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Abstract

This thesis consists of two separate topics involved with Golay complementary sequences.

In the first part, we present results of an experimental investigation where the distribution

of peak-to-average power ratio (PAPR) in downlink MC-CDMA systems is modeled by the

generalized extreme value (GEV) distribution. Two orthogonal sets of sequences, Walsh-

Hadamard and Golay complementary sequences, are used in spreading processes in the sys-

tem. Then the parameters of the GEV distribution are estimated for the PAPR distribution.

Through intensive numerical results, it is shown that the GEV distribution is an accurate

model of the PAPR distribution of MC-CDMA systems. Also, the statistically estimated

GEV distribution parameters for the PAPR reveal that when the number of subcarriers in-

creases, the PAPR distributions converge to the Gumbel distribution.

In the second part of this thesis, a new (N , K) partial Fourier codebook is constructed,

associated with a binary sequence obtained by an element-wise multiplication of a pair of

binary Golay complementary sequences. In the codebook, N = 2m for a positive integer

m, and K is approximately N
4

. It is shown that the maximum magnitude of inner products

between distinct code vectors is nontrivially bounded in the codebook, which is approximately

up to
√

6 times the Welch bound equality for large N = 2m with odd m. Finally, the new

codebook is employed as a deterministic sensing matrix for compressed sensing, where its

recovery performance is tested through numerical experiments.
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Part I

Modeling PAPR of MC-CDMA by

Generalized Extreme Value

Distribution



Chapter 1

Introduction I

Multicarrier code-division multiple access (MC-CDMA) [1] is a technique that combines the

advantage of orthogonal frequency division multiplexing (OFDM) and code-division multiple

access (CDMA) to offer its ability to combat against frequency-selective multipath fading

and to utilize spectrum resource efficiently. However, the high peak-to-average power ratio

(PAPR) inherited from OFDM requires stringent linearity specifications of the power amplifier

and limits its applications. Therefore, many researches have been targeted on the PAPR

reduction in MC-CDMA systems, e.g., [2]-[4].

Recently, studies in [5] and [6] derived PAPR upper bounds for MC-CDMA system em-

ploying Reed-Muller codes [7] and Golay complementary sequences [8], respectively. From a

statistical point of view, the theoretical upper bound of PAPR is intrinsically a rare event,

and as the number of carriers and users increases, the probability of the occurrence of the

theoretically highest PAPR becomes negligible. On the other hand, it turned out that a

statistical distribution which allows a more accurate and comprehensive characterization of

the PAPR of multicarrier communications [9]. In [10], the extreme value theory (EVT) of

Chi-square random processes was first employed to derive the peak-to-mean envelope power

ratio (PMEPR) distribution of OFDM signals. Then, a general and accurate expression

of the distribution of PAPR in OFDM systems with unequal power allocation to different

subcarriers was presented in [11].
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1.1 Motivations

Lately, [12] and [13] proposed numerical approximations of the PAPR distribution in MC-

CDMA systems, utilizing Gaussian and Gamma distributions, respectively. Motivated by

these previous works, we adopt a statistical approach to characterize the PAPR distribution

of downlink MC-CDMA systems where new statistical models are employed. Since the MC-

CDMA is essentially a pseudo-random coded OFDM system, it is simple logic that we extend

the utilizing of the EVT family distributions for modeling PAPR of the MC-CDMA. The

generalized extreme value (GEV) distribution is a powerful and robust model for studying

the tail behavior of a distribution, which is the scenario for modeling the distribution of the

PAPR. By extracting the three parameters of GEV distribution, we shall observe the trends

of the PAPR distribution with different system configurations. Moreover, by proposing the

PAPR model based on the GEV parameters, we may predict the PAPR distribution with

high accuracy for various system configurations to assist the hardware designs.

1.2 Contributions

In this part of the thesis, we first statistically model the PAPR distribution of downlink

MC-CDMA systems with the GEV distribution. Then we compare the estimation results with

different spreading sequences in the MC-CDMA systems, namely, Golay complementary and

Walsh-Hadamard sequences. Through intensive numerical experiments, it is shown that the

GEV distribution is an accurate model to characterize the PAPR distribution of MC-CDMA.

Based on the observed parameters’ behaviors, we provide sequence-specific mathematical

equations for modeling for the PAPR distribution, where the only variable in the model

is the number of subcarriers, Nsc. The high closeness between the estimated PAPR and

numerical PAPR provide evidences of the validation of the modeling. Moreover, the statisti-

cally estimated GEV distribution parameters for the PAPR reveal that when the number of

subcarriers increases, both PAPR distributions converge to the Gumbel distribution [14].

The contributions in this part of the thesis can be summarized as follows.

• The GEV distribution is utilized to statistically model the PAPR distribution of down-

link MC-CDMA systems.

• The parameters’ trends are estimated in the GEV modeling of PAPR based on numerical
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experiments, for Golay complementary and Walsh-Hadamard sequences spreading MC-

CDMA.

• Sequence-specific mathematical expressions are established from the observed GEV pa-

rameters’ patterns for the PAPR distributions with the variable of Nsc.

• The trend of the PAPR distributions converging to the Gumbel distribution is observed

for large Nsc.



Chapter 2

Backgrounds I

2.1 M-PSK modulation scheme

A digital modulation scheme maps a binary sequence to a signal for transmission over a

communication channel. The M - phase-shift keying (MPSK) is a memoryless digital modula-

tion scheme. Specifically, it maps each k bits in the binary sequence into one of the M signal

waveforms sm(t), 1 ≤ m ≤M , where M = 2k, regardless of the previous mapped signals. In

the digital phase modulation, the M signal waveform are represented as [15]

sm(t) = Re[g(t)ej
2π(m−1)

M ej2πfct]

= g(t) cos

(
2πfct+

2π(m− 1)

M

)
= g(t) cos

(
2π(m− 1)

M

)
cos 2πfct− g(t) sin

(
2π(m− 1)

M

)
sin 2πfct (2.1)

where g(t) is the signal pulse,

g(t) =

 1 0 ≤ t ≤ Ts,

0 otherwise.

with the signal pulse energy ξg and the signaling interval Ts. We note that g(t) cos 2πfc and

−g(t) sin 2πfc are orthogonal, and therefore we can use two orthogonal basis,

φ1(t) =

√
2

ξg
g(t) cos 2πfct

φ2(t) = −

√
2

ξg
g(t) sin 2πfct
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Therefore, the channel equalization is simplified. This robustness is very attractive in high

speed data communications.

Historically, analogue OFDM design was first introduced in 1960s [16] [17]. In 1971

[18], discrete Fourier transform (DFT) version of OFDM was proposed for cost-effective

implementations, and later in 1981 it was realized by fast Fourier transform (FFT) [19].

OFDM is the core component of many standards for communication systems, such as

high-speed/asymmetric digital subscriber lines (HDSL/ADSL) for wired applications. In the

1990s, its wireless applications tended to focus on broadcast systems such as Digital Video

Broadcasting (DVB) [20] and Digital Audio Broadcasting(DAB) [21], and relatively low-power

system such as IEEE 802.11a [22]. Those applications benefit from the low complexity of the

OFDM receiver, while not requiring a high-power transmitter in the consumer terminals [23].

This avoids one of the main disadvantages of OFDM, a much higher peak-to-average power

ratio than that of single carrier systems, which needs stringent linearity specifications of the

power amplifier and raise the cost of hardware implementation. Recently, it was in 3GPP

Long Term Evolution (LTE) [24] that a cellular mobile communication standard is first based

on OFDM. Since then, tremendous research and develop efforts enabled the OFDM to find

its way into a mature and dominate modulation and multiple-access technique for modern

telecommunications.

Figure 2.2 shows the typical block diagram of an OFDM system [25]. In each time

interval Ts, the input modulated signal frame [a0, . . . , aN−1] is generated from N independent

complex modulators and converted into N parallel data streams. Then each branch is carrier

modulated with one of the N subcarriers. Finally, these sub-branch signals are added, in

order to form a composite transmitted signal. Based on Figure 2.2, the baseband signal s(t)

is represented by

s(t) =
N−1∑
n=0

ane
j2πn·∆ft, 0 ≤ t ≤ Ts, (2.3)

where Ts is an OFDM symbol duration, and fi = i ·∆f, 0 ≤ i ≤ N − 1 is the ith subcarrier

frequency for ∆f = 1
Ts

.
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2.3 Multi-carrier CDMA

Multi-carrier code division multiple access (MC-CDMA) has been proposed as a promis-

ing multiple access scheme for the next generation mobile communications. It can be viewed

as the combination of direct sequence (DS) CDMA and OFDM multiple access techniques.

Generally, the combination can be categorized based on their signal-spreading models [25],

Time (T)-domain spread MC-CDMA (MC-DS-CDMA) [26] - [28] and Frequency (F)-domain

spread MC-CDMA [29] [30] [2]. The system we use here is F-domain spread MC-CDMA.

More specifically, it uses orthogonal spreading sequences to spread the data in frequency do-

main before the subcarrier modulation process of OFDM. Because of using OFDM scheme,

the MC-CDMA inevitably has some disadvantages as OFDM such as difficulty in subcar-

rier synchronization, sensitivity to frequency offset and high peak-to-average power ratio.

However, this combination has major advantages that it can lower the symbol rate in each

subcarrier so that a longer symbol duration makes it easier to quasi-synchronize the trans-

missions. Besides, the receiver can always employ all the received signal energy scattered in

the frequency domain [1].

An MC-CDMA transmitter is shown in Figure 2.3, where we simplify the system to

one user case. The user’s kth data symbol ak is first spread by a unique spreading se-

quences, [d0, d1, . . . , dN−1]. Then the spread signal [akd0, akd1, . . . , akdN−1] is input to serial-

to-parallel to continue the OFDM procedure. The baseband signal s(t) for this simple MC-

CDMA scheme is represented by

s(t) =
N−1∑
n=0

akdne
j2πfnt, 0 ≤ t ≤ Ts, (2.4)

where Ts is an OFDM symbol duration and fi = i ·∆f, 0 ≤ i ≤ N − 1 is the ith subcarrier

frequency for ∆f = 1
Ts

. For a general MC-CDMA transmitter diagram, please see Figure 3.1

in Chapter 3.

2.4 Peak-to-average power ratio (PAPR)

The peak-to-average power ratio (PAPR) is one measure of the high dynamic range of

the signal waveforms [25]. The PAPR of a signal s(t) in the interval of 0 ≤ t ≤ Ts is defined
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as [31]

PAPR(s(t)) ,
Peak power

Average power
=

max0≤t≤Ts |s(t)|2

E[|s(t)|2]
=

max0≤t≤Ts |s(t)|2
1
Ts

∫ Ts
0
|s(t)|2dt

(2.5)

where E[·] denotes the ensemble average.

Example 1. Let s(t) = sin(t), according to the definition in (2.5) above, we can get

max
0≤t≤2π

| sin(t)|2 = 1.

Meanwhile,

E[|s(t)|2] =
1

2π

∫ 2π

0

| sin(t)|2dt

=
1

2π

∫ 2π

0

1− cos(2t)

2
dt

=
1

2
.

Then,

PAPR(sin(t)) = 3 dB.

As mentioned in previous sections, one of the major drawbacks of OFDM and MC-CDMA

systems is that the multi-carrier signals have potentially high PAPR with large number of

subcarriers. As shown in (2.3) and (2.4), these multicarrier signals are essentially the sum of

sinusoids. It is inevitable that the peaks of these sinusoids occur at the same time instance

and cause large PAPR in the envelop of s(t). When passed through a nonlinear device, such

as a transmit power amplifier, the signal may suffer significant spectral spreading and in-band

distortion [32].

There have been a large amount of research efforts to reduce the PAPR of a transmitted

OFDM or MC-CDMA signal [33]. These techniques can be broadly categorized into three

main concepts [23]: clipping and filtering [32] [34], selected mapping [35], and coding [2] [31].

From a statistical point of view, as the number of subcarriers and users increases, the prob-

ability of the occurrence of the theoretically highest PAPR becomes negligible [9]. Therefore,

a statistical distribution which allows a more accurate and comprehensive characterization of

the PAPR of OFDM and MC-CDMA has been taken into consideration. Several works on
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theoretical approximations of the PAPR distribution of OFDM systems have been proposed

[9]-[11]. In [10], the extreme value theory (EVT) of Chi-square random processes was first

employed to derive the peak-to-mean envelope power ratio (PMEPR) distribution of OFDM

signals. Then, a general and accurate expression of the distribution of PAPR in OFDM sys-

tems with unequal power allocation to different subcarriers was presented in [11]. To the best

of our knowledge, the only works to date attempting to model the PAPR distribution in MC-

CDMA system are [12] and [13], where Gaussian and Gamma distributions were respectively

employed in their numerical approaches.

2.5 Complementary cumulative distribution function (CCDF)

Sometimes, it is useful to study how often the random variable is above a particular

level. This is expressed as the tail distribution or the complementary cumulative distribution

function (CCDF), defined as

F̄ (x) = P (X > x) = 1− F (x).

It is clear that the CCDF curve gives us a more detailed focus on the upper tail of the

distribution compared to the CDF (see Chapter 3). In the context of PAPR modeling, where

the upper tail is more interesting, we adopt the CCDF to plot the PAPR curves in dB.

2.6 Spreading sequences

In the MC-CDMA, each user is assigned with a unique sequence to spread its data symbol

in the frequency domain. Different user’s spreading sequence should keep orthogonal to each

other. If an MC-CDMA system is perfectly synchronized, the orthogonality allows for zero-

correlation between the spreading codes and zero mutual interference among different user’s

data at the receiver side. In this section, we introduce two of the well-known classes of the

orthogonal sequences, namely, Walsh-Hadamard sequences (WHS) and Golay complementary

sequences (GCS). For detailed discussion on spreading sequences for MC-CDMA, we refer to

[2] and [36].

An orthogonal set of WHS is generated by the Walsh-Hadamard matrix. A 2m × 2m

Walsh-Hadamard matrix is recursively constructed by
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H2m =

 H2m−1 H2m−1

H2m−1 −H2m−1

 , H1 = [1].

Then, the WHS of length N = 2m are given by each row of the matrix H2m , where a pair of

rows are mutually orthogonal.

In a similar manner, an orthogonal set of GCS can be recursively obtained by

G2m=

 G2m−1 G2m−1

G2m−1 −G2m−1

 , G2=

 +1 +1

+1 −1

 ,
where G2m−1 = [ A −B ] for G2m−1 = [ A B ] where A and B are 2m−1×2m−2 submatrices

[31]. Then, a pair of rows from matrix G2m are mutually orthogonal. The GCS of length

N = 2m are given by each row of the matrix G2m .

Example 2. H8 and G8 are recursively constructed as below.

H8 =



+1 +1 +1 +1 +1 +1 +1 +1

+1 −1 +1 −1 +1 −1 +1 −1

+1 +1 −1 −1 +1 +1 −1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 +1 +1 −1 −1 −1 −1

+1 −1 +1 −1 −1 +1 −1 +1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 −1 +1 −1 +1 +1 −1



,

G8 =



+1 +1 +1 −1 +1 +1 −1 +1

+1 −1 +1 +1 +1 −1 −1 −1

+1 +1 −1 +1 +1 +1 +1 −1

+1 −1 −1 −1 +1 −1 +1 +1

+1 +1 +1 −1 −1 −1 +1 −1

+1 −1 +1 +1 −1 +1 +1 +1

+1 +1 −1 +1 −1 −1 −1 +1

+1 −1 −1 −1 −1 +1 −1 −1



.
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One can check that H8 ·HT
8 = 8 · I8 and G8 ·GT

8 = 8 · I8, where I8 is the 8×8 identity matrix.

Hence, a pair of rows from each matrix are mutually orthogonal.

2.7 Generalized extreme value (GEV) distribution

2.7.1 The Fish-Tippett theorem

The extreme value theory (EVT) focuses on the statistics of rare events, e.g. the maxi-

mum value of samples. The main result of extreme value theory is called the Fisher-Tippett

theorem [14], which states that the distribution of the maximum value in independent iden-

tically distribute (i.i.d.) samples, after shifted and scaled, tends to fall into one of the three

families of distributions. Specifically, let Mn denote the maximum value of i.i.d. samples of

size n. If there exist sequences an and bn, such that the limit

F (x) = lim
n→∞

Pr(
Mn − bn
an

≤ x)

exists for all x, then this limit will be one of the following three forms

F1(x) = exp(− exp(−x)), (2.6)

F2(x) =

 0, if x ≤ 0

exp(−x−α), if x > 0
(2.7)

F3(x) =

 exp(−(−x)−α), if x ≤ 0

1, if x > 0
(2.8)

which are Gumbel, Fréchet and Weibull distributions [14], respectively, and α > 0 is the tail

index.

2.7.2 GEV distribution

The above three distributions can be unified into a single continuous one, known as the

GEV distribution, which has the following cumulative distribution function (CDF)

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]}− 1
ξ

, (2.9)

where ξ, σ, and µ are the shape, scale, and location parameters, respectively [37]. Note that

if ξ = 0, (2.9) gives

G(x) = exp

[
− exp

(
−x− µ

σ

)]
, (2.10)

which is the Gumbel distribution, or the type I extreme value distribution.
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The probability density function (PDF) is, consequently

g(x) =
1

σ
·
[
1 + ξ

(
x− µ
σ

)]− 1
ξ
−1

· exp

{
−
[
1 + ξ

(
x− µ
σ

)]}− 1
ξ

. (2.11)

Again, note that if ξ = 0, (2.11) gives

g(x) =
1

σ
· exp(−x− µ

σ
) · exp

[
− exp

(
−x− µ

σ

)]
. (2.12)

Figure 2.4 shows the examples of probability density functions for the three basic forms of

the generalized extreme value distribution, where (σ, µ)=(1, 0), ξ takes the values −0.5, 0

and 0.5, respectively.

2.8 Maximum likelihood estimation of GEV

2.8.1 Maximum likelihood estimation

In statistics, given a distribution model and a set of parameters, the corresponding CDF

or PDF will show the probabilities of occurrence for certain data. In reality, however, it

is often the case that we face a reversed problem: the model of distribution is known and

we have observed samples and but we don’t know the parameters of the distribution model.

To solve this problem, we need find the parameters of the distribution model, i.e. PDF,

that is most likely to produce the observed data. The procedure commonly used to estimate

parameters is the maximum likelihood estimation (MLE).

Suppose there is an i.i.d sample of random variable X, x1, x2, · · · , xN of size N , coming

from an unknown distribution function f0(x). However, we know that the function belongs

to a certain family of distributions, e.g. f(x|θ), (θ ∈ Θ). So f0(x) = f(x|θ0). The value of θ0

is unknown but referred to as the “true value” of the parameter. Note here θ can be a vector.

The joint density function for all the observations, namely, x1, x2, · · · , xN , will be

f(x1, x2, · · · xN |θ0) = f(x1|θ0) · f(x2|θ0) · · · f(xN |θ0). (2.13)

By considering x1, x2, · · · , xN are “fixed parameters”, whereas θ is a variable that can freely

vary the function’s value, we introduce the likelihood function, L(θ), defined as [38]

L(θ) = f(x1, x2, · · · xN |θ) =
N∏
i=1

f(xi|θ) (2.14)
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ξ
ξ
ξ

Figure 2.4: Probability density functions of GEV distribution, where (σ, μ)=(1, 0), ξ takes the

values −0.5, 0 and 0.5.



CHAPTER 2. BACKGROUNDS I 18

The value θ̂ that maximizes the likelihood function is called the maximum likelihood esti-

mator of θ0. Because the logarithmic function lnx is a monotonically increasing function

of x, maximizing L(θ) is equivalent to maximizing lnL(θ), which is called the log-likelihood

function. In practice, however, it is usually not possible to obtain an analytic form solution

for the MLE estimation, especially when the model involves many parameters and its PDF is

highly non-linear. In such situations, the MLE estimation must be solved numerically using

nonlinear optimization algorithms [39]. This is the case for MLE in the GEV distribution as

shown below.

2.8.2 Parameter estimation in GEV modeling

From (2.11) and (2.14), we may derive the log-likelihood function of the GEV distribution.

Assume ξ 6= 0, let ui = 1 + ξ
(
xi−µ
σ

)
, we have ln [L(ξ, σ, µ)] as

ln [L(ξ, σ, µ|x1, x2, · · · xN)] = ln

[
K∏
i=1

g(xi)

]

= ln

[
N∏
i=1

1

σ
· (ui)−

1
ξ
−1 · exp(−u

− 1
ξ

i )

]

= −N ln(σ)− (
1

ξ
+ 1)

N∑
i=1

ln(ui)−
N∑
i=1

u
− 1
ξ

i . (2.15)

When ξ = 0, the log-likelihood function will be

ln [L(ξ, σ, µ|x1, x2, · · · xN)] = −N ln(σ)−
N∑
i=1

[
(
xi − µ
σ

) + exp(
xi − µ
σ

)

]
. (2.16)

As previously mentioned, the log-likelihood function of the GEV distribution contains multi-

ple parameters and hard to derive an analytic form for MLE. Thus, in the following chapters,

we use numerical algorithm, specifically, function gevfit [40] in Matlab to search for the pa-

rameters ξ, σ, µ for the peak of the function (2.15) or (2.16) in Chapter 3.



Chapter 3

GEV Model of PAPR Distribution

3.1 System Model

A generalized downlink MC-CDMA system model is shown in Figure 3.1, where each of

L users actively transmits K modulation symbols in an OFDM symbol. After a serial-to-

parallel (S/P) conversion, the K modulated symbols al = [a
(0)
l , . . . , a

(K−1)
l ] of the lth user are

spread by a user-specific sequence dl = [d
(0)
l , . . . , d

(N−1)
l ] of length N , where d

(n)
l ∈ {+1,−1}.

The spread data symbols of L users are added, and interleaved in the frequency domain to

achieve frequency diversity. Then the N ·K parallel data are input to IFFT of size N ·K to

generate an OFDM symbol. Finally, the baseband MC-CDMA signal s(t) can be written as

s(t) =
K−1∑
k=0

N−1∑
n=0

L−1∑
l=0

a
(k)
l d

(n)
l ej2π(Kn+k)t/Ts , 0 ≤ t ≤ Ts,

where Ts is an OFDM symbol duration. The definition of the peak-to-average power ratio of

s(t) given by

PAPR(s(t)) =
max0≤t≤Ts |s(t)|2

E[|s(t)|2]
,

where E[·] denotes the ensemble average.
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3.2 GEV modeling results

In this section, we present experimental results for statistically modeling the PAPR dis-

tribution of MC-CDMA system where Monte Carlo method is used. For each spreading

sequence of length N = 2m, 5 ≤ m ≤ 12, we tested the PAPR distribution of 105 OFDM

symbols by generating random QPSK symbols for each user before the spreading scheme.

We restricted our attention to a fully loaded MC-CDMA system, where the number of active

users L = N .

In what follows, we first demonstrate that the GEV distribution may present a good

model of PAPR of the MC-CDMA system. Then, we estimate the GEV parameters for

various (N, K) pairs using maximum likelihood estimation (MLE) provided by gevfit function

in Matlab. By exploiting the patterns of the empirical GEV parameters, an asymptotic

GEV formula for the distribution model is proposed. Lastly, the comparison of numerical

PAPR results and the estimated PAPR is given, demonstrating the proposed model favorably

describes the PAPR distribution.

Figure 3.2 shows an example of complementary cumulative distribution function (CCDF)

of a fully loaded MC-CDMA system. Using the MLE fitting, we estimate the GEV parameters

of ξ, σ and µ in (2.9) from the empirical distribution and plot the GEV distribution with

these parameters. We observe that the GEV CCDF curves almost overlap the original PAPR’s

CCDF, demonstrating they can accurately characterize the PAPR distribution. The idea we

use the GEV distribution to fit the PAPR is inspired by [10] and [11]. However, due to the

pseudo-random spreading before the IFFT scheme in MC-CDMA, the PAPR distributions

should remain as a GEV style but may have different parameters than those of the OFDM.

To model the PAPR by the GEV distribution, we examine the PAPR distribution for

various (N, K) pairs with given Nsc = N ·K, which is the number of subcarries. Then, we

estimate the GEV parameters from each result in the same manner as in Figure 3.2. Figure

3.3 shows the trends of the GEV parameters as Nsc increases. In Figure 3.3(a), ξ approaches

to 0, which implies the CDF of PAPR is close to the Gumbel distribution for large Nsc.

This convergence verifies the assumption proposed in [10], which claimed the EVT can be

employed to develop the CDF of the PMEPR in a coded OFDM signal. Figure 3.3(b) and

3.3(c) show the tendency of σ and µ as Nsc increases, respectively.
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Figure 3.2: Empirical and GEV estimated PAPR distributions of a fully-loaded MC-CDMA, where

N=256, L=256, K=1.
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ξ

(a) ξ’s trend

Figure 3.3: GEV parameters estimation in a fully loaded MC-CDMA system.
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σ

(b) σ’s trend

Figure 3.3: GEV parameters estimation in a fully loaded MC-CDMA system.
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(c) µ’s trend

Figure 3.3: GEV parameters estimation in a fully loaded MC-CDMA system.
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Note that each trend of the GEV distribution parameters has a similar pattern for various

K. In particular, we observe that when the system is spread with GCS, the GEV parameters

are overlapped for various (N, K) pairs, inferring the PAPR distributions are almost identical

for the same number of subcarriers. On the other hand, when the system is spread with WHS,

its PAPR will increase slightly by K as indicated by the trends in σ and µ.

Based on the aforementioned patterns of parameters from the GEV estimation, we pro-

pose a simple and asymptotic GEV model of the PAPR distribution for large Nsc. We

assume ξ = 0, σ = 1 in both GCS and WHS cases. Then, we use linear functions of log2Nsc

to represent µ, which is clear from Figure 3.3(c). We set µGCS = 0.717 log2Nsc + 0.708

and µWHS = 0.739 log2Nsc − 0.014 from K = 1 case, which shows good approximations to

empirical results. To sum up, the proposed CCDF of PAPR is given as

Pr(PAPR ≥ x) = F̄ (x) = 1− exp(− exp(−x+ µs))

=

1− exp(− exp(−x+ 0.717 log2Nsc + 0.708), GCS spread

1− exp(− exp(−x+ 0.739 log2Nsc − 0.014), WHS spread

=

1− exp(−e−x · 2.031 ·N1.034
sc ), GCS spread

1− exp(−e−x · 0.986 ·N1.067
sc ), WHS spread.

(3.1)

For given x and Nsc, (3.1) implies that the overall PAPR in the WHS case is lower than

the GCS case, which is confirmed by our numerical results. Figures 3.4 and 3.5 illustrate the

CCDF of this model where Nsc equals to 256 and 1024, respectively. It is shown that the

proposed model aligns well with the empirical CCDF curves, especially in GCS spread MC-

CDMA. The GEV models are also compared to the EVT model for OFDM, given by equation

(17) in [10], which gives a single estimation for coded OFDM, while (3.1) distinguishes the

PAPR estimates for GCS and WHS. To further evaluate this model numerically, we compare

the empirical 99.9% PAPR or PAPR0 for which Pr(PAPR > PAPR0) = 10−3, and the

estimated PAPR or PAPRe = F̄−1(10−3). In Table 3.1, the close agreement between the

PAPR0 and the PAPRe demonstrates that the GEV distribution can provide an accurate

model for the PAPR distribution of MC-CDMA. Moreover, the table also demonstrates that

when fully loaded, the WHS MC-CDMA shows better PAPR performance than the GCS

MC-CDMA.
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Empirical PAPR. (L,N,K)=(128,128,2), GCS
Empirical PAPR. (L,N,K)=(64,64,4), GCS
Empirical PAPR. (L,N,K)=(32,32,8), GCS
Empirical PAPR. (L,N,K)=(16,16,16), GCS
Eq.(17) in [10]
GEV Model of Eq.(3.1), Nsc=256, GCS

(a) GCS spreading

Figure 3.4: Comparison of the proposed GEV model and empirical PAPR distribution where Nsc =

256, K = 2, 4, 8 and 16.
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Empirical PAPR. (L,N,K)=(128,128,2), WHS
Empirical PAPR. (L,N,K)=(64,64,4), WHS
Empirical PAPR. (L,N,K)=(32,32,8), WHS
Empirical PAPR. (L,N,K)=(16,16,16), WHS
Eq.(17) in [10]
GEV Model of Eq.(3.1), Nsc=256, WHS

(b) WHS spreading

Figure 3.4: Comparison of the proposed GEV model and empirical PAPR distribution where Nsc =

256, K = 2, 4, 8 and 16.
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Empirical PAPR. (L,N,K)=(512,512,2), GCS
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Empirical PAPR. (L,N,K)=(64,64,16), GCS
Eq.(17) in [10]
GEV Model of Eq.(3.1), Nsc=1024, GCS

(a) GCS spreading

Figure 3.5: Comparison of the proposed GEV model and empirical PAPR distribution where Nsc =

1024, K = 2, 4, 8 and 16.
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Empirical PAPR. (L,N,K)=(512,512,2), WHS
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Empirical PAPR. (L,N,K)=(128,128,8), WHS
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Eq.(17) in [10]
GEV Model of Eq.(3.1), Nsc=1024, WHS

(b) WHS spreading

Figure 3.5: Comparison of the proposed GEV model and empirical PAPR distribution where Nsc =

1024, K = 2, 4, 8 and 16.
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Nsc

PAPR0
PAPRe

K = 1 K = 2 K = 4 K = 8 K = 16

64 10.626 10.580 10.639 10.602 10.607 10.761

128 11.021 10.996 10.957 10.985 11.039 11.016

256 11.259 11.234 11.261 11.215 11.227 11.254

512 11.500 11.486 11.499 11.466 11.530 11.481

1024 11.694 11.741 11.751 11.706 11.734 11.697

2048 11.921 11.994 11.978 11.905 11.919 11.903

4096 12.129 12.168 12.179 12.163 12.182 12.099

(a) GCS spreading

Nsc

PAPR0
PAPRe

K = 1 K = 2 K = 4 K = 8 K = 16

64 9.708 9.939 10.082 10.287 10.425 10.543

128 10.205 10.364 10.519 10.648 10.787 10.817

256 10.637 10.740 10.891 11.000 11.105 11.076

512 10.956 11.101 11.222 11.297 11.367 11.319

1024 11.313 11.391 11.484 11.602 11.649 11.550

2048 11.605 11.664 11.791 11.786 11.835 11.769

4096 11.837 11.918 11.969 11.995 12.026 11.978

(b) WHS spreading

Table 3.1: Comparison of the empirical PAPR0 and the estimated PAPRe in dB in a fully loaded

MC-CDMA system.
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Introduction II

A complex (N, K) codebook C is a set of N vectors in K-dimensional vector space. For

its applications, we need a codebook C minimizing Imax(C) or the maximum magnitude of

inner products between a pair of distinct code vectors. For instance, small Imax(C) guar-

antees low mutual interference in synchronous CDMA systems while a codebook C is used

to provide N different codes for multiple users or channels [41]. Also a codebook C forms

the Grassmanian frame with minimum achievable Imax(C) for the applications to multiple-

input-multiple-output (MIMO) transmit beamforming [42]. Recently, compressed sensing

[43] requires a measurement matrix with low coherence [44] that is defined as the maximum

magnitude of inner products of the column vectors. Clearly, (N, K) codebook C presents a

K ×N measurement matrix with low coherence, employing each code vector as a column of

the matrix.

In particular, if Imax(C) meets the equality of the Welch bound [45], then C is called

a maximum-Welch-bound-equality (MWBE) codebook. The MWBE codebook, also known

as an equiangular tight frame [46], has been popular in a variety of research areas, e.g.,

communications, combinatorial designs, signal processing, and quantum computing.

Unfortunately, constructing the MWBE codebook in an analytic way is known to be

extremely difficult [47]. Numerous attempts have been made to present a near-optimal code-

book C where Imax(C) is very close to or slightly higher than the Welch bound equality. A

number of construction examples based on codes and signal sets can be found in [47]. Ding

and Feng also presented several near-optimal codebooks from almost difference sets [48][49].
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4.1 Motivations

Recently, near-optimal partial Fourier and Hadamard codebooks associated with binary

Sidelnikov sequences [50] have been presented in [51]. Besides, the author revealed that

constructing a partial Fourier codebook C with low Imax(C) is equivalent to finding a binary

sequence where the maximum magnitude of its N -point inverse discrete Fourier transform

(IDFT) is as small as possible. In this sense, to find a near-optimal partial Fourier codebook

with small K
N

ratio is also equivalent to find a binary sequence with small Hamming weight.

Moreover, researches on deterministic compressed sensing matrix [52][53] raised requirement

for constructing K × N near-optimal matrix where K < N
2

. Inspired by this requirement,

we are motivated to construct a new (N, K) partial Fourier codebook C associated with

multiplied binary Golay complementary sequences. The new Fourier codebook can be directly

used as a deterministic compressed sensing matrix, arranging each code vector as a column

of the matrix. Note the idea behind this work is that we expect the multiplied binary

Golay complementary sequences to inherit the low IDFT characters of the traditional Golay

complementary sequences and additionally, their Hamming weights should be lower than

those of the traditional Golay complementary sequences.

4.2 Contributions

In this part of the thesis, we first deliberately construct a new multiplied binary Golay

complementary sequence. Specifically, for a pair of Golay complementary sequences a and b

of length N , a multiplied Golay complementary sequence u is simply given by an element-

wise multiplication, so the Hamming weight of u should be lower than those of the regular

Golay complementary sequences. Then associated with u, certain rows are selected from the

N -point IDFT matrix to construct the new partial Fourier codebook, where the set of the

selected row indices is equivalent to the index set of nonzero entries of the binary sequence u.

Using the N -point IDFT of u, we show that Imax(C) is nontrivially bounded or at most
√

6

times the Welch bound equality for large N = 2m when m is odd and K = N
4

. The codebook

of N = 2m will be of interest since it allows efficient FFT techniques in practice.

Then the (N, K) partial Fourier codebook C associated with multiplied binary Golay

complementary sequences is applied as a K × N deterministic sensing matrix A in com-

pressed sensing [43], where each column of the sensing matrix is a code vector from C. We
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then show that the sensing matrix has the statistical restricted isometry property (StRIP) [53].

Finally, numerical results demonstrate the new sensing matrices, together with the orthogo-

nal matching pursuit (OMP) algorithm [54], empirically achieve reliable recovery performance

for sparsity level of O(K/ logN) from noiseless measurements. Therefore, the partial Fourier

codebooks associated with multiplied Golay complementary sequences may be good candi-

dates for deterministic sensing matrices, allowing efficient FFT processing with favorable

parameter N = 2m and providing reliable recovery performance.

The contributions in this part of the thesis can be highlighted as follows.

• A binary sequence u of length N = 2m is constructed by element-wise multiplication of

two Golay complementary sequences. The upper bound of the N -point IDFT of u is

then theoretically derived.

• A new (N, K) partial Fourier codebook C is constructed associated with sequence u.

The upper bound of Imax(C) is also derived.

• The N -point IDFT value for sequence u for K = N
4

is searched by computer cluster for

large m, and the codebook C associated with these sequences are displayed in Table 6.1.

• The codebook C is applied in compressed sensing as the sensing matrix A, and it is

shown that the codebook has the StRIP property.

• Numerical tests of the sensing matrix A with OMP recovery algorithm are conducted.

The reliable recovery performance of the sensing matrix is demonstrated.



Chapter 5

Backgrounds II

5.1 Boolean functions

Let x = (x0, · · · , xm−1) be a binary vector where xi ∈ {0, 1}, 0 ≤ i ≤ m− 1. A Boolean

function f(x) [7] is defined by

f(x) = f(x0, · · · , xm−1) =
2m−1∑
i=0

ci

m−1∏
l=0

xill (5.1)

where ci ∈ {0, 1} and il is obtained by the binary representation of i =
∑m−1

l=0 il2
l, il ∈ {0, 1}.

Note that the addition in (5.1) is computed modulo-2. In (5.1), the order of the ith monomial

with nonzero ci is given by
∑m−1

l=0 il, and the highest order of the monomials with nonzero ci

is called the degree of the Boolean function f . The associated binary sequence of length 2m

is given by

f = (f0, · · · , f2m−1), where fi = f(i0, · · · , im−1) for i =
m−1∑
l=0

il2
l. (5.2)

In other words, the associated codeword f of length 2m is obtained by the Boolean function

fi while i increases from 0 to 2m − 1.

5.2 Reed-Muller codes

The rth-order Reed-Muller code RM(r, m) is defined by a set of binary codewords of

length 2m where each codeword is generated by a Boolean function of degree at most r [7].

In other words, each codeword in RM(r, m) is the associated codeword of length 2m in (5.2)

where the Boolean function f has the degree of at most r.
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Example 3. To construct RM(1, 3), we can write a Boolean function has the degree of 1 as

f(x) = f(x0, · · · , xm−1) = c0x0 + c1x1 + c2x2 + e (5.3)

If we fix e = 0 for simplicity, and [c0, c1, c2] can be picked as one row from 8 possible

combinations, i.e.,

c =



0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



. (5.4)

On the other hand, from (5.2), a binary codeword from RM(1, 3) is

f = (f(0, 0, 0), f(1, 0, 0), f(0, 1, 0), f(1, 1, 0), f(0, 0, 1), f(1, 0, 1), f(0, 1, 1), f(1, 1, 1)).

(5.5)

We then define

x =


0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

 ,
where each column corresponding the [x0, x1, x2] in (5.5). Clearly, by (5.3), each possible

binary codeword is simply a row in c · x. Totally,

c · x =



0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1



,
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where each row is a binary codeword in RM(1, 3). In the same way, by setting e = 1 in (5.3),

we can derive the other 8 codewords of RM(1, 3).

5.3 Golay complementary sequences

In section 2.6, we have employed the recursive construction of Golay complementary

sequences of length N = 2m. Here we present the direct construction, which is more compre-

hensive.

Theorem 1. [55] Let N = 2m for a positive integer m. Consider a Boolean function of m

variables

f(x0, · · · , xm−1) =
m−2∑
r=0

xπ(r)xπ(r+1) +
m−1∑
r=0

crxr + e (5.6)

where cr, e ∈ {0, 1} and π is a permutation in {0, 1, · · · , m−1}. Associated with the Boolean

function f , a standard-form binary Golay complementary sequence of length N is given by

a = (a0, · · · , a2m−1), where ai = f(i0, · · · , im−1) for i =
∑m−1

l=0 il2
l, where il ∈ {0, 1}.

Clearly, (5.6) produces total m!
2
· 2m+1 = m! · 2m distinct Golay complementary sequences

of length 2m, each of which belongs to the second order Reed-Muller code RM(2, m).

Example 4. Let m = 3, π = {1, 0, 2} and e = 0. According to (5.6), the Boolean function

for the Golay complementary sequence can be expressed as

a(x) = a(x0, x1, x2) = x1x0 + x0x2 + c0x0 + c1x1 + c2x2 + 0 (5.7)

and the binary Golay complementary sequence is given by

a = (a(0, 0, 0), a(1, 0, 0), a(0, 1, 0), a(1, 1, 0), a(0, 0, 1), a(1, 0, 1), a(0, 1, 1), a(1, 1, 1)) (5.8)

Similar to the previous example, we can get 8 possible Golay complementary sequences by

taking coefficients [c0, c1, c2] values through rows in (5.4). So, if [c0, c1, c2] = [0, 0, 0], then
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π(0) π(2) π(m-1)π(1)

Figure 5.1: Graph structure of quadratic forms Q.

first row is u0 = [0, 0, 0, 1, 0, 1, 0, 0]. Eventually, we have

u0

u1

u2

u3

u4

u5

u6

u7



=



0 0 0 1 0 1 0 0

0 0 0 1 1 0 1 1

0 0 1 0 0 1 1 1

0 0 1 0 1 0 0 0

0 1 0 0 0 0 0 1

0 1 0 0 1 1 1 0

0 1 1 1 0 0 1 0

0 1 1 1 1 1 0 1



,

where each row is a binary Golay complementary sequence. If we map these sequences into

bipolar sequences, similar to Example 2, one can check a pair of rows from the matrix are

mutually orthogonal.

5.4 Graph structure of quadratic forms

A quadratic form Q from a Boolean function of m variable x0, x1, · · · , xm−1 is the sum of

the second-order monomials. We can associate a graph G(Q) on m vertices in the quadratic

form Q, where each variable is depicted as a vertex and each monomial is depicted as an edge.

In (5.6), we can depict the quadratic form Q =
∑m−2

r=0 xπ(r)xπ(r+1) of a Golay complementary

sequence as a path on m vertics in Figure 5.1.

5.5 Golay complementary set

With the concept of graph of a quadratic form, the Golay complementary set can be

introduced.

Theorem 2. [56] Suppose Q is a quadratic form in m variables. Suppose further that G(Q)

contains a set of l ≥ 0 distinct vertices labelled j1, j2, · · · , jl with the property that deleting

those l vertices and all their edges results in a path graph (necessarily on m − l vertices).
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Let t be the label of either vertex of degree 1 in this path graph. Then for any choice of

c, ck ∈ {0, 1} {
Q+

m−1∑
k=0

ckxk + c+
l∑

k=1

dkxjk + dxt | dk, d ∈ {0, 1}

}
(5.9)

is a Golay complementary set of size 2l+1.

Example 5. [56] Let m = 4 and

Q = x0x1 + x0x2 + x0x3 + x1x1 + x2x1 + x2x3.

The graph G(Q) is shown in Figure 5.2. We see that deleting the vertex labelled 0 and its

edges results in a path graph on vertices 1, 2 and 3. Applying Theorem 2 with l = 1, we get,

for each choice of c, ck ∈ {0, 1}, the following Golay complementary set of size 4. Note here

we choose xt = x1.

Q+
∑3

k=0 ckxk + c, (dk = 0, d = 0)

Q+
∑3

k=0 ckxk + c+ x0, (dk = 1, d = 0)

Q+
∑3

k=0 ckxk + c+ x1, (dk = 0, d = 1)

Q+
∑3

k=0 ckxk + c+ x0 + x1, (dk = 1, d = 1)


. (5.10)

In other words, for given c, ck, each one of the four Boolean functions in (5.10) is a Boolean

function for a sequence lying in a Golay complementary set of size 4.

We denote the second-order Reed-Muller coset of RM(1, m) identified with quadratic

form Q as “Q+ RM(1, m)”. To put it another way, for a given quadratic form Q, this coset

consists of all the Boolean functions with the form of Q+
∑m−1

k=0 ckxk + c, for c, ck ∈ {0, 1}.

We will use this interpretation in the following chapters. In Example 5, one can check that

any f ∈ Q + RM(1, 4) is a Boolean function lying in (5.10) for certain c, ck. Thus, f is

Boolean function for a sequence lying in a Golay complementary set of size 4.

5.6 Codebooks and frames

Let x ∈ CK be a K-dimensional vector, i.e., x = (x0, · · · , xK−1)T where xk ∈ C.

Throughout this part of thesis, ‖x‖ denotes l2-norm, i.e., ‖x‖ =
(∑K−1

k=0 |xk|2
) 1

2
. In par-

ticular, if ‖x‖ = 1, then it is called a unit-norm vector.
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1 2 3

0

Figure 5.2: Graph structure of quadratic form Q = x0x1 + x0x2 + x0x3 + x1x1 + x2x1 + x2x3.

A complex (N, K) codebook C = {c0, . . . , cN−1} is a set of N vectors in K-dimensional

vector space, where cl, 0 ≤ l ≤ N − 1, is a unit-norm K × 1 code vector. The Welch bound

[45] provides a well known lower bound on Imax(C), i.e.,

Imax(C) = max
0≤l 6=m≤N−1

|cHl cm| ≥

√
N −K
K(N − 1)

(5.11)

with equality if and only if for all pairs of (l, m) with l 6= m, |cHl cm| =
√

N−K
K(N−1)

, where cHl

is the conjugate transpose of cl.

In frame theory, a complex (N, K) codebook C is equivalent to a frame [46] in CK , and

the coherence [57] of the frame is equivalent to Imax(C). In particular, if ‖CHv‖2 = N
K
‖v‖2 for

every vector v ∈ CK , then C is called a tight frame with redundancy N
K

[57].

5.7 Inverse discrete Fourier transform matrix

The N -point inverse discrete Fourier transform (IDFT) of an discrete signal X(n) is

defined by [58]:

x(k) =
N−1∑
n=0

e
2πjkn
N X(n), k = 0, 1, · · · , N − 1. (5.12)

where j =
√
−1. Equivalently, the matrix form of IDFT can be written compactly as follows.

x = AN ·X,

where AN is the N -point IDFT matrix. The nth column of AN is denoted as an and the kth

row of an, denoted as an(k), is e
2πjkn
N .
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Example 6. The 4-point IDFT matrix A4 is shown below,

A4 =


ej

2π0·0
4 ej

2π0·1
4 ej

2π0·2
4 ej

2π0·3
4

ej
2π1·0

4 ej
2π1·1

4 ej
2π1·2

4 ej
2π1·3

4

ej
2π2·0

4 ej
2π2·1

4 ej
2π2·2

4 ej
2π2·3

4

ej
2π3·0

4 ej
2π3·1

4 ej
2π3·2

4 ej
2π3·3

4

 . (5.13)

5.8 Partial Fourier codebooks associated with binary sequences

Let D = {d0, . . . , dK−1} be a set of K distinct integers, where 0 ≤ dk ≤ N − 1. Consider

a K ×N partial Fourier matrix selecting K rows from the N -point IDFT matrix, where the

selected row indices are from D. With a scaling factor of 1√
K
, the l-th column vector of the

partial Fourier matrix is given as

cl =
1√
K

(
ej

2πd0l
N , ej

2πd1l
N , . . . , ej

2πdK−1l

N

)T
, 0 ≤ l ≤ N − 1. (5.14)

Then C = (c0, c1, . . . , cN−1) is an (N, K) partial Fourier codebook. Associated with the

partial Fourier codebook C, we define a binary sequence u = (u0, . . . , uN−1) of length N and

Hamming weight K, where

ui =

1, if i ∈ D,

0, if i 6∈ D.

Example 7. Let N = 8, u = [01011011], then K = 5, D = {1, 3, 4, 6, 7}. The partial

Fourier codebook C is constructed as below. We first present the 8-point IDFT matrix A8

aligned with the binary sequence u,

0

1

0

1

1

0

1

1





ej
2π0·0

8 ej
2π0·1

8 ej
2π0·2

8 ej
2π0·3

8 ej
2π0·4

8 ej
2π0·5

8 ej
2π0·6

8 ej
2π0·7

8

ej
2π1·0

8 ej
2π1·1

8 ej
2π1·2

8 ej
2π1·3

8 ej
2π1·4

8 ej
2π1·5

8 ej
2π1·6

8 ej
2π1·7

8

ej
2π2·0

8 ej
2π2·1

8 ej
2π2·2

8 ej
2π2·3

8 ej
2π2·4

8 ej
2π2·5

8 ej
2π2·6

8 ej
2π2·7

8

ej
2π3·0

8 ej
2π3·1

8 ej
2π3·2

8 ej
2π3·3

8 ej
2π3·4

8 ej
2π3·5

8 ej
2π3·6

8 ej
2π3·7

8

ej
2π4·0

8 ej
2π4·1

8 ej
2π4·2

8 ej
2π4·3

8 ej
2π4·4

8 ej
2π4·5

8 ej
2π4·6

8 ej
2π4·7

8

ej
2π5·0

8 ej
2π5·1

8 ej
2π5·2

8 ej
2π5·3

8 ej
2π5·4

8 ej
2π5·5

8 ej
2π5·6

8 ej
2π5·7

8

ej
2π6·0

8 ej
2π6·1

8 ej
2π6·2

8 ej
2π6·3

8 ej
2π6·4

8 ej
2π6·5

8 ej
2π6·6

8 ej
2π6·7

8

ej
2π7·0

8 ej
2π7·1

8 ej
2π7·2

8 ej
2π7·3

8 ej
2π7·4

8 ej
2π7·5

8 ej
2π7·6

8 ej
2π7·7

8



.
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Then, C is formed by picking the rows by index D in the matrix (highlighted in the boxes)

and scaled by 1√
5
,

C =
1√
5
·



ej
2π1·0

8 ej
2π1·1

8 ej
2π1·2

8 ej
2π1·3

8 ej
2π1·4

8 ej
2π1·5

8 ej
2π1·6

8 ej
2π1·7

8

ej
2π3·0

8 ej
2π3·1

8 ej
2π3·2

8 ej
2π3·3

8 ej
2π3·4

8 ej
2π3·5

8 ej
2π3·6

8 ej
2π3·7

8

ej
2π4·0

8 ej
2π4·1

8 ej
2π4·2

8 ej
2π4·3

8 ej
2π4·4

8 ej
2π4·5

8 ej
2π4·6

8 ej
2π4·7

8

ej
2π6·0

8 ej
2π6·1

8 ej
2π6·2

8 ej
2π6·3

8 ej
2π6·4

8 ej
2π6·5

8 ej
2π6·6

8 ej
2π6·7

8

ej
2π7·0

8 ej
2π7·1

8 ej
2π7·2

8 ej
2π7·3

8 ej
2π7·4

8 ej
2π7·5

8 ej
2π7·6

8 ej
2π7·7

8


.

We have the following observations on an N ×K partial Fourier codebook C. Note cn(k)

denotes the kth row, nth column element in C.

• Each column has the unit-norm.

• The sum of each row is 0, as long as the first element in u is 0.

• Every distinct pair of rows in C is orthogonal. Specifically, CCH = N
K

IN , where IN is the

N -dimensional identity matrix. Moreover, C is a tight frame in CK with redundancy N
K

[53].

• For any n, n′ ∈ {1, · · · , N}, there exists an n′′ ∈ {1, · · · , N}, such that cn(k) ·cn′(k) =

1√
K

cn′′(k), for k = 1, · · · , K.

• For all n ∈ {1, · · · , N}, there exists an n′ ∈ {1, · · · , N}, such that cn(k) = cn′(k), for

k = 1, · · · , K. Thus, the columns of C are closed under complex conjugation.

5.9 Compressed sensing with deterministic matrices

One of the most important foundations in digital revolution is the development and uti-

lization of the sensing system that can translate nature informations into digital forms [59].

It is well known that original data can be exactly recovered from the samples taken at least

at Nyquist rate or twice of the highest frequency of the signal. However, the data acquisi-

tion and processing of signals in applications such as medical imaging, remote surveillance,

spectroscopy, astronomy, meteorology continue to pose a tremendous challenge because of

the cost and physical limitation in the sensing systems.

To address these challenges, we depend on data compression, which aims for capturing

the concise representation of the original signal and introduces acceptable distortion in the
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data. One of the most popular techniques for signal compression is known as transform

coding, and typically relies on finding a basis or frame that provides sparse or compressible

representations for signals in a class of interest [59]. By sparse representation, we can represent

the length N signal with K � N nonzero coefficients. Both sparse and compressible signals

can be represented with high fidelity by preserving only the values and locations of the

largest coefficients of the signal. This process is called sparse approximation, and forms

the foundation of transform coding schemes that exploit signal sparsity and compressibility,

including the JPEG, JPEG2000, MPEG, and MP3 standards [59]. Since most of sampled

data (not “information”) of the signals will be discarded during the data compression process,

one may ask, “Can we capture, or sample the original signal in a compressed manner, which

combine the sampling and compressing together ?”

The compressed sensing [43] answered this question by establishing a new framework

for data acquisition. In short, it is a novel technique of signal processing that can recover

sparse signals of high dimension from few measurements. In practice, one of the imperative

applications of compressed sensing is the magnetic resonance imaging (MRI), because the

patient must hold still while an image is formed. Ordinary after-the-fact compression is no

help in this respect, but compressive sensing offers hope of faster scanning without loss of

resolution or contrast [60].

In compressed sensing, measuring an N -dimensional signal x ∈ RN with a K ×N mea-

surement matrix A produces a K-dimensional vector y = Ax, where K < N . In recovering x

from y, it seems impossible to solve K linear equations with N indeterminates by traditional

linear algebra. However, imposing an additional requirement that x is s-sparse or the number

of the nonzero entries in x is at most s, one can recover x exactly with high probability by

l1-minimization or greedy algorithms, which are computationally tractable.

The research efforts on compressed sensing revealed that a measurement matrix A plays a

crucial role in sparse signal recovery. A typical choice of the matrix is a Gaussian or Bernoulli

random matrix where the entries are generated by the Gaussian or Bernoulli process. Also,

a partial Fourier random matrix is of particular interest, since it allows an efficient FFT

algorithm in recovery of signals. However, such random matrices have the drawbacks of large

storage, high complexity, and low efficiency in the implementation [53]. To overcome the
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drawbacks, deterministic matrices have been studied in many literatures, where well known

codes and sequences are employed to construct the sensing matrix, e.g., chirp sequences [61],

Alltop sequences [62][63], Kerdock and Delsarte-Goethals codes [64][53], second order Reed-

Muller codes [65], and dual BCH codes [66]. Other techniques for deterministic construction,

based on finite fields, representation theory and additive characters, can be found in [67], [52]

and [68].

5.10 Restrict isometry property and StRIP

The restricted isometry property (RIP) [69] of a compressed sensing matrix is an impor-

tant necessary condition to guarantee the sparse signal recovery.

Definition 1. [43] For each integer s = 1, 2, · · · , define the isometry constant δs ∈ (0, 1) of

a matrix A as the smallest number such that

(1− δs) ‖x‖ ≤ ‖Ax‖ ≤ (1 + δs) ‖x‖ (5.15)

holds for all s-sparse vectors x.

A matrix A obeys the RIP of order s if δs is not too close to one [43]. When this property

holds, A approximately preserves the Euclidean length of the s-sparse vector x, which is

necessary for reconstruction. The RIP can be interpreted in another perspective that all

the subsets of s columns taken from A are in fact nearly orthonormal [43]. The RIP is

a very restrictive condition and current known matrices that satisfying the RIP fall into 2

categories [70]: 1) A Gaussian or Bernoulli random matrix where the entries are generated

by a probability distribution of the Gaussian or Bernoulli process. 2) Random partial Fourier

matrix or Hadamard transform matrix obtained by choosing K rows uniformly from an

N × N Fourier transform matrix or Hadamard transform matrix. Since it is impossible

to test all the s-sparse vectors x for the deterministic sensing matrix A for the RIP, a

statistical version of the RIP was formulated in [53]. Before we introduce the statistical

restricted isometry property (StRIP), we need to introduce the concept of η-StRIP-able [53],

the sufficient conditions for the StRIP.

Definition 2. [53] A K × N matrix A is said to be η-StRIP-able, where 0 < η ≤ 1, if the

following three conditions are satisfied.
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1). The rows of A are orthogonal, and all the row sums are zero.

2). For any n, n′ ∈ {1, · · · , N}, there exists an n′′ ∈ {1, · · · , N}, such that an(k) ·an′(k) =

1√
K

an′′(k), for k = 1, · · · , K.

3). For any n ∈ {2, · · · , N}, ∣∣∣∣∣∑
k

an(k)

∣∣∣∣∣
2

≤ K1−η (5.16)

Remark 1. The third condition is a bound for the absolute value of the column sum of the

matrix. For a partial Fourier matrix A that has the first column of ( 1√
K
, 1√

K
, · · · , 1√

K
)T ,

denoted as a1, one can check that∣∣∣∣∣∑
k

an(k)

∣∣∣∣∣ =
∣∣∣√KaH1 an

∣∣∣ .
Thus, the column sum is actually close related to the coherence of the partial Fourier matrix.

With the above conditions, the following theorem is presented.

Theorem 3. [53] Suppose the K×N matrix A is η-StRIP-able, and suppose s < 1+(N−1)ε

and η > 1
2
. Then there exists a constant c such that, if K ≥ ( cs logN

ε2
)
1
η , then A has the

statistical restricted isometry property (StRIP) with probability exceeding 1− δ, or

Pr(
∣∣‖Ax‖2 − ‖x‖2

∣∣ ≤ ε ‖x‖2) ≥ 1− δ.

Additionally, the unique sparse reconstruction is guaranteed with probability exceeding 1− δ,

where δ = 4 exp
[
− (ε−( s−1

N−1
))2·Kη

32s

]
.

5.11 Orthogonal matching pursuit algorithm

This section introduces the orthogonal matching pursuit (OMP) algorithm proposed in

[54]. This is a useful and general algorithm for sparse signal recovery. This algorithm is used

in the compressed sensing numerical experiments in Chapter 6.

Input :

• A K ×N measurement matrix A

• A K-dimensional measurement vector y
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• The sparsity level s

Output :

• An index set Λ containing s elements

• A signal estimate x̂ ∈ RN

Procedure (OMP):

1). Initialize a residual vector r0 = y = (y0, , · · · , yK−1)T and Λ = φ at iteration i = 0.

2). At iteration i, compute f = AHri = (f0, · · · , fN−1)T , find the peak of |f |, and record

its position as ni, i.e.,

ni = argmaxt=0, ··· , N−1|ft|.

3). Update the index set Λ ← Λ ∪ {ni} and the submatrix Ai+1 = [Ai ani ]. Note that A0

is an empty matrix.

4). Solve a least-square problem to obtain

bi = argmaxb||y −Ai+1bi||.

5). Update the residual by

ri+1 = y −Ai+1bi.

6). If i < s − 1, then i ← i + 1 and repeat 1) − 4). If i = s − 1, stop the iteration. The

nonzero entry of x̂ is set by x̂nj = bj for nj ∈ Λ, where bj is the jth element of bs−1.

Note the measurement procedure in the compressed sensing, i.e., Ax, is a linear combi-

nation of s columns in A. In recovery, we need to determine which columns of A participated

in this measurement and the coefficients of these columns contributed in the measurement.

The idea behind this algorithm is to pick columns in a greedy fashion [54]. At each iteration,

we choose the column of A that is the most strongly correlated with the remaining part of

vector y (step 2). Then the coefficients of the picked columns are calculated in a least-square

manner (step 4). Finally, we subtract off these columns’ contribution to y (step 5) and iter-

ate on the residual. One hopes that, after s iterations, the algorithm will have identified the

correct set of columns together with their corresponding coefficients.



Chapter 6

Partial Fourier Codebooks Associated

with Multiplied Golay

Complementary Sequences

6.1 Multiplication of Golay complementary sequences

Let N = 2m for a positive integer m. Let a = (a0, · · · , aN−1) and b = (b0, · · · , bN−1)

be two binary Golay complementary sequences of length N , where ai, bi ∈ {0, 1} . Note that

a and b must not form a Golay complementary pair. Let f = f (x0, · · · , xm−1) and g =

g (x0, · · · , xm−1) be the Boolean functions of m variables that represent a and b, respectively,

where we denote f ↔ a and g ↔ b. Define c = a + b = (c0, · · · , cN−1) for which ci = ai + bi,

where the addition is computed modulo-2.

Lemma 1. Let πa and πb be the permutations for f and g, respectively, in {0, 1, · · · ,m−1},

where m ≥ 3 is odd. Assume that πa is given. If πb is defined by

πb(i) =


πa (i+ 1) , if i is even (i 6= m− 1)

πa (i− 1) , if i is odd

πa(i), if i = m− 1,

then h = f + g is also a Boolean function for a Golay complementary sequence. Therefore,

c =a + b is a binary Golay complementary sequence of length N with h ↔ c. Hence, the
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π(0)

π(2)

π(m-3)

π(m-1)

π(1)

π(3)

π(m-2)

π(0)

π(2)

π(m-3)

π(m-1)

π(1)

π(3)

π(m-2)

π(0)

π(2)

π(m-3)

π(m-1)

π(1)

π(3)

π(m-2)

(a)Path of Qπa (b)Path of Qπb (c)Path of Qπc

Figure 6.1: Graph structure of quadratic forms, where m ≥ 3 is odd.

N-point IDFT of c is bounded by

|ĉl| =

∣∣∣∣∣
N−1∑
i=0

(−1)ciej
2πil
N

∣∣∣∣∣ ≤ √2N, 0 ≤ l ≤ N − 1.

Proof. Consider a quadratic form

Qπ = xπ(0)xπ(1) + xπ(1)xπ(2) + · · ·+ xπ(m−2)xπ(m−1)

in the Boolean function of a Golay complementary sequence, where π is a permutation of

{0, 1, . . . ,m − 1}. According to the graph structure of Golay complementary sequences in

section 5.4, Qπ can be illustrated as a path where each edge represents a monomial in the

quadratic form, i.e., xπ(i)xπ(i+1), and each vertex represents a variable, i.e., xπ(i). Figure 6.1(a)

and 6.1(b) illustrate the graph structure of Qπa and Qπb of f and g, respectively. Then the

addition h = f + g will cancel out all the second order monomials simultaneously existing in

both f and g, specifically every xπ(k)xπ(k+1), where k is even. Correspondingly, the quadratic

form Qπc of h is illustrated in Figure 6.1(c), resulting a new path on m vertices. According to

Theorem 1, h ∈ Qπc + RM(1, m) is a Boolean function for a Golay complementary sequence,

and c is a binary Golay complementary sequence of length N with c↔ h.

If m is even, we derive a similar permutation πb for g, such that h = f + g is a Boolean

function of a Golay complementary set.

Lemma 2. Let πa and πb be the permutations for f and g, respectively, in {0, 1, · · · ,m−1},
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π(0)

π(1) π(2)

π(3) π(4)

π(m-3) π(m-2)

π(m-1)

π(0)

π(1) π(2)

π(3) π(4)

π(m-3) π(m-2)

π(m-1)

π(0)

π(1) π(2)

π(3) π(4)

π(m-3) π(m-2)

π(m-1)

(a)Path of Qπa (b)Path of Qπb (c)Path of Qπc

Figure 6.2: Graph structure of quadratic forms, where m ≥ 4 is even.

where m ≥ 4 is even. Assume that πa is given. If πb is defined by

πb(i) =


πa (i− 1) , if i is even (i 6= 0)

πa (i+ 1) , if i is odd (i 6= m− 1)

πa(i), if i = 0 or i = m− 1,

then h = f + g is a Boolean function for a Golay complementary set of size 4. Therefore,

c =a + b is a binary sequence of length N from a Golay complementary set with h ↔ c.

Hence, the N-point IDFT of c is bounded by [56]

|ĉl| =

∣∣∣∣∣
N−1∑
i=0

(−1)ciej
2πil
N

∣∣∣∣∣ ≤ √4N, 0 ≤ l ≤ N − 1.

Proof. Similar to the proof of Lemma 1, the addition h = f + g will cancel out all the second

order monomials simultaneously existing in both f and g, specifically every xπ(k)xπ(k+1),

where k is odd. Correspondingly, as shown in Figure 6.2 the graph structure of quadratic

form of h is a closed loop on m vertices. According to the Theorem 2, each second order

coset of RM(1, m) identified with this quadratic form consists of sequences lying in a Golay

complementary set of size 4. Hence, c is a binary sequence from a Golay complementary set

of length N with c↔ h.

In what follows, we define a multiplied Golay complementary sequence using the Golay

complementary sequences a and b.
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Figure 6.3: Graph of quadratic form of f and g.

Definition 3. For a positive integer m ≥ 3, let a and b be a pair of Golay complementary

sequences of length N = 2m defined in Lemmas 1 and 2. A multiplied Golay complementary

sequence (MGCS) of length N is defined as

u = (u0, · · · , uN−1) = a⊗ b where ui = ai · bi, 0 ≤ i ≤ N − 1 (6.1)

where ai,, bi, ui ∈ {0, 1}.

To avoid a trivial case, we need to ensure that u will not be degenerated to a Golay

complementary sequence for m > 4 in Definition 3.

Lemma 3. u is not a Golay complementary sequence for m > 4.

Proof. For odd m > 4, let p↔ u. From Lemma 1, we have

p = f · g = (· · ·+ xπ(i)xπ(i+1) + xπ(i+1)xπ(i+2) + xπ(i+2)xπ(i+3) + · · · )

·(· · ·+ xπ(i)xπ(i+1) + xπ(i)xπ(i+3) + xπ(i+2)xπ(i+3) + · · · ),

where i < m − 3 is even. The corresponding graph of quadratic form of f and g are partial

displayed in Figure 6.3. Expanding the right-hand side of the equation, we eventually have a

fourth order monomial xπ(i)xπ(i+1)xπ(i+2)xπ(i+3), which cannot be eliminated by the rest parts

of p. In sum, u ⊂ RM(4, m) is not a Golay complementary sequence [55].

On the other hand, for even m > 4 and odd i < m − 3, we can develop a similar proof

that u is not a Golay complementary sequence, which we omit here.

Before we investigate the Hamming weight of MGCS u, we present the following useful

relationship between the Hamming weight of a binary sequence and its N -point IDFT.
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Let w be the Hamming weight of the binary sequence u. Then,

û0 =
N−1∑
i=0

(−1)uiej
2πi·0
N =

N−1∑
i=0

(−1)ui = N − 2w. (6.2)

Lemma 4. For odd m ≥ 3, the Hamming weight of u is given by

N − 3
√

2N

4
≤ wu ≤

N + 3
√

2N

4
. (6.3)

On the other hand, for even m ≥ 4,

N − (2 +
√

2)
√

2N

4
≤ wu ≤

N + (2 +
√

2)
√

2N

4
. (6.4)

Proof. Let wa, wb, wc denote the Hamming weights of binary sequences a, b, and c in

Definition 3, respectively. It is easy to find that wc = wa + wb − 2wu, since c = a + b and

u = a ⊗ b. Meanwhile, recall (6.2), a binary sequence lying in a Golay complementary set

of size 2t+1 has the Hamming weight N−
√

2t+1N
2

≤ w ≤ N−
√

2t+1N
2

from the bounded N -point

IDFT of
√

2t+1N [56]. For odd m, the Golay complementary sequence c is lying in a Golay

complementary set of size 2, where t = 0, giving N−
√

2N
2

≤ wc ≤ N+
√

2N
2

. The range of wa

and wb is the same as wc. Then, using wu = wa+wb−wc
2

, a simple math yields (6.3). For even

m, wa and wb have the same range as in odd m. However, c is from a Golay complementary

set of size 4, where t = 1, giving N−2
√
N

2
≤ wc ≤ N+2

√
N

2
. Thus the range of wu is given by

(6.4).

We now investigate the N -point IDFT of the MGCS.

Lemma 5. Let u be a binary MGCS of length N = 2m, defined in Definition 3. Then, if m

is odd, we have

|ûl| ≤
3
√

2N

2
, 1 ≤ l ≤ N − 1.

On the other hand, if m is even, then

|ûl| ≤
(2 +

√
2)
√

2N

2
, 1 ≤ l ≤ N − 1.

Proof. First of all, we have

|âl| =

∣∣∣∣∣
N−1∑
i=0

(−1)aiej
2πil
N

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
i=0

(1− 2ai)e
j 2πil
N

∣∣∣∣∣ = 2

∣∣∣∣∣
N−1∑
i=0

aie
j 2πil
N

∣∣∣∣∣ (6.5)



CHAPTER 6. PARTIAL FOURIER CODEBOOKS ASSOCIATED WITH MULTIPLIED GOLAY
COMPLEMENTARY SEQUENCES 53

where we used
∑N−1

i=0 ej
2πil
N = 0 for l 6= 0. Similarly, |b̂l| = 2

∣∣∣∑N−1
i=0 bie

j 2πil
N

∣∣∣. Meanwhile, from

c = a + b,

ĉl =
N−1∑
i=0

(−1)(ai+bi)ej
2πil
N

=
N−1∑
i=0

(1− 2ai)(1− 2bi)e
j 2πil
N

=
N−1∑
i=0

(1− 2ai − 2bi + 4aibi)e
j 2πil
N

where

4
N−1∑
i=0

aibie
j 2πil
N = ĉl + 2

N−1∑
i=0

aie
j 2πil
N + 2

N−1∑
i=0

bie
j 2πil
N , 1 ≤ l ≤ N − 1. (6.6)

By (6.1), (6.5), and (6.6), we have∣∣∣∣∣
N−1∑
i=0

uie
j 2πil
N

∣∣∣∣∣ ≤ |ĉl|+ |âl|+ |b̂l|
4

, 1 ≤ l ≤ N − 1.

Finally, if m is odd, then |ĉl| ≤
√

2N from Lemma 1, and thus

|ûl| = 2

∣∣∣∣∣
N−1∑
i=0

uie
j 2πil
N

∣∣∣∣∣ ≤ 3
√

2N

2
, 1 ≤ l ≤ N − 1.

On the other hand, if m is even, then |ĉl| ≤
√

4N from Lemma 2, and thus

|ûl| = 2

∣∣∣∣∣
N−1∑
i=0

uie
j 2πil
N

∣∣∣∣∣ ≤ (2 +
√

2)
√

2N

2
, 1 ≤ l ≤ N − 1.

Before we construct partial Fourier codebooks associated with MGCS, we present below

theorem for partial Fourier codebooks associated with binary sequences.

Theorem 4. [51] Let C be an (N, K) partial Fourier codebook associated with a binary

sequence u. Then,

Imax(C) =
1

2K
· max

1≤l≤N−1
|ûl|

where ûl =
∑N−1

i=0 (−1)uiej
2πil
N is the N-point IDFT of the sequence u.

Now we present Theorem 5, the main contribution of this thesis, where the proof is

straightforward from Theorem 4 and Lemma 5.
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Theorem 5. Let C be an (N, K) partial Fourier codebook associated with MGCS u in Defi-

nition 3, where N = 2m and K is determined by the Hamming weight of u in Lemma 4. For

odd m, we have

Imax(C) ≤ 3
√

2N

4K
,

and for even m,

Imax(C) ≤ (2 +
√

2)
√

2N

4K
.

Remark 2. A binary sequence from a Golay complementary set of size 4 has the bounded

N -point IDFT of
√

2 ·
√

2N , which is slightly smaller than 3
2
·
√

2N of the MGCS u (l 6= 0).

However, its Hamming weight w approaches to N
2

for large N with N−2
√
N

2
≤ w ≤ N+2

√
N

2
,

while the MGCS u has the Hamming weight approaching to N
4

for large N from Lemma 4.

Therefore, the smaller Hamming weight of the MGCS u makes its associated codebooks more

suitable for the applications to compressed sensing that generally requires K < N
2

.

6.2 Search for partial Fourier codebooks associated with MGCS

For each m, there are m! · 22m+1 possible MGCS in Definition 3, which is a huge search

space as m increases. The following restriction is adopted to reduce our search scope for

codebooks with large m. We set πa(i) = i for 0 ≤ i ≤ m− 1, f = Qπa = x0x1 + x1x2 + · · ·+

xm−2xm−1, and g = Qπb + RM(1,m) where πb is defined in Lemmas 1 and 2. Then for each

7 ≤ m ≤ 15, we searched partial Fourier codebooks over 2m+1 MGCS u. Table 6.1 shows the

parameters for several (N, K) partial Fourier codebooks from this search scope. In the table,

IWelch denotes the Welch bound equality in (5.11), while Iupper(C) denotes the theoretical

upper bound in Theorem 5. We present the codebooks with smallest Imax(C)/IWelch ratio,

where N = 4K. For odd m, note the ratio Imax(C)/IWelch will be at most
√

6 for N = 4K,

since Imax(C) ≤ 3
√

2
N

and IWelch &
√

3
N

.

Remark 3. Note here f = x0x1 + x1x2 + · · ·+ xm−2xm−1, recall (5.2) of associated sequences

of Boolean function, one can check that the first element of u is always 0, which means that

the first row of IDFT matrix will not be selected in this construction.
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Table 6.1: Search results for (N, K) partial Fourier codebooks C associated with MGCS u↔ f · g

where f = x0x1 + x1x2 + · · · + xm−2xm−1. The listed codebooks have the smallest Imax(C)/IWelch

ratio with N = 4K.

(N, K) Imax(C) Iupper(C) IWelch Imax(C)/IWelch

(128, 32) 0.250000 0.375000 0.153695 1.626602

(256, 64) 0.190033 0.301777 0.108465 1.752016

(512, 128) 0.138621 0.187500 0.076621 1.809169

(1024, 256) 0.105765 0.150888 0.054153 1.953083

(2048, 512) 0.076891 0.093750 0.038283 2.008511

(4096, 1024) 0.058582 0.075444 0.027067 2.164375

(8192, 2048) 0.040625 0.046875 0.019138 2.122767

(16384, 4096) 0.031510 0.037722 0.013532 2.328529

(32768, 8192) 0.021148 0.023438 0.009568 2.210203
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6.3 Applications to deterministic compressed sensing matrices

In this section, we apply an (N, K) partial Fourier codebook C associated with an MGCS

as a K ×N deterministic sensing matrix A in compressed sensing, where each code vector of

C forms a column of A. The coherence of the sensing matrix A is then equivalent to Imax(C)

with the upper bound in Theorem 5. Each column of the K × N matrix also forms a tight

frame, since a pair of distinct row vectors is mutually orthogonal. Besides, the partial Fourier

sensing matrix with N = 2m is favorable in practice, allowing an efficient FFT technique for

recovery of sparse signals.

Since the first element in sequence u is 0 (Remark 3), let A = C, one can check that a

partial Fourier sensing matrix A associated with u achieves the three conditions in Definition

2. Moreover, ∣∣∣∣∣∑
k

an(k)

∣∣∣∣∣
2

= K ·
∣∣aH1 an

∣∣2 ≤ K · Imax(C)2.

With the condition N = 4K, the following is derived from Theorem 3.

Corollary 1. For odd m ≥ 7, let N = 2m. Let s−1
N−1

< ε < 1, and Cε = 2ε2

9c
for a constant c.

If the sparsity level s satisfies s ≤ Cε · K
logN

, then the matrix A has the statistical restricted

isometry property (StRIP) with probability exceeding 1− δ, or

Pr(| ‖Ax‖2 − ‖x‖2 | ≤ ε ‖x‖2) ≥ 1− δ

with respect to a uniform distribution of the vectors x among all s-sparse vectors in RN , where

δ = 4 exp
[
− (ε−( s−1

N−1
))2·K

144s

]
. Additionally, the unique sparse reconstruction is guaranteed with

probability exceeding 1− δ.

Proof. Recall Remark 1, let ∣∣∣∣∣∑
k

an(k)

∣∣∣∣∣
2

≤ K1−η = K · Imax(C)2.

Then, by N = 4K, and Theorem 5 for odd m

K

Kη
= K · Imax(C)2 = K · 18N

16K2
=

9

2
. (6.7)

Note that only for m ≥ 7, there exist some 1
2
< η ≤ 1 such that K

Kη = 9
2
. Finally, we may

substitute Kη by 2K
9

in Theorem 3.
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We present a similar corollary for even m ≥ 8 without the proof, as shown below.

Corollary 2. For even m ≥ 8, let N = 2m. Let s−1
N−1

< ε < 1, and Cε = ε2

(3+2
√

2)c
for a

constant c. If the sparsity level s satisfies s ≤ Cε · K
logN

, then the matrix A has the StRIP

with probability exceeding 1− δ, or

Pr(| ‖Ax‖2 − ‖x‖2 | ≤ ε ‖x‖2) ≥ 1− δ

with respect to a uniform distribution of the vectors x among all s-sparse vectors in RN , where

δ = 4 exp
[
− (ε−( s−1

N−1
))2·K

(96+64
√

2)s

]
. Additionally, the unique sparse reconstruction is guaranteed with

probability exceeding 1− δ.

6.4 Recovery performance

To examine the empirical recovery performance from noiseless measurements, we took

numerical experiments for several K×N partial Fourier matrices selected from the codebooks

in Table 6.1. For recovery of s-sparse signals, we employed the OMP algorithm described

in section 5.11, where total 2000 sample vectors were tested for each sparsity level. Each

nonzero entry of an s-sparse signal x has the magnitude of 1, and its sign and position are

chosen uniformly at random. A success is declared in the reconstruction if the squared error

is reasonably small for the estimate x̂, i.e., ||x− x̂||2 < 10−6.

Figure 6.4 displays the recovery performance of some partial Fourier sensing matrices A

as sparsity level increases. Figure 6.5 displays the maximum sparsity level, or smax for which

the partial Fourier sensing matrix achieves more than 99% successful recovery rates by the

OMP reconstruction algorithm. The linear regression shows smax ≈ 1.3 · K
logN
−5.2, indicating

reliable recovery performance for sparsity level of O(K/ logN). Therefore, with the reliable

recovery performance as well as the efficient FFT technique in OMP recovery process, the

partial Fourier codebooks associated with MGCS present good candidates for deterministic

compressed sensing matrices.
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Figure 6.4: Successful recovery rates for partial Fourier matrices associated with MGCS.
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Figure 6.5: Empirically maximum sparsity levels achieving more than 99% recovery rate for partial

Fourier sensing matrices, where N = 4K = 2m for 9 ≤ m ≤ 13. The equation of the linear regression

is 1.3K/ logN − 5.2.



Chapter 7

Conclusions

In the first part of thesis, we have examined the PAPR distribution of the downlink MC-

CDMA systems spread by Walsh-Hadamard and Golay complementary sequences. We em-

ployed the GEV distribution to model the PAPR distribution, and found the patterns of the

GEV parameters. Exploiting the patterns, we proposed numerical-based sequence-specific

mathematical expressions for the PAPR distributions with the variable of Nsc. The good

agreement between the GEV model and the empirical PAPR indicates that the GEV dis-

tribution is well-suited for modeling the PAPR distribution in MC-CDMA system. We also

observed the trend of the PAPR distributions converging to the Gumbel distribution for

large Nsc. This is the first work applying the GEV distribution for modeling of the PAPR in

downlink MC-CDMA systems, which presented the simple but novel GEV model of (3.1) for

predicting the PAPR distribution.

In the second part of the thesis, we deliberately constructed a pair of Golay complemen-

tary sequences with the concept of graph structure of quadratic forms. Then we introduced

a new class of sequences by the element-wise multiplication of the two Golay complementary

sequences. We derived the upper bound of the N -point IDFT of the new sequences. The

Hamming weight of the sequence was also studied. We constructed new partial Fourier code-

book associated with these sequences for N = 2m, which is favorable in practice, and K is

approximately N
4

. The upper bound of the maximum magnitude of inner products between

distinct code vectors was also developed from the N -point IDFT property from the sequence.

Next, assisted by the computer cluster, we searched the sequences over a restricted space.
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The codebooks associated with sequences from the search results were displayed in Table 6.1.

For its application, the new (N , K) partial Fourier codebooks with N = 4K were employed

as deterministic sensing matrices in compressed sensing. Numerical results demonstrated

that the new partial Fourier sensing matrices have reliable recovery performance with the

FFT-enabled OMP recovery algorithm, indicating the new codebook can be a suitable choice

for compress sensing. In the future work, we will focus on the application of these codebook

in the imagine processing area, and test recovery performances of these matrices with other

recovery algorithms.
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