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Abstract 

Connections between several compact spaces are studied in this thesis. 

Proofs are given when one implies another, and so are counterexamples when 

one does not. The spaces discussed in this thesis are: uniform Eberlein - 

compact (UEC) space, Eberlein - compact (EC) space, Talagrand -compact 

(TC) space, Gul'ko - compact (GC) space, Corson - compact (CC) space, 

Radon-Nikody'm - compact (RN) space, Rosenthal - compact (RC), Valdivia - 

compact (VC) space. The main results are: 

UEC => EC => TC GC => CC VC; 

UEC EC TC GC CC VC; 

EC RN, RN EC; RN « CC, and CC « RN; 

EC + w(K) < 0) ^ RC; EC « RN -h CC, VC CC or VC 3 [0, coj]; 

Also, we show: RN VC, RN <=^ VC, RC EC; RN TC, RN GC; 

and the equivalency of definitions of K - analytic and K - analytic, K - countably 

determined and countably determined. 
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List of Special Symbols 

Symbols which will be used in this thesis are list below: 

|X| or card(X) the cardinality of set X. 

0) the cardinality of a countable set. 

COl the cardinality of the first uncountable ordinal. 

0)2 the cardinality of the second uncountable ordinal. 

O 

N 

R 

AB 

empty set. 

set of natural numbers. 

set of real numbers. 

n - dimensional vector spaces, 

product space. 

(X, X) a topological space X with topology x . 

set containment. 

n set intersection. 



set union. u 

i.e 

iff 

<=> 

(X.IMI) 

B(X) 

p(x, e) 

f|A 

that is. 

if and only if. 

imply. 

only if 

do not imply, 

if and only if. 

normed space X with the norm |1.|1. 

closed unit ball of a normed space X. 

{ye X: p(x,y) < e, where p is a metric on X}. 

function f restricted to the set A. 
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Chapter 1 

Introduction 

1.1 Historical Notes and Main Results 

Compactness has long been of interest to topologists and played a significant 

role in analysis. In this thesis we study several notions of compactness that have 

been of particular interest to functional analysts in the past couple of decades. 

We focus our attention on the connections between these compact spaces. 

The compact spaces we are going to study are uniform - Eberlein compact, 

Eberlein - compact, Talagrand - compact, Gul'ko - compact, Corson - compact, 

Valdivia - compact, Rosenthal - compact, and Radon - Nikody'm compact spaces. 

The term Eberlein - compact was coined by Lindenstrauss [23] in 1972 in his 

survey paper. The Talagrand - compactness was introduced by Talagrand in 

1979. Talagrand - compact spaces, however, are based on K - analytic spaces 

which were first introduced by Choquet [9] in 1953. Gul'ko [19] in 1979 

introduced the notion of Gul'ko - compactness. Corson - compact spaces were 

first studied by Corson [11] in 1959 . Valdivia - compact spaces were first 

introduced by Argyros [30] in 1988. Rosenthal - compact spaces were first 

studied by Rosenthal [35] in 1977. And, Radon - Nikody'm compact spaces were 



introduced by Namioka [27] in 1987. 

Through our research, we find that 

2 

UEC EC TC GC => CC => VC; 

but, UEC EC TC GC CC VC; 

EC => RN, but RN EC; 

RN ^=:>CC, CC^i^^RN; 

RN RC, RC RN; 

Furthermore, we have 

EC RN + CC, VC « CC or [0, coj] c VC; 

EC+ w(K) < CO => RC; 

We show 

VC « RN, RN VC. RN TC, RN GC; 

RC EC, and equivent definitions of K- analytic and K - 

analytic and K - counbtably determined and countable determined. 

1.2 Basic Definitions and Theorems 

Before starting to discuss these different compact spaces, we briefly recall 
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some definitions and theorems which are required in the thesis. 

Definition 1.2.1: Let (X, x) be a topological space. 

(a) The weight of X is w(X) = inf{|(3|: (3 c x, |3 is a basis}. 

(b) The density character of X is d(X) = inf(|Y|: Y c X, Y is dense in X} 

(c) X is said to be scattered iff for any C c X, C has at least one isolated point. 

(d) X is called a Polish space iff it is a complete separable metrizable space. 

Definition 1.2.2: A compact Hausdorff space (K, x) is called angelic iff for any 

subset C c K and any x e x - cl(C), there is a sequence (xn)n =1 c C such that 

(xn)n = 1°^ converges to x. 

Definition 1.2.3: Let (X, x) be a topological space. 

(a) C(X) is defined by C(X) = {g; X R: g is continuous} 

(b) The Dointwise topoloov on C(X) means that any net (ga)ae A C(X) 

converges in the pointwise topology to g of C(X) <=» ga(x) converges to g(x) for all 

X e X. 
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Definition 1.2.4: Let (X, x) be a Polish space. A function g: X -> R is called a 

Baire - 1 function iff there is a sequence (gn)n = 1°° C(X) such that 

(9n(^))n converges to g(x) for all x e X. The set of all Baire -1 functions on X 

together with the pointwise topology is denoted as (3-| (X). 

Definition 1.2.5: Let (X, x) be a topological space, p be any metric on X. For any 

non - empty set C c X, p(C) = sup{p(x, y): x, y e C}. X is fragmented by p iff for 

each e > 0 and any non - empty C cz X, there is an open set O such that 

O r\ and p(0 n A) < e. 

Definition 1.2.6: A topological space (X, x) is called norm - fragmented iff X is a 

subset of a normed linear space and is fragmented by the metric of the norm. 

Theorem 1.2.1: (Namioka [27]) A topological space (X, x) is p - fragmented iff for 

any e > 0 and for any C c: A which is x - closed, there is x - open subset O of X 

such that C n O o and p(C O) < e. 

Proof: => It is obvious. 

<j= For any e > 0 and C c: X, there is a x - open subset O of X such that 
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X - cl(C) n O O and p(x - cl(C) n O) < e. Clearly, p(C n O) < e. To see that 

C n O d>, suppose that C n O = d>. Since x - cl(C) n O O, there exists 

X e X - c!(C) n O. Hence, there is a net (Xot)ot G A ^ A^a = ^■ 

Therefore, for the neigbourhood O of x, there is ?ig in the directed set A such that 

for any a e A, a > x^^ e O. Since {y.a)ae ^ contradiction. 

Theorem 1.2.2: (Namioka [27]) Let (X, x) be a topological space and p be a 

metric on X. Then the following conditions are equivalent. 

(1) The space (X, x) is p - fragmented. 

(2) For any x - closed C c: X, the set 

A(C) = {x: X € C such that i: (C, x) (C, p) is continuous at x} where i is 

the identity map. 

Proof. (1) => (2 ): Suppose that (X, x) is p - fragmented. Let C be a x - closed 

subset of X. By Theorem 1.2.1, there is a x - open subset O of X such that 

C n O <I) and p(C n O) < e, which means exactly that A(C) ^ <J>. 

(2) => (1): Suppose that for any x - closed subset C of X, A(C) <J>. Then 

there exists x e C such that for any e > 0, there is a x - open subset O of X such 
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that for any ye C n O, y e p(x, e). By the theorem 1.2.1, (X, T) is p - fragmented. 

Theorem 1.2.3: Let (X, t) be a topological space which is fragmented by a metric 

p, then X is fragmented by any metric whose topology is identical with that of p. 

Proof. It follows from Theorem 1.2.2 easily. 

In the case that Y is a normed linear space over R, we define the dual of Y, Y*, 

as follows: Y* = (h ; Y -4 R: h is continuous and linear on Y}. The weak topology 

on Y is defined by x in the weak topology of Y iff g{X(x) —> g(x) for any ge Y*. 

This is denoted by (Y, weak). Also, the weak* topology on Y* is defined by f(^-^ f 

in the weak* topology of Y* iff fc((x) f(x) for any x e Y. This weak* topological 

space is denoted by (Y*, weak*). When (K, x) is a compact topological space, we 

define the sup - norm on C(K) as follows: ||fl|oo = supxe K|f(^)l ^ ^ C(K). it 

is a classical result that C(K) is a Banach space with this norm. Hence, we are 

able to define the weak topological space (C(K), weak) and the weak* - 

topological space (C*(K), weak*). 

Definition 1.2.7: A Banach space X is called an Asplund .space iff every 

separable subspace of X has a separable dual. 
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Definition 1.2.8: A Banach space X is called weakly compactly generated 

(W.C.G.) iff there exists a weakly compact set K c X such that the linear span of 

K is dense in X. 
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Chapter 2 

Compact Spaces 

2.1 Introduction 

In this chapter, we introduce each of the notions of compactness that is 

considered in this thesis. Also, some relationships between types of compacta 

are given in this chapter. 

2.2 Definitions of Compact Spaces 

In the following definitions of compact spaces, we always let (K, x) be a 

compact topological space. 

Definition 2.2.1: K is said to be uniform Eberlein - compact (UEC) iff K is 

homeomorphic to a weakly compact subset of a Hilbert space X. 

Definition 2.2.2: K is said to be Eberlein - compact (EC) iff K is homeomorphic to 

a weakly compact subset of a Banach space X. 
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Comments: From Definition 2.21 and 2.2.2, it is easy to see that 

DEC EC, since every Hilbert space is a Banach space. 

Definition 2.2.3: K is said to be Radon - Nikodv'm compact (RN) iff K is 

homeomorphic to weak* - compact subset of X *, where X is an Asplund space. 

Definition 2.2.4: K is said to be Rosenthal - compact (RC) iff K is homeomorphic 

to a subset of Pi(X) (from x on K to the pointwise topology on P^CX), where X is a 

Polish space). 

Definition 2.2.5: A topological space (X, x) is said to be K - analytic iff X is 

continuous image of a K<J5 set, i.e. X = f (c^n=l’^'^m=l'^*^m, n)> where 

f: (Y, X|) ^ (X, x), f is contiuous, compact in (Y, x-|) for any m,n e N. 

Definition 2.2.6: K is said to be Talaarand - compact (TC) iff C(K) is a K - 

analytic set in its weak topology. 

Definition 2.2.7: A topological space (X, x) is said to be K - countably determined 

iff there is a compact topological space (Y, x^) such that X c Y and there is a 



sequence of - closed subsets, (Kn)n=1 of Y such that for every x E X, there is 

0 N (x) e N such that x e N(x)^n- 

Definition 2.2.8: K is said to be Gul'ko - compact (GC) iff C(K) is a K - countably 

determined set in its weak topology. 

Definition 2.2.9: K is said to be Corson - compact (CC) iff there is a set C such 

that K is homeomorphic to a subset of X(R^) = { x E R^: supp(x) is countable}, 

where supp(x) = {c E C: XQ^ 0}, (from x on K to the product topology on E(RC)) . 

Definition 2.2.10: K is said to be Valdivia - compact (VCt iff K c [0,1]^ for 

some set C such that K n E([0,1]^) is dense in K. 

Comments: Following Definition 2.2.9 and Definition 2.2.10, it is easy to see that 

CC VC. 

Theorem 2.2.1 (Corson [11], Proposition 1) Any metrizable space is a Corson - 

compact space. 



Proof. Let X be a metric space. Bing [7] showed that there is a sequence 

(Aj)j_i°°, where each Aj is a family of open sets in the metric topology x, such 

that Uj^i'^Aj is a base of x and each x e X is contained in an open set which 

meets at most one member of (Ai)j_i°°, i.e. there is O e x and at most one j e N 

such that X G O n 0(Aj) ^ O, where 0(Aj) e Aj. For any open set 0(Aj) e Aj, 

there is a countable familty of open sets Bj(0(Aj)) c 0(Aj), such that 

0(A|) =Uj^i°-Bj(0(Aj)). 

Let U = {B; B is a kind of Bj(0(A|) ) for i, | G N}. 

For each B G U, there is i G N, and j G N such that B = Bj(0(A|) ). By 

[Wilansky [46], Theorem 4.3.3] which says that every semimetric space is normal, 

then X is normal, since X is metric space. By Urysohn's lemma, we can define a 

continuous function fg : X [0. 1] such that 

fgC X ) = 1 X G B, 

fB( X ) = 0 X ^ Aj. 

By [Kelley [22], Lemma 4.5] the evaulation function 

f; X -> n{fB(x); B e U}, where (f(x))g = fgCx), is a continuous function. Since 



there are countably many B in U, then f(X) cZ([ 0, 1]^). Hence, X is Corson - 

compact. 

2.3 Eberlein - compact implies Talaarand - compact 

The main theorem of this section is that every Eberlein - compact space is a 

Talagrand - compact space. But, before we show it, we need some theorems. 

One of these is the following one which is well - known and connects a W.C.G. 

space with Eberlein- compact space (see Diestel [16], p.152); 

Theorem 2.3.1 Let (K, T) be a compact Hausdorff topological space. Then the 

following conditions are equivalent: 

(1) K is Eberlein - compact; 

(2) C(K) is a W.C.G. Banach space; 

(3) The closed unit ball of C*(K) is Eberlein compact in its weak*- topology. 

The key theorem for the proof of the main theorem of this section is Theorem 

2.3.2 which was first proved by Talagrand [40]. The proof given here follows that 

of Rogers and Jayne [32]. 

Theorem 2.3.2 (Talagrand [40]) If X is a W.C. G. Banach space, then X is K - 
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analytic in its weak topology. 

Proof. Suppose that X is a W.C.G. Banach space. Then there is a weakly 

compact subset C c X such that w - cl(span(C)) = X, where w - cl(span(C)) 

denotes the closure of span(C) in (X, weak). Let 

A = {a; a = (r-|, ... , rn), n is a rational number, n e N}. If we set 

C(a) = r-|C + ... + rpC, then C(a) is a weakly compact set in X. Since A is 

countable, let (C(n))n=i“ be an enumeration of the sequence {C(a): a e A}. 

Then for any positive natural number m e N and considering X as a subset of X**, 

Xc Un=i°°C(n) + (1/m)B(X) c Un=i'"C(n) + (1/m)B(X**), 

so, X c nm=i“^Un^-|°"(C(n)+ (1/m)B(X**))- 

Let X** e (n) + (1/ m)B(X**)), 

then for any m e N, there is e Up _-|“"C(n) c X such that 

lix**-xm|| <1/m. (*) 

The Cauchy sequence (xm)m =1°° converges to some point in X, and because 

of (*), we know x** is the limit of (Xm)m =1~ Hence, 

X = + (1/ m)B(X**)). 

Since C(n) + (1/ m)B(X**) is weak* - compact in the weak* - topology of X**, 



X is a %5 set in (X**, weak*). Hence X is a %5 in (X, weak). 

Theorem 2.3.3 Every Eberlein - compact space is a Talagrand - compact space. 

Proof. Suppose K is Eberlein - compact, then C(K) is a W.C.G. Banach space by 

Theorem 2.3.1. Following Theorem 2.3.2, C(K) is K- analytic in (C{K), weak). 

So, K is Talagrand - compact. 

2.4 Talagrand - compact implies Gul’ko - compact 

The basic aim of section 2.4 is to show that every Talagrand - compact space 

is a Gul'ko - compact space. We will use Talagrand's theorem which says that 

every K - Souslin set is K - countably determined. 

Definition 2.4.1: Let S = {s: s = (n-|,... , nj), nj G N, 1 < i < co} and 

L = {a: c = (n-|^... _ nj, ...), n, G N}. We sav s < crfor anv s G S and GG Ziff 

s and a have the same first i terms. 

Definition 2.4.2: For S' c S, suppose that (Bs)s e S' a class of subsets of X. 



Define B^j by: 6^ = 03^ ^^65, where s G S'. The set A = is called the 

nucleus associated with class (Bs)s e S'i sometimes, we say that the set A is 

obtained from (Bs)s ^ S' by Souslin's operation. 

Definition 2.4.3: Let (X, x) be a Hausdorff topological space. Any C c X which is 

obtained by Soulin's operation from a class of compact subsets of X is called a X 

- Souslin set. 

Theorem 2.4.1 (Talagrand [41], Proposition 1.1) Let (K, x ) be a compact 

topological space and A c K . if there is a family (Bs)se S> where Bs is compact in 

(K, x), and a S'c L such that A = ^ ^Bs, then there is (Kn)n_i'=^, where 

Kp compact in (K, x), such that for any x e A there exists N(x) c N such that x G 

“^nG N(x)^n- 

Proof. Since A = S' s < cj®s> ^ben for any XG A, there is a G S’ e S such 

that X G n 5 < jjBs. Since |Sl = co, let (Kn)n=l be an enumeration of (Bs)s g s- 

Then for any x G A, there is N{x) c N such that x G fvj(x)^n> where Kq is 

compact in (X, x) for n G N. 



Theorem 2.4.2 Let (X, T) be a Hausdorff topological space and K be K - analytic. 

Then K is an X - Souslin set. 

Proof. Since X is K - analytic, without loss of generality, we can assume that 

K = - where Km,n is compact in (X, x). Since, 

X = u n=1°^^m,n. then K is a X - Souslin set. 

Theorem 2.4.3 Every Taiagrand - compact space is a Gul’ko - compact space. 

Proof: Using Theorem 2.4.1 and Theorem 2.4.2, it is easy to get this result. 

2.5 Gul'ko - compact implies Corson - compact 

In this section, we will show Gul'ko's theorem [19] which says that every 

Gul'ko - compact space is a Corson - compact. First, we prove some lemmas. 

Definition 2.5.1: Let (X, x) be a topological space. A set C c C(X) is said to 

distinguish points of X iff for any x, y e K x 9^ y, there is f e C such that f(x) ^ f(y). 



Definition 2.5.2: Let (K, t) be a compact Hausdorff space and C c C(K) 

distinguishes points of K. The pair (A, B), where A c K and B c C, is called 

C - conjugate iff for any x e K, there is a y e A such that for any f e B, f(x) = f(y), 

and for all f e C, there is g e B such that for any x G A, f(x) = g(x) (y and g are 

unique, since C distinguishes points of K). 

Definition 2.5.3: Let (K, x) be a compact Hausdorff space and C c C(K). The pair 

(A, B), where A c K and B c C, is called C - preconjuaate iff {xjB: x e A} is 

dense in { x|B; x e K} and {f|A: f G B} is dense in {f|A; f G C}, where the 

topology on C is the pointwise topology. 

Lemma 2.5.1 Let (K, x) be a compact Hausdorff space, C c C(K) distinguish 

points of K. If (A, B), where A c K and B c C, is C - conjugate, then (A, B) is C - 

preconjugate. 

Proof. Suppose (A, B) is C - conjugate. Then, by Definition 2.5.2, for any x G K, 

there is a y e A such that for any f G B, f(x) = f(y). That implies {x|B: x G A} is 

dense in {x|B: x G K}. By Definition 2.5.2 again, for any f G C, there is g e B such 

that for any X G A, f(x) = g(x). That implies {f|A: fe B} is dense in {f|A: feC}. So, 



(A, B) is C - preconjugate. 

Lemma 2.5.2 Let (K, x) be a compact Hausdorff space and C c C(K) 

distinguishes points of K. If (A, B), where A c K and B c C, is C - conjugate, then 

{x|B: X e A} = {x|B: x e K} and {f|A; f e B} = {fjA: f eC}. 

Proof. Since A c K, then (x|B: x e A} c {x | B: x e K}. From Definition 2.5.2, for 

any x e K, there is y s A such that for any f e B, f(x) = f(y). That means there is y 

e A such that x|B = y|B. So, {x|B: xeK}c{x|B; x e A}. Hence, 

{x|B: x G A} = { x|B: xe K}. 

Using the same method, we can prove {f|A: f e B} = {f[A: f e C}. 

Lemma 2.5.3 Let fK. x) be a comoact Hausdorff space. Then for anv CcC(K), 

M c K, L c C, a an infinite cardinal number, and the cardinal number of M and of 

L is not greater than a, respectively, there is a C - preconjugate pair (A, B) such 

that M c A, L c B and the cardinal number of A and of B is not greater than a, 

respectively. 

Proof. We are going to construct (A, B) which satisifes the condition of 

Lemma 2.5.3. Let A-| = M , construct B-|, A2 such that A-j c A2, B-| cC, 



{x|Bi: xe A2} is dense in { x|B-|: xe K} and {f|A-|; f e B-j} is dense in 

{f| A-|: f G C}. To do so, 

Step 1: let R(A-|) = {g|A-i: g G C}. Since d(R(A-|)) < w(R(A-|)) < |R(Ai )| < a is 

true for the pointwise topology on R(A-|}, then there is U(A-i) c R(A-|) which is 

dense in R(A-|) and |U(A-| )| < a. Set Bi = Lu{g: g|A-| G U(A-|)}. Hence, 

{ f|Ai: f G B-|} is dense in {f|A-|; f G C}. 

Step 2: let R(Bi) = { x|B-| : x G K}. Since we have 

d(R(B-|)) < w(R(B-|)) < |R(B-| )| < a in the pointwise topology, we can find 

U(B-|) c R(B-|) which is dense in R(B-i) and |U(B-|)|<a. Set 

A2 = A-i ^ {x: x|B-i G U(Bi)}. 

From above, we know A-| cA2and {x|B-|: XG A2} is dense in 

{x|B-|: XG K}. 

Using the same method, we can get non - decreasing sequences (An)p, 

and (Bn)n=l such that 

(1) {x|Bn: X G Ap+-i} is dense in {x|Bn: XG K}; 

(2) {f|An: fe Bn} is dense in {f|An: f e C}. 
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Let A = Up,_-|°°Ap,, B = Up,_i°°Bn, then (A, B) is C - preconjugate. To see this, 

let g e C, e > 0, and x-|, , Xp e A. Since A= Up,_-|°°An and (An)n=l°° is non- 

decreasing, there is m € N such that x-j, ... , Xp e A^p. Since {f|Am; f e Bm) is 

dense in {f|App; f G C}, then there is f G Bpi c B such that |f(xj) - g(xj)| < e, for 

i = 1, ... , n. That means (f|A; f G B} is dense in {f|A; f G C}. In the same way, one 

can prove {x|B: x G A} is dense in (x|B: x G K}. 

Lemma 2.5.4 Let (K, t) be a compact Hausdorff space and C c C(K). If there are 

non - decreasing families (A^)^< and (B^)^ < rj. ^ ^nd r\ are ordinals, such that 

(A^, B^) are C - preconjugate pairs for ^ <r| , then is 

C - preconjugate. 

Proof. The proof is similar to that in Lemma2.5.1. Let A = ^ A^, 

B = For any g G C, x-|, ... , Xp G A, and any e > 0, since (A^)^<- is 

non - decreasing, there is ^ A^Q ^ A and since 

(A^o- is C - preconjugate, there is f G ^ ^ such that [f(xj) - g(xj)| < e for i 

= 1,... ,n . This shows that {f|A : f G B} is dense in {f|A ; f G C}. In the same way, 



21 

one can prove {x|B: x e A} is dense in {x|B : x e K}. 

Lemma 2.5.5 Let (K, x) be a compact Hausdorff space and C c C(K) . If (A, B) is 

C - preconjugate, then {x|B-|: x e A} = {x|B-|; x e K}, where A-] = x - cl(A) and 

B-i = CIQB. 

Proof. Since A-| c K, (x|B-|: xe A-|}c{x|B-|: xe K}. (1) 

For any xg e K, we need to prove there is zg e Ai such that xg|B-| = zg|B-|. To 

do so, since (A, B) is C - preconjugate, for any y e K and any finite subset 

D c B, there is XQ e A such that |f(y) - f(xD)| < 1/|D|. ( * ) 

Then {X0: D c B and |D| < co} is a net in A. Since K is compact, 

{X0: D c B and |D[ < co} has a limit point z in K. From { * ), we know y|B = z|B. 

When considering x and y as functions on C, then, x, y are continuous. So, 

y|B-|=z|B-|. Hence, {x|B-|: xe K}c{x|B'|: xe A-|}. (2) 

By (1) and (2), {x|Bi: xe K}= {x|Bi; xe A-]}. 

Lemma 2.5.6 Let (K, x) be a compact Hausdorff space. If there are M c K, 

Cn c C(K), n e N, L c Up,_-|'"Cn = C and the cardinal number of M , L is not 
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greater than an infinite cardinal number a, then there are A e K, B c C which 

satisy M c A, L c B and the cardinal number of A, B is not greater than a, 

respectively, and (A, B n Cp) is Cn - preconjugate for any n e N. 

Proof. Let N = where Np n Nm = O for any m ?in, |Nnl = co, and for 

any n e N, there is a unique Npp, such that n e N^n- Hence for M c K, 

B n Cn(i) c C, by Lemma 2.5.3, there is A-|, B-| such that (A-|, B-| n Cn(i)) is 

Cn(i) - preconjugate. Using the same method, we can get non - decreasing 

sequences (Am)p-|_i°^ and such that (Am, n Cn^pp^) is Cp(pi)- 

precongugate. Then, by the Lemma 2.5.4, for A = Upp=-|°°App, B = '-^pp=:-|°°Bpn, 

(A, B n Cp) is Cp - preconjugate. 

Lemma 2.5.7 Let (K, x) be a Gul'ko - compact space. Suppose B(K) is the unit 

ball of C(K). Let (Cp)p_-|°° be a sequence of compact subsets of [-1,1]^ with the 

product topology, closed under finite intersections, such that 

(1) for every ge B(K), there is O ?!: Ng cNwithger^p^ N{g)^n sB(K), where 

B(K) is considered a subset of [-1, 1] K. 

Let A c K, B c Up_i °°Cp n B(K) such that 
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(2) (A, B n Cn n B(K)) is Cp r\ B(K) - preconjugate for n e N. 

Then, (A-|, B-]) is B(K) - conjugate, where A-| = x - cl(A), Q = clg^K^B. 

Proof. Following Lemma 2.5.2, condition (2) and Lemma 2.5.6, we have 

{x|Bi n Cn: X G A-]} = {x|Bi r\ Cp: x G K }, for any n G N. (*) 

Since condition (*) is true for any n G N, then 

X G A-|} = {x|Ur,^-]°°Bin Cni x G K}. 

From condition (1), we have B-| cUn=i°°Cn, 

{x|B-|: X G A-|} = { X I Bi: x G K}. 

We are going to show that {f|A-i; fG B-|}={f|Ai: fG B(K)}. 

Since Bi e B(K), {f|Ai; fG B-(}Q {f|A-|: fe B(K)}. 

For any g G B(K), by condition (1), we have <& N(g) c N such that 

gG n jg N(g)^i ^ ^(K). Since g G Cj n B(K) and {f|A: f e B n Cj n B{K)} is dense 

in {f|A: f G Cj n B (K)}, there is a net (f(x)cc e A ^ ^ o Cj B(K) <z Cj n B-j such 

that linio^^ A fa(x) = 9(x) for x G A. Let fg G Cj n B*| be a continuous function on 

K such that fg{x) = lim ote AWX) foi" x e A. So, {f|Ai: f G B(K)} C {fIA-|: f G B-|}. 

Hence, {f|A-j; fG Bi} = {flA-j: fG B(K)}. Therefore, (Ai, B-|) is B(K) -conjugate 
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according to Lemma 2.5.2. 

Lemma 2.5.8 (Talagrand [41]) Let (K, x) is a Gul'ko compact space. If B(K) is the 

unit ball of C(K) in the pointwise topology, then w(K) = d(K) = d(B(K)). 

Lemma 2.5.9 (Corson [12j) Let (K, x) be compact Hausdorff space. If C(K) in its 

pointwise topology is Lindelof, then K is angelic. 

Theorem 2.5.1 If (K, x) is a Gul'ko - compact space, then K is Corson - compact. 

Proof. We are going to use transfinite induction. 

First, suppose w(K) = co. Then K has a countable base and, being compact 

space, K is metrizable. By Theorem 2.2.1, K is Corson - compact. 

Secondly, suppose that a > co and for any cardinal co < P < a, if w(K) = p and K 

is Gul’ko - compact, then K is Corson - compact. 

Thirdly, suppose w(K) = a. By the Lemma 2.5.6, w (K) = d(K) = d(B(K )) . 

LetU(K) = {x^: CO <T| < a} and V(B(K)) = {g^q: co <TI < a} be dense subsets of K 

and B(K), respectively. From Lemma 2. 5.1 to Lemma 2.5.5, we can construct a 

family {(A-rj, B^): co < ri < a} such that (A^, B^^) is B{K) - conjugate for co < ri < a, 

satisfying 
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(i) Xjj e A-q+i, g-q e 

(ii) {AT^; CO <ri < a} and {B^; CO < r] < a} are increasing families; 

(iii) if T| is a limit ordinal, then Aq = clK('-^^<qA^), Bq = clB(K)('^^<Ti®^)i 

(iv) w(Aq) = d(Aq) = d(B(K )) < |T|| forco<Ti<a. 

For CO <Ti < a, by the induction hypothesis, (Aq, x) is a Corson - compact space. 

That means there is a homeomorphism fqi Aq -> Z(R ) for some Cq. Without 

loss of generality, we can assume 

{Cq! CO <ri < a} is pairwise disjoint. Let C = Nu{Cq+i; co<ri<a}. Define a 

homeomorphism f: K L([0, 1]^) by setting for each x e K, 

f(x)(c) = fo)(yx)(^)> Vx ^ A(^, c G N 

(using the fact that (AQJ, BQ)) is B(K) - conjugate): 

f(x)(c) = fq+i(yx)(c) - fr|+l(z x)(c). Vx^ Aq^.^, z x e Aq, for c e Cq+i 

(using the fact that families Aq, Bq are increasing). 

It is shown below that for any xsK, A = {TI: co<ri<a and yx ^ z^} is 

countable, wheace f; K I(R ^) is a homeomorphism, because each fq is a 
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homeomorphism. To see that A is countable, suppose there is XQ e K such that 

the set A = {TI; CO <TI < a, yx(o) ^ 2x(o)}> yx(o) ^ \+h ^x{o)^ 'S 

uncountable. Then, there is an uncountable subset B <z A such that yx(o) ^ ^x{o)’ 

yx(o) ^ ^x(o)^ ^ ^ ^ 

Let X = supB < a. we choose B such that cf(x) > co^, since if cf(x) = co ancl 

X > cDj, then there is XQ with C0|< XQ < x such that cf(xQ) > C0|and XQ n B is 

uncountable. Then, choose XQ instead of x. 

We know yx(o) = B ^x{o)> where yx(o)^ ^x(o)^ Fi'om Lemma 2.5.9, 

there is (^p,)n=i°"c B with yx(o) = limneN Zx(o). where Zx(o)e A^(n). Then, for r 

= supne N^n’ have Zx(o) = Ux(o) = yx(o) ^x(o)^ ^4’ C ^ ^ ^ T. 

and Yx(o)^ This is a contradiction which completes the proof of Theorem 

2.5.1. 
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2.6 Conclusion 

Based on the results in this chapter, we have that every uniform Eberlein - 

compact space is a Eberlein - compact space, every Eberlein - compact space is 

a Talagrand - compact space, every Talagrand - compact space is a Gul'ko - 

compact space, every Gul'ko - compact space is a Corson - compact space, and 

every Corson - compact space is a Valdivia compact space, i.e. 

UEC ^ EC =» TC => GC ^ CC ^ VC. 
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Chapter 3 

Some Counterexamples 

3.1 Introduction 

In chapter 2, we proved UEC => EC =>TC GC ^ CC ==> VC. In this 

chapter, we are going to show that Eberlein - compact does not imply uniform 

Eberlein - compact, Talagrand - compact does not imply Eberlein - compact, 

Gul'ko - compact does not imply Talagrand - compact, Corson - compact does 

not imply Gul'ko - compact, and Valdivia - compact does not imply Corson - 

compact. 

3.2 Eberlein - Compact Does Not Imply Uniform Eberlein - 

Compact 

In this section, we are going to give a counterexample which shows there is 

an Eberlein - compact space which is not a uniform Eberlein - compact space. 

The example is due to Benyamini and Starbird [6]. First, some lemmas are 

required. 
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Lemma 3.2.1 (Juha'sz [21]) Let C be any uncountable set. If 

{Aa- Aot c C is finite for a e 'F} is an uncountable family of subsets of C, then 

there are a |^i| > co^, a finite set B c C and a pairwise disjoint family 

{BQ^; B(^ C C is finite for a e such that for any a e = B U ^a- 

Lemma 3.2.2 Let C be any set and /<= {B: B c C and B is finite}. If 

(1) any B e K and D c B implies D e K ; 

(2) there is no infinite increasing chain in K; 

then K \s a weakly compact set in co(r), for some set r. 

Note: this mean K is Eberlein - compact. 

Proof. We identify sets in K with their characteristic functions. Then, for some 

r,K c co(r). 

We will show K \s a weakly compact subset of co(r). Let U be a limit point of 

K and V c U be any finite set. Since the weak topology on co(r) is the same 

as the pointwise topology on co(r), there is a BQ such that Vc Bg. By(1), 

V e K". Since there is no infinite increasing chain in K, then U is finite. Hence 

U e K. So, K is weakly compact set in co(r). 
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Lemma 3.2.3 Let (K, x) be a weakly compact subset of Hilbert space X. If a 

discrete set C c K has a unique limit point CQ, then for any c e C, there is x - 

open subset 01^ of K satisfying 

(a) c e Uc: 

(b) there is a countable pairwise disjoint family (Cn)n=l~’ C such that 

C = ^n=1°°^n and for any c-|, ... , Cp+ie Cp, c-| ... ^Cp+i, 

i ^n+1} = O. 

Proof. Since X is a Hilbert space, then there is an inner product on it. For any 

X, y e X, we let (x, y) denote its inner product. For convenience and without 

loss of generality, suppose K is the closed unit ball of X with the weak topology 

and CQ is the origin of X. 

We will define an equivalence relation on X. 

a = b iff there is a sequence ci, C2,... , Cj such that c-| = a, C2  cj = b 

and (cj, Cj+i) 0. 

From the definition above, we get 

(1) if A and B are different equivalence classes and a e A and b e B, 

then (a, b) = 0; 
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(2) the cardinal number of the equivlence classes is at most countable. 

We will construct (Cn)n=l'^ as follows: 

Step 1: From (2), C = '-'n=1°°^m- where in each Em, the elements are mutually 

orthogonal. 

Step 2: Cn's are a partition of C such that for any c-| ,C2 e Cp, c-] ^ C2, 

(ci ,C2) = 0 and \\c\\^ > n for any c e Cp. 

For any c e Cp, let UQ = {x s K: ( x, c ) 2 > n '"I}. Then, c e Uc and UQ is 

X - open. Let c-|,... , Cp+i e Cp, ci ■■■ * Cp+i. Suppose 

X e r^{Uc(i): 1 < i < n+1}. Then 1 > ||x|j ^ > Z (x, c\) 2 > (n +1 )\n > 1, 

a contradiction. So, n{Uc(j): 1 < i < n+1} = <J>. 

Theorem 3.2.1 (Benyamini and Starbird [6]) There is a Eberlein - compact 

space (E, x) which is not uniform Eberlein - compact. 

Proof. Let C = R X (Ilj_2'"{1,... , i}). So any element c e C looks like 

c = (x, m-|, ... , mj, ... ), where x e R and mj e {1,..., i}. We consider the 

product topology x on C. 

For any n e N, let F,: C N' be a projection defined by 
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Fj(x, m-| mj,... ) = (m-|, ... , mj). 

For each i e N, we will define a family Aj of subsets of C such that for any 

De Aj, |Dl = i. 

StbP.I: Let A-i = {{c}; ce C}. 

Step 2: We define Aj, i > 2, as follows: 

For m-|, ... , mj.-j, e {1,..., k}, define 

A(m-|, ... . mj.-|) = {{c-|, ...Cj, ... , q}: Fj (Cj) = (m-j, ... , mj.-|, j) for Cj e C, 1 < j < i}. 

Then, let Aj = u{A( m-|,..., mj.-j ): for any sequence m-j rnj.-j}. 

Now, define E = {B: 6 c C and B c Uj_-j '^Aj}. Since {xg; B e E} c CQ( F) for 

some r, the topology on E is the relative weak topology for CQ( F). 

We will show E is Eberlein - compact but not uniform Eberlein - compact. 

First, we show E is Eberlein - compact. From the definition of E, we know 

that E is a collection of finite sets and condition (1) of Lemma 3.2.2 is satisfied. 

We will show for any i ^ j and any U e Aj, V e Aj, card(U n V) < 1, there is no 

infinite increasing chain in E, from which condition (2) of Lemma 3.2.2 follows. 

Suppose i > j and U e Aj, V e Aj . From the definition of Aj, we know for any 

m, n e U, they have the same jth coordinate, but for any m, n s V, they may 
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have different jth coordinates. So, card(U n V) < 1. From Lemma 3.2.2, E is 

Eberlein - compact. 

Secondly, we will show E is not uniform Eberlein - compact using Lemma 

3.2.3. To see this, we construct a discrete set M c E which has a unique limit 

point mg such that for any m e M, there is relatively open subset Dm of E 

satisfying 

(a) for any m e M, m G 13^; 

(b) for any countable pairwise disjoint family (Mn)n_i°° in M such that for any 

m-j, ... , mn+1 e Mn, m-| ... ^ mn+i, <^{Um(i): 1 <i < n + 1} = ci),then 

M '-^n=l'”^n- 

Let M = A-| = {{c}; c e C}. M is discrete in E and has a unique limit point, the 

empty set d). Let {Dm: me M} be a family of open sets such that m e Um- 

Also, let (Mn)n=l°° be a family of pairwise disjoint sets in M such that for any 

m-|, ... , mn+ie Mp, mi ^m2 ^ ... ^ mp+i. n{Um(j): 1 < i <n + 1} = 0). 

Without loss of generality, assume that Um is a basic open set for any m e M, 

i.e. there is a finite set Fm c: C such that B e Um <=> B e E and there is a 

Bm e Um such that B n Fm = Bm Fm. Since Fm is finite and m e Um. we 
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can suppose m G Fpp,. To complete the proof, we will show that M ^ '-^n=1 

To do this, we will first verify the following claim. 

Claim: if j e N, j >2, and any finite sequence m-\, ... , mj.-j is fixed, then there 

is ig, 1 ^ig-j such that card( Mj.-|n Fj (m-j rrij.-i, ig)) < co.To prove this 

claim, suppose card(Mj.^ n Fj '"I (m-],... , mj_i, i)) > o), for each i, 1 < i < j. We 

choose an uncountable subset Ej c Aj_i n Fj '1 (m-|, ... , mj.-|, i) for 1 < i < j. 

For every m e Ej, there is a finite set F^p as above and {Fm: m e Ej} is an 

uncountable family. By Lemma 3.2.1, there are a'Fj c Ej with |'F|| > co, a finite 

set B(Ej) c C and a pairwise disjoint family {Bmi B^ c C is finite for m e'Fj) 

such that for any m e Tj, App = B(Ej) u Brp. Since B(E-|) u ... u B(Ej) is finite, 

we can assume the Ej's are chosen such that m ^ B(E-|) u ... u B(Ej) for any 

me E-j u ... u Ej. 

Fix a(1) 6 'F^. Since is finite, we can choose a(2) e W2 such that 

a(2) £ Brp(i), and since {Brp: m e 'F2} is pairwise disjoint, a(1) « 63(2)- Using 

the same method, we can get a finite sequence a(1),... a(j) with a{i) € Ba{k) 
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1 < i, k < j and i ^ j. Since a(i) B(E-|) u ... u B(Ej) for 1 < i < j, we have 

a(i) g for 1 < i, k < j and i k. So, for i, 1 < i < j, 

{a(1a (j)} n = (a(i)} n Aa(j). Since a(i) e Ua(i) and Ua(i) is a basic 

open set for any 1 <i <j, {a(1), ... , a(j)} e n{Ua(i): 1 i ^j}. This contradicts 

the definition of Mp. This verifies the claim. 

From the claim, choose m-j such that card(M-| n F-| ( m-|)) < co. Repeating 

this, we can get sequence m-|,... , mj , ... such that card( Mj n Fj ( m-|,... , m,)) < 

CO, for i e N. Since Mj) n (nj_i°°{ Fj '^ ( m-^,... , mj)) 

c Uj^i°"(Mj n Fj -■' ( mi,... , mj)). (*) 

Then, card(cjj_i°°Mj) n (r^j_i®°Fj (mi, ... , mj)) <co. Now, 

card((Oj^1°^ Fj '"'{mi, ... , mj)) > co. By {*), M ?i:Un_i°°Mn. which completes the 

proof of Theorem 3.2.1. 

3.3 Talaarand - compact Does Not Imply Eberlein - compact 

The main aim of this section is to construct a Talagrand - compact space 

such that it is not Eberlein - compact. We begin with some definitions and 
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theorems which are required for the proof of the main theorem. 

Definition 3.3.1: Let C be any non - empty set. Suppose B = {B: B c C} is a 

family of C. B is said to be adequate iff 

(1) B contains all singletons in C; 

(2) for any B e B , if A c B, then A s B; 

(3) for any subset A of C, if any finite set F c A implies F e B , then A e B . 

Theorem 3.3.1 For any set C and an adequate family B on C, let 

K= K(B ) = {%g: B e B } c {0, 1}^. Then K is compact subset of ({0, 1}^, x), 

where x is the product topology on {0, 1}^. 

Proof. By the Tychonoff Theorem, {0, 1}^^ is compact. Suppose (XB(a))ae A 'S 

any net in K which is convergent to %g. By Kelley [22], Theorem 3.4, we know , 

in the product topology, XB(a) ^ XB 5CB{a)(^) XB(^) x e C. Let F 

be a finite subset of B. Then, XB(a)(^) XB(^) ^ ^ Hence, 

XB(a)(^) 1 for f e F. That implies f e B(a) eventually. So, there is ao(f) such 
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that for any a >aQ(f), f e B(a). Hence, f e n{B(a): a > OQ{f)}. Since F is finite, 

let ocQ = max{aQ(f); fe F}. Then, F c n{B(a): a > CXQ}^ B . By Definition 3.3.1, 

Condition (3), BeB. So, K is closed and it follows that K is compact. 

Definition 3.3.2: Let C be any set and B be any adequate family on it. We 

define C* = C u and the topology, x{B ), on C* as follows: for any c e C, 

{c} e t(S ). A subbase for the neighborhoods of °° is the family 

{{oo} u {C ~ B}: BeB}. 

M. Talagrand in [41] proved the following theorem: 

Theorem 3.3.2 Let C be any set and B be any adequate family on it. Then 

(1) (K(B ), p) is Talagrand - compact iff (C*, x{B )) is a K - analytic space, 

where x{B ) and C* are defined in Definition 3.3.2, p is the pointwise 

topology on K{B ), and K(S ) is defined in Theorem 3.3.1. 

(2) (K(B ), T) is Eberlein - compact iff (C*. x(S )) is cr-compact. 

Proof. We will prove (1). 

=> Suppose that K = K{B ) = {%0: B e S } is Talagrand - compact. Then 

(C(K(S )), p) is K - analytic, where B is an adequate family on set C and p is 
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the pointwise topology. For C* = C u {°°} and the topology x{B ) on C* as 

defined in definition 3.3.2, define h: C* C(K(S )) by 

h(c)(XB) = XB(C) for c G C; 

h(c)(XB) = 0 for G = oo. 

Claim 1: h is continuous. To see this, suppose CQ, c. If c e C, then 

h(Ca)(%B) = Xsi^a) %B(^) f°'' any B G S. If c = -, for B G 6 , since 

V = (C ~ B) u {oo} is a neighborhood of there is OLQ such that for any a > aQ 

CQ^G V. That means that CQ,^ B for a> OCQ. Hence, h(Co(,)(%B) = 0 for a > aQ. 

So, h(Ca)(xB) = XB(Oa) h(H(5CB) = 2CBH = 0- This verifies that h is 

continuous. 

Claim 2: h is one - to - one. To see this, suppose h(c) = h(c’) where c ^ c'. That 

means that h(c)(%B) = h{c')(%B) for any B G S. Without loss of generality, 

suppose c ^oo. Then h(c)(x{c}) = %{c}(<^) = f ^%{c}(^’) = f^(c’)(X{c})- ^ 

contradiction. Hence, h is one - to - one. 

Claim 3: h'l is continuous. To see this, suppose h(Coc)(%B) ^ f^(o)(%B) f®'" 

B G e . If c oo, let B = (c}. Since h(Ca)(X{c}) = X{c}(^a)-^ h(c)(X{c}) = X(c}(c) = 1. 
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there is ttQ such that for any a > OQ, CQ^ = c. Hence, c. If c = °o, since 

h(Coc)(XB) B G B , there is UQ such that a > OQ implies 

|h(C(x)(XB)l < ^'^2. So, C(x € B. Therefore , 0^6 U = (C ~ B) u {<>o}. Hence, 

Co^-> o°. This veries that h'^ is continuous. 

Claim 4: h(C*) is closed in (C(K(S ), p). To see this, let f e p - cl(h(C*)), if there 

is a c € C such that f(X(c}) = ^ ^ since f = lim(xh(C(x) for some 

(C(x)ocG A c C, 1 = f(X{c}) = limah(Oa)(X{c})’ which means that there is aQ such 

that whenever a > ag, CQ, = c. So, f e h(C*); if, for every c e C, f(X{c}) = 

for every finite subset F of C, f(xF) = 0- Since f = limQ^h(Cot) for some (Coc)ae A ^ 

C, f(xp) = limah(Ca)(XF) = 'ima%F(®a) = 0- Since, for any B e B , 

XB = limpcBXF where F is finite and F is continuous, f(xB) - li>T^FcBf(XF) = 

That means f = 0. Hence, f e h(C*). Therefore, h(C*) is closed. 

From Claim 1,2, 3, 4, , we know that f is a homeomorphism from (C*, x(B )) to 

(h(C*), p). Since (C(K{S )), p) is K - analytic and h(C*) is closed, (C*, x(S )) is K 

- analytic. 
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<= Suppose that (C*, t(S )) is K-analytic, h is defined as above. Let 

A (h(C*)) be the smallest algebra containing h(C*) and 1. Define: 

Ai = h(C*) u 1, A2 = {a + a': a, a' e A-|}; A3 = {a x a': x e R, a e A2}. 

Continuing this process, we can get a sequence of compact subsets, (Aj)j 

of (C(K(e ), p). Now, h(C*) cA-i CA2C... cAp c ..., A (h(C*)) = vjj^l‘=^Aj, by 

Stone - Weierstrass Theorem which says that if K is compact and A c C(K) is an 

algebra containing constant functions such that for any k, k' e K, there is f e A 

such that f(k) ^ f(k'), then A is dense in C(K) in supremum norm, i.e. 

norm -cl(A (h(C*))) = C(K(e ). 

Claim: If norm - cl(Y) = C(X) and Y is K - analytic, then (C(X), p) is K - analytic. 

For any f e C(X), there is g e Y such that |] f - g j| < 1 • For f - g e C(X), there is 

f-js B(Y) such that II f - g - f-| II < 1\2. Generally, there is fp+ie (1\2r<+‘')B(Y) such 

that II f - g ' fi -... - fp+1 II < 1\ 2h. Hence, f = g - f-| - f2 - ••• ■ ^n ' ■••• Define 

5: Y X B(Y) x (1\2)B(Y) x (1\4)B{Y) x ... ^ C{X) by 5(g, fi ,...) = g + fi + .... 

Hence, 5 is continuous and onto. Hence C(X) is K- analytic. 

By Claim above, we know that C(K(S ) is K - analytic. 
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Definition 3.3.3: Let (X, t) be a Hausdorff topological space. X is said to be K - 

analytic iff it is the image of a Polish space under a compact valued upper semi 

- continuous map (u.s.c.), i.e. there is a Polish space Y, a compact valued 

function f which is u.s.c. such that X = • 

Definition 3.3.4: Let (X, x) be a Hausdorff topological space. X is said to be 

countably determined iff it is the image of a separable metrizable space under a 

compact valued upper semi - continuous map. 

Definition 3.3.5: Let (X, x) be a Hausdorff topological space. For any set 

C c X, C is said to be an analytic set iff there is a continuous map f; E = 

X withf(Z) = C. 

Rogers and Jayne ([32], Corollary 2.4.3) proved: 

Theorem 3.3.3: Every Polish space is a continuous image of Z with the product 

topology on it, i.e. every Polish space is an analytic set. 

We will show in the following that K - countably determined (see Definition 

2.2.7) is equivalent to countably determined and K- analytic (see Definition 

2.2.5) is equivalent to K - analytic. 



Theorem 3.3.4 (X, t) is K - analytic iff X is the image of Z under a compact 

valued upper semi - continuous map. 

Proof. =i> Suppose that (X, T) is K - analytic. From Defintion 3.3.3 and Theorem 

3.3.3, it is obvious that X is the image of Z under a compact valued upper semi - 

continuous map. 

<= Since it is known that Z is a Polish space, by Definition 3 3.3, (X, T) is K - 

analytic. 

Theorem 3.3.5 (X, x) is countably determined iff X is the image of a subset Z' of 

Z under a compact valued upper semi - continuous map. 

Proof. Using Definition 3.3.4 and Theorem 3.3.3, the proof is similar to 

Theorem 3.3.4. 

Now, we are ready to show that the definitions are equivalent. 

Theorem 3.3.6 Let (X, t) be a Hausdorff topological space. X is K - countably 

determined iff X is countably determined. 

Proof. Suppose that (X, x) is K - countably determined. That means that 

there is a compact set (Y, X]^) such that X c Y, x is the relative topology of x-| on 
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X, and there is a sequence of T-| - closed subsets, (Kn)p_i°°, of Y, such that for 

every x e X, there is a e S such that x e nj where 

a = (o(l),, a(i), ... ). For any aeZ, define f(cj) = nj Let 

S' = {a e N^; f(<j) O}, and g: S' —> X such that g(cr) = f(cj) n X. So, 

g(S') = X, g is compact valued in X and u. s. c. To see that g is u.s.c., recall that 

{Vs : s e S} is a base for the product topology on S, where 

S = {(s(1), ... s(i), ..., s(n)): n. s(i) e N, i < i < n} and Vs = (a e S: c > s}. For 

ae S' and any open set U, where g(a) c U, by a compactness argument, there 

is m e N such that n X c U. So, for s = (a(1),... , a(m)), G e Vg and 

g(Vs) c U, since any rj e Vg implies TI > s, g{r\) = X c 

ni_i K0(i) n X c U. Hence, g is u.s.c. and by Theorem 3.3.5, (X, x) is 

countably determined. 

<= Suppose that (X, x) is countably determined. Let (Y, x^) be a compact set 

which contains (X, x) and x is the relative topology from xj. For any s e S, let 

Ks = CIY( where a e S' c S. So, Kg is compact. (Kg: s e S} is a 
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countable family of compact sets. Since for any x e X, there is a e L' such that 

X s f(G). We claim that f(a) = From the definition of Kg it 

is obvious that f(a) c Oj ^ ^^{G(1), .... G(i)}- To see nj cj(j)} c 

f(a), suppose that x € f(a). Let U = Y ~ { x }. Then U is open. There is V, open, 

such that f(o) c V c CIY(V) C U. Since f is u.s.c., there is i e N, such that 

f(V{a(1), ..., o(i)}) c V. Hence CIY( ^a> {G(1), ..., a(i)}^(<^)) ^ CIY( V) e U. 

Therefore, K{cr(iG(i)} ^CIY( V) cU. Since U = Y ~ {x}, x€  cr(i)}- 

Thus, Oj ^ ^ c f(a), and X is K- countably determined. 

Choquet [10] proved; 

Theorem 3.3.7 In a metric space, the K - analytic sets coincide with analytic 

sets. 

Theorem 3.3.8 Let (X, -r) be a Hausdorff topological space. X is K - analytic iff 

X is K - analytic. 

Proof. Suppose that (X, t) is K - analytic. Without losing of generality, we 

assume that X = np,^i“Upr,^i°°Kn_ m. where Kn, m 'S compact. Set 
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K'n, m = m ^ {^o}- some fixed XQ e X. For any a= (a(l),... a(n), ... ) e I, 

iet f(cj) = o(n)- Hence, for any ae S, f{cj) is non - empty and compact. 

Using the same argument as in Theorem 3.3.6, we can get f is u.s.c.. 

Furthermore, X = f(a). To see this, for any x e X, and for any n e N, 

there is m(n) G N such that x e K’n_ m(n)> since X= m- Let 

s = {m(1), ... m(n), ...}. Then, x e r^n=1°°^'n, m(n) = Therefore, X is K - 

analytic. 

<== Suppose that (X, t) is K - analytic. Define graph(f) = {(a, x): x G f(a)}. 

Talagrand [41] proved that graph(f) c x K for some compact K Z3 X and 

graph(f) is closed. Since Z= is a metric space, by Theorem 3.3.7, L is a 

set. Further, it is easy to see that S x K is also a K^jg set. Since graph(f) is a 

closed set of a K(^g set, then graph(f) is a K^jg set. Let pi be the projection from 

Z X K to the first coordinate. Since pi is continuous, then X = p-j (graph(f)) is K - 

analytic. 

Theorem 3.3.9 (Talagrand [41]) There is a compact Hausdorff space (K, t) 

which is Talagrand - compact, but not Eberlein - compact. 
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Proof. We are going to construct a topological space (K, x) c (0, 1}^ such that K 

is Talagrand - compact, but not Eberlein - compact by using Theorem 3.3.2. 

Let B = where 

Bp ={BcL; if a Tips B, then a|n = p|n, a+l|n 9* p+l|n}. 

We will show that for any n e N,S;^ is an adequate family on E. 

First, it is obvious that singletons are in Bp . 

Secondly, for any B G Bp , suppose A c B and any o^p s A. Then, a p e 

B. By the definition of Bp,, a|n = p|n, a+l|n p+i|n. Hence AsBp . 

Thirdly, suppose that D is any subset of E such that for any finite subset F of 

A, FeB;^. Then, for any a ^>5: p 6 D, {a, p}eS^. Hence, a|n = p|n, a+l|n 

p+l|n. Therefore,D e Bp . 

From Definition 3.3.1 ,Bp is an adequate family. 

Furthermore, we are going to show that B is an adequate family on E. 

First, it is obvious that singletons are in B. 

Secondly, suppose that AeB. For any D c A, we would like to show that 

D e S. To see this, since AeBp for some n e N and Bp is an adequate family, 

then D GBP . Hence, D e S. 



Thirdly, for A c Z, suppose that any finite subset of A belongs to Z. Let F, H 

be finite subsets of A and F H. From definitions of B and Bp for n e N, it is 

easy to see that there is m e N such that F, H e Bfp . Hence, if G is any finite 

subset A, then G e B^p . S\nceBfp is an adequate family, then A e Bfp . So, 

Aee. 

From Definition 3.3.1 ,B is an adequate family. 

Let Z* = Z u {oo}, %{B ) as defined in Definition 3.3.2. 

Claim: ( Z*, x(S )) is K - analytic. To see this, define f: Z ^ (Z, )) by 

f(a) = {a,°o}. Hence, f(a) is compact in ( Z*, x(S )), and Z* = '-^(jgx^(cr). We are 

going to show that f is U.S.C.. Let U is any open set such that f(a) c U. Hence, 

there is B e S such that U = (Z\B) u {°o} u {a}. If we can find an open set V c Z 

such that f(V) = V u {°o} c U = (Z\B) u u {a}, then f is u.s.c.. To see this, 

since B s S , by the definitions of B and Bp's , there is a m e N such that 

B e Bfp., which means that there is a finite sequence s = (si,... s^) e S such 

that for any c, p e B, we have a(m = s = p|m, and <T+l|m ^ p+ljm. Choose t, t s 

and 

|t| = m, where lt| is the length of the finite sequence t, and V = { oe Z: t < a }. So, 
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V n B = O. Hence, f(V) = V u {00} c U = (L\B) u {00}. Therefore, (Z*, x(S )) is K 

- analytic. By Theorem 3.3.8, (Z*, x(6 )) is K- analytic. 

Set K = K{B ) = {xg; Be B } c {0, 1}^. By Theorem 3.3.2, K with the product 

topology is Talagrand - compact. We are going to show K is not Eberlein - 

compact. Using Theorem 3.3.2, it is enough to show that (Z*, x(B )) is not a - 

compact. 

To show (Z*, x(B )) is not a - compact, suppose 

Z = u{Zp,;ne N, Zp u {°°} is compact in (Z*,x(S ))} with usual topology, x^. 

Let Z = {(T = {n-|,... , n|-p|, ...): nui e N, m e N}, 

= (n-|,... , nm); njeN, 1<i<m}. 

Define: Fm-' Z -> N by Fm(n-|,... , nm,...) = (n-i,..., nm) for any m e N. By 

the Baire category therem, there is n(0) e N such that x^ - lnt(x^ - cl(Zp^o))) ^ 

We can choose (n-|,... , nm) such that 

U = Fm’"* (n-|, ... , nm ) C - Int (x^ - cl(Zp^Qp)^^ C>. For any k e N, let 

Uk = ^m+1 > Om, k). So, c U for any k e N. Since n <t>, 

for any k e N, choose a^ e 2:-n(o) ^ U^. So, {ai<: k e N } e Bp^ cS , by the 
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definitions of {a^: k e N }. Since {a|^: k e N } c ^n(O) compact, then 

there is at least a limit point x in L. From the definition of {a^: k e N }, we know 

that X « Z. 

Claim: {00} is not a limit point of {a^: k e N }. To see this, let 

V = {00} u (Z ~ (aj^: k e N }). Hence V n {a^: k e N } = O. So, x {00}. This is a 

contradiction. Hence, Z* is not a - compact. Therefore, K is not Eberlein - 

compact. 

3.4 Gui'ko - compact Does Not imply Talaarand - compact 

We will use a counterexample developed by Talagrand in [42] to show that 

there is a Gui'ko - compact space that is not Talagrand - compact. 

Theorem 3.4.1 There is a countably determined space which is not K - analytic. 

Proof: Let P = {a: a = (a(1),..., a(n)) e S and a(i) < a(i+1)}. Define a partial 

ordering, < on P by a = (a{1),... , a(n)), b = ( b(1) b(m)) e P, a < b iff n < 

m and a(i) = b(i) for i < n. So, (P, <) is a partially ordered set. 

M c P is a tree iff for any a e M, if b < a, then b e M. 
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Let TQ = {M: M is a tree in P}. By identifying a tree M with its characteristic 

function, we can consider that TQ c { 0, 1 }P. 

Claim: TQ is closed in {0, 1}^ with the product topology. To see this, let 

%M(a) where M(a) is a tree in P. Suppose a e M and b < a. Then, 

^ "I ■ 2°’ there is a aQ such that for any a > aQ, XM(a)(^) = - this 

means a e M(a) for a > aQ. Since M(a) is a tree, then b e M(a) for a > «Q. 

Hence, lM(a)(h) = 1 • This implies b e M. So, M is a tree. Since P is countable, 

{0, 1}P is compact and metrizable. So, TQ is a compact metrizable space with 

topology denoted by T. 

M e TQ has an infinite branch if M contains an increasing sequence 

(a'^)n=l‘” with the length of a^^ going to infinity. 

Let T-| = {M: MG Tg and M has an infinite branch}. 

For any n G N, set Pp = {a e P: 1 < aj < n}. Suppose M G TQ. The basic 

neighbourhoods of M are Un(M) = {Y; Ye TQ and Y n Sp = M Sp} for n G N. 

LetAg = {C : C c TQ,C is finite such that if C = {M-| Mp}, then there is a 

YG TQ and a = (a{1) a (n)) G Y such that Mj G Ua(i)(Y)}. 
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Let/Ay = n{S : AQ c B and S is an adequate family otTg}. 

Claim: Suppose that C e A-f and M is any limit point of C . Then, M e Ti. (*) 

To see this, suppose (Mp,)p,_-|oo cC such that Mn —> M with Mp, M for n e N, 

Since for each n, there is f(n) G N such that Mp e Uf(n)(M) ~ Uf(n)+1 (M)- 

Without loss of generality, we can assume f(n) > n for each n e N, and 

(f(n))n=i‘^ is increasing. 

Fix n, then there is aC e AQ such that My, , Mp e C. So, by the definition 

oi AQ , C = {M'y, ..., M'k} and there is a Ye TQ, a = (a'^(1), ... , a*^ (k)) e Y such 

that M'j G Uan(j)(Y). Clearly k > n. Now, Mj = M'g(j), for 1 < i < n, where g(i) < k. 

For 

i ^ j. g(i) ^ g(j)- Since f(i) > i and a^(i) > i, there is 1 < k < n such that both f(k) and 

a’^(g(k)) ^ n(0)\2. Let m = min{f(k), a^{g(k))}. Hence, M^e Urp(M) implies 

MkeUrn(Y). From the definitions of Upi(M) and Up^(Y), we get Upi(M) = Upp(Y). 

Let q(n) = max{i: f(i) < n\\2} and i < q(n). Then, 

M'g(i) = Mj « Uf(i)+y (M) =Uf(j)+i (Y). Since f(i)+1 < m, then i < an(g(i)) < f(i). So, 

there are at least i elements in (af^(1),..., af^(k)) which are less than or equal to 

f(i). Moreover, (a'^(1),..., a<^(q(n))) G Y, since Y is a tree and 
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(3^(1), ai^(q(n))) < (af^(1), ..., a^(k)) e Y. Now i < q(n), 3*^(1) < f(i) < (n\2) - 1. 

So, {a^(1), a'^(q(n))) e M. Hence, for any n e N, there are q(n) and 

(a^-i,ariq(n)) such that {an-|,e M. 

Fix i. Since a'^(i) < f(i) for any n e N, then, there is a {n^} such that 

a'^k(i) eventually equals to a{i). In fact, for n sufficiently large, we get 

(a^(1), a'^(q(n))) = (a(1), a(n)) e M and |(a(1),..., a(n))| ^ °o when n —> °o. 

Hence, M e T-|. This verifies the claim. 

Let T = To ~Ti, yt = {BcT: Be/ty}. 

Claim: A is an adquate family on T, andanyBe/\ implies that B is closed. To 

see this, 

(1) suppose B e/l. Then, B is closed, since B has no limit point; 

(2) if B e/A , then B e T CTQ, {B} €, since yAy is an adequate family on Tg. 

So,{B}e/t; 

(3) suppose C e/A andBcC. Then, B e/Ay , since/Ay is an adequate family 

on TQ. By the definition of /A , B e/A. 

(4) suppose that B c T such that for any finite F c B, F e /A . So, F s >A y. Then 
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B GAI , since Ai is an adequate family on TQ. Therefore, B eA . 

Hence, we have verified the claim. 

Let T* = T u {°o}. Define a topology, x{A ), on T* as following: for any M e T, 

{M} is open. The basic neighbourhoods of {00} are T* ~ D , whereD is the finite 

union of elements of A . 

Define h: (T, x) -4 (T* , x {A )) by h(t) = {t, 00} for any t e T. Hence, h is 

compact valued and u.s.c.. To see h is u.s.c., let D = , where Bj GA, 

such that {00, t} c T* ~ D . That implies t ^ D . Since D is closed in T, there is an 

open set U with t e U such that h(U) c T* ~ D . Hence, f is u.s.c.. Since (T, x) 

can be embedded in a Polish space, then (T, x) is countably determined. 

We are going to show that (T*, x{A )) is not K - analytic. To prove this, we 

need some definitions. 

For M e TQ, we define by 

M"' = {a e M: there is a b e P such that a < b and be M}. 

Using transfinite induction, for any a< co^, we can define by: 

1) if a = P + 1, then M«+l = ( 

2) if a is a limit ordinal and a = suppa(n), then 
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If for some a < coj = <[), we denote o(M) by o(M) = min{a: = O}. if not, 

o(M) = C0|. 

For any a = ( a-],), b = ( b-j bp ) e P, if am < b-], we define a+ b by 

a + b = (a-|, ... , ami b-|, ... , bp). So, a + b e P. 

Let a G P and_M G TQ, define a|M by a|M = {b: a + b G M}. 

Now, we are ready to prove that (T*, x(A )) is not K - analytic. 

Suppose that (T*, x{A )) is K - analytic. By Theorem 3.3.4, there is a compact 

valued u.s.c. mapping p from E onto T*. For any s G let Es = 

where a G E. 

Claim: There are sequences, a>^=(a(1), a(2), ... , a(n)) e P, 

b>^ = (b(1), b(2), ... , b(n)) e and a sequence of trees, M-|,... , Mn, for n e N, 

such that 

(1) Ua(i)(Mj) = Ua(i)(Mn) for any 1 < i <n; 

(2) (a(1),a(2), ... ,a(n-1))G Mp: 

(3) {o(Sn|M): M G Ua(n) (Mn) E^n} is unbounded. To see this, 

step 1: Since T* = Un_i ~Ep and for any a < cojthere is a M G TQ such that 



o(M) = a, then, there is a b(1) such that o is not bounded on Eb(iFrom the 

definition of n|M, we know o(M) < supno(n(M)+1. So, there is a(1) such that 

{o(a(1 )]M); M e )} is unbounded. Since there are only finitely many sets of 

the type Ua(i )(M), choose M-| such that {o(a(1 )|M: M e Ua(i )(M-|) n Ep(i)} is 

unbounded. 

step 2: Assume a>^ =“(a(1), ..., a(n)) e P, b'^ = (b(1), ... b(n)) e and trees M-], 

M2, ..., Mn are chosen such that they satisfy conditions of the claim. 

step 3: Now, Ebn = UaiEbn+m- There exists b(n+1) such that 

(o(ai^|M: M e Ua(n)(Mn) n Ebn+1) is unbounded. Since 

o(a*^lM) < supmO(a'^+m]M) +1, for any m > a(n), then we can choose a(n+1) = m 

such that {o(a'^+1 |M): M e Ua(n)(Mn) n Ebn+1} is unbounded. Since there are 

finitely many sets of type Ua(n+1)(M), choose Mp+i such that 

{o(an+1|M;Me Ua(n+1 )(Mn+l) n Ebn+1} is unbounded. Notice that a^^ e M^, 

otherewise o(af^|M) = O, for M e Ua(n)(Mn)- Moreover, there is M e TQ such 

that Ua(n)(M) = Ua{n)(Mn)- So, the claim is proved. 

For each n, let Xp e Ebn n Ua(n)(M) r^T. For each k, X-j,..., Xk , so 



B = (Xn)n=1°°e^r and B c T. Then B is closed and discrete. Let 

b = (b(n))n=i°°. Since p(b) is compact, then p(b) n B is a finite set. Let 

C = B ~ p(b). Then C is closed and C n p(b) = O. Hence, there is s e Nn, s < 

such that p(a) n C = <t> for any a > s, a e X. Hence, £3 n C = O. Now, 

s = (b(1),..., b(n)). Then Xk e C ~ Es for any k> n, except possibly finitely 

many. This is a contradiction. So, (T*, x(A )) is not K - analytic. 

Theorem 3.4.2 There is a Gul'ko - compact topological space which is not a 

Talagrand - compact topological space. 

Proof. It follows from Theorem 3.3.6, Theorem 3.3.8, and Theorem 3.4.1 

directly. 

3.5 Corson - compact Does Not Imolv Gul'ko - compact 

Alster and Pol [1] first constructed a counterexample which says there is a 

Corson - compact topological space which is not Talagrand. This space turns 

out to be a Gul'ko - compact (see Argyros, Mercourakis and Negrepontis [3]). 
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Thfiorfim 3.5.1 (Pol [31]) If a topological space (X, T) is K - analytic then there 

exists subsets of X, A,(-|) where (i(1), i(k)) e S, such that 

(1) X = Uj^-,“^Aj, Ai(i)_...j(k) = Uj^i°"Aj(i)_...j(k)j. 

(2) if (i(k))k=i°^e 2 and ake Aj(i)^ ^ j(k), then the sequence (ak)k=l°° has a 

limit point in X. 

Theorem 3.5.2 (Aister and Pol [1 ]) There is a Corson - compact topological 

space which is not Gui'ko - compact. 

Proof. Let C = [0, 1], < be the usual ordering on C, < be a well - ordering of C, 

and B = {B c C: < and < coincide on B}. It is easy to check that B is an 

adequate family. Define K = K(S ) = (xg: B e S }. Then, K is a compact subset 

of (0, 1}*^. Now, since B e S , |B| <o). Hence, for any x e K, supp{x} is 

countable, i.e. x e Z({0, 1}^). Therefore, K is Corson - compact. Let C* = C u 

{oo} and the topology x{B ) on C* as defined in definition 3.3.2. 

Claim: K is not Talagrand - compact. By Theorem 3.3.2, it is enough to show 

that C* is not K - analytic. To see this, suppose that C* is K - analytic. By 

Theorem 3.5.1, there are {Aj(i^ j(k)}, where i(1),..., i(k) is finite sequence of 

natural numbers such that C* = uj ^-j^^Aj, and 
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Ai(1) i(k) = M=1°°Ai(i) i(k)J. 

Below we will choose (i(1), i(k)) G and distinct points e Aj^-] j(i<) 

such that {a-|, a^,...} is a discrete set in C*, this will contradict Theorem 3.5.2. 

Step 1: Since C* = Uj =-]°°Aj, there is i e N such that Aj is uncountable. 

Choose i(1) such that Aj(-|) is uncountable. Choose a-|€ Ag^-i) such that 

Bi={ae Ai(i): a-| < a} is uncountable. To see this, let s = inf Aj(i). IfseAg^i), 

let a-] = s. If s ^ Aa(l)> since there is a sequence {bn}n=i°° C Aj(-|) such that 

bn ^ s, there is n(0) such that { aGAj(i): an(0) < a} is uncountable. Choose 

ai= Sn(0)- 

Step 2: Since Aj(i) = Uj ^l'^Aj(-i) j, there is i e N such that BinAj(-|) j is 

uncountable. Choose i(2) such that B-| m Aj^-| )j(2) is uncountable. Choose 

a2 e B-| n Aj(-| ^j such that a-] < a2 and B2 = {ae B-] n Aj^i)j{2) : a2 < a} is 

uncountable and a-i < 32- To see this, let D = {a; a < a-|}. Then D is countable. 

Hence, ([a-i, 1 ] n B-] n Aj(i)j(2)) ~ D is uncountable. Choose 

32 s ([^1 > 1] B-] n Aj(i )J(2)) ~ D, a2^ a-| such that 

M2 = {ae ([a-|, 1 ] n Bi n Aj(i )j(2))D: 82 < a} is uncountable. Let 



59 

02 = { a e (B-| n Aj(i )j(2)) ~ D; 32 < a}. Then, M2 c B2- Hence, B2 is 

uncountable. Hence, we get (i(1), i(2)) and (a-|, 32) such that aj(k)e Aj(k) 

for k =1,2, and a-| < 32, a-| < 32- 

Step 3: Continue this process to obtain (i(k))|^_-|‘^ c N and (ak)k='|°° such that 

^i(k)^ and a^ < Qk+^ • ^k < ^k+1 - 

Claim: B = (a(,^)f^_i°° has no limit point. To see this, first, note that B e S . 

Secondly, since ai^'s are distinct and on C one has the discrete topology, the 

only possible limit point of B is °o. However, C* ~ B is a neigborhood of <». 

Hence, ~ is not a limit point of B. Therefore, B has no limit points. This 

contradicts to Theorem 3.5.2. So, C* is not K-analytic. Hence, K is not 

Talagrand - compact. 

3.6 Valdivia - compact Does Not Imply Corson - compact 

Deville and Godefroy [14] construct a counterexample which says that 

Valdivia - compact does not generally imply Corson - compact. 

Lemma 3.6.1 Suppose that a is any ordinal such that cf(a) is uncountable. 

where cf(a) is the cofinality of a, defined by cf(a) = inf{P: a = ai+ a2 + ••• + ap, 
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ot^ < a for ri < |3}. If there is a function f; [0, a] -> K c [0, 1 where f is 

continuous from the order topology to the product topology on [0, 1 ]^, where K 

is closed and C is some uncountable set such that K n Z[ 0, 1 is dense in K, 

then f(a)gL([0, 1]^). 

Proof. Suppose that f(a)eS([0, 1]^). By the definition of L ([0, 1]^), we know 

that |D1 = l{d: d e C and f{a)(d) 0}| < co. Let d e D. Since f is continuous, for 

any n, there is |3p, such that if ri > then | f(ri)(d) - f(a)(d)| < 1\n. Let = 

supnPn- Then, < a. So, if ri > then f(Ti)(d) = f(a)(d). Let C = supde D^d- 

Then, a. Therefore, if r| > ^, then f(Ti){d) = f(a)(d) for any d e D. 

We build an increasing sequence in [C, a) such that f(Cn+i)(d) = 0, 

for every d e supp f(Cj) ~ D for any some i < n. To see this, 

Step 1: Let = C- Choose > Co- Hence, ford e supp f(Co) ~ D, f{Ci)(d) = 0. 

Step 2: Suppose that for n e N, the finite increasing sequence (Cm)m<n is 

chosen such that if i 9^ j and i, j < n, then (supp f(Cj) ~ D) n (supp f(Cj) ~ D) 

Step 3: Choose Cn > Cn-1 (supp f(Cj) ~ D) n (supp f(^j) ~ D) for 

any i and i, j < n, since a has uncountable cofinality. This completes the 
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construction. 

Letri = linnn^ooCn- So, if c e D, f{ri)(c) = limn-^oo f(Cn)(c) = ^(a)(c): if c g D, 

then there is at most one n such that f(Cn)(c) ^ 0. since for any i ^ j, 

(supp f(Q) ~ D) o (supp f(Cj) ~ D) =<D. Hence, f(ri)(c) = 0 for c g D. So, for c e D, 

f(ri)(c) = f(a)(c). Since f is one to one, ri = a. This contradicts that a has 

uncountable cofinaiity. 

Theorem 3.6.1 (Deville and Godefroy [14 ]) There is a topological space which 

is Valdivia - compact, but not Corson - compact. 

Proof: We are going to show that [0, coj] is Valdivia - compact, but not 

Corson - compact. 

From Lemma 3.6.1, it can be shown that [0, co^] is not Corson - compact. 

To see this, suppose that [0, co^] is Corson - compact, then there is a 

homeomorphism, g, from [0, coj] onto a closed subset K of Z([0, 1]^) for some 

set C, by the definition of Corson - compact. Following Lemma 3.6.1, 

g(coi)gS{[0, 1]^). This is a contradiction. 

We will show that [0, co^] is Valdivia - compact. Define 
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h; [0, 0) J E c [ 0, 1 ][ 0, coi] by h(a) = %[-Q We know that 

E = {x [0 a)- oc< is compact in [ 0, 1 ][0-by Theorem 3.3.1. It is easy to 

see that h is continuous. Hence, h is a homeomorphism from [0, coj] to E. Since 

E n S([0, 1][0> = E ~ {f(coi)}, then, E n Z{[ 0, 1 ][ is dense in E. 

Hence, [0, co^] is Valdivia - compact. 

3.7 Conclusion 

In this chapter, we have given examples to show that none of the implications 

below can be reversed: UEC EC => TC =^> GC =i> CC => VC. 
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Chapter 4 

Radon Nikodv'm Compactness 

4.1 Introduction 

We have already shown in Chapter 1 to Chapter 3 that 

UEC ^ EC TC => GC => CC => VC, and 

UEC EC TC GC CC VC. 

In Chapter 4, we are interested in exploring the connections between Radon - 

Nikody'm compactness and those notions of compactness previously 

considered. The notion of Radon Nikody’m compactness was introduced by 

Namioka [27], most of the results in this chapter are due to him. 

4.2 Radon Nikodv’m. Uniform Eberlein and Eberlein Compactness 

First, we will prove that Eberlein - compact implies Radon - Nikody’m 

compact. 

Lemma 4.2.1 (Davis et al. [13]) Suppose that (X, ||.||) is a Banach space and 
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S c X is convex, symmetric and bounded. Then, the gauge ||.||n of the set 

Un = 20S + 2 'OB(X) is a norm equivalent to 1|.||. For any x e X, define 

lllxlll = (2^n=1°°ll^l!n^)''^^. and let C = {x e X: |||x||l<oo}, 

U = B{C) = {xe X: |||x||| < 1} and i denote the identity embedding from C into X. 

Then, 

(1) ScU 

(2) (C, |||.|l|) is a Banach space and i is continuous. 

(3) i** : C** X** is one to one and (i**)*1 (X) = C. 

(4) C is reflexive iff S is weakly relatively compact. 

Proof. (1) If xe S, then||x||n < 2'^, for any n e N. So, [||x||| < 1. That 

means x e U. 

(2) Let Xn = (X, ]|.Up) and Y = Zp _ ■]“’Xn with l-|-norm. We define a function 

f: C -> Y by f(x) = (i(x), i(x), i(x),...). Then, f is a linear isometric embedding, and 

f(C) = {y = (yp): y e Y and yp = yi for n e N} is a closed subspace of Y. 

Therefore, (C, |||.H|) is a Banach space. We consider i as the composition of f 

and the projection of U onto the first coordinate. So, i is continuous. 

(3) Since f**(x**) = (i** (x**), i** (x**), i** (x**), ...) for any x** e C, and since f is 

an isometry, (f** = {0}, hence f** is one to one, (f** )■"* (f(C)) = C. 
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(4) We claim that weak - cl(U) = i** (B(C**)) in (X**, weak). To see this, first, 

we know that B(C**) is weak* - compact in (C**, weak*) (see the Alaogiu 

Theorem [18]), U = B(C) is weak* dense in B(C**) (see the Goldstine Theorem 

[18]), and i** is weak* continuous. Hence, i**(B(C**)) is closed in (X**, weak*), 

since i**(B(C**)) is compact in (X**, weak*). And i** ( U ) = U is dense in 

i**(B(C**)). 

Suppose that S is weakly relatively compact, i.e. weak - cl(S) is compact 

in (X, weak). Then, U c 2^ weak - cl(S) + 2'^ B(X**), for any n e N. 

Furthermore, 2^ weak - cl(S) + 2'^ B(X**) are weak* closed in (X**, weak*), 

for n e N, hence they contain i** (B(C**)). Since 

^n=1°"(2" weak - cl(S) + 2*^ B(X**)) c On^i‘-(X + 2-^B{X**)) = X, then, 

i** (B(C**)) c X. So, by (3), C** c C. That means that C is reflexive. 

It is easy to get the other part of the implication directly from (1). 

Theorem 4.2.1 (Davis et al. [13]) Every weakly compact subset K of a Banach 

space is weak to weak affinely homeomorphic to a subset of a reflexive Banach 

space. 

Proof. In Lemma 4.2.1, let S= cl - conv(K KJ (- K)). By the Krein - Smulian 

Theorem which says that the closed convex hull of a weakly compact subset of 

a Banach space is itself weakly compact (see [18]), S is weakly relatively 

compact. By (4) of Lemma 4.2.1, C is reflexive. Therefore, 
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A = i'"' (K) is weakly compact. Hence, i|A is the homeomorphism we need. 

The following theorem is proven in Diestel and Uhl [17]. 

Theorem 4,2.2 Suppose that X is a reflexive Banach space. Then X** = X has 

the Radon - Nikody'm property. 

Theorem 4.2,3 (Namioka [27]) Suppose that (K, x) is a compact Hausdorff 

topological space which is an Eberlein - compact or scattered compact. Then 

(K, x) is Radon - Nikody'm - compact. 

Proof. Supppose that (K, x) is an Eberlein - compact space. Then K is 

homeomorphic to a weakly compact subset, F, of a Banach space X. By 

Theorem 4.2.1, F is weak to weak homeomorphic to a subset of a reflexive 

Banach space X-|. Hence, K is homeomorphic to a weakly compact subset of a 

reflexive space X-\. Following Theorem 4.2.2, X-j has the Radon - Nikody'm 

property. So, (K, x) is RN compact. 

Suppose that (K, x) is scattered - compact. By Rudin in [37], K** is 

isomorphic to l-| (K), where we identify K with F. Since I-] (K) has the Radon - 

Nikody'm property by [17], then K is homeomorphic to a weak* compact subset 

of K**. Therefore, K is RN compact, which completes the proof. 

So, EC RNC. The next main result is RNC EC. First, we note the 
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following characterization for Eberlein - compact spaces due to Rosenthal [33]. 

Theorem 4.2.4 A compact Hausdorff space K is Eberlein - compact iff there is 

a sequence^ = (ap,)n=i°° such that 

(1) If n e N and any A e ap,, then A is an open F<j - set of K. 

(2) If X y, then there is n G N and A G ap, such that either x G A and 

y € A; or X G A and y G A. 

(3) If X G K and n G N, then x belongs to a finite number of sets in ap,, i.e. each 

ttp is point - finite. 

The sequence A is called an EC - structure. 

Theorem 4.2.5 (Bennett et al. [5]) [0, coj is not Eberlein - compact. 

Proof. Suppose that [0, coj] is Eberlein - compact. By Theorem 4.2.4, there is 

an EC - structure A . Let A ' = {A G A : coj G A}. Then, A' is countable by 

Theorem 4.2.4, Condition (3). Hence, there is an ordinal |3 < co^such that 

(P, coj) c n{A; A e A’}. Then for any q e (P, coj) and ^ q, if A G A ’ which 
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separates T|, then coj^ A. Such a set A must be bounded away from coj^, so 

that the familyA ~ A ' is a point - countable cover of (3, coj) by bounded open 

sets. Using the Pressing Down Lemma, we know that such a cover cannot 

exist. 

Theorem 4,2.6 (Namioka [27]) There is a topological space (K, x) which is 

Radon - Nikody'm compact but not Eberlein - compact. 

Proof. [0, co|] is such a space, since it is Hausdorff and scattered in the order 

topology and by Theorem 4.2.3, [0, co^] is Radon - Nikody'm compact. 

However, by Theorem 4.2.5, we know that [0, co^j is not an Eberlein - compact. 

The following two corollaries are immediate since UEC =» EC. 

Corollary 4.2.7 If a topological space (K, x) is uniform Eberlein - compact, then 

(K, x) is Radon - Nikody'm compact. 

Corollary 4.2.8 Radon - Nikody'm compact does not imply uniform Eberlein - 

compact. 
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4.3 Radon - Nikodv'm and Corson Compactness 

We will show RNC CC. The following theorem is due to Namioka [27], 

but, the proof is different from the original one. 

Theorem 4.3.1 Radon - Nikody'm compact does not imply Corson - compact. 

Proof. [0, coj] with the order topology is Radon - Nikody'm compact as shown in 

Theorem 4.2.6. By Theorem 3.6.1, [0, co^] is not Corson - compact. 

Also, we give a counterexample which will show that CC RNC. 

Theorem 4.3.2 (Stegall [38]) Let X be a Banach space. X* has the Randon - 

Nikody'm property, i.e. X is an Asplund space, iff every weak* - compact subset 

of X* is norm - fragmented. 

Theorem 4.3.3 (Namioka [27]) Suppose that (K, x) is Baire and p is a metric on 

K. If (K, x) is p - fragmented, then the set 

C = {xe X: i: (K, x) -> (K, p) at x is continuous} is a dense G5 set of (K, x). 

Proof. LetUe = u{V; V is x - open and p - diam(V) < e}. Since (K, x ) is p - 
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fragmented, then it is easy to see that Ug is x - open and x - dense in K. 

Let C = {xe X: i : ( K, x ) -^ ( K, p ) at x is continuous}. Then 

C = i^n=1°°^1/n- Since ( K, x ) is a Baire space, then C is a dense G5 subset of 

(K, x). 

Theorem 4.3.4 (Namioka [27]) Suppose that (K, x) is a Radon - Nikody’m 

compact space. Then, there is G5 subset C of K such that C is dense in K and it 

is metrizable in the relative topology. Hence, if x e C, then x is a G5 point in 

K. 

Proof. By Theorem 4.3.2, we can suppose that K is weak* - compact subset 

of the dual X* of a Banach space X and K is norm - fragmented. Let 

C = {xe X; i : (K, weak ) ^ (K, norm) at x is continuous}. Following Theorem 

4.3.3 directly, we know that C is a dense G5 subset of (K , weak*). Since 

i; (C, weak*) -> (C, norm) is a homeomorphism and (C, norm) is metrizable, 

then, (C, weak*) is metrizable. For any x e C, by the definition of C, it is 

obvious that {x} is a G5 subset in (C, weak*). Hence, {x} is a G5 set in 

(K, weak*). 
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The following theorem essentially comes from Namioka. 

Theorem 4.3.5 Corson - compact does not imply Radon - Nikody'm compact. 

Poof. Let (K, t) be Corson - compact. Suppose K is Radon - Nikody’m 

compact. By Theorem 4.3.4, for (K, i), there is a dense G5 subset of C c K 

such that C is metrizable in the relative topology. But, Todorcevi'c, (see 

Chapter 6, Theorem 9.11 [28]), built a Corson - compact space which does not 

have any metrizable subspace. 

4.4 Radon Nikodv'm. Talaarand and Gui’ko Compactness 

Since TC => GC CC, we have the following immediate corollaries to 

Theorem 4.3.1. 

Corollary 4.4,1 Radon - Nikody'm compact does not generally imply 

Talagrand - compact. 

Corollary 4.4.2 Radon - Nikody'm compact does not generally imply Gul'ko - 

compact. 

4.5 Radon Nikodv'm and Valdivia compactness 
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The main results of this section are VC RN which is Theorem 4.5.1, and 

RN VC which is Theorem 4.5.2. 

Theorem 4.5.1 Valdivia - compact does not imply Radon - Nikody'm compact. 

Proof. Suppose that Valdivia - compact does imply Radon - Nikody'm 

compact. Since any Corson - compact is Valdivia - compact, then Corson - 

compact implies Ra*don - Nikody'm compact. This contradicts Theorem 4.3.6. 

The proof that [0, C02] is not Valdivia is given by Yabouri (see [14]). 

Theorem 4.5.2 There is a Radon - Nikody'm compact which is not Valdivia - 

compact. 

Proof. We will show that [0, CO2] with the order topology is Radon - Nikody'm 

compact, but not Valdivia - compact. 

Since [0, co2]is a scattered - compact in the order topology, by Theorem 

4.2.3, [0, C02] is Radon - Nikody'm compact. 
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We are going to show that [0, C02] is not Valdivia - compact. Suppose that 

[0, C02] is Valdivia - compact. By the definition of Valdivia - compact, [0, C02] is 

homeomorphic to a subset F c [0, 1]^ for some set C such that FnZ([0, 1]C)is 

dense in F. We will identify F and [0, C02]. By Lemma 3.6.1, £02 « [0, 1]^. 

Hence, there is a A c C such that co2(x) * 0 for any x e A and |A| = coj. Since 

|A| < 0)2, there is r\ such that (3(x) = o)2(x) for any x e A. Therefore, 

[TJ, C02] n Z ([ 0, 1 ]C) = <j>. This contradicts that [0, 0)2] n Z ([0, 1]^) is dense in 

[0, C02]. 

4.6 Conclusion 

The results of this chapter can be summarized as follows: 

UEC RN, UEC ^^RN; 

EC=>RN,EC^;>^RN; 

RNT^=>GC: 

RN^=>CC, CC?^=>RN: 

RN VC, VC^=> RN; 



Chapter 5 

Rosenthal Compactness 

5.1 Introduction 

Up to this point, we have not discussed the connections between Rosenthal - 

compact and the other types of compact spaces. Unfortunately, not many results 

have been obtained. Some of the known results are shown in this chapter. 

5.2 Rosenthal and Radon Nikodv'm Compactness 

We are going to show RN RC. 

Theorem 5.2.1 (Rosenthal [35]) Suppose that (K, t) is a Rosenthal - compact 

space. Then K is angelic. 

The following theorem is due to Namioka, but the proof is different from the 

original one. 

Theorem 5.2.2 (Namioka [27]) There is a topological space (K, x) which is Radon 
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- Nikody'm compact but not Rosenthal - compact. 

Proof. From Theorem 4.2.6, we know that [0, o)j] is Radon - Nikody'm compact. 

Since [0, tO]^] is not angelic, then [0, co^] is not Rosenthal - compact by Theorem 

5.2.1. 

We are going to give a counterexample which will show that RC RN. 

Theorem 5.2.3 (Namioka [27]) A topological space ( K, t) which is Radon - 

Nikody’m compact is herditarily Lindelof iff it is metrizable. 

Theorem 5.2.4 (Namioka [27]) There is a topological space (K, t) which is 

Rosenthal - compact, but not Radon - Nikody'm compact. 

Proof. Let K = {(x, y): 0 < x <1, y = 0, 1} ~ {(0, 0) , (1, 1)} and define an order on 

K by (x, y) < (x-|, y-|) iff x < x-j or x = x-| and y < yi. K with the order topology x is 

compact. It can be shown that (K, x) is hereditarily Lindelof, but not metrizable. 

Therefore (K, x) is not Radon - Nikody'm compact by Theorem 5.2.3. 

We will show that (K, x) is Rosenthal - compact. Let 

F = {g; g:[0, 1]{0, 1} and if t < ti then g(t) < g(ti) and g (0) =0, g(1) =1}. 



76 

If we induce the pointwise topology, on it, then (F, x^) is Rosenthal - compact. 

(K, x) is homeomorphic to (F, X|). So, (K, x) is Rosenthal - compact. 

5.3 Rosenthal and Eberlein Compactness 

Argyros, Mercourakis and Negrepontis showed [3] that every Eberlein - 

compact of weight at most 2® is Rosenthal - compact. However, since 

EC ^ RN, RC ^ RN, then RC ^ EC and RC ^ => UEC. 

5.4 Conclusion 

Evidently there are no known connections between RC and the remaining 

notions of compactness, namely, TC, GC, CC and VC. 
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Chapter 6 

Some Recent Discoveries 

6.1 introduction 

In 1989, Devilie and Godefroy [14] showed that a topological space (K, t) is 

Valdivia - compact if and only if it is Corson or [0, coj] c K. This theorem 

supplies a clear picture of the relationship between Corson - compact and 

Valdivia - compact. In the same year, Orihuela, Schachermayer and Valdivia 

[30] proved that a Radon - Nikody'm and Corson - compact space is Eberlein 

compact which answered an open question proposed by Namioka [27] in 

1987. In this chapter, we will give the proofs of these two theorems. 

6.2 Conditions for a Valdivia - compact to be Corson - Compact 

We are going to give conditions for a Valdivia - compact to be Corson - 

compact. 

Lemma 6.2.1 Suppose that (X, x) is a Hausdorff topological space and a net of 



78 

functions, {fot: 0 < a < (3}, which is from X to itself satisfies the following 

conditions 

0) 0<a<^<P; 

(2) for xe X, the function QX: a-4 fQ^(x) is continuous from [0, p] to (X, x), 

then gx([0, P]) is homeomorphic to a well ordered space for every x e X. 

Proof. Fix X e X. Let C = gx([0, P ]) c X. We say x-| < X2 iff 

inf{gx’^ (xi)} < inf{gx'^ (x2)}- C is well ordered by the relation, <. 

Claim: gx'^ (z) is an interval in [0, P]. To see this, let a = inf{gx*^ (z)j and 

P = sup{gx'^ (z)}. For any a < y < p, by condition (1), f-^aC^) = 'fy(z) = 

Since there is a ^ e gx'^ (z) such that y< ^ < p, fy(x) = fy;f^(x)) = f-yCz) = z. This 

verifies the claim. 

Hence, gx is continuous from [0, P] with its order topology to C = gx([0. PI) 

with the topology x-| induced by the relation < If we can prove that x = xj on 

C = gx([0. P]). then C is homeomorphic to the well ordered set C with regard to 

the relation < 

Suppose that A is x^- closed. Then, gx'^ (A) is closed in [0, P]. Since 
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Qx(9x'^ (A)) = A and QX'^ (A) is compact, then A is compact in x. Hence Aisx- 

closed following the fact that (C, x) is Hausdorff. That means x^cx. 

Suppose that A is x - closed, but not x^ - closed. There is XQ e A, a net 

(>^a)ae 'P £ A such that {xa)a e 4/ ^ XQ in (C, x), but (x^ )(x e ^ is 

convergent to xg in (C, x^). Hence, there is an interval (y-j, y2), XQ e (yi. y2), 

such that for any 0 < ri < p, there is a(Ti) > r\ such that XOC(T|) « (yi. V2)- So, we 

get a subnet (xoc(ri))rieT^ which is not a subset of (yi, y2)- Since {'X-a(r[))r[eH^ 

-^XQ, then XQ ^ (71.72)- Contradiction. Hence, xcxj. 

Therefore, x = X|. This completes the Lemma. 

Lemma 6.2.2 (Argyros [14]) Suppose that X is a compact subset of 

([0,1 ]C, xj), where xj is the product topology on [0, 1]^ for some set C such 

that X L([ 0, 1 ]S) is dense in X. If A c C and | A | > co, then there is a 

B c C such that A e B, |A| = |Bj and rB(X) c X, where rg: [0, 1]C [o, 1]C is 

defined by: 

rB(x)(k) = x(k) if k e B; 
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rB(x)(k) = 0 if k g B. 

Theorem 6.2.1 (Deville and Godefroy [14]) If (K, x) is a Valdivia - compact 

space, then K is Corson - compact iff there is no closed subset of K which is 

homeomorphic to [0, coj]. 

Proof. => Let (K, x) be Valdivia - compact. Suppose that K is Corson - compact 

and B is any closed subset of K. Since B is Corson -compact, by Theorem 

3.6.1, B is not homeomorphic to [0, co^j. 

<j= Suppose that (K, x) is Valdivia - compact, but not Corson - compact. 

Hence, there is a set C such that K c [0, 1]^^ and D n Z([0, 1 ]^) is dense in K, 

where we identify K with its image in [0, 1]^, and there is a XQ e K such that 

XQ « S {[ 0, 1 ]C). Let A c C such that |A| = ©land XQ(a) ^ 0 for every a e A. We 

rewrite A = (ao^: 0 < a < coj}. 

Claim: There is a net, {AQ^: 0 < a < COJ}, of subsets of C such that 

(1) A(x e Ap for a < P; 
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(2) |Aotl = ci) for a<03j; 

(3) ^a+V 

(4) ^a~ '^(3 < a^P ordinal a. 

(5) rAa(K) c K. 

To see this, since XQ e VQ^ = {x e K; x(3(x) ^ 0} which is an open subset of K 

and K Z([ 0, 1] is dense in K, we can choose ^ '^a'^ ^([ 1]^)- In 

Theorem 3.6.1, let A={ceC; xo(c)?iO}, fora = 0; 

A = AQ^ U {CG C: X(X(C) ^ 0} for a^O. 

Using Lemma 6.2.2, build AQ,^\ from AQ, such that r^a+lCK) E K- If oc is a limit 

ordinal, let AQ(, = up < ^^Ap. By this construction, one can see that 

{Aot: 0 < a < coj} satisfies condition (1) to (5). 

Let ^nd K = X in Lemma 6.2.1, we can get gx([0, coj]) which is 

homeomorphic to [0, for some ordinal From condition (2) and (3) of 

Lemma 6.2.2, it is easy to see that gx([0, coj]) is uncountable. Hence, K 
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includes a subset homeomorphic to [0, (oj]. 

Corollary 6.2.2 Let (K, x) be a topological space. Then, K is Valdivia - 

compact iff K is Corson - compact, or [0, coj] c K. 

6.3 Conditions for Radon - Nikodv'm to be Eberlein - compact 

Based on a result of Orihueia, Schachermayer and Valdivia in [29], we show 

that every Radon - Nikody'm and Corson compact space is Eberlein - compact. 

First, we give some definitions and prove some lemmas. 

Definition 6.3.1: A class T' of compact Hausdorff space is called a perfect class 

iff is stable by taking continuous images, countable products, and closed 

subspaces. 

Definition 6.3.2: Let X be a linear space. A set S in X is called absolutely 

convex iff for any yi, ya e S, yi + p y2 e S whenever |A,| + |p| < 1. 

Definition 6.3.3: Suppose that X is a Banach space and C is an absolutely 

convex and weak* compact subset of X*. Denote by |.| the seminorm on X 
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dual to C, i.e.|x| = sup{< x, y > ; y e C}. Let (Y, |. |) be the Banach space 

obtained by completing the equivalence classes modulo |.| of X and i: X -> Y 

be the canonical map. 

Let |j.||n be the norm on Y whose unit ball is given by 

B(Y.|M|n)=cl(2ni(B( X, IMI) + 2-nB(Y, |.| )). 

For 1 < p < + oo, define jlx||p = (Zp _ -|'=^||x||nP)'’'^Pand ||x|lo = max{||xl|n}- Let 

Fp = {xeY; ||x||p< +co}andFo= {xeY: ||x||o < + <« and limn|lx||n = 0}. 

Lemma 6.3.1 Suppose that X is a Banach space and C is an absolutely 

convex and weak* compact subset of X* that belongs to a perfect class T. 

Then both (B(Fp*), weak*), (B(Fo*), weak*) e 4^. 

Proof. For 1 < p < + denote 

2p = ^p(Y.||.||n) 

= {z = (xn): xpeY and l|zl| = (Zp =i~||xn||nP)1^P < + oo}, and 

So = 5:o(Y.||.||p) 

= {z = (xp): xpe Y and ||z|| = supdlxpUp} < +oo and limp||x)|p = 0}. 

Fp (respectively, Fg) is isometrically isomorphic to the diagonal of 
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Zp (respectively, ZQ), i.e. for z = (xp) e Zp such that x-] = X2 = ... whence 

B(Fp*) (respectively, B(Fo*)) is a continuous image of B(Zp*) (respectively, 

B(ZQ*)) with respect to the weak* - topology. Hence, it is sufficient to show that 

(B(Zp*), weak*), (B(ZQ*), weak*) G 'F. 

First, we note that the identity on Y induces a continuous injection of norm 1 

and with dense range from Zp into Zp, for 1 < p < + <», and from ZQ into ZQ. 

Whence B(Zp*), B(ZQ*) are weak* - homeomorphic to a subset of B(Z.|*), it is 

sufficient to show that B(Z.| *) is in 'F. 

Secondly, we note that B((Y, ||.||)*) may naturally be identified with a subset 

of 2^C. Hence, B(( Y, ||.|l)*) G 'F. Since (B(Zp*), weak*) is homeomorphic to 

=i'^(B((Y, iMln)*), weak* ), then (B(Z-|*), weak*) e 4^. 

Lemma 6.3.2 Suppose that K is a weak* - compact subset of the dual X* of a 

Banach space X where K is norm - fragmented such that its weak* closed 

absolutely convex hull C belongs to a perfect class 'F of compact spaces. 

Then, space Fp and FQ 3''® Asplund and B(Fp*), B(Fg*) e 4^ for any 
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1 < P< + oo. 

Proof. By the Stegall Theorem [39], Fp and FQ are Asplund spaces. By Lemma 

3.5.1, (B(Fp*), weak*), (B(Fo*), weak*) e 'F. 

Theorem 6.3.1 Let (K, x) be a topological space. Then, K is Eberlein -compact 

iff K is Radon - Nikody'm and Corson. 

Proof. Suppose that K is Eberlein - compact. Since EC TC ^ GC => CC, 

K is Corson - compact. Following Theorem 4.2.3, K is Radon - Nikody'm 

compact. Hence, if K is Eberlein - compact, then K is Radon - Nikody'm 

compact and Corson - compact. 

<= Suppose that K is Radon - Nikody'm and Corson - compact. So, K is 

homeomorphic to a weak* - compact subset of the dual X* of a Banach space X 

such that the dual norm fragments K. Jayne, Namioka and Rogers [20] proved 

that every regular Borel probability measure on K has separable support, and 

Argyros, Mercourakis and Negrepontis [3] proved that if K is a Corson - 

compact space with this property, then B(C*(K)) is Corson - compact. Hence, 

the weak* closed absolutely convex hull C of K is a Corson - compact, since it 

is the continuous image of B(C*(K)) in (C*{K), weak*). We apply Lemma 6.3.2 

to the perfect class of Corson compact spaces and find an Asplund space F 

with weak* Corson compact dual unit ball such that K is homeomorphic to a 
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weak* compact subset of the dual F*. Orihuela, Schachermayer, and Valdivia 

[30] showed that F is weakly compactly generated and thus K is Eberlein 

compact. 
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