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I. INTRODUCTION 

Recent advances in semiconductor technology have made it 

possible to produce devices of such small size that electronic 

conduction through these devices is dominated by the quantum 

properties of the electron. The fact that an electron 

travelling through such a device is unaffected by scattering 

and is able to retain coherence, has received some attention in 

recent literature [1-3]. The ability to guide an electron wave 

in quantum wires has in particular opened up opportunities for 

device applications which are based on the wave nature of the 

electron. 

In this paper we wish to investigate the propagation of an 

electron wave along the length of two coupled quantum wires. We 

assume that the wires are sufficiently long and straight, and 

that they run parallel to each other. These assumptions allow 

the neglect of the end effects of the wires on the electronic 

motion and offer considerable simplicity in the calculations. 

The quantum nature of the wires arises due to smallness of the 

cross sectional area of the wires which is usually of the order 

of 100 Angstroms in length in any direction. The wires are 
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defined in terms of two quantum wells such that the electron 

motion is restricted in the direction transverse to the length 

of the wire and is unrestricted along its length. We assume 

that the wires are sufficiently close to each other that an 

electron wave introduced in one of the wires is able to tunnel 

itself into the other. The wave could in fact oscillate back 

and forth between the wires. The frequency of osxillations will 

depend on the width and depth of the quantum wells and the 

distance separating the wires. In addition to these parameters, 

the frequency is also affected by the effective mass of the 

electron if it is different within and outside the wires [4-5], 

a situation which can frequently arise. In this situation we 

will show that the motion of the electrons in the parallel and 

perpendicular directions become coupled and that the frequency 

of oscillations of the electron wave depends on the motion of 

the wave'parallei to the wire. It is the main aim of this paper 

to investigate the effect of the changes in the electron 

effective mass on the frequency. In addition we wish to obtain 

the dependence of the frequency on the distance between the 

wires, and the potential depths and width of the quantum wells. 
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We assume that the effective mass of the electron within 

the wires is m and outside the wells it is m . The potential 
Si s 

energy within the two wells is asaumed to be -V^ and zero 

outside the wells. A schematic diagram representing the system 

is shown in Fig. 1. The stationary states of the system consist 

of a plane wave state along the length of the wires and bound 

and unbound states in a direction normal to the length. We will 

restrict ourselves in this paper to two bound states only. The 

wave function in the direction normal to the wire is affected by 

the wave vector of the plane wave state along the direction of 

the wire when the mass of the electron is different within and 

outside the well. The effect vanishes if the mass is the same. 

In Section II we discuss the effect produced by the difference 

in the effective mass on the wave function of the electron for a 

single quantum well. The results would show how the wave 

function and the energy of the bound state is affected by the 

electronic motion parallel to the length of the wire. The 

frequency of oscillations and the stationary state wave 

functions for an electron bound to two quantum wires is derived 

using the approach based on the time dependence of the 

probability amplitudes of occupancy for the electron in one wire 
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or the other. The approach is explained in Section III. The 

frequency of oscillation of the electron wave is obtained in 

Section IV and the numerical results are obtained and discussed 

Section V. 

II. BOUND STATES IN A QUANTUM WIRE 

In this section we show the effect of the difference in the 

effective masses of the electron within the well and outside the 

well on the electron wave function for a single quantum well. 

Let the quantum wire with its length parallel to the z-axis be 

defined by the potentials 

V=-V , for |x|<a for all values of z and 
o’ ' ‘ 

V= 0 ,for jx|>a, for all values of z 

Since the system has the translational symmetry in the z 

direction the electron wave function in this direction is given 

by exp(ik^z), where can take any positive value. The wave 

function in the x-direction is obtained by solving the wave 

equations 
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(2.1) 

a 

(2.2) 

s s 

If the effective masses of the electron are the same so that 

states are given in standard textbooks on quantum mechanics . 

If the effective masses of the electron are different as assumed 

in writing the wave equations (2.1) and (2.2), then the wave 

functions and the eigenenergies of the system are dependent on 

the wave vector . It is possible to express the effective 

potential V which is altered due the electronic motion in the 

z-direction according as 

m =m =m for all values of x, the energy of the system will be 
Si s 

simply given by 

where are the eigenenergies of the electron bound to a 

potential well V^. These energies and corresponding stationary 

V= V +[di^k^/2][(l/m )-(l/m )]. 
o z s a 

(2.3) 
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As is clear from Eq. (2.3), when the effective masses are the 

same then the effect of the electronic motion in the z-direction 

on the electron wave function in the x-direction is removed. 

The wave functions for the above system are 

¥3(X, Z) = 

„ k’x+ik z » / 
Be z , for x<-(a/2); 

Acos(kx)e^^z^, for |x[<(a/2); 

D -k’x+ik Z c r 
Be z , for x>(a/2); 

where 

k^ = [(2m /di^)(v +E)-k^] 
a 0 z 

and 

(k’)^=[k^-(2m E/fi^)]. 
z s 

(2.5) 

(2.6) 

(2.7) 

The boundary condition for the wave function produces the 

relation 

[ka/2] 

-2m V (a/2) 
s 0 

m 

—^(ka/2)^+[l-(m /m )](k a 
s a z 

cot(ka/2)= ■. (2.8) 
1/2 
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Solving for (ka/2) in Eq.(2.8) and substituting the value in 

(2.6) gives the eigenenergy of the system for a prescribed value 

of k . 
z 

The normalization constants in (2.5) are given by: 

B=Acos(ka/2)e^^’^^^\ (2.9) 

where 

, cos^(ka/2) sin(ka) ,-(1/2) 
A=[2/a]^'^   +1+   . (2.10) 

^ (k’a/2) (ka) ^ 

(See Appendix 1 for the full derivation of the result) 

Since we are considering bound states for the electron in the 

2 2 
x-direction, both k and (k’) are positive. It therefore 

follows that 

[diW2m ]> E >[(df\^/2m )-V ]. 
z s z a 0 

(2.11) 
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Figure 2 describes the system with the wave functions of the 

electron for various values of k . The wave function parellel 
z 

i Ic z 
to the wire is e z and is not shown in the figure. 

III. PROBABILITY AMPLITUDES 

Let the wave functions of the electron in well 1 and 2 be 

(p^ and ip^, respectively. These wave functions are obtained by 

considering each well in isolation. The wave functions are 

therefore uncoupled and they are not orthogonal to each other. 

The two wave functions would overlap and the overlap integral 

would be finite depending on the separating distance between the 

wells. We consider only bound states of the system and assume 

for simplicity that there are only two such states. It should 

be recognized that the these states are bound in the sense that 

the wave functions are restricted by the width of the well but 

they unrestricted in the direction along the length of the well. 

We assume that the state of the electron in the presence of 

both the wines can be described in terms of the individual wave 

functions of the two wires. Clearly this is the assumption 
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since the wave functions are not orthogonal. The assumption is 

quite frequently made in such calculations and is known to give 

reasonably reliable results. It therefore follows that: 

^(x,z,t)=X a^9?^, (3.1) 
n 

where are time dependent coefficients and for our system n 

takes values 1 and 2. The amplitude of finding the electron in 

state p. is C- and is given by 

(3.2) 

If the wave functions ’ s were orthogonal then a^ 

dependence of the amplitude C. is given by 

The time 

dC, . 

—^ =<¥>. |- |^>- 
dt ^ 5t 

(3.3) 

The time dependence of the state ^ is determined by 

dt 
= IM', (3.4) 
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where the Hamiltonian of the entire system consisting of both 

the quantum wires is included in H. If we now substitute (3.1) 

into (3.3) and (3.4) we get 

dC. 
 J 

at 

aa n :k 

n at ” 
(3.5) 

and 

rh— X a p = J a 
a, ^ n'^n ^ n ^n at n n 

(3.6) 

We now multiply (3.6) by and integrate over the x variable 

and comparing the result with (3.5) we obtain 

.=(l/ih)y E. C , 
at J ^ n’ 

(3.7) 

where E.. are defined by the relation 

* 

Bp. =y E. p . 
J n in'^n 

(3.8) 

For the two state system Eq. (3.7) can be written as 
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?C,=(l/ih)[Ej^Cj+E^^C^l, (3.9) 

and 

=(l'ih)[E^jC^+E„C^]. (3,10) 

Here the E’s are obtained from the relation (3.8) which for two 

quantum states we get: 

Efi ^21^12“2l“l2^’ 

^12 *-^ll“21 ^21^“12^21 

^21 ^^12 ^22^12^*^^^ ^12^21^’ 

^22 *-'^12“21 ^^22^ ^*‘“12^21 
(3.11) 

where 

a..=<tp.<p.> and /3. .=<(p.Ho9.>. (3.12) 
ij 1 J 13 1 3 

If C’s are assumed to have time dependence according as 

exp(-i7t) then the secular equation giving the frequencies is 
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given by 

-K-7-E„ 

E. -K7-E 
21 22 

0 

Solving Ekj.(3.13) for 7 get 

2117 

The probability amplitude is given by 

C^=g exp(-i7jt)+h exp(-i72t) 

(3.13) 

(3.14) 

(3.15) 

where g and h are constants which are determined by initial 

boundary conditions. If we assume that the probability of 

finding the electron in state <p^ at time t=0 is zero, then h=-g. 

is then given by 

C = g[exp(-i7 t)-exp(-i7 t)] 
X X A 

and 
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C^C*=4gg*sin^[(7^-72• (3.16) 

Substituting for 7’s, we get 

CiC* =4gg*sin^wt, (3.17) 

where the frequency of oscillations of the electron wave is 

given by u according as 

For symmetric quantum wells and the frequency of 

oscillations is then given by: 

IV. CALCULATION OF FREQUENCIES 

The frequency of oscillations for the electron wave is given by 

Eq. (3.18) and (3.19). These depend on E’s which in turn depend 

on a and /3. To evaluate a’s and /?’s we first write for (p^ and 

<p which are- the wave fxinctions for the electron in two ’ 

(3.18) 

(4iw)^=4E E . 
12 21 

(3.19) 



-15- 

uncoupled quantum wires. We consider the wires to be separated 

by distance 2L^ about the origin. For explanation see Fig. 2. 

The wave function is obtained by transforming the origin by 

L+(a/2) and (p by -L-(a/2) in the definition of tp given in Eq. 
A 

(2.5). Thus 

(p^(x,z)= p[x-(L+(a/2})], (4.1) 

and 

tp^(x,z)= p[x+(L+(a/2})] . (4.2) 

Substituting (2.5) into (4.1),(4.2) and using the result in 

(3.10), we get 

a =(a/2)B 
X iU 

2 e -2(k’a/2)(a+1) 

(k’a/2) 

-a(k’a/2) 
—   X 
,(ka/2)^+(k’a/2)^ 

j^(k’a/2)cos(ka/2) [1-e^ ^ ] + (ka/2)sin(ka/2) [ 1+e^ ^]j , 

 (4.3) 



-16- 

where <7=L /(a/2), a =a =1 by virtue of the normalization 
O 1122 

condition and a =a by virtue of the symmetry of the system. 
21 12 

(See Appendix 2 for the derivation of the a results) 

Following the same procedure used in obtaining a’s, we now 

obtain /3’s. 

2 2 
We write /3’s in units of th /2m (a/2) ] to give: 

EL 

11 

^/[2m (a/2)^] 
a 

(a/2)B^ 

k’a 

-2(k’a)crf -k’a -3k’a' 
e e -e (4.4) 

and 

12 

[di^/[2m_(a/2)^ 
a 

, 2 
= '^ “l2^ 

(a/2)BAe 
-(k’a/2)(2a+l) r t k a -1 [1+e ] 

,(ka/2)^+(k’a/2)^ 

(k’a/2)cos(ka/2)+(ka/2)sin(ka/2)j, (4.5) 

By symmetry considerations 3 =3 and 8 =3 
^11 '^22 ^12 ^ 21 

In Eqs. (4.4) 
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and (4.5) we have used the following definitions: 

7^= V /Edi^/2in (a/2)^], 
0 0 a 

(4.6) 

7’^=(ka/2)^+(k a/2)^-7^, 
' z 0 

(4.7) 

f=(m /m ), (4.8) 
s a 

and in terms of e, k’^ is (using Eqs. (2.6) and (2.7)) given by 

(k’a/2)^=(k a/2)^-£7’^. (4.9) 
z 

(See Appendix 3 for the derivation of the j3 results) 

V. WAVE PACKET FORMULATION 

Recall that we have made the assumption that the wave 

function for the two well system is a linear combination of the 

individual wells’ wave functions (see equation (3.1)). Since 

the ip’s are not orthogonal, is not zero. Also, 

from equation (3.1) is not the probability of finding the 

electron in state neither do the wave functions p form a 
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complete set. 

Having made the assumption that the system may be 

represented by a linear combination we note that the 

* 

probability of finding the electron in state 

Cj is given by equation (3.2) or 

is C.C. 
J J 

where 

C. 
J 

...(5.1) 

Thus, for two wells. 

Cl = 
a a 
in 

a a 
2 12 

and 
= ^“2 1 

+ a a 
2 22 

. . .(5.2) 

which leads to: 

S = - '=2“l2’ < '“ll“22 - “2l“l2’ 

a=[Ca —Gal/ [a a —aa] 
2 1 21 2 11 21 12 11 22 

...(5.3) 

Now, we recall (3.15) and write C also (with the minor 

modification that the constants ’g’ and ’h’ from (3.15) are now 
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’gj’ and ’h^’ ): 

Cj = g^exp(-i7^t) + h^exp(-i72t) 

S ^ h26xp(-i72t) ...(5.4) 

One possible solution is arrived at utilizing the choice of 

g = g and h = -h . From $ = a ^ + a„w we then arrive at 

^ = |^exp(-i7^t)gJl+Q!^2][^^+^2] + exp(-i72t)h 

...(5.5) 

Further, any arbitrary wave function can now be expressed as: 

^ = E A, [ip ]exp(-i7 t+ik z) El kiC 1 2 X Z 1 
z   + k 

Z ro/1 M1/2 Z [2(1 + 

[;p^-^^]exp(-i72t+ik^z) 

[2(1 - a J] 
X ^ 

1/2 

...(5.6) 

The choice of wave packet desired is the Gaussian which has 

^ 4. n = p, exp(-^z^/2 + ik z) t=0 '^i ^ zo . . .(5.7) 
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The constants Aj^ and are as yet unknown. They may be 
z z 

found by multiplying the right hand side of (5.6) (at t = 0) by 

1/2 
exp(-ik’z)»[¥? +p ]/[2(l+a )] and integrating over x and k 

Z 1 2 12 Z 

to reduce the whole right hand side to which is then 

obviously equal to: 

A, ^o^exp[^z^/2 + i (k^^-kpz] )/[2(l+a^ 2 ^ ^ ^ ^^dxdk^ 

and similarly 

^ exp[£z^/2 + i(k -k’)z] [9? -^ ] /[2( 1-a ) ] ^ *^^dxdk 
X ZOZX2 12 Z 

These two can now be substituted back into (5.6) to give the 

wave packet at any time t. 

The group velocity for the wave packet is then simply 

(5k . V 
k =k 
z zo 

<57. 
^k 

k =k 
z zo 
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VI. NUMERICAL RESULTS 

In this section we evaluate the frequencies of the electron 

oscillating between the two quantum wires using Ekj. (3.19). 

Our procedure is as follows: We fix values of e and 7 and use 
0 

(a/2) as the unit of length where (a) is the width of the 

quantum well. For the present numerical calculations we 

consider e=1.37 and =3.00, which are reasonable values for a 

GaAs-AlGaAs system. We treat the k^a/2 as a parameter which 

measures the speed of the electron wave parallel to the quantum 

wire. We obtain the value (ka/2) by solving the transcendental 

equation (2.8). We then fix the values of 7’ using (4.7) and 

2 
(k’a/2) using (4.9). The normalization constants A and B are 

obtained from equations (2.9) and (2.10). The numerical values 

for a’s and /3’s are derived using eqns. (4.3)-(4.5). E’s are 

determined with the help of (3.11) and finally the oscillatory 

frequency is derived from eqn. (3.19). 

In figure 2 we have shown normalized wave functions for the 

ground state of an electron in a single quantum wire in which 

the electron motion is determined by a potential well of depth 

-V^ and width (a) in the x-direction and constant potential 



-22- 

along the length of the wire. The wave functions are shown for 

the x-direction using (a/2) as the unit of length. The wave 

functions are affected by the electronic motion in the 

z-direction. The normalized wave functions are shown for values 

(k a/2)= 0, 1.00, and 2.00. We observe that as the value of 
z 

k^a/2 increases, the effective depth of the potential decreases 

leading to increased spread of the wave function outside the 

well. For a two wire system the spread leads to greater overlap 

between the wave functions and an increased value for the 

frequency of the electron oscillations between the two wires. 

In figure 3 we have shown the variation of the oscill- 

atory frequency of the electron as a function of the distance 

separating the two quantum wires. The frequency is large for 

small separations but as the distance increases the frequency 

falls rapidly. The variations are shown for three values of 

k a/2 and, as expected, as k a/2 increases the frequency of 
z z 

oscillations also increases. 

In figure 4, we have shown the variation of frequency as a 

function of the depth of the potential of the well. As the 
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depth increases the electron wave function becomes increasingly 

confined. The overlap of the wavefunctions between the two 

wells decreases and so also the oscillatory frequency of the 

electron. 

In figure 5, we have shown the variation of group 

velocity as a function of k^a/2. As the value of the 

z-direction wave number multiplied by the well half-width 

increases, the wave packet group velocity increases in 

magnitude. It may be noted that the wavefunction group 

velocities, V and V , diverge in value as k a/2 grows large. 
S, So 2 



I 

CN 

I 

-L - w -L o "“o LQ+ W 

Fig.l; The variation of potential in the direction normal to the length of 

the wires 
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Fig-.2: The wave functions of a finite potential well as a function of 

distance measured in units of (a/2). The continuous, dashed and 

dotted curves are for k^a/2 equal to 0, 1 and 2 respectively. 



Dislaiice between wells in units of (a/2) 

Pig.3: The frequency of oscillations of an electron wave in units of 

(2^^/m^a ) as a function of the distance separating the wires in 

units (a/2). The continuous, dashed and doted curves are for k a/2 
z 



Fig.4: The frequency of oscillations of an electron wave in units of 

(2^/m^a^) as a function of The continuous, dashed and dotted 

curves are for k^a/2 equal to 0, 1 and 2 respectively. 



V
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Fig. 5: The group velocities V and V of the wave packets from section 

V. as a function of the value k a/2. The continuous line represents V 

and the dashed line V 
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Appendix 1: Bound States 

We begin by considering a quantum well in two dimensions which we 

call X and z. 

Consider the Schrodinger equation in the region outside the well: 

-fi" 

2m 
+ 

^2 -j 2 
dx az 

<p{x,z,t) = i'fi^-v?(x,z, t) 
dt 

(1.1) 

This may be solved using: 

V?(x,z,t) = A^e ^^^(f>(x)(j>iz) 

which results in equation 1.1 becoming : 

.2 
di 

2m 

d^ 
^2 ^ ^ 2 
ax dz 

(f>(x')(f>iz) = F4>ix)<f>iz) (1.2) 

Multiplying equation 1.2 by: 

-2m 

0(x)^(z) 

gives: 

1 a" 1 d^ 

<f>ix) dx^ 
^(x) + 

(f>{z) dz‘‘ 
Mz) = - 

2m E 
s 

which allows for separation of the x and z parts which we do in 

the following manner arbitrarily (but with purpose): 

1 d^ 

(j>ix) dx^ 
^(x) + 

2m E 
s 

1 d^ 

(f>iz) dz' 
= k 

zl  (1.3) 

The z component thus has the form: 
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^^(z) + = 0 
dz^ 

2 Now, must be positive to avoid exploding wavefunctions as z goes to 

infinity, therefore: 

<f>{z) = A e^^^zl^ zl 

where takes positive and negative values. 

Further, from 1.3, 

1 
 ^(x) 

dx 

2m E s 

which leads to: 

dx 
^(x) - 

2m E s 
zl 

-R 

which has solutions 

4>{x) = 0 

^(x) = 
A e 

X 

A e 
X 

-k’x 

k’x 

for X > a/2 

for X < a/2 

where k = [k^, - 2ffl E/^i^ zl s 

Now, we have chosen to consider a solution localized within the well 

2 
and decaying outside the well. Such a choice requires that k’ be 

positive. As k^^^ is also positive (as shown above) this leads to: 

k^, - 2m E/h^ zl s >0 or E < zl 

2m 

which means; that E can have all negative values and have positive 
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values. The E values will, of course, be determined by the boundary 

conditions. 

Inside the Well 

Inside the well there is an added potential term in the Schrodinger 

equation: 

2m 
+ 

a_2 o 2 
on oz 

Q 
(pin, z,t) - V (p{x,z,t) = m—p(x,z,t) 

° dt 

Again, assuming a solution 

■iEt 
(pix,z,t) = A^e cj>ix)(f>(z) 

leads to a time-independent equation in x and z: 

,2 

2m 
+ 

a_2 a 2 
ax oz 

(f>ix)<f>iz) - V i^(x)^(z) = E^(x)0(z) 

multiplying by 

-2m 
a 

df^?!»(x)(^(z) 

yields 

1 1 2m 
;^^(x) + n^(z) -h —^(V + E) = 0 

(f>(x) dx 4>iz) dz 

As before, one can set the components of the equation equal to some 

constant: 

1 2m 1 „ 
 -t- —^-(V -I- E)    
^(x) dx^^ di"^ ° <j>iz) dz 

and thus 
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which leads to 

2 
—5^(z) + k ^(z) = 0 
dz^ 

as k^2 must be positive to avoid exploding wave functions as z goes 

to infinity and k^g *^un take positive or negative values. 

Further, 

1 d 2m 
 + —|(V + E) - k = 0 
cf>(x) dx /K^ ° 

or 

dx"‘ 
^(x) + 

2m 

Jfi 
* E) - 4>ix) = 0 

which has the solution (for lowest E): 

(b{x) = A „coskx 
x2 

where 

k^ = ^“a 2 
- E) - 

Now, we are still considering a solution localized within the well and 

2 
decaying outside the well and this requires k be positive. Also, we 

2 
know that k^2 must also be positve. Thus, 

E + V - O 
■* ^2 

2m' 

> 0 or E > -V + o 

j<2, 2 

2m a 

and using the inequality from outside the well. 



-34- 

zl 

2m 
> E > 

1^2-t 2 

- V 
2m 

Matching (f>iz) leads to ^2l~^z2 ^zl~^z2’ Henceforward, the combined 

4>(.x) , 4>{z) coefficients will be denoted A, and B. Therefore: 

^(x,z) 

Acoskx*e^^z^ 

„ k’x ik z Be *e z 

„ -k’x ik z Be »e z 

.... -a/2 < X < a/2 

.... X < -a/2 

.... X > a/2 

Deriving the implicit equation for finding ka/2 

The boundary conditions are now used to find an implicit equation 

with which we can find ka/2. 

At X = a/2, 

Acos(ka/2) = Be 
-k’a/2 

-Aksin(ka/2) = -k’Be 
-k’a/2 

cot(ka/2) = 

(d/dx of eqn 4) 

(eqn 4/eqn 5) 

Further, equation 1.6 can be rearranged like so: 

k or 
cot(ka/2) = cot(ka/2) = 

k’ 

(1.4) 

(1.5) 

(1.6) 

(1/2) 

,2 

2 

and recalling that 

2 ^^a 2 
i. = —|(V + E) - k or E 

-[ 
^ 2 1,2 k + k z 

V 
2m o a 

we arrive at 
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cot(ka/2) = 
-,(1/2) 

.2 
k ?r 

2 2m 
\2 ,2 k -i-k z 

->cot(ka/2) = 

o m „ III „ 2m V 
k^ - — k^ - — k^ -h s o z m m z j,2 

a a 'll 

(1/2) 
  (1.7) . 

To achieve our goal of an implicit equation to solve for ka/2 we 

simply multiply equation 1.7 by (a/2)/(a/2) - ie 1 - on the RHS: 

   (ka/2)   c 01(ka/2) = 

2m V (a/2)^ m 
  --i(ka/2)^ 

m 

m 
1 - 

m 

(1/2) .(1.8) 

Equation 1.8 is solved by plotting the right hand side of the equation and 

also the left and determining the intercepts - ie solutions. This is 

done by computer. 

Normalization Constants 

The wave function coefficients A and B are found through 

normalization of the wave function. Again at x = a/2: 

Acos(ka/2) = Be -k’a/2 
or B = 

Acos(ka/2) 
-k’a/2 

• - I QQ ♦ The normalization condition states = 1 . In our case this 

results in: 

n-a/2 
Tj k’x„ k’Xj Be Be dx -t- 

-oo 

r,-(-a/2 f,-H» 

A^cos^(kx)dx + 

-a/2 '^a/2 

„2 -2k’X, 
Be dx = 1 
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Now, 

-a/2 

2 k’x 
Be dx = 

-00 

,400 

„2 -k’x, .2 
Be dx = A 

a/2 

cos (ka/2) 

2k’ 

and. 

,+a/2 n+a/2 

A^cos^(kx)dx = — 

-a/2 

j^co s (2kx) 4- 1 dx = 

-a/2 

2k' 
iin(2ka/2) 

thus : 

cos (ka/2) 

2k’ 
4 A ■^in(2ka/2) 4- | 4 A 

cos (ka/2) 

2k’ 
= 1 

(1.9) 

We must now solve for A realizing that we would prefer not to have to fix 

k and k’ - ie we would prefer to solve for A with an equation that is in 

terms of ka/2 and k’a/2, which we have just solved for (k’a/2 is just the 

denominator in equation 8 - once we have ka/2, k’a/2 is easily 

calculated). To do this we multiply A by V a/2 . 

A = 
1 

2 
cos (ka/2) a^ sin(2ka/2) 

k’ 2 2k 

(1/2) 

From equation 9: 

V a/2 A = 

cos (ka/2) 

k’a/2 

sin(2ka/2) 

2ka/2 

(1/2) 
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Appendix 2: Alpha Values 

In section III we defined a as a.. = Thus, 

«11 = <9^1 bi> = 1 

"22 = <^2l^2> = ^ 

and ^ = 
1 "^2 

n+OO 

-00 

since and identical and symmetrically distanced from the 

point of the x-axis (thus <j>^iz) = 1 and periodic boundary 

conditions can be used to remove the z dependence of this 

the case, (as neither ^^ix) or 4>2^^^ complex). Now, 

„+oo 

4>^ (x)<f) (x)dx = 

-00 

,-(L +a) 
n k’(x+L +a/2) „ k’(x-L -a/2). Be o *Be o dx 

-00 

,-L 

Acos[k(x+L +a/2)]«Be^ "^^^dx O 
-(L +a) O 

II 

,+L 

„ -k’(x+L +a/2) „ k’(x-L -a/2). 
Be o »Be o dx 

-L 

III 

f>L +a 
„ -k’(x+L +a/2). r, . , /oMj Be o Acos[k(x-L -a/2)jdx O IV 

.-MO 

D -k’(x+L +a/2) „ -k’(x-L -a/2). Be o «Be o dx 

L +a 

These integrals are solved region by region as follows: 

zero 

is 
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I ^ 

II 

„-(L +a) 

„ k’(x+L +a/2) _ k’(x-L -a/2). 
Be o «Be o dx 

-00 

= B 

—(L +a) 
° 2k’Xj 

e dx 

-00 

= B^ 

2k’ (-L -a) 2k’ (-00) 1 
e o — e  

2k’ 

= B 

-2k’(L +a) 
e o 

2k’ 

e-L. 

Acos[k(x+L +a/2)]»Be^ ^^^^dx 
O 

-(L +a) 
O 

-k’(L +a/2) 
= ABe o 

,-L 

cos[k(x+L +a/2)]e^ *dx 
O 

-(L +a) 

k’x 

k\(-k’)^ 

k’cos[k(x+L +a/2)] + 
O 

;in[k(x+L^+a/2)]j 

-L 

-(L +a) 
O 

-k’L 

k^+k 
-|-j^k’cos(ka/2) + ksin(ka/2) - 

-k’(L +a) 
e o 

k^^k’2 
l^k ’ c 0 s (- ka/2) + ksin(-a/2) 

-k’(L +a/2) 
ABe o 

-k’L 

k^+k 
-|■j^k’cos(ka/2) + ksin(ka/2) - 



-3 9- 

e ^ ^k’cos(ka/2) + e ^ ^ksin(ka/2)j 

III 

,+L 

° -k’(x+L +a/2) „ k’(x-L -a/2). 
Be o «Be o dx 

-L 

„2 -2k’(L +a/2) 
= B e o 

,+L 

0 , 
e dx 

-L 

= BV2k’(Lo+a/2)j-j^^_(_L^)j 

= 2L B^e 2k’(L^+a/2) 
O 

IV = II by symmetry considerations 

V = I by symmetry considerations 

Therefore, 

“l2 ^^21^ I + II + III + IV + V 

„2 -2k’(L +a) - oi »/'T /o^ 
^5-2 2  + 2L ^ 

k' 

-k’L 
e o 

k^+k’^ 

k’[cos(ka/2)][l-e ^ 

+ k[sin(ka/2)][1+e ^ 

To make a dimensionless, multiply appropriately by a/2 and recall that a 

- L This leads to the following: 
O 
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^ 2 -2(k’a/2)((7+l) 
a. „=a„ =   + 2<7(a/2)B e + 

k’a/2 

2(a/2)ABe 
-(k’a/2)(c+l) 

-<r(k’a/2) 

(ka/2)^ + (k’a/2)^ 
(k’a/2)[cos(ka/2)][l-< 

+ (ka/2)[sin(ka/2)][1+e a/2j 

-2k’a/2^ 
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Appendix 3: Beta Values 

Unlike the ^“22^ value, ^^22^ does not reduce simply. This is 

because the Hamiltonian in the definition of ^ is a linear combination of 
the Hamiltonians for the individual wells. So, 

^11 = = 
(p^(p^djidz 

-00 

=» /?11 - 

,+00 

* — 

-00 
2m dx dz‘‘ 

- V f^^j^(x) dx 

where, m=(m -m)f+m and f = 
’ ass 

1 inside the wells 
0 outside the wells 

Thus, 

'll 

,-(L +a) 

-00 

\d^ 

2m 
^ 2 
cbc oz 

dx 

n-L, 

■(L +a) 
O 

2m 
\ a 

O 2 
dx oz 

- V 4>^ix) dx 

,+L 

-L 
2m a 2 ox dz 

(f>^(x) dx 

,+ (L +a) 

+L 
2m 

\ a 

a„2 o 2 
ox az 

- V (j>^ix) dx 

,+00 

0j(x) 

+(L +a) 
O 

f-^ 

2m 
s 

a„2 o 2 
ox az 

^j^(x) dx 
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„+oo 

^ ^11 

-T* 

^l(x)^l(x)dx + 

-00 

m 

m 
- 1 E - V 1 O 

n(L +a) 

^l(x)^l(x)dx 

= ®i“ii 

m 
1 m 

a 

n(L +a) 

E, - V 
1 O 

^l(x)^l(x)dx 

Now we will make /? a dimensionless quantity and equal to calculable 
quantities; 

11 

■K^/ |^2m^(a/2)^ 

2m E, (a/2)‘ 
a 1  

m 
— - 1 
m a 

2m E (a/2)‘ a 1 

2m V (a/2)‘ 
a o 

(L +a) 

cl>^{x)(j)^ix)dx 

.2 fr ,2 21 
= 7i + [(e-l)7i - 7„J 

,(L +a) 
°2 -2k’(x+L +a/2)j 
Be o dx 

-k’(2L +3a/2) -2k’(2L +a/2) e o —e o 

-2k’ 

,2 r. ,2 2l(a/2)B + [(e-i)7j - 7j5(P772y -4k’L 
e o 

-k’a -3k’a] 
e - e 

and recalling cr = L /(a/2). '11 

2m (a/2)' 
a 

= 7i^ + - ll] (a/2)B^ 
2(k’a/2) 

g-4(k’a/2)aj‘g-2k’a/2 _ ^-6k’a/2j 
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 ^22 via symmetry considerations ( and noting that for 

the case of the double symmetric wells. ). 

11 “ I >^2' /?12 = «P,\E\<P^> = 

,-HX) 
♦ 

iSj^Hp^dxdz 

-00 

/? 12 

,+00 

-00 
I 2ra 

“^0 2 ax az 

, / j ^ 1 inside the wells 
where, m=(m - m)f + m and f = i „ . • j xi. 

as s 0 outside the wells 

Thus, 

„-(L +a) 

12 
^j(x)' 

-00 
2m 

a 2 
ox az 

02(x) dx 

P-L 

(X) ■ 

-(L +a) O 
2m 

\ a 

5^ 
^2 o 2 chc az 

- V 

,+L 

-L 

-r 

2m dx^ ^ az^ 
^2(x) dx 

,+(L +a) 

+L 

( 42 

2m 
V a 

a^ a^ 

ax^ az^ 
- V (^2(x) dx 

n+OO 

<^j^(x) 

+(L +a) O 

-r 
2m 

a^ a^ 
+ 

a„2 ' a 2 
dx az 

■^2(x) dx 
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rt-(L +a) 

^12 

▼ 
^j^(x)i^2(x)dx 

-00 

,-L 

-(L +a) 
O 

4! 

2m 

+ 
a„2 ' a 2 OK. az 

- V ^2^x) dx 

+ E. 

fi-HX) 
* 

-L 

Now, 

m 

m 

-^o 

-(L +a) 

/u-2 m 

2m m V. a s 

+ 
' a 2 

OT (7Z 

m 

= i^2 
a , 

n-L 

^^(x) dx 

„-L 

(f) {x)(f> (x)dx - V 
1 2 c 

-(L +a) 
O 

-(L +w) 
O 

and adding and subtracting 

,-L 

<^l(x)0i(x)dx gives: 

-(L +a) 
O 

^2 = ®2 

.+00 
5|« 

(l>.^(x)(j)^ix)dx + 

-oo 

m. 

m 
- 1 

^2-^c 

f*-Lo ° * 
(j)., (x)(j>Ax)dx 

-(L +a) 

= ®2“l2 

m 
— - 1 m 

a 
^2-^0 

,-L 

(f>.^(x)4)^ix)dx 

-(L +a) 

Now we will make /3 a dimensionless quantity and equal to calculable 
quantities: 
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/3 12 2m E_(a/2)‘ 
a 2 

'K^/[2m^(a/2)^j 
“l2 

m 

m 
- 1 

2m E„(a/2)' 
a 2 

2m V (a/2)‘ 
a o 

. o-L 

(f>^(x)4>^(x)dx 

-(L +a) 

= T2\2 - ''f] 

n-L. 

Acos(kx)*Be^ ^ dx 

-(L +a) 

= '>’2\2 + '' 
-k’(L +a/2) 

O 

-k’L 
e o 

k^+k’^ 
k’cos(ka/2)•[1-e ^ ^] + 

ksin(ka/2)•[1+e ^ 

and recalling a = L /(a/2), 12 

•fi^/^2m^(a/2)^j 

= ^2^ + - 7^ (a/2)ABe ^ 
(<7 + 1) 

-trk’a/2 

(ka/2)^ + (k’a/2)^ 

|^(k’a/2) cos (ka/2) •( 1-e ^ (ka/2) s in(ka/2) •( 1+e ^^^)j 

21 

2m^(a/2) ‘ 

via symmetry considerations ( and noting that in 

the case of the double symmetric well, ). 


