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Abstract
Connections between several compact spaces are studied in this thesis.
Proofs are given when one implies another, and so are counterexamples when
one does not. The spaces discussed in this thesis are: uniform Eberlein -
compact (UEC) space, Eberlein - compact (EC) space, Talagrand -compact
(TC) space, Gul'ko - compact (GC) space, Corson - compact (CC) space,
Radon:=Nikody 'm - compact (RN) space, Rosenthal - compact (RC), Valdivia -

compact (VC) space. The main results are:

UEC = EC = TC = GC = CC = VC;
UEC &% EC &= TC &% GC &= CC <= VC;

EC = RN, RN 2= EC; RN 2= CC, and CC #= RN;
EC+w(K)<cw=RC, EC&RN+CC,VC = CCorVCo[0, m};

Also, we show: RN z= VC, RN <= VC, RC #= EC; RN 2= TC, RN == GC;

and the equivalency of definitions of « - analytic and K - analytic, k - countably

determined and countably determined.
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List of Special Symbols

Symbols which will be used in this thesis are list below:

|X| or card(X)

w1

w2

the cardinality of set X.

the cardinality of a countable set.

the cardinality of the first uncountable ordinal.

the cardinality of the second uncountable ordinal.

empty set.
set of natural numbers.
set of real numbers.

n - dimensional vector spaces.

product space.

a topological space X with topology T .

set containment.

set intersection.



F=

flA

set union.
that is.

if and only if.
imply.
only if
do not imply.

it and only if.
normed space X with the norm ||.|].

closed unit ball of a normed space X.

{ye X: p(x,y) <&, where p is a metric on X}.

function f restricted to the set A.
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Chapter 1

Introduction

1.1 Historical Notes and Main Results

Compactness has long been of interest to topologists and played a significant
role in analysis. In this thesis we study several notions of compactness that have
been of particular interest to functional analysts in the past couple of decades.
We focus our attention on the connections between these compact spaces.

The compact spaces we are going to study are uniform - Eberlein compact,
Eberlein - compact, Talagrand - compact, Gui'ko - compact, Corson - compact,
Valdivia - compact, Rosenthal - compact, and Radon - Nikody'm compact spaces.
The term Eberlein - compact was coined by Lindenstrauss [23] in 1972 in his

survey paper. The Talagrand - compactness was introduced by Talagrand in

1979. Talagrand - compact spaces, however, are based on x - analytic spaces
which were first introduced by Choquet [9] in 1953. Gul'ko [19] in 1979
introduced the notion of Gul'ko - compactness. Corson - compact spaces were
first studied by Corson [11]in 1959 . Valdivia - compact spaces were first
introduced by Argyros [30] in 1988. Rosenthal - compact spaces were first

studied by Rosenthal [35] in 1977. And, Radon - Nikody'm compact spaces were



introduced by Namioka [27] in 1987.

Through our research, we find that
UEC = EC = TC = GC = CC = VC;

but, UEC = EC <= TC <= GC <= CC <= VC;
EC = RN, but RN = EC;
RN == CC, CC #= RN;

RN #= RC, RC #= RN;

Furthermore, we have
EC RN +CC,VC « CCor [0, ] cVC;

EC+ w(K) <o = RC,;

We show
VC 2= RN, RN 2= VC, RN = TC, RN #= GC;
RC == EC, and equivent definitions of x - analytic and K -

analytic and k - counbtably determined and countable determined.

1.2 Basic Definitions and Theorems

Before starting to discuss these different compact spaces, we briefly recall



some definitions and theorems which are required in the thesis.

Definition 1.2.1: Let (X, 1) be a topological space.

(@) The weight of X is w(X) = in{{|Bl: B < 7, Bis a basis}.
(b) The density character of X is d(X) = inf{|[Y]: Y ¢ X, Y is dense in X}

(c) Xis said to be scattered iff for any C ¢ X, C has at least one isolated point.

(d) Xis called a Polish space iff itis a complete separable metrizable space.

Definition 1.2.2: A compact Hausdorff space (K, 1) is called angelic iff for any

subset C c K and any x € t- cl(C), there is a sequence (Xp)n =1°° < C such that

(Xn)n = 1°° converges to x.

Definition 1.2.3: Let (X, t) be a topological space.

(a) C(X) is defined by C(X) = {g: X — R: g is continuous}

(b) The pointwise topology on C(X) means that any net (gg)ge A ©f C(X)

converges in the pointwise topology to g of C(X) < g (Xx) converges to g(x) for all

xe X.



Definition 1.2.4: Let (X, 1) be a Polish space. A function g: X — R is called a

Baire - 1 function iff there is a sequence (gn)n = 1°° of C(X) such that

(On{X))n =1°° converges to g(x) for all x e X. The set of all Baire - 1 functions on X

together with the pointwise topology is denoted as 4 (X).

Definition 1.2.5: Let (X, 1) be a topological space, p be any metric on X. For any

non - empty set C < X, p(C) = sup{p(x, y): x, y € C}. Xis fragmented by p iff for
each € > 0 and any non - empty C < X, there is an open set O such that

OnAzdand p(ONnA)<e.

Definition 1.2.6: A topological space (X, 1) is called norm - fragmented iff X is a

subset of a normed linear space and is fragmented by the metric of the norm.

Theorem 1.2.1: (Namicka [27]) A topological space (X, 1) is p - fragmented iff for

any € > 0 and for any C < A which is T — closed, there is t - open subset O of X
suchthat CNnO=dand p(CnO)<e.
Proof: = Itis obvious.

< Foranye >0and C < X, there is a T —open subset O of X such that



T-cl(C)nO =D and p(t-cl(C) nO) <e. Clearly, p(C nO) < e. To see that

C nO=®d,suppose that C " O = d. Since t-cl{C) n O =, there exists

x e 1-cl(C) nO. Hence, there is a net (Xg)y < A Of C such that limge AXg = X.

Therefore, for the neigbourhood O of x, there is A in the directed set A such that

forany ae A, a>2%g, xq € O. Since (xg)ye A< C, this is a contradiction.

Theorem 1.2.2: (Namioka [27]) Let (X, 1) be a topological space and p be a

metric on X. Then the following conditions are equivalent.
(1) The space (X, 1) is p - fragmented.
(2) Forany 1 - closed C < X, the set

A(C) ={x: xe Csuchthat i: (C, 1) — (C, p) is continuous at x} # ®, where i is

the identity map.
Proof. (1) = (2): Suppose that (X, 1) is p - fragmented. Let C be a1 - closed
subset of X. By Theorem 1.2.1, there is a 1 - open subset O of X such that
C n O =dand p(C n O) <g, which means exactly that A(C) = .
(2) = (1): Suppose that for any t - closed subset C of X, A(C)= ®. Then

there exists x € C such that forany € >0, there is a t - open subset O of X such



that foranyy e Cn O,y e p(x, €). By the theorem 1.2.1, (X, 1) is p - fragmented.

Theorem 1.2.3: Let (X, 1) be a topological space which is fragmented by a metric

p, then X is fragmented by any metric whose topology is identical with that of p.

Proof. It follows from Theorem 1.2.2 easily.

In the case that Y is a normed linear space over R, we define the dual of Y, Y*,

as follows: Y* ={h :Y — R: his continuous and linear on Y}. The weak topology

on Y is defined by xy— x in the weak topology of Y iff g(xq) — g(x) for any ge Y™.
This is denoted by (Y, weak). Also, the weak* topology on Y* is defined by fy— f

in the weak™ topology of Y* iff fy(x) — f(x) for any x e Y. This weak™ topological
space is denoted by (Y*, weak*). When (K, 1) is a compact topological space, we

define the sup - norm on C(K) as follows: ||f||cc = supxe K|f(x)| for any f e C(K). it

is a classical result that C(K) is a Banach space with this norm. Hence, we are
able to define the weak topological space (C(K), weak) and the weak” -

topological space (C*(K), weak™).

Definition 1.2.7: A Banach space X is called an Asplund space iff every

separable subspace of X has a separable dual.



Definition 1.2.8: A Banach space X is called weakly compactly generated

(W.C.G.) iff there exists a weakly compact set K < X such that the linear span of

K is dense in X.



Chapter 2

Compact Spaces

2.1 Introduction

In this chapter, we introduce each of the notions of compactness that is

considered in this thesis. Also, some relationships between types of compacta

are given in this chapter.

2.2 Definitions of Compact Spaces

In the following definitions of compact spaces, we aiways let (K, t) be a

compact topological space.

Definition 2.2.1: K is said to be yniform Eberlein - compact (UEC) iff K is

homeomorphic to a weakly compact subset of a Hilbert space X.

Definition 2.2.2: K is said to be Eberlein - compact (EC) iff K is homeomorphic to

a weakly compact subset of a Banach space X.



Comments: From Definition 2.21 and 2.2.2, it is easy to see that

UEC = EC, since every Hilbert space is a Banach space.

Definition 2.2.3: K is said to be Radon - Nikody'm compact (RN) iff K is

homeomorphic to weak”® - compact subset of X * where X is an Asplund space.

Definition 2.2.4: K is said to be Rosenthal - compact (RC) iff Kis homeomorphic

to a subset of B{(X) (from t on K to the pointwise topology on f;(X), where Xis a

Polish space).

Definition 2.2.5: A topological space (X, 1) is said to be x - analyti¢ iff Xis

continuous image of a Kgg set, i.e. X = (N1 Um=1"Km, n), where

f2 (Y, 1)) = (X, 1), fis contivous, Km n is compact in (Y, t4) forany m,ne N.

Definition 2.2.6: K is said to be Talagrand - compact (TC) iff C(K)isa x-

analytic set in its weak topology.

Definition 2.2.7: A topological space (X, 1) is said to be x - countably determined

iff there is a compact topological space (Y, 71) such that X Y and thereis a
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sequence of 1, - closed subsets, (Kq)n=1°, of Y such that for every x € X, there is

d =N (x) 2N suchthat x mneN(x)Kn-

Definition 2.2.8: K is said to be Gul'ko - compact (GC) iff C(K) is a k - countably

determined set in its weak topology.

Definition 2.2.9: K is said to be Corson - compact (CC) iff there is a set C such

that K is homeomorphic to a subset of S(RC) = { x e RC: supp(x) is countable},

where supp(x) = {c € C: x¢ =0}, (from 7 on K to the product topology on Z(RC)) .

Definition 2.2.10: K is said to be Valdivia - compact (VC) iff K < [0, 1]C for

some set C such that K ([0, 1]C) is dense in K.

Comments: Following Definition 2.2.9 and Definition 2.2.10, it is easy to see that

CC = VC.

Theorem 2.2.1 (Corson [11], Proposition 1) Any metrizable space is a Corson -

compact space.
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Proof. Let X be a metric space. Bing [7] showed that there is a sequence

(Aj)i=1°°, where each A; is a family of open sets in the metric topology t, such
that ;_1°°Aj is a base of tand each x € X is contained in an open set which
meets at most one member of (Aj)i=1, i.e. thereis O € Tand at most oneje N
such that x e O M O(A)) # @, where O(Aj) € Aj. Forany open set O(A)) € Aj,
there is a countable familty of open sets Bj(O(Aj)) < O(A;j), such that
O(Aj) =uj=17Bj(O(A}).

Let U={B: Bis akind of Bj(O(Ai) ) fori,j € N}

ForeachB e U, thereisie N,andje N such that B = Bj(O(Aj) ). By

[Wilansky [46], Theorem 4.3.3] which says that every semimetric space is normal,

then X is normal, since X is metric space. By Urysohn's lemma, we can define a

continuous function fg : X — [0, 1] such that

f(x)=0 x e A

By [Kelley [22], Lemma 4.5] the evaulation function

f: X — II{tg(x): B e U}, where (f(x))g = fg(x), is a continuous function. Since
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there are countably many B in U, then f(X) c Z([ 0, I]U). Hence, X is Corson -

compact.

2.3 Eberlein - compact Implies Talagrand - compact

The main theorem of this section is that every Eberlein - compact space is a
Talagrand - compact space. But, before we show it, we need some theorems.
One of these is the following one which is well - known and connects a W.C.G.

space with Eberlein- compact space (see Diestel [16], p.152):

Theorem 2.3.1 Let (K, 1) be a compact Hausdorif topological space. Then the

following conditions are equivalent:
(1) Kis Eberlein - compact;
(2) C(K) is a W.C.G. Banach space;

(3) The closed unit ball of C*(K) is Eberlein compact in its weak’ - topology.
The key theorem for the proof of the main theorem of this section is Theorem

2.3.2 which was first proved by Talagrand [40]. The proof given here follows that

of Rogers and Jayne [32].

Theorem 2.3.2 (Talagrand [40]) If Xis a W.C. G. Banach space, then Xis k-
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analytic in its weak topology.

Proof. Suppose that X is a W.C.G. Banach space. Then there is a weakly

compact subset C < X such that w - cl(span(C)) = X, where w - cl(span(C))

denotes the closure of span(C) in (X, weak). Let

A={a: a=(rq,...,rp), rj is arational number, ne N}. If we set

C(a)= riC + ... + rnC, then C(a) is a weakly compact set in X. Since Ais

countable, let (C(n))n=1° be an enumeration of the sequence {C(a): a € A}.

Then for any positive natural number m € N and considering X as a subset of X™*,
X< Up=1=C(n) + (1/Mm)B(X) < up=1=C(n) + (1/M)B(X*"),

so, X C Nm=1™Yn=1=(C(n) + (1/ m)B(X™™)).

Let X" € Nm=1=Un=1"(C (n) + (1/ m)B(X*)),

then for any m € N, there is xm € Up =1°°C(n) < X such that

Ix ™ - x|l < 1/ m. (")
The Cauchy sequence (Xm)m =1°° converges to some point in X, and because
of (*), we know x*" is the limit of (xm)m =1°°- Hence,

X = At ™Uno1(C(N) + (17 m)B(X*)).

Since C(n) + (1/ m)B(X**) is weak® - compact in the weak” - topology of X**,
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Xisaksg setin (X**, weak®). Hence Xis a kg5 in (X, weak).

Theorem 2.3.3 Every Eberlein - compact space is a Talagrand - compact space.

Proof. Suppose K is Eberlein - compact, then C(K) is a W.C.G. Banach space by

Theorem 2.3.1. Following Theorem 2.3.2, C(K) is x - analytic in (C(K), weak).

So, Kis Talagrand - compact.

2.4 Talagrand - compact Implies Gul'’ko - compact

The basic aim of section 2.4 is to show that every Talagrand - compact space

is a Gul'ko - compact space. We will use Talagrand's theorem which says that

every K - Souslin set is k - countably determined.

Definition 2.4.1: Let S={s: s=(n{,..., Ny, nje N, 1<i <w} and

L={o: 6=(N1 ... Nnj,...),nje N}. Wesays<cforanyse Sandce Liff

s and o have the same first i terms.

Definition 2.4.2: For S’ ¢ S, suppose that (Bg)g ¢ &' is a class of subsets of X.
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Define Bg by: Bg =MNg < gBs, Wherese §'. The set A =g 5Bg is called the

nucleus associated with class (Bg)s < §'; sometimes, we say that the set A is

obtained from (Bg)g ¢ §' by Souslin's operation.

Definition 2.4.3: Let (X, 1) be a Hausdorff topological space. Any C c X which is

obtained by Soulin's operation from a class of compact subsets of X is called a X

- Souslin _set.

Theorem 2.4.1 (Talagrand [41], Proposition 1.1) Let (K, t ) be a compact

topological space and A c K. If there is a family (Bg)gse §, where Bg is compact in
(K, 1), and a &' ¢ Z such that A = Ugc Mg « gBs, then there is (Kp)n=1°, where
Kpn compact in (K, 1), such that for any x e A there exists N(x) < N such that x
Mne N(x)Kn-

Proof. Since A =uUgc s M g . gBs, then for any xe A, thereis ce ' ¢ X such
that x e N g . 5Bs. Since |S| = , let (Kn)n=1"° be an enumeration of (Bg)s < S.

Then forany x € A, there is N(x) < N such that x e Np¢ N(x)Kn’ where Kp is

compact in (X, 1) forne N.
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Theorem 2.4.2 Let (X, 1) be a Hausdorff topological space and K be « - analytic.

Then K is an X - Souslin set.

Proof. Since X is x - analytic, without loss of generality, we can assume that

K=0Mpn 21"Ym =17 Km n ., where Km n is compactin (X, 1). Since,

X=Um=1"" n=1"Km,n, then Kis a X - Souslin set.

Theorem 2.4.3 Every Talagrand - compact space is a Gul'ko - compact space.

Proof: - Using Theorem 2.4.1 and Theorem 2.4.2, it is easy to get this result.

2.5 Gul'ko - compact implies Corson - compact

In this section, we will show Gul'ko's theorem [19] which says that every

Gul'ko - compact space is a Corson - compact. First, we prove some lemmas.

Definition 2.5.1: Let (X, 1) be a topological space. A set C < C(X) is said to

distinguish points of X iff forany x,y e Kx =y, thereis f e C such that f(x) = f(y).
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Definition 2.5.2: Let (K, 1) be a compact Hausdorff space and C < C(K)

distinguishes points of K. The pair (A, B), where AcKandB ¢ C, is called

C - conjugate iff for any x € K, there is ay e A such that forany f e B, f(x) = f(y),

and forall fe C, thereis g € B such that forany x e A, f(x) = g(x) (y and g are

unigue, since C distinguishes points of K).

Definition 2.5.3: Let (K, 1) be a compact Hausdorff space and C ¢ C(K). The pair

(A, B), where AcKand B ¢ C,is called C - preconjugate iff {x|B: xe A}is

dense in { x|B: xe K} and {f|A: fe B}is densein {f|]A: fe C}, where the

topology on C is the pointwise topology.

Lemma 2.5.1 Let (K, 1) be a compact Hausdorff space, C < C(K) distinguish

points of K. If (A, B), where Ac Kand B cC, is C - conjugate, then (A, B) is C -

preconjugate.

Proof. Suppose (A, B) is C - conjugate. Then, by Definition 2.5.2, for any x e K,
thereis ay € A such that forany fe B, f(x) = f(y). Thatimplies {x|B: x e A} is

dense in {x|B: x € K}. By Definition 2.5.2 again, for any fe C, there is g € B such

that forany x e A, f(x) = g(x). That impIiés {flA: fe B} isdensein {f|A: fe C}. So,
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(A, B) is C - preconjugate.

Lemma 252 Let (K, 1) be a compact Hausdorff space and C < C(K)
distinguishes points of K. If (A, B), where AcKandB < C, is C - conjugate, then
{x|B: xe A} ={x|B: x e K} and {fl]A: fe B} ={f|lA: feC).

Proof. Since A c K, th{an {x|B: xe A} c{x|B: xe K}. From Definition 2.5.2, for
any x € K, thereisy e A such that forany fe B, f(x) = f(y). That means there isy
e Asuchthat x|B = y|B. So, {x|B: xe K} c{x|B: xe A}. Hence,

{x|B: xe A} ={x|B: xe K}.

Using the same method, we can prove {f|A: fe B} ={f|A: f e C}.

Lemma 2.5.3 Let (K, 1) be a compact Hausdorff space.. Then for any C < C(K),
M c K, L < C, a an infinite cardinal number, and the cardinal number of M and of
L is not greater than o, respectively, there is a C - preconjugate pair (A, B) such

that M c A, L c B and the cardinal number of A and of B is not greater than «,
respectively.

Proof. We are going to construct (A, B) which satisifes the condition of

Lemma 2.5.3. Let A{ =M, construct B4, Ap such that A1 < Ao, By cC,
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{x|B1: xe Ap}isdensein{x|B1: xe K}and{flA1: f € Bq}isdensein
{flAq: f € C}. Todo so,
Step 1: let R(A1) = {g|A1: g € C}. Since d(R(Aq)) <wW(R(Aq1)) £|R(A1)|sais
true for the pointwise topology on R(A1), then there is U(A1) < R(A1) which is
dense in R(A4) and |[U(A1)| <. SetBy = Lu{g: glA1 € U(A1)}. Hence,
{flA1: fe Bq}isdensein {f|/:\1: f e C}.
Step 2: let R(B1) ={x|B1: xe K}. Since we have
d(R(B1)) <w(R(B1)) <|R(B1)| <ainthe pointwlise topology, we can find
U(B1) < R(B1) which is dense in R(B1) and |U(B1)| <. Set
As = Aju {x: x|By e UB1)}

From above, we know A{ c Ap and {x|B1: xe Ap}isdensein

{x|B1: xe K}.
Using the same method, we can get non - decreasing sequences (An)n =1

and (Bpn)n=1° such that
(1) {x|Bn: xe An+1}isdensein {x|Bp: xe K};

(2) {flAn: fe Bp}isdensein {flAn: f € C}.



20

Let A=up_1"Ap, B =uUp-1>Bn, then (A, B) is C - preconjugate. To see this,

letge C,e>0,andxq, ... ,xp € A. Since A= Up_1>An and (Ap)n=1°is non -

decreasing, there is m € N such that x4, ... , xp € Am. Since {f|{Am: fe Bm} is

dense in {f{Am: f € C}, thenthere is fe Bm < B such that [f(x;) - g(xj)| < ¢, for

i=1,..,n. That means {f|A: fe B} isdense in {f|A: fe C}. Inthe same way, one

can prove {x|B: x € A}isdensein {x|B: xe K}.

Lemma 2.5.4 Let (K, 1) be a compact Hausdorff space and C — C(K). If there are

non - decreasing families (Ag)e< ny and (Bg)g < ny, § @and m are ordinals, such that

(Az, Be) are C - preconjugate pairs for § <7, then (u§<.nA§, u§<nB§) is

C - preconjugate.

Proof. The proof is similar to thatin Lemma2.5.1. Let A=Ug q Ay,
B= U§<nBT1' Forany ge C, xq, ..., xpe A and any e >0, since (Ag)z< s
non - decreasing, thereis &, <m such that x4, ..., xne Agg < A andsince

(Ago. Beo) is C - preconjugate, there is fe Beo < B such that [f(xj) - g(xj)| <€ for |

=1,...,n. Thisshowsthat {fi]A: fe B}isdensein{f|]A: fe C}. Inthe same way,
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one can prove {x|B: xe A} isdensein{x|B: xe K}.

Lemma 2.5.5 Let (K, 1) be a compact Hausdorff space and C < C(K) . If (A, B) is

C - preconjugate, then {x|B1: xe A} ={x|B1: x e K}, where A= t-cl(A) and

B4 =clgB.

Proof. Since A1 <K, {x|B1: xe A1} c{x|By: xe K}. (1)

For any xg € K, we need to prove there is zg € Ay such that xg|B{ = zg|B1. To

do so, since (A, B) is C - preconjugate, for any y € K and any finite subset

D ¢ B, there is xp € A such that |f(y) - f(xp)| < 1/|D].  (*)

Then {xp: D c B and |D| < w} is a netin A. Since K is compact,

{xp: D < Band |D|< w} has a limit point z in K. From (*), we know y|B = z|B.

When considering x and y as functions on C, then, x, y are continuous. So,
y|B1 =z|B4. Hence, {x|B1: xe K}c{x|B1: xe Aq}. (2)

By (1) and (2), {x|B1: xe K} = {x|B1: xe Aq}].

Lemma 2.5.6 Let (K, 1) be a compact Hausdoriff space. If there are M ¢ K,

CnhncC(K),ne N,L cupn_1*°Cp = C and the cardinal number of M, L is not
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greater than an infinite cardinal number o, then there are A ¢ K, B < C which

satisy M c A, L < B and the cardinal number of A, B is not greater than «,

respectively, and (A, B n Cp) is Cp - preconjugate forany n € N.
Proof. Let N =u,_1*Np, where Np "Ny =@ forany m #n, [Ny| = w,and for
any n e N, there is a unique N, such that ne Np,. Hence forM cK,

B Cp(1)=C, by Lemma 2.5.3, there is Ay, By such that (A1, By nCpy1))is

Cn(~1) - preconjugate. Using the same method, we can get non - decreasing
sequences (Am)m___1°° and (Bm)m=1°° such that (Am, Bm m Cn(m)) is Cn(m) -
precongugate. Then, by the Lemma 2.5.4,forA= Ump=1"Am,B = Up=1"Bm,

(A, BnCp)is Cp - preconjugate.

Lemma 2.5.7 Let (K, 1) be a Gul'ko - compact space. Suppose B(K) is the unit

ball of C(K). Let (Cn)n=1 be a sequence of compact subsets of [-1, 1] K with the

product topology, closed under finite intersections, such that

(1) forevery g e B(K), thereis ® = Ng cNwithgen, ¢ N(g)Cn < B(K), where

B(K) is considered a subset of [-1, 1] K.

Let A c K, B cup=1Cph M B(K) such that



(2) (A, BN Cphn B(K))is Ch nB(K) - preconjugate forn e N.

Then, (A4, B1) is B(K) - conjugate, where Aq= 1 - cl(A), Q = clg(K)B.

Proof. Following Lemma 2.5.2, condition (2) and Lemma 2.5.6, we have
{x|B1nCp: xe A1} ={x|B1 nCp: xe K}, foranyne N. ()
Since condition (*) is true for any n € N, then
{Xlupn=1<B1N Cp: x e A1} = {xlup=1<°B1NCph: x e K}.

From condition (1), we have By cuwp=1=Cnp,
{x|B1: xe A4} = {x|B1: xe K}.

We are going to show that {f|[A1: fe B1} ={f|A1: fe B(K)}.

Since B1 ¢ B(K), {flA1: fe B} < {fl{A1: fe B(K)}.

For any g € B(K), by condition (1), we have ® = N(g) c N such that
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geNic N(g)Ci < B(K). Sincege Ci_n B(K) and {f|A: fe B nCj nB(K)} is dense

in {fl[A:fe Cin B (K)}, thereisanet (fg)ae A <B N Cjn B(K) cCj~ Bysuch

that limge A fo(x) = g(x) forxe A. Let fg e Cj n B4 be a continuous function on

K such that fg(x) = lim e Afa(X) for x A. So, {flA1: fe B(K)} < {flA1: fe By},

Hence, {f|A¢: fe By} ={f|[A1: fe B(K)}. Therefore, (A1, B1)is B(K) - conjugate
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according to Lemma 2.5.2.

Lemma 2.5.8 (Talagrand [41]) Let (K, 1) is a Gul'ko compact space. If B(K) is the

unit ball of C(K) in the pointwise topology, then w(K) = d(K) = d(B(K)).

Lemma 2.5.9 (Corson [12]) Let (K, 1) be compact Hausdorff space. {f C(K) in its

pointwise topology is Lindelof, then K is angelic.

Theorem 2.5.1 If (K, 1) is a Gul'ko - compact space, then K is Corson - compact.

Proof. We are going to use transfinite induction.

First, suppose w(K) = o. Then K has a countable base and, being compact

space, K is metrizable. By Theorem 2.2.1, K is Corson - compact.

Secondly, suppose that a > w and for any cardinal 0 < B < o, if w(K) = 3 and K

is Gul'ko - compact, then K is Corson - compact.

Thirdly, suppose w(K) = o.. By the Lemma 2.5.6, w (K) = d(K) = d(B(K)) .

Let U(K) = {x y: ®<m <a}and V(B(K)) ={gn: ®<m <o} be dense subsets of K

and B(K), respectively. From Lemma 2. 5.1 to Lemma 2.5.5, we can construct a
family {(Ay, Bn): w<mn<a} such that (AT\’ Bn) is B(K) - conjugate form<n <a,

satisfying
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(i) xn € An+t, 9n € Bn+ts
(i) {An: o<m<a}land{By: ®<n<a}areincreasing families;
(i) ifmis alimit ordinal, then Ap = C'K(Ug<nAE_,): By = C’B(K)(U§<n8§)? and
(iv) w(An) =d(Aq)=d(B(K)) <in| foresm <.
For w <n <o, by the induction hypothesis, (An, 1) is a Corson - compact space.

That means there is a homeomorphism fy: Ap — Z(R Cn ) for some Cpn.  Without

loss of generality, we can assume
{Cyyi w<n<o}is pairwise disjoint. Let C=NU{Cp 41! @<n <o} Definea
homeomorphism f: K — Z([0, 1]0) by setting for each x € K,
f(x)(c) = fulyx)(C), yx € Ay, ce N
(using the fact that (A, B, is B(K) - conjugate);
fO)(C) = I+ 1(yx)(C) - In+1(Z x)(C), Yx€ Ani1,Zx € A, force Cnyg
(using the fact that families An, By are increasing).
Itis shown below thatforany xe K, A={n: m<m<aand yx #2zx}is

countable, wheace f: K - Z(R C) is a homeomorphism, because each fr is a



26

homecomorphism. To see that A is countable, suppose there is xg € K such that
the set A={n: ® <N < yx(o) # Zx(o)}: ¥Yx(0) € An+1> Zx(0)€ Antis
uncountable. Then, there is an uncountable subset B < A such that yy (o) # zx(o).
Yx(0) € AE, Zx(o)e A forall £, e B,g=_.

Let T =supB < a. we choose B such that cf(t) = wy, since if ¢f(t) = w and
T > ], then there is 1 with w;< 1 < T such that ¢cf(tg) 2 wjand g N Bis
uncountable. Then, choose 1 instead of 1.

We know yx(g) = limee B Zx(o), Where yx(o)e Ag, 2x(0)e Ag. From Lemma 2.5.9,
there is (Ep)n=1""C B with yx(o) = liMne N Zx(0), Where zx(o)e Ag(n). Then, for {
= SUPne N&p, We have zy(g) = Ux(o) = Yx(o) for Zx(o)€ AL, Ux(o)e At L& <n,

and yx(o)e A¢. This is a contradiction which completes the proof of Theorem

2.5.1.
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2.6 Conclusion

Based on the results in this chapter, we have that every uniform Eberlein -
compact space is a Eberifein - compact space, every Eberlein - compact space is
a Talagrand - compact space, every Talagrand - compact space is a Gul'ko -
compact space, every Gul'ko - compact space is a Corson - compact space, and

every Corson - compact space is a Valdivia compact space, i.e.

UEC = EC = TC = GC = CC = VC.
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Chapter 3

Some Counterexamples

3.1 Introduction

In chapter 2, we proved UEC = EC = TC = GC = CC = VC. Inthis
chapter, we are going to show that Eberiein - compact does not imply uniform
Eberlein - compact, Talagrand - compact does not imply Eberlein - compact,
Gul'ko - compact does not imply Talagrand - compact, Corson - compact does
not imply Gul'ko - compact, and Valdivia - compact does not imply Corson -

compact.

3.2 Eberlein - Compact Does Not Imply Uniform Eberlein -
Compact

In this section, we are going to give a counterexample which shows there is
an Eberlein - compact space which is not a uniform Eberlein - compact space.
The example is due to Benyamini and Starbird [6]. First, some lemmas are

required.
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Lemma 3.2.1 (Juha'sz [21]) Let C be any uncountable set. [f

{Ag: Ag < Cis finite for o € ¥} is an uncountable family of subsets of.C, then

there area ¥ | c ', V| 2wy, afinite set B ¢ C and a pairwise disjoint family

{Bo: Bg < Cis finite for ac € ¥} such that forany ae ¥, Aq = B U By,

Lemma 3.2.2 LetC be any setand K={B: B c C and B is finite}. If

(1) anyBeKand D ¢cBimpliesD e K,

(2) there is no infinite increasing chain in K;

then K is a weakly compact set in cg(I"), for some set I'.

Note: this mean K is Eberlein - compact.

Proof. We identify sets in K with their characteristic functions. Then, for some
LK < co(l).

We will show K is a weakly compact subset of cg(I'). Let U be a limit point of
K and V < U be any finite set. Since the weak topology on cqg(T) is the same
as the pointwise topology on co(I'), there is a Bg € K such that V ¢ Bg. By (1),
V e K. Since there is no infinite increasing chain in K, then U is finite. Hence

UeK So, K is weakly compact set in cg(T').
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Lemma 3.2.3 Let (K, 1) be a weakly compact subset of Hilbert space X. Ifa

discrete set C ¢ K has a unique limit point cg, then forany c € C, thereis 7 -

open subset U of K satisfying

(a) Cce Uc,

(b) there is a countable pairwise disjoint family (Cp)n=1° of C such that
C=up=1"Cphandforanycy,..,cns1€e Cp, C1 #C2 # ... #Cny1,

MUc(): 1si<n+1} = .

Proof. Since X is a Hilbert space, then there is an inner product on it. For any

X,y € X, we let (x, y) denote its inner product. For convenience and without

loss of generality, suppose K is the closed unit ball of X with the weak topology
and cq is the origin of X.

We will define an equivalence relation on X.

a=b iff thereis a sequence c1, c2, ...  Cj suchthat c1=4a,co, ..., cj =b
and (cj, ¢j41) = 0.

From the definition above, we get

(1) it A and B are different equivalence classesandae Aandb € B,

then (a, b)=0;
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(2) the cardinal number of the equivience classes is at most countable.

We will construct (Cp)pn=1° as follows:

Step 1: From (2), C = un_1*°Em, where in each En,, the elements are mutually

orthogonal.

Step 2: Cp's are a partition of C such that for any c1,co € Cp, ¢{ # 2,
(c1,c0) =0 and {[c||4 >n ‘1. for any c e Cp.

Foranyce Cp, let Ug={xe K: (x,c)2>n-1}. Then,ce Ucand Ug is
Tt -open. Let ¢q,...,Cne1 € Cp, C1 #C2# ... #Cny1. Suppose
x & N{Ug(y: 1 sisn+1}. Then 1 2||x|| 2>3% 1”+1(x, c)2 = (n+1\n > 1,

a contradiction. So, MUc(): 1 i sn+1}=.

Theorem 3.2.1 (Benyamini and Starbird [6]) There is a Eberlein - compact

space (E, t) which is not uniform Eberlein - compact.

Proof. Let C =R x (I1j_5>{1, ... ,i}). Soany element c e C looks like
c=(x,mq,..,mj..), wherexe Rand mje{1, ..,i}. We consider the
product topology ton C.

Forany ne N, let Fi: C — Ni be a projection defined by
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Fi(x, m1, ..., mj, ... ) =(mq, ..., mj).

For each i e N, we will define a family A; of subsets of C such that for any
De A, D] =i.
Step 1: Let Ay = {{c}: ce C}.
Step 2: We define Aj, i 2 2, as follows:

For my, ..., mj-q, mk € {1, ..., K}, define
A(mq, ..., mi.1) = {{c1, ..¢j, ..., Ci}: Fi (¢)) = (mq, ..., mj.q, ]) forgje C,1<j<i}
Then, let Aj = U{A( m1, ..., mj-1 ): for any sequence mi, ..., Mj-1}.

Now, define E = {B: Bc C and B cuj;_1°°Aj}. Since {xg: Be E} cco(T) for

some T, the topology on E is the relative weak topology for cq( I').

We will show E is Eberlein - compact but not uniform Eberlein - compact.
First, we show E is Eberlein - compact. From the definition of E, we know

that E is a collection of finite sets and condition (1) of Lemma 3.2.2 is satisfied.

We will show forany i+jand any Ue Aj, Ve Aj, card(U V) <1, thereis no

infinite increasing chain in E, from which condition (2) of Lemma 3.2.2 follows.
Suppose i >jand U e A, Ve Aj. From the definition of Aj, we know for any

m, n € U, they have the same jth coordinate, but forany m, n € V, they may



33

have different jth coordinates. So, card(U nV) <1. From Lemma 3.2.2, Eis

Eberlein - compact.

Secondly, we will show E is not uniform Eberlein - compact using Lemma

3.2.3. To see this, we construct a discrete set M ¢ E which has a unigue limit

point mg such that for any m € M, there is relatively open subset Up of E

satisfying
(@) foranyme M, me Upp;

(b) for any countable pairwise disjoint family (Mp)n=1 in M such that for any
My, ..., Mpnet € My, my=ma = o =mppq, MUm(): 1€isn+ 1} =0, then
M # Upn=1"Mnp.
Let M= Aq ={{c}: ce C}. Misdiscrete in E and has a unique limit point, the

empty set . Let {Umn: m e M} be a family of open sets such that me Upm.

Also, let (Mp)n=1° be a family of pairwise disjoint sets in M such that for any
My, ..., Mpi1€ My, my=mo = . #mMpe1, M{Um(j): 1 < i sn+1} =
Without loss of generality, assume that U, is a basic open set forany m e M,
i.e. there is afinite set Fj «C suchthat Be Uy < Be Eandthereisa

Bme Unsuchthat BNFm=BmnFm. Since Fiy is finite and me Uy, we
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can suppose m € Fmyy. To complete the proof, we will show that M = up_1"Mp.

To do this, we will first verify the following claim.

Claim: ifje N, j 22, and any finite sequence my, ..., mj.1 is fixed, then there
is ig, 1 <ig <] such that card( Mj.1n Fj-1(mq, ..., mj_1, ig)) <w.To prove this
claim, suppose card(MH M Fj '.1(m1, e, M1, 1)) > o, foreachi, 1 <i<j. We
choose an uncountable subset Ej < Aj.1 N Fj ‘1(m1, v, Mjq, i) for 1 i<,
For every m € Ej, there is a finite set Fpy as above and {Fp: me Ej} is an
uncountable family. By Lemma 3.2.1, there are a '¥; < E; with ['¥}| > o, a finite
set B(Ej) cCanda pairwkse disjoint family {Bm: Bm < Cis finite for m e Wj}
such that for any m e ¥}, Ay = B(Ej) U By Since B(E1) U ... U B(Ej) is finite,
we can assume the Ej's are chosen such that m ¢ B(E1) u ... U B(E)) for any

me Eq L. UE;j

Fix a(1) e ¥,. Since Ba(1) is finite, we can choose a(2) e ¥, such that
a2) e Bm(1)' and since {By: m e W5} is pairwise disjoint, a(1) ¢ Ba(g). Using

the same method, we can get a finite sequence a(1), ... a{j) with a(i) ¢ Ba(k) for
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T<i,ksjandi=j. Since a(i)e B(E1)v..u B(E)for1<i <j, we have
a(i) ¢ Ag(k) for T <i,k<jandi=k So,fori,1<i <j,
{a(1), ..., a @ nAgj = {a(i)} m Aa(j)- Since a(i) € Uga(j) and Ua(i) is a basic

opensetforany 1 <i<j, {a(1), ..., a()} € n {Ua(i)3 1< i <j}. This contradicts

the definition of M. This verifies the claim.

From the claim, choose my such that card(M{ nF{( m1)) <. Repeating
this, we can get sequence mq, ..., mj, ... suchthatcard(MjnFj(my, ..., mj) <
w, forie N. Since (uj=1°° Mj} ~ ( mj-___1°°{ Fi “T(my, ..., m;))

c uj=1°°(Mj' M Fj -1 (mq, ..., m; ). *
Then, card(uj_1*M)) N (Mj=1>F] H(myq, ..., mj)) <. Now,

card(Mj=1* Fj myq, ..., mj)) > @. By (*), M # Up_1°°Mp, which completes the

proof of Theorem 3.2.1.

3.3 Talagrand - compact Does Not Imply Eberlein - compact

The main aim of this section is to construct a Talagrand - compact space

such that it is not Eberlein - compact. We begin with some definitions and
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theorems which are required for the proof of the main theorem.

Definition 3.3.1: Let C be any non - empty set. Suppose B ={B: Bc C} isa

family of C. B is said to be adequate ift

(1) B contains all singletons in C;

(2) foranyBeB,itA < B,then Ae B;

(3) for any subset A of C, if any finite set F c A implies FeB,then AeB.

Theorem 3.3.1 For any set C and an adequate family B on C, let

K=K(B )={xg: BeB } < {0, 1}C. Then K is compact subset of ({0, 1}C, 1),
where 7 is the product topology on {0, 1}C.

Proof. By the Tychonoff Theorem, {0, 1}C is compact. Suppose (XB(a) e A 1S
any net in K which is convergent to xg. By Kelley [22], Theorem 3.4, we know ,
in the product topology, XB(o) — %B iff XB(a)(X) — xg(x) forallxe C. LetF
be a finite subset of B. Then, xB(a)(f) — xg(f) forany fe F. Hence,

XB(a)(f) — 1forfe F. Thatimplies f e B(a) eventually. So, there is ap(f) such
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that for any a >0 (f), f € B(a). Hence, f € n{B(a): > ap(f)}. Since F is finite,

let g = max{og(f): fe F}. Then, F < n{B{a): o> ap}e B. By Definition 3.3.1,

Condition (3), Be B. So, Kis closed and it follows that K is compact.

Definition 3.3.2: Let C be any set and B be any adequate family on it. We
define C* = C u {==} and the topology, (B ),on C* as follows: foranyce C,
{c} € ©1(B ). A subbase for the neighborhoods of - is the family

{{e3}u{C~B}: Be B }.

M. Talagrand in [41] proved the following theorem:

Theorem 3.3.2 Let C be any set and B be any adequate family on it. Then
(1) (K(B ), p) is Talagrand - compact iff (C*, (B )) is a x - analytic space,

where 1(B ) and C* are defined in Definition 3.3.2, p is the pointwise

topology on K(B ), and K(B ) is defined in Theorem 3.3.1.

(2) (K(B ), 1) is Eberlein - compact iff (C*, ©(B )) is o - compact.

Proof. We will prove (1).
= Suppose that K=K(B )= {xg: Be B }is Talagrand - compact. Then

(C(K(B )), p) is x - analytic, where B is an adequate family on set C and p is
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the pointwise topology. For C* = C u {eo} and the topology (B ) on C* as

defined in definition 3.3.2, define h: C* — C(K(B )) by

hc)(xg) =xg(c) for ce C;

h(c)(xg) =0 for ¢ = oo,
Claim 1: his continuous. To see this, suppose ¢y —¢. Ifce C, then
h(ca)(xg) = xB{Ca) —> xplc) forany Be B . Ifc =<, for Be B , since
V = (C ~ B) U {e} is a neighborhood of -, there is o such that for any a >«
Ccqe V. That means that cye B for o> 0g. Hence, h(cy)(xg) =0 for o> ag.

So, h(ce)(xp) = XB(Ca) = h(==)(xg) = xB(=) = 0. This verifies that h is

continuous.

Claim 2: his one - to - one. To see this, suppose h(c) = h(c') where c #c¢'. That

means that h(c)(xg) = h(c')(xg) for any B € B. Without loss of generality,

suppose ¢ # . Then h(c)(x(cy) = X{c}(C) = 1 #X(c}(C) = h(C)x(c})- @

contradiction. Hence, his one - to - one.

Claim 3: h-1is continuous. To see this, suppose h(ce}(xg) — h(c)(xg) for any

BeB. lfc#e,letB={c}. Since h(Ca)(X{c}) = X{c}(Ca)"* h(c)(x{c}) = X{c}(C) =1,
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there is oy such that for any o > ay, €, = €. Hence, cg— €. If ¢ = <, since
h(cg)(xg) — 0 for any B € B , there is o such that a > og implies
Ih(ce)(xg)] < 1\2. So, ¢y & B. Therefore , ce e U =(C ~ B) U {-}. Hence,
Cq— e°. This veries that h™1 is continuous.

Claim 4: h(C*) is closed in (C(K(B ), p). To see this, let f € p - cl(h(C™)), if there
is a ¢ e C such that f(X{c}) =1, then f = h(c), since f = limgh(cy) for some
(Ca)oeA cC, 1= f(x{_c}) = Iimah(ca)(x{c}), which means that there is o such
that whenever a > o, cy = ¢. So, fe h(C*); if, forevery ce C, f(x{c}) = 0, then
for every finite subset F of C, f(xg) = 0. Since f = limyh(cg) for some (Cylae A S
C, f(xp) = limgh(Ce)(xF) = limgxg(Cy) = 0. Since, forany Be B,

xB = limF=BxF where F is finite and F is continuous, f(xg) = limrF=gfi(xF) = 0.
That means f = 0. Hence, f eh(C*). Therefore, h(C*) is closed.
From Claim 1, 2, 3, 4, , we know that f is a homeomorphism from (C*, ©(B )) to

(h(C*), p). Since (C(K(B )), p} is x - analytic and h(C*) is closed, (C*, ©1(B )) is x

- analytic.
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< Suppose that (C*, (B )) is x - analytic. his defined as above. Let

A (h(C™)) be the smallest algebra containing h(C*) and 1. Define:

A1 =h(CYul, Ap={a+a: a,a e Aq}; Ag={axa: xe R,ae Ap}.
Continuing this process, we can get a sequence of compact subsets, (Aj)j =1,
of (C(K(B ), p). Now, h(C*) c A1 cAoc.. cAp ..., A(h(C")) =j=1°Aj, by
Stone - Weierstrass Theorem which says that if K is compact and A ¢ C(K) is an

algebra containing constant functions such that for any k, k' € K, thereisfe A

such that f(k) = f(k'), then A is dense in C(K) in supremum norm, i.e.

norm - cl(A (h(C*))) = C(K(B ).

Claim: lf norm - cl(Y) = C(X) and Y is x - analytic, then (C(X), p) is x - analytic.
Forany fe C(X),thereisge Y suchthat||f-gl|<1. Forf-ge C(X),thereis
f1e B(Y) such that || f- g - f1]| < 1\2. Generally, there is fn,1€ (1\2”+1)B(Y) such
that || f-g-f1-...-fhpq]l <1\ 2N, Hence,f=g-f1-fo-...-fq-.... Define

3: Y x B(Y) x (1\2)B(Y) x (1\4)B(Y) x ... » C(X) by (g, f1, ... ) =g + {1+ ....

Hence, d is continuous and onto. Hence C(X) is k - analytic.

By Claim above, we know that C(K(B ) is x - analytic.
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Definition 3.3.3: Let (X, 1) be a Hausdorff topological space. X is said to be K -

analytic iff it is the image of a Polish space under a compact valued upper semi

- continuous map (u.s.c.), i.e. there is a Polish space Y, a compact valued

function f which is u.s.c. such that X = Ugc yi(0) .

Definition 3.3.4: Let (X, t) be a Hausdorff topological space. X is said to be

countably determined iff it is the image of a separable metrizable space under a

compact valued upper semi - continuous map.

Definition 3.3.5: Let (X, 1) be a Hausdorff topological space. For any set

C c X, Cis said to be an analytic set iff there is a continuous map f: £= NN -

X with f(Z) = C.

Rogers and Jayne ([32], Corollary 2.4.3) proved:

Theorem 3.3.3: Every Polish space is a continuous image of £ with the product

topology on it, i.e. every Polish space is an analytic set.

We will show in the following that k - countably determined (see Definition

2.2.7) is equivalent to countably determined and i« - analytic (see Definition

2.2.5) is equivalent to K - analytic.
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Theorem 3.3.4 (X, 1) is K - analytic iff X is the image of X under a compact

valued upper semi - continuous map.

Proof. = Suppose that (X, 1) is K - analytic. From Defintion 3.3.3 and Theorem

3.3.3, it is obvious that X is the image of X under a compact valued upper semi -

continuous map.

< Since it is known that L is a Polish space, by Definition 3 3.3, (X, 1) is K -

analytic.

Theorem 3.3.5 (X, 1) is countably determined iff X is the image of a subset X’ of

X under a compact valued upper semi - continuous map.
Proof. Using Definition 3.3.4 and Theorem 3.3.3, the proof is similar to

Theorem 3.3.4.

Now, we are ready to show that the definitions are equivalent.

Theorem 3.3.6 Let (X, 1) be a Hausdorff topological space. X is x - countably

determined iff X is countably determined.

Proof. = Suppose that (X, 1) is k - countably determined. That means that

there is a compact set (Y, 1) such that X c 'Y, tis the relative topology of 14 on
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X, and there is a sequence of 14 - closed subsets, (Kp)n=1°°, 0o Y, such that for
every x € X, there is ¢ € £ such that x e mj _1"Kg(j), where

o=(o(l),..,0o(),..). Forany ce I, define f(c)=n; _1* KG(;). Let

T ={ce NN: f(6) nX #®}, and g: = — X such that g(o) = f(c) n X. So,

g(X') = X, g is compact valued in X and u. s. c. To see that g is u.s.c., recall that
{Vg:s e S}is abase for.the product topology on X, where

S ={(s(1), ... s(i), ..., s(n)): n,s(i)e N,i<i<n}and Vg={ce Z: o >s}. For

oe X' and any open set U, where g(o) ¢ U by a compactness argument, there

is me Nsuchthat m_1™M Kg() " XcU. So, fors=(c(1), ..., o(m)), o e Vg and
g(Vg) c U, since any ne Vgimpliesn>s, gn) = N1~ Kni)n X <

Mi=1M Kg(i) " X < U. Hence, gis u.s.c. and by Theorem 3.3.5, (X, 1) is

countably determined.

< Suppose that (X, 1) is countably determined. Let (Y, 1) be a compact set
which contains (X, 1) and 1 is the relative topology from t{. Forany se §, let

Ks = cly( Ugssf(o)), where 6 € &' cX. So, Kgis compact. {Kg: se S}lisa
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countable family of compact sets. Since forany x € X, there is ¢ e X' such that
x € (o). We claim that (o) = Mj = 1> K{g(1), ..., o(i)}- From the definition of Kg it

is obvious that {(o) < M _ 1 K(g(1), ..., o(i)}- To see mj _1%K(g(1), ..., ofi)} <

f(c), supposethat x e f(c). Let U=Y ~{x}. ThenUisopen. Thereis V, open,

such that f(c) cV ccly(V) c U. Since fisu.s.c., there isi eN, such that

fVic(1), ..., oli)p) € V. Hence cly( g (5(1), ..., o(ipf(0)) ccly(V) cU.

Therefore, Kig(1), ..., o(i)} Scly(V) cU. SinceU=Y ~{x}, xe K(g(1), ..., oli)}-

ceey

Thus, Mj = 1= Kis(1), ..., ofi)} & (o), and X is x - countably determined.

Choquet [10] proved:

Theorem 3.3.7 In a metric space, the k - analytic sets coincide with analytic

sets.

Theorem 3.3.8 Let (X, 1) be a Hausdorff topological space. Xis x - analytic iff

Xis K - analytic.

Proof. = Suppose that (X, 1) is x - analytic. Without losing of generality, we

assume that X = Np_1*°Um=1"Kn, m, where Kn m is compact. Set
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K'n, m = Kn, m v {xg}, for some fixed xg € X. Forany o= (o(1), ... o(n), ...)e %,

let {(6) = Np=1"K'n, o(n)- Hence, forany ce , f(o) is non - empty and compact.

Using the same argument as in Theorem 3.3.6, we can get fis u.s.c..
Furthermore, X = U4 s (o). To see this, forany x € X, and for any n e N,
there is m(n) e N such that x € K'n m(n), since X= Np=1"Ym=1"K'n, m- Let

s ={m(1), .. m(n), ..}. Then, x € An_1=K'n. m(n) = f(c). Therefore, X is K -
analytic.
< Suppose that (X, 1) is K- analytic. Define graph(f) = {(c, x): x € f(c)}.

Talagrand [41] proved that graph(f) = NN x K for some compact K > X and

graph(f) is closed. Since £=NN is a metric space, by Theorem 3.3.7, Zis a K5
set. Further, itis easy to see that £ x Kis also a Kgg set. Since graph(f) is a
closed set of a K55 set, then graph(f) is a Kgg set. Let pq be the projection from

Z x K'to the first coordinate. Since pq is continuous, then X = pq(graph(f)) is x -

analytic.

Theorem 3.3.9 (Talagrand [41]) There is a compact Hausdorff space (K, 1)

which is Talagrand - compact, but not Eberlein - compact.
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Proof. We are going to construct a topological space (K, t) c {0, 1}2 such that K

is Talagrand - compact, but not Eberlein - compact by using Theorem 3.3.2.

Let B =up-1>°Bp., where

Bhp ={BgZ ifoxpe B,then oln = p|n, o+1|n = p+lin}.

We will show that for any n e N,Bp is an adequate family on Z.

First, it is obvious that singletons are in By .

Secondly, forany Be B, suppose AcBandany ocz2pe A . Then,c=pe
B. By the definition of Bp,, oln = pin, o+1|n # p+1|n. Hence A e Bp.

Thirdly, suppose that D is any subset of X such that for any finite subset F of

A, FeBp. Then,foranyc=pe D, {06,p}€Bp. Hence, oln = pIn, o+ljn =

p+1in. Therefore,D € By .

From Definition 3.3.1,Bp is an adequate family.

Furthermore, we are going to show that B is an adequate family on X.

First, it is obvious that singletons are in B.

Secondly, suppose that A e B. Forany D c A, we would like to show that

D e B. To see this, since A e B, forsome n e N and Bp is an adequate family,

thenDeB,. Hence,DeB.
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Thirdly, for A < X, suppose that any finite subset of A belongsto Z. Let F, H

be finite subsets of A and F = H. From definitions of B and B, forne N, itis

easy to see that there is m e N such that F, H e By, . Hence, if G is any finite

subset A, then G € By, . SinceBy; is an adequate family, then Ae By, . So,

AeB.

From Definition 3.3.1,8 is an adequate family.

Let Z* = Zu {«}, (B ) as defined in Definition 3.3.2.
Claim: (X*, 1(B ))is K - analytic. To see this, define f. Z — (£, 7(B )) by
f(c) = {o,=}. Hence, f(c) is compactin ( Z*, ©(B )), and Z* = Ug sl(c).. We are
going to show that fis u.s.c.. Let U is any open set such that f(c) c U. Hence,
there is B € B such that U = (Z\B) U {e} U {c}. Ifwe can find an opensetV c X
such that f(V) =V U {ew} cU = (Z\B) U {«} U {c},thenfis u.s.c.. To see this,

since B € B, by the definitions of B and Bp's , there is a m € N such that

B € By., which means that there is a finite sequence s = (s1, ... Sm) € S such

that for any o, p € B, we have olm = s = pjm, and o+1|m = p+1im. Chooset, t=s

and

It = m, where |t] is the length of the finite sequencet,andV={ceXZ: t<c}. So,
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VB =®. Hence, f(V) = VU {=} cU = (Z\B) U {==}. Therefore, (Z*, 1(B ))is K
- analytic. By Theorem 3.3.8, (Z*, ©(B )) is x - analytic.

Set K=K(B )={xg: Be B } {0, 1}Z. By Theorem 3.3.2, K with the product
topology is Talagrand - compact. We are going to show K is not Eberlein -

compact. Using Theorem 3.3.2, it is enough to show that (Z*, (B )) is not ¢ -

compact.

To show (X%, ©(B )) is not ¢ - compact, suppose
L=U{Z,:ne N, T,uU({=} iscompactin (Zx, 1 (B ))} with usual topology, 1.
Let 2 ={c={N1,...,m,--): Dme N, me N},
NM ={a= (nq,...,0m): nje N, 1<i<m}.
Define: Fjp: £ - N™M by Fmp(nq, ..., 0m, -..) = (01, ..., nm) forany m e N. By

the Baire category therem, there is n(0) € N such that 74 - Int(t; - cI(Zn(O))) # O,

We can choose (n1, ..., nm) such that
U=Fm '(ny, .. .nm)cty-Int(tg - cl(Zp(g))= @. Forany ke N, let
Uk =Fm+1 (01, ., nm, k). So, Ux cU forany ke N. Since Zpqy N Uk =,

forany k e N, choose ai € Z‘n(O) N Uk. So,{ak:ke N}eBmy B, by the
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definitions of {ak: ke N}. Since {ak: ke N} C Zn(O) U {e=} is compact, then
there is at least a limit point x in Z. From the definition of {ak: k€ N}, we know
that x ¢ X.

Claim: {eo} is not a limit point of {ax: ke N}. To see this, let
V={olu(Z~{ak:ke N}). Hence VN {ak: ke N}=®. So, x # {e}. Thisis a

contradiction. Hence, £* is not ¢ - compact. Therefore, K is not Eberlein -

compact.

3.4 Gul'ko - compact Does Not imply Talagrand - compact

We will use a counterexample developed by Talagrand in [42] to show that

there is a Gul'’ko - compact space that is not Talagrand - compact.

Theorem 3.4.1 There is a countably determined space which is not K - analytic.

Proof: Let P ={a: a=(a(1), ..., a(n)) €S and a(i) < a(i+1)}. Define a partial

ordering, <,on Pby a=(a(1), ... ,a(n)),b=(b(1),...,b(m))e P,a < b iff n <

m and a(i) = b(i) fori <n. So, (P, <) is a partially ordered set.

M cPisatreeiff forany ae M,if b < a,then be M.
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Let To={M: Mis atreein P}. By identifying a tree M with its characteristic

function, we can consider that To c{ 0, 1 }P.

Claim: Tg is closed in {0, 1}P with the product topology. To see this, let

AM(c) — XM Where M(a) is a tree in P. Suppose ae Mand b<a. Then,
xM(a)(a) — 1. So, there is a ag such that for any o > o0, XM(a)(a) = 1, this
means a € M(a) for a > . Since M(w) is a tree, then b e M(a) for o > oy

Hence, XM(a)(b) =1. This impliesb e M. So, Mis atree. Since P is countable,
{0, 1}P is compact and metrizable. So, To is a compact metrizable space with
topology denoted by 1.

M e Tg has an infinite branch if M contains an increasing sequence

(@M n=1° with the length of al going to infinity.

Let Ty = {M: Me Tg and M has an infinite branch}.

Forany ne N, set Php={ae P: 1<aj<n}. Suppose Me Tp. The basic
neighbourhoods of M are Up(M) ={Y: Ye TpandY nSp= M Sp} forne N.
Let Ap ={C:C cTg,C isfinite such thatif C ={Mq, ..., Mp}, then there is a

Ye Tganda=(a(i),...,a(n)) € Y such that Mje Ua(i) ()}



51
Let A1 =n{B : Ap < B and B is an adequate family of Tg}.
Claim: Suppose that C € Ay and Mis any limit pointof C. Then,Me T4. (7)
To see this, suppose (Mp)p=1e° <C such that My > MwithMp#M forne N.
Since for each n, there is f(n) € N such that Mp e Uf(n)(M) ~ Uf(n)+1(M).

Without loss of generality, we can assume f(n) = n for each n e N, and

(f{n))h=1 is increasing.
Fix n, then thereisaC € Ap suchthat M4, ... ,Mpe C. So, by the definition
of Agp, C ={M'y, ..., Mk} and there is a Ye Tg, a = (a(1), ..., an (k)) € Y such

that M'je Uan(j(Y). Clearly k=2n. Now, Mj= Mg, for 1 <i<n, where g(i) < k.

For

i=], g(i) #g(j). Since f(i) >i and al(i) 2 1i, there is 1< k < n such that both f(k) and

aN(g(k)) = n(0)\2. Let m = min{f(k), a(g(k))}. Hence, Mkxe Um(M) implies

Mke Um(Y). From the definitions of Upn(M) and Um(Y), we get Ump(M) = Um(Y).
Let g(n) = max{i: f(i) < n\\2} and i £q(n). Then,

M'g(i) = M; ¢ Ug(j)+1(M) =Uf(j)+1 (Y). Since f(i)+1 <m, then i <al(g(i)) < f(i). So,

there are at least i elements in (@an(1), ..., aN(k)) which are less than or equal to

f(i). Moreover, (al(1), ..., a(g(n))) € Y, since Y is a tree and
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(@n(1), ..., aM(q(n))) < (@n(1), ..., aNk)) e Y. Nowi < q(n), an(i) <f(i) < (n\2) - 1.
So, (af(1), ..., aMg(n))) e M. Hence, for any n € N, there are q(n) and

(@M1, ..., alg(n)) such that (aNy, ..., alg(n)) € M.

Fixi. Since aN(i) <f(i) forany n e N, then, there is a {nK} k=1°° such that

a”k(i) eventually equals to a(i). In fact, for n sufficiently large, we get
(@an(1), ..., aN(g(n))) = (a(1), ..., a(n)) e Mand |(a(1), ..., a(n))] = - when n — oo.
Hence, M e T4. This verifies the claim.

Let T=Tg ~T1,A={BcT: Be A7}.

Claim: A is an adquate family on T, and any B € A implies that B is closed. To

see this,

(1) suppose BeA. Then, Bis closed, since B has no limit point;
(2) ftBeA,thenBe T cTq, {B} e Ay, since Ay is an adequate family on Tq.
So,{B}eA;

(3) suppose Ce A andB cC. Then,B €Ay, since Ay is an adequate family

on Tg. By the definition of A, B € A.

(4) suppose that B < T such that for any finte FcB,FeA. So,FeAy. Then,
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B eAy, since Ay is an adequate family on Tg. Therefore, Be A.

Hence, we have verified the claim.
Let T* =T u {«}. Define atopology, t1(A), on T* as following: forany Me T,

{M} is open. The basic neighbourhoods of {«} are T* ~ D, whereD is the finite

union of elements of A..

Define h: (T,1) > (T ,t(A)) by h(t) ={t, o} forany te T. Hence, his
compact valued and u.s.c.. Tosee hisu.s.c.,,letD =uv;_1=Bj ,where B; €A,
such that {e,t} cT* ~ D . ThatimpliesteD. Since D is closedin T, there is an
open set U withte U such that h(U)c T~ D. Hence, fis u.s.c.. Since (T, 1)
can be embedded in a Polish space, then (T, t) is countably determined.

We are going to show that (T*, ©(A)) is not K - analytic. To prove this, we

need some definitions.

For Me Tg, we define M1 by

M1 = {ae M: thereis ab e P such that a < b and be M}.
Using transfinite induction, for any o < w{, we can define M by:
1) ifa=p + 1, then Mo+1l = (Mma)l;

2) if auis a limit ordinal and a = suppa(n), then M® = A, _1=>{MN)}.

—
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If for some o < wy M% = ®, we denote o(M) by o(M) = min{a: M* =}, If not,
o(M) = w;.
Foranya=(ait,..,am),b=(b1,...,bp) e P,if am <b1, we define a+ b by
a+b=(a1,...,am,bq, .--.bp)- So, a+be P.

Letae PandMe Tg, definea|lMby ajM={b: a+b e M}.

Now, we are ready to prove that (T*, ©(A)) is not K - analytic.

Suppose that (T, 1(A)) is K - analytic. By Theorem 3.3.4, there is a compact
valued u.s.c. mapping p from Zonto T*. Forany s e NN, let Eg = Ug sp(0),

where c € 2.
Claim: There are sequences, a'=(a(1), a(2), ..., a(n)) € P,

b" = (b(1), b(2), ..., b(n)) e NI and a sequence of trees, M4, ..., Mp, forne N,

such that

(1) Ug(i)(Mj) = Ug(iy(Mp) forany 1 <i <n;

(2) (a(1), a(@), ..., a(n-1)) e Mp;

(3) {o(snIM): M e Ug(n) (M) N Epn} is unbounded. To see this,

step 1: Since T* = up_1*~Ep and for any a < wthere is a M e T such that
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o(M) = a, then, there is a b(1) such that o is not bounded on Ep(1). Fromthe
definition of n|M, we know o(M) < suppno(n{M)+1. So, there is a(1) such that
{o(@a(M)M): M e Epb(1)} is unbounded. Since there are only finitely many sets of

the type Ua(1)(M), choose M4 such that {o(a(1)]M: M e Ua(1 )(M1) N Ep(1)}is

unbounded.

step 2: Assume a ="(a(1), ..., a(n)) € P, b = (b(1), ... b(n)) € NN, and trees My,

Mo, ..., Mp are chosen such that they satisfy conditions of the claim.

step 3: Now, Epn = upEpnym. There exists b(n+1) such that

{o(@"M: M € Ug(n)(Mp) m Epn+1) is unbounded. Since

o(an|M) < supmo(al+m|M) +1, for any m > a(n), then we can choose a(n+1) =m

such that {o(a"+1|M): M e Ua(n)(Mn) m Epn+1} is unbounded. Since there are

finitely many sets of type Ug(n+1)(M), choose Mp+1 such that
{o@+1M: M Ua(n+1)(Mn+1) M Epn+1} is unbounded. Notice that a € Mp,

otherewise o(a"|M) = @, for M € Ug(n)(Mp). Moreover, thereis M e Tg such

that Ug(n)(M) = Ug(n)(Mp). So, the claim is proved.

Foreach n, let Xn € Epn nUg(n)(M) nT. Foreachk, X1, ..., Xk € Ag, so,
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B = (Xp)n=1€ A7 and B ¢ T. Then B is closed and discrete. Let
b = (b(n))n=1°°. Since p(b) is compact, then p(b) N B is a finite set. Let
C =B ~ p(b). Then Cis closed and C n p(b) = ®. Hence, thereisse NI, s < b,

such that p(c) "C =dforany 6>5s,ce X. Hence, Egn C =®. Now,
s = (b(1), ..., b(n)). Then Xk € C ~ Eg for any k2 n, except possibly finitely

many. Thisis a contradiction. So, (T*, t(A)) is not K - analytic.

Theorem 3.4.2 There is a Gul'’ko - compact topological space which is not a

Talagrand - compact topological space.
Proof. It follows from Theorem 3.3.6, Theorem 3.3.8, and Theorem 3.4.1

directly.

3.5 Corson - compact Does Not Imply Gul'ko - compact

Alster and Pol [1] first constructed a counterexample which says there is a
Corson - compact topological space which is not Talagrand. This space turns

out to be a Gul'ko - compact (see Argyros, Mercourakis and Negrepontis [3]).
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Theorem 3.5.1 (Pol [31]) If a topological space (X, 1) is k - analytic then there

exists subsets of X, Aj(1), ..., i(k), where (i(1), ..., i(k)) € S, such that

(1) X=Ui=1%Ai Ai(1), ..., i(k) = Yi=1"Ai(1), ..., i(K),i-

(2) if (i(k))k=1°¢ Z and ake Aj(1), ..., i(k), then the sequence (ax)k=1> has a

limit point in X.

Theorem 3.5.2 (Alster and Pol [1]) There is a Corson - compact topologicai

space which is not Gul'ko - compact.

Proof. Let C =0, 1], < be the usual ordering on C, < be a well - ordering of C,

and B ={B c C: <and « coincide on B}. ltis easy to check that B is an
adequate family. Define K=K(B ) ={xg: Be B }. Then, Kis a compact subset

of {0, 1}C. Now, since Be B , |B| <. Hence, for any x € K, supp{x} is
countable, i.e. x e £({0, 13C). Therefore, K is Corson - compact. LetC*=C u

{e<} and the topology 1(B ) on C* as defined in definition 3.3.2.
Claim: Kis not Talagrand - compact. By Theorem 3.3.2, it is enough to show
that C* is not k - analytic. To see this, suppose that C* is x - analytic. By

Theorem 3.5.1, there are {Aj(1), ..., .i(k)}: where i(1), ..., i(kK) is finite sequence of

natural numbers such that C* = yu; _1°°A;, and
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Ai(1), ..., i(k) =i =17AI(1), ..., i(k),i

Below we will choose (i(1), ..., i(K)) € NK and distinct points ak € Aj(1), ..., i(k)

such that {a1, ..., ak, ... } is a discrete set in C*, this will contradict Theorem 3.5.2.
Step 1: Since C" = _1™Aj, there is i e N such that A; is uncountable.

Choose i(1) such that Aj(1) is unccuntable. Choose aje Ay(1) such that
B1={aeAj(1): a1 < a}is uncountable. To see this, let s =inf Aj(1). It s e Ag(1),
letay =s. Ifse Ag(1), since there is a sequence {bp}n=1"° < Aj(1) such that

bn — s, there is n(0) such that { ae Aj(1): an(Q) < a} is uncountable. Choose

at= an(0)-

Step 2: Since Aj(1) = Uj =1Aj(1),i, there isi e N such that By nAj(q) is
uncountable. Choose i(2) such that By m Aj(1) j(2) is uncountable. Choose

ap € By nAj(q),isuchthat ay <ap and Bp = {ae B1 nAj(1)j2):az<a}is

uncountable and a4 <as. To see this, let D ={a: a < aq}. Then D is countable.
Hence, ([a1, 1] n B1 m Aj(1),i(2)) ~ D is uncountable. Choose
ag e ([a1, 1] nB1 N Aj(1),i(2)) ~ D, a2 = ay such that

Mo = {ae ([a1, 1] " By nAj(4 ),;(2)) ~D: ap < a}isuncountable. Let
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Bo={ae (B1 nAj1),) ~D: ag<a}. Then, Mo < Bo. Hence, Bo is
uncountable. Hence, we get (i(1), i(2)) and (a1, ag) such that aj(k)€ Ai(k)
fork =1, 2, and a1 < an, a4 < as.

Step 3: Continue this process to obtain (i(k))k=1° < N and (ak)k=1°° such that

aj(k)e Ai(k) and ak < ak+1, ak < ak+1-

Claim: B = (ak)k=1> has no limit point. To see this, first, notethat B B .
Secondly, since ak's are distinct and on C one has the discrete topology, the
only possible limit point of B is .. However, C* ~ B is a neigborhood of .
Hence, « is not a limit point of B. Therefore, B has no limit points. This

contradicts to Theorem 3.5.2. So, C* is not x - analytic. Hence, K is not

Talagrand - compact.

3.6 Valdivia - compact Does Not imply Corson - compact

Deville and Godefroy [14] construct a counterexample which says that

Valdivia - compact does not generally imply Corson - compact.

Lemma 3.6.1 Suppose that ais any ordinal such that cf(a) is uncountable,

where cf(a) is the cofinality of o, defined by cf(a) = inf{B: ao= 0+ oy + ... + og,
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aq <o forn<B}. If thereis a function f: [0, a] - K <[O, 1 1C where fis

continuous from the order topology to the product topology on [0, 1]C, where K
is closed and C is some uncountable set such that K~ Z[ O, 1 ]C is dense in K,
then f(o)e ([0, 1]C).

Proof. Suppose that f(a)e ([0, 1]C). By the definition of X ([0, 1]C), we know

that |D] =|{d: de C and f{o)(d) #0}| < w. Let d e D. Since fis continuous, for

any n, there is B such that if n > B, then | {n)}(d) - f(a)(d)| < 1\n. Let &y =

suppBn- Then, £4 < a. So, ifn > &g, then f(n)(d) = f(a)(d). Let { = supde D&y

Then, {< a. Therefore, if n >, then f(n)(d) = f(a)(d) for any d € D.

We build an increasing sequence ({y)n=1°in [, o) such that (. 1)(d) =0,
for every d e supp f({;) ~ D for any some i <n. To see this,
Step 1: Let {g = L. Choose {4 > {g. Hence, ford e supp f({g) ~ D, {{4)(d) = 0.
Step 2: Suppose that for n € N, the finite increasing sequence ({m)m<n is
chosen such thatifi#jandi, j <n, then (supp {({;) ~ D) n (supp f(gj) ~ D) =0.
Step 3. Choose (> (.4 such that (supp (G;) ~ D) n (supp f(CJ‘) ~ D) = for

any i#jandi, j<n, since o has uncountable cofinality. This completes the
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construction.

Letn =limp_50ln. SO, ifce D, f(n)(c) = limp e f(Cn){(C) = Ha)(c), ifc e D,
then there is at most one n such that {({)(c) # 0, since forany i=j,
(supp f(G;) ~ D) » (supp f(t;j-) ~ D) =d. Hence, f(m)(c)=0force D. So,force D,

f(n)(c) = f(a)(c). Since fis one to one, n=a. This contradicts that o has

uncountable cofinality.

Theorem 3.6.1 (Deville and Godefroy [14 ]) There is a topological space which

is Valdivia - compact, but not Corson - compact.

Proof: We are going to show that [0, w]is Valdivia - compact, but not

Corson - compact.

From Lemma 3.6.1, it can be shown that [0, w;] is not Corson - compact.
To see this, suppose that [0, w] is Corson - compact, then there is a

homeomorphism, g, from [0, w] onto a closed subset K of Z([0, 1}0) for some

set C, by the definition of Corson - compact. Following Lemma 3.6.1,

g(wpe ([0, 1]C). Thisis a contradiction.

We will show that [0, w;] is Valdivia - compact. Define
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h: [0, @] — Ec[0,1]00. @by h(a) = %0, ). We know that

E={x[0, o) ®<®}iscompactin [0,1]0, o1l by Theorem 3.3.1. ltis easy to
see that h is continuous. Hence, h is a homeomorphism from [0, o] to E. Since
E ~ ([0, 1][0. ©1ly=E ~ { {w)}, then, E A ([ 0, 1 ][ 0, @1]) is dense in E.

Hence, [0, »] is Valdivia - compact.

3.7 Conclusion

In this chapter, we have given examples to show that none of the implications

below can be reversed: UEC = EC = TC = GC = CC = VC.
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Chapter 4

Radon Nikody'm Compactness

4.1 Introduction

We have already shown in Chapter 1 to Chapter 3 that
UEC 5 EC=TC = GC =CC = VC, and

UEC <=#EC = TC <= GC <= CC <= VC.
In Chapter 4, we are interested in exploring the connections between Radon -
Nikody'm compactness and those notions of compactness previously
considered. The notion of Radon Nikody’'m compactness was introduced by

Namioka [27], most of the results in this chapter are due to him.

4.2 Radon Nikody'm, Uniform Eberlein and Eberlein Compactness

First, we will prove that Eberlein - compact implies Radon - Nikody'm

compact.

Lemma 4.2.1 (Davis et al. [13]) Suppose that (X, ||.||) is a Banach space and
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S < X is convex, symmetric and bounded. Then, the gauge ||.||n of the set
Up = 21S + 2 "NB(X) is a norm equivalent to {|.||. For any x e X, define
Xl = (£ n=1=lIxiln?) 172, and let C ={xe X: ||[Xl|| <},

U =B(C) = {xe X: |||x]|| <1} and i denote the identity embedding from C into X.

Then,

(1) Scu

(2) (C, llI.lh) is a Banach space and i is continuous.

(3) i**: C** — X**is onetoone and (i**)-1(X)=C.

(4) Cis reflexive iff S is weakly relatively compact.

Proof. (1) If x e S,then||x]|n £ 20, forany ne N. So, |||x|]|| < 1. That
means x e U.

(2) Let Xp= (X, |l.lln) and Y = X, _ 1°°Xp with |1- norm. We define a function
f: C —» Y by f(x) = (i(x), i(x), i(x), ...). Then, fis a linear isometric embedding, and

f(C)={y=(yn): ye Yandyp=y1 forne N}is a closed subspace of Y.
Therefore, (C, |||.]l|) is a Banach space. We consider i as the compositicn of f
and the projection of U onto the first coordinate. So, i is continuous.

(3) Since f**(x**) = (i** (x**), i** (x**), i"* (x™), ...) forany x** € C, and since fis

an isometry, (f** )‘1(0) = {0}, hence f** is one to one, (f** )'1 (f(C)) = C.
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(4) We claim that weak - cl(U) =i** (B(C*™)) in (X**, weak). To see this, first,
we know that B(C**) is weak” - compact in (C**, weak”) (see the Alaoglu
Theorem [18]), U = B(C) is weak* dense in B(C**) (see the Goldstine Theorem
[18]), and i** is weak” continuous. Hence, i**(B(C*")) is closed in (X**, weak”"),
since i**(B(C**)) is compactin (X**, weak®). Andi"™* (U )=Uisdensein
i**(B(C*)).

Suppose that S is weakly relatively compact, i.e. weak - cl(S) is compact
in (X, weak). Then, U ¢ 2N weak - cl(S) + 2-N B(X*), forany n € N.

Furthermore, 2N weak - cl(S) + 2-N B(X**) are weak™ closed in (X**, weak”),

for n e N, hence they contain i** (B(C*™*)). Since
Np=1"(2N weak - cl(S) + 277 B(X™)) € Mp=1=(X + 279B(X*")) = X, then,

i"™ (B(C*™)) <« X. So, by (3), C** < C. That means that C is reflexive.

It is easy to get the other part of the implication directly from (1).

Theorem 4.2.1 (Davis et al. [13]) Every weakly compact subset K of a Banach

space is weak to weak affinely homeomorphic to a subset of a reflexive Banach

space.

Proof. In Lemma 4.2.1, let S=cl - conv(K U (- K)). By the Krein - Smulian
Theorem which says that the closed convex hull of a weakly compact subset of
a Banach space is itself weakly compact (see [18]), S is weakly relatively

compact. By (4) of Lemma 4.2.1, C is reflexive. Therefore,
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A = i-1(K) is weakly compact. Hence, i|A.is the homeomorphism we need.

The following theorem is proven in Diestel and Uhl [17].

Theorem 4.2.2 Suppose that Xis a reflexive Banach space. Then X** = X has

the Radon - Nikody'm property.

Theorem 4.2.3 (Namioka [27]) Suppose that (K, 1) is a compact Hausdorff

topological space which is an Eberlein - compact or scattered compact. Then
(K, 1) is Radon - Nikody'm - compact.

Proof. Supppose that (K, 1) is an Eberlein - compact space. Then Kis
homeomorphic to a weakly compact subset, F, of a Banach space X. By

Theorem 4.2.1, F is weak to weak homeomorphic to a subset of a reflexive

Banach space X41. Hence, K is homeomorphic to a weakly compact subset of a

reflexive space X1. Following Theorem 4.2.2, X1 has the Radon - Nikody'm

property. So, (K, 1) is RN compact.

Suppose that (K, 1) is scattered - compact. By Rudin in [37], K** is
isomorphic to 11(K), where we identify K with F. Since 11(K) has the Radon -
Nikedy'm property by [17], then K is homeomorphic to a weak” compact subset

of K**. Therefore, Kis RN compact, which completes the proof.

So, EC = RNC. The next main result is RNC %= EC. First, we note the
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following characterization for Eberlein - compact spaces due to Resenthal [33].

Theorem 4.2.4 A compact Hausdorff space K is Eberlein - compact iff thereis

a sequenceA = (on)n=1° such that

(1) fne Nandany A e an, then Ais an open Fq - set of K.

(2) lfx=y, thenthereisne Nand A e o, such that either x e A and

o

ye A; orxe Aandy e A.

(3) lf xe Kandn e N, then x belongs to a finite number of sets in ap,, i.e. each

oy is point - finite.

The sequence A is called an EC - structure.

Theorem 4.2.5 (Bennett et al. [5]) [0, ] is not Eberlein - compact.

Proof. Suppose that [0, w;] is Eberlein - compact. By Theorem 4.2.4, there is

an EC - structure A. Let A'={A e A: w; € A}. Then, A'is countable by

Theorem 4.2.4, Condition (3). Hence, there is an ordinal B < w;such that

B,w;)c{A: Ae A'}. Thenforany &, ne (B,w;)and & =n,if Ae A’ which
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separates &, n, then ;2 A. Such a set A must be bounded away from w, so

that the familyA ~ A'is a point - countable cover of (B, o) by bounded open

sets. Using the Pressing Down Lemma, we know that such a cover cannot

exist.

Theorem 4.2.6 (Namioka [27]) There is a topological space (K, t) which is

Radon - Nikody'm compact but not Eberlein - compact.

Proof. [0, ;] is such a space, since it is Hausdorff and scattered in the order

topology and by Theorem 4.2.3, [0, ®;] is Radon - Nikody'm compact.

However, by Theorem 4.2.5, we know that [0, w¢] is not an Eberlein - compact.

The following two corollaries are immediate since UEC = EC.
Corollary 4.2.7 If a topological space (K, 1) is uniform Eberlein - compact, then

(K, 1) is Radon - Nikody'm compact.

Corollary 4.2.8 Radon - Nikody'm compact does not imply uniform Eberlein -

compact.
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4.3 Radon - Nikody'm and Corson Compactness

We will show RNC #= CC. The following theorem is due to Namioka [27],
but, the proof is different from the original one.

Theorem 4.3.1 Radon - Nikody'm compact does not imply Corson - compact.

Proof. [0, w] with the order topology is Radon - Nikody'm compact as shown in

Theorem 4.2.6. By Theorem 3.6.1, [0, wq] is not Corson - compact.

Also, we give a counterexample which will show that CC == RNC.

Theorem 4.3.2 (Stegall [38]) Let X be a Banach space. X* has the Randon -

Nikody'm property, i.e. X is an Asplund space, iff every weak” - compact subset

of X*is horm - fragmented.

Theorem 4.3.3 (Namioka [27]) Suppose that (K, t) is Baire and p is a metric on

K. If (K, 1) is p - fragmented, then the set

C={xe X: it (K, 1) > (K, p)at xis continuous} is a dense Gg set of (K, 1).

Proof. LetUg=u{V: Vist -open and p -diam(V) < €}. Since (K,t) is p -
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fragmented, then it is easy to see that Ug is t-open and t - dense in K.
LetC={xe X: i: (K, 1) > (K, p)atxiscontinuous}. Then
C =np=1=Uq/n. Since (K, t)is a Baire space, then C is a dense G§ subset of
(K, 1).

Theorem 4.3.4 (Namioka [27]) Suppose that (K, 1) is a Radon - Nikody'm

compact space. Then, there is Gg subset C of K such that C is dense in K and it

is metrizable in the relative topology. Hence, if x e C, then xis a Gg point in

K.
Proof. By Theorem 4.3.2, we can suppose that K is weak® - compact subset

of the dual X* of a Banach space X and Kis norm - fragmented. Let

C={xe X: i: (K,weak) — (K, norm) at x is continuous}. Following Theorem

4.3.3 directly, we know that C is a dense Gg subset of (K, weak”). Since

i (C, weak™) — (C, norm) is a homeomorphism and (C, norm) is metrizable,

then, (C, weak™) is metrizable. For any x € C, by the definition of C, it is

obvious that {x} is a Gg subset in (C, weak*). Hence, {x} is a Gg set in

(K, weak?®).
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The following theorem essentially comes from Namioka.

Theorem 4.3.5 Corson - compact does not imply Radon - Nikedy'm compact.

Poof. Let (K, 1) be Corson - compact. Suppose K is Radon - Nikody'm

compact. By Theorem 4.3.4, for (K, 1), there is a dense Gg subset of C = K

such that C is metrizable in the relative topology. But, Todorcevi'c, (see
Chapter 6, Theorem 9.11 [28]), built a Corson - compact space which does not

have any metrizable subspace.

4.4 Radon Nikody'm, Talagrand and Gul'ko Compactness

Since TC = GC = CC, we have the following immediate corollaries to

Theorem 4.3.1.

Corollary 4.4.1 Radon - Nikody'm compact does not generally imply

Talagrand - compact.

Corollary 4.4.2 Radon - Nikody'm compact does not generally imply Gul'ko -

compact.

4.5 Radon Nikody'm and Valdivia compactness




The main results of this section are VC #= RN which is Theorem 4.5.1, and

RN == VC which is Theorem 4.5.2.

Theorem 4.5.1 Valdivia - compact does not imply Radon - Nikody'm compact.

Proof. Suppose that Valdivia - compact does imply Radon - Nikody'm

compact. Since any Corson - compact is Valdivia - compact, then Corson -

compact implies Ra*don - Nikody'm compact. This contradicts Theorem 4.3.6.

The proof that [0, w,] is not Valdivia is given by Yabouri (see [14]).

Theorem 4.5.2 There is a Radon - Nikody'm compact which is not Valdivia -

compact.

Proof. We will show that [0, w,] with the order topology is Radon - Nikody'm

compact, but not Valdivia - compact.

Since [0, alis a scattered - compact in the order topology, by Theorem

4.2.3, [0, wy] is Radon - Nikody'm compact.

72
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We are going to show that [0, w,] is not Valdivia - compact. Suppose that

[0, wy] is Valdivia - compact. By the definition of Valdivia - compact, [0, wy] is
homeomorphic to a subset F < [0, 1]C for some set C such that F n =([0, 1]C) is

dense in F. We will identify F and [0, wp]. By Lemma 3.6.1, o) ¢ [0, 1]C.
Hence, there is a A < C such that wy(x) # 0 for any x e A and [A| = wy. Since
|A| < wy, thereis such that B(x) = wy(x) for any x e A. Therefore,

M, ] "Z(0,1 ]C) = @ . This contradicts that [0, wy] N Z ([0, 1]C) is dense in

[0, o]

4.6 Conclusion

The results of this chapter can be summarized as follows:
UEC = RN, UEC < # RN;
EC = RN, EC = #RN;
RN = = TC, RN = = GC;
RN = = CC, CC # = RN;

RN = = VC, VC # = RN;
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Chapter 5

Rosenthal Compactness

5.1 Introduction

Up to this point, we have not discussed the connections between Rosenthal -
compact and the other types of compact spaces. Unfortunately, not many results

have been obtained. Some of the known results are shown in this chapter.

5.2 Rosenthal and Radbn Nikody'm Compactness

We are going to show RN = RC.

Theorem 5.2.1 (Rosenthal [35]) Suppose that (K, 1) is a Rosenthal - compact

space. Then K is angelic.

The following theorem is due to Namioka, but the proof is different from the

original one.

Theorem 5.2.2 (Namioka [27]) There is a topological space (K, t) which is Radon



75

- Nikody’'m compact but not Rosenthal - compact.

Proof. From Theorem 4.2.6, we know that [0, w;] is Radon - Nikody'm compact.

Since [0, w{] is not angelic, then [0, w{] is not Rosenthal - compact by Theorem

5.2.1.

We are going to give a counterexample which will show that RC == RN.

Theorem 5.2.3 (Namioka [27]) A topological space ( K, t) which is Radon -

Nikody'm compact is herditarily Lindelof iff it is metrizable.

Theorem 5.2.4 (Namioka [27]) There is a topological space (K, t) which is

Rosenthal - compact, but not Radon - Nikody'm compact.

Proof. LetK={(x,y): 0 < x €1, y=0,1}~{(0,0), (1, 1)} and define an order on
Kby (x,y) <(x1,yq) iff x<xqo0or x=xqandy < yq. Kwith the order topology tis
compact. It can be shown that (K, 1) is hereditarily Lindel6f, but not metrizable.
Therefore (K, 1) is not Radon - Nikody'm compact by Theorem 5.2.3.

We will show that (K, 1) is Rosenthal - compact. Let

F={g: g:[0,1] = {0, 1}andif t < t1 theng(t) < g(t1) and g (0) =0, g(1) =1}.
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If we induce the pointwise topology, 1, on it, then (F, t;) is Rosenthal - compact.

(K, 1) is homeomorphic to (F, 11). So, (K, 1) is Rosenthal - compact.

5.3 Rosenthal and Eberlein Compactness

Argyros, Mercourakis and Negrepontis showed [3] that every Eberlein -

compact of weight at most 2® is Rosenthal - compact. However, since

" EC = RN, RC # = RN, then RC # = EC and RC # = UEC.

5.4 Conclusion

Evidently there are no known connections between RC and the remaining

notions of compactness, namely, TC, GC, CC and VC.
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Chapter 6

Some Recent Discoveries

6.1 Introduction

In 1989, Deville and Godefroy [14] showed that a topological space (K, 1) is

Valdivia - compact if and only if it is Corson or [0, ;] < K. This theorem

supplies a clear picture of the relationship between Corson - compact and
Valdivia - compact. In the same year, Orihuela, Schachermayer and Valdivia
[30] proved that'a Radon - Nikody'm and Corson - compact space is Eberlein
compact which answered an open question proposed by Namioka [27] in

1987. In this chapter, we will give the proofs of these two theorems.

6.2 Conditions for a Valdivia - compact to be Corson - Compact

We are going to give conditions for a Valdivia - compact to be Corson -

compact.

Lemma 6.2.1 Suppose that (X, 1) is a Hausdorff topological space and a net of
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functions, {fy: 0 <o < B}, which is from X to itself satisfies the following

conditions

(1) fafe = fefg=Tfg for 0 <a<E<pP;

(2) for xe X, the function gy: o — f(x) is continuous from [0, B] to (X, 1),
then gx([0, B]) is homeomorphic to a well ordered space for every x € X.
Proof. Fix x e X. Let C =gy([0, B]) = X. We say x{ <xo iff

inflgx~1(x1)} < inf{gx 1(x2)}. Cis well ordered by the relation, <.

Claim: gy 1(z)is an interval in [0, B]. To see this, let o = inf{gy~1(z)} and
B=sup{gx 1(z)}. Forany a<y< B, by condition (1), ffg(x) = f(2) = f(x) = 2.

Since there is a { e gy 1(2) such that y< { < B, fy{(x) = f(fr(x)) = f(2) = z. This

verifies the claim.

Hence, gy is continuous from [0, B] with its order topology to C = gx([0, B])
with the topology tqjinduced by the relation <. If we can prove that © =17 on

C = gx([0, B]), then C is homeomorphic to the well ordered set C with regard to
the relation <.

Suppose that A is 1;- closed. Then, gx"1(A) is closed in [0, B]. Since
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ax(gx 1(A)) = A and gy 1(A) is compact, then A is compact in . Hence Ais t -
closed following the fact that (C, t) is Hausdorff. That means t; c .

Suppose that Ais T - closed, but not 1, - closed. There is xg € A, a net
(Xgey <A suchthat (Xg)g e w — X0 in (G, 1), but (X ) « p IS NOL
convergent to xg in (C, 7)). Hence, there is an interval (y1, y2), xg € (y1. Y2),
such that for any 0 <1 < B, there is a(n) >N such that xgm) € (Y1, y2)- So, we
get a subnet (xg(m)Iney which is not a subset of (Y1, y2). Since (xgm)me ¥
—xq, thenxg e (yq, y2). Contradiction. Hence, tc1y.

Theretore, t=1;. This completes the Lemma.

Lemma 6.2.2 (Argyros [14]) Suppose that X is a compact subset of
([0, 1]C, 1)), where 1 is the product topology on [0, 1]C for some set C such

that X " Z([ O, 1 ]C) isdensein X. fAcCand|A|2=ow,thenthereisa

B« Csuchthat AcB,|A|=|B]and rg(X) c X, where rg: [0, 1]C = [0, 1]C is

defined by:

re(x)(k) =x(k) if ke B;
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rg(x)(k)=0  if keB.

Theorem 6.2.1 (Deville and Godefroy [14]) If (K, 1) is a Valdivia - compact

space, then K is Corson - compact iff there is no closed subset of K which is

homeomorphic to [0, w].

Proof. = Let (K, 1) be Valdivia - compact. Suppose that K is Corson - compact

and B is any closed subset of K. Since B is Corson -compact, by Theorem
3.6.1, B is not homeomorphic to [0, w{].

«= Suppose that (K, 1) is Valdivia - compact, but not Corson - compact.

Hence, there is a set C such that K ¢ [0, 1]C and D n Z([0, 1 ]C) is dense in K,

where we identify K with its image in [0, 1]C, and there is a xg € K such that

xg 2Z ([0, 1]C). Let Ac Csuchthat |A| = wjand xg(a) =0 for every ae A. We
rewrite A={ay: O0<a<wop}

Claim: Thereis a net, {Ag: 0<a <y}, of subsets of C such that

(1) Aq c Apfor o< B
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(2) |Agl=0 for a<oy;

(3) age Ag +15

(4) Ag= UB < oA for any limit ordinal o.
(5) raa(K) =K.

To see this, since xge Vy = {xe K: x(ag) =0} which is an open subset of K
and KN Z( 0, 1] C) is dense in K, we can choose xg € Vg N Z([ 0, l]C). In
Theorem 3.6.1, let A= {ce C: xp(c) =0}, fora=0;

A= Ay u {ce C: xgfc) = 0} fora 0.
Using Lemma 6.2.2, build Ay from Ay such that rag+1(K) c K. If ais & limit
ordinal, let Ag = Ug < o AB. By this construction, one can see that
{Ag: 0<a <y} satisfies condition (1) to (5).

Let fo=ry and K= Xin Lemma 6.2.1, we can get gy([0, w;]) which is
homeomorphic to [0, &] for some ordinal &. From condition (2) and (3) of

Lemma 6.2.2, it is easy to see that gy([0, w;]) is uncountable. Hence, K
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includes a subset homeomorphic to [0, wq].

Corollary 6.2.2 Let (K, 1) be a topological space. Then, Kis Valdivia -

compact iff Kis Corson - compact, or [0, ;] ¢ K.

6.3 Conditions for Radon - Nikody'm to be Eberiein - compact

Based on a result of Orihuela, Schachermayer and Valdivia in [29], we show
that every Radon - Nikody'm and Corson compact space is Eberlein - compact.

First, we give some definitions and prove some lemmas.

Definition 6.3.1: A class ¥ of compact Hausdortf space is called a perfect class

iff W is stable by taking continuous images, countable products, and closed

subspaces.

Definition 6.3.2: Let X be a linear space. A set Sin X is called absolutely

convex iff forany yq,yoe S,Ay{ + uy2 € S whenever |A| + |u| £1.

Definition 6.3.3: Suppose that X is a Banach space and C is an absolutely

convex and weak” compact subset of X*. Denote by |.| the seminorm on X



dualto C,i.e.]x| =sup{<x,y>:ye C}. Let (Y,]|.]|) bethe Banach space

obtained by completing the equivalence classes modulo |.| of Xandi: X =Y

be the canonical map.

Let ||.|ln be the norm on Y whose unit ball is given by

B(Y, |l.lln) = clM(B( X, [|.|| ) + 27MB(Y, |.| ).
For 1 £p <+, define [|x||p = (Zn, = 1%lIXIInP) 1'Pand ||x|lg = max{||x||n}. Let

Fp={xeY: |[x|][p< +e}and Fg = {xe Y: [|x|[g <+ e and limp||x|[n = O}

Lemma 6.3.1 Suppose that X is a Banach space and C is an absolutely

convex and weak™ compact subset of X* that belongs to a perfect class V.
Then both (B(Fp*), weak”), (B(Fo*), weak*) e V.

Proof. For 1 <£p <+ =, denote

Zp = Zp(Y» [l 1ln)

={z = (xn): xneY and [[z]| = (£n 21™IXnllnP) 1P < + =}, and

Zg = Zo(Y, Il - lin)

= {z = (xn): xneY and ||zl = sup{|lxnlln} <+ and limp|Ix|l = O}.

Fp (respectively, Fq) is isometrically isomorphic to the diagonal of
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Ep (respectively, Xg), i.e. for z = (xp) € Zp such that x{ = xo = ... whence
B(Fp ) (respectively, B(Fg")) is a continuous image of B(Zp*) (respectively,
B(ZO*)) with respect to the weak” - topology. Hence, it is sufficient to show that
(B(zp*), weak®), (B(Zq ), weak*) e V.

First, we note that the identity on Y induces a continuous injection of norm 1
and with dense range from Zp into Zp, for 1 <p <+, and from X into X.
Whence B(Zp*), B(Zg ) are weak* - homeomorphic to a subset of B(Z4"), it is

sufficient to show that B(Z¢") is in P.
Secondly, we note that B((Y, ||.||)*) may naturally be identified with a subset

of 2NC. Hence, B(( Y, ||.||)") € ¥. Since (B(zp*), weak* ) is homeomorphic to

I —1%(B((Y, |.lIn)"), weak* ), then (B(Z{"), weak*)  ¥.

Lemma 6.3.2 Suppose that K is a weak” - compact subset of the dual X* of a

Banach space X where Kis norm - fragmented such that its weak* closed

absolutely convex hull C belongs to a perfect class ¥ of compact spaces.

Then, space Fpp and Fg are Asplund and B(Fp"), B(Fg') € ‘¥ for any
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1< p<+ oo,

Proof. By the Stegall Theorem [39], F-p and Fg are Asplund spaces. By Lemma

3.5.1, (B(Fp ), weak”), (B(Fq'), weak") V.

Theorem 6.3.1 Let (K, 1) be a topological space. Then, Kis Eberlein -compact

iff K is Radon - Nikody'm and Corson.

Proof. = Suppose that Kis Eberlein - compact. Since EC = TC = GC = CC,
Kis Corson - compact. Following Theorem 4.2.3, K is Radon - Nikody'm
compact. Hence, if Kis Eberlein - compact, then K is Radon - Nikody'm

compact and Corson - compact.

& Suppose that K is Radon - Nikody'm and Corson - compact. So, Kis
homeomorphic to a weak™ - compact subset of the dual X* of a Banach space X
such that the dual norm fragments K. Jayne, Namioka and Rogers [20] proved
that every regular Borel probability measure on K has separable support, and
Argyros, Mercourakis and Negrepontis [3] proved that if K is a Corson -
compact space with this property, then B(C*(K)) is Corson - compact. Hence,
the weak” closed absolutely convex hull C of K is a Corson - compact, since it
is the continuous image of B(C*(K)) in (C*(K), weak"). We apply Lemma 6.3.2
to the perfect class of Corson compact spaces and find an Asplund space F

with weak” Corson compact dual unit ball such that K is homeomorphic to a



weak* compact subset of the dual F*. Orihuela, Schachermayer, and Valdivia
[30] showed that F is weakly compactly generated and thus K is Eberlein

compact.
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