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ABSTRACT

Cowie, T.L. 2009. Assessing above- and belowground competitive effects in pure and
mixed stands of jack pine (Pinus banksiana) and black spruce (Picea mariana). 118pp.

Keywords: aboveground competition, belowground competition, conifer mixedwood,
competition index, competitive reduction, radial growth.

Ecological principles of niche, competition and competitive reduction suggest that
competition in mixed stands composed of pine and spruce may experience positive
interactions through (1) vertical stratification of canopy and (2) vertical separation of
roots.

In order to evaluate above- and belowground competitive interactions of pure and mixed
stands composed of jack pine (Pinus banksiana (Lamb.) and black spruce (Picea
mariana (Mill.) B.S.P.) I: (1) reviewed mechanisms of competition and competitive
reduction, (2) located even-aged, unmanaged single- and mixed-species stands of pine
and spruce on intermediate sites within the boreal forest of Northwestern Ontario, (3)
calculated three competition indices to quantify competition in pure and mixed stands of
the component species and compared the indices to identify which best describes
competition in a mixed stand, and (4) determined if rooting patterns of pine and spruce
are affected by a mixture.

Competition indices showed that spruce generally experienced a wider variety of
competitive conditions over pine. Values computed from a species-specific index
indicated that there is a strong intraspecific effect within both the target tree species.
However, while jack pine showed to have a strong interspecific competitive effect on
black spruce, black spruce had a weak interspecific competitive on jack pine. The weak
relationship between radial growth and competition index suggests that competition may
not be strong in these stands, which may reflect the complementary growth patterns and
resource requirements of the component species or the stage of stand development.

Jack pine preferred to put its roots in the upper portion of the mineral soil regardless of
stand type. However, there was a significantly higher percentage of jack pine roots in
the lower mineral soil layers of the mixedwood stand compared to spruce, which
indicates jack pine are exploiting more of the soil profile in the mixtures. It was found
that black spruce prefer to root in the organic and upper mineral soil layers regardless of
site or stand type. In the mixedwood, the spruce had a significantly smaller amount of
biomass because it is sharing soil space with pine, causing the spruce to put their roots in
the available space.

These results suggest that pine-spruce mixedwood have the potential to be more
productive than pure stands of the component species as competition is likely reduced in
these stands due to differing growth patterns. Investigation into the productivity of these
stands is necessary so that silvicultural prescriptions can be developed for these naturally
occurring stands commonly found throughout northwestern Ontario.
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INTRODUCTION

Mixedwoods are forest ecosystems in which no single species comprises more
than 80% of the total basal area (MacDonald 1995). Mixed-species stands with a
deciduous component have received a lot of attention in the literature (e. g. Wierman and
Oliver 1979; Brown 1992; Montagnini 2000; Montagnini ef al. 1995; Wang et al. 1995,
2000; DeBell et al. 1997; Man and Lieffers 1999; Valkonen and Valsta 2001, Frivold
and Frank 2002, Bauhus et al. 2004, Green 2004, Kabzems and Garcia 2004, Green and
Hawkins 2005, Légaré et al. 2005, and Pitt and Bell 2005). Much less is known about
mixed stands composed of two conifer species (OMNR 2003). Under the Crown Forest
Sustainability Act (CFSA, 1994), forest managers in Ontario are required to implement
silvicultural systems that emulate natural pattern and disturbance regimes and conserve
biodiversity (OMNR 2002). Mixed-species stands by definition are more diverse than
their pure counterparts (Powers 1989) and comprise nearly half (~45%) of Ontario’s
productive forest (OMNR 2007). In addition, mixed-species stands have the potential of
increased productivity over their pure counterparts.

Due to the forecasted decline in allowable harvest of merchantable volume in the
boreal forest, intensive silviculture, including mixedwood management, may enhance
forest productivity and provide an alternative means of acquiring wood fibre through
shortened rotations. The literature suggests that conifer mixedwoods can be more
productive than pure stands through competitive reduction and facilitation (Vandermeer
1989) if the component species differ in growth patterns (Karsh 1986; Kelty 1992;

Pukkala ez al. 1994; Chen et al. 2003; Amoroso and Turnblom 2000).



Conifer mixedwoods make up approximately 25% of Ontario’s productive forest
(OMNR 2007). Stands composed of jack pine (Pinus banksiana Lamb.) and black
spruce (Picea mariana (Mill.) B.S.P.) are especially common in Northern Ontario on
drier sites (OMNR 2003). These stands tend to have a multi-story structure as these
species differ in shade tolerance, and consequently growth rates. Non-stand replacing
disturbances such as insect and disease outbreaks may be mimicked in conifer
mixedwoods by implementing a two-pass removal silvicultural system allowing for the
harvest of merchantable jack pine, while enhancing growth of residual black spruce
(Hole 1993). A good understanding of how jack pine and black spruce interact when
grown together is essential before silvicultural prescriptions can be developed for their
management.

The objectives of this study with respect to stands of jack pine, black spruce and
their mixtures are: (1) to review mechanisms of competition and competitive reduction,
(2) to compare three competition indices to identify which best describes competition in
mixed- and pure stands, and (3) to determine if rooting patterns are affected by a
mixture. The results from this study have implications for future conifer mixed-species
research in Ontario, particularly forest productivity as it relates to competition. In
addition, this research can aid in forming hypotheses to test for potential productivity

gains of mixed conifer stands in terms of timber volume.



LITERATURE REVIEW

CANADIAN BOREAL FOREST

In Canada, the boreal forest covers approximately 30% of the landscape and
makes up 77% of Canada’s total forest (NRCAN 2005). The boreal forest stretches
from the Yukon to Newfoundland and is found in all provinces except New Brunswick,
Nova Scotia, and Prince Edward Island (Rowe 1972). Boreal tree species include black
spruce, white spruce (Picea glauca (Moench) Voss), trembling aspen (Populus
tremuloides Michx.), balsam poplar (Populus balsamifera L.), white birch (Betula
papyrifera Marsh.), balsam fir (Abies balsamea (L.) Mill.), jack pine, and larch (Larix
laricina (Du Roi) K. Koch) (Weetman 1995).

Boreal mixedwoods (BMWs) make up 22% of Canada’s forests (NRCAN 2005).
Boreal mixedwoods are defined in Ontario as stands dominated by shade-intolerant
hardwoods in early succession, mid-tolerant conifers in mid-succession, and shade-
tolerant conifers in late successional stages (Chen and Popadiuk 2002) and comprise
nearly half of Ontario’s productive forest (OMNR 2007). This definition applies to
productive sites conducive to mixed-species growth and generally refers to mixed-
species stands with a trembling aspen or white birch component.
Mixed stands composed of jack pine and black spruce are common in

northwestern Ontario (OMNR 2003), yet there is no silvicultural program currently in
place that targets their development and management. A good understanding of the

species’ silvics is needed in order to predict how they may interact when grown together.



OVERVIEW OF JACK PINE AND BLACK SPRUCE

Jack Pine

Jack pine is a small to medium sized tree; average height is between 17- and 20
m, while diameters range between 20- and 25 cm at maturity (Rudolph and Laidly
1990). The crown architecture of jack pine varies depending on the growing conditions.
Open-grown trees exhibit tapered trunks, open conical crowns, and ascending branches
(Farrar 1995). Forest grown trees display slender, straight trunks, with short crowns.

On poor sites, jack pine trees are often short and twisted, with long stout branches,
giving them a disorderly appearance (Farrar 1995). In general, jack pine crowns are
sparse compared to those of spruce and allow more light to penetrate the canopy.

In Canada, jack pine is an important source of pulpwood, lumber, and round
timber, also providing habitat for birds and small mammals (Rudolph and Laidly 1990).
Jack pine is found across Canada from the Atlantic Ocean west to the McKenzie River
Valley (Karsh 1986), but is most abundant in Ontario (Rudolph and Laidly 1990). Jack
pine covers 5.9 million hectares within the Boreal and Great Lake-St. Lawrence forest
regions, contributing 17% of species composition in the boreal forest, second only to
black spruce (OMNR 2000). In Ontario, the most productive jack pine stands occur in a
crescent-shaped area beginning south of Thunder Bay, continuing north of Lake Nipigon
and back south to the area east of Lake Superior and north of Sault Ste. Marie (Fowells
1965).

Jack pine is a pioneer species that readily invades sites where the mineral soil
has been exposed by major disturbance, such as fire. In its northern (boreal) range, jack
pine bears predominantly serotinous cones, an adaptation to frequent wildfire. It usually

grows in pure even-aged or mixed stands on less fertile and drier soils than those



required by other boreal species (Rudolph and Laidly 1990). Jack pine reaches optimal
growth on moderately moist sandy loam and clay loam soils (Moore 1984). It exhibits
high nutrient-use efficiency (NUE) and water-use efficiency (WUE) and as such, is
adapted to dry and infertile soils (Robinson ez al. 2001). Due to its high WUE, jack pine
is more resilient under drought stress than black spruce (Karsh 1986; Grossnickle and
Blake 1986; Dang et al. 1997; Hebert et al. 2006). Robinson et al. (2001) showed jack
pine seedlings’ to have NUEs within an approximate range of 0.05 to 0.25 pmol COy-s-
1-gN"" and WUEs between 0.25 and 5.5 umol CO,-mmol H,O!. The values for NUE
and WUE decreased as competition increased and varied over time and among specific
competitors.

Jack pine seedlings grow faster than other boreal conifers and develop relatively
deep roots (Rudolph and Laidly 1990). Roots may reach depths of 2.7 m on sites with
deep soils, although the bulk of the rooting system consists of laterals restricted to the
upper 46 cm of the soil profile (Rudolph and Laidly 1990). Intense competition for soil
moisture and nutrients will cause the lateral roots of jack pine to grow downward (Karsh
1986). Jack pine is one of the most shade-intolerant tree species in its native range. It
can be outcompeted by faster growing hardwoods such as trembling aspen or white birch
(Rudolph and Laidly 1990).

Seedling growth is rapid with individuals reaching breast height within 5 - 8
years of establishment (Fowells 1965). Mature trees are approximately 17 - 20 m in
height and have diameters of 20 - 30 cm at breast height (dbh). Jack pine stands begin to
deteriorate after 80 years on good sites and 60 years on poor sites (Rudolph and Laidly
1990); individuals may live to be 150 years old (Farrar 1995). Jack pine can grow on a

wide variety of soil types including dry and gravelly soils. However, it will reach its



silvicultural rotation age sooner on well-drained loamy sands. Site quality improves
with increasing; i) fine sand, silt, and clay content, ii) water holding capacity, and iii)
cation exchange capacity in the upper mineral layers (Rudolph and Laidly 1990).
Generally, jack pine is more productive on deep sites compared to shallow sites.

This may be attributed to a relatively deep rooting system which can both access and
exploit water and nutrient resources efficiently on deep sites.
Black Spruce

The physical traits of black spruce also vary depending on site and growing
conditions. On lowland wet sites, trees are small reaching 8-12 m in height and 13 cm in
diameter, with narrow spire-like crowns (Viereck and Johnston 1990). On well-drained
upland sites, trees are of medium size and may reach 20 m in height and 25 cm in
diameter. In general, the crown architecture of black spruce can be described by short
principal branches with drooping lower branches with upturned tips. The upper part of
the crown is often very dense (Farrar 1995), allowing little light to penetrate the canopy.

Black spruce is Canada’s most important pulpwood species (Viereck and
Johnston 1990), providing very high quality pulp because of long fibres in the wood. In
its old growth stage, black spruce forests also provide critical habitat for many wildlife
species, including the endangered pine marten (Martes martes) and woodland caribou
(Rangifer tarandus- caribou). Black spruce grows coast to coast across Canada;
northward from Newfoundland to northwestern Alaska (Fowells 1965). In Ontario
alone, black spruce accounts for 50% of the coniferous growing stock and a large
portion of Ontario’s annual allowable cut (OMNR 2008).

Black spruce usually grows on wet organic soils, which are poorly drained and

extremely low in nutrient availability, particularly nitrogen (Patterson et al. 1997;



Viereck and Johnston 1990). According to Patterson et al. (1997), black spruce may
possess the following traits as an adaptation to wet environments:
1) low maximal relative growth rates,

2) high physiological capacity to extract nutrients, and

3) high metabolic ability in the use of nutrients to produce new biomass

Upland black spruce stands tend to be of higher quality, producing healthier trees
in a shorter rotation than lowland stands (Viereck and Johnston 1990). Black spruce
commonly grows in pure stands on organic sites and in mixed stands on mineral sites
with jack pine being a common associate on drier sites (Viereck and Johnston 1990).

Compared to jack pine, black spruce has a shallow root system (Fowells 1965).
Its roots may reach 60 cm in depth, but most spread laterally at the moss humus interface
with the bulk of the roots in the upper 20 cm of the organic horizons (Viereck and
Johnston 1990). Black spruce grows more slowly than many trees and shrubs with
which it is associated and therefore encounters considerable competition where species
are abundant. It is often found in the understory of jack pine (eastern and central
Canada) and lodgepole pine [Pinus contorta Dougl. ex. Loud.] (western Canada) stands
on dry sites and succeeds pine in the absence of fire or harvesting (Viereck and Johnston
1990).

The silvics of these species indicate that differential resource-use may occur in
stands composed jack pine and black spruce, which may lead to a reduction in

competition and consequently increased growth.



POTENTIAL FOR INCREASED PRODUCTIVITY IN MIXED STANDS

Traditionally, stand composition, species abundance, growth and productivity of
plants have been attributed primarily to competition (Connell 1983; Goldberg and
Werner 1983; Fowler 1986; Aarssen and Epp 1990). A large body of literature exists to
support the role and the mechanisms of competition (e.g. Ford 1975; Bonan 1988, 1991;
Lieffers and Titus 1989; Weiner 1990; Newton and Jolliffe 1998; Brooker et al. 2005;
Lamb and Cahill 2006; Weigelt er al. 2007). However, an increasing number of
experimental studies over the past 20 years are providing evidence to support alternative
ecological theories, particularly competitive reduction and facilitation (e.g. Wang 1997,
Chen ez al. 2003; Légaré et al. 2005; Amoroso and Turnblom 2006). It has been
reported that positive plant species interactions may play a major role in the
reproduction, distribution, diversity, and productivity of plant communities (Hunter and
Aarssen 1988; Kelty 1992; Callaway 1995).

Many naturally occurring mixtures have been investigated to determine whether
potential gains exist in terms of productivity by growing mixed-species stands (Table 1).
Mixtures have been found to be both more and less productive than their pure
counterparts, depending on the species, developmental stage, and site in question (Watt
1955; Grubb 1977; Grace 1985; Kelty 1992; Binkley et al. 1992; Callaway 1995; DeBell

etal. 1997).



Table 1. Species’ mixture studies.

Species Mixture

Author(s)

Eucalyptus- Albizia

Eucalyptus — Acacia mearnsii

Eucalyptus — Acacia peregrine
Fagus sylvatica — Picea abies

Picea abies — Betula pubescens
Pseudotsuga menziesii — Alnus rugosa

Populus balsamea —~ Populus
tremuloides — Picea glauca — Pinus
contorta

Populus tremuloides ~ Picea mariana
Betula papyrifera — Abies lasiocarpa
Thuja plicata — Tsuga heterophylla

Pinus contorta - Larix occidentalis
Pinus contorta — Picea mariana
Pinus contorta — Pinus ponderosa
Abies grandis — Pinus contorta
Tsuga Canadensis — Picea rubens
Tsuga heterophylla — Thuja plicata
Pseudotsuga menziesii — Tsuga
heterophylla

Pinus ponderosa — Pseudotdsuga
menziesii

Binkley et al. 1992; DeBell et al. 1997

Khanna 1997; Bauhus er al. 2004;
Forrester et al. 2006

Bristow et al. 2006

Schmid and Kazda 2001; Thelin et al.
2002; Pretzsch and Schiitze 2005; Reiter
et al. 2005; Bolte and Villanueva 2006
Thelin et al. 2002; Dolezal et al. 2006
Shainsky and Radosevich 1992; Binkley
2003; D’ Amato and Puettmann 2004
Stadt et al. 2007

Légaré et al. 2004, 2005
Wang et al. 2000

Collins 2000; Wang et al. 2002; Chen et
al. 2003; Varga et al. 2005
Chen et al. 2003

Chen et al. 2003

Garber and Maguire 2004
Garber and Maguire 2004
Seymour and Kenefic 2002
Canham et al. 2004

Amoroso and Turnblom 2006

Fajardo et al. 2006

Ecological Theories

Three main ecological principles need to be considered when reflecting on how
different tree species are able to coexist in forest stands; 1) niche, 2) competition, and 3)
competitive reduction. A niche refers to the habitat and position an organism fills in its
environment (Grinnell 1917); there are more modern, slightly different interpretations of
this word.  Elton (1927) stated that a species has a genetically controlled fundamental
niche. However, due to competition, it generally only occupies a subset of this, which is

referred to as its realized niche (Miller 1964).
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Competition is defined as a negative interaction between individuals for limited
resources (Kimmins 2004). In ecology, competition is often further defined as intra- and
interspecific competition occurring between individuals or another species, respectively.
Competitive exclusion, or the idea that no two species occupying the same niche can
coexist indefinitely, represents the ultimate outcome of competition (Grime 1973) but is
rarely found in nature. Unfortunately, after this point, the nomenclature of competition
becomes less clear. In the following paragraphs, I will attempt to explain predominant
concepts that apply to my study.

Resource preemption and resource depletion are two concepts that have been
used to describe the mechanisms of intraspecific competition within pure even-aged
stands (e.g. Newton and Jolliffe 1998). Resource preemption is characterized by larger-
sized competitors acquiring a relatively greater proportion of limited resources than
smaller-sized competitors (Weiner 1990) and is usually invoked to describe competition
for aboveground resources. When thinking in terms of how competition is distributed
among trees in a stand, preemption processes are described as being asymmetrical in
their effect on tree development. To illustrate, dominant trees in the canopy receive full
sunlight and owing to their position, shade out sub-canopy trees, so that the latter receive
little to no light. Smaller trees do affect larger individuals by shading out lower
branches but are not competing to the same extent. Asymmetrical competition has also
been used to describe the temporal advantages of species establishment in a stand
(Freckleton and Watkinson 2001). Individuals that occupy a stand first become
dominant in the canopy and obtain the majority of resources. Individuals that emerge

later occupy the subcanopy and have little effect on the pre-existing trees.
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Conversely, resource depletion refers to the idea that limited resources are
utilized by competitors in direct proportion to their relative sizes (Weiner 1990) and is
usually invoked to describe competition for belowground resources (Newton and Jolliffe
1998). In this case, competition is thought to be distributed among trees symmetrically
(Forrester et al. 2006). This is because all plants regardless of size are able to acquire
equal resources per unit root surface area (Weiner 1985, Weiner and Thomas 1986).
However, competition for belowground resources can become asymmetrical if variations
in root structure, growth rates, or mychorrizal associations increase the competitive
ability of one species over the other (Forrester et al. 2006).

Concurrently, resource depletion and preemption affects relative growth rates
and the resultant size hierarchy within dense stands (Weiner 1990). It is useful to
introduce the terms one- and two-sided competition as they are often used to describe
the outcome of resource preemption and resource depletion, respectively. In mixed
stands, the intensity of one-sided competition depends on species’ differences,
particularly that of shade tolerance and growth rates. The intensity of two-sided
competition depends not only on the component species’ ability to exploit and utilize
belowground resources but also on how they respond to resource deficiencies and
excesses (Minore 1979; Bravo et al. 2001). While the differences in growth rates
between species are exaggerated by one-sided competition for light they are diminished
by two-sided competition for nutrients, thus closing the gap in tree size (Weiner 1990;
Bravo et. al. 2001).

Newton and Joliffe (1998) noted that competition by larger sized individuals led
to decreases in specific volume increment, relative growth rates, and relative production

rates in smaller individuals. They reasoned that the amount of photosynthate available
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to sub-canopy trees for growth and maintenance was reduced, most likely due to
changes in carbon allocation patterns and/or lower photosynthetic rates. Stands at the
establishment phase or those of relatively low stand density did not exhibit this result
(Newton and Jolliffe 1998).

Interactions between individual trees are not always competitive in nature, and
there are a variety of ways that the negative effects of competition on growth can be
reduced. It is possible for two (or more) species to not only coexist but attain greater
productivity than their pure counterparts through competitive reduction (Kelty 1992;
Callaway 1995; Man and Lieffers 1999). This concept has also been referred to as the
“competitive production principle” (Vandermeer 1989) in reference to the advantage of
mixed-species stands over single-species stands as a result of reduced competition.
Where competitive exclusion is the end result of complete competition, competitive
production recognizes that two species with similar yet distinct requirements may
coexist as they experience only weak or reduced competition (Vandermeer 1989).
Explanatory mechanisms for the reduction of competition experienced by plants in
mixed stands may include differential resource allocation or differentiation in resource
use (Vandermeer 1989). These mechanisms are discussed in more detail below in terms
of physiological, physical, and temporal separation. Competitive reduction is not to be
confused with facilitation, commensalism, or mutualism. Competition and beneficent
interactions, including facilitation, can occur simultaneously with potential outcomes
varying from exclusion to coexistence involving little competition, loss of one
competitor, or competitive reduction (Hunter and Aarssen 1988). Facilitation refers to
positive interactions between plants leading to an increase in productivity in mixed

stands of trees. Facilitative effects are more commonly seen in mixed stands composed
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of a deciduous and coniferous component, with the former often being a nitrogen fixing
species. This type of interaction would be described as commensalism by community
ecologists since one organism indirectly benefits the other with no reciprocation
(Kimmins 2004). For a complete review on facilitative interactions see Callaway
(1995). Mutualism describes an interaction between two organisms where both benefit
from the existence of the other (Kimmins 2004). The ideas behind commensalism and
mutualism imply no negative effect to either organism. Competitive reduction does not
negate negative effects; rather it describes a reduction in “harm” to either or both
species.

Although competition for light, water, and nutrients occur simultaneously,
investigations into the interactions in mixed-species stands tend to divide the areas of
study into aboveground competition for light and belowground competition for soil
resources (Kelty 1992).

Reduction of Crown Competition

The quest for light highly influences competitive interactions in plant
communities (Canham 1990). Aboveground space in forests is fixed, which limits the
space leaves can occupy to intercept light (Collins 2000). However, competition can be
reduced in the canopy if individual trees of different species are able to separate
themselves so that they utilize space more efficiently, filling unique niches. This
separation can occur physiologically, physically, or temporally (Callaway 1995).

Physiological Separation

Shade tolerance refers to the relative ability of a plant to survive and grow under low
light levels (Daniel et al. 1979) and plays an important role in forest structure

(Valladares and Niinemets 2008). A gradient of shade tolerance exists from very
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tolerant to shade to shade-intolerant, in which case a plant cannot survive shaded
conditions. Shade tolerance is an important factor when predicting how two species
may interact and the resultant stand dynamics (Bugmann 1996). Species with varying
shade tolerances differ in a large amount of physiological traits (Valladares and
Niinemets 2008), such as leaf area index (LAI), photosynthetic capacity, and light
compensation point.

Complementary differences in shade tolerance can lead to reduced competition in a
mixed-species stand. Shade intolerant tree species generally have a more open tree
crown and consequently, lower LAI and higher photosynthetic capacity (Bassow and
Bazzaz 1997). Light saturated photosynthetic rates differ between shade-intolerant and
shade-tolerant trees, with the former reaching the light compensation point at higher
light levels than the latter (Givnish 1988). Light compensation point refers to the level
of illumination at which the rate of photosynthesis equals the respiration rate (Lewis et
al. 2000). Shade-tolerant species have lower photosynthetic rates than shade-intolerant
species and become light-saturated at lower light levels. Therefore, a combination of
shade-intolerant overstory and shade-tolerant understory would reduce competition for
light as the two species occupy different niches by acquiring light at different intensities
(Kelty 1992).

Physical Separation

Physiological adaptations associated with shade tolerance are complemented by
physical adaptations of the crown (Collins 2000), which reflect differences in carbon
allocation patterns. At the tree level, carbon is allocated to those areas within the tree
that are most likely to increase the plant’s survival. Large amounts of carbon are

required to repair and maintain the functions of living cells located in existing non-
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photosynthetic tissues, as well as for the construction of new leaves, roots, and
reproductive structures (Barnes ez al. 1998). Meeting the carbohydrate demand of tree
crowns and roots is the first priority of a plant. The storage of carbohydrates in leaves,
stem, and coarse roots has a lower priority than the production of new leaves and roots
to acquire resources. Allocation of carbohydrates to stem growth follows that of storage,
while the production of chemicals to defend against insects and pathogens is of lowest
priority (Waring and Schlesinger 1985).

Allocation patterns are affected by not only the environmental conditions and the age
of the stand but also by the shade tolerance of the species. Shade-intolerant species will
allocate their resources to stem, branches, and foliage differently than shade-tolerant
species (Kelty 1992; Man and Lieffers 1999). Intolerant species tend to allocate more
resources to height growth than lateral growth, and as a result attain faster juvenile
height growth rates than do shade-tolerant species (Kelty 1992). Shade-tolerant species,
on the other hand, allocate more resources to lateral growth, in order to aid interception
of light and generally have slower juvenile height growth rates (Kelty 1992). Stratified
canopies thus tend to develop naturally in mixed stands composed of species with
differing shade tolerances (Amoroso and Turnblom 2006). Trees of differing shade
tolerance separate their crowns physically and acquire light at different locations in the
canopy thereby reducing niche overlap.

Leaf area and orientation of foliage are two other physical adaptations that
complement spatial separation of crowns. Shade-intolerant species generally have low
leaf area and orient their leaves on an angle allowing more light to penetrate the canopy
to their lower branches (Westoby et al. 2002). Alternatively, shade-tolerant species

support greater leaf areas and position their leaves horizontally, thereby capturing more
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available light (Assmann 1970; Kelty 1992). These physical adaptations enable shade
tolerant species to capture diffuse light below the canopy of shade-intolerant species
(Collins 2000).

Temporal Separation

Interspecific competition can also be reduced through temporal separation. This
occurs seasonally, through phenological separation, or over longer time scales, through
successional separation (Man and Lieffers 1999). Phenological separation complements
the effects of stratification especially if the stand has a deciduous species in the
overstory and a conifer understory. Constabel and Lieffers (1996) found light
transmission at three heights, ground, 0.5 m, and 1.3 m, in mixed aspen-white spruce
stands was higher in the spring and fall when the aspen are leafless. In these stands, the
spruce benefit because they can photosynthesize both earlier and later in the growing
season when the poplar are without foliage (Constabel and Lieffers 1996). This may aid
in reducing competition since the understory conifer can exploit a longer growing season
(Man and Lieffers 1999). Productivity values for black spruce in the western boreal
forest of Quebec are approximately 1 m>. ha™. year, which is very low (Légaré€ et al.
2005). The tendency of black spruce stands to accumulate organic matter, trapping
nutrients, has been used to explain their poor productivity. An aspen overstory is
thought to enhance productivity in aspen-spruce mixtures, because the chemical
properties of the aspen litter tend to increase nutrient cycling by facilitating
decomposition of spruce organic matter (Flanagan and Van Cleve 1983). Aspen-spruce
stands in the western boreal forest of Quebec have been found to have productivity

values of 2-3 m’. ha'. year’ (Légaré et al. 2005). This difference in productivity has
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been hypothesized to be attributed to a combination of reduced competition through
phenological separation and increased nutrient cycling.

Early successional species tend to be fast-growing and short-lived, while mid-to-late
successional species tend to be slower-growing and attain increased longevity. Seral
stage 1s highly related to shade tolerance (Bailey and Poulton 1968). Shade-intolerant
early successional species will occupy a site first and then be slowly replaced by more
tolerant species. It is expected that a stand occupied by a shade-intolerant species in
early succession and then replaced by a shade-tolerant species in later stages should have
higher overall volume production than pure stands of either species (Man and Lieffers
1999). Evidence from a case study of jack pine-black spruce mixedwoods by Hole
(1993) near Thunder Bay, Ontario, showed that increased merchantable volume
production is possible under a two-pass silvicultural system. This type of harvesting
system takes advantage of the differing growth rates of species in a mixed stand.

Reduction of Root Competition

Examination of belowground competition and root structure and functions has
received a lot less attention than competition for light. Of the limited literature dealing
with belowground interactions in mixed-species stands, the majority pertains to mixtures
of deciduous and coniferous species. Very few have examined belowground
competition in conifer mixedwoods (e.g. Eis 1974; Wang ef al. 2002). As with
aboveground resources, soil resources can be partitioned through physiological,
physical, and temporal separation. The degree to which belowground resources are
limited depends upon the site, season, and species present. Different tree species have
different root structures and root at different depths in the soil profile (Spurr and Barnes

1980).
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Physiological Separation

Different trees species may require different nutrients in varying amounts due to
physiological adaptations (Kelty 1992). For example, nitrogen is often considered to be
the most limited nutrient in the boreal forest and is available in both ammonium and
nitrate forms (Waring and Schlesinger 1985). Competition can be reduced in mixed
stands if the component species prefer to uptake nitrogen in its different forms and
proportions. Collins (2000) studied positive species interactions in western hemlock
(Tsuga heterophylla (Raf.) Sarg.) and western redcedar (Thuja plicata Donn ex D. Don)
stands. He inferred competition for nitrogen may be reduced in mixed stands because
redcedar preferentially uptakes nitrate, while hemlock prefers ammonium. Both jack
pine and black spruce prefer inorganic nitrogen in its ammonium form (Swan 1960), so
it is unlikely that these species physiologically separate themselves for belowground
resources in this manner.

Physical Separation

Soil resources may be partitioned between competing species if the roots of those
species occupy different areas of the soil profile. Bolte and Villanueva (2006) reported
nearly complete separation of beech (lower layers) and spruce (upper layers) roots in
mixed stands. Wang et al. (2002) examined mixed stands of western hemlock and
western redcedar, and found contrasting results; while the density of fine roots was
higher in the mixed stands, roots did not stratify. However, the authors acknowledged
that these species are known to occupy similar areas of the soil profile and penetrate to

similar depths.
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Temporal Separation

Species that demonstrated temporal separation reduce above- and belowground
competition simultaneously (Collins 2000). Seasonally, conifers take advantage of the
time period when deciduous species are not photosynthesizing to uptake additional water
and soil nutrients. Successionally, early seral species have greater access to
belowground resources in early stand establishment as they grow faster. As trees in
stratified stands age, the overstory species begin to die, allowing later successional
species in the understory greater access to soil resources. Since both jack pine and black
spruce retain their foliage throughout the year, phenological separation of belowground

resources is unlikely.

SPECIES INTERACTIONS

Negative and positive interactions occur simultaneously between plant species
occurring in mixtures (Collins 2000). The net outcome of one species’ on another is the
result of multiple interactions (Weldon and Slauson 1986; Callaway 1995) and is further
~ affected by the developmental stage of the involved species, severity of the environment,
and the degree to which resources are limited (Callaway 1995). It is therefore, necessary
to study the competitive interactions of each mixture relative to a particular site type and
life stage.

Interactions in mixed-species stands occur as the component species compete to
capture limited light, water, and nutrients (Jose et al. 2006). The degree to which two
species will interact depends on the overlap of their requirements for growth and
survival. The amount of differentiation between species required to utilize resources

more completely when occupying the same site is referred to as “limiting similarity”
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(Mackenzie et al. 1998). Therefore, the more similar the species in their requirements,
the more interspecific competition in a mixed stand will resemble intraspecific
competition in a pure stand (Kelty 1992; Jose ez al. 2006).
Pure Stands

Pure even-aged stands occur after a large disturbance such as fire or harvesting
has cleared the land (Smith ez al. 1997). When timber production is the primary
management objective, there is a tendency to favour pure stands of the most productive
species since it is both cheaper and easier to manage from a silvicultural point of view
(Amoroso and Turnblom 2006). Pure stands experience intraspecific competition which
can be more intense than interspecific competition experienced in mixed stands
(Mackenzie et al. 1998). Crown lift occurs earlier in dense stands as a result of
increasing tree height and competition (Makala and Vanninen 1998). However, mixed
stands may also facilitate crown lift early in stand development if the understory species
effectively shades out the lower bole of the dominant tree species. This could have a
positive effect on wood quality in forests managed for lumber by ensuring longer boles
with smaller or fewer knots and consequently, higher quality wood.
Mixed Stands

Mixed stands are common in nature especially where soil and climate do not
restrict growth (Smith et al. 1997). Mixed stands are favoured by forest managers when
objectives for management include wildlife conservation, biodiversity, aesthetics,
resistance to wind damage, and protection from insect and disease outbreaks (Kelty
1992). As discussed previously, photosynthetic efficiency of foliage, height growth
patterns, form, phenology, and rooting patterns have been suggested as potential reasons

for a mixed-species stand having overall greater productivity than a pure stand (Kelty
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1992). The most productive stands are stratified mixtures composed of faster-growing
shade-intolerant species growing above slower-starting shade-tolerant species (Smith
1986; Smith et al. 1997). As previously stated, due to differences in shade tolerances
among the species these stand types may experience less intense in.ter- than intraspecific
light competition (Amoroso and Turnblom 2006). Mixed species stands are most
productive when established at high densities (Amoroso and Turnblom 2006) on sites of
medium fertility (Chen et al. 2003; Pukkala et al. 1994) where neither of the two species
is clearly superior to the other.

Amoroso and Turnblom (2006) studied pure and 50/50 mixtures of Douglas-fir
(Pseudotsuga menziesii (Mirb.) Franco) and western hemlock plantations at different
densities to compare total yield between mixed-species stands as opposed to
monocultures. It was found that shade-intolerant Douglas-fir trees experienced increases
in diameter, height, and individual tree volume in the mixture compared to in the pure
stand. The opposite effect was found for shade-tolerant western hemlock. Amoroso and
Turnblom (2006) determined that mixed stands were more productive than pure stands
when densities were high. Low density in mixtures does not allow these two species to
express differences in their resource-use because the shade-tolerant hemlock (with a
slow juvenile growth rate) was able to escape early suppression.

Chen et al. (2003) reported on the productivity differences among even-aged
stands of unmanaged single- and mixed-species coniferous stands composed of trees
with similar and differing shade tolerances; 1) western hemlock — red cedar, 2)
lodgepole pine — western larch (Larix occidentalis Nutt.), 3) and lodgepole pine - black
spruce. They found that compared with single-species stands, the productivity of a

mixed-species stands can be: 1) lower (e. g. a mixture composed of two shade-intolerant
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species with similar growth patterns), 2) intermediate, (e.g. a mixture of two shade-
tolerant species with different growth dynamics), or 3) higher (e.g. a stratified mixture of
shade-intolerant and shade-tolerant species with differing growth patterns).

The lodgepole pine — black spruce mixture found in Western Canada is
analogous to jack pine — black spruce mixtures native to the boreal forests of Ontario. It
is then reasonable to expect productivity gains in jack pine — black spruce mixtures.

Pukkala et al. (1994) used both a single-tree growth model and artificial
deterministic simulation models to compare yields of different mixtures of Scots pine
and Norway spruce (Picea abies (L.) H. Karst) under different thinning regimes. Their
findings suggest that volume increment can be 10 to 15% higher in a conifer mixture
than a pure pine or spruce stand. Their models also indicated that a spruce competitor
decreases the growth rate of a neighbouring spruce more than a pine competitor.
Diameter growth of a pine growing in a mixedwood was affected slightly more by
another pine than by a spruce of the same size (Pukkala et al. 1994).

POTENTIAL FOR REDUCED COMPETITION IN BLACK SPRUCE-JACK PINE
MIXED STANDS

Jack pine and black spruce mixtures have the potential of reducing both one- and
two-sided competition through crown- and root stratification together with other silvical,
morphological, and physiological differences. Jack pine has numerous characteristics
that indicate it is intolerant of shade, including a rapid juvenile growth rate. Black
spruce is more shade-tolerant and tends to grow more slowly during juvenile stages of
stand development. In a spruce-pine mixture, the jack pine typically reaches the
canopy first allowing it to allocate resources to diameter growth sooner than black

spruce.
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Compared to black spruce, jack pine has an open crown, lower LAI, and higher
photosynthetic capacity (Korner 2004). Typical LAI values for jack pine range from 1
to 4 m? (surface area to unit ground area) and 1 to 6 m*m™ for black spruce (Chen et al.
1997). Gower et al. (1997) reported values of 1.8 m*m™ for jack pine and 5.6 m’ m™ for
black spruce (in mature jack pine stands), where LAl is defined as one half of the total
leaf surface area. Photosynthetic capacity refers to the amount of light required to reach
saturation point (Vallardes and Niinemets 2008). Jack pine has a photosynthetic
capacity of approximately. 8 wmol m™s™'; double that of black spruce at 4 umol ms’!
(Korner 2004). Even though both jack pine and black spruce require light to perform
their physiological processes, they require light in different amounts. Jack pine’s lower
leaf area allows sufficient light to penetrate the canopy and be captured by the spruce
below. Therefore, a stratified mixture of these two species may experience less intense
competition by intercepting light at different intensities and locations within the canopy.

Jack pine seedlings grow faster than other boreal conifers and develop relatively
deep roots (Rudolph and Laidly 1990). Roots may reach depths of 2.7 m on deep sites,
although the bulk of the rooting system consists of laterals restricted to the upper 46 cm
of the soil profile (Rudolph and Laidly 1990). Intense competition for soil moisture and
nutrients will cause the lateral roots of jack pine to grow downward (Karsh 1986).
Compared to jack pine, black spruce has a shallow root system (Fowells 1965). Its roots
may reach 60 cm in depth, but most spread laterally at the moss humus interface with the
bulk of the roots in the upper 20 cm of the organic horizons (Viereck and Johnston
1990). Two-sided competition may therefore be reduced in black spruce-jack pine

mixtures.
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COMPETITION INDICES TO DESCRIBE COMPETITIVE INTERACTIONS

Tree growth is influenced by many factors including genetics, tree age, size, and
competition with neighbours (Tomé and Burkhart 1989). “The interpretation and
outcome of competition can critically depend on how the competition is measured”
(Freckleton and Watkinson 1999). This statement is applicable to the design of an
experiment, the selection of the response variable and the quantification of competitive
interactions (Weigelt and Jolliffe 2003). Competition has been studied extensively and
is often expressed mathematically as a competition index. Competition indices quantify
competition by amalgamating several primary response variables (Weigelt and Jolliffe
2003).

There are many advantages in using competition indices to quantify competition.
They can be used to express and quantify competition better than a single primary
measure (Hunt 1982), because several different measures can be combined to qualify
composite ideas (Hunt 1982; Weigelt and Jolliffe 2003). Competition indices can also
aid in interpreting complex data and facilitate the presentation of results by condensing
experimental data (Weigelt and Jolliffe 2003). However, competition indices must be
applied with caution as often the inferences drawn from their use are limited by
experimental design (and vice versa) (Vanclay 2006).

Competition indices have many uses. For example, they can be used to indicate
how strongly individuals compete (or the intensity of competition) for limited resources.
They can also be employed to evaluate how competition by companions influences
target plants. Lastly, competition indices can aid in predicting the outcome of

competition in directing long term stand composition (Weigelt and Jolliffe 2003).
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A variety of competition indices are available to quantify local competition of
forest trees (Table 2). Competition indices are typically categorized into distance-
independent and distance-dependent indices. Distance-independent indices are simple
measures of stand level variables (Shi and Zhang 2003); examples include relative yield,
stand density, and basal area. While the distance-dependent indices described in Table
2, could be used as independent variables to predict individual tree growth, the distance-
independent indices described have been used to describe affects on yield, rather than
growth (with the exception of Lorimer’s (1983) index. Distance-dependent refers to
those indices which consider the distance between the subject tree and its neighbours
and tend to perform better than distance-independent indices (Mailly et al. 2003).
Distance-independent indices may be adequate in estimating competitive effects in
spatially regular pure even-aged stands (Lorimer1983). In more complex stands,
distance-dependent indices take into account spatially explicit variation in the strength of
competition among trees (Wagner and Radosevich 1998). Well-known density-
dependent indices were developed by Hegyi (1974), Schiitz (1989), and Weiner (1984).
The majority of mixedwood studies report relative yield, a distance-independent index,

while few report distance-dependent indices measures (Forrester ef al. 2006).
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Table 2. Examples of distance-independent and distance-dependent competition indices

Name Definition Reference

Distance-Independent Indices

Absolute Competition Index Cl = Yiso - Yomix Wilson and Keddy
(1986)
Relative Yield Total RYT =RY; + RY; Harper (1977)

2P,

C18 C18 =L Lorimer (1983)

Distance-Dependent Indices

Hegyi’s Ind DCI = Hegyi (1974
egyi’s Index Z} D, DIST egyi ( )

- H,-H, i Schiitz (1989)

Schiitz’s Index Schutz = ; k CR,+CR, J{O'S " CR i+ CR,.]
W = Z": _A_, Weiner (1984)

Weiner’s Index !
Neighbourhood Competition NCI = Z Z (DBH y) Canham et al. (2004)
Index ~“5 " (DIST, )/’

Yiso, performance of target plant grown in isolation; Ymix, performance of target plant grown with neighbours;, RY,
relative yield of species; R, search radius (=3.5 x mean crown radius of canopy trees, m; D;, diameter at breast height
of subject tree i; D;, diameter at breast height of competitor tree j; DISTU, distance between subject tree i and
competitor j; H;, height of subject tree i; H;, height of competitor tree j; CR;, crown radius of subject tree i; CR;, crown
radius of competitor tree j; Ej, distance (m) between crown extremities of subject tree { and competitor tree j; K,

constant in Schiitz’s index, 4;, cross-sectional area of the ith neighbour; d,, distance of the ith neighbour; /?,, , species

specific competition index that ranges from 0 to 1 allowing for differences among species in their competitive effect;
DBHj, dbh of subject tree i and competitor tree j; o and B, are estimated by the analyses and determine the shade of
the effect on dbh and the distance to the neighbour respectively.
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Hegyi’s (1974) index is computed as the sum of the distance-adjusted relative
size ([dbhy/dbhj]/distance;) of potential competitors i within a defined search radius of
the subject tree j. Hegyi (1974) used a 3 m search radius, but more recent researchers
have used larger search radii (e.g. Clinton et al. 1997; Piutti and Cescatti 1997; Canham
et al. 2004; Bristow et al. 2006). The size of the search radius is generally related to the
size of the trees being investigated, with stands composed of larger individuals requiring
a larger search radius.

Schiitz’s (1989) competition index attempts to describe one-sided and two-sided
competition for resources by defining a zone of influence around each tree. This index
differs from Hegyi’s because it separates horizontal from vertical competition (Kelty and
Cameron 1995). The horizontal component is described by measuring the proximity of
crown radii, while the vertical component is evaluated with difference in height (Ung ez
al. 1997).

Mailly et al. (2003) compared the ability of a variety of distance-independent and
distance-dependent competition indices to predict tree growth increment in old, uneven-
aged stands of black spruce. They found that Hegyi’s index was superior to Schiitz’s
index based on correlation with basal area increment and reduction of mean square error
(MSE). The correlation of Schiitz’s index to basal area increment was similar to using
only neighbourhood density, a distance independent competition index.

Amoroso and Turnblom (2006) used Relative Yield (RY) and Relative Yield
Total (RYT) as a distance-independent index of competition to characterize competitive
behaviour of Douglas-fir and western hemlock mixtures. The theory behind this index is
that if both species use resources in identical ways, the expected RY of each species

would be equivalent to its proportional contribution to the mixture, and RYT would be



28

expected to equal 1. An RYT >1 would indicate either niche separation or the existence
of some beneficial relationship between species. An RYT<1 indicates an antagonistic or
competitive relationship between species in a mixture (Amoroso and Turnblom 2006).
Canham et al. (2004) developed a species-specific index called the
“neighbourhood competition index” (NCI) in a study of stands composed primarily of
western hemlock and western red cedar. This index is produced using optimization
techniques that solve for maximum likelihood estimation (MLE) parameters through an
iterative process to determine the values that best fit the model and maximize the
likelihood of a given set of data. These values of model parameters that best fit the data,
are those that maximize the r* of the relationship between observed and predicted radial
growth. The parameters used in NCI (as described in Table 2) are defined in Table 3.

Table 3. Maximum likelihood estimation parameters of Canham et al. (2004) model.

Parameter Definition

MaxRG The maximum PotRG at the peak of the lognormal shape (mm/year)

Xo (DBH) Dbh of target tree at which MaxRG occurs

Xb Determines breadth of function for Equation 1

C Measures the sensitivity of the subject tree to crowding; at C equals 0,
the subject tree is insensitive to crowding

s Measures the sensitivity of the subject tree to shading; at S equals 0,
the subject tree is insensitive to shading

R Search radius for the inclusion of a competitor tree

o Relates neighbour dbh to its competitive effect

B Controls the decline in neighbour effect with distance from the target tree

A Species-specific competition index; varies between 0 and 1
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To maximize the goodness of fit of %, potential radial growth (PotRG) is
estimated using measures of dbh and maximum radial growth (MaxRG) and other

parameters estimated by the analysis, using Equation 1.

2
-1(1 H
po =g (MCHLET | a
b

A lognormal function is used to describe the shape of the effect of PotRG as it
varies with diameter. MaxRG is the maximum PotRG at the peak of the lognormal
shape. Potential radial growth, crowding, and shading are combined to calculate the
expected radial growth of the subject tree, using Equation 2.

Expected RG (mm/yr) = PotRG (mm/yr) — (C x NCI) ~ (S x Shading) Eq. [2]

The species-specific competition index (1) indicates the variation in the effects of
intra- versus interspecific competition. Stadt et al. (2007) evaluated several competition
and light estimation indices for predicting growth in mature boreal mixed forests
composed of trembling aspen, white birch, balsam poplar, lodgepole pine and white
spruce and found Canham’s index to be superior for all species except aspen. This
improvement in predicting diameter growth was attributed to the maximum likelihood

estimation (optimization) techniques used to calculate Canham’s index.

MANAGING BLACK SPRUCE- JACK PINE MIXEDWOODS

The boreal forest experiences frequent natural disturbances including wildfires
(Rowe 1961) and disease and insect outbreaks (Baskerville 1975). Entomological and
pathological disturbances aid in maintaining a heterogeneous forest structure (Antos and
Parish 2002), especially in areas of the boreal with longer fire cycles (Bergeron and

Dansereau 1993; Kneeshaw and Bergeron 1999; Harper et al. 2002).
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The major insect defoliators affecting pole-sized jack pine are the pine tussock
moth (Parorgyia plagiata Walker) and the jack pine budworm (Choristoneura pinus
Freeman) (Rudolph and Laidly 1990). Heavy defoliation over an extended period of
time can cause losses in volume growth and mortality (MacLean and McKinnon 1997).
Pole-sized jack pine are susceptible to several diseases including needlecast
[Davisomycella ampla(J.J. Davis) Darker], diplodia blight, and a variety of rust fungi
including, sweet fern blister rust (Cronartium comptoniae Arthur) and fusiform rust
(Cronartium quercuum £. sp. fusiforme) (Rudolph and Laidly 1990).

Generally, insect and disease outbreaks affect only the host trees (Miller 1975),
creating gaps within the residual canopy (D’ Aoust et al. 2004). Canopy gaps created
from insect and disease disturbances are essential for the persistence of shade-intolerant
trees in mixed-species stands, and release suppressed shade-tolerant trees (Morin 1994).

Kemball et al. (2005) demonstrated that single-pass logging resulted in less
species diversity and noticeably higher shrub coverage than natural fire and spruce
budworm disturbances. Over time, high shrub cover, facilitated by logging, may
negatively impact conifer recruitment and lower forest productivity (Kemball et al.
2005). They suggest that a viable alternative is harvesting that emulates the stand
structure of a severe spruce budworm attack, such as a two-pass harvesting system with
sufficient canopy retention to delay shrub development. In a spruce-pine conifer
mixedwood this could involve removing the merchantable overstory jack pine,
mimicking a jack pine budworm disturbance, while at the same time enhancing growth

of black spruce.
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Spatial patterns and proportion of each species can play an important role in
species interactions and stand development (Kelty 2006). Since root and canopy
stratification should contribute to complementarity in jack pine-black spruce
mixedwoods, the two species could be intermixed at planting. This would result in a
fine-grained spatial pattern (Figure 1a). If species were separated at planting into blocks
or multiple rows, interactions that facilitate stable coexistence would be reduced.
However, when two species are combined in a fine-grained mixture in an equal
proportion as in Figure 1a, the upper canopy species may suppress the subcanopy
species to the point where stand productivity will equal that of a pure stand of the
dominant species. If this is the case, it is recommended that the proportion of the taller
species be reduced in favour of the lower canopy species, as seen in Figure 1b, to attain
higher stand productivity (Kelty 2006).

a) b)

Figure 1. Diagrams of jack pine-black spruce plantation designs; (a) fine-grained
mixture with a stratified canopy with an equal proportion of each species; (b)
fine grained mixture as well, but with unequal species proportions.

Competition between species may be reduced for both above- and belowground,
resource when species exploit physiological, physical, and temporal differences.

Ecological theories of niche, competitive exclusion, competition production coupled

with silvical differences suggest that competition may be reduced in jack pine — black
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spruce mixed stands through: 1) vertical canopy separation and 2) vertical root
separation. Differences are maximized in stands of medium fertility, established at high

density, and spatially arranged in a fine-grained mixture in an equal proportion.

MATERIALS AND METHODS

To reiterate, the objectives of this experimental study were: 1) to quantify
competition using three distance-dependent competition indices and to determine which
index best quantifies competition in a mixed stand, and 2) to determine if root
distribution of black spruce and jack pine are affected by a mixture. To reduce
confusion, the nomenclature used to describe the methods and discuss the results of
above- and belowground competition is displayed in Table 4.

EXPERIMENTAL SITES

This study was conducted at Greta Lake (Gr) and Gamsby Lake (Gb), situated
near Geraldton (49° 46 N 86° 55 W; 348.7 m elevation) approximately 300 km northeast
of Thunder Bay in Northwestern Ontario. This location has a mean annual temperature
of 0.3°C and a mean annual precipitation of approximately 760 mm (Environment
Canada 2004).

Locating study stands composed of pure black spruce, pure jack pine, and
spruce-pine mixtures on similar soil and site conditions is difficult. Gamsby and Greta
were chosen as study areas because: 1) each site had an “all summer planting” of black
spruce associated with it, and 2) both areas were harvested at approximately the same
time and using similar techniques. Although silvicultural records were unavailable, it is
likely that the harvested blocks had been scarified and aerially seeded. In the “all

summer plantings”, jack pine volunteers were removed to ensure that the stand remained
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pure black spruce. Because of this history, I was able to select stands composed of pure

black spruce, pure jack pine, and spruce-pine mixture based on similar soil, vegetation

and site conditions among each site, according to the Field Guide to Forest Ecosystem

Classification for Northwestern Ontario (Sims et al. 1989). Site description included

Table 4. Nomenclature used to describe the results and discuss the results of this study

Description Nomenclature
Black spruce (as a species) Sb
Jack pine (as a species) Pj
Greta site Gr
Gamsby site Gb

GrSb

GrPj

GrtMWO01

GrMW02

GbSb

GbPj

GbMW

Pure black spruce

Pure jack pine

Mixedwood

Mixedwood black spruce
Mixedwood jack pine

Black spruce root biomass

Jack pine root biomass
Percentage black spruce root biomass
Percentage jack pine root biomass
Diameter at breast height (1.3 m)

Stems per hectare

Pure spruce transect at Greta

Pure pine transect at Greta

First mixed spruce-pine transect at Greta
Second mixed spruce-pine transect at Greta
Pure spruce transect at Gamsby

Pure pine transect at Gamsby

Mixed spruce-pine transect at Gamsby
Sby,

Pj,

MW

Sbm

Pjm

Sb,

Pj;

% Sb;

% Pj;

dbh

sph
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elevation, slope, microtopography, and surface stoniness. Elevation was measured using
a Garmin 78 global positioning system unit, and slope was measured with clinometer.
The vegetation description included identification and estimation of percent cover of all
plant species present in the shrub, herb, and moss layers within a randomly located 1 x 1
m sample plot.

A soil pit was excavated in each study area and an auger sample was taken at
stand type. Soil texture, structure, coarse-fragment content, thickness and sequence of
soil horizons, and maximum rooting depth were described following the Field Guide to
Forest Ecosystem Classification for Northwestern Ontario (Sims ez al. 1989). The field
soil description was used to determine soil drainage class and moisture regime.

Site characteristics for the Greta and Gamsby sites are summarized in Table 5.
The Gb and Gr sites had slopes ranging from 0-18 percent. Gr had a slightly finer
textured soil (S3, Fresh-Coarse Loamy; Sims ez al. 1989)), was well drained and
contained approximately 55% coarse fragments by area in the lower two soil layers. Gb
had very little coarse fragments with the exception of gravel in the parent material. This
soil is described as a S1, Dry-Coarse Sand (Sims ez al. 1989) and experiences more rapid
drainage due to its coarser makeup. While the Field Guide to Forest Ecosystem
Classification for Northwestern Ontario identifies Greta as “Well Drained,” it is likely
that the drainage is actually faster due to the large amount of coarse fragments. The
Gamsby site had a greater maximum rooting depth, which is likely a reflection of coarse
fragment content. The dominant vegetation included Pleurozium schreberi, Vaccinium

angustifolium, Vaccinium myrtilloides, and Ledum groenlandicum (Table 5).
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Table 5. Study site characteristics.

Site Gamsby Greta

Elevation (m) 398 358

Slope gradient (%) 18 0

Surface stoniness (%) 0 0

Microtopography Level Level

Soil Coarse Fragments (%) 15 60

Rooting depth (cm) 65 55

Soil Type Dry coarse sand (S1)  Fresh coarse loamy (S3)
Drainage Class Rapid (2) Well (3)

Moisture Regime Moderately dry (0) Fresh (2)

EXPERIMENTAL DESIGN AND DATA COLLECTION

One central transect 20 m long was established within each stand type at each
site. Although direction of travel for each transect was randomly selected, the starting
point of each transect was intentionally situated to ensure enough area for transect set-
up. A single transect was placed in each of the stand types at each study area (GrSb,
GbSb, GrPj, GbPj, GrMWO01 and GbMW). A second transect was established in a
spruce-pine mixture at Gr to account for the greater variability noted in this stand
(GrMWO02). Species, diameter at breast height (dbh), crown radius and location of each
tree within 10 m of the center line of the transect and a 10 m radius semicircle at the
ends of each transect were recorded. The transect design is presented in Figure 2. All
trees within 5 m of the central transect with a dbh greater than 8 cm were cored, while
trees less than 8 cm dbh were cut down and a disk taken for analysis. Cores and disks

were used to determine age and radial growth rate (mm yr'') over the last 5 years using
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the Tree Ring Increment Measurer (TRIM) system.  Stands in this study were
approximately 25-years-of age at breast height (1.3m).

A subsample of twenty trees per species per transect, representing the range of
diameters, were measured for total hei ght and height-to-live crown. Additional trees
were measured in the mixed stands as there was more variability among diameters.
Using linear regression, height measurements were extrapolated to the remaining trees.
While height and diameter relationships are referred to as “curves” due to their non
linear shape, the shape of the curve is linear for boreal black spruce and jack pine with
breast height diameters of 25 cm or less (see Peng et al. 2001). Using a linear
relationship smaller diameters may be underestimated (~<30 cm), while larger diameters
may be over estimated (~>30 cm). The r? values for the linear relationship between
height and diameter show a good fit, especially for black spruce. The average r” values
associated with the height and diameter relationships were 0.84 and 0.78 for black
spruce in mixed- and pure stands, respectively. While, average r* values for the height
and diameter relationship for jack pine were 0.57 and 0.40 in mixed- and pure stands,

respectively.
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Figure 2. Examples of a) a pure spruce transect, b) a pure jack pine transect
and c) a mixedwood transect.
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A summary of stand characteristics is presented in Table 6. The density of stems
found at the sites and stand types ranged from 2479 - 4776 sph. The mixed sites at Greta
had the highest density with values of 4104 sph and 4776 sph, while the Gamsby mixed
site had a much lower density of 2479 sph. Density among pure stands ranged between
2479 and 3585 sph. Basal area per hectare was greatest in Pj, stands followed by MW
stands and Sb, stands, respectively.

Average Sb height and dbh was typically smaller than Pj, with average height
values of 4.86 m and 10.41 m and average dbh values of 5.7 cm and 10.1 c¢m, recorded
for Sb and Pj, respectively (Table 6). Overall, Sb individuals appear to be slightly larger
in Sb;, stands compared to MW stands, with an average increase in height and dbh of
0.265 m and 1.35 cm, respectively. Jack pine in the pure stand type were on average
1.65 m taller than Pjn,; however, average diameter between stand types was similar.
Black spruce in pure stand at Greta were 0.88 m taller and had dbh’s 1.5 cm larger;
however, the opposite is seen for Sby,, with Gamsby hosting the larger trees, with height
and dbh differences of 0.27 m and 1.35 cm, respectively. Differences in mean height
and dbh of Pj, are also evident between the Greta and Gamsby sites. Overall, the
Gamsby site had larger Pj individuals. On average, Pj, were 1.72 m taller at Gamsby,
with dbh’s averaging 1.4 cm larger, while differences between height and dbh of Pj, are
2.99 m and 3.5 cm. The Gamsby site had a sandier textured soil, which may explain
size differences between the two sites, as pine species are well-adapted to sandy soils.

In addition, the Gamsby site was less dense in terms of stems per hectare than Greta,
giving individual trees space to grow in size. Crown radii were similar among species,

site, and stand type.
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It should be noted that GrPj had a large number of Sb volunteers; however, Pj
accounts for 92% of the basal area. In addition, the species mixture of GbMW stand
type is not ideal as it was dominated by pine in terms of relative frequency by both sph
and basal area. However, in nature it is difficult to find an even mixture, especially if
site conditions favour one species over the other. The Sb trees in the GbMW stand were
older than the volunteer spruce found in the Pj, stands. A summary of stand
characteristics from the preliminary assessment of the suitability of the sites for this

study is presented in Appendix V
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COMPETITION INDICES

To quantify local competition at the individual tree level, three distance-
dependent competition indices were selected: Hegyi’s (1974), Schutz’s (1989) and
Canham et al.’s (2004). Equations are presented in Table 7. The search radius for the
inclusion of competitor trees was 5 m, therefore, only trees within 5 m of the central
transect were selected as subject trees. A 5 m radius was a practical choice given the
size of the transects and the size of the trees being investigated. This resulted in 643
subject trees (GrMWO01 = 107; GrMWO02 = 98; GrSb = 78; GrPj = 90; GbMW =92;
GbSb = 89; GbPj = 89).

Table 7. List of competition indices used in this study.

Name Definition Reference
i’ DCI = '
Hegyi’s Index ,Z: D, DIST Hegyi 1974
z H. —-H, E.
Schiitz’s Index Schutz =) | k—t—" 4| 0.5-—0 Schiitz 1989
=| CR,+CR CR; +CR,
(DBH ;)*
Canham’s Index NCI = Z Z Canham et al.

S (DIST)” 2004

D;, diameter at breast height of subject tree i; D, diameter at breast height of competitor tree J; DIST,J, distance
between subject tree { and competitor j; H;, height of subject tree i; Hj, height of competitor tree j; CR;, crown radius of
subject tree i; CR;, crown radius of competitor tree j; Ej;, distance (m) between crown extremities of subject tree i and

competitor tree j; K, constant in Schiitz’s index (0.65), /1 species specific competition index that ranges from 0 to 1

allowing for differences among species in their competitive effect; DBHj, dbh of subject tree { and competitor tree j; o
and B, are estimated by the analyses and determine the shape of the effect on dbh and the distance to the neighbour
respectively.

Hegyi’s and Schiitz’s indices were calculated using the equations given in Table
7. All trees within a 5 m radius, regardless of size were considered potential competitors
and were included in the calculations to determine Hegyi’s index. Alternatively,

Schiitz’s index only considers a tree a competitor if:
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E; < 0.5(CR; +Cr;) + k (H; — Hy)

Canham et al.’s (2004) neighbourhood competition index (NCI), which will be
referred to as only Canham’s index from this point forward, was calculated according to
the formula presented in Table 7. To calculate Canham’s index, the parameters o and
were determined using maximum likelihood estimation (MLE) and simulated annealing
because the summation terms in the equation make it impossible to estimate the
parameters using traditional software packages (Canham et al. 2004). This global
optimization technique allows a number of parameters in related equations to vary
simultaneously over numerous iterations. The analysis was done using .NET software
developed by Rob Kushneriuk at CNFER for use with the data I collected. The software
written using Delphi for Windows described by Canham et al. (2004) was provided to
me by Dr. Canham, and then modified as needed to complete the analysis. The overall
model seeks to maximize the goodness of fit between observed and predicted radial
growth, as measured by r*. Radial growth rate, distance to neighbours, dbh, site (i.e., Gr
and Gb), stand type, and species identifier data were included in the MLE model for
each subject tree. The model was calibrated prior to analysis to reflect the climatic
conditions of the study area (e.g. latitude and length of growing season) and the crown
geometry of spruce and pine.

In the MLE software I used, twelve parameters were unknown and allowed to
vary with each iteration. This means that the outcome varies slightly with each run.
Radial growth of each subject tree is predicted based on potential radial growth (PotRG),
crowding, and shading. Simulated annealing allows all parameters that contribute to
these component sub-models (PotRG, crowding, shading) to vary simultaneously

(Canham et al. 2004). The assumptions of this analysis are that potential radial growth
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varies with dbh and that the effects of crowding and shading will reduce growth in a tree
otherwise free from competition (Canham er al. 2004). While Canham ez al. (2004)
used a non-linear model to estimate PotRG, the code in the adapted model was changed
so that PotRG was predicted based on the relationship between diameter and radial
growth using simple linear regression. The MLE software was used to determine the
slope and intercept of the dbh vs. PotRG relationship. This is because Canham used a
larger range of stand ages, while trees from this study are relatively young and represent
a single age. Therefore, the data from this experiment was not broad enough to find the
peak of the lognormal (non linear) shape, which made using MaxRG inappropriate. The
MLE model was run ten times for each species using 32, 000 iterations. The output was
reviewed and the run that best maximized > was chosen for further analysis.

One of the main reasons I chose to use Canham’s model is because it includes a
species-specific competition index (A), to capture the effects of competition on a subject
tree by its neighbours. To analyze the effects of intra- versus intraspecific competition,
M is estimated by the analysis and varies between 0 and 1. The net competitive effect of
any individual neighbour is multiplied by A, to account for differences among
neighbouring species (Canham et al. 2006). To illustrate, a species that has a strong
competitive effect will have a A value closer to 1, a species with a moderate competitive
would have a A around 0.5, and a species with no competitive effect would have a A of 0.

Using simulated annealing, the parameter estimates differ slightly with each run.
Individual parameter estimates may vary wildly from run to run; however over several
runs, estimates of terms, such as Canham’s competition index (Table 7) and potential
radial growth tend to become consistent. All parameters, with the exception of search

radius, were free to vary in order to find the coefficients that best fit the model.






44

ROOT CORES

Root samples were taken from six of the seven transects: GbMW, GbSb, GbP;j,
GrMWO1, GrSb, and GrPj. A total of 60 subject trees were selected for root core
sampling: ten trees from each transect. All subject trees were positioned within 5 m of
the transect and represented a range of Hegyi’s competition index values (3.598 —
40.658 and 0.127 - 280.202 for spruce and pine, respectively). Hegyi’s index was
chosen because it is the easiest index to calculate and it was found to outperform
Schiitz’s index in a study comparing their ability to predict growth of black spruce
(Mailly et al. 2003). Root cores were taken using a modified motorized ice auger to a
depth of 45 cm below the organic mineral interface. In pure stands two cores were taken
for each intensively measured subject tree (Figure 3) and the soil bulked to make one
sample. In mixedwood stands four cores were taken (one representing a competitor of
each species) and bulked to make two samples (Figure 3). The rationale for using the
methodology presented in Figure 3 was to have a consistent sampling procedure for each
intensively measured tree. Because the spatial distribution varied, a core was taken
equidistant from the subject tree and the closest competitor. Considering that root
distribution can be highly variable (e.g. there would be more roots in areas with greater
nutrients) and to as a means to acquire a larger amount of root biomass to work with;
two cores were taken for each intensively measured tree. A meter on each side of the
centre point was chosen because it was far enough away to capture differences, but also
still within the zone of influence. Since this sampling design is not random, the
inferences from the analysis of the root data is confined to these particular study stands

(transects).
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Due to time constraints, a subsample of 40 cores was processed in the lab.
Subsample selection was based on maintaining the range of low and high Hegyi’s index
values, and within the mixedwood stands, a representation of species mixtures within
each subject tree neighbourhood. Core contents were separated at seven depths: organic

and 0-5, 5-10, 10-15, 15-20, 20-30, and 30-45 cm.

Mixedwood Stand Pure Stand

Figure 3. Diagram depicting the methodology used for selecting the position to collect
root cores. The subject and competitor trees are denoted by S and C,

respectively. Squares (gg) show location of root cores.

Each mineral root core sample was sieved with a 2 mm sieve; coarse fragments
were removed and weighed. To determine the actual amount of rooting medium within
the core sample, the volume of the coarse fragments was subtracted from the volume of
the soil of the corresponding core. To determine volume, the density of a subsample of
coarse fragments was determined using the specific gravity test. A container with water
was placed on a scale and the weight was recorded. A coarse fragment sample was
suspended by a piece of thread and completely submerged into the container of water.
The increased weight was recorded. Density was determined by dividing the weight of

the sample in the air to that of the weight of the displaced water. The average of the
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subsample was found to be 2.6 g/cm®. The volume of the coarse fragments was

determined using the following formula,
V= M/D

where V, M, and D refer to volume, mass, and density, respectively.

The samples were then passed through smaller sieves to separate roots from the
soil. Organic samples were difficult to sieve and were processed by laying the sample
out on a brightly coloured tray and picking out roots using tweezers.

Roots were sorted by diameter [small (< 2 mm), medium (2.1-9.9 mm), and large
(2 10 mm)] and by ‘species’ (Sb, Pj, herb/shrub, and unidentifiable). The sorted roots
were labeled, bagged and placed in the drying oven for 48 hours at 70°C. Only fine and
medium root weights were used in the subsequent analysis of variance. Large root were
not included, as their primary function is to support the tree rather than to acquire
belowground resources. The remaining soil was air dried and weighed. A five gram air-
dried subsample of each was weighed and then placed in the drying oven at 70°C for 48
hours and weighed again to estimate oven-dried-weights for the total sample. Root

biomass from each core was then translated into grams of roots per 100g of soil.

DATA ANALYSIS

Linear Regression for Competition Indices

A simple linear regression was performed to determine the relationship between
the response variable, radial growth, and each of the competition indices,

Yi = fo + fix{competition index) + ¢;
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where;

yi = the value for radial growth for the ith observation
x; - competition index (Hegyi’s, Schutz’s or Canham’s)
Po = the population intercept

B = the population slope and measures change in Y per unit change in competition
index

& = the random error associated with the ith observation

The models were fitted using SPSS v16.0 software. To assess the performance
of each index, the coefficients of determination (rz), mean square error, and regression
slopes between species for each competition index were compared. Fine root weights
and fine plus medium root weights were each run in a preliminary ANOVA and found to
have similar results. Fine and medium root weights were chosen to present the results
because the root biomass values were greater.

Analysis of Variance for Root Data

Belowground interactions are a function of a species’ rooting patterns which are
determined primarily by soil conditions and species’ genetic makeup (Ong et al. 1996).
All plant species tend to concentrate their fine root mass in the top 10-30cm of the soil
profile, however, studies have shown that some combinations of species do experience
belowground niche separation by stratifying their roots. The questions I addressed with
respect to the root data are: 1) Does interspecific competition affect the abundance of
fine and medium root biomass and, and 2) Does interspecific competition affect the
vertical distribution of fine and medium roots? The General Linear Model procedure in
Statistical Analysis Software (SAS), v9.1 was used to address these questions.

The experiment follows a factorial design. The model consists of three fixed

factors, Site (Gr and Gb), Stand Type (Sb and MW; Pj and MW), and Depth (organic, 0-
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5, 5-10, 10-15, 15-20, 20-30, and 30-45 cm). The experimental unit was the bulked root
core which is associated with each replicate, the subject tree. The mathematical model
for this experiment is presented in Equation 3.

Yi = 1 + Bi + Sj + BS;; + Dy + BDj + SDjx + BSDy + &5 [Eq. 3]

i=1,2;j=1,2k=1,7

Where:

Yij = root biomass of the 1" replicate of the k™ depth of the j™ stand of the i site
7} = the overall mean

B; = the fixed effect of the i site

S; = the fixed effect of the j™ stand

BS; = the fixed interaction effect of the i site with the j stand

D = the fixed effect of the k™ depth

BDi« = the fixed interaction effect of the i" site with the k™ depth
SDjc = the fixed interaction effect of the j™ stand type with the k™ depth

BSD;jc = the fixed interaction effect between the i site with the jth stand with the
k™ depth

€iky = the random effect of the 1t replicate within the ijkth treatment combination

The expected mean squares for the linear model are presented in Table 8. Due
to the number of fixed factors and replicates, direct tests were not available for any of
the factors or their interactions. Conservative tests (allowing a “reject only” framework)
were available to test hypotheses, and are presented in Table 9.

Where the three-way ANOVA indicated that Stand Type (e.g. pure and mixed),
depth (organic through to 45 cm of mineral soil) and their interaction were the only

significant sources of variation for either total root biomass or percentage of root

biomass by species, the two stand types (i.e. pure and mixed) were analyzed separately
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using a one-way ANOVA to identify significant differences between depths based on
Student-Newman Keuls post hoc tests (SNK).

Table 8. Expected Mean Square derivation for Equation 3.

2 2 7
F F F Expected Mean
Source I J K Squares df
B; 0 2 7 o + 144(B) (I-1)
S; 1 0 7 o>+ 70(S) (J-1)
Dy 2 2 0 o’ +4d(D) (K-1)
BS; 1 0 7 o + 7h(BS) d-1)(J-1)
BDj 0 2 0 6* + 2¢(BD) (I-1)(K-1)
SDj; 1 0 0 6 + h(SD) (J-1)(K-1)
I-1)J-
BSDj;; 1 0 0 6 + G(BSD) 1)(K-1)
Elio 1 1 1 o’
Table 9. Hypothesis tests for Equation 3.
Reference
Hypothesis Test Statistic Distribution
14p(B) =0 MS(B)/MS(e) F(1, 28)
Td(S) =0 MS(S)/MS(e) F(1, 28)
4p(D) =0 MS(D)/MS(e) F(6, 28)
Tb(BS) MS(BS)/MS(e) F(1,28)
20(BD) =0 MS(BD)/MS() F(6, 28)
d(SD) =0 MS(SD)/MS(e) F(6, 28)
d(BSD) =0 MS(BSD)/ MS(e) F(6,28)

°=0 — —




50

RESULTS AND DISCUSSION
COMPETITION INDICES

Different indices illustrate different features of competition. Hegyi’s index relies
on dbh and crowding (e.g., number of neighbours, distance from neighbour, sph), as
does Canham’s. However, Canham’s index is produced by a MLE model that considers
other parameters including species identity. Schiitz’s competition index differs from
Hegyi’s and Canham’s indices in that it attempts to quantify both horizontal and vertical
competitive effects by incorporating crown radii and total height, in addition to
crowding.

In total, 643 trees were used for the competition index calculations. As with
most indices, the values are unitless, so any comparisons that are made must take that
into account. However, with respect to the three indices used in this study, higher values
indicate higher levels of competition than lower values. Means for both species in all
stand types were very similar; however, the variation (as expressed by Std. Dev. and
min/max values) was substantial (Table 10). The largest difference in radial growth
between pure and mixed stands occurred between Sby, and Sb,, (Gamsby). The larger
growth (2.4 mm) was associated with the lower index value (36.01) in the Sb,, stand and
was found to be 1.06 mm larger than that of Sb,,. The distribution of values of the three
competition indices appears to differ between Sb and Pj (Figure 4) and among stand
types (Table 10). However; there are two features in common which suggest that a
larger number of black spruce individuals are experiencing more intense competition
than jack pine. First, for each index, the range of values for spruce is wider than that of

jack pine. Second, Sb values appear to be more positively skewed than the Pj values.
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Table 10. Descriptive statistics for each competition index by species.

Greta Gamsby
Sb, Sbn, Pj, Pjm Sb, Sb, Pj, Pim
Avg. Radial
Growth 2.46 1.90 1.20 1.48 2.40 1.34 1.01 1.08
(mm)
Mean | 30.42 29.55 15.76 16.07 36.01 4470 11.00 9.48
Std. 46.04 21.24 10.06 50.32 53.14 44.77 7.55 4.25
g~ Dev.
b[) .
2 Minooase s s 381 | ous 753 362  1.30
value
Max.
280.20 130.25 44.11 50.32 | 22948 21590 57.53 21.53
value
Mean | 18.20 68.01 35.74 27.74 13.39 12366 41.92 26.26
Std. 9.08 31.46 25.30 15.02 7.90 53.87 24.09 18.47
o Deyv.
Z  Min
A ’ 2.31 6.03 0.00 0.00 1.70 7.82 0.00 0.00
value
Max.
46.65 16636 107.89 73.86 37.45 182.67 119.39 86.86
value
Mean | 20.30 65.20 14.43 10.83 4294 113.63 19.80 19.18
Std. 10.45 22.58 3.38 2.74 48.41 36.51 4.68 4.76
g Dev.
= Min.
= 7.29 12.78 6.95 5.00 6.07 33.45 9.63 2.76
O value
Max.
51.78 111.69 28.82 17.29 28.45 17747 28.15 28.97

value
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Based on information presented in Tables 11 and 12, 11 out of 15 of the hi ghest
Hegyi’s index values for Sb and 10 out of 15 for Pj were found in pure stands. These
Sb index values, some of which were in the low- to high 200’s, reflect the combination
of large numbers of competitors (16 to 47 competitors within the 5 m search radius) and
large differences between smaller subject trees (dbh of 1.0 cm) and larger competitor
trees (dbh of >15 cm). Alternatively, the largest index values for jack pine subject trees
fell between 30 and 60. Interestingly, the number of neighbours was often higher in this
group (ranging from 21 to 52) but the difference between diameters is smaller.

The range of Schiitz index Valueé for Sb and Pj was smaller than that of Hegyi’s
(Table 10) and the relative difference in the maxima of the two species was also smaller
(3:2 vs. 5:1, Sb:Pj). The highest Schiitz values for Sb were all from individuals in mixed
stands while highest values for Pj individuals were mainly in pure stands (12 out of 15;
Tables 11 and 12). Therefore, there is some agreement with regard to Hegyi’s and
Schiitz’s indices for pine but not for spruce. This may reflect the influence of height
data on the calculation of the index, since crown radii and number of neighbours were
very similar. The trend in relative numbers suggests that the competitive effects of jack
pine are larger than those of spruce. That is, both spruce and jack pine are more affected
by jack pine than by spruce.

A large difference in the range of Canham’s index values between spruce and
pine was observed (Maxima of 177.47 and 28.97, respectively; Table 10, Figure 4), as
was the ratio (6:1, Sb: Pj). The distribution of values between the two species was also
very different. Spruce values were skewed to the right, while pine values appeared more
normally distributed (Figure 4). Like Hegyi’s index, Canham’s competition index uses

dbh and distance from neighbour to calculate an index. However, Canham’s
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competition index includes constants o and B, which are estimated by MLE, and
determine the shape of the effect of the dbh and the distance to the neighbour,
respectively, on each subject tree.

The range of Canham index values reflects the size and degree of crowding of
individuals. The study sites had moderate to high densities (~2500 — 4800 sph). The
Sbp were evenly spatially distributed, while in the mixed stands the distribution was
more clustered (Figure 2), resulting in more stems per hectare. These areas of clumping
often indicate superior microsite (Stoll ez al. 1994), which may magnify the effect of
competition as measured by the indices. This variation in spatial distribution and the
consequence of smaller trees due to crowding explains the larger range of competition
indices for black spruce. The smaller range of index values for jack pine may be due to
a combination of a more even spatial distribution and larger average size.

Canham’s and Schiitz’s index values appear to be consistent in identifying stand
conditions with the most competition; the highest values occurred in mixed stands for
black spruce and pure stands for jack pine (Tables 11 and 12). These indices were also
the most consistent in identifying the individual trees experiencing the greatest
competition, agreeing upon 20 of 30 individuals. For Pj, all three indices were in
agreement that Pjp, stands are experiencing the greatest competition. However, Hegyi’s
did not agree with the other indices on individual trees as Hegyi’s and Schiitz’s indices

only selected the same individuals three times and Hegyi’s and Canham’s five times.
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Table 11. The fifteen highest index values by competition index with corresponding

stand and individual tree characteristics for black spruce.

Tree Crown Radial

Index D Site Neighbour DBH  Height Radius Growth Index

Count (cm) (m) (m) (mm) Value
79 GrSb 23 44 3.79 0.61 2.04 280.202
140 GrSb 25 8.3 6.06 1.19 2.82 251.928
141 GrSb 25 9.6 6.81 0.72 2.98 216.458
17 GbMW 26 1.0 22 0.46 0.67 215.910
67 GrSb 23 54 4.37 1.00 2.42 190.123
106 GrSb 26 43 3.73 0.80 1.06 180.977
= 78 GrSb 23 7.3 5.48 0.89 2.50 165.933
%D 71 GrSb 19 1.2 1.93 0.67 0.91 165.795
o 108 GrSb 22 3.1 3.04 0.36 1.79 132.130
135 GrMW 47 1.0 2.07 0.61 0.80 130.254
8 GbSb 24 1.7 2.71 0.43 1.56 128.847
28 GrSb 22 3.7 3.39 1.01 1.38 122.534
16 GbMW 23 1.4 245 0.35 0.82 117.746

120 GrSb 16 4.6 391 0.55 2.86 96.633

15 GbMW 27 1.4 245 0.46 1.36 93.478
149 GbMW 22 3.9 3.98 1.13 0.48 182.672

136 GbMW 23 3.9 3.98 1.12 0.43 178.911
6 GbMW 24 1.5 1.94 0.60 0.51 172.462
92 GbMW 26 22 2.94 0.90 0.44 170.314
25 GbMW 30 3.4 3.02 0.60 242 170.263
N 135 GbMW 22 3.1 3.49 0.93 0.48 166.359
;5' 90 GbMW 25 37 3.36 0.98 0.88 165.785
= 147 GbMW 23 4.6 4.95 1.10 0.71 164.232
UQ)) 89 GbMW 25 2.6 3.18 0.87 0.62 153.274
153 GbMW 20 7.0 5.88 1.13 2.38 148.409
93 GbMW 28 74 5.08 1.06 0.94 147.935
159 GbMW 23 8.8 6.96 1.59 1.76 146.714
17 GbMW 26 1.0 220 0.46 0.67 145.653
21 GbMW 23 1.8 2.69 0.56 1.31 145.453
95 GbMW 28 1.3 2.39 0.61 1.58 137.595
25 GbMW 30 34 3.02 0.60 2.42 177.473
17 GbMW 26 1.0 2.20 0.46 0.67 167.768
159 GbMW 23 8.8 6.96 1.59 1.76 162.619
16 GbMW 23 1.4 245 0.35 0.82 157.903
21 GbMW 23 1.8 2.69 0.56 1.31 157.187
E 15 GbMW 27 1.4 2.45 0.46 1.36 145.942
< 51 GbMW 20 9.0 6.56 1.13 222 139.061
"g 144 GbMW 30 8.8 6.98 0.83 1.71 134.155
< 138 GbMW 25 1.9 2.75 0.46 0.38 126.232
QO 146 GbMW 24 6.4 5.76 0.92 1.36 123.247
6 GbMW 24 1.5 1.94 0.60 0.51 122.302
149 GbMW 22 39 398 1.13 0.48 121.945
147 GbMW 23 4.6 4.95 1.10 0.71 119.994
148 GbMW 23 7.8 6.37 0.68 0.72 118.028
142 GbMW 29 9.5 9.96 0.66 2.64 114.949
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Table 12. Fifteen highest index values by competition index with corresponding stand
and individual tree characteristics for jack pine.

Index Tree Site Neighbour DBH  Height 1(2:;3:?12 CI; ?\:’1 Index
ID Count (cm) (m) Value
(m) (mm)
13 GbPj 22 4.0 11.14 0.68 0.83 57.529
223 GrtMW 49 3.1 6.93 0.18 1.96 50.318
51 GrMW 32 134 6.76 1.31 2.36 47.170
2 GrPj 39 52 9.37 0.98 0.26 44.107
327 GrMW 42 6.8 8.67 0.64 0.31 41.803
o 255 GrPj 32 7.0 9.93 0.87 0.76 40.658
> 94 GrPj 44 4.1 9.03 0.92 0.92 38.206
%D 67 GrPj 22 5.8 9.56 0.59 0.34 37.814
o 253 GrPj 32 8.3 10.34 0.60 1.22 37.363
68 GrPj 23 5.6 9.50 0.46 0.41 36.154
69 GrPj 21 5.5 9.46 0.60 0.72 35.197
1 GrPj 39 6.0 9.62 0.47 142 35.069
1 GbPj 22 55 9.40 0.94 0.57 34.662
79 GtMW 52 4.9 7.44 0.79 1.08 32.974
82 GrMW 51 5.1 6.64 0.45 1.17 32.337
1 GbPj 22 55 9.40 0.94 0.57 119.394
31 GbPj 28 15.3 13.35 2.22 1.24 117.086
221 GrPj 27 8.6 8.93 1.18 1.01 107.893
12 GbPj 22 11.0 11.11 1.33 0.61 107.841
220 GrPj 37 13.6 11.06 1.55 1.09 99.450
N 93 - GbPj 20 13.0 12.90 1.84 1.28 97.323
;-5 140 GbPj 29 12.7 12.84 1.90 1.16 96.852
= 47 GrPj 38 7.6 10.12 1.32 0.60 96.364
ﬁ 226 GrPj 36 6.3 9.71 0.93 0.76 92.774
44 GrPj 39 59 9.59 1.14 0.92 90.528
5 GbPj 20 11.2 12.55 1.85 1.30 90.063
23 GbMW 31 10.5 10.73 1.42 1.62 86.864
69 GrPj 21 55 9.46 0.60 0.72 81.392
10 GbPj 21 14.1 12.07 1.42 1.17 81.368
18 GbPj 27 9.6 12.23 1.24 0.40 76.956
31 GbPj 28 15.3 13.35 2.22 1.24 27.797
140 GbPj 29 127 12.84 1.90 1.16 23.275
93 GbP;j 20 13.0 12.90 1.84 1.28 22.986
23 GbMW 31 10.5 10.73 1.42 1.62 21.831
18 GbP;j 27 9.6 12.23 1.24 0.40 19.906
= 12 GbPj 22 11.0 11.11 1.33 0.61 17.383
i 10 GbPj 21 14.1 12.07 1.42 1.17 16.814
"g 44 GrPj 39 59 9.59 1.14 0.92 15.354
o 5 GbPj 20 11.2 12.55 1.85 1.30 15.089
o 1 GbPj 22 5.5 9.40 0.94 0.57 14.157
47 GrPj 38 7.6 10.12 1.32 0.60° 13.841
220 GrPj 37 13.6 11.06 1.55 1.09 13.255
221 GrPj 27 8.6 8.93 1.18 1.01 11.858
69 GrPj 21 55 9.46 0.60 0.72 9.863

226 GrPj 36 6.3 9.71 0.93 0.76 9.691
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Canham’s model produces an index that estimates the magnitude of competition
as a function of diameter, distance from neighbour and a species-specific index. The
species-specific competition index (A) indicates the variation in the effects of intra-
versus interspecific competition, by partitioning the competitive effects of neighbours
into the effects of crowding and shading (Canham et al. 2004). The range of A falls
between O and 1; zero represents little competitive effect, while a value of 1 represents a
strong competitive effect. Black spruce appeared to have little interspecific competitive
effect on jack pine with a A value of 0.0006 (Figure Sa). Intraspecific competition
appeared to be strong among the pine with an index value of 0.9973. Based on the A
values calculated, black spruce is experiencing both strong intra- and interspecific
competition with A‘s of 0.7457 and 1.000 for spruce and pine, respectively (Figure 5b).

The large confidence intervals reflect the variation in the data among pure and
mixed stands, as pure and mixed stands were run together in the MLE model. Large
confidence intervals may also be a result of relatively young stands that are still in the
early stages of self-thinning, meaning competition may not have had enough time to
manifest. It is important to note that the A is not a traditional statistical test, therefore
significance cannot be tested. Rather, A is a product of the MLE model, which performs
a number of runs to find the model that best fits the data. Each run will have a slightly
different outcome.

To summarize, ) indicates that there is a strong intraspecific effect within both
tree species and while jack pine has a strong competitive effect on black spruce, black
spruce has a weak competitive effect on jack pine. These results reflect conditions in the
stands types measured, based on stand composition and tree size. This does not imply

that spruce would not compete with jack pine for any dbh/distance combination. To
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illustrate, it is likely that in a spruce-pine mixture with large spruce and small jack pine,

spruce would have a stronger interspecific effect on pine.
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Figure 5. Estimated A and 95% confidence intervals for the per capita effect of each of
the four species of competitors on target species of a) black spruce and b) jack
pine.

As previously mentioned, symmetrical or two-sided competition is generally
invoked to describe competition for belowground resources. Competition for nutrients
is likely to occur over a larger area than aboveground competition for light. Therefore,
one could argue that belowground competition would be better measured using stand
level distance-independent indices, such as basal area, while aboveground competition is

best represented by distance-dependent indices (Ledermann and Sage 2001). Knowing

this, one could further argue that the distributions of Hegyi’s, Schiitz’s, and Canham’s
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competition indices and A produced by MLE, indicate that that asymmetrical or one-
sided competition for light is occurring in these stands. Two of the three indices show
that the subcanopy black spruce are experiencing more competition in mixed stands.
Under asymmetrical competition trees acquire light resources in direct relation to their
relative sizes. Jack pine occupies the canopy in the mixed stands capturing the majority
of the light resource, shading spruce. The majority of the jack pine are larger and
consequently, acquire an unequal share of the light resources which can exacerbate the
size-inequality.

Jack pine experience stronger competitive effects in the pure stands examined
because each individual pine is competing with its neighbours for space in the canopy to
acquire light, whereas in the mixed stands the spruce are in the understory and do not
affect jack pine in their quest for light. This is one explanation as to why black spruce
has little effect on shade-intolerant jack pine.

Competition Index as a Predictor of Radial Growth

Radial growth declines with increasing competition as measured by all three
indices (Figure 6). The regression analysis found the relationship between radial growth
and competition index for all three models to be significant at the 0.05 level. The
species identity slightly influenced the strength of the model; black spruce had higher r*
values in every case, with the exception of Canham’s index. However, there was a lot of
scatter and r” values indicate that there was a lot of unexplained variation; only 4.7 —
10.0% and 5.8 —33.6% of the variation in radial growth of jack pine and black spruce,
respectively, could be explained by the three competition indices calculated (Table 13).
It is possible that a non-linear function form may have improved the fit of tree growth

versus the three competition indices, which is something to consider in future studies.
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Although, the linear relationship can be seen in the scatterplots, clustering of data
points suggest that most of the trees at these sites are experiencing relatively little
competition. Spruce had higher radial growth in all cases, which may suggest that jack
pine is using more of its resources for height growth or because the pine is experiencing
more competition for light due to its shade tolerance.

Predicting radial growth from any of the linear regression models would not be
advised, as they would perform poorly. Canham’s approach using MLE to predict radial
considers not only the competition index, which is a measure of crowding, but also a
number of other parameters to predict radial growth. In the model I used, these included
maximum RG (a function of diameter), a parameter estimated by the analysis that is
multiplied by Canham's index ("C"), as well as shading. The scatter that can be seen in
the lowest panel of Figure 6 is thus an indication that Canham's index alone, without the
inclusion of these other factors, is unlikely to provide accurate estimates of radial
growth.

Mean square error (MSE) is often used to determine which regression model best
explains the variability in the observations. The model with the lowest MSE is generally
interpreted as the best. Hegyi’s had the lowest MSE for jack pine, followed by
Canham’s and Schiitz’s models, with MSE values of .312, .326, and 331, respectively
(Table 13). For black spruce Schiitz’s index produced the lowest MSE followed by
Canham and Hegyi, with values of .490, .591, and .696 (Table 13). The MSE values
suggest that of the models tested, no single index outperforms the other in predicting

radial growth from a single value in the linear regression model.



61

45 - + Spruce Pine

Radial Growth (mm)

J 5C 1C0o 150 200 250 300
Hegyi's Competition index
# Spruce & Pine
4.5 -
4.0 ‘. <« ¢
— _ P
g 35 .
£ 3.0 .
£ 23
2 -2 »® » 4
5 20 AR *
e 15 B Fip te e o, *
e ' ® p [
&U 1.0 ‘__* - . T T——
.73 - —
0.5 o, v e o
0.0 . : :
0 50 100 150 200
Schiitz's Competition Index
+ Spruce = Pine
a5 -
40 |, t, -
E 35
E 3.0
£
%‘ 2.5
& 2.0
® 1.5
&
& 10
0.5 I
0.0 4 : - ; s
0 50000 100000 150000 200000
Canham's Competition Index

Figure 6. Scatterplots and fitted regression line of radial growth and competition index
(Hegyi, Schiitz, and Canham, respectively) for black spruce and jack pine.
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Table 13. Linear regression coefficients and statistics for predicting radial growth from
competition index.

Competition
Species Index by b, r MSE P

Hegyi -0.0196 1.4428  0.010 0312  0.000

Pj Schiitz -0.0056 13774 0.047 0331  0.000
Canham -3.00E-05 1.64E+00 0.060  0.326  0.000

Hegyi -0.0046  2.3336  0.058  0.696  0.000

Sb Schiitz -0.0106  2.6449 0336 0490  0.000
Canham -1.00E-05 2.59E+00 0200 0591  0.000

The weak relationship between radial growth and competition index, si gnified by
the low r* values suggests that: a) competition may not be strong in these stands, b) these
competition indices may not be appropriate for quantifying competition in mixed stands,
or ¢) radial growth is not the best metric for assessing competition in these stands.

These ideas will be examined in further detail below.
(a) If competition is not strong, this may reflect the complementary growth patterns
and resource requirements of the component species or it may suggest that the

current stage of stand development does not involve substantial competition.

(b) Traditionally, competition indices have been used to assess competition in pure
stands. Hegyi’s and Schiitz’s indices do not account for species differences;
therefore, they may not be appropriate for quantifying competition in mixed
stands. Canham’s model does account for species differences by including A and
Canham et al. (2004) found the model to explain 33-59% of the variation of
radial growth in their study of mature western hemlock — western redcedar
mixtures in British Columbia. The different outcomes from this study and

Canham et al.’s (2004) could be a result of stand age (relatively young stands vs.
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mature stands) or there may be variation in northwestern Ontario compared to

northwestern British Columbia.

(c) Radial growth tends to decrease as trees enter the sub- and main canopies
(Nowacki and Abrams 1997). This mayy explain the lower radial growth rates
(Appendix II) of jack pine compared to that of spruce. The competition indices
include diameter or height as growth indicators and do not take into account the
rate of growth, which is why jack pine on average had smaller competition
indices. Stands undergoing self-thinning experience a reduction in growth rates;
however, if this were the cases, inter-tree competition would be very high
(Weiner and Thomas 1986) and this is not reflected in the competition indices
computed for these stands. These stands are still in the early stages of self-
thinning. Because radial growth rates are affected by canopy position and stand
development stage, they may not be the best metric to assess competition in these
stands. Size differences may also be attributed to factors other than competition
including, genetic differences, environmental heterogeneity, and age differences

(Weiner and Thomas 1986).

The slopes of spruce and pine were found to be significantly different for all
three indices (Table 14). Generally, jack pine exhibited steeper regression slopes
compared to black spruce. The difference between the fitted regression line slopes for
spruce and pine was most apparent for Hegyi’s index (Figure 6). The steep slope of the
regression line indicates that as competition increases, it has a greater negative effect on
jack pine radial growth, which suggests that pine may be more sensitive than spruce to

increasing competition for light and crowding. This is expected as jack pine is a shade-
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intolerant tree. Shade-intolerant trees are more sensitive to increasing aboveground
competition than a mid-tolerant or tolerant species (Holmes and Reed 1991). Thus,
adding more trees to a spruce stand should not have as much of an effect on radial
growth as adding more pine to a pine stand.

Table 14. Slopes (B) and t-values calculated to test for differences in slope between
species for competition index vs. radial growth shown in Figure 6.

B
Index Spruce Pine tstat
Hegyi -0.0046 -0.0195 3.387%*
Schiitz -0.0106 -0.0056 2.71%*
Canham -1.0061E-04 -2.7449E-04 2.312%

*denotes significance

As previously mentioned, Hegyi’s, Schiitz’s, and Canham’s indices are not good
predictors of radial growth from the linear regression model. This is supported by the
weak linear relationships observed between the three competition indices and radial
growth (Figure 6). To further support this statement, expected radial growth was
predicted using the regression equations for each index, results are displayed in Figure 7.
There is a distinct upper boundary to the values that is apparent for all three indices.
These upper boundaries coincide with the slope intercept of the regression lines
presented in Figure 6, meaning that these models are incapable of predicting radial
growth above the slope intercept. It is clear that these regression equations would be
inappropriate for predicting radial growth in these stands. However, the strength in
Canham’s MLE model is that it accounts for not only crowding, shading, and inter-

versus intraspecific competition, but it can also predict potential radial growth using
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optimization techniques in the MLE model (Figure 8). The adapted MLE model
included Canham’s competition index and potential radial growth (submodels) and

parameters estimated by the analysis that measures the sensitivity of the target tree to
crowding and shading to determine expected radial growth. The ability to predict

potential radial growth has implications for forest management. Determining future
species composition and growth rates of mixed stands is difficult because the target tree
will interact differently with different species and because mixtures have received less
study than their pure counterparts. Canham’s model has the potential to predict future
growth which can aid in determining which silvicultural system to employ to meet

desired outcomes.
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Figure 7. Expected vs. observed radial growth for black spruce (left) and jack pine
(right) for Hegyi’s and Schiitz’s, and Canham’ competition indices, respectively.
Lines are a 1:1 relationship between predicted and observed growth.
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Figure 8. Expected vs. observed radial growth for black spruce (top) and jack pine
(bottom) for Canham’s adapted maximum likelihood estimation (MLE) model.
Lines are a 1:1 relationship between predicted and observed growth.
Using Hegyi’s and Schiitz’s indices you are limited to making inferences about

inter- and intraspecific competitive effects, whereas Canham’s model allows us to

directly measure inter- and intraspecific competitive effects to support inferences.
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Canham’s model computes a species-specific competition index, depending on the
identity of the subject tree and that of its neighbours to assess the effect of species, while
Hegyi’s and Schiitz’s ignore the identities of neighbouring trees. Analysis of
competitive effects due to species identity will also be useful in the development of
silvicultural systems aimed at managing mixed-species stands and need to be accounted
for to predict future growth.

While it is more costly and time consuming, in natural mixed stands it is best to
use distance-dependent competition indices to account for the irregular spatial
arrangement. Assuming uniformity of spatial arrangement can lead to losses in growth
and mortality (Norris et al. 2001). Knowing the spatial arrangement of the stand and
which trees are experiencing intense competition from neighbours will aid in density
management decisions, such as commercial thinning. Of the three indices used, Hegyi’s
is the easiest to compute, especially since dbh is a standard measurement taken for
permanent growth and sample plots. While you can substitute dbh for height when
computing Schiitz’s competition index, crown radii measurements are time consuming
and the risk of measurement error is high without the proper equipment. Quantifying
competition with Hegyi’s or Schiitz’s indices give you a snapshot of competition at one
point in time and would be most appropriate for addressing the question “Do I currently
have a competition problem?” Canham’s index requires the MLE model to be calibrated
to reflect the stand conditions and geographic location, requiring a strong modeling
background. However, with Canham’s model you can not only address the question
“Do I currently have a competition problem?” but also “Will I have a competition

problem in the future?”
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BELOWGROUND COMPETITION

The results from ANOVA and SNK tests of main and interaction effects for both
black spruce and jack pine are summarized in Tables 15, 16, and 17. The interaction
effects are displayed in Figures 9 for Sby, % Sby, Pj;, and % Pj;, respectively.

Table 15. Summary of F-ratios calculated from ANOVA for black spruce and jack pine
root biomass and percentage root biomass**.

Source Black Spruce Jack Pine
of ) .

df Biomass Percentage Biomass Percentage
Variation (@100gsoill) (%)  (100gsoil) (%)
Site 1 0.18 0.04 1.58 0.52
Stand Type 1 13.90* 135.23* 0.51 8.37*
Depth 6 8.47* 1.17 12.56* 3.44%*
Site*
Stand Type 1 0.06 0.23 2.53 2.62
Site*Depth 6 0.80 0.50 0.74 0.98
Stand Type* % "
Depth 6 3.67 0.90 1.83 4.81
Site*
Stand Type* 6 0.17 0.38 0.59 1.08
Depth

* indicates significance at the 0.05 level
*% A full summary table of ANOVA components is presented in
Appendix II and IV for Sb and Pj, respectively.
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Table 16. Student-Newman-Keuls tests of main effects for black spruce root biomass
and root biomass percentages.

Black Spruce Root Biomas§ Percentage Root Biomass
(g/100 g of soil) (%)

Variable Level N Mean SNK N Mean SNK
Stand Sb 70 0.0789 A 63 78.3 A
Type MW 54 0.0188 B 50 14.3 B
Organic 18 0.1509 A 16 68.3 A
Oto5 18 0.1179 A, B 17 453 A
Sto 10 18 0.0628 B 18 56.7 A
Depth 10to 15 18 0.0193 B,C 18 46.7 A
15to 20 18 0.0086 C 17 40.3 A
20 to 30 17 0.0016 C 13 47.3 A
30 to 45 17 0.0022 C 14 44.5 A

*Means with the same letter are not significantly different.

Table 17. Student-Newman-Keuls tests of main effects for jack pine root biomass and
root biomass percentages.

Jack Pine Root Biomas.s Percentage Root Biomass
(g/100 g of soil) (%)

Variable Level N Mean SNK N Mean SNK
Stand Pj 75 0.0893 A 75 92.1 A
Type MW 79 0.0983 A 79 82.7 B

Organic 22 0.0839 B,C 23 71.1 B
Oto5 23 0.1737 A 23 86.4 A
S5to 10 23 0.1741 A 23 92.5 A
Depth 10to 15 23 0.0905 B 23 86.4 A
15 to 20 21 0.0706 B,C 21 94.2 A
20 to 30 22 0.0294 B,C 22 89.8 A
30 to 45 20 0.0203 C 19 92.3 A

*Means with the same letter are not significantly different.
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Black Spruce
Stand Type (p =0.0003), Depth (p<.0001), and their interaction (p = 0.0025)
significantly affected the amount of Sb biomass (Table 15). The interaction can be seen
in Figure 9a. In this case, there is little difference between layers in the MW stands but
a clear decline from top to bottom in pure stands. Pure spruce stands had 4 times more
Sb; than mixedwood stands, which resulted not only in a significant effect of Stand Type
but also drove the main effect of Depth.

Black spruce in mixedwood stands have significantly less root biomass. This
may be because Pj occupied the site first and had already established their root system
forcing the Sb to put their roots wherever there was space to do so, in order to acquire
belowground resources. In Sby stands, trees placed roots in the upper organic and
mineral layers. This coincides with the known silvics of the species. Black spruce has a
shallow root system (Fowells 1965) compared to Pj and tends to concentrate the
majority of roots in the upper 20 cm of the organic horizons (Viereck and Johnston
1990). Figure 9 reveals an interesting phenomenon between Sb;, and Pj; in the organic
soil of mixed stands. In MW stands, average Sb;in the organic soil was very low (0.040
g); nonetheless, it appears to have a large effect on the amount of Pj; in this horizon.
The amount of Pj; in this layer decreased by almost 50% between pure ( 0.932 g) and
mixed (0.507 g) stands, which indicates that Sby, although small in quantity greatly
affects the distribution of Pj;. This suggests that Sb is a stronger competitor in the
organic layer. This is likely é reflection of spruce’s adaptation to wet and drganic soils.

Significant differences were detected for the main effect of Stand Type

(p<.0001) on the % Sb; (Table 15). Post hoc tests show that % Sb, was greater in pure
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stands (Figure 9¢). While statistically significant, these results are not ecologically
significant, as this would be expected because Pj are not present in these stands.
Jack Pine

Average abundance of Pj; declined with increasing depth (Table 15). SNK post
hoc tests revealed that the upper mineral soil layers (0-10 cm) had significantly more
root biomass than the organic and lower soil layers (10-45 cm).

The results suggest that Pj prefer to put their roots in the upper mineral horizons
of the soil profile regardless of Site and Stand Type. Jack pine is reputed to lay down a
relatively deep taproot (Rudolph and Laidly 1990). However, the bulk of the medium
and fine rooting systems are confined to the upper 46 cm of the soil profile (Rudolph
and Laidly 1990), unless intense competition for water and nutrients force them to
forage deeper parts of the profile (Karsh 1896). Given that the results show that Pj are
putting the majority of their roots in the upper mineral soil horizons, it is likely that
competition for soil moisture and nutrients is not intense.

Stand Type (p=0.0045), Depth (p=0.0035), and their interaction (p=0.0002)
significantly affected the percentage of Pj roots (Table 15). The interaction can be seen
in Figure 9d. In this case, there is no difference between relative amounts of roots found
at different depths in the Pj, stands, but the % Pj; roots found in the organic layer of the
MW stands is significantly less than that found in the mineral soil. In other words, P;
roots appear to be less competitive in the organic layer and more competitive at deeper
depths in comparison to Sb.

The pure jack pine stand had a significantly higher % Pj; (Table 17; Figure 9d),

which is expected since pine is not sharing the soil with spruce on these sites. The main
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effect of Depth reflects the influence of the interaction and the large difference in
relative amounts found in the organic layer only.

The results suggest one of two things may be occurring: 1) competition for soil
resources at the study sites may not be intense enough to promote complete
stratification, or 2) root plasticity and morphology characteristics of jack pine and black
spruce may not be such that they are able to utilize soil resources in a spatially
noncompetitive manner. Root studies of the morphological plasticity of European
beech (Fagus sylvatica L.) fine roots have shown adaptations to different levels of
competition. Curt and Prevésto (2003) studied rooting patterns of mixed silver birch
(Betula pendula Roth) and beech stands at different competitive intensities and found
that at low levels of competition, fine roots coexist in the same soil layers. Under high
competition, beech exhibits vertical stratification of root systems, occupying deeper
parts of the soil (e.g. Curt and Prevosto 2003; Bolte and Villanueva 2006). Bolte and
Villanueva (2006) studied the impacts of competition on fine root morphology and
distribution of European beech and Norway spruce. They found that the abundance of
Norway spruce fine root biomass was significantly lower in mixed stands compared to
pure stands, which coincides with the results of this study. Complete separation of
spruce and beech rooting systems was observed, with Norway spruce dominating the
organic and upper 5 cm, while beech increased noticeably from 10-40 cm (Bolte and
Villanueva 2006). This is not to say that competition for belowground resources is not
occurring. Black spruce did appear to affect the distribution of Pj; in the organic layer in
MW stands. However, further research under a controlled even mixture is required to
determine whether complete stratification occurs and if so, how meaningful is it to the

coexistence and productivity of these species.
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The alternative is that Sb and Pj at these sites are not able to acquire belowground
resources in a spatially noncompetitive manner (Wang et al. 2002), due to
morphological characteristics. If this is the case, competition may be negatively
affecting the growth of one or both species. The competition index values suggest that
Sb is experiencing more intense competition than Pj; however, relative growth rates of
Pj appear to be more affected by competition than Sb. It is likely that differences in tree
sizes are due to asymmetrical competition for light rather than that for belowground

resources.
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CONCLUSION

This study employed three distant-dependent competition indices to quantify
competition in pure- and mixed stands of jack pine and black spruce. Quantifying
competition with Hegyi’s or Schiitz’s indices gives you a snapshot of competition at one
point in time and would be most appropriate for addressing the question “Do I currently
have a competition problem?” Canham’s index is more intensive to calculate; however,
with Canham’s model you can not only address the question “Do I currently have a
competition problem?” but also “Will I have a competition problem in the future?”

In addition, using Hegyi’s and Schiitz’s indices you are limited to making
inferences about inter- and intraspecific competitive effects. The strength of Canham’s
index lies in its ability to predict potential radial growth and to quantify inter- versus
intraspecific competition by computing A from the MLE model. Hegyi’s and Schiitz’s
do not consider species. differences, which may make them inappropriate for assessing
competition in mixed stands.

Black spruce roots vertical distribution did not differ among pure and mixed
stands. Black spruce prefers the organic and upper 10 cm of the mineral soil regardless
of stand type. While jack pine also prefers upper mineral soil, the majority of root
biomass in the lower soil profile are pine. The presence of black spruce roots in the
organic layer strongly affected the distribution of jack pine roots in mixed stands. This
reinforces the silvics of the species; spruce is a stronger competitor for belowground
resources in organic soils, and jack pine is stronger on sandier mineral soils. It is not
possible to determine whether complete separation of pine and spruce roots would have
occurred under more ‘intense’ competitive conditions, as the intensity of belowground

competition (i.e. resource limitations) were not determined. Therefore, it is









77

recommended that future studies of this kind perform a measure of nutrient and water
availability of the site to complement root biomass data.

Due to physiological, physical, and temporal differences these species are able to
coexist. Pure stands of jack pine had the greatest amount of basal area; however, the
variable spatial distribution of the species in these stands did not allow pine and spruce
to take advantage of individual species differences. The silvics of these species do
suggest that there is potential for mixed stands composed of black spruce and jack pine
to be more productive than their pure counterparts. Research on competition and
thinking about how these two species are able to coexist is a first step toward facilitating
management of spruce-pine mixtures in northern Ontario. The next step to complete the
story is to implement studies that assess the potential gains in productivity in these
stands to encourage policymakers and forest managers to support conifer mixedwood
management. It is recommended that forest practitioner’s managing jack pine — black
spruce mixtures establish stands on sites of medium fertility, at relatively high densities
using a fine-grained approach with unequal species proportions (Figure 1).

These results denote responses at a relatively early age, prior to stem exclusion.
Long-term measurements are required to track species interactions along all stages of
stand development. It is recommended that future studies use managed stands so that
species mixtures can be more carefully controlled and differences between species can
be maximized. In nature it can be difficult to find even species mixtures, especially if a
site favours one species, even slightly, over another. Therefore, the results and
inferences taken from this study relate to the specific conditions of the experimental sites
and should not be widely extrapolated to other sites, species-mixtures, and stand

conditions.
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RECONNAISSANCE DATA COLLECTION
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Table 18. Summary stand statistics from reconnaissance data collection. The mean

represents the average from five plots per stand and site type.

Rel. Rel.
Mean  Mean Freq. Freq.
Transect Ht. dbh Density sph BA BA Total
1D Species (m) (cm) (sph) (%) (mz) (%) BA
GbSb Spruce 5.66 6.5 3100 99 0.038 49
Pine : 1.9 3100 1 0.040 51 6.17
GbPj Spruce  7.13 7.4 2900 4 0.085 47
Pine 12.29 10.6 2900 87 0.096 53 13.08
Spruce 5.78 6.6 2300 33 0.040 19
GOMW Pine 12.56 14.1 2300 59 0.170 81 13.05
GrSh Spruce  5.96 7.0 3000 99 0.044 92
Pine . 2.3 3000 1 0.004 8 7.24
GrPi Spruce  3.49 33 3700 35 0.012 10
Pine 9.32 10.6 3700 65 0.104 90 10.4
Spruce  4.97 51 4400 44 0.024 21
OMW " bine 967 100 4115 56 0090 79  11.97
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APPENDIX III

SUMMARY OF ANALYSIS OF VARIANCE RESULTS FOR BLACK SPRUCE

Table 21. Summary of ANOVA components for black spruce root biomass.

Sum of
Source df Squares Mean Square  F_y Fored Sig.
Site 1 0.0014 0.0014 0.18 0.6715
Stand Type 1 0.1099 0.1099 13.90 0.0003
Layer 6 0.4017 0.0669 8.47 <.0001
Site*Stand Type 1 0.0005 0.0005 0.06 0.8072
Site*Layer 6 0.0381 0.0063 0.80 0.5704
Stand Type*Layer 6 0.1741 0.0290 3.67 0.0025 *
Site*Stand 6 0.0078 0.0013 0.17  0.9853
Type*Layer

*Denotes a significant relationship

Table 22. Summary of ANOVA components for percentage of black spruce

root biomass.
Sum of

Source d.f Squares Mean Square Feae Fored Sig.
Site 1 0.0031 0.0031 0.04 0.8482

Stand Type 1 11.4294 11.4294 13523 <.0001 *
Layer 6 0.5954 0.0992 1.17 0.3279
Site*Stand Type 1 0.0192 0.0192 0.23 0.6350
Site*Layer 6 0.2521 0.0420 0.50 0.8089

Stand Type*Layer 6 0.4575 0.0763 0.90 0.4973
Site*Stand 6 0.1907 0.0318 0.38 0.8923

Type*Layer

*Denotes a significant relationship
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APPENDIX IV

SUMMARY OF ANALYSIS OF VARIANCE RESULTS FOR JACK PINE

Table 23. Summary of ANOVA components for jack pine root biomass.

Sum of
Source df Squares Mean Square Feac Fired Sig.
Site 1 0.0108 0.0108 1.58 0.2114
Stand Type 1 0.0035 0.0035 0.51 0.4765
Depth 6 0.5155 0.0859 12.56 <.0001 *
Site*Stand Type 1 0.0173 0.0173 2.53 0.1144
Site*Depth 6 0.0303 0.0050 0.74 0.6206
Stand Type*Depth 6 0.0749 0.0125 1.83 0.0992
Site*Stand 6 0.0244 0.0041 0.59 0.7342
Type*Depth

*Denotes a significant relationship

Table 24. Summary of ANOVA components for percentage of jack pine root biomass.

Sum of

Source df Squares Mean Square  F_y. Fored Sig.
Site 1 0.0205 0.0205 0.52 0.4722

Stand Type 1 0.3302 0.3302 8.37 0.0045 *
Depth 6 0.8148 0.1358 3.44  0.0035 *
Site*Stand Type 1 0.1035 0.1035 2.62  0.1077
Site*Depth 6 0.2322 0.0387 098 0.4412

Stand Type*Depth 6 1.1393 0.1899 4.81 0.0002 *
Site*Stand 6 0.2559 0.0427 1.08 0.3774

Type*Depth

*Denotes a significant relationship
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APPENDIX V ROOT BIOMASS STATISTICS BY STAND TYPE

Table 25. Summary of root biomass statistics by stand type and species.
Stand Depth Root biomass Root Biomass
Species Type {em) % Std. Dev. g/100 g of soil Std. Dev.
Organic 0.387 0.127 0.038 0.023
0to5 0.165 0.071 0.042 0.021
5to 10 0.182 0.047 0.022 0.005
Mw 10to 15 0.218 0.033 0.014 0.004
15t020 0.061 0.059 0.010 0.010
20to30 0.025 0.015 0.001 0.001
b 30to 45 0.000 0.000 0.000 0.000
Organic 0.894 0.071 0.241 0.062
Oto5 0.709 0.102 0.179 0.062
5to 10 0.875 0.086 0.095 0.019
Pure 10to 15  0.667 0.139 0.023 0.012
15t0 20 0.706 0.117 0.008 0.004
20to30 0.857 0.120 0.002 0.001
30to45 0.778 0.104 0.004 0.001
Organic 0.507 0.095 0.507 0.011
Oto5 0.810 0.043 0.185 0.028
5to 10 0.863 0.039 0.205 0.059
MW 10to 15 0.920 0.027 0.110 0.022
15t020 0.892 0.054 0.058 0.018
20to30 0.963 0.027 0.042 0.016
pi 30to45 0.863 0.081 0.014 0.004
Organic 0.932 0.032 0.932 0.024
Oto5 0.922 0.059 0.162 0.021
5to 10 0.992 0.008 0.141 0.022
Pure 10to 15 0.803 0.087 0.069 0.015
15t0o 20 0.997 0.003 0.084 0.023
20to30 0.834 0.112 0.017 0.005
30to45 0.976 0.023 0.027 0.009




