 0.05$). The path coefficient marked with '±' indicates a nonlinear (quadratic)
200	relationship.
201	Figure 2-3 An alternative model for the effects of tree size inequality represented30
202	by DBH variation on both aboveground biomass and species diversity.
203	Figure 3-1 Results of BRT models showing the relative influences of all predictors44
204	on responses and the observed and predicted responses to canopy tree diversity indices: canopy
205	tree richness, canopy tree evenness index, and canopy tree life-history trait
206	index. (a) Tree aboveground biomass. (b) Shrub and herb biomass. (c) Bryophyte
207	biomass. (d) Total aboveground biomass. (e) Soil carbon storage. Scatter points are
208	observed values plotted by the respective response and explanatory variables.
209	Abbreviations are GDD – growing degree days (number of days above 5 °C), CMI – climate
210	moisture index (cm), SDC – soil drainage class, SA – stand age (yrs), S – canopy tree richness, J'
211	- canopy tree evenness index, and FDis - canopy tree life-history trait index.
212	All numerical variables were natural log transformed except for SDC.
213	Figure 3-2 Results of BRT models showing the observed and predicted responses to 46

- 214 growing degree days (GGD), climate moisture index (CMI), soil drainage class (SDC),
- and stand age (SA). (a) Tree aboveground biomass. (b) Shrub and herb biomass. (c) Bryophyte
- 216 biomass. (d) Total aboveground biomass. (e) Soil carbon storage. Soil
- 217 drainage classes from A to G represent very rapidly, rapidly, well, moderately well, imperfectly,
- 218 poorly, and very poorly drained, respectively. Scatter points are observed
- 219 values plotted by the respective response and explanatory variables. All numerical
- 220 variables were natural log transformed except for SDC.
- Figure 3-3 Results of BRT models showing the relative influences of all predictors 47
- on responses and the observed and predicted responses to canopy tree diversity indices:
- 223 canopy tree richness, canopy tree evenness index, and canopy tree life-history trait
- index. (a) Aboveground live biomass. (b) Aboveground dead biomass. Scatter points
- are observed values plotted by the respective response and explanatory variables. Abbreviations
- are GDD growing degree days (number of days above 5 $^{\circ}$ C),
- 227 CMI climate moisture index (cm), SDC soil drainage class, SA stand age (yrs),
- 228 S canopy tree richness, J' canopy tree evenness index, and FDis canopy tree
- 229 life-history trait index. All numerical variables were natural log transformed except
- for SDC.
- Figure 3-4 Results of BRT models showing the observed and predicted responses to 48
- growing degree days (GGD), climate moisture index (CMI), soil drainage class (SDC),
- and stand age (SA). (a) Aboveground live biomass. (b) Aboveground dead biomass.
- 234 Soil drainage classes from A to G represent very rapidly, rapidly, well, moderately well,
- imperfectly, poorly, and very poorly drained, respectively. Scatter points are observed
- values plotted by the respective response and explanatory variables. All numerical

237 variables were natural log transformed except for SDC.

Figure 4-1 Results of BRT models showing the relative influences of all predictors 57

239 on responses and the observed and predicted responses to growing degree days (GGD), climate

240 moisture index (CMI), soil drainage class (SDC), stand age (SA), and species richness of forest

strata (S). (a) Tree aboveground biomass. (b) Shrub and herb biomass.

242 (c) Bryophyte biomass. Soil drainage classes from A to G represent very rapidly,

rapidly, well, moderately well, imperfectly, poorly, and very poorly drained,

respectively. Scatter points are observed values plotted by the respective response

and explanatory variables. All numerical variables were natural log transformed

except for SDC.

Figure 4-2 Results of BRT models showing the relative influences of all predictors 60

on responses and the observed and predicted responses to growing degree days (GGD), climate

249 moisture index (CMI), soil drainage class (SDC), stand age (SA), and total

250 plant species richness (S). (a) Aboveground live biomass. (b) Total aboveground biomass.

251 (c) Soil carbon storage. Soil drainage classes from A to G represent very rapidly,

rapidly, well, moderately well, imperfectly, poorly, and very poorly drained,

253 respectively. Scatter points are observed values plotted by the respective response

and explanatory variables. All numerical variables were natural log transformed except

for SDC.

Figure 4-3 Results of BRT models showing the relative influences of all predictors 62

257 on responses and the observed and predicted responses to growing degree days (GGD), climate

258 moisture index (CMI), soil drainage class (SDC), stand age (SA), and tree

259 species richness (S). (a) Aboveground live biomass. (b) Total aboveground biomass.

- 260 (c) Soil carbon storage. Soil drainage classes from A to G represent very rapidly,
- 261 rapidly, well, moderately well, imperfectly, poorly, and very poorly drained,
- 262 respectively. Scatter points are observed values plotted by the respective response
- and explanatory variables. All numerical variables were natural log transformed
- except for SDC.
- 265

267 OVERVIEW IN BIODIVERSITY AND ECOSYSTEM FUNCTIONING

268 Over the past 30 years, remarkable progress has been made towards understanding how loss 269 of biodiversity affects the functioning, goods and services of ecosystems (Cardinale et al. 270 2012). Integration has become the ultimate trends in ecology with the advances in 271 understanding the extent of various branches of ecology and the intrinsic links between them. 272 Multi-causality, multi-directionality, and high-dimensionality between ecosystem functions 273 and biodiversity, and the associated underlying ecological processes demand future studies to 274 be constructed by considering concurrent processes/mechanisms simultaneously, preferably 275 in multivariate analyses. For example, abiotic factors such as climate and physiochemical constraints, biodiversity such as richness/evenness of producer, decomposers, and consumer 276 277 specie, and ecosystem function such as carbon and nutrient cycling are all interrelated in a 278 coherent framework (Midgley 2012).

279 Great efforts of syntheses have been made to reconcile conflicting concepts in 280 ecology in the form of theoretical modeling and meta-analysis. A number of influential meta-281 analyses published to address the maintenance of species richness and species stable 282 coexistence (e.g., Mittelbach et al. 2001, Balvanera et al. 2006, Gillman and Wright 2006, 283 Bartels and Chen 2010, Zhang et al. 2012) and the consequences of species loss in ecosystem 284 function (e.g., Balvanera et al. 2006, Cardinale et al. 2006, Cardinale et al. 2007). However, 285 the conventional approach in ecology has been challenged in several aspects because of the 286 complexity of the natural ecosystem. First, many previous studies have focused on single 287 processes at an isolated level of ecosystem, and have produced often ambiguous and conflicting results and views. Second, the interpretations of the results from manipulative 288 289 experiments are often skewed with much to be desired in order to demonstrate the causal 290 relationships between variables clearly, and to shorten the gaps between empirical results and

291 predictions of theories (Carroll et al. 2011). Many of those have not been adequately292 addressed.

293 Understanding the ecological processes that drive species diversity and co-existence 294 remains a significant intellectual challenge to ecologists, particularly, as the negative impacts 295 of global biodiversity loss become increasingly apparent (Hooper et al. 2012, Reich et al. 296 2012). There are urgent needs in ecology to reconcile the somewhat contrasting theories and 297 empirical findings in order to yield meaningful and realistic knowledge in aid to facilitate the 298 efforts in conservation of species diversity and stability of ecosystem function through 299 diversified approaches, including manipulative experiment, field observation and sampling, 300 and utilization of long-term experimental data collecting by various agencies and parties. 301 It has been increasingly recognized that ecosystem functions and its relationships with 302 biodiversity, and abiotic environment are scale dependent, and changing over time (McGill 303 2010, Dornelas et al. 2013). Therefore, there are multiple highly dynamic processes along 304 temporal and spatial gradients instead of equilibrium. This nature of ecosystems and its 305 properties demand new approaches to be adapted by ecologists both as novel statistical 306 methods and the analyses of observational data, usually covering large geographical areas 307 and long period of time, impossible to be done in controlled experiments (Wardle et al. 2012). 308 As a result, ecoinfomatics has been called for as ecology as an interdisciplinary science 309 evolving to a more accountable and data-intensive state to cope with the complexity of 310 ecosystems (Michener and Jones 2012).

Figure O-1 A conceptual map demonstrates the hypothesized causal paths studied in this
thesis. The arrowed line suggests a potential causal relationship.

In this thesis, I aim to: (1) quantify the influences of climate and local conditions on 315 316 plant diversity, (2) identify the patterns and drivers of diversity-productivity relationship in 317 forests in multivariate space, by linking abiotic drivers, biodiversity, and ecosystem functions 318 with the integration of the currently separate lines of studies, i.e., diversity-productivity 319 relationship (DPR) and species coexistence, (3) quantify the relative importance of canopy 320 tree richness, evenness, and life-history trait divergence over multiple ecosystem functions, 321 and (4) explore the magnitude and pattern of biodiversity effects on ecosystem functions 322 across forest strata. I included a conceptual map to visualize the hypothesized causal 323 relationships studied in this thesis for the better clarity (Fig. O-1). The lack of comprehensive 324 tests of multiple processes concurrently as they occur in nature, and the resulting over-325 simplifications in ecological studies have imposed major challenges yet great opportunity for 326 ecologists to exploit this distinctive dynamics in forest ecosystem due to the large scale, long 327 life-span, and the extremely complex stand dynamic. Therefore, this study can facilitate

- 328 further investigations by identifying the patterns and processes of species diversity-
- 329 productivity relationships in natural forest ecosystems.

331 CHAPTER 1: MULTIPLE DRIVERS OF PLANT DIVERSITY IN FOREST

332 ECOSYSTEMS

333 *Running title: Multiple drivers of plant diversity*

334

335 Introduction

336 Understanding the ecological drivers of species richness and co-existence has long been a 337 central pursuit in ecology (Connell 1978, Huston 1979). It has become even more 338 pronounced as the negative impacts of global biodiversity loss on the functioning of 339 ecosystems become increasingly apparent (Hooper et al. 2012). Climate is considered one of 340 the most important large-scale abiotic factors controlling the distribution of organisms and 341 community structure across multiple spatiotemporal scales (McGill 2010, Midgley 2012). 342 Strong climate-richness relationships have been reported for numerous taxa along latitudinal 343 gradients (e.g., Francis and Currie 2003, H-Acevedo and Currie 2003, Hawkins et al. 2003, 344 Currie et al. 2004, Ricklefs 2004). Species-energy theory, originally extended from species-345 area theory, proposes that areas of high available energy can support more individuals. 346 enabling species to maintain higher populations and reduce extinction risks, thus promoting 347 regional and local species richness (Wright 1983). The theory has been extended with 348 multiple mechanisms to explain the strong explanatory power of energy, water, and water-349 energy balance related variables for predicting species richness (Currie et al. 2004, Ricklefs 350 2004, Evans et al. 2005). Since higher diversity in low latitudes could be attributed to the 351 reduced extinction risk due to long occupancy of species and/or long time for speciation 352 (Kozak and Wiens 2012), it remains debated whether the positive latitudinal climate-richness 353 relationships are a result of energy variation.

The role of site local conditions has been less frequently included in previous analyses of climate-species relationships (Ricklefs 2004). However, site conditions affect local

356 resource availability and can be an important driver of plant species diversity (Roberts and 357 Gilliam 1995, Chipman and Johnson 2002, Bartels and Chen 2010). Soil fertility is thought to 358 influence the relationship between plant species diversity and climate in forest ecosystems 359 (Holdridge 1971). Theoretically, plant species diversity is expected to peak at intermediate 360 levels of environmental stress, i.e., the humped-back pattern of species richness along 361 gradients of productivity (Grime 1973). The humped-back pattern of species richness along 362 gradients of soil fertility and related net primary productivity (NPP) has been widely recognized (Huston 1980, Fridley et al. 2012), but the role of site productivity on patterns of 363 364 community species diversity is still deeply debated (Adler et al. 2011, Fridley et al. 2012). 365 Similarly, as predicted by the intermediate disturbance hypothesis (IDH) (Connell 1978), 366 plant diversity peaks at intermediate frequencies of disturbance through succession because 367 high frequencies of disturbance lead to dominance of disturbance-adapted pioneer species, 368 low frequencies of disturbance lead to low-diversity communities of competitive-dominant 369 species, whereas intermediate disturbances result in co-existence of both species groups, thus 370 high species diversity (Connell and Slatyer 1977, Taylor and Chen 2011, Chen and Taylor 371 2012).

372 Richness in the canopy tree, shrub, and herbaceous layers of forest stands has been 373 found to respond to actual evapotranspiration at large scales differently, attributable to local 374 biotic interactions through the shading of canopy tree layers (Oberle et al. 2009). However, 375 extensive tests on the relative importance of climate and local site conditions on species 376 richness in local communities are rare, especially over large geographic areas. Many 377 hypothesized mechanisms for species richness and co-existence remain empirically untested 378 across global ecosystems (Gaston 2000, Dawson et al. 2011). Furthermore, little is known 379 about the influence of environmental factors on species dominance (an inverse measure of 380 evenness) in terms of relative abundance among constituent species in a community.

381 Here, we used nationwide forest inventory data to quantify the impacts of climate and 382 local soil conditions on plant diversity across Canada's forests. Specifically, we predict that 383 (1) plant species diversity increases with available energy, quantified by growing degree days 384 within the growing season, as predicted by species-energy theory (Wright 1983); (2) species 385 diversity decreases with aridity because the ability of plants to utilize available energy is 386 limited by water availability (Evans et al. 2005); (3) species diversity changes along gradients 387 of productivity, determined by soil fertility (Grime 1973, Huston 1980, Fridley et al. 2012), 388 (4) species diversity is regulated by disturbance frequency and succession as predicted by the 389 IDH (Connell 1978, Taylor and Chen 2011, Chen and Taylor 2012, Dornelas et al. 2013); (5) 390 the relative importance of climate and local soil conditions on species diversity may vary 391 between canopy layer and understorey layers because local site conditions may have stronger 392 influences on understorey plant species (Chipman and Johnson 2002, Oberle et al. 2009) and 393 canopy layer exerts strong controls on understorey layers (Bartels and Chen 2013). We use 394 species richness as a primary measure of species diversity, but we also test how canopy tree 395 species dominance responds to climate and local site conditions, which is rarely considered in 396 previous similar studies.

397 Materials and Methods

398 Study area and dataset

We used Canada's national forest inventory (NFI) dataset to study the entire range of forested ecosystems in Canada (Supplementary Fig. S1). The study area is situated between 53°25' W and 134°46' W longitude and 42°37' N and 68°14' N latitude. Elevation ranges from 4 to 2170 m above sea level with mean annual precipitation between ~200 mm and ~3100 mm; the mean annual temperature was between -11.2°C and 9.3°C. The current NFI dataset contains one measurement of 988 permanent sample ground plots measured during the period of 2000-2006 by all provincial agencies (Canadian Forest Inventory Committee 2004). The

406 ground plots were randomly selected from 20×20 km grid photo plots taken across the entirety of Canada's forests. Ground plots varied in plot size from 125 to 500 m^2 with the 407 majority of plots $\ge 400 \text{ m}^2$ (Supplementary Fig. S2). Within each plot, vegetation was 408 409 assessed based on vertical strata and plant growth forms. The canopy tree layer was defined 410 as all tree stems \geq 9.0 cm in diameter at breast height (dbh). The understorey was defined as plants < 1.3 or 2.0 m in height depending on provinces. The understorev was further 411 412 classified into three layers: the shrub layer, which included all woody plants; the herbaceous 413 layer, which included non-woody vascular plants; bryophyte layer, which included all 414 ground-growing non-vascular plants. The canopy tree layer and total plant species were inventoried for the entire plot; the understorey layers, however, were assessed for either the 415 416 entire plot or in a smaller subplots (Canadian Forest Inventory Committee 2004) 417 (Supplementary Fig. S2), resulting in plot size variation within and among vegetation strata. 418 All species diversity measurements were conducted within their respective plots or subplots. 419 Species diversity 420 Canopy tree species richness for each plot was acquired from counts of live trees by species 421 aggregating different varieties within species. For canopy species evenness, we calculated 422 Simpson's dominance index, (the inverse of Simpson's evenness index), by using the 423 proportions of basal area for each constituent species. Simpson's index ranges from 0

424 (infinite diversity) to 1 (monoculture). Total plant richness included all plant species growing

425 on the ground including trees, shrubs, herbs, bryophytes, and lichens. The majority of plant

426 species were not canopy tree species since canopy tree species accounted for less than 20% of

427 total plant richness in 82.3% of the plots (Supplementary Fig. S3).

We also calculated the species richness of understorey vegetation strata. However, plots (n = 170) in Quebec, Prince Edward Island, and New Brunswick were not included from stratum-specific analyses due to code absence for stratification. The shrub layer

definition also differed among provinces. The shrub layer was defined as woody plants that
are less than 1.3 m in height in Alberta, Manitoba, Nova Scotia, and Northwest Territories (*n*= 274). The remaining provinces defined shrubs as woody plants that are less than 2.0 m in
height. We included all plots for shrub layers as defined by individual provinces in the
analyses to avoid loss of information. The herbaceous layer included forbs, ferns, gramnoids,
and saprophytes. Bryophyte layer included all ground-growing non-vascular plants, i.e.,
mosses, liverworts, and lichens.

438 *Explanatory variables*

To examine the influence of climate on species diversity, we derived climate data for each NFI plot from BioSIM software that generates long-term (1951-2010) scale-free climate data from geographic coordinates (latitude, longitude, and elevation) (Régnière and Saint-Amant 2008). We used growing degree days (GDD) (base temperature at 5° C) as a measure of overall available energy for plant growth and climate moisture index (CMI = mean annual precipitation-annual potential evapotranspiration) to represent aridity. Higher values of CMI translate to higher water availability for plants (Hogg 1997).

446 We used soil drainage class (SDC) as a measure of local site conditions and as an 447 integrated measure of the overall site quality. Soil drainage class was determined by field 448 surveys involving soil pit excavations. Similar to soil moisture regime and nutrient regime 449 classifications (Chen et al. 1998, Chen et al. 2002), SDC classification considers multiple 450 factors including: topographic position, organic layer depth, soil permeability, soil texture, 451 soil thickness, and depth of water table (Taylor et al. 2000). Seven classes were used, from A 452 to G, representing very rapidly, rapidly, well, moderately well, imperfectly, poorly, and very 453 poorly drained, respectively. We also calculated local site productivity as stand biomass of 454 live trees divided by stand age. This was used as a crude estimate for net primary productivity 455 (NPP), another aspect of site quality. Stand biomass was calculated by summing tree biomass

of stem wood, bark, branches, and foliage, estimated using Canadian tree species biomass
equations (Lambert et al. 2005), and then scaled-up to a per-ha basis.

458 To account for temporal dynamics of species diversity, stand age (SA) for each plot 459 was determined according to last stand-replacing fire date or by coring three dominant/co-460 dominant trees of each tree species inside or outside the plot at the time of plot establishment. 461 With coring, SA was the average of ring counts from the tree samples of the species with the 462 oldest age, used as a conservative estimate of stand age (Senici et al. 2010). Due to variations 463 in plot size, which is positively associated with species richness (Wright 1983), plot size was 464 included in all statistical models to account for sampling area dependence of species diversity. 465 Similarly, because of potential effects of silvicultural activities on species diversity,

466 presence/absence of any management history was included as a predictor.

467 Statistical analysis

468 We used boosted regression tree analysis (BRT) to examine how species diversity is affected 469 by regional climate, local site conditions, and stand development across the large Canadian 470 forest biome. BRT resembles an additive regression model in which many simple regression 471 trees, generated using recursive binary splits based on the performance of a single predictor 472 variable at each split, are fitted in a stage-wise manner. With the introduction of stochasticity 473 (termed as bagging) and the division of data for model training and validation (termed as 474 cross-validation), BRT can achieve greater accuracy in predictions and less bias without 475 over-fitting. Based on the hierarchical structure of each tree model, interactions are 476 automatically considered in fitted models because the response to a lower level explanatory 477 variable depends on values of higher level explanatory variables within a tree model. The 478 relative influences of explanatory variables represent the percentage of variation of the total 479 variation accounted for by the BRT model.

480 BRT can handle the common problematic characteristics associated with 481 observational data such as nonlinear relationships, missing data, multicollinearity among 482 predictors, and violations of parametric assumptions, with desired accuracy in finding 483 relationships between predictors and response variables (De'ath and Fabricius 2000, De'ath 484 2007, Olden et al. 2008). BRT has also been shown to outperform all conventional statistical 485 methods except Bayesian models for predicting species distributions over broad geographic 486 scales (Elith et al. 2006). Specifically, BRT introduces randomness and multiple model 487 averaging with adjusted weights for each sequential model to reduce sampling bias associated 488 with observational data (De'ath 2007).

489 We fitted all BRT models using the recommended values for BRT parameters: 490 learning rate (0.005), bag fraction (0.6), and cross-validation (10). Learning rate may have a 491 smaller value than 0.005, depending on the number of observations of the specific models to 492 achieve adequate model fit (Elith et al. 2008). In addition, tree complexity (TC) was chosen 493 as 1 (no interaction) and 2 (two-way interactions among predictors). We opted to report the 494 BRT model with smaller TC if the models with higher TC did not improve prediction error 495 (PE) considerably (i.e., < 1%) to avoid over-fitting. All analyses were performed by using 496 BRT (Elith et al. 2008) with gbm R package (Ridgeway 2010). Because species richness is 497 the count of number of species, a Poisson distribution of errors was used to model species 498 richness response to predictors. Given that SA and NPP are strongly positively skewed, they 499 were transformed by natural logarithm, which resulted in similar or slightly better models. To 500 evaluate spatial structure of the BRT residuals, we applied global Moran's I statistic, and 501 plotted the correlograms to check the range and type of autocorrelation in various lag classes, 502 using the R package spdep (Bivand 2013).

503 **Table 1-1** Results from boosted regression tree analysis (BRT) of diversity indices. Predictors' relative influences show the relative

504 contributions of predictors to the accounted variation of each BRT model. Abbreviations are GDD – growing degree days (number of days

505 above 5 °C), CMI – climate moisture index (cm), SDC – soil drainage class, NPP – net primary productivity, approximated by mean annual

506 biomass increment of canopy trees (Mg ha⁻¹ yr⁻¹), SA – stand age (yrs), PS – plot size (m^2), MH – management history (managed vs.

507 unmanaged), TC – tree complexity, n – number of sample plots, and PE – model prediction error. Moran's *I* global tests were conducted on the 508 residual for each fitted model.

509

Diversity index	Predictors	s' relative	influence	es (%)				Error	TC	n	PE	R^2	Moran's	I test
	GDD	CMI	SDC	NPP	SA	PS	MH	distribution					Ι	Р
Canopy tree richness	43.2	21.9	16.5	-	17.6	0.3	0.4	Poisson	2	915	0.52	0.47	0.022	0.37
Simpson's dominance index	36.9	22.7	15.6	-	23.9	0.9	0.0	Gaussian	2	915	0.05	0.30	0.016	0.40
Total plant richness	12.2	23.8	49.0	-	14.2	0.4	0.5	Poisson	2	988	4.17	0.49	0.082	0.10
	9.8	22.4	46.5	8.7	11.7	0.3	0.6	Poisson	2	988	4.19	0.49	0.084	0.10
Shrub richness	56.6	3.0	6.3	-	5.2	28.9	0.1	Poisson	1	816	2.41	0.27	0.102	0.07
	55.6	2.2	5.2	6.5	5.6	24.9	0.1	Poisson	1	816	2.39	0.30	0.098	0.08
Herbaceous richness	22.0	23.9	17.4	-	24.9	9.0	2.9	Poisson	2	800	4.11	0.31	0.057	0.21
	16.8	19.0	16.1	18.3	18.8	8.0	3.0	Poisson	2	800	4.09	0.34	0.055	0.22
Bryophyte richness	19.0	26.1	14.2	-	23.4	16.9	0.4	Poisson	2	762	2.24	0.34	0.075	0.15
	16.1	21.9	10.4	23.4	15.8	12.0	0.4	Poisson	2	762	2.23	0.40	0.066	0.18

511 **Results**

512 Growing degree days, CMI, SDC, and SA accounted for 47%, 30%, and 49% of variation in 513 canopy tree species richness, Simpson's dominant index, and total plant species richness, 514 respectively (Table 1-1). By contrast, the same set of predictors accounted for substantially 515 less variation (27% to 34%) in species richness for the shrub layer, herbaceous plants, and 516 bryophytes and lichens. Plot size contributed little to canopy diversity and total plant 517 diversity since there was little variation in plot size (Table 1-1), but plot size accounted for 518 large variation, ranging from 9% to 29%, in understorey stratum-specific richness due to 519 substantial plot size variation. Management history had minimal effects on most diversity 520 indices except some effects on herbaceous richness (Table 1-1). In all cases, we found no 521 significant spatial structure in the residuals (Table 1-1). 522 Canopy tree species richness and Simpson's dominance index 523 For canopy richness, GDD and CMI were the strongest predictors, followed by SA and SDC 524 with 43%, 22%, 18%, and 17% relative influences, respectively (Table 1-1). Canopy richness 525 increased with GDD monotonically (Fig. 1-1a). Richness increased with CMI similar, but to a 526 lesser extent, to GDD (Fig. 1-1a). Species richness increased and then decreased with reduced 527 soil drainage. Species richness increased with SA, reached a peak at an intermediate SA (approximately 70 years old), declined, but then increased in the oldest stands (Fig. 1-1a). By 528 529 contrast, Simpson's dominance index decreased with increasing GDD and CMI, was highest 530 at the low and high drainage classes, and was lowest at about 70 years of SA (Table 1-1, Fig. 531 1b). A correlation analysis indicated that canopy tree species richness and Simpson's

dominance index are strongly negatively correlated (r = -0.76, P < 0.001).

Figure 1-1 Observed and predicted responses of diversity indices to growing degree days, climate moisture index, soil drainage class, and natural logarithm of stand age on the canopy tree layer. (a) Canopy tree species richness. (b) Simpson's dominance index. Soil drainage classes from A to G represent very rapidly, rapidly, well, moderately well, imperfectly, poorly, and very poorly drained, respectively. Scatter points are observed values plotted by the respective response and explanatory variables.

533

541 Total plant species richness and understory stratum-specific richness

- 542 For total plant richness, SDC was the strongest driver, followed by CMI, GDD, and SA with
- 543 49%, 24%, 14%, and 12% relative influences, respectively (Table 1-1). Total plant species
- richness increased with drainage up to drainage class E (imperfectly drained), and then
- 545 slightly decreased (Fig. 1-1a).
- 546
- 547
- 548

Figure 1-2 Observed and predicted responses of diversity indices to growing degree days (GGD), climate moisture index (CMI), soil drainage class (SDC), and natural logarithm of stand age on species richness. (a) Total plant species richness. (b) Shrub layer richness. (c) Herbaceous layer richness. (d) Bryophyte richness. Soil drainage class from A to G represent very rapidly, rapidly, well, moderately well, imperfectly, poorly, and very poorly drained, respectively. Scatter points are observed values plotted by the respective response and explanatory variables.

558	The relative influences of predictors (Table 1-1) clearly showed that richness of
559	understorey layers responded to environmental factors differently compared to canopy tree
560	species richness. The relative influences of GDD diminished from shrub, herbaceous, to

561 bryophyte layers as 56%, 22%, and 19%, respectively, whereas relative influences of 562 drainage and SA increased. Shrub richness responded to climate and site conditions similarly 563 as canopy richness did, but to a lesser extent (Fig. 1-2b). The richness of the herbaceous and 564 bryophyte layers showed distinct patterns compared to canopy richness (Fig. 1-2c-d). 565 Herbaceous richness correlated negatively with GDD, CMI, and SA, and peaked at an 566 intermediate SDC (Fig. 1-2c). Bryophyte richness decreased with GGD, increased with CMI 567 and SA, and was higher in both perfectly drained and very poorly drained than in other 568 drainage classes (Fig. 1-2d). The BRT models showed similar trends of richness of total plant, 569 shrub, herbaceous, and bryophyte layers, predicted by GDD, CMI, SDC, and SA with and without NPP as a predictor (Fig. 1-2 and Fig. S1-4). 570

571 **Discussion**

Using forest inventory data that covers a wide geographical area across Canada's forest ecosystems, we show that plant species richness is controlled by climate, local site conditions, and stand age; however, climatic influences have stronger effects on canopy tree species richness than total plant species richness. Specifically, canopy tree species richness appears predominantly controlled by energy and climatic water availability, whereas total plant species richness, in which understorey plants account for 80-90% of all species in northern forest ecosystems (Gilliam 2007), is controlled more by soil conditions.

579 Our analysis of canopy tree species richness provides support for the species-energy 580 theory along a wide longitudinal gradient. Unlike the positive species-energy relationships 581 found along global latitudinal gradients (Francis and Currie 2003, H-Acevedo and Currie 582 2003, Hawkins et al. 2003, Currie et al. 2004), where tropical ecosystems have a longer 583 evolutionary history than northern ecosystems (Benn and Evans 2010), the positive species-584 energy relationship of our ecosystems resulted from longitudinal climatic variation, where all 585 studied ecosystems experienced the last glaciation and, thus, are of similar ages. This

586 suggests that reduced extinction risk due to long occupancy of species or long time for 587 speciation (Kozak and Wiens 2012) is not an important mechanism for our observed broad-588 scale diversity patterns across Canada's forests. Additionally, the magnitude of positive 589 species-energy relationships was reduced when CMI fell into negative values, i.e., severe 590 water-limitations on productivity (O'Brien 1998), providing support for aridity constraints on 591 the realization of available energy for tree species diversity (Hawkins et al. 2003, Piedallu et 592 al. 2013). Further, consistent with the understanding of environmental stress effects on plant 593 diversity (Grime 1973), canopy tree species richness was higher in intermediate soil drainage 594 classes where local water availability is neither in deficit nor too excessive.

595 Canopy tree species richness peaked at an intermediate stand age, approximately 70 596 years old, and there was an increase in oldest stands. These results are consistent with the 597 prediction of IDH, i.e., both intermediate disturbance frequency and intensity promote 598 species diversity (Connell and Slatyer 1977, Connell 1978, Svensson et al. 2012). The peak at 599 intermediate stand age is attributable to canopy co-dominance of early- and late-successional 600 species, qualified as the canopy transition stage of stand development following a stand 601 replacing disturbance (Chen and Popadiouk 2002). The high species diversity in the oldest 602 stands is likely a result of disturbances of intermediate intensity such as outbreaks of spruce 603 budworm (Choristoneura fumiferana), forest tent caterpillar (Malacosoma disstria), and 604 windthrow that create large canopy gaps and allow co-existence of both early- and late-605 successional species at late-successional stages as evidenced in our previous studies (Taylor 606 and Chen 2011, Chen and Taylor 2012).

607 Environmental factors influenced evenness (inverse of Simpson's dominance index) 608 similarly to, but at a lesser extent than canopy tree species richness. The strong negative 609 richness-dominance relationship suggests that species richness may be the most predominant 610 aspect of biodiversity, although the underlying processes for the observed richness-

dominance relationship are not clear. We speculate that local negative plant-soil feedback
through pathogens and herbivores (Mangan et al. 2010), and synchrony in density
dependence via niche differentiation caused by environmental variability (Thuiller et al. 2007)
may be responsible.

615 The strong positive species-energy relationship observed for canopy tree species was 616 not found for total plant species richness, nor for richness of the herbaceous and bryophyte 617 layers. Rather, local conditions had stronger influences than climate for understorey richness. 618 The greater influence of local site conditions than regional climate on total plant species 619 richness suggests that previous studies (e.g., Hawkins et al. 2003) may have overestimated 620 the importance of climate on total species richness. Our results are consistent with previous 621 studies in temperate (Oberle et al. 2009, Wang et al. 2009) and subantarctic and Patagonian 622 forests (Speziale et al. 2010). The differences in relative influences between regional climate 623 and local conditions for canopy tree species versus understorey plant species richness are 624 attributable to differences in plant life forms and their associated life history strategy in 625 forests (Chipman and Johnson 2002, Oberle et al. 2009, Speziale et al. 2010). The diversity of 626 understorey plants, which are typically shade tolerant, a trait that limits direct impact of solar 627 radiation on performance (Roux et al. 2012), is driven by available local water and nutrients 628 and substrate heterogeneity (Bartels and Chen 2010).

Temporal changes in richness of total plant species and understory layers were substantially different from changes in canopy tree species. This inconsistency is not uncommon (Mackey and Currie 2001) because plant succession and coexistence cannot be attributed to a single mechanism, but rather the amalgamation of various interacting mechanisms (Shea et al. 2004, Dornelas et al. 2013). For instance, temporal change in plant diversity can be influenced by feedback from diversity effects on disturbance severity and frequency that tend to increase mean values of richness (Randall Hughes et al. 2007).

Alternatively, this inconsistency can be attributed to differences in resources requirements.
For example, dependence on light availability differs between canopy trees and understorey
plants, such that the negative impact of canopy closure through time may be less apparent on
understorey plant than canopy tree species richness (Chipman and Johnson 2002, Bartels and
Chen 2010, 2013, Halpern and Lutz 2013)

641 Our results demonstrate that species diversity is regulated by multiple drivers in forest 642 ecosystems. Canopy tree species richness increases with available energy in the absence of 643 aridity, and is also affected by local site conditions and stand age. However, the influence of 644 climate and local conditions on richness was found to differ between canopy trees and 645 understorey plants in both direction and magnitude. This is possibly the result of differences 646 in tolerance to stress and resource requirements between canopy trees and understorey plants, 647 resulting from their different life history strategies, as well as feedbacks among vegetation 648 layers. The strong correlation between canopy tree richness and Simpson's dominance index 649 and different responses to environmental factors among forest strata suggest that the specific 650 role of climate and local site conditions on plant species diversity may vary depending on 651 choice of diversity attributes and vegetation strata. Therefore, current ecological theory which 652 focuses on presumed univariate relationships is often controversial and highly context-653 dependent in empirical studies because of the multivariate nature of ecosystems (Grace et al. 654 2012a).

655

656 CHAPTER 2: INDIVIDUAL SIZE INEQUALITY LINKS FOREST DIVERSITY AND

657 **PRODUCTIVITY**

658 Running title: Individual size inequality and DPR

659

660 Introduction

661 Positive ecosystem function and species diversity relationships, particularly positive diversity-662 productivity relationships (DPRs), have been widely reported for experimental systems, leading 663 to conclusions about profound negative impacts of biodiversity loss on ecosystem functions 664 (Isbell et al. 2011, Zhang et al. 2012). Despite the critical importance of external validity for 665 practical solutions to mitigate and adapt to diversity loss in natural systems (Naeem et al. 2012), 666 diversity effects on productivity in natural systems remain unclear and hotly debated (Grime 667 1973, Adler et al. 2011, Fridley et al. 2012). Furthermore, the applicability of findings from 668 controlled experiments remains controversial as it may fail to account for the complexity of 669 natural ecosystems (Duffy 2009). Much research is needed to improve our understanding about 670 the patterns and causes of observed DPRs in natural ecosystems.

671 Species complementarity, interpreted as a result of niche differentiation and facilitation, 672 is regarded as the mechanism for the observed positive DPRs in experimental systems (Loreau et 673 al. 2001). Complementarity effects are also important to maintain species diversity (Levine and HilleRisLambers 2009). It is theoretically plausible that niche differentiation and facilitation are 674 675 the central processes for maintenance of species diversity and the positive DPRs. However, 676 empirical evidence for niche differentiation and facilitation is scare due to the fact that niche 677 differentiation and facilitation are multifaceted and operate at the individual level, and 678 interspecific interaction strength change spatially and temporally (Clark 2010). As a result of

diversity among and within species and/or growth plasticity of individuals expressed through their interactions with immediate neighbors (Potvin and Dutilleul 2009, Brassard et al. 2013, Mueller et al. 2013), tree size inequality reflects resource partitioning and use efficiency within a site in natural forests (Man and Lieffers 1999, Chesson 2000, Yachi and Loreau 2007, Coomes et al. 2009, Clark 2010). We thus hypothesize that tree size inequality among all individuals is the mechanism responsible for the maintenance of species diversity and positive DPRs in natural forests.

686 The controversy between experimental and observational studies appears to arise from 687 our limited understanding of the multiple mechanisms that simultaneously affect diversity and 688 ecosystem functioning in natural ecosystems (Grace et al. 2012a, Tilman et al. 2012). For 689 example, the nutrient regime of a habitat can strongly affect DPR, predicted by the multivariate 690 productivity-diversity hypothesis (MPD) (Cardinale et al. 2009). Studies in natural forests also 691 reveal that site conditions and stand age (Oberle et al. 2009) should be included when testing the 692 proposed multivariate and potentially indirect relationships between diversity and productivity in 693 forest communities (Tilman et al. 2012). It is not uncommon in previous DPR studies that well-694 documented coupling factors were neglected, leading to inconclusive results, especially in forest 695 ecosystems. Furthermore, it is problematic to use only species richness to represent diversity 696 because of the multifaceted nature of biodiversity (Purvis and Hector 2000) and high 697 contributions of species evenness to productivity (Zhang et al. 2012). 698 Here we aim to examine the multiple relationships between aboveground biomass, 699 species diversity, tree size inequality, stand age, and soil nutrient regime in the boreal forest by 700 using structural equation models (SEMs) (Grace et al. 2012b). Specifically, we test the following 701 paths: (1) positive DPRs are mediated through tree size inequality within each stand; (2) nutrient
regime influences the aboveground biomass, species diversity, and tree size inequality; and (3)
stand age affects aboveground biomass, species diversity, and tree size inequality (Brassard et al.

704 2008).

705 Materials and Methods

706 Study area and forest inventory data

707 The data used in this study were from permanent sample plots in Saskatchewan, Canada,

collected under stratified random sampling scheme to cover as extensive a range of stand ages

and site types as possible. Timberline Natural Resource Group provided the data under a user

agreement. We included (1) plots originating from wildfire, and not managed; (2) plots located at

711 least 50 m from edges and 100 m from any highway; and (3) plots having an extensive soil

survey to determine soil nutrient regime. The resulting dataset consists of 448 plots, mostly

713 measured during the period of 1992-1999, and ranging from 52°30' – 55°24' N latitude and from

714 $102^{\circ}36' - 108^{\circ}$ W longitude (Supplementary Fig. S1). Plots varied in size, 0.06 (n = 78) and 0.08

ha (n = 370). Common tree species in this region included *Pinus banksiana* Lamb., *Picea*

716 mariana (Mill.) B.S.P., Picea glauca (Moench) Voss, Abies balsamea (L.) Mill., Larix laricina

717 (Du Roi) K. Koch, Populus tremuloides Michx., Populus balsamifera L., and Betula papyrifera

718 Marsh.

719 Variables used in analyses

We calculated aboveground biomass (AGB, Mg ha⁻¹) as a surrogate of stand productivity

721 (Supplementary Table S2-1). We estimated aboveground biomass of live trees for each plot

vising species-specific allometric equations based on diameter at breast height (DBH) developed

specifically for Canadian boreal tree species (Lambert et al. 2005).

724 We chose Shannon's index as a measure of species diversity to account for species 725 richness and evenness, two of the important aspects of diversity in DPR studies (Maestre et al. 726 2012). We consider Shannon's index to be the realistic measure of species diversity in species 727 poor ecosystems such as boreal forests; 85% of 448 plots consisted of less than 5 tree species, 728 with large variability in species evenness. Alternatively, we would choose species richness and 729 evenness as two separate predictors, but no current diversity index can adequately separate them 730 (Smith and Wilson 1996). The often recommended Simpson evenness index may still be highly 731 correlated with richness (Barrufol et al. 2013).

732 Furthermore, we adopted the life-history trait-based grouping of species (Hector et al. 733 1999, Fornara and Tilman 2008) since life-history traits, as another aspect of biodiversity, are 734 important for understanding DPR and species coexistence in forests (Lusk and Smith 1998, 735 Verheyen et al. 2003). Differences in leaf habit and shade tolerance can influence spatial niche 736 occupancy, light use efficiency, and nutrient cycling within a site (Man and Lieffers 1999, Yachi 737 and Loreau 2007, Coomes et al. 2009), thereby playing an important role in shaping DPRs. 738 Therefore, we used characteristics of shade tolerance and leaf habit to classify tree species into 4 739 groups: intolerant deciduous, intolerant evergreen, tolerant deciduous and tolerant evergreen. 740 Life-history trait variation was defined as the number of groups in each plot. We graded the 741 shade tolerance ratings for the studied species following Spurr and Barnes (1980). 742 Stand age (SA, years) for each plot was determined according to last stand-replacing fire

date or by coring three dominant/co-dominant trees of each tree species inside or outside the plot
at the time of plot establishment. With coring, stand age was the average of ring counts from the
tree samples of the species with the oldest age, used as a conservative estimate of stand age
(Senici et al. 2010). The soil nutrient regime of each site (NR), as indicator of the nutrient supply

and vegetation-soil relationship, was determined based on several factors including slope, texture, depth of horizons, bedrocks, pH and carbon/nitrogen ratio in humus forms, cation exchange capacity, and total nitrogen content in the rooting layer (Courtin et al. 1988). As such, soil nutrient regime was classified as very poor, poor, medium, and rich (1 - 4) in conformity with Saskatchewan's ecosystem classification guidelines (Beckingham et al. 1996).

We used DBH variation among individual trees within each plot as surrogate of tree size inequity (Potvin and Dutilleul 2009), because the overall DBH variation can be considered as a measure to represent the degree of the realized niche differentiation via positive plant interactions (Yachi and Loreau 2007, Chu et al. 2009). DBH variation was calculated as the coefficient of variation (CV) (Brassard et al. 2008), which is the ratio of the standard deviation of all DBH measurements to the mean DBH within each plot (Supplementary Table S2-1).

758 Data analysis

759 To aid in construction of structural equation models (SEMs) and interpretation of results (Grace 760 et al. 2012b), we first examined the bivariate relationships between each hypothesized causal 761 paths according to our hypotheses. We fit each pair of variables using simple linear regression 762 and multiple linear regressions by adding quadratic and cubic polynomial terms. We reported the 763 significant relationships as linear or polynomial (if quadratic term and/or cubic term were 764 significant). Normality was tested for all variables based on a Shapiro-Wilk goodness-of-fit test. 765 As recommended (Grace et al. 2010) and common practices in SEMs (e.g., Oberle et al. 2009, 766 Spasojevic et al. 2014), non-normal continuous variables including Shannon's index, DBH 767 variation, and stand age were natural-logarithm transformed to mitigate departure from normality 768 and linearity.

769 As recommended (Grace et al. 2012b), we first specified a metamodel based on the 770 known theoretical construct including the hypothesized multiple paths predicted by the 771 multivariate productivity-diversity hypothesis (Cardinale et al. 2009) with the addition of stand 772 age in the SEM. Then, we fit more complex models including DBH variation as the link between 773 productivity and diversity. An alternative model with opposite direction of the direct path 774 between diversity and DBH variation was also fit. Furthermore, we added the direct causal path 775 from diversity to productivity in all three SEM models above to test whether reciprocal direct 776 causal effects exist between diversity and productivity (Grace et al. 2007). 777 We used latent variable by incorporating two observable variables, Shannon's index and 778 life history diversity, to represent species diversity (Grace et al. 2010). Similarly, polynomial 779 terms were incorporated to account for nonlinear effects of predictors on responses by using a 780 zero-error composite variable (Grace and Bollen 2008) for the response of aboveground biomass 781 to stand age. Nutrient regime as an ordinal categorical variable was coded as 1, 2, 3, and 4, being 782 treated as a regular numeric covariate as recommended, provided that NR was strictly 783 endogenous (dependent) variable in our SEMs (Rosseel 2012). 784 No excessive multivariate skewness and kurtosis were found in our data using Mardia's 785 multivariate tests (P = 0.85 and 1.0, respectively), indicating that the maximum likelihood 786 estimation for SEM was valid. To address the potential issues from nonlinear and remaining 787 univariate non-normality after transformations, we used the nonparametric Bollen-Stine 788 bootstrapping estimations for improved robustness of our SEMs. We chose recommended chi-789 square tests, root mean square error of approximation (RMSEA), and goodness-of-fit index (GFI) 790 to evaluate the model fit of all SEMs (Kline 2010). A Chi-square with a P value > 0.05 indicates 791 that the observed and expected covariance matrices are not statistically different; RMSEA and

792 GFI values ranging < 0.05 and > 0.95, respectively, suggest a good model fit (Rosseel 2012). 793 The significant path coefficient for directional paths (single-headed arrows) indicates that the 794 represented causal relationship is statistically significant. Furthermore, the path coefficient, 795 standardized for comparison between pathways, can be a measure for the sensitivity of 796 dependent variable to the predictor (Grace and Bollen 2005). To facilitate the interpretation of 797 our SEM results, the total effects of a given exogenous variable on aboveground biomass was 798 estimated by adding the direct standardized effect and the indirect standardized effect (Grace and 799 Bollen 2005). The SEM was implemented using the lavaan package (Rosseel 2012) in R 3.0.2 (R 800 Development Core Team 2013).

801 Assessing possible methodological problems

802 Heterogeneity in sampling plot sizes can influence species diversity estimates as the number of 803 species increases with plot size (Rosenzweig 1995). Similarly, plot size may affect aboveground 804 biomass estimates (Lewis et al. 2009). We tested the associations between Shannon's index, 805 richness and plot size, and between AGB and plot size by Spearman's rho correlation. The 806 Spearman's rho showed no correlation between Shannon's index and richness to plot size (P =807 0.54 and 0.83, respectively). However, AGB decreased with plot size (P < 0.001). To examine 808 the magnitude of plot size effect on AGB, we used a boosted regression trees (BRT) model to 809 quantify the relative influence of plot size, compared with those from DBH variation, stand age, 810 nutrient regime, and species diversity, on AGB (De'ath 2007, Elith et al. 2008). Plot size 811 accounted for <2% of the relative influence on AGB (Supplementary Fig. S2-2). These analyses 812 show that plot size variation from 0.06 to 0.08 ha had negligible effects on species diversity and 813 AGB estimates, indicating that plot size heterogeneity has minimum effects on results of our 814 SEMs. Furthermore, spatial autocorrelation in the residual of aboveground biomass obtained in

815 the BRT was checked using Moran's *I* global test to identify any potential spatial structure.

816 Moran's *I* test showed no significant spatial structure in the BRT residuals (Moran's I = 0.07, *P*

817 = 0.27).

818 **Table 2-1** Direct, indirect, and total standardized effects on aboveground biomass of canopy

819 trees based on structural equation models (SEMs). Significant effects are at P < 0.05 (*), < 0.01 820 (**), and < 0.001 (***).

821

Predictor	Pathway to aboveground biomass	Effect		
Diversity	Direct	0.14**		
	Indirect	-		
	Total effect	0.14		
Stand age	Direct	0.49^{***}		
	Indirect through diversity	0.01		
	Total effect	0.5		
Nutrient regime	Direct	0.23***		
	Indirect through diversity	0.02^{*}		
	Total effect	0.25		
DBH variation	Direct	0.15^{*}		
	Indirect	-		
	Total effect	0.15		
Diversity	Direct	0.07		
	Indirect through DBH variation	0.07^{***}		
	Total effect	0.14		
Stand age	Direct	0.45***		
	Indirect through DBH variation	0.04^{***}		
	Indirect through diversity	0.01		
	Total effect	0.5		
Nutrient regime	Direct	0.21***		
-	Indirect through DBH variation	0.03***		
	Indirect through diversity	0.01		
	Total effect	0.25		
	PredictorDiversityStand ageNutrient regimeDBH variationDiversityStand ageNutrient regime	PredictorPathway to aboveground biomassDiversityDirectIndirectTotal effectStand ageDirectIndirect through diversityTotal effectNutrient regimeDirectIndirect through diversityTotal effectDBH variationDirectIndirectTotal effectDiversityDirectIndirectTotal effectDiversityDirectIndirect through DBH variationTotal effectStand ageDirectIndirect through DBH variationTotal effectStand ageDirectIndirect through DBH variationIndirect through DBH variationIndirect through diversityTotal effectNutrient regimeDirectIndirect through DBH variationIndirect through diversityTotal effectNutrient regimeDirectIndirect through DBH variationIndirect through diversityTotal effect		

Fig. 2-1 Univariate relationships between endogenous (dependent) and exogenous (independent)

variables (n = 448). All variables were natural log-transformed except aboveground biomass. Significant regression lines were plotted using linear regression. Parametric assumptions were checked. (a) $y = 101.2 + 153.1x - 150.2x^2$, $R^2 = 0.07$, (b) y = 199.8 + 59.2x, $R^2 = 0.13$, (c) y = -1.42 + 0.612x, $R^2 = 0.24$, (d) $y = -1343.7 + 608.4x - 61.8x^2$, $R^2 = 0.24$; (e) y = -2.4 + 0.281x, $R^2 = 0.1$; and (f) not significant. All fitted regressions are significant at P < 0.001. The assumptions of normality and homogeneous variance were validated for all fitted regressions (P > 0.05) with

832 an exception of marginal violation of normality of the fitted regression in c (P = 0.04).

833

834 Results

835 The overall relationship between canopy tree Shannon's index and aboveground biomass was

- quadratic; biomass increased with diversity, then decreased afterward (Fig. 2-1A). The
- 837 aboveground biomass increased with DBH variation (Figs. 2-1B). Aboveground biomass
- 838 increased with stand age, and then decreased (Fig. 2-1C). DBH variations increased with both
- 839 Shannon's index and stand age (Figs. 2-1D, E), but there was no clear relationship between
- 840 Shannon's index and stand age (Fig. 2-1F).

Fig. 2-2 Structural equation models linking aboveground biomass (AGB) and species diversity. (A) Effects of species diversity, soil nutrient regime, and stand age on AGB. (B) The model with tree size inequality, represented by DBH variation, as the linking mechanism. The coefficients are standardized prediction coefficients for each causal path. Solid lines represent significant paths ($P \le 0.05$) and dash lines for non-significant paths (P > 0.05). The path coefficient marked with '±' indicates a nonlinear (quadratic) relationship.

The model without DBH variation as a predictor had a good fit to the data ($\chi^2 = 7.52$, d.f. = 5, P = 0.18; RMSEA = 0.03; GFI = 0.994) (Fig. 2-2A). While AGB increased with stand age and local nutrient availability, diversity had a positive direct effect on AGB (Table 2-1, Fig. 2852 2A). Similar to the univariate relationship, diversity was not significantly related to stand age

853 (Fig. 2-2A).

854

Fig. 2-3 An alternative model for the effects of tree size inequality represented by DBH variation
on both aboveground biomass and species diversity.

The full model including DBH variation as a predictor had a good fit to the data (γ^2 = 858 859 11.41, d.f. = 7, P = 0.13; RMSEA = 0.04; GFI = 0.99, Fig. 2B), similar to the above simpler 860 model, but yielded additional information with slightly reduced AIC by 0.6 %, suggesting a 861 better model based on parsimony principle. DBH variation had a positive direct effect on AGB. 862 The direct path between diversity and AGB became insignificant, but instead, positive diversity 863 effects on AGB were indirect through increasing DBH variation (Table 2-1, Fig. 2-2B). While 864 the positive direct effects of stand age and nutrient regime on AGB remained, some of the direct 865 effects found in the initial model (Fig. 2-2A) were realized indirectly via increasing DBH 866 variation (Table 2-1, Fig. 2-2B). In both models (Figs. 2-2A and 2-2B), the covariance between 867 life-history trait groups and Shannon's index were not significant, indicating that they are 868 independent aspects of species diversity.

An alternative model with altered direction for the path between diversity and DBH variation had a slightly better fit to the data ($\chi^2 = 7.51$, d.f. = 7, P = 0.4; RMSEA = 0.01; GFI = 1.00) (Fig. 2-3). Similar to the model in Fig. 2-2B, nutrient regime and stand age had strong positive effects on DBH variation. DBH variation had positive effects on not only aboveground but also diversity (Fig. 2-3). The models assuming reciprocal direct causal effects between diversity and productivity showed that the two-way direct causal paths insignificant (see Fig. S2-3).

876 **Discussion**

877 Consistent with the pattern reported for species diversity of herbaceous plants along a gradient of 878 resource supply (Grime 1973), we found a significant overall humped-back relationship between 879 Shannon's index and aboveground biomass in natural forests with a wide range of variation in 880 local soil resource availability and stand age. This finding contrasts with weak and variable 881 relationships found for natural grasslands where the variability of local soil resources was limited 882 for each relationship (Adler et al. 2011). These results indicate that the DPRs are strongly 883 dependent on how environmental variations are controlled in sampling natural systems (Fridley 884 et al. 2012) and whether variations in climate and soils are properly accounted for when net 885 diversity effects are examined (Tilman et al. 2012). As previously hypothesized (Cardinale et al. 886 2009), we show that diversity has a positive effect on aboveground biomass while both diversity 887 and aboveground biomass are positively influenced by resource supply, represented by soil 888 nutrient regime.

We found that positive diversity effects are mediated via increasing tree size inequality. This finding suggests that positive diversity effects result from high vertical occupation of available space within a canopy, which can increase resource acquisition and utilization (Man

892 and Lieffers 1999, Chesson 2000, Yachi and Loreau 2007, Coomes et al. 2009, Clark 2010). This 893 result compliments the evidence that diversity increases space utilization belowground (Brassard 894 et al. 2013, Mueller et al. 2013). The underlying biological processes appear to be dependent on 895 individual plant responses to resource availability and neighbors (Cahill et al. 2010). 896 Additionally, we found that soil resource availability and stand age are positively correlated with 897 tree size inequality, consistent with the idea that the complementarity effects increase with local 898 resource availability (Coomes et al. 2009) and time (Reich et al. 2012, Zhang et al. 2012). 899 It is valuable, and often necessary to evaluate alternative SEMs based on observational 900 data (Grace et al. 2012b). Our alternative SEM model (Fig. 2-3) shows significant positive 901 feedback of tree size inequality on diversity. Because positive interactions among individual 902 plants can increase size inequality (Chu et al. 2009), we speculate that tree size inequality 903 determines both species diversity and stand productivity. This provides a potential solution to 904 resolve the inconsistent patterns and directions in previous findings of DPRs by linking studies 905 of DPRs and species coexistence influenced by productivity that have been studies in two 906 separate lines (Grime 1973, Loreau et al. 2001, Adler et al. 2011). 907 The insignificant two-way paths assuming reciprocal direct causal effects between 908 diversity and productivity are consistent with previous findings that diversity effects become 909 weak or insignificant when direct effects go both ways between diversity and productivity 910 (Grace et al. 2007). However, instead of concluding that diversity effects are weak in natural 911 ecosystems (Grace et al. 2007), our results suggest that the reciprocal effects between diversity 912 and productivity are likely indirect in complex ecosystems.

913

914 In summary, we show a positive DPR in natural forests of varying stand ages and local 915 nutrient availability. Positive diversity effects on aboveground biomass are mediated by 916 increasing tree size inequality. While both soil nutrient availability and stand age have strong 917 direct effects on aboveground biomass, some positive effects of soil nutrient availability and 918 stand age on aboveground biomass are also indirectly achieved via increasing tree size inequality. 919 Tree size inequality appears to be the central regulating mechanism the positive diversity effects 920 on productivity, and potentially as the shared mechanism that simultaneously regulates 921 productivity and diversity likely via increased resource acquisition and utilization as well as 922 facilitation among individuals.

924 CHAPTER 3: DOES DIVERSITY OF CANOPY TREES MATTER THE MOST IN

925 FOREST ECOSYSTEM?

926 Running title: Effects of canopy tree diversity on biomass across forest strata and soil carbon

927 storage

928 Introduction

929 Concerns over the continuing loss of species and consequent deterioration of ecosystem 930 functioning have become central foci in ecology over the last three decades. Many studies across 931 taxa and habitats, mostly in grasslands, have observed a positive relationship between 932 biodiversity and ecosystem functioning, i.e., the biodiversity-ecosystem function relationship 933 (BEF) (e.g., Tilman et al. 2001, Isbell et al. 2009). This positive association is often attributed to 934 complementarity effects from interspecific facilitation and/or niche complementarity (Hooper et 935 al. 2005, Cardinale et al. 2007, Fargione et al. 2007). However, more empirical studies are 936 needed to strengthen our understanding of BEF in natural ecosystems due to contradicting 937 observed BEF patterns and lack of the consensus between results from natural ecosystems and 938 controlled experiments (Grace et al. 2007, Adler et al. 2011). This is especially true in natural 939 forest ecosystems due to their complex temporal and spatial dynamics (Chen and Popadiouk 940 2002, Wardle et al. 2004). Lack of BEF knowledge in forest systems has potentially resulted in 941 underestimation of the importance of diversity on forest functioning and services. For example, 942 global estimates of forest carbon sequestration (Pan et al. 2011) are generally attributed to 943 environmental factors such as temperature and precipitation and stand development such as stand 944 age (Liu et al. 2014), but the role of biodiversity is often overlooked. Thus, the role of canopy 945 tree diversity on ecosystem functions other than canopy tree productivity is not clear, and often 946 contradicting (e.g., Cavard et al. 2011, Gamfeldt et al. 2013).

947	Whether or not species richness is a reliable predictor of ecosystem functioning is still
948	debated, especially in natural environments (Hillebrand & Matthiessen 2009; Reiss et al. 2009).
949	Largely because the impact of many aspects of biodiversity, as a complex concept ranging from
950	genetics to ecosystem levels, is largely unknown (Purvis & Hector 2000). The identity or specific
951	traits of concurrent species may be the real drivers for productivity (Leps 2004). Therefore,
952	species richness may not be the consistent predictor to estimate the consequences of species loss
953	on productivity in natural communities. Rather, productivity may be more closely linked to
954	species identity, trait dissimilarity between coexisting species (Hillebrand & Matthiessen 2009),
955	instead of number of concurrent species (Nadrowski et al. 2010).
956	Although plant functional diversity, a measure of divergence on core traits affecting plant
957	performances, has been considered the key to explaining the so-called complementarity effects
958	(Hillebrand & Matthiessen 2009), it remains unclear whether the trait divergence among all
959	constituent species or species richness contributes more to productivity, hence the debate
960	between singular hypothesis and functional redundancy hypothesis (Loreau 2004). For example,
961	the singular hypothesis (Naeem et al. 2002) suggests that each plant species contributes to
962	ecosystem functioning uniquely (e.g., Meinen et al. 2009; Eisenhauer et al. 2010). In contrast,
963	the functional redundancy hypothesis proposes that the high degree of redundancy in plant
964	functional traits enable functions of one species replaced by similar but not identical species so
965	that the functions of ecosystem can be maintained with limit species richness (Thibault et al.
966	2010). Therefore, it is beneficial to know whether one aspect of species diversity is significant
967	for observed aboveground biomass and soil carbon storage, or all of them are equally important
968	in order to tailor more accurate conservation goals for specific management targets.

969 Here, we conducted an analysis to examine how canopy tree species diversity affects 970 multiple ecosystem functions including biomass accumulation across canopy strata and total 971 aboveground biomass, and total soil carbon storage. Specifically, we hypothesize: (1) higher 972 canopy tree species diversity, including, richness, evenness, and life-history trait diversity index, 973 will have positive effects on multiple ecosystem functions in forest ecosystems (Gamfeldt et al. 974 2013); (2) tree species richness is the most important aspect of tree species diversity to influence 975 ecosystem functions; (3) ecosystem functions will be enhanced with stand age because the 976 complementary effects of tree species diversity may increase with time (Cardinale et al. 2007, 977 Weis et al. 2007) despite of the possible decline in forest productivity with aging (Wardle et al. 978 2004); and (4) climate and local site conditions will affect ecosystem functions through the 979 effects on species diversity (Zhang et al. 2014). We aim to improve understanding of how the 980 climate and soil condition affects diversity effects (of canopy trees) on overall carbon storage 981 (including belowground portion), which is crucial to predict how the boreal carbon stock 982 responds to changes of future environmental and forest managements.

983 Material and methods

984 Study area and data

We conducted our analyses using the National Forest Inventory (NFI) database, consisting of 986 991 permanent sample plots (PSP) systematically allocated across Canada's forests, covering a 987 wide climatic and geographical gradient, ranging between 53° 25'W and 134° 46'W longitude 988 and 42° 37'N and 68° 14'N latitude. The NFI dataset currently consist of only a single 989 measurement of all plots, conducted during the period of 2000-2006. Measurements were 990 carried-out primarily by provincial agencies following the same ground sampling guidelines 991 (Canadian Forest Inventory Committee, 2004) to ensure precision and accuracy of the data.

992 Details about sampling and compilation procedures of the NFI dataset can be found in (Zhang et993 al. 2014).

994 *Response variables: biomass and carbon storage*

995 We include biomass for tree, shrub and herb, and bryophyte layers to represent the overall 996 productivity along the vertical strata of Canadian forests. Furthermore, total aboveground 997 biomass, total aboveground live and dead biomass, and total soil carbon storage were calculated. 998 For each tree (taller than 1.3 m) within plots, the stem wood, stem bark, and branches and foliage 999 biomass were estimated using individual tree biomass equations, and summed to total tree 1000 biomass at the plot level. All included allometric equations for individual tree biomass in 1001 biomass compilation were carefully checked to ensure accuracy. The biomass equations at 1002 national scale in Canada (Lambert et al. 2005) was preferred, and provincial equations where the 1003 national equation was absent was used for a given species. Total aboveground biomass of shrubs 1004 and herbs, bryophytes, and woody debris at the plot level were estimated based on the weighted 1005 oven-dried samples collected within the plots. Aboveground biomass of different layers was 1006 summed and scaled-up to total biomass per unit area (Mg/ha) for tree, shrub and herb, and 1007 bryophyte layers, respectively. Total aboveground live biomass was the summed biomass of all 1008 three live vegetation layers (tree, shrub and herb, and bryophyte); and the aboveground dead 1009 biomass was the biomass of dead trees, stumps, and downed woody debris. Total aboveground 1010 biomass was the sum of all live and dead biomass.

Counting the complete carbon stock of forest ecosystems, the organic carbon content of
forest floor (≤ 8 mm fraction of the forest floor), between 0 to 15cm from mineral soil surface,
between 15 to 35cm below surface, and between 35 to 55cm below surface were measured and

summed to the plot level. Then, the carbon content was scaled up to total soil carbon content per
unit area (Mg C ha⁻¹).

1016 *Explanatory variables*

1017 We used species richness, evenness, and a life-history trait index of canopy tree species as

1018 measures of diversity. Canopy trees were defined as all stems in each plot with diameter at breast

1019 height \geq 9.0 cm. Species richness (S) was calculated as the count of all live canopy tree species

1020 in each plot. Tree species evenness was calculated using Pielou's evenness index (J') weighted

1021 by the basal area of constituent tree species in each plot (Pielou 1969).

1022 We calculated the life-history traits index as a continuous numeric index (FDis, 1023 functional dispersion). We extracted data of 32 selected life-history traits or characteristics (See 1024 appendix Table S3-1) from the USDA PLANTS database (USDA and NRCS 2013) for all 1025 canopy tree species in our plots, and quantified plant trait divergence between tree species with 1026 the R package FD, based on a distance-based framework (Laliberte and Legendre 2010). Using 1027 trait-based approaches, functional trait dissimilarity between species is considered the underlying 1028 cause of the observed complementarity effects in local competitive communities. However, 1029 uncertainty remains on how to choose the best measure of functional diversity defined by traits 1030 of individual species affecting performance (Hillebrand & Matthiessen 2009), e.g., arbitrary 1031 grouping (number of non-objectively classified functional groups) (e.g., Fornara & Tilman 2008), 1032 presence/absence of selected traits (e.g., Cadotte *et al.* 2009), and a distance-based measure of 1033 functional diversity (e.g., Paquette & Messier 2011). We preferred the FDis index based on the 1034 well-documented life-history traits of tree species for the following reasons: 1) it accommodates 1035 trait types as quantitative, semi-quantitative, and qualitative in a multidimensional trait space; 2) 1036 missing values for any given trait is tolerated; and 3) trait divergence between species is

1037 weighted by relative abundance (basal area) of species within a plot to enable FDis independent 1038 of species richness, and to avoid overestimating trait values of rare species. We chose life-history 1039 traits to evaluate functional diversity instead of the commonly used phenotypic traits, such as 1040 specific leaf area (e.g., Schöb et al. 2013), because life-history traits, as outcomes of long-term 1041 evolutionary history, are more reliable predictors than the latter, which are subject to the 1042 phenotypic plasticity and heterogeneity of habitats, especially at the plot scale (Cordlandwehr et 1043 al. 2013). In addition, the life-history traits for common tree species can be easily acquired from 1044 authoritative databases, where actual monitoring of traits of tree species in the field is neither 1045 economical nor possible.

1046 We included exogenous factors including climate, soil drainage class, and stand age as 1047 covariates in our analyses. Climate data for each plot were estimated using BioSIM software that 1048 generated long-term (1951-2010) scale-free climate data from geographic coordinates (latitude, 1049 longitude, and elevation) (Régnière and Saint-Amant 2008). Specifically, we used the growing degree days (GDD) (base temperature 5° C) as a measure of the overall available energy for plant 1050 1051 growth, and climate moisture index (CMI = mean annual precipitation-annual potential 1052 evapotranspiration) to represent drought severity, in which a higher value of CMI means higher 1053 water availability for plants (Hogg 1997). We used soil drainage class (SDC) as an integrated 1054 measure of the overall site quality, taking into consideration topography, soil texture, and soil nutrient status (Taylor et al. 2000). Soil drainage class was classified into 7 classes, representing 1055 1056 very rapidly, rapidly, well, moderately well, imperfectly, poorly, and very poorly drained, 1057 respectively. We considered the last recorded time since stand replacing disturbance as stand age 1058 or estimated stand age as the mean age of the dominant and co-dominant trees of the major 1059 species within the stand if time since disturbance was unknown.

1060 Statistical analysis

1061 All numerical variables were tested for normality using the Shapiro-Wilk test, and were found to 1062 be significantly non-normal. Therefore, all numerical variables were natural-log transformed to 1063 address departure from normality and potential non-linearity. Specifically, numerical values of 1064 21, 1, and 1 were added to CMI, FDis, and J', respectively, before the natural-log transformation 1065 to offset zero and negative values.

1066 We chose boosted regression tree analysis (BRT) for our analyses to accommodate 1067 violations of the assumptions of conventional statistics, which are common for censored 1068 observational data from natural ecosystems. Specifically, the problems of missing data and 1069 partial incompatibility of definitions and classifications between provincial agencies, e.g., 1070 heterogeneity introduced by variability in sampling plot sizes or schemes between provincial 1071 agencies (See Zhang et al. 2014), prevent conventional parametric statistics from being effective. 1072 Boosted regression tree analysis, is an increasingly recognized statistical method that combines 1073 the advantages of regression trees through recursive binary splits and adaptive model averaging. 1074 It is particularly suitable for analyzing ecological data from natural ecosystems (Elith et al. 2008). 1075 For example, BRT has many desirable traits, including high predictive strength, tolerance of 1076 missing values in predictors, invariant to monotonic transformations, and no requirement for 1077 those prior assumptions required in conventional parametric statistics (De'ath 2007, Elith et al. 1078 2008).

1079 There are four main parameters required before fitting a BRT model: tree complexity 1080 (TC), learning rate (LR), bag fraction (BG), and folds of cross-validation (CV). Tree complexity 1081 is the restrain on the complexity of the individual trees in BRT model fitting, i.e., two terminal 1082 nodes with a single binary split by the predictor when tc = 1; increasing the numbers of splits

1083 within each the individual when trees tc \geq 2 (De'ath 2007, Elith et al. 2008). The degree of one 1084 predictor influencing other predictors in determination of the response is automatically 1085 accounted for via the hierarchical structure of each tree model. The learning rate (LR) determines 1086 the contribution of each consequent tree in a shrunk rate. The bag fraction (BG) and cross-1087 validation (CV) introduce stochasticity and the division of data for model training and validation 1088 respectively, to account for uncertainties in observational data from natural ecosystems. 1089 We fitted the same set of explanatory variables to each response variable using the 1090 recommended values for BRT parameters: LR (0.005), BG (0.6), and CV (10) (Elith et al. 2008). 1091 Learning rate was reduced to 0.001 when the minimum number of trees (1000 trees) was not 1092 reached to ensure a reliable model-fit (Elith et al. 2008). Each BRT was fitted with TC from 1 to 1093 4 with the above parameter values. We opted to report the simpler BRT model, i.e., the model 1094 with a smaller TC, when prediction error (PE) is similar for an alternative, more complex model, 1095 to avoid over-fitting. All analyses were performed with the gbm R package (Ridgeway 2010). 1096 Because biomass and soil carbon storage are numerical, continuous variables, a Gaussian 1097 distribution of errors was used for all BRT fittings. Further, because of stochasticity in our 1098 observational data, especially when compiled from multiple sources, we were cautious to avoid 1099 over-interpretation of the BRT results. As such, only clear trends and relatively influential 1100 predictors were emphasized in the result section.

1101 Results

The set of predictors: GDD, CMI, SDC, SA, S, *J*', and FDis accounted for 76%, 71%, and 65%
of variation in tree layer biomass, total aboveground live biomass, and total aboveground

1104 biomass (Table 3-1). By contrast, the same set of predictors accounted for substantially less

- 1105 variations: 32%, 53%, 42%, and 33% in biomass of understory vegetation (shrub, herb, and
- 1106 bryophyte layers), aboveground dead biomass, and soil carbon storage, respectively (Table 3-1).

Table 3-1 Results from boosted regression tree analysis (BRT) to test the effects of canopy tree species diversity on aboveground

1108 biomass and soil carbon storage. Predictors' relative influences represent the percentage contributions of predictors in the accounted

1109 variation of each BRT model. Abbreviations are GDD – growing degree days (number of days above 5 °C), CMI – climate moisture

1110 index (cm), SDC – soil drainage class, SA – stand age (yrs), S – canopy tree richness, J' – canopy tree evenness index, FDis – canopy

1111 tree life-history trait index, TC – tree complexity, *n* – number of sample plots, and PE – model prediction error. All numerical

1112 variables were natural log transformed except for SDC.

Function	Predictors' relative influences (%)							TC	14	DF	Traas	\mathbf{D}^2
	GDD	CMI	SDC	SA	S	J'	FDis	IC	п	ΓL	Tiees	K
Tree aboveground biomass	8.91	11.22	14.76	17.81	33.25	3.28	10.76	4	969	0.16	2500	0.76
Shrub and herb biomass	37.87	10.69	16.84	3.29	5.32	7.31	18.68	2	606	0.2	3900	0.32
Bryophyte biomass	34.71	10.62	16.6	9.12	9.39	3.44	16.12	1	554	0.35	2550	0.53
Total aboveground biomass	7.22	10.71	16.41	24.14	28.14	3.28	10.09	4	977	0.13	2100	0.71
Aboveground dead mass	6.28	21.57	35.27	16.79	9.44	4.07	6.59	2	944	0.23	1850	0.42
Aboveground live mass	6.17	17.88	19.98	24.54	21.49	2.72	7.22	3	987	0.1	2500	0.65
Soil carbon storage	9.76	27.83	34.19	9.31	5.93	6.61	6.36	2	720	0.1	2300	0.33

1113

1117

1118

canopy tree evenness index, and canopy tree life-history trait index. (a) Tree aboveground 1119 1120 biomass. (b) Shrub and herb biomass. (c) Bryophyte biomass. (d) Total aboveground biomass. (e) 1121 Soil carbon storage. Scatter points are observed values plotted by the respective response and 1122 explanatory variables. Abbreviations are GDD – growing degree days (number of days above 1123 5 °C), CMI – climate moisture index (cm), SDC – soil drainage class, SA – stand age (yrs), S – 1124 canopy tree richness, J' – canopy tree evenness index, and FDis – canopy tree life-history trait 1125 index. All numerical variables were natural log transformed except for SDC. 1126 1127 Tree layer biomass and total aboveground biomass 1128 Diversity of the tree layers (S, J', and FDis) accounted for 47.3% (33.3%, 3.28%, and 10.76%) of 1129 the relative influence on tree layer biomass, while the environmental predictors (SDC, CMI, and 1130 GDD) accounted for 34.9%, and stand age, 17.8% (Table 3-1). Tree layer biomass increased 1131 with canopy tree species richness monotonically, while trends in response to J' and FD is were 1132 not as clear, consistent with the relative influences of those predictors (Fig. 3-1a). Similarly, for 1133 total aboveground biomass, SA and S were the strongest predictors, followed by SDC, CMI, 1134 FDis, GDD, and J' with 24.5%, 21.5%, 20.0%, 17.9%, 7.2%, 6.2%, and 2.7% relative influences, 1135 (Table 3-1). Total aboveground biomass increased with canopy tree species richness 1136 monotonically, while the trends in response to J' and FDis were not as clear, consistent with their 1137 relative influences of those predictors (Fig. 3-1d). Tree layer biomass increased with CMI 1138 monotonically, and increased with GDD similarly, but to a lesser extent (Fig. 3-2a). The biomass 1139 increased and then decreased with reduced soil drainage, peaked at an intermediate SDC (Fig. 3-1140 2a). As expected, tree layer biomass increased with SA monotonically (Fig. 3-2a). Reponses of 1141 total aboveground biomass (Fig. 3-2d) were similar with those of tree layer biomass. 1142

Figure 3-1 Results of BRT models showing the relative influences of all predictors on responses

and the observed and predicted responses to canopy tree diversity indices: canopy tree richness,

- **Figure 3-2** Results of BRT models showing the observed and predicted responses to growing
- 1145 degree days (GGD), climate moisture index (CMI), soil drainage class (SDC), and stand age
- 1146 (SA). (a) Tree aboveground biomass. (b) Shrub and herb biomass. (c) Bryophyte biomass. (d)
- 1147 Total aboveground biomass. (e) Soil carbon storage. Soil drainage classes from A to G represent
- 1148 very rapidly, rapidly, well, moderately well, imperfectly, poorly, and very poorly drained,
- respectively. Scatter points are observed values plotted by the respective response and
- 1150 explanatory variables. All numerical variables were natural log transformed except for SDC.
- 1151
- 1152

1155 Figure 3-3 Results of BRT models showing the relative influences of all predictors on responses 1156 and the observed and predicted responses to canopy tree diversity indices: canopy tree richness, 1157 canopy tree evenness index, and canopy tree life-history trait index. (a) Aboveground live 1158 biomass. (b) Aboveground dead biomass. Scatter points are observed values plotted by the 1159 respective response and explanatory variables. Abbreviations are GDD - growing degree days 1160 (number of days above 5 °C), CMI – climate moisture index (cm), SDC – soil drainage class, SA 1161 - stand age (vrs), S - canopy tree richness, J' - canopy tree evenness index, and FDis - canopy 1162 tree life-history trait index. All numerical variables were natural log transformed except for SDC. 1163

- 1175 canopy tree diversity was less important on aboveground dead biomass (Fig. 3-3b).
- 1176 Aboveground dead biomass increased with CMI, but decreased with GDD (Fig. 3-4b) and
- 1177 reduced soil drainage (Fig. 3-4b). Aboveground dead biomass decreased with SA, then increased,
- 1178 following a u-shape pattern (Fig. 3-4b).

1179 Biomass of shrub, herb, and bryophyte layers

1180 Understory, stratum-specific, biomass responded to canopy tree species richness, GDD, and SA

differently compared to tree layer biomass. The relative influence of GDD was 37.9% and 34.7%

- 1182 for the shrub and herb layer (combined) and the bryophyte layer, respectively; whereas the
- 1183 relative influence of SA was 3.3% and 9.1%, respectively. The biomass of the shrub and
- 1184 herb, and bryophyte layers showed distinct patterns compared to tree biomass (Fig. 3-1b-c).
- 1185 Shrub and herb biomass and bryophyte biomass correlated negatively with canopy tree species
- 1186 richness and life-history trait index (Fig. 3-1b-c). Understory biomass increased with CMI and
- 1187 SDC, but decreased with GDD (Fig. 3-2b-c). The bryophyte biomass increased with SA (Fig. 3-
- 1188 2c), but no clear trend in shrub and herb biomass (Fig. 3-2b).
- 1189 Soil carbon storage
- 1190 Soil drainage class and CMI were the strongest predictors of soil C storage, followed by GDD,
- 1191 SA, *J*', FDis, and S with 34.2%, 27.8%, 9.8%, 9.3%, 6.6%, 6.4%, and 5.9% relative influences,
- 1192 respectively (Table 3-1). Soil carbon storage increased with canopy tree species richness but to a
- 1193 much lesser extent comparing with the trends found for tree biomass and aboveground biomass,
- 1194 while trends in response to J' and FDis were not as clear (Fig. 3-1e). Soil carbon storage

1195 increased with CMI and SDC (Fig. 3-2e). The soil carbon storage increased and then decreased

- 1196 with reduced soil drainage, peaked at an imperfectly drainage (Fig. 3-2e). However, soil carbon
- 1197 storage appeared no correlation with SA (Fig. 3-2e).

1198 Discussion

1199 To our best knowledge, this is a first study showing that canopy tree diversity was not the main

- 1200 factor in productivity of understorey and soil carbon storage. Contrary to the previous findings
- 1201 that canopy tree diversity has strong positive effects on ecosystem functions and services of other

1202 strata and growth form (Gamfeldt et al. 2013), we showed that understorey biomass was 1203 negatively influenced by canopy tree richness and life-history trait index. Although canopy tree 1204 species diversity, especially richness, showed strong positive diversity effects on tree layer 1205 biomass, consistent with a global meta-analysis in forests (Zhang et al. 2012), diversity effects of 1206 canopy tree can be negative, rather than consistent positive diversity effects. For example, high 1207 tree species diversity leads to high biomass of tree layers, reducing resources available for 1208 understorey, consequently lower understorey vegetation abundance and species diversity as 1209 predicted by resource availability hypothesis (Bartels and Chen 2010). Therefore, the 1210 assumptions that high value in one aspect of biodiversity within given organisms in a community 1211 leads to high ecosystem functions and services (Zavaleta et al. 2010, Isbell et al. 2011) may be 1212 misleading.

1213 We found that species richness were more importance predictor on forest functions and 1214 services than life-history trait index and evenness of canopy trees. This is consistent with the 1215 prediction of the singular hypothesis (Naeem et al. 2002) suggests that each plant species 1216 contribute to ecosystem functioning uniquely (e.g., Meinen et al. 2009; Eisenhauer et al. 2010) 1217 in contrast to the prediction of functional redundancy hypothesis that high degree of redundancy 1218 in plant functions enable important functions of one species replaced by similar but not identical 1219 species (Thibault *et al.* 2010). The lack of clear patterns and the small sizes of the relative 1220 importance of canopy tree evenness on those ecosystem functions is not consistent with previous 1221 generalization in forests that evenness may be one of the most important aspect of species 1222 diversity in shaping the BEFs (Zhang et al. 2012). This suggests that importance of evenness 1223 (Kirwan et al. 2007) may be overestimated so that the identity of the dominant plant species is 1224 the key predictor for community productivity (Mulder et al. 2004). However, the alternative

1225 explanation may be that the lack of effective diversity index to separate the effects of evenness 1226 and richness from each other. Similarly, the life-history trait index showed positive but non-1227 monotonic effects on tree layer biomass and considerable negative impact on bryophyte biomass. 1228 indicating that the effects of trait divergence may be overestimated. However, our results cannot 1229 rule out that the value of the trait index depends highly on the traits being selected, often 1230 arbitrarily by the researchers. In addition, the continuous trait diversity index (FDis) had 1231 integrated the aspects of richness, evenness, and dispersion of selected traits (Spasojevic et al. 1232 2014), may not be independent from richness (Farwig et al. 2013).

1233 The effects of GDD, CMI, and SDC varied, but the influences were substantial among 1234 forest functions and services. The important role of climate and local site conditions are 1235 consistent with previous findings that moisture and temperate related climatic factors and local 1236 soil conditions affect aboveground tree biomass but the effects vary across biomes (Lehmann et 1237 al. 2014). For example, GDD positively promoted tree layer biomass but negatively impacted the 1238 understorey aboveground biomass. We speculate that the differences in responses of different 1239 growth forms and strata can be indirect results through the influences of environmental factors 1240 on species diversity of each growth form and stratum directly (Zhang et al. 2014), in addition to 1241 the direct effects of environments on forest functions and services (Oberle et al. 2009). The 1242 understorey biomass and soil carbon storage favoured soils with poor drainage while the tree 1243 layer biomass peaked at sites with the intermediate drainage. We speculate that this may be 1244 results of the divergence in life-history traits between tree species and understorey species, for 1245 example, shade tolerance, draught tolerance, etc.

1246 The stand age had considerably amount of influences on forest functions and services 1247 across growth forms and forest strata. This is consistent with previous knowledge that forest

function as a carbon source increases with stand age (Lewis et al. 2009). However, we showed that the aboveground biomass increased with stand age, much apparently than that of the soil carbon storage. This discrepancy between the age effects on aboveground and belowground component of carbon and biomass is not consistent with previous findings that the soil and total ecosystem carbon increases with the time since fire (Wardle et al. 2003, Wardle et al. 2012).

1253 In this study, we show that canopy tree diversity, especially the richness, are important 1254 for tree aboveground biomass, despite the large variations in climate and site conditions in 1255 natural Canadian forest ecosystems. Further, the negative effects of canopy tree diversity on 1256 understorey plant biomass are against the common presumption about the positive effects of the 1257 canopy tree species diversity on full-range of forest functions including the productivity of 1258 understorey and soil carbon storage (Gamfeldt et al. 2013). This study is one step further from 1259 previous study in boreal forest (Cavard et al. 2011) by directly linking canopy tree diversity to 1260 soil carbon storage and understorey dynamics rather than the coarse classification of canopy tree 1261 vegetation type with much greater extent of the study area, and thus the increased inference 1262 space. Further, the total aboveground biomass and tree layer biomass increased monotonically 1263 with stand age, and lack of response to age in soil carbon storage, suggesting that the role of 1264 carbon sink of forests may improve through time.

1265

1266

1267

1268 CHAPTER 4: IS POSITIVE BIODIVERSITY-ECOSYSTEM FUNCTIONING

1269 RELATIONSHIP CONSISTENT ACROSS FOREST STRATA?

1270 Running title: Patterns and drivers of diversity-productivity relationship in natural forests

1271 Introduction

1272 More than three decades of intensive studies have established the important role of biodiversity 1273 on maintaining ecosystem productivity and other functioning and services (Reich et al. 2012, 1274 Tilman et al. 2012) (Cardinale et al. 2012). Many experimental results, mainly from grasslands, 1275 demonstrate that above ground productivity is positively correlated with increasing species 1276 richness (e.g., Isbell et al. 2009). Although less common, studies of biodiversity effects on 1277 ecosystem functioning (BEF) in forests have shown similar trends (e.g., Vilà et al. 2003, Vilà et 1278 al. 2007, Morin et al. 2011). However, many BEF studies conducted in forest systems have been 1279 criticized because they fail to account for many of the complexities of natural forests (Flombaum 1280 and Sala 2008, Duffy 2009, Willig 2011). For instance, many previous BEF studies in forests 1281 have focused on the effects of canopy tree species diversity (e.g., richness and evenness) on 1282 productivity with less consideration of other vegetation life forms. Lack of consideration of all 1283 vegetation stratum in complex structured forests may result in misleading conclusions 1284 concerning the magnitude and patterns of BEF in forest ecosystems (Fowler et al. 2012). 1285 In this study, we examine BEF across forest vegetation strata, including the tree layer,

1286 shrub and herb layer, and bryophyte layer. Further, we compare the relative importance of total 1287 plant richness and tree richness on total aboveground biomass and total soil carbon content as 1288 important forest ecosystem functions. Specifically, we hypothesize: (1) the magnitude and 1289 direction of diversity-productivity relationships (DPRs) differ because DPR may be highly 1290 context dependent, attributable to the complexity of natural ecosystems (Willig 2011, Midgley

1291 2012); (2) diversity of tree species may contribute more to total aboveground biomass and soil 1292 carbon storage than those from total plant richness, given the dominant role of canopy trees in 1293 multiple forest ecosystem functions (Gamfeldt et al. 2013); (3) species diversity effects of plants 1294 on ecosystem functioning may differ between forest strata and growth form because richness of 1295 different growth form responds to climatic environmental factors differently (Oberle et al. 2009) 1296 including GDD, CMI, and SDC (Zhang et al. 2014); and (4) stand age may influence the 1297 accumulative functions such as plant biomass and soil carbon storage positively due to the 1298 enhanced diversity effects over succession (Reich et al. 2012). 1299 Material and methods 1300 Study area and available data 1301 We used the National Forest Inventory (NFI) data including 987 permanent sampling plots 1302 (ground plots). The study area covered by those ground plots are between 53° 25'W and 134° 1303 46'W longitude and 42° 37'N and 68° 14'N latitude. Since the same dataset was used in previous

1304 chapters (Ch. 1 and 3) to tackle different aspects of the BEF studies, we do not repeat the

1305 information about this dataset in this chapter. The details about sampling and compilation

1306 procedures of this NFI dataset can be found in the published chapter 1 of this thesis (Zhang et al.

1307 2014).

1308 Response variables: biomass and carbon storage

1309 The response variables in this chapter include biomass of tree, shrub and herb, and bryophyte

1310 layers, and total aboveground biomass include biomass from dead trees, stumps, and woody

1311 debris. The total carbon storage in forest floor and mineral layers were also measured and

1312 compiled. For the details about the compilations of biomass and soil carbon storage, refer to the

1313 chapter 1 and 3.

1314 Explanatory variables

1315 Similarly as previous chapters, we included GDD, CMI, SDC, and SA as covariates in all models 1316 to account for the influences of external factors. The main predictors are species richness for 1317 each canopy stratum: tree richness for tree layer, combined richness for shrub and herb layer, and 1318 bryophyte richness for bryophyte layer including all other non-vascular plants as well. In 1319 addition, total plant richness was included as a predictor in a separate model with total plant 1320 richness to replace richness of other layers. To calculate tree species richness, we counted the 1321 total number of species found in each plot by pooling individual tree data of large tree plot and 1322 small tree plot. Similarly, we counted the total number of unique species for each plot by pooling 1323 species data for the overall richness of shrub and herb layers. For other details about the 1324 compilations of those predictors, refer to the chapter 1 and 3. 1325 Statistical analyses 1326 Similar to Chapter 3, I used BRT to examine the relationship between biomass and various 1327 predictors. The rationale of using BRT and details about BRT parameter settings, and fitting

1328 procedures can be found in previous chapter 1 and 3.

Table 4-1 Results from boosted regression tree analysis (BRT) of aboveground biomass and soil carbon storage. (a) models with plant

richness of each plant layer. (b) models with tree richness as predictor. (c) models with total plant richness as predictor. Predictors'

1332 relative influences represent the percentage contributions of predictors in the accounted variation of each BRT model. Abbreviations

1333 are GDD – growing degree days (number of days above 5 °C), CMI – climate moisture index (cm), SDC – soil drainage class, SA –

1334 stand age (yrs), S – plant richness, TC – tree complexity, n – number of sample plots, and PE – model prediction error. All numerical

1335 variables were natural log transformed except for SDC.

Model	Ecosystem functions	Predictors' relative influences (%)									
		GDD	CMI	SDC	SA	S	TC	n	PE	Trees	R^2
а	Tree aboveground biomass	14.41	16.66	14.25	41.15	13.53	3	969	0.2	1700	0.65
	Shrub and herb biomass	40.37	7.09	18.4	5.51	28.63	2	606	0.21	4350	0.29
	Bryophyte biomass	32.88	10.9	17.9	12.83	25.5	2	554	0.32	2150	0.62
b	Aboveground live biomass	13.69	16.65	13.2	38.22	18.24	4	977	0.14	1750	0.66
	Total aboveground biomass	8.53	23.39	22.19	29.16	16.74	2	987	0.1	3200	0.6
	Soil carbon storage	15.34	30.68	31.97	15.75	6.26	3	720	0.09	2450	0.41
с	Aboveground live biomass	18.68	18.79	18.9	40.98	2.65	4	977	0.15	1200	0.61
	Total aboveground biomass	12.3	24.41	27.06	31.48	4.76	4	987	0.1	1600	0.61
	Soil carbon storage	11.08	30.82	30.19	10.27	17.64	3	720	0.09	1300	0.35

1345 Figure 4-1 Results of BRT models showing the relative influences of all predictors on responses 1346 and the observed and predicted responses to growing degree days (GGD), climate moisture index (CMI), soil drainage class (SDC), stand age (SA), and species richness of forest strata (S). (a) 1347 1348 Tree aboveground biomass. (b) Shrub and herb biomass. (c) Bryophyte biomass. Soil drainage 1349 classes from A to G represent very rapidly, rapidly, well, moderately well, imperfectly, poorly, 1350 and very poorly drained, respectively. Scatter points are observed values plotted by the 1351 respective response and explanatory variables. All numerical variables were natural log 1352 transformed except for SDC.

- 1353
- 1354 Results

1355 Our combined set of explanatory variables, including GDD, CMI, SDC, SA, and richness of 1356 trees, shrub and herb, and bryophyte layers, accounted for 65%, 29%, and 62% of variation in 1357 the biomass of the pertinent canopy stratum (Table 4-1a). While accounting for variation from 1358 covariates GDD, CMI, SDC, our models that included tree layer richness as an explanatory 1359 variable accounted for 66%, 60%, and 41% of variation in aboveground live biomass, total 1360 aboveground biomass, and soil carbon storage, respectively (Table 4-1). Similarly, models that 1361 included total plant richness, instead of tree richness, accounted for 61%, 61%, and 35% of 1362 variation in aboveground live biomass, total aboveground biomass, and soil carbon storage, respectively (Table 4-1). 1363

- 1364 Biomass of tree layer
- 1365 For tree layer biomass, SA was the strongest predictors, followed by CMI, GDD, SDC, and S
- 1366 with 41.2%, 16.7%, 14.4%, 14.3%, and 13.5% relative influences, respectively (Table 4-1). Tree
- 1367 layer biomass increased with tree species richness monotonically (Fig. 4-1a). Tree layer biomass
- 1368 increased with CMI and GDD (Fig. 4-1a). The biomass slightly increased and then decreased
- 1369 with reduced soil drainage, peaked at an intermediate SDC (Fig. 4-1a). As expected, tree layer
- 1370 biomass increased with SA monotonically (Fig. 4-1a).

1371 Biomass in shrub and herb combined layer

- 1372 The relative influences of predictors (Table 4-1) clearly showed that the understory stratum-
- 1373 specific biomass responded to species richness of each stratum, GDD, SDC and SA differently
- 1374 compared to tree layer. For biomass of shrub and herb layer, GDD and S were the strongest
- 1375 predictors, followed by SDC, CMI, and SA with 40.4%, 28.6%, 18.4%, 7.1%, and 5.5% relative
- 1376 influences, respectively (Table 4-1). The biomass from the shrub and herb combined layer
- 1377 increased with tree species richness but not strictly monotonic (Fig. 4-1b). The biomass
- 1378 decreased with GDD monotonically (Fig. 4-1b). The biomass increased with reduced soil
- 1379 drainage, peaked at an intermediate SDC (Fig. 4-1b). The biomass appeared not to be affected by
- 1380 CMI and SA (Fig. 4-1b).
- 1381 Biomass in bryophyte layer
- 1382 For biomass of bryophyte layer, GDD and S were the strongest predictors, followed by SDC, SA,
- and CMI with 32.9%, 25.5%, 17.9%, 12.8%, and 10.9% relative influences, respectively (Table
- 1384 4-1). The biomass from the bryophyte layer increased with tree species richness, but decreased
- 1385 with GDD monotonically (Fig. 4-1c). The biomass increased with reduced soil drainage, peaked
- 1386 at the poorly drained site (Fig. 4-1c). The biomass appeared to be positively correlated with CMI
- 1387 and SA (Fig. 4-1c).

1391 Figure 4-2 Results of BRT models showing the relative influences of all predictors on responses 1392 and the observed and predicted responses to growing degree days (GGD), climate moisture index 1393 (CMI), soil drainage class (SDC), stand age (SA), and total plant species richness (S). (a) 1394 Aboveground lives biomass. (b) Total aboveground biomass. (c) Soil carbon storage. Soil 1395 drainage classes from A to G represent very rapidly, rapidly, well, moderately well, imperfectly, 1396 poorly, and very poorly drained, respectively. Scatter points are observed values plotted by the 1397 respective response and explanatory variables. All numerical variables were natural log 1398 transformed except for SDC. 1399 1400 Aboveground live biomass and total aboveground biomass 1401 For the aboveground live biomass, SA and tree richness were the strongest predictors, followed

1402 by CMI, GDD, and SDC with 38.2%, 18.2%, 16.7%, 13.7%, and 13.2% relative influences,

1403 relatively (Table 4-1). However, species richness became less important when replaced by total

1404 plant richness with 2.7% relative influence, while other predictors remained comparable value of

1405 the relative influences (Table 1). For the total aboveground biomass, the model yielded similar

1406 results (Table 4-1; Fig. 4-2a & 4-2b).

1407 The aboveground live biomass increased with total plant richness, CMI, GDD, and SA,

1408 while the biomass increased and then decreased with reduced soil drainage, peaked at an

1409 intermediate SDC (Fig. 4-2a). When total plant richness was replaced by tree layer richness, the

1410 partial dependence plots showed similar trends and patterns but noted that tree species richness

1411 had more prominent positive trends with much higher relative importance for the total

1412 aboveground live biomass (Fig. 4-3a). The total aboveground biomass showed similar trends

1413 (Fig. 4-2b & 4-3b).

- 1417 **Figure 4-3** Results of BRT models showing the relative influences of all predictors on
- 1418 responses and the observed and predicted responses to growing degree days (GGD), climate
- 1419 moisture index (CMI), soil drainage class (SDC), stand age (SA), and tree species richness
- 1420 (S). (a) Aboveground lives biomass. (b) Total aboveground biomass. (c) Soil carbon storage.
- 1421 Soil drainage classes from A to G represent very rapidly, rapidly, well, moderately well,
- 1422 imperfectly, poorly, and very poorly drained, respectively. Scatter points are observed values
- 1423 plotted by the respective response and explanatory variables. All numerical variables were
- 1424 natural log transformed except for SDC.
- 1425
- 1426 Soil carbon storage
- 1427 For soil carbon storage, SDC and CMI were the strongest predictors, followed by SA, GDD,
- 1428 and tree layer richness with 32.0%, 30.7%, 15.8%, 15.3%, and 6.3% relative influences,
- 1429 respectively (Table 4-1). In contrast, the total plant richness had 17.6% relative influences in
- 1430 model that included total plant richness instead of the tree layer richness (Table 4-1). The soil
- 1431 carbon storage increased with total plant richness monotonically (Fig. 4-2c), while the trends
- 1432 in response to tree layer richness were not clear (Fig. 4-3c). Tree layer biomass showed
- 1433 complex response to CMI and GDD with a general positive correlation (Fig. 4-2c & 4-3c).
- 1434 The biomass increased and then decreased with reduced soil drainage, peaked at an extremely
- 1435 poor drainage (Fig. 4-2c & 4-3c). However, soil carbon storage appeared no correlation with
- 1436 SA (Fig. 4-2c & 4-3c).

1437 **Discussion**

- 1438 This analysis is, to our best knowledge, the first to reveal the positive diversity effects on
- 1439 forest aboveground biomass and soil carbon storage across forest strata/growth forms.
- 1440 Specifically, we demonstrate the positive richness effects of plant species within each stratum
- or growth form on plant aboveground biomass and the positive effects of the total plant
- 1442 richness on the total soil carbon storage. To some extent, the positive richness effects are
- 1443 partially consistent with the previous findings that positive DPR is ubiquitous in forest
- 1444 ecosystems (Zhang et al. 2012), when considering within the specific forest strata and/or
- 1445 growth form. The implication of this general positive diversity effects within strata/growth

1446 form is consistent with previous conclusions in BEF studies that more species are required to 1447 maintain multiple ecosystem functions (Zavaleta et al. 2010, Isbell et al. 2011). However, our 1448 findings in chapter 3 are contradicting to the previous assumptions/believes that species 1449 diversity of the dominant species within a community, for example the canopy tree species 1450 (Gamfeldt et al. 2013), have positive effects on multiple ecosystem functions across different 1451 strata and/or growth forms. The limitation of strata or growth on the positive diversity effects 1452 suggests that it is less meaningful or even invalid in some cases to presume the positive 1453 species diversity effects on forest functions out of context, e.g., assuming positive diversity 1454 effects of canopy trees on the understorey plant biomass.

1455 In contrast to previously found positive canopy tree diversity effects on soil carbon 1456 storage in forests (Gamfeldt et al. 2013), we found that total plant richness had stronger 1457 positive influences than those of canopy tree species richness on soil carbon storage. 1458 Conversely, total plant richness has fewer influences on the aboveground biomass than those 1459 of canopy tree species richness. The varied relative influences between total plant richness 1460 and canopy tree species richness on varied ecosystem functions demonstrate that it is 1461 unrealistic to assume positive diversity effects without confining the ecosystem functions and 1462 services to certain contexts. The belief that the increased tree species richness will improve 1463 the full range of the forest services (e.g., Gamfeldt et al. 2013) may be an over-simplification 1464 of the complex natural ecosystem, thus requiring a second thought about the indispensible 1465 role of plant species within other forest strata and growth forms.

In addition to previous findings (Oberle et al. 2009) that magnitude of diversity
effects varies between plant growth forms, we show that direction of the response in
ecosystem functions can be altered by climatic and local soil conditions, for example, the
negative response in biomass of shrub and herb combined, and bryophyte layers to the GDD.
This is consistent with results from pervious chapter 1 that richness of different growth forms

1471 respond to climatic and local environmental factors differently (Zhang et al. 2014). However, 1472 we argue that the altered BEFs among strata and growth forms can be results of the altered 1473 pertinent species diversity in addition to the previous concluded dominant role of canopy tree 1474 species through canopy density in determinations of the varied BEFs among forest strata and 1475 growth forms, especially for the understorey (Oberle et al. 2009). For ecosystem functions 1476 (biomass) in each forest stratum or growth form, the environments influence the specific 1477 ecosystem function indirectly through the altered species diversity (richness) in pertinent 1478 layer or growth form.

1479 Interestingly, we found no clear effects of stand age on soil carbon storage, suggesting 1480 that belowground carbon sink most likely will not decline through aging. On the other hand, 1481 the total aboveground plant biomass increased with stand age, suggesting that the role of 1482 carbon sink in forest ecosystems may be enhanced by stand age, rather than decline to 1483 become a carbon source, at least before reaching a really old age.

1484 In this paper, the generalization of the NFI data is consistent with our hypotheses. 1485 First, we show that the positive diversity effects are consistent for each forest stratum. Second, 1486 the strength of positive diversity effects varies across strata. Further, we show strong resource 1487 filtering of tree layer over understorey. Particularly, we highlight that a specific target of 1488 forest management can be improved by a specific aspect of plant diversity in forests, rather 1489 than looking for an universal diversity index for improving/maintaining the full range of 1490 forest services. The underlying mechanisms for those observed patterns could be one of the 1491 many potential ecological and biological processes and their interactions, for example, 1492 interspecific competition, facilitation, and Janzen-Connell effects (Janzen 1970, Connell 1971, 1493 Dohn et al. 2013). However, BRT based on the censored observational data from natural 1494 forests may not be the best approach for determination of the mechanisms. The establishment 1495 of the causal relationships between the specific aspect of the plant species diversity and any

- 1496 identified desirable ecosystem services requires purposely-designed experiment with the
- 1497 adequate controls.

1499 GENERAL CONCLUSION

1500 This study provide a guideline to facilitate further investigations in the patterns of species 1501 coexistence and BEF and the underlying mechanisms, namely the complex interactive web 1502 intertwined with endogenous biotic factors and the exogenous environmental factors in boreal 1503 forest ecosystems. Further, this study will provide new knowledge to prioritize the questions being asked, methods being used, and the utilization of available experimental data in forest 1504 1505 ecosystems for future studies. Practically, our efforts to clarify concepts, causes, and 1506 consequences of species loss or gain is essential to accomplish better predictions about 1507 community dynamics and ecosystem functions in response to the current threats such as climate and land-use changes and invasive species. The outcomes of this study will benefit 1508 1509 forest management practices aimed at multidimensional goals such as higher per-unit-area 1510 productivity or conservation of biodiversity.

In summary, this study has deepened our understanding to the key features of the natural ecosystems. I highlight that relationships between biodiversity and multiple ecosystem functions and services are multifaceted, subject to several covariates including climate, local site conditions, time since stand-replacing disturbances, and the reciprocal interactions between diversity and ecosystem functions and services. Several underlying mechanisms could be involved in those ecological processes in a multivariate space.

A mechanistic understanding of a general framework on the multifaceted relationships between diversity, productivity, species coexistence, and their interactions with multiple exogenous gradients has not been established conclusively. The common belief is that the adequate substantiations to establish causal relationships may still rely on deliberately designed experiments with satisfactory controls over multiple covariates, mostly environmental factors and biotic factors that are not being studied in current study. Therefore, our findings call for more complementary experiments to identify and verify those potential

- 1524 mechanisms and evaluate the relative importance of those mechanisms. In future
- 1525 experimental studies, the pertinent questions could be (1) how the current resources
- 1526 management can be improved to meet the projected goals in enhancing ecosystem functions
- 1527 and services, and (2) how the improved diversity in one layer of the hierarchical structure,
- such as canopy strata, growth forms, and trophic levels, influence the species diversity effects
- 1529 in the target ecosystem services?
- 1530
- 1531

1532 APPENDIX I. SUPPLEMENTAL INFORMATION FOR CHAPTER ONE

Figure S1-2 Distribution of plot sizes of the national forest inventory ground plots. (a)
Canopy tree species richness, Simpson's dominance index, and total plant species richness. (b)
Shrub layer species richness. (c) Herbaceous layer species richness. (d) Bryophyte species
richness.

1547 **Figure S1-3** Frequency distribution of species richness. a) Canopy tree species richness, b)

1548 total plant species richness, and c) the ratio of canopy tree species richness to total plant

1549 species richness.

Figure S1-4 Observed and predicted responses of diversity indices to growing degree days (GGD), climate moisture index (CMI), natural logarithm of primary productivity (NPP), soil drainage class (SDC), and natural logarithm of stand age on species richness. (a) Total plant species richness. (b) Shrub layer richness. (c) Herbaceous layer richness. (d) Bryophyte richness. Soil drainage class from A to E represent very rapidly, rapidly, well, moderately well, imperfectly, poorly, and very poorly drained, respectively. Scatter points are observed values plotted by the respective dependent variable and predictor.

- Figure S1-5 Predicted response of canopy tree species richness to growing degree days and
- climate moisture index.

1567 APPENDIX II. SUPPLEMENTAL INFORMATION FOR CHAPTER TWO

- 1568
- 1569 **Table S2-1** Endogenous (dependent) and exogenous (independent) variables used in
- 1570 univariate and structural equation models (n = 448). Nutrient regime is defined as very poor
- 1571 (1), poor (2), medium (3), and rich (4). Values are mean \pm SD and range in brackets for
- 1572 continuous variables or median and range for ordinal variables.

Conceptual category	Variable	Transformation	Scale (units)	Mean ± SD (range)
Productivity	Aboveground	-	Continuous	$131.2 \pm 46.4 (13.7)$
	biomass (AGB)		$(Mg ha^{-1})$	-271.2)
Diversity	Shannon's index	Natural log	Continuous	$0.42 \pm 0.23 (0.00)$
				- 0.95)
	Life-history trait	-	Ordinal	2 (1 – 4)
~	variation (LH)		~ .	
Size inequality	DBH variation	Natural log	Continuous	-1.16 ± 0.29 (-
				1.960.41)
Stand age	Stand age	Natural log	Continuous	$4.41 \pm 0.32 (3.5 -$
			(years)	5.24)
Resources	Soil nutrient	-	Ordinal	2(1-4)
availability	regime			

Fig. S2-1 Locations of the 448 sample plots from Saskatchewan, Canada.

1577 Fig. S2-2 Relative influence of plot size, compared with other predictors, on aboveground

1578 biomass. Predictors included in boosted regression models are DBH variation, stand age, soil

nutrient regime, Shannon's index, and plot size (see Supplementary Table S1 for more

1580 explanations).

- 1582
- 1583
- 1584

1585 **Fig. S2-3** Structural equation models linking aboveground biomass (AGB) and species

1586 diversity. Additional direct path from productivity to species diversity is added in addition to

1587 the effects of diversity, soil nutrient regime, and stand age on AGB. The coefficients are

1588 standardized prediction coefficients for each causal path. Solid lines represent significant

1589 paths ($P \le 0.05$) and dash lines for non-significant paths (P > 0.05).

1591 APPENDIX III. SUPPLEMENTAL INFORMATION FOR CHAPTER THREE

1592 **Table S3-1** Summary of the characteristics included in calculating the numeric life-history diversity index.

1593 Information extracted from USDA plant database. Online available: http://plants.usda.gov/charinfo.html

Characteristics	Definitions	
Active growth period	Seasonal period in which plants have their most active growth	
C:N ratio	Percentage of organic carbon divided by the percentage of total nitrogen in aboveground organic material	
Growth rate	Growth rate after successful establishment relative to other species with the same growth habit	
Known allelopath	Plant species shown to be allelopathic to at least one other species	
Leaf retention	Tree, shrub, or sub-shrub retain its leaves year round	
Lifespan	Expected lifespan (in years) of a perennial plant relative to other species with the same growth habit	
Nitrogen fixation	How much nitrogen is fixed by this plant in monoculture	
Re-sprout ability	Woody perennial re-sprout following top (above ground biomass) removal	
Shape and orientation	Growth form or predominant shape of an individual plant	
Adapted to coarse textured soils	Capability to establish and grow in soil with a coarse textured surface layer	
Adapted to fine textured soils	Capability to establish and grow in soil with a fine textured surface layer	
Adapted to medium textured soils	Capability to establish and grow in soil with a medium textured surface layer	
Anaerobic tolerance	Relative tolerance to anaerobic soil conditions	
CaCO3 tolerance	Relative tolerance to calcareous soil	
Cold stratification required	Cold stratification significantly increase the seed germination percentage of this plant	
Drought tolerance	Relative tolerance of the plant to drought conditions	
Fertility requirement	Relative level of nutrition (N, P, K) required for normal growth and development	
Fire tolerance	Relative ability to resprout, regrow, or reestablish from residual seed after a fire	
Frost free days	The minimum average number of frost-free days within the plant's known geographical range	
Hedge tolerance	Relative tolerance of woody perennials to hedging (close cropping) by livestock or wildlife	
Moisture use	Ability to use available soil moisture relative to other species in the similar soil moisture regime	

Root depth minimum inches	The minimum depth of soil (in inches) required for good growth
Salinity tolerance	Relative tolerance to soil salinity
Shade tolerance	Relative tolerance to shade conditions
Temperature minimum (°F)	The lowest tolerable temperature recorded in the plant's historical range
Bloom period	Seasonal period in which the plant bloom the most
Fruit seed abundance	Amount of seed produced by the plant compared to other species with the same growth habit
Fruit seed persistence	Fruit or seed generally recognized as being persistent on the plant
Seed spread rate	Capability of the plant to spread through its seed production
Seedling vigor	Expected seedling survival percentage of the plant compared to other species with the same growth habit
Vegetative spread rate	Spread rate, which a plant can spread compared to other species with the same growth habit
Palatable browse animal	Relative palatability of this plant to browsing animals

REFERENCE

- Adler, P. B., E. W. Seabloom, E. T. Borer, H. Hillebrand, Y. Hautier, A. Hector, W. S. Harpole, L. R. O'Halloran, J. B. Grace, T. M. Anderson, J. D. Bakker, L. A. Biederman, C. S. Brown, Y. M. Buckley, L. B. Calabrese, C. J. Chu, E. E. Cleland, S. L. Collins, K. L. Cottingham, M. J. Crawley, E. I. Damschen, K. F. Davies, N. M. DeCrappeo, P. A. Fay, J. Firn, P. Frater, E. I. Gasarch, D. S. Gruner, N. Hagenah, J. Hille Ris Lambers, H. Humphries, V. L. Jin, A. D. Kay, K. P. Kirkman, J. A. Klein, J. M. H. Knops, K. J. La Pierre, J. G. Lambrinos, W. Li, A. S. MacDougall, R. L. McCulley, B. A. Melbourne, C. E. Mitchell, J. L. Moore, J. W. Morgan, B. Mortensen, J. L. Orrock, S. M. Prober, D. A. Pyke, A. C. Risch, M. Schuetz, M. D. Smith, C. J. Stevens, L. L. Sullivan, G. Wang, P. D. Wragg, J. P. Wright, and L. H. Yang. 2011. Productivity Is a Poor Predictor of Plant Species Richness. Science 333:1750-1753.
- Balvanera, P., A. B. Pfisterer, N. Buchmann, J. S. He, T. Nakashizuka, D. Raffaelli, and B. Schmid. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters 9:1146-1156.
- Barrufol, M., B. Schmid, H. Bruelheide, X. Chi, A. Hector, K. Ma, S. Michalski, Z. Tang, and P. A. Niklaus. 2013. Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE 8:e81246.
- Bartels, S. F., and H. Y. H. Chen. 2010. Is understory plant species diversity driven by resource quantity or resource heterogeneity? Ecology **91**:1931-1938.
- Bartels, S. F., and H. Y. H. Chen. 2013. Interactions between overstorey and understorey vegetation along an overstorey compositional gradient. Journal of Vegetation Science **24**:543-552.
- Beckingham, J. D., D. G. Nielsen, and V. A. Futoransky. 1996. Field guide to ecosites of the mid-boreal ecoregions of Saskatchewan. Canadian Forest Service.
- Benn, D. I., and D. J. Evans. 2010. Glaciers and glaciation. Hodder Education, London, UK.
- Bivand, R. 2013. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.5-65 <u>http://CRAN.R-project.org/package=spdep</u>.
- Brassard, B. W., H. Y. H. Chen, X. Cavard, J. Laganiere, P. B. Reich, Y. Bergeron, D. Pare, and Z. Y. Yuan. 2013. Tree species diversity increases fine root productivity through increased soil volume filling. Journal of Ecology **101**:210-219.
- Brassard, B. W., H. Y. H. Chen, J. R. Wang, and P. N. Duinker. 2008. Effects of time since stand-replacing fire and overstory composition on live-tree structural diversity in the boreal forest of central Canada. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere **38**:52-62.
- Cahill, J. F., G. G. McNickle, J. J. Haag, E. G. Lamb, S. M. Nyanumba, and C. S. Clair. 2010. Plants integrate information about nutrients and neighbors. Science **328**:1657.
- Canadian Forest Inventory Committee. 2004. Canada's National Forest Inventory: Design Overview. Canadian Forest Service, Ottawa, Ontario, Canada.
- Cardinale, B. J., D. M. Bennett, C. E. Nelson, and K. Gross. 2009. Does productivity drive diversity or vice versa? A test of the multivariate productivity-diversity hypothesis in streams. Ecology **90**:1227-1241.
- Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily, M. Loreau, J. B. Grace, A. Larigauderie, D. S. Srivastava, and S. Naeem. 2012. Biodiversity loss and its impact on humanity. Nature 486:59-67.

- Cardinale, B. J., D. S. Srivastava, J. E. Duffy, J. P. Wright, A. L. Downing, M. Sankaran, and C. Jouseau. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989-992.
- Cardinale, B. J., J. P. Wright, M. W. Cadotte, I. T. Carroll, A. Hector, D. S. Srivastava, M. Loreau, and J. J. Weis. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America 104:18123-18128.
- Carroll, I. T., B. J. Cardinale, and R. M. Nisbet. 2011. Niche and fitness differences relate the maintenance of diversity to ecosystem function. Ecology **92**:1157-1165.
- Cavard, X., Y. Bergeron, H. Y. H. Chen, and D. Pare. 2011. Effect of forest canopy composition on soil nutrients and dynamics of the understorey: mixed canopies serve neither vascular nor bryophyte strata. Journal of Vegetation Science **22**:1105-1119.
- Chen, H. Y. H., K. Klinka, and R. D. Kabzems. 1998. Site index, site quality, and foliar nutrients of trembling aspen: relationships and predictions. Canadian Journal of Forest Research 28:1743-1755.
- Chen, H. Y. H., P. V. Krestov, and K. Klinka. 2002. Trembling aspen site index in relation to environmental measures of site quality at two spatial scales. Canadian Journal of Forest Research **32**:112-119.
- Chen, H. Y. H., and R. V. Popadiouk. 2002. Dynamics of North American boreal mixedwoods. Environmental Reviews **10**:137-166.
- Chen, H. Y. H., and A. R. Taylor. 2012. A test of ecological succession hypotheses using 55year time-series data for 361 boreal forest stands. Global Ecology and Biogeography 21:441-454.
- Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics **31**:343-366.
- Chipman, S. J., and E. A. Johnson. 2002. Understory vascular plant species diversity in the mixedwood boreal forest of western Canada. Ecological Applications **12**:588-601.
- Chu, C. J., J. Weiner, F. T. Maestre, S. Xiao, Y. S. Wang, Q. Li, J. L. Yuan, L. Q. Zhao, Z. W. Ren, and G. Wang. 2009. Positive interactions can increase size inequality in plant populations. Journal of Ecology 97:1401-1407.
- Clark, J. S. 2010. Individuals and the Variation Needed for High Species Diversity in Forest Trees. Science **327**:1129-1132.
- Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Pages 298-312 *in* P. J. den Boer and G. R. Gradwell, editors. Dynamics of numbers in populations. PUDOC, Wageningen, The Netherlands.
- Connell, J. H. 1978. Diversity in Tropical Rain Forests and Coral Reefs High Diversity of Trees and Corals Is Maintained Only in A Non-Equilibrium State. Science **199**:1302-1310.
- Connell, J. H., and R. O. Slatyer. 1977. Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization. American Naturalist **111**:1119-1144.
- Coomes, D. A., G. Kunstler, C. D. Canham, and E. Wright. 2009. A greater range of shadetolerance niches in nutrient-rich forests: an explanation for positive richnessproductivity relationships? Journal of Ecology **97**:705-717.
- Cordlandwehr, V., R. L. Meredith, W. A. Ozinga, R. M. Bekker, J. M. van Groenendael, and J. P. Bakker. 2013. Do plant traits retrieved from a database accurately predict on-site measurements? Journal of Ecology 101:662-670.

- Courtin, P. J., K. Klinka, M. C. Feller, and J. P. Demaerschalk. 1988. An approach to quantitative classification of nutrient regimes of forest soils. Canadian Journal of Botany-Revue Canadienne De Botanique **66**:2640-2653.
- Currie, D. J., G. G. Mittelbach, H. V. Cornell, R. Field, J. F. Guegan, B. A. Hawkins, D. M. Kaufman, J. T. Kerr, T. Oberdorff, E. O'Brien, and J. R. G. Turner. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7:1121-1134.
- Dawson, T. P., S. T. Jackson, J. I. House, I. C. Prentice, and G. M. Mace. 2011. Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science **332**:53-58.
- De'ath, G. 2007. Boosted trees for ecological modeling and prediction. Ecology 88:243-251.
- De'ath, G., and K. E. Fabricius. 2000. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology **81**:3178-3192.
- Dohn, J., F. Dembélé, M. Karembé, A. Moustakas, K. A. Amévor, and N. P. Hanan. 2013. Tree effects on grass growth in savannas: competition, facilitation and the stressgradient hypothesis. Journal of Ecology 101:202-209.
- Dornelas, M., A. E. Magurran, S. T. Buckland, A. Chao, R. L. Chazdon, R. K. Colwell, T. Curtis, K. J. Gaston, N. J. Gotelli, M. A. Kosnik, B. McGill, J. L. McCune, H. Morlon, P. J. Mumby, L. Øvreås, A. Studeny, and M. Vellend. 2013. Quantifying temporal change in biodiversity: challenges and opportunities. Proceedings of the Royal Society B: Biological Sciences 280.
- Duffy, J. E. 2009. Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment 7:437-444.
- Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. S. Wisz, and N. E. Zimmermann. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129-151.
- Elith, J., J. R. Leathwick, and T. Hastie. 2008. A working guide to boosted regression trees. Journal of Animal Ecology **77**:802-813.
- Evans, K. L., P. H. Warren, and K. J. Gaston. 2005. Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews **80**:1-25.
- Fargione, J., D. Tilman, R. Dybzinski, J. H. R. Lambers, C. Clark, W. S. Harpole, J. M. H. Knops, P. B. Reich, and M. Loreau. 2007. From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proceedings of the Royal Society B: Biological Sciences 274:871-876.
- Farwig, N., M. Barrufol, B. Schmid, H. Bruelheide, X. Chi, A. Hector, K. Ma, S. Michalski, Z. Tang, and P. A. Niklaus. 2013. Biodiversity Promotes Tree Growth during Succession in Subtropical Forest. PLoS ONE 8:e81246.
- Flombaum, P., and O. E. Sala. 2008. Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proc.Natl.Acad.Sci.U.S.A **105**:6087-6090.
- Fornara, D. A., and D. Tilman. 2008. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology **96**:314-322.
- Fowler, M. S., J. Laakso, V. Kaitala, L. Ruokolainen, and E. Ranta. 2012. Species dynamics alter community diversity-biomass stability relationships. Ecology Letters 15:1387-1396.
- Francis, A. P., and D. J. Currie. 2003. A globally consistent richness-climate relationship for angiosperms. American Naturalist 161:523-536.
- Fridley, J. D., J. P. Grime, M. A. Huston, S. Pierce, S. M. Smart, K. Thompson, L. Börger, R. W. Brooker, B. E. L. Cerabolini, N. Gross, P. Liancourt, R. Michalet, and Y. Le

Bagousse-Pinguet. 2012. Comment on "Productivity Is a Poor Predictor of Plant Species Richness". Science **335**:1441.

- Gamfeldt, L., T. Snall, R. Bagchi, M. Jonsson, L. Gustafsson, P. Kjellander, M. C. Ruiz-Jaen, M. Froberg, J. Stendahl, C. D. Philipson, G. Mikusinski, E. Andersson, B. Westerlund, H. Andren, F. Moberg, J. Moen, and J. Bengtsson. 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340.
- Gaston, K. J. 2000. Global patterns in biodiversity. Nature 405:220-227.
- Gilliam, F. S. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience **57**:845-858.
- Gillman, L. N., and S. D. Wright. 2006. The influence of productivity on the species richness of plants: A critical assessment. Ecology **87**:1234-1243.
- Grace, J. B., P. B. Adler, E. W. Seabloom, E. T. Borer, H. Hillebrand, Y. Hautier, A. Hector, W. S. Harpole, L. R. O'Halloran, T. M. Anderson, J. D. Bakker, C. S. Brown, Y. M. Buckley, S. L. Collins, K. L. Cottingham, M. J. Crawley, E. I. Damschen, K. F. Davies, N. M. DeCrappeo, P. A. Fay, J. Firn, D. S. Gruner, N. Hagenah, V. L. Jin, K. P. Kirkman, J. M. H. Knops, K. J. La Pierre, J. G. Lambrinos, B. A. Melbourne, C. E. Mitchell, J. L. Moore, J. W. Morgan, J. L. Orrock, S. M. Prober, C. J. Stevens, P. D. Wragg, and L. H. Yang. 2012a. Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness". Science 335:1441.
- Grace, J. B., T. M. Anderson, H. Olff, and S. M. Scheiner. 2010. On the specification of structural equation models for ecological systems. Ecological Monographs **80**:67-87.
- Grace, J. B., T. M. Anderson, M. D. Smith, E. Seabloom, S. J. Andelman, G. Meche, E. Weiher, L. K. Allain, H. Jutila, M. Sankaran, J. Knops, M. Ritchie, and M. R. Willig. 2007. Does species diversity limit productivity in natural grassland communities? Ecology Letters 10:680-689.
- Grace, J. B., and K. A. Bollen. 2005. Interpreting the Results from Multiple Regression and Structural Equation Models. Bulletin of the Ecological Society of America **86**:283-295.
- Grace, J. B., and K. A. Bollen. 2008. Representing general theoretical concepts in structural equation models: the role of composite variables. Environmental and Ecological Statistics **15**:191-213.
- Grace, J. B., D. R. Schoolmaster, G. R. Guntenspergen, A. M. Little, B. R. Mitchell, K. M. Miller, and E. W. Schweiger. 2012b. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3:art73.
- Grime, J. P. 1973. Competitive exclusion in herbaceous vegetation. Nature 242:344-347.
- H-Acevedo, D., and D. J. Currie. 2003. Does climate determine broad-scale patterns of species richness? A test of the causal link by natural experiment. Global Ecology and Biogeography **12**:461-473.
- Halpern, C. B., and J. A. Lutz. 2013. Canopy closure exerts weak controls on understory dynamics: a 30-year study of overstory-understory interactions. Ecological Monographs 83:221-237.
- Hawkins, B. A., R. Field, H. V. Cornell, D. J. Currie, J. F. Guegan, D. M. Kaufman, J. T. Kerr, G. G. Mittelbach, T. Oberdorff, E. M. O'Brien, E. E. Porter, and J. R. G. Turner. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105-3117.
- Hector, A., B. Schmid, C. Beierkuhnlein, M. C. Caldeira, M. Diemer, P. G. Dimitrakopoulos, J. A. Finn, H. Freitas, P. S. Giller, J. Good, R. Harris, P. Hogberg, K. Huss-Danell, J. Joshi, A. Jumpponen, C. Korner, P. W. Leadley, M. Loreau, A. Minns, C. P. H. Mulder, G. O'Donovan, S. J. Otway, J. S. Pereira, A. Prinz, D. J. Read, M. Scherer-Lorenzen, E. D. Schulze, A. S. D. Siamantziouras, E. M. Spehn, A. C. Terry, A. Y.

Troumbis, F. I. Woodward, S. Yachi, and J. H. Lawton. 1999. Plant diversity and productivity experiments in European grasslands. Science **286**:1123-1127.

- Hogg, E. H. 1997. Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agricultural and Forest Meteorology **84**:115-122.
- Holdridge, L. R. 1971. Forest environments in tropical life zones: a pilot study. Pergamon Press, New York.
- Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt, and M. I. O'Connor. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105-109.
- Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Set, I., A. J. Symstad, J. Vandermeer, and D. A. Wardle. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75:3-35.
- Huston, M. 1979. A general hypothesis of species-diversity. American Naturalist 113:81-101.
- Huston, M. 1980. Soil Nutrients and Tree Species Richness in Costa Rican Forests. Journal of Biogeography 7:147-157.
- Isbell, F., V. Calcagno, A. Hector, J. Connolly, W. S. Harpole, P. B. Reich, M. Scherer-Lorenzen, B. Schmid, D. Tilman, J. van Ruijven, A. Weigelt, B. J. Wilsey, E. S. Zavaleta, and M. Loreau. 2011. High plant diversity is needed to maintain ecosystem services. Nature 477:199-202.
- Isbell, F. I., H. W. Polley, and B. J. Wilsey. 2009. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecology Letters **12**:443-451.
- Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist **104**:501-528.
- Kirwan, L., A. L □scher, M. T. Sebasti...
 Helgadottir, O. H. Baadshaug, C. Brophy, C. Coran, S. Dalmannsd¢ttir, I. Delgado, A. Elgersma, M. Fothergill, B. E. Frankow-Lindberg, P. Golinski, P. Grieu, A. M. Gustavsson, M. H"glind, O. Huguenin-Elie, C. Iliadis, M. J>rgensen, Z. Kadziuliene, T. Karyotis, T. Lunnan, M. Malengier, S. Maltoni, V. Meyer, D. Nyfeler, P. Nykanen-Kurki, J. Parente, H. J. Smit, U. Thumm, and J. Connolly. 2007. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. Journal of Ecology 95:530-539.
- Kline, R. B. 2010. Principles and practice of structural equation modeling. Gulford Press, New York, NY.
- Kozak, K. H., and J. J. Wiens. 2012. Phylogeny, ecology, and the origins of climate-richness relationships. Ecology **93**:S167-S181.
- Laliberte, E., and P. Legendre. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology **91**:299-305.
- Lambert, M. C., C. H. Ung, and F. Raulier. 2005. Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 35:1996-2018.
- Lehmann, C. E. R., T. M. Anderson, M. Sankaran, S. I. Higgins, S. Archibald, W. A. Hoffmann, N. P. Hanan, R. J. Williams, R. J. Fensham, J. Felfili, L. B. Hutley, J. Ratnam, J. San Jose, R. Montes, D. Franklin, J. Russell-Smith, C. M. Ryan, G. Durigan, P. Hiernaux, R. Haidar, D. M. J. S. Bowman, and W. J. Bond. 2014. Savanna Vegetation-Fire-Climate Relationships Differ Among Continents. Science 343:548-552.
- Levine, J. M., and J. HilleRisLambers. 2009. The importance of niches for the maintenance of species diversity. Nature **461**:254-258.

- Lewis, S. L., G. Lopez-Gonzalez, B. Sonke, K. Affum-Baffoe, T. R. Baker, L. O. Ojo, O. L. Phillips, J. M. Reitsma, L. White, J. A. Comiskey, M.-N. D. K, C. E. N. Ewango, T. R. Feldpausch, A. C. Hamilton, M. Gloor, T. Hart, A. Hladik, J. Lloyd, J. C. Lovett, J.-R. Makana, Y. Malhi, F. M. Mbago, H. J. Ndangalasi, J. Peacock, K. S. H. Peh, D. Sheil, T. Sunderland, M. D. Swaine, J. Taplin, D. Taylor, S. C. Thomas, R. Votere, and H. Woll. 2009. Increasing carbon storage in intact African tropical forests. Nature 457:1003-1006.
- Liu, Y., G. Yu, Q. Wang, and Y. Zhang. 2014. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Global Ecology and Biogeography 23:323-333.
- Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman, and D. A. Wardle. 2001. Ecology -Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:804-808.
- Lusk, C. H., and B. Smith. 1998. Life History Differences and Tree Species Coexistence in an Old-Growth New Zealand Rain Forest. Ecology **79**:795-806.
- Mackey, R. L., and D. J. Currie. 2001. The Diversity-Disturbance Relationship: Is It Generally Strong and Peaked? Ecology **82**:3479-3492.
- Maestre, F. T., A. P. Castillo-Monroy, M. A. Bowker, and R. Ochoa-Hueso. 2012. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. Journal of Ecology **100**:317-330.
- Man, R. Z., and V. J. Lieffers. 1999. Are mixtures of aspen and white spruce more productive than single species stands? Forestry Chronicle **75**:505-513.
- Mangan, S. A., S. A. Schnitzer, E. A. Herre, K. M. L. Mack, M. C. Valencia, E. I. Sanchez, and J. D. Bever. 2010. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752-755.
- McGill, B. J. 2010. Matters of Scale. Science 328:575-576.
- Michener, W. K., and M. B. Jones. 2012. Ecoinformatics: supporting ecology as a dataintensive science. Trends in ecology & evolution (Personal edition) **27**:85-93.
- Midgley, G. F. 2012. Biodiversity and Ecosystem Function. Science 335:174-175.
- Mittelbach, G. G., C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. R. Willig, S. I. Dodson, and L. Gough. 2001. What is the observed relationship between species richness and productivity? Ecology 82:2381-2396.
- Morin, X., L. Fahse, M. Scherer-Lorenzen, and H. Bugmann. 2011. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters 14:1211-1219.
- Mueller, K. E., D. Tilman, D. A. Fornara, and S. E. Hobbie. 2013. Root depth distribution and the diversity-productivity relationship in a long-term grassland experiment. Ecology **94**:787-793.
- Mulder, C. P. H., E. Bazeley-White, P. G. Dimitrakopoulos, A. Hector, M. Scherer-Lorenzen, and B. Schmid. 2004. Species evenness and productivity in experimental plant communities. Oikos **107**:50-63.
- Naeem, S., J. E. Duffy, and E. Zavaleta. 2012. The Functions of Biological Diversity in an Age of Extinction. Science **336**:1401-1406.
- O'Brien, E. 1998. Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. Journal of Biogeography **25**:379-398.
- Oberle, B., J. B. Grace, and J. M. Chase. 2009. Beneath the veil: plant growth form influences the strength of species richness-productivity relationships in forests. Global Ecology and Biogeography **18**:416-425.

- Olden, J. D., J. J. Lawler, and N. L. Poff. 2008. Machine learning methods without tears: A primer for ecologists. Quarterly Review of Biology **83**:171-193.
- Pan, Y. D., R. A. Birdsey, J. Y. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. L. Piao, A. Rautiainen, S. Sitch, and D. Hayes. 2011. A Large and Persistent Carbon Sink in the World's Forests. Science 333:988-993.
- Piedallu, C., J.-C. Gégout, V. Perez, and F. Lebourgeois. 2013. Soil water balance performs better than climatic water variables in tree species distribution modelling. Global Ecology and Biogeography 22:470-482.
- Pielou, E. C. 1969. Ecological diversity and its measurement. Pages 233-234 An introduction to mathematical ecology. John Wiley & Sons, Toronto, Canada.
- Potvin, C., and P. Dutilleul. 2009. Neighborhood effects and size-asymmetric competition in a tree plantation varying in diversity. Ecology **90**:321-327.
- Purvis, A., and A. Hector. 2000. Getting the measure of biodiversity. Nature 405:212-219.
- R Development Core Team. 2013. R version 3.0.2. R Foundation for Statistical Computing, Vienna, Austria.
- Randall Hughes, A., J. E. Byrnes, D. L. Kimbro, and J. J. Stachowicz. 2007. Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecology Letters 10:849-864.
- Régnière, J., and R. Saint-Amant. 2008. BioSIM 9 User's Manual. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre.
- Reich, P. B., D. Tilman, F. Isbell, K. Mueller, S. E. Hobbie, D. F. B. Flynn, and N. Eisenhauer. 2012. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336:589-592.
- Ricklefs, R. E. 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters 7:1-15.
- Ridgeway, G. 2010. gbm: Generalized Boosted Regression Models: R package version 1.6-3.187.
- Roberts, M. R., and F. S. Gilliam. 1995. Patterns and Mechanisms of Plant Diversity in Forested Ecosystems - Implications for Forest Management. Ecological Applications 5:969-977.
- Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.
- Rosseel, Y. 2012. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software **48**:1-36.
- Roux, P. C. I., R. Virtanen, R. K. Heikkinen, and M. Luoto. 2012. Biotic interactions affect the elevational ranges of high-latitude plant species. Ecography **35**:1048-1056.
- Schöb, C., C. Armas, M. Guler, I. Prieto, and F. I. Pugnaire. 2013. Variability in functional traits mediates plant interactions along stress gradients. Journal of Ecology 101:753-762.
- Senici, D., H. Y. H. Chen, Y. Bergeron, and D. Cyr. 2010. Spatiotemporal variations of fire frequency in central boreal forest. Ecosystems 13:1227-1238.
- Shea, K., S. H. Roxburgh, and E. S. J. Rauschert. 2004. Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecology Letters 7:491-508.
- Smith, B., and J. B. Wilson. 1996. A consumer's guide to evenness indices. Oikos 76:70-82.
- Spasojevic, M. J., J. B. Grace, S. Harrison, and E. I. Damschen. 2014. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. Journal of Ecology **102**:447-455.

- Speziale, K. L., A. Ruggiero, and C. Ezcurra. 2010. Plant species richness–environment relationships across the Subantarctic–Patagonian transition zone. Journal of Biogeography **37**:449-464.
- Spurr, S., and B. V. Barnes. 1980. Forest ecology. John Wiley & Sons.
- Svensson, J. R., M. Lindegarth, P. R. Jonsson, and H. Pavia. 2012. Disturbance-diversity models: what do they really predict and how are they tested? Proceedings of the Royal Society B-Biological Sciences 279:2163-2170.
- Taylor, A. R., and H. Y. H. Chen. 2011. Multiple successional pathways of boreal forest stands in central Canada. Ecography **34**:208-219.
- Taylor, K. C., R. W. Arnup, M. P. Meredith, W. J. Parton, and J. Nieppola. 2000. A field guide to forest ecosystems of northeastern Ontario. NEST Field Guide FG-01, Northeast Science and Technology, Ontario Ministry of Natural Resources, Timmins, Ontario, Canada.
- Thuiller, W., J. A. Slingsby, S. D. J. Privett, and R. M. Cowling. 2007. Stochastic Species Turnover and Stable Coexistence in a Species-Rich, Fire-Prone Plant Community. Plos One **2**:e938.
- Tilman, D., P. B. Reich, and F. Isbell. 2012. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences of the United States of America **109**:10394-10397.
- Tilman, D., P. B. Reich, J. Knops, D. Wedin, T. Mielke, and C. Lehman. 2001. Diversity and productivity in a long-term grassland experiment. Science **294**:843-845.
- USDA, and NRCS. 2013. The PLANTS Database National Plant Data Team, Greensboro, NC 27401-4901 USA.
- Verheyen, K., O. Honnay, G. Motzkin, M. Hermy, and D. R. Foster. 2003. Response of forest plant species to land-use change: a life-history trait-based approach. Journal of Ecology 91:563-577.
- Vilà, M., J. Vayreda, L. Comas, J. J. Ibanez, T. Mata, and B. Obon. 2007. Species richness and wood production: a positive association in Mediterranean forests. Ecology Letters 10:241-250.
- Vilà, M., J. Vayreda, C. Gracia, and J. J. Ibanez. 2003. Does tree diversity increase wood production in pine forests? Oecologia **135**:299-303.
- Wang, X. P., J. Y. Fang, N. J. Sanders, P. S. White, and Z. Y. Tang. 2009. Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography 32:133-142.
- Wardle, D. A., G. Hornberg, O. Zackrisson, M. Kalela-Brundin, and D. A. Coomes. 2003. Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300:972-975.
- Wardle, D. A., M. Jonsson, S. Bansal, R. D. Bardgett, M. J. Gundale, and D. B. Metcalfe. 2012. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100:16-30.
- Wardle, D. A., L. R. Walker, and R. D. Bardgett. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509-513.
- Weis, J. J., B. J. Cardinale, K. J. Forshay, and A. R. Ives. 2007. Effects of species diversity on community biomass production change over the course of succession. Ecology 88:929-939.
- Willig, M. R. 2011. Biodiversity and Productivity. Science 333:1709-1710.
- Wright, D. H. 1983. Species–energy theory: an extension of species-area theory. Oikos **41**:496-506.

- Yachi, S., and M. Loreau. 2007. Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters **10**:54-62.
- Zavaleta, E. S., J. R. Pasari, K. B. Hulvey, and G. D. Tilman. 2010. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences **107**:1443-1446.
- Zhang, Y., H. Y. H. Chen, and P. B. Reich. 2012. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. Journal of Ecology **100**:742-749.
- Zhang, Y., H. Y. H. Chen, and A. Taylor. 2014. Multiple drivers of plant diversity in forest ecosystems. Global Ecology and Biogeography 23:885-893.