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ABSTRACT 

Zhuotian Lu, 2000. The effects of spacing and genetic factors on growth and tree form 
quality traits of plantation-grown jack pine. 135 pp. Advisor: Dr. W.H. Parker 

Key Words: spacing, group, family, tree form quality traits, jack pine, heritability, genetic 
correlation. 

Overall tree form of jack pine (Pinus banksiana Lamb.) growing in natural stands 
varies from straight slender trees with compact crowns to broad, limby and even multi- 
stemed trees. Jack pine grown in plantations at conventional spacings of 2 m develops 
form traits undesirable for forestry utilization. The goal of this study was to investigate 
the effects and interaction of spacing and genetic factors on plantation-grown jack pine to 
determine the potential benefit of a selection program based on form traits. Ten wind- 
pollinated families were collected from each of six natural fire-origin stands from east 
and west of Lake Nipigon in northwestern Ontario that had been subjectively rated as 
good, average and poor in form. These sixty families making up six form-quality groups, 
together with an additional twenty plus tree families making up two more form-quality 
groups, were established at two planting sites with contrasting soil texture and fertility at 
spacings of 1, 2 and 3 m. Eight tree form quality traits—branch length, branch diameter, 
branch angle, branch number, relative branch diameter, relative crown width, number of 
crooks, and taper were measured and analyzed together with two growth traits—height 
and diameter at breast height (DBH) at age eight. General linear models were used to 
evaluate the effects of site, spacing, form-quality group, family and the relevant 
interactions on all traits except number of crooks which was not normally distributed. All 
jack pine growth and form traits except branch number were greatly affected by spacing. 
Most of the change in form traits occurred when spacing increased from 1 to 2 m with 
lesser change from 2 to 3 m. This effect was more pronounced at the more fertile test site. 
Form-quality groups were significantly different for only two of the form traits—branch 
length and branch angle with this effect again being more evident at the fertile test site. 
However, the family effect was significant for all seven tested form traits as well as the 
two growth traits suggesting that any of these traits would readily respond to family 
selection. A definite provenance effect was demonstrated for growth traits and stem 
taper; the western sources grew faster with more favourable taper. None of the form- 
quality group X spacing nor the family x spacing interactions were significant. 
Heritabilities and genetic correlations were determined for all traits separately for each 
spacing at each test site. Traits height, branch angle and taper had the highest 
heritabilities, with individual heritabilities of greater than 0.15, and the traits branch 
diameter, relative branch diameter and relative crown width had values less than 0.05. 
The two growth traits together with growth-related form traits tended to be strongly 
positively correlated with the exception of height and relative crown width. However, 
branch angle and branch number showed no strong correlations with any other tree form 
and growth traits. Both heritabilities and genetic correlations were more meaningful for 
the more fertile test site due to larger components of family variance. 
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INTRODUCTION 

Jack pine {Pinus banksiana Lamb.) is both the most widely distributed and 

economically important pine species in Canada (Janas and Brand 1988). Its wood is used 

extensively for general construction, pulp, railway ties, poles, pilings, and mine timbers 

(Hosie 1973). This species is also a principal reforestation species in several provinces in 

Canada. 

In spite of its commercial importance, certain characteristics of jack pine are not 

favourable for saw log production. These characteristics include: 1) a relatively short life- 

span, 2) a tendency to grow slowly between the ages of 12 and 20 years in dense, fire- 

origin stands (Bella and DeFranceschi 1971, Day 1986, Wilson 1952), and 3) a high 

proportion of stem deformities and unacceptably high knot volumes in low density stands 

(Bella and DeFranceschi 1974, 1980). 

Tree form quality of jack pine is affected by both environmental and genetic factors. 

Of the environmental factors influencing tree form, spacing effect plays a key role. As a 

general rule, close spacing produces better tree form than wider spacing. Based on this 

relationship, the rapid increase of reforestation by planting at wide spacings across 

Canada has raised concern by forest industry about the quality of wood produced in these 

plantations (Magnussen and Yeatman 1987a). Wider initial spacing is adopted as a means 

to reduce costs of reforestation and tending and to concentrate growth on fewer trees 

(Magnussen and Yeatman 1987a). Although initial spacing does not impact the total 

volume of wood produced in mature stands based on the law of constant final yield, it can 

influence the percentage of merchantable wood produced (Hamilton and Christie 1975, 



Jorgensen 1967). Wide initial spacing tends to increase stem taper and the size of 

branches, and adversely affects the yields and qualities of pulp and lumber (Balmer et al. 

1975, Laidly and Barse 1979, Persson 1975a, 1975b, Reukema 1970). Thus, the financial 

returns from this type of management may be unacceptably low if poor quality, low value 

logs are produced (Ballard and Long 1988). 

Genetic improvement can be an effective way of modifying branch and stem 

characters as: 1) it tends to be less costly than silvicultural manipulations (e.g. pruning, 

pre-commercial thinning), 2) usually the heritabilities of concerned traits in many 

commercial species are high (Morgenstem et al. 1975), and 3) the knowledge of genetic 

correlation between traits makes it practical to reach the goal of a balanced combination 

of improved characteristics (Veiling 1988). 

Phenotypically, jack pine is highly variable, making it a promising candidate for 

genetic improvement of stem quality (Polk 1972, Rudolph 1964, Rudolph and Yeatman 

1982). A prerequisite for a genetic improvement program is quantification of major 

variables determining quality and their variability, and correlation under different 

silvicultural management practices. This type of information is needed during the 

juvenile stage when the first selections for growth rate and/or form quality are being 

made. 

Although spacing and genetic factors play important roles in tree form quality, few 

studies to date have considered both aspects at the same time. Therefore, it is impossible 

to evaluate both effects at the same time, and the interaction between spacing and genetic 

factors largely remains unknown. This study was designed to a) quantify the influence of 



spacing and genetic factors on jack pine tree form quality, and b) determine if there are 

spacing x group and spacing x family interactions. 

For the most part, the value of jack pine wood to forest industry is determined by 

branch size and branch size-related traits. To date, the breeding of jack pine has been 

based primarily on height and diameter growth in young field trials. As a result, little is 

known about the tree form quality traits and the genetic relationships between tree form 

quality traits and growth traits of jack pine. To describe the effects of spacing, group 

(stand), family, spacing x group, and spacing x family on tree form quality, this study 

focused on a number of tree form quality traits: absolute branch size (diameter and 

length), branch angle, number of dominant branches and relative branch diameter (branch 

diameter/stem diameter at the same whorl). In addition, two growth traits (stem height 

and diameter at breast height), relative crown width (the ratio of average crown diameter 

to height) and stem taper were also included in this study allowing for a comparison 

between form and growth traits. 

The results from this study will help in clarifying the following hypotheses: 

Hypothesis 1: Tree form quality of plantation-grown jack pine is affected greatly by 

an increase in initial spacing during the early growing stage. 

Hypothesis 2: The group (stand quality) effect is significant. That is, progeny from 

good quality stands have better tree form quality than collections made from poorer 

quality stands. 

Hypothesis 3: The family effect is significant for the tree form quality traits used in 

this study. 

Hypothesis 4: Tree form quality traits have relatively high heritability. 



Hypothesis 5: Genetic correlation between tree form traits and growth traits are 

relatively high. 



LITERATURE REVIEW 

A thorough review is carried out regarding the effects of spacing and genetic factors 

on tree form quality traits in coniferous tree species. First, the traits most closely related 

to tree form quality in coniferous species are illustrated. They are branch size and angle, 

stem taper and straightness, relative branch diameter and crown width. Then, studies on 

genetic factors, such as genetic variation in form quality traits, growth traits, heritability 

and genetic correlation of growth and quality traits are described. Third, spacing effect on 

growth and form quality traits was generalised based on relevant studies. Last, the 

interaction of spacing and genetic factors was reviewed. 

JACK PINE LIFE HISTORY CHARACTERISTICS 

Classification 

Jack pine is classified into the subsection Contortae Little & Critchfield, of the 

section Pinus, of the subgenus Firms, the hard pines. The subsection Contortae is 

characterized by two short (2-8 cm) leaves in a fascicle, two or more whorls of branches 

in one growing year and often serotinous cones (3-8 cm long) (Little and Critchfield 

1969). This species is a small to medium-sized coniferous tree of the northern forests of 

the United States and Canada. This species is commonly regenerated from seed released 

by fire from persistent closed cones. 
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Species Range 

The major portion of the jack pine range is in Canada, where its northern boundary 

extends eastward from the Mackenzie River in the Northwest Territories across the 

country to Cape Breton Island, Nova Scotia. The range then extends Southwest through 

Maine, New Hampshire, northern New York, central Quebec and northern Ontario, 

Michigan, extreme Northwest Indiana, Northeast Illinois. The range extends Northwest 

through Wisconsin, Minnesota, Manitoba, Saskatchewan, central Alberta, to the extreme 

Northeast of British Columbia (Bums and Honkala 1990). 

Soil and Site Relationships 

Jack pine is usually found on sandy soils to loamy soils, on thin soils over the 

granites, and metamorphosed rocks of the Canadian Shield, over limestone, on peats and 

on soil over permafrost. Jack pine can grow on very dry sandy or gravelly soils where 

other species can scarcely survive, but it grows best on well drained loamy sands where 

the midsummer water table is located from 1.2 to 1.8 m (4 to 6 ft) below the surface. It 

can not grow on alkaline soil, but it can grow on soils overlying limestone, and on 

calcareous soils (pH8.2), if a normal mycorrhizal association is present. Most commonly 

jack pine grows on level to gently rolling sand plains, usually of glacial outwash, fluvial, 

or lacustrine origin. Less commonly it occurs on esker, sand dunes, rock outcrops, and 

bald rock ridges. This species is found chiefly at elevations between 300 and 460 m 



(1,000 and 1,500 ft), with a maximum of about 610 m (2,000 ft) above sea level (Rudolph 

and Laidly 1990). 

Jack pine is a dominant or codominant species in the eight recognized Forest 

Ecosystem Classification Vegetation Types in Northwestern Ontario (Sims et al. 1989). 

In the overstory it associates with black spruce {Picea mariana (Mill.) B.S.P.), trembling 

aspen {Populus tremuloides Michx.), and white birch (Betula papyrifera Marsh.). Less 

frequently it associates with Balsam fir {Abies balsamea (L.) Mill.) and white spruce (P. 

glauca (Moench) A. Voss). 

GROWTH TRAITS IN JACK PINE AND OTHER CONIFEROUS SPECIES 

Genetic Variation 

Genetic variation in height growth has been found to be significant in jack pine, 

facilitating genetic improvement in height growth (Adams and Morgenstem 1991, 

Magnussen and Yeatman 1989). Studies in other pine species also showed that genetic 

variation in growth was significant, such as in loblolly pine {Pinus taeda L.), lodgepole 

pine {Pinus contorta Doug, ex Loud.), radiata pine {Pinus radiata D.Don), Scots pine 

{Pinus sylvestris L.) and Caribbean pine {Pinus caribaea Morelet) (Eriksson et al. 1987, 

Jayawickrama and Balocchi 1993, Liu et al. 1997, Wright et al. 1990, Xie and Ying 

1996). 
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Heritability 

For jack pine, published individual heritability values range from 0.10 to 0.14 in 

diameter and 0.17 to 0.26 in height (Table 1). The average individual heritability was 

0.11 for diameter and 0.20 for height. Adams and Morgenstem (1991) found that the 

individual and family heritabilities of jack pine for height were 0.17 and 0.74 

respectively, which is consistent with Yeatman (1975). 

Generally, for the species shown in Table 1, individual heritabilities for stem 

diameter, height, and volume range from 0.10 to 0.30 (Haapanen and Poykko 1993, 

Magnussen and Yeatman 1990, Morris et al. 1992). However, some studies, such as 

Kariuki (1998), indicated high family heritability estimates in jelecote pine (Pinus patula 

Schlechtend. & Cham.): 0.61, 0.69 and 0.70 for height, DBH (diameter at breast height) 

and volume production, respectively (Table 1). 

Qin et al. (1997) showed that height, DBH and stem volume of Masson pine {Pinus 

massoniana Lamb.) at 5-10 years old were under moderate or high genetic control. At 

age 10 years, the heritabilities for the 3 growth traits were more stable with family 

genetic variation coefficients decreasing with age. Haapanen and Poykko (1993) revealed 

moderate individual heritability values for Scots pine, 0.2 to 0.5 for DBH and stem 

volume respectively. However, the heritability was 0.60 for height, which was probably 

overestimated due to the subjective sampling in which the six tallest trees on each plot 

were selected for measurement. In many other studies height has been rated as a 
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Table 1. Selected heritability estimates for growth traits from various studies. 

Trait Species m Reference 

diameter 

height 

volume 

jack pine 

jack pine 

jack pine 

jack pine 

jelecote pine 

Scots pine 

jack pine 

jack pine 

jack pine 

jack pine 

jack pine 

jelecote pine 

Scots pine 

jelecote pine 

Scots pine 

0.24 Klein 1995 

0.10 Magnussen and Yeatman 1990 

0.10 Morris et al. 1992 

0.14 Park et al. 1989 

0.69*^ Kariuki 1998 

0.21 Haapanen and Poykkol 993 

0.17 Adams and Morgenstem 1991 

0.34 Klein 1995 

0.18 Magnussen and Yeatman 1990 

0.17 Morris et al. 1992 

0.26 Park et al. 1989 

0.61 ^ Kariuki 1998 

0.60 Haapanen and Poykko 1993 

0.70'' Kariuki 1998 

0.22 Haapanen and Poykko 1993 

means family heritability, others are individual heritability values. 
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trait of relatively weak inheritance (Nilsson 1968, Palmberg 1970, Veiling and Tigerstedt 

1984). 

Stand Density Relationships 

With the rapid increase of reforestation by planting, it is necessary to understand the 

effect of initial spacing on growth and yield (Bella and De Francheschi 1974). Studies 

have shown that initial spacing affects stem form characteristics, and hence, the yields 

and qualities of pulp and lumber (Balmer et al. 1975, Laidly and Barse 1979, Persson 

1975a, 1975b, Reukema 1970). Although initial spacing does not influence the total 

volume of wood produced in mature stands, net yield and financial returns usually 

increase with wider initial spacing (Hamilton and Christie 1975, Jorgensen 1967). 

In jack pine, studies have shown that the effect of spacing on diameter growth is 

significant: wider spacing generally resulted in a greater diameter (Adams 1928, Bella 

and Franceschi 1974, 1980, Godmanand Cooley 1970, Ralston 1953, Rudolf 1951, 

Zavitkovski and Dawson 1978). This is in agreement with the results from other species 

(Evert 1971, Hamilton and Christie 1975, Hinners and Stratmann 1984, Jorgensen 1967, 

Reukema and Smith 1987, Xie et al. 1995). However, some studies in jack pine have 

reported that wider spacing may indirectly lower the DBH growth, at least during early 

growing stage, due to multiple stem formation and excessive stem taper (Bella and 

Francheschi 1974, 1980). 

Height is relatively constant over a wide range of spacing. Dominant height is 

usually affected less by spacing (Evert 1971, Jorgensen 1967). Spacing had no consistent 
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effect on height growth for jack pine, red pine and white spruce (Bella and Francheschi 

1974). Some studies showed that close spacings had a negative effect on mean height 

(Evert 1971, Hamilton and Christie 1975, Jorgensen 1967, Magnussen and Yeatman 

1987a), and wide spacings a detrimental effect upon stem straightness, which thus 

indirectly affected the mean height (Magnussen and Yeatman 1987a). Maximum average 

tree height is often found in an intermediate spacing (Bella and Francheschi 1974, 1980, 

Hamilton and Christie 1975, Magnussen and Yeatman 1987a, Ralston 1953). This is 

especially the case for jack pine. Increased planting density in shore pine {Pinus contorta 

var. contorta), on the other hand, stimulated height growth, and height growth responded 

to planting density earlier than diameter growth (Xie et al. 1995). For Scots pine, stand 

density had the smallest effect on height growth (Ryabokon 1978). For Douglas fir 

(Pseudotsuga menziesii (Mirb.) Franco.), western hemlock (Tsuga heterophylla (Raf.) 

Sarg.), and western red cedar {Thuja plicata J. Donn ex D.Don.), top heights were 

initially a little taller at close spacings, but were similar at all spacings at age 25 as the 

initial advantage of close spacings disappeared over time. Tanner (1985) suggested the 

reason why trees can maintain a fairly uniform height growth under a wide range of 

densities. The smaller height increment of very dense stands may be partly explained by 

carbohydrate source-sink physiology. Under very dense conditions, the developing shoot 

is not pmvided with sufficient stored and actively synthesized food to optimize height 

growth (Janas and Brand 1988). 

Bella (1986) found that spacing had a consistent effect on the height-DBH 

relationship in jack pine, where trees of equal DBH were about 1 m taller at narrow 

spacing than at wide spacing. No consistent trends emerged in height-DBH relationships 
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for red pine and white spruce. These results suggest an optimum spacing of between 1.8 

and 2.4 m for both jack pine and red pine in order to achieve rapid tree growth and high 

future timber yields. Unlike jack pine, red pine retains good tree form even at wide 

spacing (Bella 1986). 

FORM TRAITS IN JACK PINE AND OTHER CONIFEROUS SPECIES 

Past studies have shown that some traits, such as branch size, branch angle, stem 

straightness and taper are important characters indicating tree form quality. These traits 

are usually influenced by both genetic characteristics and environmental factors. Studies 

in genetic variation and heritability are summarized in this review. Genetic variation in 

tree form traits exist at provenance and/or family level, and the heritabilities of these 

traits are generally high. Spacing is an important environmental factor, which contributes 

a great deal in determining tree form quality. Conventionally, dense stands are used to 

improve stem quality, at the cost of a smaller log and longer rotations. And due to high 

cost of tending and thinning, wider initial spacing has become more popular in Canadian 

plantations, raising concerns regarding stem quality. As a result, the effect of spacing on 

both growth and tree form quality traits was reviewed in this paper. 

Tree Form Quality Traits 

In most cases, tree form quality is a complex of characters. It can be divided into 

components that have genetic variation and are thus usable as selection criteria and which 
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can be evaluated in growing trees (Venalainen et al 1996). The number and size of 

branches are the most important log quality characteristics for many products (Barger and 

Ffolliott 1970, Grah 1961). All knots, regardless of size, reduce the strength of lumber 

(Grant et al. 1984). For example, the timber grade of Scots pine is dependent on the 

dimensions, total volume, location, form, and type of knots in the log (Petersson 1998). 

Knots greatly affect the properties of wood and this is reflected in wood quality when 

using existing grading systems (Anon. 1994) as a basis of evaluation. The strength and 

appearance of Scots pine sawn timber are especially susceptible to the occurrence of 

branches in saw log (Kellomaki and Vaisanen 1989). The quality of sawn timber is 

determined as much as 70-80% by the occurrence of branches (Karkkainen 1980). Thus, 

branch size or knot size is used as a determinant for branchiness and knottiness, and for 

wood quality prediction (Briggs 1996, Colin 1992, Colin and Houllier 1991, Houllier et 

al. 1995). Depending on the market, both knot size and type (live or dead), affect lumber 

and veneer grades. In general, a tree with smaller, live knots would be worth more 

(Briggs 1996). 

Desirable stem quality characteristics not only include decreased branchiness and 

reduced branch size, but also fewer stem deformities resulting from multiple leaders and 

improved branch angles in jack pine (Bella and DeFranceschi 1974, 1980). It is common 

in conifers that branch angles change from acute in the upper part of crown to more 

horizontal in the lower (Barber 1964, Cochrane and Ford 1978, Dietrich 1973, Ehrenberg 

1963, Zimmermann and Brown 1971). Branch angles range from 55 to 70 for the 2- to 

4-year-old branches in plantations spaced from 1 - 2 m in Scots pine (Ehrenberg 1963), 

Virginia pine {Firms Virginia Mill.) (Bailey et al. 1974), and jack pine (Schoenike et al. 
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1962). Generally, there is a 6 degree annual increase in branch angle of slash pine 

(Barber 1964) and lodgepole pine (Franklin and Callaham 1970). The age effect is caused 

by two opposing forces: gravity and radial stem growth (Zimmermann and Brown 1971), 

which were substantiated by the partial correlation of stem and branch diameter with 

branch angle. These correlations exist commonly in coniferous species (Bailey et al. 

1974, Barber 1964, Dietrich 1973, Merrill and Mohn 1985). Because trees with narrow 

angles usually have larger knots than those with wide angles (Bailey et al. 1974, Dietrich 

1973, Zimmermann and Brown 1971), the genetic improvement on branch angle has 

economic potential (Magnussen and Yeatman 1987a). 

Stem taper is also important to both tree qualities, as well as to the resistance of tree 

stems to breakage by wind or snow. Tall, slender trees are more likely to be broken. 

Europeans suggest that the ratio of height to DBH (in cm) of the 100 largest trees per ha 

should be kept to less than about 80, and the average tree at 100 (van Tuyll and Kramer 

1981). Stem taper causes diagonal grain in lumber, reducing its strength (Briggs 1996). 

Relative branch diameter (the ratio of branch diameter to stem diameter at the same 

whorl)) and relative crown width (crown width adjusted for stem diameter below a 

sample whorl) were used, to show the trends of change in branch diameter compared with 

stem diameter, and crown width compared with stem height, respectively, in Virginia 

pine (Bailey et A/. 1974), Scots pine (Veiling and Tigerstedt 1984), loblolly pine (Zobel 

and Talbert 1984), lodgepole pine (Yanchuk 1986), Douglas fir (St.Clair 1994) and jack 

pine (Adams and Morgenstem 1991). 

Two main approaches to assess form quality in forestry have been used: the holistic 

approach and the multi-trait approach. The holistic approach attempts to judge directly 
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the unity formed by the complex of characters: branch, crown and stem properties etc.. 

In this approach, only one visual score is obtained for the whole tree with respect to the 

quality requirements. This method is fast and easy compared with empirical measuring, 

but the accuracy is questionable due to subjectivity and inconsistency (Magnussen and 

Yeatman 1987a). The multi-trait approach has become more widely adopted in breeding 

programs (Cotterill and Zed 1980), although it is complex because it involves selecting 

several traits, and the accuracy of genetic parameter values (e.g. heritabilities and genetic 

correlations) derived for the advanced selection index methods still needs improvement 

(Zobel and Talbert 1984). 

Genetic Variation 

The magnitude of genetic variation varies depending upon the form traits being 

considered and the species. For jack pine, the form traits such as number of branches, 

number of leaders and crown density exhibited greater variation than did the growth traits 

such as height and diameter (Morris et al. 1992). The opportunity for genetic 

improvement of branch angle appeared to be feasible within the four jack pine seed lots 

considered by Magnussen and Yeatman (1987b). With a range of more than 30° in whole 

tree values of branch angle, it was confirmed that jack pine exhibits extreme phenotypic 

deviants ranging from upright to flat branches (Benzie 1977, Polk 1972, Rudolph and 

Yeatman 1982). Beaudoin (1996) also found that the difference among scots pine 

provenances was significant for branch angle. Further study is needed for genetic 
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variation of tree form quality traits, such as branch size, relative branch size, etc. in jack 

pine. 

For other coniferous species, at the provenance level, genetic variation in tree form 

quality traits was found to be significantly different for loblolly pine, Scots pine, 

Japanese Larch {Larix kaempferi (Lambert) Carr.) and Norway spruce (Picea abies (L.) 

Karst.) (Eriksson et al. 1987, Farnsworth et al. 1972, Krupski and Giertych 1996, Liu et 

al. 1997). In a provenance trial of Norway spruce, significant differences were obtained 

for characters of branch diameter, spike knots, stem straightness and branch angle among 

provenances (Krupski and Giertych 1996). For Douglas fir, considerable genetic variation 

was found for branch diameter and length adjusted for stem size and relative crown width 

(St. Clair 1994). For Scots pine, trees from the northern part of its distribution transferred 

a few degrees southwards were found to be straight and with thin branches and few spike 

knots (Stahl 1998). At the family level, differences were noted for approximately half of 

the quality characters among families of Scots pine (Eriksson et al 1987). In the case of 

loblolly pine, although stem straightness was significantly different among provenances, 

the variations among families were not (Lu et al 1997). Similarly for Scots pine, the 

differences between families for most quality characteristics were small (Makinen 1996). 

Heritability 

For many commercial species, the heritabilities of concerned traits are reasonably 

high (Morgenstem et al. 1975), the range of 0.1 to 0.4 (individual) has been established 

in conifers for branch angle, branchiness, self-pruning and wood density (Bailey et al. 
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1974, Barber 1964, Dietrich 1973, Ehrenberg 1961, Franklin and Callaham 1970, 

Nicholls et al. 1980). Selected individual heritability estimates for form quality traits 

from various studies are listed in Table 2. For branching characteristics, the individual 

heritabilities vary greatly, ranging from 0.01 to 0.73, with an average of 0.25 for all of the 

listed traits: branch diameter, relative branch diameter, number of branches and branch 

angle. To the extent that stem- and branch-form characteristics are strongly heritable, 

^ they are more easily manipulated via improvement programs than are height and volume 

growth rates (Wright 1976, Zobel and Talbert 1984). 

Number of branches per whorl has a low to moderate heritability, its heritability 

values range from 0.01 to 0.19, and average 0.11 (Table 2). For jack pine, the heritability 

value was 0.10, and the values were 0.09, 0.09 and 0.01 for Scots pine, Douglas fir and 

Norway spruce, respectively. 

Branch angle has the highest heritability for all of the traits listed, ranging from 0.09 

to 0.73, and averaging 0.40. This trait was found to be the most strongly heritable trait, 

with individual and family heritabilities of 0.42 and 0.89, respectively, for jack pine, and 

the highest heritability in Virginia pine (Bailey et al. 1974). 

The individual heritabilities for relative branch diameter range from 0.17 to 0.34 and 

average 0.28 (jack pine, 0.12) (Table 2). Compared with those of other traits, this value 

is low, and this is consistent with results from other species, such as Virginia pine (Bailey 

et al. 1974), loblolly pine (Zobel and Talbert 1984) and lodgepole pine (Yanchuk 1986). 

Stem straightness has a relatively high heritability. Its values average 0.17 and range 

from 0.13 to 0.28. For jack pine, the individual heritability was 0.23. It ranges from 0.17 

to 0.28 for radiata pine, and averages 0.13 for lodgepole pine. 
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Table 2. Individual heritability estimates for stem quality traits. 

Trait Species Reference 

branch diameter 

Relative branch diameter 

Number of branches 

Branch angle 

stem straightness 

Number of crooks 

Number of leaders 

crown diameter 

Relative crown width (rcw) 

Relative crown height (rch) 

crown density 

Scots pine 

Douglas fir 

Jack pine 

Scots pine 

Scots pine 

Douglas fir 

jack pine 

Norway spruce 

Scots pine 

Douglas fir 

jack pine 

Norway spruce 

Scots pine 

Scots pine 

jack pine 

lodgepole pine 

radiata pine 

jack pine 

jack pine 

jack pine 

Scots pine 

Scots pine 

Scots pine 

jack pine 

0.21 

0.34 

0.12 

0.17 

0.24 

0.09 

0.10 

0.01 

0.09 

0.06 

0.42 

0.44 

0.22 

0.24 

0.23 

0.13 

.17-.28 

0.10 

0 

0.08 

0.31 

0.43 

0.19 

0 

(1) 
(2) 

(6) 

(3) 

(1) 

(2) 

(4) 

(5) 

(3) 

(2) 

(6) 

(5) 

(3) 

(1) 

(6) 

(7) 

(8) 

(4) 

(4) 

(4) 

(3) 

(1) 

(1) 

(4) 

Note: Rcw is the ratio of crown diameter to stem height, and rch is the ratio of crown 

height to stem height. (1) Haapanen and Poykko 1993, (2) St. Clair 1994, (3) 

Veiling and Tigerstedt 1984, (4) Morris et al. 1992, (5) Merrill and Mohn 1985, 

(6) Adams and Morgenstem 1991, (7) Yanchuk 1986, (8) Cotterill and Zed 1980. 
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Relative crown width is measured both as crown width per unit crown length and 

crown width adjusted for stem diameter below a sample whorl. In Douglas fir the 

individual heritabilities were 0.32 and 0.25, respectively (St.Clair). The crown width 

relative to stem height in a Scots pine had an estimated heritability of 0.31. 

All of the studies above show that the parameter (heritability), attributed as 

“genetic” is actually a unique trial parameter that refers only to the population and 

conditions under which they have been obtained (Falconer 1981). 

Stand Density Relationships 

As noted above, the size of branches represents the most important log quality 

characteristic (Barger and Ffolliott 1970, Grab 1961). Wood grade decreases as the size 

of knots increases (Tustin and Wilcox 1974). Stand density is a factor of prime 

importance among the properties of stand structure controlling the formation, growth, 

death and natural pruning of branches (Fujimori 1975, Kellomaki and Tuimala 1981). As 

a result, density control of stands can increase timber quality in any conifer stand 

(Vuokila 1968). 

A number of studies have been carried out to determine the influence of initial 

spacing on form quality of trees (Scots pine - Abetz 1970, Kellomaki et al. 1992, 

Kellomaki and Vaisanen 1986, Persson 1977, Salminen and Varmola 1993, Spellman 

and Nagel 1992, Varmola 1980a; other sp.- Bramble et al. 1949, Stevenson and 

Bartoo 1939, Ware and Stahelin 1948; Norway spruce - Handler and Jakobsen 1986, 
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Kramer et al. 1971, Merkel 1967). These studies have shown that branch size, stem taper 

and the size of the living crown are reduced by closer spacing. 

Branch size on the first log in pines largely depend on initial stand density (Ballard 

and Long 1988). Wood produced in a widely-spaced plantations has larger knots and 

hence, inferior strength properties than wood produced from dense stands (Balmer et al. 

1975, Laidly and Barse 1979, Persson 1975b). For Scots pine, Salminen & Varmola 

(1990) reported that the influence of spacing was very modest, whereas Persson (1977) 

and Varmola (1980a) found it stronger; the wider the spacing, the thicker the branches, 

even with the equal stem size. Varmola (1980a) went so far as to regard stand density as 

the most important factor affecting the quality of Scots pine. Jokinen and Kellomaki 

(1982) found that the number of live branches per tree and the diameter and length of the 

thickest branch in a whorl decreased with increasing stand density in Scots pine. For 

spruce, branch thickness at 1.3 m above ground level depended on stand density only, but 

at 2.5 m it depended on both density and rectangular design (Handler and Jakobsen 

1986). For shore pine, increasing planting density reduced the proportion of stem defects 

and disease- and insect-damaged trees (Xie et al. 1995). 

Poorer stem form in pines grown at wide spacings during the juvenile stage is a 

common observation (Evert 1971, Magnussen and Yeatman 1987a, Varmola 1980a). The 

evidence found in jack pine supports these findings (Bella and Franceschi 1971, 1980, 

Magnussen and Yeatman 1987a, Ralston 1953, Rudolf 1951, Rudolph 1964). Magnussen 

and Yeatman (1987a) reported a relatively high proportion of “runt” trees and trees with 

crooked stems in the 2 m spacing. Although form quality in dense stands is usually good. 
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a high risk of serious snow damage may outweigh any quality gain in close spacings 

(Kramer 1979, Magnussen and Yeatman 1987a, Neary et al. 1974, Yeatman 1974). 

Excessive stem taper is unacceptable in the manufacture of some specialty products, 

such as power poles (American National Standards Institute 1979). Taper also reduces 

the amounts of recoverable lumber in a log (Ballard and Long 1988). Reukema and Smith 

(1987) found that the H/D ratio (height / DBH) at age 25 is strongly influenced by 

spacing. The closer the spacing, the larger the ratio. The closest spacing 0.9 meters had a 

taper value of 138 for Douglas fir, and widest spacing 56 for cedar. The ratio declines 

with increasing age. According to the “pipe model” theory (Kellomaki et al. 1989), the 

cross-section of the stem equals the sum of the cross-sections of the branches above. This 

explains why stem taper ratio decreases with the increase of age due to branch dieback 

(Bramble et al. 1949, Niemisto 1995). 

For tree form, jack pine has a tendency to develop irregular crowns in wide spacing. 

The crown becomes wide and bushy with multiple leaders and stems. The correlation 

between the crown irregularity and spacing was highly significant (Bella and De 

Francheschi 1974), and an optimum spacing of between 1.8 and 2.4 m was suggested for 

jack pine (Bella 1986). 

For crown width, spacing has great effect on crown development (Bella 1986, Bella 

and Francheschi 1974). Crown width showed a gradual increase with spacing for jack 

pine, red pine and white spruce. For jack pine, the increase in crown width was more 

pronounced and quite dramatic for large trees (above 12 cm DBH) at the widest spacing. 

Thus wide crowns correspond to heavy branches and greater stem taper. 
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GENETIC CORRELATION BETWEEN GROWTH AND FORM TRAITS 

Genetic correlation is used to quantify the impact of selection based on one or 

several traits on the other traits. It may be positive, zero, or negative. Table 3 lists 

selected genetic correlations for coniferous species. The table shows that the genetic 

relationships between branch angle and quality, tree size and productivity were zero. 

Branch angle in jack pine was not significantly correlated with adverse stem quality 

traits. This trait had weak negative genetic correlation with height, but did not correlate 

strongly with any other trait (Adams and Morgenstem 1991). Studies on other species 

such as Norway spruce (Lewark 1981) and slash pine (Pinus elliottii Engelm.) 

(Strickland and Goddard 1965) also found branch angle had little or no relationship to 

tree size. This indicates that branch angle is independently inherited. However, some 

other studies disagree with this hypothesis (Bailey et al. 1974, Barber 1964, Dietrich 

1973, Haapanen and Poykko 1993, Merrill and Mohn 1985). Trees with narrow angles 

usually have larger knots than those with wide angles (Bailey et al. 1974, Dietrich 1973, 

Haapanen and Poykko 1993, Zimmermann and Brown 1971). 

Table 3 also indicates that tree form quality traits and growth traits had negative 

genetic correlation, indicating that improvement in growth may decrease stem form 

quality (Liu et al. 1997, Morris et al. 1992, Paques 1996a, Sun and Liu 1997). Morris et 

al. (1992) found that stem height and diameter had very strong genetic correlation with 

number of crooks along stems of jack pine (Table 3). Giertych (1986) found that there 

were strong genetic correlations between branchiness, straightness and self-pruning of 

Scots pine. Scandinavian provenances had straight stems but low productivity, whereas 
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inland continental provenances were highly productive but had poorer form. Paques 

(1996) also found that for Japanese larch at the provenance level, negative correlations 

between tree form and growth vigour existed. In Scots pine, the genetic correlation 

between form quality and growth traits appeared to be slightly unfavourable with respect 

to multi-trait breeding (Haapanen and Poykko 1993). ). However, stem straightness had 

no evident genetic correlation with growth rate of loblolly pine (Table 3). 

Branch diameter had positive genetic correlations with stem height and diameter, 

while relative branch diameter had negative correlations with the growth traits in Scots 

pine (Haapanen and Poykko 1993). This relationship means that selections for trees with 

superior stem height and diameter may also increase branch diameter, but may not 

increase relative branch diameter. Therefore, multi-trait selection may be favourable for 

in this species. A positive genetic correlation between height and taper in jack pine is 

believed to reflect a relatively longer crown in some families (Magnussen and Yeatman 

1987a). Morris et al. (1992) found that crown diameter had stronger genetic correlation 

with stem height than with stem diameter, and both stem height and diameter had weak 

genetic correlation with number of branches. This indicates that stem height and diameter 

were not strongly correlated with crown shape and number of branches. The low genetic 

correlation between number of branches and the two growth traits probably suggested an 

independent inheritance of number of branches (Table 3). 
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Table 3. Genetic correlations between growth and form traits in coniferous species. 

Trait Species Correlation Reference 

Branch angle - productivity 

Branch angle - tree size 

Branch angle - stem quality 

Growth rate - stem straightness 

Growth rate - tree form 

Growth rate - tree form 

Growth rate - tree form 

Height - crown diameter 

Height - number of crooks 

Height - number of branch 

Height - taper 

Height - branch diameter 

Height - relative branch diameter 

DBH - crown diameter 

DBH - number of crooks 

DBH - number of branch 

DBH - relative branch diameter 

DBH - branch diameter 

Adjusted branch diameter (a.b.d.) 

- Adjusted branch length (a.b.l) 

Scots pine 

jack pine 

Scots pine 

loblolly pine 

loblolly pine 

loblolly pine 

Japanese larch 

jack pine 

jack pine 

jack pine 

jack pine 

Scots pine 

Scots pine 

jack pine 

jack pine 

jack pine 

Scots pine 

Scots pine 

Douglas fir 

0 

0 

0 

0 

<0 

<0 

<0 

0.44 

0.93 

0 

>0 

0.26 

-0.18 

0.18 

0.82 

0.17 

-0.32 

0.46 

0.59 

(1) 
(2) 

(1) 

(3) 

(4) 

(5) 

(6) 

(7) 

(7) 

(7) 

(2) 

(8) 

(8) 

(7) 

(7) 

(7) 

(8) 

(8) 

(9) 

Notes: a.b.d. (or a.b.l.) is the ratio of branch diameter to stem diameter (or the ratio of 

branch length to stem height). Reference: (1) Giertych 1986, (2) Magnussen and 

Yeatman 1987b, (3) Lu et al. 1997, (4) Liu et al. 1997, (5) Sun and Liu 1997, (6) 

Paques 1996, (7) Morris et al. 1992, (8) Haapanen and P6ykk6l993, and (9) 

St.Clair (1994). 
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St.Clair (1994) showed that adjusted branch diameter and adjusted branch length 

had a moderate positive correlation for Douglas fir. Haapanen and Poykko (1993) also 

found that the genetic correlation between each pair of branching traits (branch diameter, 

relative branch diameter, branch angle) in two different whorls (4^^ and 7^^ from the top) 

for Scots pine were moderately correlated (0.63 to 0.66), and those between these traits 

and other traits were very similar and independent of the position of the whorl. Thus, the 

quality associated with branch characteristics of young pines can be assessed quite 

accurately using a single whorl and with better accuracy by using the upper part of the 

crown. St. Clair (1994) also found that tree size was genetically correlated with larger 

branch diameter (1.18), steeper branch angle (-1.07), and more branches per whorl (0.26). 

Large trees that were efficient producers of wood relative to growing space had full, tall, 

narrow crowns. This particular crown structure is in agreement with theoretical models of 

the effect of crown shape on light interception and stand productivity (Jahnke and 

Lawrence 1965, Kellomaki a/. 1985). 

Adams and Morgenstem (1991) revealed that the strongest genetic correlation was 

between crown quality and branch diameter (0.88) in jack pine. This result could be 

anticipated because relative crown width was included in crown quality, and generally, 

longer branches are larger in diameter. Stem straightness showed a strong positive 

correlation with crown quality (0.78) and branch diameter (0.72). Evaluation of both 

traits is probably not necessary in the future. 
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INTERACTIONS OF SPACING AND GENETIC FACTORS 

Magnussen and Yeatman (1987a) found that “genoptye” x spacing interaction was 

significant for stem and branch diameter . With only four genetically well-buffered seed 

lots tested, this finding applies only to mass selection. Although genotype x spacing 

interactions are important in practice, little information has been published on this subject 

regarding better defined “genotypes” such as half- or full-sib families (Campbell and 

Wilson 1973, Cannell 1982, Fries 1984, Magnussen and Yeatman 1987a). Further studies 

are clearly needed in this field. 
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MATERIALS AND METHODS 

During the summer of 1989, natural jack pine stands were chosen from the eastern 

and western areas of the former North Central Region of Ontario. Three stands ranging 

from good to poor form extremes were selected in each of the two areas (Fig.l). From 

each of the six stands, ten trees were randomly selected with two constraints: (1) parent 

trees were separated by a minimum of 100 meters, and (2) a minimum of 20 closed cones 

per tree were available. Microsite, competitors and parent trees were measured to 

quantify stand conditions on an individual tree basis, such as depth to bedrock, distance 

and crown dimensions of competitors, stem straightness, taper, shape, height, DBH of 

parent trees, etc. (Morris and Parker 1992). An additional 20 families from a total of 400 

were selected from Ontario’s tree improvement program (from the Lake Nipigon western 

breeding zone), based on an early measurement (3 year-old) of one family-test (Morris et 

al. 1992). The families exhibiting the best growth (10) and highest form quality (10) were 

incorporated into the current study (Fig.l and Appendix 2). The eight family groups were 

determined according to stand quality and location of families (Table 4). 

Up to one hundred cones were collected from each parent tree in June 1989, and 

bagged separately. Seeds were extracted and stored. For each parent, 480 seedlings were 

established in a greenhouse in early winter, 1989. The seedlings (current crop, leech tube 

containers) were grown in the greenhouse throughout the winter, receiving water and 

nutrients, and transported to two planting sites in early June, 1990. Two planting sites 
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were chosen with differing site quality, the fertile, moist, fine-soiled site referred to here 

as Camp 45, 

Table 4. Quality and location of family groups (stands) in jack pine. 

Family 

Group number Symbol number Location Quality of stand 

E-G 1-10 east of Lake Nipigon 

E-A 11-20 east of Lake Nipigon 

E-P 21-30 east of Lake Nipigon 

W-G 31 -40 west of Lake Nipigon 

W-A 41-50 west of Lake Nipigon 

W-P 51-60 west of Lake Nipigon 

G-G 61-70 LNWBZ 

G-F 71-80 LNWBZ 

good 

average 

poor 

good 

average 

poor 

good in growth 

good in form 

Note: LNWBZ = Lake Nipigon western breeding zone. For details regarding G-G and 

G-F, see Appendix 2. 
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and the nutrient-poor, sandy site referred to here as Camp 602. The seedlings were 

planted in 4 blocks in each of the two sites. Each block contained 5 different spacings: 

0.25, 0.50, 1.00, 2.00, 3.00 m. Within each of the spacing regimes, 5 replicates of the 80 

families were randomly located in sing-tree plots. Therefore, a total of 16,000 seedlings 

(400 seedlings/density x 5 densities x 4 blocks x 2 sites) were used. An additional 7000 

seedlings were required to establish two buffer rows around all 40 density blocks (5 

densities x 4 blocks x 2 sites). On both planting sites (Fig. 1 and Appendix 1), manual site 

preparation and /or weed control were executed during fall/winter 1989, to provide a 

uniform planting site on typical boreal cutovers. Manual weed control has been 

conducted periodically for the duration of the experiment (more details regarding the 

collection site, site quality and parent tree stands of this study can be found in Morris and 

Parker 1992). 

During the first two years, dead trees were replaced with overwinter containerized 

stock from the same seedling lot and flagged as refills to maintain the integrity of the 

initial spacings. Every fall, health/damage assessments were done. Thus, it was possible 

to run analyses with all or non-damaged trees. 

In 1998, data were collected from both test sites (Fig. 1) for the following 

measurements: number of crooks, total height, diao.5 (stem diameter at 0.5 m height) and 

DBH (diameter at breast height). In addition, both northward and eastward branches were 

measured in whorl 95 (initiated in 1995) for traits branch length, branch diameter, branch 

angle and number of dominant branches. Of the five spacings, only three spacings were 

included for this study: the 1 m, 2 m and 3 m spacings. 
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Noticeably damaged trees were not measured for branch traits. These included: the trees 

with no leading branches (mostly caused by weevil damage) and thus with irregular 

crown shape, and the trees with no normal or healthy branches in whorl 95 (in this case, 

the branches were mostly eaten by animals, such as moose). Average branch diameter, 

length and angle were determined using the average values of northward and eastward 

branches. Number of dominant branches was defined as those branches, which dominated 

in whorl 95, and number of crooks was measured by counting the crooks (bend) along a 

stem. Relative branch diameter was defined as the ratio of average branch diameter to 

stem diameter in whorl 95, and relative crown width represented the ratio of average 

crown diameter (double the average branch length) to height. Stem taper was calculated 

as follows (Forslund 1991): 

Taper=1.40 x height / do.3 

where: do.3 = (1 - heighto.3 / height) x do.s / (1 - 0.5 / height) 

= (1 - 0.3) X do.5/ (1 - 0.5 / height) 

do.5 is stem diameter at 0.5 meter height 

height is the total height of stem 

Statistical Analyses 

The following ten variables were used for statistical analysis: number of dominant 

branches, average branch diameter, average branch length, average branch angle, height, 

DBH, relative branch diameter, relative crown width, taper and number of crooks. First, 

SAS procedures Chart and Univariate were used to check if these variables were 
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normally distributed (SAS Institute Inc. 1996). The results showed that nine of the ten 

traits followed a normal distribution. Number of crooks, however, did not. 

SAS procedure GLM was used to run ANOVAs for the nine normally distributed 

traits. Although this was an experiment of randomized complete block design, 

preliminary tests showed that block effect and block related interactions were zero or 

very close to zero. Thus, the model was simplified as Eq.l: 

Yijkim = p + Si + Pj + SPij + Gk + SGik + PGjk + SPG yk + 

F(k)i + SFi(k)i + PFj(k)i + SPFij(k)i + £(ijki)m Eq.l 

i=l,2; j = l,2, 3; k=lto8; 1 = 1 to 10; m=lton 

where: Yykim = the response variable of the mth replication of the ith family within 

the kth group of the jth spacing of the ith site, p = the overall mean, Si = the fixed effect 

of the ith site, Pj = the fixed effect of the jth spacing, SPy = the interaction effect of the 

ith site and the jth spacing, Gk = the random effect of the kth group, SGik = the interaction 

effect of the ith site and kth group, PGjk = the interaction effect of the jth spacing and the 

kth group, SPG yk = the interaction effect of the ith site and the jth spacing and the kth 

group, F(k)i = the random effect of the 1th family within the kth group, SFi(im)n = the 

interaction effect of the ith site and the 1th family within the kth group, PFk(im)n = the 

interaction effect of the jth spacing and the 1th family within the kth group, SPFy(k)i = the 

interaction effect of the ith site and the jth spacing and the 1th family within the kth 

group, and £(ijki)m = the random effect of the mth replication of the 1th family within the 

kth group of the jth spacing of the ith site, assumed IID(0, acot ). Here the values for n 

ranged between 15 and 17 depending on the response variable in question and the number 
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of missing values, n = (actual observations measured) / (s x p x g x f), where s, p, g, and f 

were number of sites, spacings, groups and families, respectively 

After further preliminary test, the non-significant 3-way interactions were pooled 

into the experimental error and the simplified linear model was as Eq.2. According to 

Eq.2, the expected mean squares table was developed as in Table 5. SAS procedure SNK 

(Student-Newman-Keuls) was used for multiple comparison test (SAS Institute Inc. 

1996). 

Yijkim = p + Si + Pj + SPij + Gk + SGik + PGjk + 

F(k)i SFi(k)i + PFj(k)i £(ijki)m Eq.2 

To calculate heritabilities, variance components for each of the nine traits were 

produced by SAS procedures VARCOMP (SAS Institute Inc. 1996). Heritabilities were 

calculated separately for each spacing at each site; the model was as Eq.3. 

Yijk = p + Bi + Gj + BGij + F(j)k + BFi(j)k + £(ijk)i Eq.3 

i= 1,2, 3,4; j = 1 to 8; k=ltolO; 1 = 1 ton 

where: Yyki = the response variable value of the 1th replication of the kth family 

within the jth group of the ith block, p = the overall mean, Bi = the fixed effect of the ith 

block, Gj = the random effect of the jth group, BGy = the interaction effect of the ith 

block and jth group, F(j)k = the random effect of the kth family within the jth group, 

BFi(j)k = the interaction effect of the ith block and the kth family within the jth group, and 

e(ijk)i = the random effect of the 1th replication of the kth family with the jth group of the 

ith block. In the model n = (actual observations) / (b x g x f), where b, g and f were 

number of blocks, groups and families, respectively. 



34 

Table 5. Expected mean squares (EMS) table associated with Eq.2. 

Source df EMS 

Site 1 

2 

2 

7 

7 

14 

72 

72 

144 

480n-322 

+ 3ncr!, + 30ncr', + 240n 0(S) 

CT^ +2ncr^^^ +20ncr^^ + 16On0(P) 

Cy + 80n 0(SP) 

(J +6ncr^ +60ncr 

(j +3ncr^^ +30ncj 

& 

2 

sg 

a +2ncr^ +20ncr^ 

cr^ +6ncr^ 

cr +3ncr 

cr +2ncr pf 

480n-l 

Note: The pooled error includes the 3-way interactions site x spacing x group and 

site X spacing x family. 
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The expected mean squares (EMS) associated with Eq.3 are presented in Table 6. 

Standard errors were estimated as described by Becker (1984) for variance components 

and heritability. Narrow-sense heritabilities on an individual-tree basis and family 

heritabilities were estimated as Eq.4a and Eq.4b from Becker (1984). 

2 

h 
2 

/ 
 gv 
(Je j ^ Jb 

nb b 

Eq.4a 

9 ^(7 r 

hi = — 2^—r 

where: is the family heritability, }i- is the individual heritability, is the 

2 2 • • • family variance component, (j^ is the error variance component, is the interaction 

variance component of family and block. 

Genetic correlations were calculated from variance components, which were 

obtained from SAS procedure VARCOMP REML (Stonecypher 1992). Variance 

components for each pair of traits for each spacing at each site were estimated and 

genetic correlation were calculated as Eq.5 (Falconer 1981): 

= 

COV/(^J^) Eq.5 

where: rg (xy) is the genetic correlation between traits x and y, covf (xy) is the 

2 • • *2 family covariance between traits x and y, a f (x) is the family variance for trait x, a f (y) 

is the family variance for trait y. 
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Table 6. Expected mean squares (EMS) associated with Eq.3. 

Source df EMS 

Block 

Group 

Block X Group 

Family 

Block X family 

Error 

b-1 

g-1 

(b-i)(g-i) 

g(f-i) 

(b-i)g(f-i) 

bgf(n-l) 

(7^ + +f«crL +gf«®(^) 

(j^ +b«(7^ +bfn(jl 

a + «cri +f«cr" 

+b«(j^ 

2 , 2 
CJ + «<T fly 

a 
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RESULTS AND DISCUSSION 

THE EFFECTS OF SPACING AND GENETIC FACTORS 

This study focused on the effects of spacing and genetic factors (mainly form- 

quality groups) on two growth traits and eight tree form quality traits. The site effect for 

all traits and the site x family interactions for height, DBH and taper indicated by the 

ANOVAs were not discussed in detail as they were not the focus of this study. 

Height 

The effect of spacing 

Height growth was notably affected by spacing in 8 year-old, plantation-grown jack 

pine (Table 7). Trees planted at the 1 m spacing grew, on average, 10 cm higher than 

those in the 3 m spacing and 5 cm higher than those in the 2 m spacing. All of these 

differences were significant (p < 0.05) (Table 8). The site x spacing interaction was very 

significant (Table 7). At the nutrient-poor site (Camp 602), the mean heights of each 

spacing were very close to the site mean of height for all three spacings; while at the 

fertile site (Camp 45), trees grown at the 1 m spacing exhibited the highest growth rate 

and the 3 m spacing the lowest (Fig. 2). This pattern most likely arose as the trees at the 

fertile site grew faster, and, as a result the crowns closed quicker in the tighter spacings. 

After crown closure and as a response to increased competition for light, trees tend to 
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Table 7. ANOVA results for the effects of spacing, group and family on height 

growth of jack pine. 

Source df MS F Value Pr > F 

Site 

Spacing 

Site X spacing 

Group 

Site X group 

Spacing x group 

Family (group) 

Site X family (group) 

Spacing x family (group) 

Pooled Error 

Total 

1 

2 

2 

7 

7 

14 

72 

72 

144 

7297 

7618 

523.04 1319.62 

6.38 

24.23 

5.13 

0.39 

0.11 

0.70 

0.28 

0.22 

0.20 

56.69 

122.60 

7.35 

1.42 

0.51 

3.53 

1.42 

1.11 

<0.01 

<0.01 

<0.01 

<0.01 

0.21 

0.92 

<0.01 

<0.05 

0.18 

Note: Group identities are in Table 4. 
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Table 8. Results of multiple comparisons for the effect of group and spacing on height 

growth of jack pine. 

Source Mean (m) SNK Grouping 

1 X 1 m 

Spacing 2 x 2 m 

3 X 3 m 

3.24 

3.19 

3.14 

Group 

G-G 

G-F 

W-P 

W-G 

W-A 

E-A 

E-P 

E-G 

3.29 

3.26 

3.23 

3.22 

3.20 

3.13 

3.10 

3.08 

ab 

be 

be 

c 

d 

de 

Note : Means with the same letter are not significantly different (a = 0.05) for each 

source. 
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Spacing 

Group 

5- 2X2m 

T 1 1 1 1 1 1 r 
E-G E-A E-P W-G W-A W-P Q-G G-F 

Group 

5- 3X3m 

T 1 1 1 1 1 1 r 
E-G E-A E-P W-G W-A W-P G-G G-F 

Group 

Camp 45 

Group 

Group 

5- 3X3m 

4- 

iL o 

 1 1 1 1 1 1 r 
E-G E-A E-P W-G W-A W-P G-G G-F 

Group 

Camp 602 

group mean 

site mean 

group mean + sd 

group mean - sd 

Fig. 2. Group and spacing effects on height in jack pine (Group 
identities are in Table 4, sd = standard deviation). 
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allocate a greater amount of resources to the apical meristem, resulting in increased 

height growth. At the poor site, crown closure had not yet occurred not only for 2 m and 

3 m spacings, but also for most of the 1 m spacings. Janas and Brand (1988) found that 

height was relatively constant over a wide range of spacing in jack pine. 

The effect of genetic factors 

Genetic factors play a very important role in height growth, both at the group level 

(quality of stands) and family level (Table 7). The two plus tree groups (G-G and G-F) 

had the best height growth of all the eight groups. The trees sourced from west of Lake 

Nipigon grew much better than those from the east of the lake (Table 8). For both Camp 

45 and Camp 602, the mean height of the groups from east of the lake (E-G (east good 

form), E-A (east average form) and E-P (east poor form)), had lower values of height 

than did the groups from west of the lake (W-G (west good), W-A (west average) and W- 

P (west poor)). 

Although the site x group interaction did not reach significant level, the difference 

between groups was more notable for Camp 45 than for Camp 602 (Fig.2). This result is 

understandable because the two plus tree groups were also selected from west of Lake 

Nipigon, and the trees from west of the lake grew better in the two planting sites, both of 

them located west of Lake Nipigon. 

The notable provenance effect (regional effect of genetic difference, such as that of 

east and west of Lake Nipigon) was in agreement with that of early studies (Yeatman 
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1974 and Rudolph and Yeatman 1982), they found that the provenance from east of Lake 

Nipigon was the slowest-growing ones at all ages to 19 years. 

In addition to this group effect, family also had a significant effect on height growth 

of jack pine (Table 7). The 23 fastest growing families in the 80 families were all from 

the west of the lake, and the 9 slowest growing families in height growth were all from 

the east (Appendix 3.1). Among these best families, 7 were from G-G, 5 from W-G, 4 

from W-P, 4 from G-F and 3 from W-A. Among those slowest growing families, 4 were 

from E-P, 4 from E-G and 1 from E-A. It is clear that families from the west of Lake 

Nipigon grew much better than those from the east of the lake. The significant site x 

family interaction was not presented in detail as height was not the most concerned trait 

in this study. 

Genetic variation at the family level may be inconsistent, based on earlier studies. 

Early studies in jack pine support our finding that there is significant difference in growth 

traits among families (Magnussen and Yeatman 1989) in jack pine. The results in Masson 

pine were in agreement with those in jack pine (Qin et al. 1997). However, there were 

little or no difference among families of pitch pine {Firms rigida P. Mill.) (Kuser and 

Ledig 1987), and jelecote pine (Kariuki 1998). It is noteworthy that families from 

different provenances were much more variable than those from within provenances. In 

this study both inter- and intra-provenance variation was involved in the analysis of 

variance in jack pine families. 
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Spacing x genetic interactions 

The spacing x group and spacing x family interactions did not exist for height 

growth of jack pine, although genetic factors played an important role at both the group 

and the family level (Table 7). 

Diameter at Breast Height (DBH) 

The effect of spacing 

In the mixed model analysis of variance, the spacing effect was very significant 

(p < 0.01) on diameter growth of jack pine (Table 9). The results of multiple comparisons 

of mean DBH showed that for all of the three pairs of spacing comparisons, the 

differences reached a significant level (Table 10). The mean DBH of 3 m and 2 m spaced 

trees were over 7 and 6 cm greater than that of 1 m, respectively. Although the 3 m and 2 

m spacings only had 1 cm difference in mean DBH, this difference was also significant 

(Table 10). The site x spacing interaction was very significant (Table 9). For Camp 45, 

both the DBH means of 3 m and the 2 m spacings were about 3 mm over the site mean of 

DBH; only that of the 1 m spacing was more than 6 mm below the site mean (Fig. 3). For 

Camp 602, the magnitude of DBH mean differences among spacings was different. The 

mean of the 1 m spacing was about 4 mm below the site mean, while the mean of the 2 m 

spacing was 1 mm above the site mean and the 3 m spacing had a mean value of 3 mm 

above the site mean. 
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The analysis above revealed that at age 8, jack pine DBH was greatly reduced when 

spacing changed from 2 m to 1 m. When the spacing was decreased from 3 m to 2 m, 

DBH growth was not so greatly influenced. However, this result presumably depends on 

age. This result is consistent with findings from earlier studies that found a significant 

Table 9. ANOVA results for the effects of spacing, group and family on 

diameter growth of jack pine. 

Source df MS F Value Pr>F 

Site 

Spacing 2 

Site X spacing 2 

Group 7 

Site X group 7 

Spacing x group 14 

Family (group) 72 

Site X family (group) 72 

Spacing x family (group) 144 

Pooled Error 7294 

Total 7615 

637903.52 2221.58 <0.01 

33799.51 627.43 <0.01 

2767.12 35.39 <0.01 

785.58 3.26 <0.01 

287.14 2.39 <0.05 

53.87 0.67 0.80 

240.96 3.08 <0.01 

120.10 1.54 <0.01 

80.75 1.03 0.38 

78.18 

Note: Group identities are in Table 4. 
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Table 10. Multiple comparisons for the effect of spacing and group on diameter at breast 

height of jack pine. 

Source Mean (mm) SNK Grouping 

Spacing 

3 X 3 m 

2 X 2 m 

1 X 1 m 

42.10 

41.10 

35.05 

Group 

G-G 

G-F 

W-G 

W-P 

W-A 

E-P 

E-A 

E-G 

40.81 

40.26 

39.98 

39.72 

39.41 

38.80 

38.27 

38.03 

a 

ab 

ab 

be 

be 

cd 

d 

d 

Note: Means with the same letter are not significantly different (a = 0.05) for each 

source. 
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1 1 1 1 1 1 1 r 
E-G E-A E-P W-G W-A W-P G-G G-F 

group 

Camp 45 

group mean 

site mean 

Gamp 602 

group mean + sd 

group mean - sd 

Fig. 3. Group and spacing effects on diameter at breast height in jack pine (Group 
identities are in Table 4, sd = standard deviation). 
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effect of spacing on diameter growth, and a wider spacing generally results in a greater 

diameter (Evert 1971, Hamilton and Christie 1975, Jorgensen 1967, Rudolf 1951). 

This result has been duplicated by many other jack pine spacing trials (Adams 1928, 

Bella and Franceschi 1974, 1980, Godman and Cooley 1970, Ralston 1953, Zavitkovski 

and Dawson 1978). However, some studies mentioned that wide spacing may lower the 

DBH growth during early growing stage, due to multiple stem formation and excessive 

stem taper (Bella and Francheschi 1974, 1980). 

The effect of genetic factors 

At the group level, the difference of DBH reached a level of 1% significance 

resulting primarily from provenance effect. The comparisons of mean DBH between 

groups indicated that the two plus tree groups had better diameter growth than all the 

others, and trees from the west of Lake Nipigon had significantly better diameter growth 

than those from east of the lake (Table 10). At the family level, the difference of DBH 

was also significant. The family means showed similar results as height: 19 of the 23 

fastest grown families in DBH were from west of the lake (Appendix 3.2). Among those 

families, 5 were from G-G, 4 from G-F, 4 from W-G, 3 from W-A and 3 from W-P. Of 

the four families from east of the lake, 2 were from E-A and one from E-G and E-P. As 

was true for height, 8 of 9 of the slowest diameter growth families were from east of the 

lake. 

The site x group interaction reached significant level. The difference of mean DBH 

among groups was more notable in fertile Camp 45 than in nutrient-poor Camp 602 
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(Fig. 3). In Camp 45, it was easily identified that the two plus tree groups G-G (good in 

growth) and G-F (good in form) had the highest value of mean DBH. In Camp 602, this 

trend among groups was not evident. The mean DBH growth of the groups in the 2 m 

spacing was almost identical for this site (Fig. 3). The significant site x family interaction 

was not presented in detail in this study as DBH was not the most concerned trait in this 

study. 

The significance of genetic variation at both the group (with evident provenance 

effect) and family level has been supported by a variety of studies, these studies showed 

that genetic variation in diameter at breast height was large at the provenance level. 

Among provenances of loblolly pine, Norway spruce, radiata pine, Scots pine and 

Caribbean pine, there were significant differences in growth and yield (Eriksson et al. 

1987, Gunia and Zybura 1984, Jayawickrama and Balocchi 1993, Liu et al. 1997, Wright 

et al. 1990). Xie and Ying (1996) reported that in lodgepole pine, genetic variation of 

diameter at breast height was large at both the provenance and the family levels. As was 

the case for height, the provenance effect on DBH was always greater than the family 

effect and this difference tended to increase as the test aged. Kariuki (1998) revealed that 

among provenances of Pinus oocarpa (Scheide), there were significant differences in 

DBH. 

According to this study, family level genetic variation was significant for jack pine. 

This result was supported by Magnussen and Yeatman (1989) in jack pine and by Qin et 

al. (1997) in Masson pine. On the other hand, Kuser and Ledig (1987) found that there 

was little variation among families within provenances of pitch pine. The same as height 



49 

growth, Kariuki (1998) reported that among families of jelecote pine the differences in 

DBH were all non-significant. 

Spacing x genetic interactions 

There were no significant spacing x group and spacing x family interactions 

(Table 9). This indicates that no family (group) was favoured at wider or closer spacings 

in this study, and this result did not follow the hypothesis presented above. 

Number of Dominant Branches 

Spacing, group, spacing x group and spacing x family interaction did not 

significantly affect number of dominant branches (Table 11). However, site x spacing 

interaction was significant (Fig. 4). At family level, number of dominant branches 

differed significantly (Table 11). Family numbers 77 (G-F), 22 (E-P), 5 (E-G), 39 (W-G) 

had the highest numbers of dominant branches, with values of 5.13, 5.01, 5.00 and 4.97, 

respectively. Family number 55 (W-P), 66 (G-G), 60 (W-P), 12 (E-A) and 67 (G-G) had 

the lowest numbers of dominant branches, with values of 4.23, 4.18,4.11, 4.07 and 4.07, 

respectively (Appendix 3.3). 
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Table 11. ANOVA for the effects of spacing, group and family on number of 

dominant branches of jack pine. 

Source df MS F Value Pr > F 

Site 

Spacing 

Site X spacing 

Group 

Site X group 

Spacing x group 

Family (group) 

Site X family (group) 

Spacing x family (group) 

Pooled error 

Total 

1 

2 

2 

7 

7 

14 

72 

72 

452.38 

0.11 

9.45 

4.51 

1.50 

2.42 

4.36 

2.09 

144 2.00 

7300 1.90 

7621 

301.97 

0.05 

4.97 

1.03 

0.72 

1.21 

2.29 

1.10 

1.05 

<0.01 

0.96 

<0.01 

0.42 

0.65 

0.27 

<0.01 

0.26 

0.33 

Note: Group identities are in Table 4. 
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Fig. 4. Group and spacing effects on number of dominant branches in 
jack pine (Group identities are in Table 4, sd = standard 
deviation) 
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Number of dominant branches was quite different from height and DBH with 

respect to group and family effects. While no evident group effect was found, it should be 

possible to select trees with greater or fewer dominant branches. 

It may be possible that the criteria for number of dominant branches is not very 

accurate because the values of this trait were determined by visual comparison, not by 

empirical measuring. The accuracy might be reduced due to subjectivity and 

inconsistency. 

For genetic variation, Morris et al. (1992) found that genetic variation was greater in 

number of branches than in growth traits (height and diameter) in jack pine. However, St. 

Clair (1994) found little genetic variation for branch numbers per whorl in Douglas fir. 

Number of branches is one of the most important log quality characteristics (Barger and 

Ffolliott 1970, Grant et al. 1984, Grah 1961). 

Average Branch Length (AVBL) 

The effect of spacing 

The effect of spacings on branch length was significant (p < 0.01) (Table 12). Trees 

grown at the 3 m spacing had 6.36 cm greater average branch length than those at the 2 m 

spacing, and trees grown at the 2 m spacing had 11.30 cm longer branches than those at 

the 1 m spacing. All of these differences were significant (Table 13). 
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Table 12. ANOVA for the effects of spacing, group and family on average 

branch length of jack pine. 

Source df MS F Value Pr>F 

Site 

Spacing 

Site X spacing 

Group 

Site X group 

Spacing x group 

Family (group) 

Site X family (group) 

Spacing x family (group) 

Pooled error 

Total 

1 

2 

2 

7 

7 

14 

72 

72 

144 

7296 

7617 

1130883.57 

194687.55 

13634.07 

1769.36 

811.58 

226.88 

992.38 

317.81 

400.07 

368.70 

1393.44 

858.11 

36.99 

1.78 

2.55 

0.57 

2.69 

0.86 

1.09 

<0.01 

<0.01 

<0.01 

0.10 

0.02 

0.88 

<0.01 

0.79 

0.23 

Note: Group identities are in Table 4. 

Table 13. Multiple comparisons for the effect of spacing on average branch length of 

jack pine. 

Spacing Mean (cm) SNK Grouping 

3 X 3 m 

2 X 2 m 

1 X 1 m 

89.78 

83.42 

72.12 

Note: Means with the same letter are not significantly different (a = 0.05). 
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Fig. 5. Group and spacing effects on average branch length in jack pine 
(Group identities are in Table 4, sd = standard deviation). 
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The site x spacing interaction effect was very significant (Table 12). For the fertile 

Camp 45, the AVBL mean of the 3 m spacing was 4.4 cm longer than that of the 2 m 

spacing, and that of the 2 m spacing was 9 cm longer than that of the 1 m spacing (Fig. 

5). For Camp 602, the difference of branch length among spacings was even greater. The 

AVBL for the 3 m spacing was 9 cm longer than that of the 2 m spacing, and the 2 m 

spacing was 12.2 cm longer than the closest 1 m spacing (Fig. 5). For both sites, the 

difference of AVBL between the 2 and 3 spacing was much smaller than that between the 

1 and 2 m spacing. These differences were greater at Camp 602, where limited resources 

made the competition between trees more severe at the closer spacings. 

The finding that spacing effect on branch length was significant for 8 year-old jack 

pine is consistent with those of a variety of studies (Scots pine - Abetz 1970, Kellomkki 

et al. 1992, Kellomaki & Vaisanen 1986, Persson 1977, Salminen & Varmola 1993, 

Spellman & Nagel 1992, Varmola 1980a; other Pinus sp.- Bramble et al. 1949, Stevenson 

& Bartoo 1939, Ware & Stahelin 1948; Norway spruce - Handler & Jakobsen 1986, 

Kramer et al. 1971, Merkel 1967). These studies all found that branch length is reduced 

by closer spacing, and vice versa. 

The effect of genetic factors 

Group effect was not significant on average branch length of jack pine at age 8 

(Table 12). However, the site x group interaction effect was significant. For Camp 602, 

differences between groups were very limited. For the fertile Camp 45, there were some 
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notable differences between groups from west of Lake Nipigon and east of the lake; 

predictably, the groups from the west grew faster than those from the east. 

The difference between families of jack pine was very significant (1%). Similar to 

the situation for height and DBH, a number of families from the west of Lake Nipigon 

had longer branch length than those from east of the lake (Appendix 3.4). Magnussen and 

Yeatman (1987b) found no significant difference of branch length between seed lots of 

jack pine. 

Spacing x genetic interactions 

No evident interactions between spacing and group, and between family and group 

were found (Table 12). These results followed the pattern of height and DBH, both of 

them also had no spacing x group and spacing x family interaction. 

Average Branch Diameter (AVBD) 

The effect of spacing 

Spacing significantly affected branch diameter growth in 8 year-old jack pine (Table 

14). The widest 3 m spacing had 1.64 mm greater AVBD than that of the 2 m spacing, 

and the 2 m spacing had 3.95 mm greater AVBD than that of the 1 m spacing. All of the 

differences reached significant level (Table 15). The site x spacing interaction was also 

very significant. For Camp 45, the group mean of the 3 m spacing was about 3 mm above 
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Table 14. ANOVA for the effects of spacing, group and family on average 

branch diameter of jack pine. 

 F Value p Source df 

Site 

Spacing 

Site X spacing 

Group 

Site X group 

Spacing x group 

Family (group) 

Site X family (group) 

Spacing x family (group) 

Pooled error 

Total 

1 

7 

14 

72 

72 

144 

7255 

7576 

34400.84 

20153.63 

264.75 

19.37 

18.27 

11.74 

25.68 

8.90 

10.53 

10.48 

1883.12 

1716.42 

25.27 

0.75 

2.13 

1.12 

2.45 

0.82 

1.01 

<0.01 

<0.01 

<0.01 

0.63 

0.05 

0.35 

<0.01 

0.86 

0.47 

Note: Group identities are in Table 5. 

Table 15. The effect of spacing on average branch diameter of jack pine. 

Spacing Mean (mm) SNK Grouping 

3 X 3 m 

2 X 2 m 

1 X 1 m 

15.42 

13.78 

9.83 

Note: Means with the same letter are not significantly different (a = 0.05). 
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the site mean; that of the 2 m spacing was 1mm above the site mean; and, the group mean 

of 1 m spacing was 4 mm below the site mean. For Camp 602, the group mean of the 3 m 

spacing was 2 mm above the site mean, that of the 2 m spacing was about 0.5 mm above 

the site mean, and that of the 1 m spacing was 2.5 mm below the site mean (Fig. 6). 

From these results, it is evident that spacing strongly affects branch diameter growth 

of jack pine. Increasing spacing from 1 m to 2 m or 3 m will greatly increase branch 

diameter for 8 year-old jack pine, and the increase in spacing from 1 m to 2 m has much 

greater influence on branch diameter than from 2 m to 3 m. At the fertile site this effect is 

more pronounced than that at the poorer site. 

This significant effect of spacing on branch diameter was consistent with a variety 

of studies in Scots pine (Abetz 1970, Kellomaki et al. 1992, Kellomaki & Vaisanen 1986, 

Persson 1977, Salminen & Varmola 1993, Spellman & Nagel 1992, Varmola 1980a, b), 

oihQV Firms sp. (Bramble et al. 1949, Stevenson & Bartoo 1939, Ware & Stahelin 1948), 

and Norway spruce (Handler & Jakobsen 1986, Kramer et al. 1971, Merkel 1967). These 

studies all showed that branch diameter is reduced by closer spacing, and vice versa. For 

Scots pine, Salminen & Varmola (1990) reported that the influence of spacing was very 

modest, whereas Persson (1977) and Varmola (1980a) found it stronger. They found that 

the wider the spacing, the thicker the branches, and vice versa, even with the equal stem 

size. Varmola (1980a) found that stand density was the most important factor affecting 

the quality of Scots pine. He found that with increasing density, the stem form improved 

and branches became thinner. 
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The effect of genetic factors 

There was no significant group effect on branch diameter growth (Table 14). The 

site X group interaction was close to significant. For both the fertile Camp 45 and the 

nutrient-poor Camp 602, the group means of branch diameter were very close to each 

other for each spacing. However, there were some differences between 3 m and the 1 m 

spacings for Camp 45 (Fig. 6). The difference among families in branch diameter growth 

was very significant (Table 14). Families from the west of Lake Nipigon usually had 

larger branch diameter than those from the east of the lake. However, some families from 

the west of the lake such as family number 66 and 72, were among those with the thinnest 

branch diameter (Appendix 3.5), even though the height and DBH growth of the two 

families were close to or over the family mean (Appendix 3.1 and 3.2). This result may 

indicate that branch diameter was independent from height and DBH, to some extent; 

and, it is possible to select families with high growth rate as well as very thin branch 

diameter. As branch diameter is among the traits that influence tree form quality the 

most, increased economic potential may be produced through multi-trait selection by 

improving tree form quality as well as maintaining the growth rate of plus trees at the 

same time. 

For genetic variation, St. Clair (1994) found considerable variation for branch 

diameter adjusted for stem size in Douglas fir. As well, Krupski and Giertych (1996) 

found significant differences among provenances of Norway spruce for branch diameter 

and spike knots among provenances. However, Beaudoin (1996) found that the difference 

in branch diameter among provenances of jack pine was not significant. The same with 
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radiata pine, Jayawickrama and Balocchi (1993) reported no significant differences in 

branch diameter, either at the population or subpopulation level. 

Spacing x genetic interactions 

There was no evident interaction effect on branch diameter between group and 

spacing, or between family and spacing. 

Average Branch Angle (AVBA) 

The effect of spacing 

Spacing affected branch angle notably (Table 16). Trees grown at the 1 m spacing 

had the largest branch angle, with values 3.91 degrees greater than those grown at the 3 m 

spacing, and 3.03 degrees greater than those grown at the 2 m spacing. The 2 m spacing 

had values only 0.88 degrees greater than the 3 m spacing. All of the differences, 

including that between the two wider spacings, reached significance level (Table 17). 

For both sites Camp 45 and 602, the 1 m spacing had the largest angle, with 6 out of 

8 groups having about 3 degrees over the site mean (Fig. 7). In the 2 m spacing, 

approximately half of the groups had average site angle values, and the other half 1 to 2 

degrees below the site means. For the 3 m spacing, 5 of the 8 groups in Camp 45 and all 

of the groups in Camp 602 had values 2 to 3 degrees below the site means of branch 

angle. These results indicate that an increase in spacing from 1 m to 2 m decreases branch 
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angle significantly, and this reduction in branch angle was less when spacing increased 

from 2 to 3 m, at least during the juvenile stage. Branch angle is an important trait in 

determining the quality of the wood produced, and smaller branch angles tend to decrease 

wood quality (Bailey et al. 1974, Dietrich 1973, Zimmermann and Brown 1971). Thus, 

trees grown in 1 m spacing will produce trees with better wood quality. However, the 

Table 16. ANOVA for the effects of spacing, group and family on average branch 

angle of jack pine. 

Source df MS F Value Pr > F 

Site 1 18401.12 67.73 

Spacing 2 9971.15 147.69 

Site X spacing 2 54.13 0.53 

Group 7 535.63 1.12 

Site X group 7 271.68 2.93 

Spacing X group 14 67.51 0.79 

Family (group) 72 476.40 4.66 

Site X family (group) 72 92.85 0.91 

Spacing X family (group) 144 85.23 0.83 

Pooled error 7247 102.18 

Total 7568 

<0.01 

<0.01 

0.58 

0.38 

<0.01 

0.68 

<0.01 

0.69 

0.93 

Note: Group identities are in Table 4. 

Table 17. The effect of spacing on average branch angle of jack pine. 

Spacing Mean (degree) SNK Grouping 

1 X 1 m 

2 X 2 m 

3 X 3 m 

64.06 

61.03 

60.15 

Note: Means with the same letter are not significantly different (a = 0.05). 
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magnitude of this effect on wood quality needs further research. The site x spacing 

interaction was not significant (Table 16). Few studies had involved branch angle in 

spacing trials. 

The effect of genetic factors 

Group did not notably affect branch angle in jack pine (Table 16). However, the 

site X group interaction was significant (Table 16). For Camp 45, groups W-G, W-P and 

G-F had the lowest branch angle values at the 1 m spacing; while for Camp 602, E-A, W- 

P and G-G had the lowest values at the 1 m spacing. For Camp 602, the branch angle 

values of all groups were almost identical at the 3 m spacing, while the values for Camp 

45 were much more variable (Fig. 7). 

Family greatly affected branch angle in jack pine (Table 16). Some families with a 

fast growth rate also had very narrow branch angles, such as family number 33 (W-G), 37 

(W-G), 62 (G-G), 67 (G-G) (Appendix 3.6). However, other families such as 63 (G-G) 

with superior height (Appendix 3.1) and DBH growth (Appendix 3.2), also had a wide 

branch angle (Appendix 3.6). This pattern indicates that branch angle is an independent 

trait (more details are in Genetic Correlation presented later), and it should be possible to 

select families with good tree growth rate in growth traits and wide branch angle at the 

same time. 

Several studies, such as Krupski and Giertych (1996) in Norway spruce and 

Beaudoin (1996) in jack pine, reported significant provenance effect for branch angle. 

Magnussen and Yeatman (1987b) found that the opportunity for genetic improvement of 
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branch angle was possible for four jack pine seed lots. With a range of more than 30 

degrees in whole tree values of branch angle, jack pine exhibited extreme phenotypic 

deviants ranging from upright to flat branches (Benzie 1977, Polk 1972, Rudolph and 

Yeatman 1982). These findings are in contrast to Douglas fir, of which St. Clair (1994) 

found no genetic variation of branch angle. The significant difference of branch angles 

among families in jack pine indicates that genetic improvement on branch angle is 

possible, and has economic importance (Magnussen and Yeatman 1987a, b). 

Spacing x genetic interactions 

No spacing x group and spacing x family interactions were found on branch angle of 

8 year-old jack pine (Table 16). 

Relative Branch Diameter fRBDl 

The effect of spacing 

Spacing affected relative branch diameter (branch diameter/stem diameter at the 

same whorl) significantly (Table 18). The wider 3 m and 2 m spacings had significantly 

greater values than those of the closest 1 m spacing (0.07 and 0.06 respectively). The 

difference between the two wider spacings was also significant, even though this 

difference was relatively small (0.01) compared with the above two values (Table 19). 
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The site x spacing interaction was also very significant. For the 1 m spacing, four of 

the eight groups had values very close to the site mean of Camp 45, while for Camp 602 

no one group had so close a value to the site mean. For the 2 m spacing, the mean value 

of RBD was almost identical to the site mean in Camp 45, while for Camp 602 the mean 

value was 0.03 over the site mean. For the 3 m spacing, the mean values of six of 

Table 18. ANOVA for the effects of spacing, group and family on relative branch 

diameter of jack pine. 

Source df MS F Value Pr>F 

Site 1 8.49 

Spacing 2 3.62 

Site X spacing 2 0.26 

Group 7 0.04 

Site X group 7 0.02 

Spacing X group 14 0.02 

Family (group) 72 0.04 

Site X family (group) 72 0.02 

Spacing x family (group) 144 0.02 

Pooled error 6986 0.02 

Total 7307 

514.96 

184.83 

13.42 

1.05 

0.87 

1.06 

2.00 

0.94 

0.92 

<0.01 

<0.01 

<0.01 

0.42 

0.53 

0.39 

<0.01 

0.62 

0.75 

Note: Group identities are in Table 4. 

Table 19. The effect of spacing on relative branch diameter of jack pine. 

Spacing Mean SNK Grouping 

3 X 3 m 

2 X 2 m 

1 X 1 m 

0.59 

0.58 

0.52 

Note: Means with the same letter are not significantly different (a = 0.05). 
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the eight groups were 0.03 greater than the site mean in Camp 45, while only 3 of the 

eight groups had values close to 0.03 in Camp 602 (Fig. 8). At the fertile site this 

significant spacing effect was even greater. 

These results indicate that at the closer spacing, the branches are relatively thinner, 

and vice versa. This is understandable considering that at the 1 m spacing the crown has 

been closed for some period of time, making the competition for light between branches 

very severe. In wide 2 m and the 3 m spacing, the crowns have not yet reached the state 

of closure at the time of measurement. The branches are still free to accept light, and thus 

have a good chance to grow thicker. Trees with low RBD values are more valuable, as 

branch diameter is the most important trait influencing wood quality of trees. By the 

view, increasing spacing will reduce the wood quality of trees, at least at the early 

growing stage. Few relevant studies have involved this trait with respect to spacing 

effect. 

The effect of genetic factors 

There was no significant difference among groups for relative branch diameter in 

jack pine (Table 18). As well, no group x site, and no family x site interactions existed 

either. However, the difference among families was very significant (Table 18). High 

growth rate and large branch diameter, did not necessarily correpond to its relative branch 

diameter. For example, family number 32, with the 21®^ fastest growth in height 

(Appendix 3.1), the 6^^ in DBH (Appendix 3.2), and the 11^^ thickest in branch diameter 
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(Appendix 3.5), ranked 77^^ out of the 80 families in relative branch diameter (Appendix 

3.7). Plus trees with thick branches but very low relative branch diameter probably 

should be considered superior in tree form quality. Thus, it is possible to select trees with 

relatively thinner branches from families with superior growth rate. One of the prime 

goals of tree improvement of jack pine probably is selecting trees with relatively thinner 

branches and thicker stem diameter. Few studies have involved this trait. 

Spacing x genetic interactions 

No spacing x group and spacing x family interactions were found for relative branch 

diameter of 8 year-old jack pine (Table 18). These results are consistent with those of 

other traits. All of the traits demonstrate no spacing x group and spacing x family 

interactions in this study. 

Relative Crown Width (RCW) 

Relative crown width is the ratio of crown diameter to tree height (two times branch 

length/stem height), it is a measure of crown shape. The lower the value, the more 

narrower the crown will be. 



70 

The effect of spacing 

Spacing significantly influenced the relative crown width of 8 year-old jack pine 

(Table 20). The differences between all three pairs of comparisons were very significant 

(Table 21). Trees in the widest 3 m spacing had a value of RCW 0.13 greater than those 

in the 1 m spacing, while in the 2 m spacing trees had a value of 0.08 greater than those 

in the closest 1 m spacing. The difference between the 2 m and 3 m spacing was only 

0.05. Nonetheless, the smaller difference between the two wider spacings was significant. 

However, the site x spacing interaction was not significant (Table 20). 

It is apparent that wider spacing causes a broader crown, and closer spacing a more 

narrower crown. This is because wider spacing provides more space for both above 

ground and beneath ground growth of jack pine with more sunlight, water and minerals in 

the soil. Conversely, closer spacing provides limited resources and energy for each tree, 

and competition is much more severe than for wider spacing. 

The results of this study were supported by Bella (1986) and Bella and Franeheschi 

(1974). These studies found that spacing had a great effect on crown development, and 

that crown width showed a gradual increase with spacing for jack pine, red pine and 

white spruce. In jack pine, the increase in crown width was more pronounced and quite 

dramatic for large trees (above 12 cm DBH) at the widest spacing. This is because jack 

pine has a tendency to develop irregular crowns in wide spacing. The crown becomes 

wide and bushy with multiple leaders and stems (trees with multiple leaders were 

encountered but excluded from this study as most of them were caused by weevil 

damage). 
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Table 20. ANOVA for the effects of spacing, group and family on relative 

crown width of jack pine. 

Source df MS F Value Pr >F 

Site 1 10.41 

Spacing 2 10.26 

Site X spacing 2 0.03 

Group 7 0.04 

Site X group 7 0.01 

Spacing X group 14 0.01 

Family (group) 72 0.03 

Site X family (group) 72 0.01 

Spacing X family (group) 144 0.01 

Pooled error 7251 0.01 

Total 7572 

732.14 

1050.65 

2.31 

1.21 

1.11 

0.74 

1.88 

0.93 

0.95 

<0.01 

<0.01 

0.10 

0.25 

0.36 

0.73 

<0.01 

0.64 

0.64 

Note: Group identities are in Table 5. 

Table 21. The effect of spacing on relative crown width of jack pine. 

Spacing Mean SNK Grouping 

3 X 3 m 

2 X 2 m 

1 X 1 m 

0.57 

0.52 

0.44 

a 

b 

c 

Note: Means with the same letter are not significantly different (a = 0.05). 
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The results from the 8 year-old jack pine plantation may suggest that the closest 1 m 

spacing is the optimum one out of all three spacings, while their results at age 20 

suggested an optimum spacing of between 1.8 and 2.4 m for both jack pine and red pine 

in order to achieve rapid tree growth and high future timber yields (Bella 1986). It seems 

that the optimum spacing increases over time. 

The effect of genetic factors 

Group did not affect relative crown width notably (Table 20). Unlike group effect, 

family effect was very significant (Table 20). Although family number 63 was the 

number one in height (Appendix 3.1) and DBH growth (Appendix 3.2), its relative crown 

width was the number 79th of the 80 families (Appendix 3.8), indicating great potential 

for this family in not only growth rate but also slender crown shape. Considering also the 

very thin branch diameter discussed above, this family probably is one of the best in both 

growth rate and tree form quality. Families 72, 75 and 66 also had among the lowest 

values of relative crown width of the 80 families (Appendix 3.8), and the growth rate of 

these families was also very well above family mean (Appendix 3.1 and 3.2). Relative 

crown width probably has additional significance related to tree form quality as trees with 

slender crown shapes compete with each other less severely in the same spacing and 

produce more quality wood. As the difference of relative crown width among families 

was large, it is possible to select families with slender crown shapes. St. Clair (1994) 

also found considerable genetic variation existed for relative crown width in Douglas fir. 
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Spacing x genetic interactions 

The interaction between spacing and group or between spacing and family was not 

significant for crown shape (Table 20). This indicates that no family or group 

demonstrated relative differences in relative crown width at the different spacings. 

Stem Taper 

The effect of spacing 

In its simplest sense, taper is the ratio of height to diameter. In this study it is 

calculated as: taper = 1.40 x height/diameter of 30%, where diameter of 30% = (1-0.3) x 

diameter at 0.5 m/( 1-0.5/height) (Forslund 1991). The greater this taper value, the more 

slender the stem form shape would be. Spacing had a significant effect on stem taper of 

jack pine (Table 22). The taper value of trees decreased 27.88 with the increase of 

spacing from 1 to 2 m, and was reduced only 10.87 as spacing increased further from 2 

to 3 m (Table 23). 

The site x spacing interaction was very significant. Although for both planting sites, 

taper values of trees in the 1 m spacing were well above the means of collective sites, and 

those in the 3 m spacing were clearly below the site means, the values were much closer 

to the site mean for Camp 602 than for Camp 45. It is especially the case for the 2 m 

spacing, four of the eight groups in Camp 602 had the same or close values to the site 

mean, while for Camp 45, values of all the groups were below the site mean (Fig. 9). 
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It is clear that increasing spacing will reduce taper values; the wider the spacing, the 

lower the stem taper; and vice versa. Some studies used a simple ratio of height to DBH 

as taper. Reukema and Smith (1987) found that the H-to-D ratio at age 25 for Douglas fir 

was strongly influenced by spacing. The closer the spacing, the bigger the ratio. This 

ratio declined with increasing age. 

Stem taper values that are either too low or too high are not acceptable for tree 

quality or resistance of tree stems to breakage by wind or snow. Suitable stem tapers are 

essential for the manufacture of some specialty products, such as power poles (American 

National Standards Institute 1979). Excessive taper also reduces the amount of 

recoverable lumber in a log (Ballard and Long 1988). Trees that are too slender are more 

likely to be broken. Europeans suggest that the H-to-D ratio of the 100 largest trees per 

ha should be kept about 80 to 100 (van Tuyll and Kramer 1981). 

The effect of genetic factors 

Both group and family affected the stem taper of jack pine significantly (Table 22). 

Results of multiple comparisons showed those groups G-G (good in growth), G-F (good 

in form) and those from the west of Lake Nipigon had higher taper values than those 

from the east of the lake (Table 23). As the two plus tree groups were also from west of 

the lake, it is evident that the provenance effect exists for stem taper. Trees from the west 

of the lake have higher taper values than trees from the east of the lake in the two 
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Table 22. ANOVA for the effects of spacing, group and family on taper of jack pine 

Source df MS F Value Pr>F 

Site 

Spacing 

Site X spacing 

Group 

Site X group 

Spacing x group 

Family (group) 

Site X family (group) 

Spacing x family (group) 

Pooled error 

Total 

1 

2 

2 

7 

7 

14 

72 

72 

144 

7278 

7599 

629924.23 

974247.01 

11057.33 

3267.07 

401.11 

248.28 

767.70 

294.01 

227.96 

221.90 

1570.46 

3923.92 

49.83 

4.26 

1.37 

1.09 

3.46 

1.33 

1.03 

<0.01 

<0.01 

<0.01 

<0.01 

0.23 

0.37 

<0.01 

0.05 

0.39 

Note: Group identities are in Table 4. 
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Table 23. The effect of spacing and group on taper of jack pine. 

Source Mean SNK Grouping 

Spacing 

1 X 1 m 

2 X 2 m 

3 X 3 m 

127.72 

99.84 

89.03 

Group 

G-G 

W-A 

G-F 

W-P 

W-G 

E-A 

E-P 

E-G 

107.93 

107.23 

106.42 

106.29 

105.49 

104.75 

103.67 

102.24 

a 

ab 

abc 

abc 

be 

cd 

d 

Note: Means with the same letter are not significantly different (a = 0.05) for each 

source. 
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planting sites, both of which are located the west of Lake Nipigon. No evidence showed 

that trees from good quality stands (W-G and E-G) had larger (or better) taper values. As 

site X group interaction was not significant, this provenance effect was not affected by the 

quality of site. However, at the family level, the result was different. Both family and the 

site X family interaction was significant (Table 22). Family number 67 was the number 

one in taper value (Appendix 3.9), while its height was the number 7 (Appendix 3.1) 

and the DBH the 27^^ (Appendix 3.2) in the 80 families. The family number 63, which 

had the number one height and DBH growth, was the 28 in taper value (Appendix 3.9). 

This indicated that some families had higher stem tapers than others, and it is possible to 

select families with suitable stem taper as well as good growth rate. The significant site x 

family interaction was not presented in detail in this study as this trait was not the focus 

of this study. Few studies have involved this trait. 

Spacing x genetic interactions 

The interactions between spacing and group and between spacing and family were 

not significant (Table 22). This result was consistent with those of other traits used in this 

study. Generally, no trait has shown any spacing x group and spacing x family 

interaction, and this is against our hypothesis that these interactions exist. Few studies 

have involved these interactions. 
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Number of Crooks 

Number of crooks was not normally distributed probably because the majority of the 

trees did not have any crooks along their stems. Spacing seemed to affect the number of 

crooks in the stem mainly at Camp 45 where the 3 m spacing produced noticeably more 

crooks (Fig. 10). However, Magnussen and Yeatman (1987a) found that the proportion of 

trees with crooked stems in the 2 m spacing was relatively high. Several other studies 

have also found that at wide spacing, jack pine had a high frequency of stem deformities 

during juvenile stage (Bella and De Franceschi 1980, Janas and Brand 1988). Generally, 

stem form in pines is poor at wide spacings during the juvenile stage (Evert 1971, 

Magnussen and Yeatman 1987a, Varmola 1980a). It is possible that number of crooks 

was not the best trait to represent tree form straightness, a different trait such as the 

degree of stem straightness or sweep probably would make a difference. 

Genetic factors played an important role in number of crooks in 8 year-old jack pine 

(Fig. 10). For both sites and for all of the spacings, it was clear that group G-F (good in 

form) had the least number of crooks, and E-A (east average) had the most. Generally, for 

the groups from east of Lake Nipigon, the values of number of crooks showed low, high 

and low for groups E-G, E-A and E-P, respectively; while for the groups from west of the 

lake, W-G (west good) had fewer crooks than the other two groups. There seemed to be 

no evident difference in number of crooks between groups from east and west of the lake. 

In other words, there was no provenance effect observed for number of crooks. 
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HERIT ABILITY 

Heritabilities of Different Spacings and Site Quality 

The individual and family heritability values of nine traits were calculated for each 

spacing at each site in this study (Table 24 and Fig.l 1). The traits were height, taper, 

average branch angle (avba), diameter at breast height (DBH), average branch length 

(avbl), number of dominant branches (dom), relative branch diameter (rbd), average 

branch diameter (avbd), and relative crown width (rcw). 

For height at Camp 45, the widest 3 m spacing had the highest values of 0.22 and 

0.46 for individual and family heritabilities (Fig.l la). The closer spacings 2 m and 1 m 

had values of 0.14-0.15 for individual, and 0.38 for family heritabilities (Fig. 1 lb and c). 

At Camp 602, the widest and closest spacings had higher values of 0.15 for individual 

and 0.36-0.37 for family heritabilities (Fig.l Id f). The intermediate 2 m spacing had 

lower values of 0.06 for individual and 0.18 for family heritabilities (Fig.l le). 

For diameter at breast height at Camp 45, the widest spacing had much lower 

heritabilities than those of closer spacings. The 3 m spacing had estimates of 0.04 and 

0.14 for individual and family heritabilities (Fig.l la), while the 2 m and the 1 m spacings 

had values of 0.20-0.22 for individual and 0.43-0.48 for family heritabilities (Fig.l lb and 

c). At Camp 602, the closer spacings also had higher values. The 3 m spacing had values 

of 0.01 and 0.05; the 2 m spacing 0.06 and 0.19; and, the 1 m spacing 0.09 and 0.26 for 

individual and family estimates, respectively (Fig.l Id, e and f). 

81 



82 

For number of dominant branches at Camp 45, the widest 3 m spacing had the 

lowest values of 0 for both individual and family heritabilities (Fig. 1 la), the closer 2 m 

and 1 m spacings had values of 0.11 for individual and 0.29-0.30 for family heritabilities 

(Fig. 1 lb and c). At Camp 602, the 2 m spacing had zero for individual and family 

heritabilities (Fig.l le), and the widest 3 m and closest 1 m spacings had values of 0.05- 

0.08 for individual and 0.15-0.25 for family heritabilities (Fig.l Id and f). 

For average branch length at Camp 45, the 1 m and 3 m spacings had lower values 

of 0.06-0.08 for individual and 0.18-0.24 for families (Fig.l la and c). The 2 m spacing 

had higher values of 0.15 and 0.40 for individual and family heritabilities (Fig.l lb). At 

Camp 602, the closest 1 m spacing had the highest values of 0.06 and 0.19 for individual 

and family heritabilities, respectively (Fig.l If). The wider spacings 3 m and 2 m had very 

low values of 0.01 for individual and 0.03 for family heritabilities (Fig.l Id and e). 

For average branch diameter at Camp 45, the intermediate 2 m spacing had the 

highest values of 0.09 and 0.28 for individual and family heritabilities, respectively 

(Fig.l la). The widest and closest 3 m and 1 m spacings had values of 0.04-0.05 for 

individual and 0.13-0.17 for family heritabilities (Fig.l la and c). At Camp 602, only the 

widest 3 m spacing had low values of 0.03 for individual and 0.11 for family heritabilities 

(Fig.l Id); the values for the other two spacings were all 0 (Fig.l le and f). 
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Table 24. Individual and family heritabilities {}i. and /^J-) for nine traits in three 

spacing and two sites of jack pine. 

Camp 45 Camp 602 
Var 3 m 2 m 1 m 3 m 2 m 1 m Mean SD 

Height 

DBH 

DOM 

AVBL 

AVBD 

AVBA 

RBD 

RCW 

Taper 

K 

h] 
2 

K 

h] 
h] 

h] 
h] 
h] 
h] 
h] 
h] 
h] 
h] 
h] 
h] 
h] 
h] 
h] 

0.22 
0.46 

0.04 
0.14 

0.00 
0.00 

0.08 
0.24 

0.04 
0.13 

0.16 
0.40 

0.06 
0.17 

0.04 
0.11 

0.18 
0.43 

0.14 
0.38 

0.22 
0.48 

0.11 
0.29 

0.15 
0.40 

0.09 
0.28 

0.25 
0.53 

0.06 
0.21 

0.09 
0.28 

0.21 
0.48 

0.15 
0.38 

0.20 
0.43 

0.11 
0.30 

0.06 
0.18 

0.05 
0.17 

0.15 
0.38 

0.00 
0.00 

0.00 
0.00 

0.08 
0.25 

0.15 
0.36 

0.01 
0.05 

0.05 
0.15 

0.01 
0.03 

0.03 
0.11 

0.05 
0.15 

0.07 
0.21 

0.00 
0.00 

0.19 
0.41 

0.06 
0.18 

0.06 
0.19 

0.00 
0.00 

0.01 
0.03 

0.00 
0.00 

0.15 
0.37 

0.04 
0.13 

0.00 
0.00 

0.12 
0.32 

0.15 
0.37 

0.09 
0.26 

0.08 
0.25 

0.06 
0.19 

0.00 
0.00 

0.08 
0.24 

0.02 
0.08 

0.01 
0.03 

0.10 
0.27 

0.15 
0.36 

0.10 
0.26 

0.06 
0.17 

0.06 
0.18 

0.04 
0.12 

0.14 
0.35 

0.04 
0.13 

0.02 
0.07 

0.15 
0.36 

0.05 
0.09 

0.09 
0.17 

0.05 
0.14 

0.05 
0.14 

0.03 
0.11 

0.07 
0.13 

0.03 
0.08 

0.04 
0.11 

0.05 
0.09 

Note: SD, standard deviation. DBH = diameter at breast height, DOM = number of 

dominant branches, AVBL = average branch length, AVBD = average branch 

diameter, AVBA = average branch angle, RBD = relative branch diameter, 

RCW = relative crown width. 
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a. Camp 45, 3-m Spacing ^ _ ___ * „ ^ ^ ^ d. Camp 602, 3-m Spacing 

b. Camp 45, 2-m Spacing 

c. Camp 45, 1-m Spacing f. Camp 602, 1-m Spacing 

H I n d i V id u a I □ F a m ily 

Fig. 11 Individual and family heritabilities for nine traits (terms are identified in Table 

24), three spacings and two planting sites of jack pine. 
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For average branch angle at Camp 45, the closest 1 m and widest 3 m spacings had 

the lowest values of 0.15-0.16 for individual and 0.38-0.40 for family heritabilities 

(Fig. 1 la and c). The intermediate 2 m spacing had the highest value of 0.25 for individual 

and 0.53 for family heritabilities (Fig. 1 lb). The pattern was similar at Camp 602, with the 

1 m and the 3 m spacings having the lowest values of 0.05 and 0.08 for individual, and 

0.15 and 0.24 for family heritabilities (Fig. 1 Id and f). The 2~m spacing exhibited the 

highest heritabilies with values of 0.15 for individual and 0.37 for family heritabilities 

(Fig.lle). 

For relative branch diameter at Camp 45, the closest 1 m spacing had the lowest 

values of 0 (Fig.l Ic). The other spacings had the same values of 0.06 for individual and 

0.17-0.21 for family heritabilities (Fig.l la and b). At Camp 602, the closer spacing had 

lower heritabilities. The 3 m spacing had values of 0.07 and 0.21 (Fig.l Id); the 2 m had 

0.04 and 0.13 (Fig.l le); and the 1 m had 0.02 and 0.08 for individual and family 

heritabilities, respectively (Fig.l If). 

For relative crown width at Camp 45, the individual and family heritability values 

were 0.04 and 0.11 for the 3 m spacing (Fig.l la), 0.09 and 0.28 for the 2 m spacing 

(Fig.l lb), and 0 for the 1 m spacing, respectively (Fig.l Ic). At Camp 602, only the 1 m 

spacing had measurable values of 0.01 and 0.03 for individual and family heritabilities, 

respectively (Fig.l If); the other two spacings had values of 0 for individual and family 

heritabilities (Fig.l Id and e). 

For taper at Camp 45, the wider 3 m and 2 m spacings had values of 0.18 and 0.21 

for individual heritabilities, and 0.43 and 0.48 for family heritabilities, respectively 

(Fig.l la and b). The closest 1 m spacing had the lowest values of 0.08 and 0.25 for 

85 



86 

individual and family heritabilities, respectively (Fig.l Ic). At Camp 602, the wider the 

spacing, the higher the heritabilities of stem taper, and vice versa. For the 3 m, 2 m and 1 

m spacings, the individual heritabilities were 0.19, 0.12 and 0.10 respectively, and the 

family estimates were 0.41, 0.32 and 0.27, respectively (Fig.l Id, e and f). 

The Effect of Site on Heritabilities 

Heritabilities were estimated for each site by averaging the 3 spacing values (Table 

25). Considering all the nine traits used in this analysis. Camp 45, the moist and fertile 

site had higher heritability values than Camp 602, the drier, coarse-textured site (Table 

25). This difference between sites reflects the results of previously observed ANOVAs. 

For taper, rcw (relative crown width), dom (number of dominant branches), height 

and avbd (average branch diameter), the increases in heritability values from the poor to 

rich sites were moderate. They were 0.13 to 0.16 for taper, 0 to 0.04 for rcw, 0.04 to 0.07 

for dom, 0.12 to 0.17 for height, and 0.01 to 0.06 for avbd, for the individual heritability 

values (Table 25). However, DBH, and avbl (average branch length) exhibited larger 

increases, such as 0.02 to 0.10 for avbl, and 0.05 to 0.15 for DBH. The only exception 

found among the nine traits was rbd (relative branch diameter), which decreased slightly 

from 0.05 to 0.04, from poor Camp 602 to fertile Camp 45 (Table 25). 

Trees grown in the fertile site had many more resources (water and nutrition) to 

utilize in expressing the genetic information, this is probably the reason why they had 

higher heritablity values. On the other hand, trees grown in the poor site could only 

obtain limited water and nutrition, which restrained the expression of genetic inheritance. 
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The Overall Heritabilities 

The overall individual and family heritabilities were presented as means in Table 24 

and Fig. 12. In this study, the individual heritability for height was 0.15 and family 

heritability was 0.36. This was the highest value of heritability of all the nine traits used 

in this study. This value of individual heritability was very close to the values found in 

relevant studies of jack pine, such as Morris (1992) of 0.17, Adams and Morgenstem 

(1991) of 0.17, and Magnussen and Yeatman (1990) of 0.18. However, Park et al. (1989) 

found a value of 0.26 for height of jack pine progenies, and Haapanen and Poykko 

(1993) estimated a value of 0.60 for the stem height of Scots pine (also the highest in that 

study). The family heritability of height found in this result was lower than that of 0.74 

in Adams and Morgenstem (1991) for jack pine, and 0.61 in Kariuki (1998) for jelecote 

pine. Many factors such as species, provenances, size of populations and the site quality 

of planting trials might contribute to these differences. 

The individual and family heritabilities for stem taper were 0.15 and 0.36 

respectively (Table 24 and Figl2). These values were the same as the values for height, 

and were also the highest of all nine traits used in this study. Few studies have included 

this trait in evaluating heritability values up to date. Nevertheless, it is apparent that 

improving stem taper in jack pine is feasible through selection due to its relatively high 

heritability. 
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Table 25. The site means of individual and family heritabilities {}i. and /^J., respectively) 

in jack pine. 

Camp 45 Camp 602 

Trait K h\ K h] 
Height 

DHB 

DOM 

AVBL 

AVBD 

AVBA 

RBD 

RCW 

0.17 

0.15 

0.07 

0.10 

0.06 

0.19 

0.04 

0.04 

0.41 

0.35 

0.20 

0.27 

0.19 

0.44 

0.13 

0.13 

0.12 

0.05 

0.04 

0.02 

0.01 

0.09 

0.05 

0.00 

0.31 

0.17 

0.13 

0.08 

0.04 

0.26 

0.14 

0.01 

Taper 0.16 0.39 0.13 0.33 

Note: Traits are identified in Table 24. 
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Individual 

□ Family 

Trait 

Fig. 12 The overall individual and family heritabilities of nine 
traits (terms are identified in Table 24.) in jack pine. 
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In this study, the overall individual and family heritability values for average branch 

angle were also relatively high, and very close to the values for height and taper (Table 

24 and Figl2). Values of 0.14 for individual and 0.35 for family heritabilities were found. 

Earlier studies also found that branch angle is a strongly heritable trait (Adams and 

Morgenstem 1991, Bailey et al. 1974, Yanchuk 1986). Although the value of heritability 

in this study was lower than many other studies, this study is supported by findings in 

other studies that branch angle is a highly heritable trait. A number of studies examing 

this trait have shown that its value ranged from 0.06 to 0.73, with an average of 0.40 for 

individual heritability (Table 26). Branch angle was found to be the most strongly 

heritable trait, with individual and family heritability values of 0.42 and 0.89 respectively 

for jack pine (Adams and Morgenstem 1991). In addition, an estimate of 0.24 found by 

Haapanen and Poykko (1993) was not as high a value as compared to other traits used in 

that study. 

The heritability values for diameter at breast height were somewhat lower with 

values of 0.10 for individual and 0.26 for family heritabilities (Table 24 and Fig. 12). For 

the nine variables used in this study, these values were moderately high. These values 

were also consistent with earlier studies. Both Magnussen and Yeatman (1990) and 

Morris (1992) estimated values of 0.10 for the individual heritability of jack pine, while 

Park et al. (1989) found a higher value of 0.14 for this trait. Although Haapanen and 

Poykko (1993) had a much higher value of 0.21, this value of 0.21 was very low 

compared to other traits determined in that study. 
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Table 26. Individual heritability estimates for branch angle from various studies. 

!i8gw««isaK'»iawia)gsiigg5s»i»aiaigagam5ga«8sawa8ma8Wgi8gigw»WBi^^ 

Species n Reference 

Douglas fir 

Douglas fir 

Douglas fir 

jack pine 

Norway spruce 

Scots pine 

Scots pine 

0.49 

0.73 

0.06 

0.42 

0.44 

0.22 

0.24 

Birot and Christophe 1983 

King et al. 1992 

St. Clair 1994 

Adams and Morgenstem 1991 

Merrill and Mohn 1985 

Veiling and Tigerstedt 1984 

Haapanen and Poykko 1993 

Values of heritability for average branch length were lower than those variables 

mentioned above. Values of 0.06 for individual and 0.18 for family heritabilities were 

found (Table 24 and Fig. 12). This result was low compared to the other traits in this 

study. This trait together with avbd (average branch diameter) was used in analyzing 

branch size, which is a very important trait in determining tree form quality. 

Nevertheless, few studies used average branch length as a variable for heritability 

analysis. 

The individual and family heritabilities for number of dominant branches were 0.06 

and 0.17, respectively (Table 24 and Fig. 12). These values were low to moderate 

compared to other traits used in this study. These values were equal to the values of 

average branch length, and slightly higher than the values of average branch diameter. 

However, the heritability estimates for these three branch traits were roughly equal, and 
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they were all low, compared to the values of height (0.15, individual, the same hereafter), 

taper (0.15), branch angle (0.14) and diameter at breast height (0.10). A variety of studies 

have included this trait, and the results have showed that number of branches has a low to 

moderate heritability, ranging from 0.01 to 0.19, and averaging 0.10 (Table 27). Our 

study is in agreement with these findings. This indicates that number of dominant 

branches may be regarded as a possible trait for multi-trait selection, and it might be 

possible to select trees with more or fewer dominant branches. 

For average branch diameter, the values for the individual and family heritabilities 

were 0.04 and 0.12, respectively (Table 24 and Fig. 12). These values were even lower 

than those of branch length. The values for this trait were very low compared to other 

traits in this study, actually the second lowest value in the nine traits. In Scots pine, 

branch diameter had an individual heritability of 0.21 (Haapanen and Poykko 1993). 

Compared to the heritability values in this study, the value of 0.21 in Haapanen and 

Poykko (1993) was very high. However, this value was the second lowest value among 

the 16 traits used in that study. Thus, it seems that both studies agree that branch diameter 

had a low heritability, compared to the high heritability values in taper, height, branch 

angle, etc. This indicates that multi-trait selection may not be an effective way in 

improving branch size because of the low heritability for this trait. 

For relative branch diameter, values of 0.04 and 0.13 for individual and family 

heritabilities were estimated. These values, the same as those of branch diameter, also 

were very low estimates for heritability in the nine traits. This result was in agreement 

with that in Scots pine (Haapanen and Poykko 1993). Although the value of individual 
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Table 27. Individual heritability estimates for number of branches. 

Species Reference 

Douglas fir 

Douglas fir 

jack pine 

jack pine 

Norway spruce 

Scots pine 

0.19 

0.09 

0.10 

0.10 

0.01 

0.09 

King et al. 1992 

St. Clair 1994 

Park et al. 1989 

Morris et al. 1992 

Merrill and Mohn 1985 

Veiling and Tigerstedt 1984 

heritability was 0.24 for Scots pine, the value was very low compared to other 15 traits 

used in that study (Haapanen and Poykko 1993). Some other earlier studies found 

relatively high individual heritability for relative branch diameter as well, such as 0.34 in 

St. Clair (1994) for Douglas fir, 0.26 in King et al. (1992) for Douglas fir, and 0.17 in 

Veiling and Tigerstedt (1984) for Scots pine. This study were not consistent with the 

results from those studies. 

For relative crown width, the individual and family heritabilities were 0.02 and 0.07 

respectively, the lowest of all nine traits. This result was not consistent with earlier 

studies. Veiling and Tigerstedt (1984) estimated a value of 0.31 for crown width relative 

to stem height in Scots pine. Also for Scots pine, Haapanen and Poykko (1993) reported 

a value of 0.43 for the individual heritability of relative crown width. For Douglas fir, the 

individual heritabilities of relative crown width, measured both as crown width per unit 

crown length and crown width adjusted for stem diameter below a sample whorl, were 

0.32 and 0.25, respectively (St.Clair 1994). 
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In this study, the crown diameter was drawn from average branch length. As a 

result, this may not be able to reflect the actual crown diameter due to the high variability 

in branch length of jack pine. As well, the branch length of the 5 growth year (95 

whorl) were used for crown diameter calculation, possibly underestimating the actual 

value of crown diameters, because branches in whorl 94 and 93 were much longer than 

that of whorl 95. 

For many commercial species, the heritabilities of important traits are reasonably 

high (Morgenstem et al. 1975). Adams and Morgenstem (1991) found that for crown 

quality and relative branch diameter in jack pine, the individual heritabilities were 0.11 

and 0.12 respectively, and the family heritability values were 0.65 and 0.68 respectively. 

Compared with the heritabilities of other traits, these values are low in jack pine. This is 

consistent with results from other species, such as Virginia pine (Bailey et al. 1974), 

lodgepole pine (Yanchuk 1986), and loblolly pine (Zobel and Talbert 1984). In many 

species, stem- and branch-form characteristics are strongly heritable and more easily 

manipulated via improvement programs than are height and volume growth rates (Wright 

1976, Zobel and Talbert 1984). 

Site quality had a very pronounced effect on heritabilities: the poorer the site quality, 

the lower the heritability values. This may explain to some extent why different studies 

have varied values of heritability, even with the same species, and same provenances. 
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GENETIC CORRELATION 

The Effects of Site and Spacing 

The genetic correlation values between traits for each spacing at each site for 8-year- 

old jack pine are shown in Table 28. Due to the zero variance components for some 

variables, many genetic correlation values could not be calculated; this was especially the 

case for Camp 602, where a lot of values were missing for both 1 m and the 2 m 

spacings. Camp 45 had only a few missing values at the closest 1 m spacing (Table 28). 

This result may indicate that site affects genetic correlation between traits. The nutrient- 

poor Camp 602 provided fewer resources for the growth of jack pine trees, and this 

shortfall may have restricted the full expression of genetic variance between families. 

Genetic correlation values for different spacings did not show consistent results 

regarding spacing effect (Table 28). For Camp 45, the closer spacing had larger values 

than did the wider spacing; while for Camp 602, wider spacings had larger values than 

did the closer spacing. There might be no spacing effect on genetic correlation values. 

Due to close to zero variance components for some traits, the genetic correlation values 

of these traits might be greatly exagerated such as DOM-RBD. 
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Table 28. Genetic correlation between growth and tree form traits for each spacing 

at each site for jack pine. 

Genetic 

Correlation 1 m 

Camp 45 

2 m 3 m 

Camp 602 

1 m 2 m 3 m 

Height-DBH 0.86 0.70 1.01 

Height-DOM -0.21 -0.05 0.06 

Height-AVBL 0.83 0.61 0.40 

Height-AVBD 0.81 0.49 0.14 

Height-AVB A -0.21 -0.45 0.02 

Height-RBD 0.43 -0.11 

Height-RCW -0.46 -0.32 

Height-taper 0.50 0.59 0.71 

DBH-DOM 0.00 -0.18 0.51 

DBH-AVBL 0.70 0.40 0.24 

DBH-AVBD 0.78 0.53 0.19 

DBH-AVBA -0.46 -0.39 0.28 

DBH-RBD 0.31 -0.34 

DBH-RCW -0.43 -0.26 0.12 

DBH-taper -0.01 -0.10 0.66 

To be continued 

0.87 

0.37 

0.42 

-0.29 

-0.16 

0.71 

0.21 

0.62 

-0.69 

-0.41 

0.29 

0.80 

1.05 

-0.24 

0.26 

0.42 

0.90 

-0.39 

-0.11 

-0.19 

1.12 

-0.46 

1.67 

0.19 

-0.30 

0.13 

0.92 

-0.65 

1.34 

-0.09 

0.00 

-0.07 

1.08 
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Table 28 (Cont’d): Genetic correlation between growth and tree form traits for each 

spacing at each site for jack pine. 

Genetic 

Correlation 

Camp 45 

1 m 2 m 3 m 

Camp 602 

1 m 2 m 3 m 

DOM-AVBL -0.16 -0.33 -0.22 

DOM-AVBD -0.32 -0.35 0.06 

DOM-AVBA 0.18 0.19 0.19 

DOM-RBD -0.43 -0.78 

DOM-RCW 0.06 -0.32 -0.24 

DOM-taper -0.28 -0.02 -0.52 

AVBL-AVBD 0.87 0.80 0.78 

AVBL-AVBA -0.79 -0.51 -0.16 

AVBL-RCW 0.23 0.49 0.44 

AVBL-RBD 0.54 0.53 

AVBL-taper 0.49 0.36 0.35 

AVBD-AVBA -0.60 -0.33 -0.16 

AVBD-RBD 0.90 0.67 

AVBD-RCW -0.19 0.37 0.60 

AVBD-taper 0.31 0.05 -0.06 

AVBA-RBD -0.33 -0.36 

AVBA-RCW -0.87 -0.10 -0.02 

AVBA-taper 0.35 -0.11 0.18 

RBD-RCW 0.33 0.12 

RCW-taper -0.03 -0.36 -0.43 

-0.08 

0.08 

0.22 

-0.68 

0.57 

-0.30 

-0.38 

-0.11 

-0.44 

0.03 

0.81 

0.28 

0.16 

0.39 

0.74 

0.39 

1.13 

-0.47 

0.05 

-0.79 

1.03 

0.69 

0.44 

0.77 

-0.48 

0.46 

Absolute mean 0.43 0.37 0.34 0.39 0.43 0.61 

Note: Traits are identified in Table 24. 
E»»IWSS»IS»S»«9«I 
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The Overall Genetic,Correlations 

The overall genetic correlations between traits of jack pine were generated as the 

mean of up to six values listed in Table 28 (Table 29). In this study genetic correlation 

was the focus; Pearson correlation coefficients were also calculated for comparison 

(correlation means genetic correlation hereafter). 

Height had strong correlation with average branch length (0.91), DBH (0.89) and 

relatively high correlation with taper (0.64); moderate with average branch diameter 

(0.41) and relative crown width (-0.31); weakly negative with average branch angle 

(-0.13); little correlation with number of dominant branches (-0.06) and relative branch 

diameter (0.08) (Table 29). This indicated that an increase in height growth will increase 

branch length (0.91) and probably increase branch diameter (0.41), but will not increase 

relative branch diameter (0.08) and relative crown width (-0.31). Haapanen and Poykkd 

(1993) supported this finding in Scots pine; they found that stem height had a weak 

Correlation with branch diameter (0.26), negative correlation with relative branch 

fh 
diameter (-0.18), and negative correlation with relative crown width (-0.38) for the 4 
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Table 29. Genetic (above) and Pearson correlation (below) between traits of jack pine. 

Height DBH DOM AVBL AVBD AVBA RBD ROW Taper 

Height 

DBH 0.77 

DOM 0.18 

0.89 -0.06 0.91 

-0.21 0.72 

0.21 

AVBL 0.38 0.48 0.09 

RBD -0.04 0.07 

-0.08 

AVBD 0.30 0.37 0.02 0.85 

AVBA -0.13 -0.17 0.20 -0.32 

-0.03 0.53 

RCW -0.23 0.03 -0.02 0.79 

0.41 -0.13 0.08 -0.31 0.64 

0.35 -0.06 -0.18 -0.37 0.29 

0.03 0.21 0.04 -0.30 -0.14 

0.63 -0.54 0.37 0.39 0.50 

-0.02 0.75 0.26 0.19 

-0.40 

0.65 -0.30 

0.67 -0.25 

0.01 -0.34 0.00 

0.56 

0.45 0.02 

-0.36 

Taper 0.30 -0.20 -0.02 -0.18 -0.24 0.07 -0.27 

Note: Traits are identified in Table 24. 

whorl from the top. This finding was also consistent with the results in Adams and 

Morgenstem (1991), who reported that stem height was negatively correlated with crown 

quality (relative crown width was largely included) (-0.44) and relative branch diameter 

(-0.53) in jack pine. The difference between the two studies was understandable because 

of the difference in quantifying the traits, scored by visual assessment in Adams and 

Morgenstem (1991) and empirical measurements in the current study for the traits 

involved. It seems slightly unfavourable that height was positively correlated with branch 

diameter (0.41), but the fact that height had little or negative correlation (0.08 to -0.18) 

with relative branch diameter and moderately negative with relative crown diameter (- 
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0.38 to -0.31) was very favourable for multi-trait selection. Enhancement of height 

growth will not increase relative branch size and relative crown size, even though there is 

some increase in absolute branch size. Another result is that the increase in height growth 

will probably also increase stem taper (0.64). 

Diameter at breast height had strong correlation with average branch length (0.72); 

moderate with average branch diameter (0.35) and taper (0.29); moderately negative with 

relative crown width (-0.37), weakly negative with number of dominant branches (-0.21) 

and relative branch diameter (-0.18), and essentially no correlation with average branch 

angle (-0.06) (Table 29). This finding was supported by Haapanen and Poykko (1993), 

who found that stem diameter was moderately correlated with branch diameter (0.46), 

negatively correlated with relative branch diameter (-0.32), and had no correlation with 

relative crown width (0.01) for the 4th whorl from the top in Scots pine. In other words, 

the increase in total tree height will enhance stem diameter, as well as branch length, 

branch diameter and stem taper, but will not increase relative crown width, dominant 

branch number per whorl, relative branch diameter, or branch angle. This is consistent 

with the correlations between height and other traits mentioned above, and these results 

are favourable for multi-trait selection. 

Number of dominant branches had little correlation with average branch length 

(-0.08), average branch diameter (0.03), height (0.06) and relative branch diameter (0.04). 

It had weak correlation with average branch angle (0.21) and weakly negative with DBH 

(-0.21), and taper (-0.14) (Table 29). As mentioned above, number of dominant branches 

had no correlation with height (-0.06) and weakly negative correlation with DBH (-0.21). 

It is clear that number of dominant branches has no strong correlation with any other 
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branch diameter would strongly affect relative branch diameter (0.75), but not relative 

crown width (0.26) and stem taper (0.19). Branch diameter has no genetic relationship 

with branch angle (-0.02) nor number of dominant branches (0.03). 

Average branch angle had little correlation with relative branch diameter (0.01) and 

taper (0.00) and weakly negative correlation with relative crown width (-0.34) (Table 29). 

As mentioned above, it also had no correlation with average branch diameter (-0.02) and 

DBH (-0.06), weakly negative with height (-0.13), weakly with number of dominant 

branches (0.21) and moderately negative with average branch length (-0.54). As this trait 

had a high value of heritability (0.14, individual), the fact that branch angles have no 

strong genetic correlation with any other traits strongly supports the hypothesis that 

branch angles are independently inherited. 

This result was consistent with Magnussen and Yeatman (1987b), they reported that 

branch angle had no genetic correlation with branch diameter (0.04) and stem diameter 

(0.01) in jack pine. And this was also supported by Adams and Morgenstem (1991), who 

reported that branch angle had weak correlations with crown quality (or relative crown 

width) (0.28) and relative branch diameter (0.28) in jack pine. As mentioned above, the 

difference between the two studies probably resulted from the different methods used by 

the two studies. Results from other species such as Norway spruce (Lewark 1981) and 

slash pine (Strickland and Goddard 1965) also supported that branch angles had little or 

no genetic relationship to tree size. 

However, some other studies showed that branch angle had genetic correlations with 

stem and branch diameter in coniferous species (Bailey et al. 1974, Barber 1964, Dietrich 

1973, Merrill and Mohn 1985). As well, Haapanen and Poykko (1993) found that branch 
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traits used in this study. Few earlier studies involved this trait in genetic correlation 

analysis. 

Average branch length was relatively strongly correlated with average branch 

diameter (0.63); moderately with taper (0.50), relative branch diameter (0.37) and relative 

crown width (0.39); moderately negatively with average branch angle (-0.54) (Table 29). 

As mentioned above, branch length will increase with the improvement of growth rate 

(with height 0.91, DBH 0.72). With this increase in branch length, branch diameter 

(0.63) will also increase. With the increase in branch size, stem taper (0.50) may be 

improved, and there is a chance that relative branch size (0.37) and relative crown size 

(0.39) will be enhanced as well. This seems contradictory that branch size was 

moderately positive correlated with relative branch and crown size. As mentioned above, 

the improvement of growth rate will increase branch and crown size, but not relative 

branch and crown size. The low heritabilities of traits involved (0.02-0.06, individual) in 

the calculation of genetic correlation may magnify errors in correlation values. 

Nevertheless, it will not cover the fact that height and DBH have no or negative 

correlation with relative branch and crown size. 

Average branch diameter had no correlation with average branch angle (-0.02); 

strong correlation with relative branch diameter (0.75); weak with relative crown width 

(0.26) and taper (0.19). As mentioned above, it had no correlation with number of 

dominant branches (0.03), moderate with height (0.41) and DBH (0.35), and relatively 

strongly correlated with average branch length (0.63) (Table 29). The positive genetic 

correlation between branch diameter and growth traits (height and diameter) were 

supported by Haapanen and Poykko (1993). This result also showed that the increase in 
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angle negatively correlated with the absolute and relative branch diameter (-0.67 to -0.28) 

in two whorls (4th and 7th from the top). Branch angle positively correlated with growth 

traits stem diameter and height in the upper whorl (0.22 to 0.30) but negatively in the 

lower one (-0.38 to -0.05). It is probably because that branch angle changes over time. 

The older the branch, the wider the branch angle (Barber 1964, Cochrane and Ford 1978, 

Dietrich 1973, Ehrenberg 1963, Zimmermann and Brown 1971). 

Relative branch diameter had moderate correlation with relative crown width (0.45) 

and no correlation with stem taper. It had no correlation with number of dominant 

branches (0.04) and average branch angle (0.01) and height (0.08), weakly negative 

correlation with DBH (-0.18), moderate correlation with average branch length (0.37) and 

strong correlation with average branch diameter (0.75) (Table 29). Because relative 

branch diameter had no evident correlation with growth traits (diameter and height), the 

improvement in growth rate will not increase relative branch diameter. This was 

supported by Haapanen and Poykko (1993), who reported that relative branch diameter 

had weakly negative genetic correlation with height (-0.18) and DBH (-0.32) in Scots 

pine. 

Relative crown width had moderate correlation with average branch length (0.39) 

and relative branch diameter (0.45), moderately negative with average branch angle (- 

0.34), height (-0.31) and DBH (-0.37), weak with average branch diameter (0.26), and 

weakly negative with number of dominant branches (-0.3), taper (-0.27) (Table 29). 

Because the increase in stem height and diameter will not increase relative crown width, 

it is favourable for multi-trait breeding because we do want to increase growth rate and 

decrease relative crown width at the same time. This trait does not strongly correlated 
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with any other traits, almost all of the existing relationships with the traits used were 

moderate, favourable or unfavourable. This finding was consistent with Haapanen and 

Poykko (1993), who found that relative crown width had weakly negative correlation 

with diameter (-0.06) and height (-0.13) in Scots pine. 

Taper had weakly negative correlation with relative crown width (-0.27). It had 

relatively strong correlation with stem height (0.64), moderate with average branch 

length (0.50), weak with average branch diameter (0.19) and DBH (0.29); weakly 

negative with number of dominant branches (-0.14) and no with avba (0.00) (Table 29). 

In other words, stem taper may be improved with the increase of stem height, and with 

this progress in taper, branch length will probably increase, but not relative crown width. 
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CONCLUSIONS 

During the early growing stage, the tree form quality of plantation-grown jack pine 

is affected greatly by initial spacing. Most of the quality traits used in this study reacted 

negatively to a great extent with the change of spacing from 1 m to 2 m. When spacing 

increased further from 2 m to 3 m, quality traits changed less, although this change also 

reached significant level. Usually, spacing had a greater effect at the fertile test site than 

at the poorer site. While these results are not extensive enough to determine an optimum 

spacing for the best form and growth, it is evident that at age eight this optimum is not 

greater than 2 m. 

There were no significant group (stand) effects for the tree form quality traits branch 

diameter, branch length, branch angle, number of dominant branches, relative branch 

diameter and relative crown width. Progeny of trees from good quality stands did not 

have significantly better form than those originating from poorer quality stands. These 

results suggest that there is no advantage in confining selections to wild stands with 

superior form. Progeny of trees from the two plus tree groups were not significantly 

better than those from non-plus tree groups for most of the quality traits. However, family 

effect was significant for all of the tree form quality traits. A definite provenance effect 

was noted for growth and some form traits. The two groups of related families of plus 

trees consistently demonstrated superior performance in growth (height and DBH). 

Generally, families from west of Lake Nipigon had higher growth potential in height, 

DBH, and associated branch length, branch diameter, and taper. However, this did not 
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apply to branch angles, number of dominant branches, relative branch size and relative 

crown size. The difference among groups in branch size and angles, if any, were more 

clearly expressed at the fertile site than at the poor site. 

Neither group (wild stand quality) x spacing interaction nor family x spacing 

interaction was shown to exist in this study. 

Branch angle and stem taper had the highest heritability of all the tree form quality 

traits (//J= 0.14-0.15), and branch length and number of dominant branches had low 

values (both }i - = 0.06). The very important traits branch diameter and relative branch 

diameter had very low values {]% = 0.04). Relative crown width had the lowest 

heritability value (//J = 0.02). The growth traits height and diameter had moderate to high 

heritability values (/^J= 0.15 for height and 0.10 for DBH). Trees grown at the fertile site 

had higher heritability values than those at the poor site. 

Branch angle and number of dominant branches had no strong genetic correlation 

with any other traits used in this study. Branch length had strong genetic correlations with 

height (0.91) and DBH (0.72). Branch diameter, however, had much lower values with 

the traits (0.41 for height and 0.35 for DBH). Furthermore, relative branch diameter had 

no genetic correlations with the growth traits (0.08 for height and—0.18 for DBH). Taper 

had a relatively strong genetic correlation with height (0.64) and moderate with DBH 

(0.29). The genetic correlation between branch diameter and branch length was quite 

strong (0.63), and the genetic correlation for branch size and relative branch size was 

high (0.75). These results confirm that simultaneous selection for growth and form traits 

should be possible for jack pine. 
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APPENDIX 

Appendix 1. Jack pine planting sites layout (the following two pages). 
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Appendix 2. Plus tree information. 

Plus tree group Test family number Plus tree 

family number 

Longitude 

(West) 

Latitude 

(North) 

Good in growth 

(G-G) 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

226 

400 

252 

074 

383 

184 

224 

268 

157 

373 

90.02 

90.35 

90.78 

90,08 

90.32 

90.33 

80.92 

90.48 

89.27 

90.27 

48.83 

49.12 

49.53 

48.82 

49.08 

49.08 

49.25 

49.37 

49.33 

49.82 

Good in form 

(G-F) 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

071 

351 

350 

165 

101 

388 

321 

193 

270 

070 

90.35 

89.65 

90.85 

89.03 

90.28 

90.20 

89.07 

89.78 

90.88 

88.93 

49.10 

49.60 

49.33 

48.95 

49.20 

49.77 

48.95 

49.40 

49.32 

49.412 

Note: More plus tree information was presented in Table 4. 
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Appendix 3. The family means of nine traits for jack pine. 

.Appendix 3.1 The family means of stem height for jack pine. 

Family No. Group Mean Std.Dev Family No. Group Mean Std.Dev 
63 
53 
51 
78 
60 
76 
67 
77 
39 
73 
64 
44 
34 
36 
48 
54 
68 
33 
61 
69 
32 
41 
62 
13 
29 
38 
65 
71 
31 
70 
75 
24 
45 
46 
55 
66 
30 
42 
72 
52 

G-G 
W-P 
W-P 
G-F 
W-P 
G-F 
G-G 
G-F 
W-G 
G-F 
G-G 
W-A 
W-G 
W-G 
W-A 
W-P 
G-G 
W-G 
G-G 
G-G 
W-G 
W-A 
G-G 
E-A 
E-P 
W-G 
G-G 
G-F 
W-G 
G-G 
G-F 
E-P 
W-A 
W-A 
W-P 
G-G 
E-P 
W-A 
G-F 
W-P 

3.43 
3.39 
3.38 
3.38 
3.35 
3.35 
3.34 
3.33 
3.32 
3.32 
3.31 
3.30 
3.29 
3.29 
3.29 
3.29 
3.29 
3.28 
3.28 
3.28 
3.27 
3.27 
3.26 
3.25 
3.25 
3.25 
3.25 
3.25 
3.24 
3.24 
3.24 
3.23 
3.23 
3.23 
3.23 
3.23 
3.22 
3.22 
3.21 
3.20 

0.58 
0.51 
0.56 
0.52 
0.58 
0.54 
0.57 
0.54 
0.54 
0.58 
0.60 
0.55 
0.54 
0.50 
0.48 
0.50 
0.57 
0.56 
0.56 
0.53 
0.54 
0.49 
0.50 
0.50 
0.56 
0.55 
0.51 
0.59 
0.49 
0.61 
0.51 
0.45 
0.54 
0.47 
0.51 
0.56 
0.56 
0.57 
0.55 
0.62 

79 
2 
11 
40 
80 
15 
23 
8 
10 
12 
22 
56 
19 
47 
50 
7 
20 
57 
59 
5 
27 
17 
18 
3 
58 
74 
37 
49 
43 
14 
35 
6 
25 
4 
9 
16 
28 
26 
1 
21 

G-F 3.20 0.48 
E-G 3.19 0.52 
E-A 3.19 0.53 
W-G 3.19 0.51 
G-F 3.18 0.49 
E-A 3.17 0.50 
E-P 3.17 0.51 
E-G 3.16 0.44 
E-G 3.16 0.55 
E-A 3.16 0.51 
E-P 3.16 0.56 
W-P 3.16 0.55 
E-A 3.15 0.51 
W-A 3.15 0.61 
W-A 3.15 0.55 
E-G 3.14 0.43 
E-A 3.13 0.54 
W-P 3.13 0.53 
W-P 3.13 0.54 
E-G 3.12 0.43 
E-P 3.12 0.49 
E-A 3.11 0.52 
E-A 3.11 0.57 
E-G 3.10 0.48 
W-P 3.10 0.54 
G-F 3.10 0.55 
W-G 3.09 0.48 
W-A 3.09 0.52 
W-A 3.08 0.53 
E-A 3.07 0.51 
W-G 3.06 0.58 
E-G 3.03 0.50 
E-P 3.02 0.51 
E-G 3.01 0.49 
E-G 3.00 0.48 
E-A 3.00 0.49 
E-P 2.99 0.46 
E-P 2.98 0.49 
E-G 2.94 0.44 
E-P 2.89 0.47 

Note: Group identities were determined in Table 4. Std.dev = standard deviation. 
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)endix 
Family No. 
63 
41 
33 
64 
30 
32 
78 
50 
77 
60 
16 
71 
44 
51 
69 
2 
53 
39 
15 
36 
61 
65 
19 
75 
54 
79 
67 
22 
13 
68 
31 
34 
66 
73 
52 
24 
55 
59 
38 
62 

means of diameter at breast height for jac 
Std.Dev 

G-G 
W-A 
W-G 
G-G 
E-P 
W-G 
G-F 
W-A 
G-F 
W-P 
G-F 
G-F 
W-A 
W-P 
G-G 
E-G 
W-P 
W-G 
E-A 
W-G 
G-G 
G-G 
E-A 
G-F 
W-P 
G-F 
G-G 
E-P 
E-A 
G-G 
W-G 
W-G 
G-G 
G-F 
W-P 
E-P 
W-P 
W-P 
W-G 
G-G 

Mean 
43.45 
42.66 
42.65 
42.33 
42.31 
42.05 
42.01 
41.80 
41.69 
41.68 
41.41 
41.26 
41.22 
41.20 
41.18 
41.06 
41.00 
40.87 
40.65 
40.65 
40.64 
40.60 
40.55 
40.55 
40.49 
40.46 
40.44 
40.34 
40.26 
40.26 
40.15 
40.07 
40.06 
39.96 
39.94 
39.92 
39.81 
39.73 
39.72 
39.71 

Family No. Group Mean Std.Dev 
14 
14 
15 
15 
14 
14 
13 
14 
14 
14 
13 
13 
15 
12 
13 
13 
12 
14 
14 
12 
14 
13 
14 
12 
11 
10 
13 
15 
12, 

13, 
12 
14, 
13, 
12, 

14, 
11. 

13. 
14. 
13. 
13 

,16 
,22 
,00 
,86 
,45 
,65 
.73 
,55 
00 
,21 
,57 
,17 
24 
66 
,75 
,64 
95 
26 
46 
75 
51 
61 
08 
74 
46 
87 
08 
59 
26 
15 
60 
36 
43 
79 
09 
04 
20 
16 
74 
05 

27 
40 
70 
56 
8 
25 
17 
48 
72 
5 
80 
29 
42 
46 
23 
7 
37 
10 
12 
26 
20 
45 
47 
49 
57 
43 
11 
74 
4 
3 
58 
9 
16 
6 
1 
35 
18 
14 
28 
21 

E-P 
W-G 
G-G 
W-P 
E-G 
E-P 
E-A 
W-A 
G-F 
E-G 
G-F 
E-P 
W-A 
W-A 
E-P 
E-G 
W-G 
E-G 
E-A 
E-P 
E-A 
W-A 
W-A 
W-A 
W-P 
W-A 
E-A 
G-F 
E-G 
E-G 
W-P 
E-G 
E-A 
E-G 
E-G 
W-G 
E-A 
E-A 
E-P 
E-P 

39.49 
39.44 
39.40 
39.37 
39.30 
39.28 
39.24 
39.22 
39.18 
39.13 
39.06 
39.03 
39.03 
38.99 
38.93 
38.80 
38.69 
38.61 
38.52 
38.47 
38.07 
37.96 
37.89 
37.88 
37.62 
37.57 
37.45 
37.26 
37.09 
37.06 
36.74 
36.59 
36.59 
36.57 
36.16 
35.99 
35.61 
35.46 
35.23 
34.55 

12.14 
13.04 
14.25 
14.61 
12.25 
13.03 
13.85 
13.31 
13.25 
11.30 
13.43 
12.89 
14.05 
11.73 
11.96 
11.82 
13.27 
14.43 
13.09 
13.16 
12.54 
12.03 
12.69 
13.27 
13.16 
13.84 
10.70 
13.87 
12.17 
11.72 
12.76 
12.59 
12.09 
11.90 
11.84 
12.70 
12.90 
12.00 
11.64 
10.91 

Note: Group identities were determined in Table 4. Std.dev = standard deviation. 
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77 
22 
5 
39 
15 
48 
10 
44 
46 
56 
54 
47 
18 
8 
41 
16 
28 
17 
40 
63 
11 
37 
59 
70 
7 
32 
33 
51 
79 
13 
24 
71 
21 
26 
57 
14 
65 
69 
25 
38 

G-F 
E-P 
E-G 
W-G 
E-A 
W-A 
E-G 
W-A 
W-A 
W-P 
W-P 
W-A 
E-A 
E-G 
W-A 
E-A 
E-P 
E-A 
W-G 
G-G 
E-A 
W-G 
W-P 
G-G 
E-G 
W-G 
W-G 
W-P 
G-F 
E-A 
E-P 
G-F 
E-P 
E-P 
W-P 
E-A 
G-G 
G-G 
E-P 
W-G 

5.13 
5.01 
5.00 
4.97 
4.96 
4.94 
4.88 
4.85 
4.85 
4.81 
4.80 
4.78 
4.77 
4.76 
4.76 
4.74 
4.72 
4.70 
4.70 
4.70 
4.69 
4.69 
4.69 
4.67 
4.65 
4.65 
4.65 
4.65 
4.65 
4.64 
4.63 
4.63 
4.61 
4.61 
4.60 
4.59 
4.59 
4.59 
4.57 
4.57 

1.66 
1.45 
1.33 
1.59 
1.43 
1.40 
1.41 
1.45 
1.53 
1.43 
1.61 
1.70 
1.53 
1.34 
1.65 
1.52 
1.35 
1.20 
1.38 
1.50 
1.35 
1.65 
1.48 
1.33 
1.20 
1.55 
1.51 
1.31 
1.59 
1.38 
1.32 
1.50 
1.37 
1.26 
1.45 
1.52 
1.38 
1.52 
1.37 
1.44 

74 
78 
80 
64 
19 
42 
2 
35 
76 
50 
45 
3 
20 
68 
29 
30 
43 
52 
34 
49 
9 
23 
31 
36 
72 
73 
58 
61 
4 
6 
62 
27 
53 
75 
1 
55 
66 
60 
12 
67 

G-F 
G-F 
G-F 
G-G 
E-A 
W-A 
E-G 
W-G 
G-F 
W-A 
W-A 
E-G 
E-A 
G-G 
E-P 
E-P 
W-A 
W-P 
W-G 
W-A 
E-G 
E-P 
W-G 
W-G 
G-F 
G-F 
W-P 
G-G 
E-G 
E-G 
G-G 
E-P 
W-P 
G-F 
E-G 
W-P 
G-G 
W-P 
E-A 
G-G 

4.57 
4.57 
4.57 
4.56 
4.55 
4.55 
4.54 
4.54 
4.54 
4.53 
4.52 
4.51 
4.50 
4.50 
4.49 
4.49 
4.49 
4.49 
4.48 
4.45 
4.44 
4.42 
4.42 
4.39 
4.39 
4.37 
4.35 
4.35 
4.33 
4.33 
4.29 
4.28 
4.27 
4.27 
4.25 
4.23 
4.18 
4.11 
4.07 
4.07 

1.60 
1.39 
1.35 
1.60 
1.36 
1.49 
1.11 
1.31 
1.15 
1.15 
1.49 
1.27 
1.52 
1.44 
1.52 
1.16 
1.30 
1.33 
1.23 
1.48 
1.33 
1.34 
1.35 
1.30 
1.44 
1.21 
1.51 
1.33 
1.22 
1.19 
1.47 
1.41 
1.47 
1.08 
1.12 
1.38 
1.45 
1.31 
1.31 
1.31 

Note: Group identities were determined in Table 4. Std.dev = standard deviation. 
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)endix 
Family No 

)ranch lengm tor 
Family No. 

ack pine. 
Group Mean Std.Dev 

67 
31 
53 
15 
44 
76 
78 
71 
68 
36 
32 
17 
50 
39 
60 
40 
70 
13 
33 
37 
46 
52 
41 
6 
24 
54 
7 
69 
51 
20 
80 
11 
77 
38 
8 
45 
57 
62 
73 
65 

G-G 
W-G 
W-P 
E-A 
W-A 
G-F 
G-F 
G-F 
G-G 
W-G 
W-G 
E-A 
W-A 
W-G 
W-P 
W-G 
G-G 
E-A 
W-G 
W-G 
W-A 
W-P 
W-A 
E-G 
E-P 
W-P 
E-G 
G-G 
W-P 
E-A 
G-F 
E-A 
G-F 
W-G 
E-G 
W-A 
W-P 
G-G 
G-F 
G-G 

89.30 
88.80 
87.96 
87.89 
87.85 
87.24 
87.17 
87.16 
87.14 
86.23 
85.54 
85.22 
85.06 
84.98 
84.49 
84.43 
84.33 
84.18 
84.09 
83.68 
83.57 
83.52 
83.40 
83.35 
83.32 
83.29 
83.26 
83.13 
82.92 
82.88 
82.88 
82.79 
82.49 
82.41 
82.37 
82.18 
82.17 
82.05 
82.03 
82.01 

29.01 
28.18 
26.97 
26.01 
27.75 
26.59 
24.14 
29.39 
24.91 
27.16 
24.13 
23.61 
26.32 
23.09 
24.77 
27.89 
26.05 
22.89 
26.03 
20.90 
23.01 
25.43 
23.83 
26.57 
21.74 
25.71 
22.52 
24.24 
21.53 
22.40 
24.42 
24.43 
22.18 
22.60 
22.11 
25.49 
24.41 
25.88 
25.34 
23.39 

55 
22 
3 
59 
30 
19 
63 
47 
2 
23 
5 
43 
61 
79 
42 
49 
12 
10 
35 
34 
25 
48 
27 
64 
14 
26 
4 
75 
58 
56 
66 
1 
28 
72 
18 
29 
74 
9 
21 
16 

W-P 
E-P 
E-G 
W-P 
E-P 
E-A 
G-G 
W-A 
E-G 
E-P 
E-G 
W-A 
G-G 
G-F 
W-A 
W-A 
E-A 
E-G 
W-G 
W-G 
E-P 
W-A 
E-P 
G-G 
E-A 
E-P 
E-G 
G-F 
W-P 
W-P 
G-G 
E-G 
E-P 
G-F 
E-A 
E-P 
G-F 
E-G 
E-P 
E-A 

81.96 
81.88 
81.85 
81.84 
81.70 
81.65 
81.49 
81.27 
81.21 
80.93 
80.83 
80.82 
80.82 
80.74 
80.72 
80.70 
80.13 
79.72 
79.32 
79.16 
79.15 
79.00 
78.99 
78.84 
78.70 
78.53 
77.93 
77.57 
77.15 
77.02 
76.73 
76.70 
76.65 
76.49 
76.24 
76.03 
75.70 
75.64 
75.34 
73.35 

24.56 
23.24 
24.53 
23.41 
23.08 
25.58 
22.26 
23.31 
22.54 
20.89 
21.13 
26.31 
22.45 
23.00 
26.29 
23.82 
23.74 
24.73 
20.78 
23.42 
22.45 
24.58 
25.57 
24.83 
19.37 
25.33 
17.56 
21.31 
25.32 
21.52 
22.59 
21.45 
23.14 
25.02 
24.43 
24.58 
22.62 
21.57 
20.37 
19.23 

Note: Group identities were determined in Table 4. Std.dev = standard deviation. 
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)enQix 
Family No. 

me. 
Group Group Mean Std.Dev 

31 
50 
17 
67 
33 
15 
53 
36 
8 
71 
19 
78 
65 
41 
52 
60 
24 
3 
76 
13 
25 
40 
46 
63 
6 
59 
69 
44 
77 
20 
2 
68 
80 
22 
55 
7 
70 
37 
39 
51 

W-G 
W-A 
E-A 
G-G 
W-G 
E-A 
W-P 
W-G 
E-G 
G-F 
E-A 
G-F 
G-G 
W-A 
W-P 
W-P 
E-P 
E-G 
G-F 
E-A 
E-P 
W-G 
W-A 
G-G 
E-G 
W-P 
G-G 
W-A 
G-F 
E-A 
E-G 
G-G 
G-F 
E-P 
W-P 
E-G 
G-G 
W-G 
W-G 
W-P 

14.40 
14.21 
14.13 
14.10 
14.03 
13.87 
13.80 
13.73 
13.69 
13.62 
13.61 
13.53 
13.48 
13.47 
13.47 
13.42 
13.40 
13.39 
13.39 
13.37 
13.34 
13.30 
13.27 
13.24 
13.19 
13.18 
13.18 
13.15 
13.15 
13.12 
13.11 
13.11 
13.11 
13.10 
13.10 
13.09 
13.08 
13.07 
13.07 
13.06 

4.88 
5.43 
4.37 
5.60 
5.20 
5.04 
4.73 
4.46 
4.58 
5.09 
5.23 
4.71 
4.44 
4.55 
4.66 
4.19 
4.36 
4.71 
4.86 
4.32 
4.50 
5.20 
4.73 
4.18 
5.19 
4.73 
4.94 
5.12 
4.19 
4.13 
4.32 
4.62 
4.67 
4.55 
4.78 
4.34 
4.39 
4.12 
4.55 
4.19 

23 
10 
57 
11 
5 
26 
38 
75 
27 
45 
49 
42 
12 
61 
64 
73 
4 
32 
54 
14 
47 
79 
30 
1 
62 
35 
48 
43 
58 
21 
34 
56 
18 
9 
74 
66 
72 
16 
29 
28 

E-P 
E-G 
W-P 
E-A 
E-G 
E-P 
W-G 
G-F 
E-P 
W-A 
W-A 
W-A 
E-A 
G-G 
G-G 
G-F 
E-G 
W-G 
W-P 
E-A 
W-A 
G-F 
E-P 
E-G 
G-G 
W-G 
W-A 
W-A 
W-P 
E-P 
W-G 
W-P 
E-A 
E-G 
G-F 
G-G 
G-F 
E-A 
E-P 
E-P 

13.04 
13.03 
13.03 
13.02 
12.93 
12.93 
12.93 
12.91 
12.87 
12.85 
12.83 
12.81 
12.80 
12.78 
12.77 
12.77 
12.73 
12.72 
12.67 
12.66 
12.66 
12.66 
12.62 
12.61 
12.59 
12.50 
12.46 
12.45 
12.43 
12.39 
12.32 
12.32 
12.24 
12.23 
12.20 
12.16 
12.14 
12.09 
12.04 
11.80 

3.95 
4.40 
4.44 
4.57 
4.38 
4.88 
4.06 
4.34 
4.89 
4.48 
4.78 
5.03 
4.34 
4.24 
5.03 
4.71 
3.79 
4.38 
4.63 
4.13 
4.27 
4.25 
4.20 
4.46 
4.28 
4.30 
4.60 
4.39 
4.73 
4.22 
4.14 
4.20 
4.30 
4.15 
4.28 
4.52 
4.60 
3.89 
4.57 
4.14 

Note: Group identities were determined in Table 4. Std.dev = standard deviation. 
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Appendix 3.6 The family means of average branch angle for jack pine. 
Family No. Group Mean Std.Dev Family No. Group Mean Std.Dev 
25 
18 
49 
63 
38 
47 
29 
56 
11 
70 
42 
72 
13 
48 
64 
73 
22 
34 
21 
14 
24 
65 
6 
41 
1 
3 
45 
51 
39 
9 
40 
44 
69 
74 
4 
12 
17 
59 
77 
8 

E-P 
E-A 
W-A 
G-G 
W-G 
W-A 
E-P 
W-P 
E-A 
G-G 
W-A 
G-F 
E-A 
W-A 
G-G 
G-F 
E-P 
W-G 
E-P 
E-A 
E-P 
G-G 
E-G 
W-A 
E-G 
E-G 
W-A 
W-P 
W-G 
E-G 
W-G 
W-A 
G-G 
G-F 
E-G 
E-A 
E-A 
W-P 
G-F 
E-G 

66.61 
66.29 
66.13 
65.54 
65.19 
64.87 
64.80 
64.71 
64.54 
64.52 
63.95 
63.88 
63.85 
63.76 
63.69 
63.62 
63.47 
63.44 
63.35 
63.29 
63.21 
63.17 
63.01 
62.96 
62.92 
62.90 
62.90 
62.83 
62.77 
62.55 
62.51 
62.51 
62.47 
62.45 
62.39 
62.38 
62.34 
62.32 
62.32 
62.16 

11.12 
10.36 
11.74 
9.65 
9.44 
10.41 
12.29 
9.94 
10.57 
10.10 
9.24 
11.41 
9.69 
10.23 
10.40 
10.19 
11.42 
9.48 
9.79 
10.52 
10.42 
10.32 
10.97 
9.78 
10.67 
8.65 
10.03 
10.43 
9.55 
9.27 
10.03 
11.28 
11.17 
11.51 
9.58 
11.90 
9.55 
11.13 
8.98 
9.35 

57 
2 
50 
10 
7 
30 
28 
26 
78 
35 
79 
52 
75 
55 
27 
71 
5 
20 
32 
76 
68 
60 
23 
19 
16 
66 
31 
46 
61 
15 
36 
80 
54 
53 
58 
43 
67 
62 
37 
33 

W-P 
E-G 
W-A 
E-G 
E-G 
E-P 
E-P 
E-P 
G-F 
W-G 
G-F 
W-P 
G-F 
W-P 
E-P 
G-F 
E-G 
E-A 
W-G 
G-F 
G-G 
W-P 
E-P 
E-A 
E-A 
G-G 
W-G 
W-A 
G-G 
E-A 
W-G 
G-F 
W-P 
W-P 
W-P 
W-A 
G-G 
G-G 
W-G 
W-G 

62.15 
62.14 
62.12 
61.99 
61.98 
61.90 
61.79 
61.37 
61.33 
61.11 
60.94 
60.90 
60.78 
60.76 
60.69 
60.56 
60.54 
60.42 
60.40 
60.35 
60.16 
59.71 
59.64 
59.59 
59.55 
59.45 
59.35 
59.32 
59.25 
59.19 
59.12 
59.09 
58.80 
57.91 
57.91 
57.68 
57.54 
57.44 
56.80 
56.26 

9.46 
9.47 
11.00 
9.74 
10.07 
11.27 
12.00 
10.31 
10.80 
9.52 
11.24 
10.79 
10.65 
11.79 
11.79 
10.84 
9.81 
10.74 
10.34 
10.43 
8.54 
9.92 
9.28 
10.97 
9.21 
10.26 
10.13 
8.59 
9.85 
10.98 
9.69 
10.12 
9.85 
11.06 
9.92 
10.88 
12.01 
9.92 
9.90 
10.03 

Note: Group identities were determined in Table 4. Std.dev = standard deviation. 
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Family No. Group Mean Std.Dev Family No. Group Mean Std.Dev 
67 
17 
31 
35 
8 
22 
33 
52 
59 
6 
11 
15 
24 
40 
41 
47 
50 
53 
58 
60 
65 
69 
70 
2 
10 
14 
20 
23 
38 
42 
43 
46 
61 
68 
71 
73 
77 
78 
3 
5 

G-G 
E-A 
W-G 
W-G 
E-G 
E-P 
W-G 
W-P 
W-P 
E-G 
E-A 
E-A 
E-P 
W-G 
W-A 
W-A 
W-A 
W-P 
W-P 
W-P 
G-G 
G-G 
G-G 
E-G 
E-G 
E-A 
E-A 
E-P 
W-G 
W-A 
W-A 
W-A 
G-G 
G-G 
G-F 
G-F 
G-F 
G-F 
E-G 
E-G 

0.64 
0.61 
0.61 
0.61 
0.59 
0.59 
0.59 
0.59 
0.59 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.57 
0.57 
0.57 
0.57 
0.57 
0.57 
0.57 
0.57 
0.57 
0.57 
0.57 
0.57 
0.57 
0.57 
0.57 
0.56 
0.56 

0.17 
0.15 
0.14 
0.16 
0.16 
0.15 
0.17 
0.16 
0.17 
0.15 
0.14 
0.15 
0.14 
0.16 
0.15 
0.15 
0.16 
0.14 
0.17 
0.15 
0.15 
0.16 
0.15 
0.13 
0.16 
0.14 
0.15 
0.14 
0.15 
0.16 
0.15 
0.14 
0.15 
0.15 
0.17 
0.15 
0.14 
0.15 
0.13 
0.15 

7 
12 
13 
16 
19 
25 
36 
37 
44 
45 
57 
75 
76 
80 
1 
4 
26 
34 
39 
49 
54 
55 
62 
74 
79 
9 
18 
21 
27 
48 
51 
56 
63 
64 
72 
29 
32 
28 
30 
66 

E-G 0.56 0.15 
E-A 0.56 0.15 
E-A 0.56 0.16 
E-A 0.56 0.15 
E-A 0.56 0.15 
E-P 0.56 0.14 
W-G 0.56 0.15 
W-G 0.56 0.14 
W-A 0.56 0.16 
W-A 0.56 0.14 
W-P 0.56 0.16 
G-F 0.56 0.14 
G-F 0.56 0.14 
G-F 0.56 0.15 
E-G 0.55 0.15 
E-G 0.55 0.14 
E-P 0.55 0.15 
W-G 0.55 0.13 
W-G 0.55 0.15 
W-A 0.55 0.14 
W-P 0.55 0.14 
W-P 0.55 0.14 
G-G 0.55 0.15 
G-F 0.55 0.15 
G-F 0.55 0.15 
E-G 0.54 0.15 
E-A 0.54 0.14 
E-P 0.54 0.14 
E-P 0.54 0.17 
W-A 0.54 0.15 
W-P 0.54 0.14 
W-P 0.54 0.15 
G-G 0.54 0.14 
G-G 0.54 0.16 
G-F 0.54 0.15 
E-P 0.53 0.16 
W-G 0.53 0.13 
E-P 0.52 0.15 
E-P 0.52 0.13 
G-G 0.52 0.13 

Note: Group identities were determined in Table 4. Std.dev = standard deviation. 
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)endix 
Family No. 

le family means of relative crown width for jack pine. 
Group Mean Std.Dev Family No. Group Mean Std.Dev 

15 
6 
17 
31 
37 
50 
3 
20 
40 
44 
57 
59 
67 
68 
71 
1 
4 
5 
7 
8 
11 
13 
14 
19 
21 
24 
25 
26 
32 
35 
36 
41 
46 
47 
49 
52 
53 
70 
78 
80 

E-A 
E-G 
E-A 
W-G 
W-G 
W-A 
E-G 
E-A 
W-G 
W-A 
W-P 
W-P 
G-G 
G-G 
G-F 
E-G 
E-G 
E-G 
E-G 
E-G 
E-A 
E-A 
E-A 
E-A 
E-P 
E-P 
E-P 
E-P 
W-G 
W-G 
W-G 
W-A 
W-A 
W-A 
W-A 
W-P 
W-P 
G-G 
G-F 
G-F 

0.55 
0.54 
0.54 
0.54 
0.54 
0.54 
0.53 
0.53 
0.53 
0.53 
0.53 
0.53 
0.53 
0.53 
0.53 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 
0.52 

0.14 
0.15 
0.13 
0.14 
0.12 
0.16 
0.13 
0.13 
0.17 
0.14 
0.15 
0.14 
0.15 
0.13 
0.17 
0.14 
0.10 
0.13 
0.12 
0.13 
0.14 
0.14 
0.13 
0.15 
0.14 
0.13 
0.13 
0.14 
0.12 
0.11 
0.14 
0.15 
0.13 
0.15 
0.14 
0.14 
0.14 
0.13 
0.13 
0.13 

10 
12 
22 
23 
27 
28 
33 
38 
39 
43 
45 
65 
69 
76 
79 
2 
9 
30 
42 
54 
55 
58 
60 
62 
74 
77 
16 
18 
51 
56 
61 
73 
34 
48 
64 
66 
75 
63 
72 
29 

E-G 0.51 0.14 
E-A 0.51 0.13 
E-P 0.51 0.12 
E-P 0.51 0.11 
E-P 0.51 0.17 
E-P 0.51 0.14 
W-G 0.51 0.14 
W-G 0.51 0.13 
W-G 0.51 0.12 
W-A 0.51 0.13 
W-A 0.51 0.13 
G-G 0.51 0.13 
G-G 0.51 0.13 
G-F 0.51 0.14 
G-F 0.51 0.14 
E-G 0.50 0.12 
E-G 0.50 0.13 
E-P 0.50 0.11 
W-A 0.50 0.14 
W-P 0.50 0.14 
W-P 0.50 0.12 
W-P 0.50 0.15 
W-P 0.50 0.12 
G-G 0.50 0.14 
G-F 0.50 0.13 
G-F 0.50 0.13 
E-A 0.49 0.12 
E-A 0.49 0.14 
W-P 0.49 0.11 
W-P 0.49 0.12 
G-G 0.49 0.12 
G-F 0.49 0.13 
W-G 0.48 0.11 
W-A 0.48 0.14 
G-G 0.48 0.15 
G-G 0.48 0.12 
G-F 0.48 0.12 
G-G 0.47 0.12 
G-F 0.47 0.13 
E-P 0.46 0.13 

Note: Group identities were determined in Table 4. Std.dev = standard deviation. 
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)endix 
Family No. 

le lamil 
Group 

tor jack pine. 
Family No. Group Mean Std.Dev 

67 
48 
29 
11 
45 
44 
68 
73 
42 
18 
78 
34 
61 
47 
38 
60 
53 
14 
24 
58 
28 
51 
72 
62 
35 
70 
46 
63 
40 
65 
74 
22 
76 
66 
54 
69 
75 
77 
64 
49 

G-G 
W-A 
E-P 
E-A 
W-A 
W-A 
G-G 
G-F 
W-A 
E-A 
G-F 
W-G 
G-G 
W-A 
W-G 
W-P 
W-P 
E-A 
E-P 
W-P 
E-P 
W-P 
G-F 
G-G 
W-G 
G-G 
W-A 
G-G 
W-G 
G-G 
G-F 
E-P 
G-F 
G-G 
W-P 
G-G 
G-F 
G-F 
G-G 
W-A 

113.48 
112.88 
112.77 
111.10 
111.08 
110.94 
110.66 
110.24 
109.75 
109.31 
109.16 
109.11 
108.99 
108.82 
108.40 
108.40 
108.28 
108.19 
108.13 
107.99 
107.90 
107.89 
107.65 
107.15 
107.09 
106.88 
106.65 
106.65 
106.64 
106.63 
106.55 
106.49 
106.49 
106.34 
106.16 
106.16 
105.95 
105.95 
105.92 
105.76 

24.67 
26.62 
23.02 
25.16 
21.82 
26.65 
24.73 
21.84 
25.80 
24.44 
25.64 
23.55 
23.40 
24.09 
26.16 
21.80 
22.54 
25.12 
23.06 
23.81 
24.00 
23.43 
23.05 
25.02 
22.57 
21.76 
24.51 
24.43 
25.16 
24.29 
23.00 
25.49 
25.07 
23.66 
21.56 
24.69 
24.26 
21.98 
25.30 
24.22 

57 
39 
31 
56 
55 
43 
52 
15 
36 
12 
71 
80 
3 
10 
6 
23 
32 
13 
7 
59 
79 
30 
8 
33 
41 
19 
21 
17 
20 
9 
37 
2 
4 
1 
16 
5 
27 
50 
26 
25 

W-P 
W-G 
W-G 
W-P 
W-P 
W-A 
W-P 
E-A 
W-G 
E-A 
G-F 
G-F 
E-G 
E-G 
E-G 
E-P 
W-G 
E-A 
E-G 
W-P 
G-F 
E-P 
E-G 
W-G 
W-A 
E-A 
E-P 
E-A 
E-A 
E-G 
W-G 
E-G 
E-G 
E-G 
E-A 
E-G 
E-P 
W-A 
E-P 
E-P 

105.63 
105.61 
105.49 
105.36 
104.94 
104.65 
104.65 
104.61 
104.48 
104.20 
104.16 
104.11 
103.97 
103.92 
103.68 
103.66 
103.62 
103.57 
103.53 
103.33 
103.05 
102.72 
102.70 
102.66 
102.61 
102.44 
102.32 
101.87 
101.80 
101.66 
101.60 
101.48 
101.21 
100.53 
100.46 
99.91 
99.43 
99.24 
98.61 
96.57 

25.18 
25.18 
25.09 
23.37 
24.98 
26.51 
23.24 
25.72 
23.94 
24.55 
25.26 
24.27 
22.78 
24.12 
23.85 
21.61 
22.14 
24.60 
21.91 
24.85 
24.80 
22.82 
21.65 
23.24 
27.73 
24.66 
25.46 
23.75 
22.25 
22.71 
24.33 
23.49 
22.18 
22.81 
23.98 
21.89 
24.50 
25.62 
21.78 
21.89 

Note: Group identities were determined in Table 4. Std.dev = standard deviation. 


