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ABSTRACT 

This thesis is a study of several theories of Non-standard Analysis. 

Particular attention is paid to the theories presented by A. Robinson 

and E. Zakon. 

Chapter I contains background information from Mathematical Logic 

and leads to the definition of a Non-standard Model of Analysis.- 

In Chapter II, we develop the direct product, the ultraproduct and 

the reduced ultraproduct of a set of similar structures and "construct" 

a non-standard model of analysis in the form of a reduced ultrapower of 

the set of real numbers. This model contains genuine "infinite" and 

"infinitesimal" elements which behave like those which we informally 

think of in classical analysis. 

Chapter III contains the theory of Professor Abraham Robinson for 

first order structures and languages. The .Finiteness Principle is 

applied in the proof of,the existence of Non-standard Models of Analysis. 

Chapter IV contains the theory of Non-standard Analysis presented 

by Professor Elias Zakon. This is the main chapter in the paper. His 

set-theoretical approach is based on the notion of a superstructure which 

contains all of the set—theoretical "objects" which exist on a set of 

individuals. A monomorphism is a one-to-one mapping from one superstruc-- 

ture into another superstructure which preserves the validity of sentences. 

The existence of monomorphisms is proven using ultrapowers. A Non-stand- 

ard Model of Analysis is defined in terms of a monomorphism. This defini- 

tion parallels the one given in Chapter I. 



In Chapter V we define and prove the existence of an Extra-standard 

Model of Analysis, a concept which is similar to that of a Non-standard 

Model of Analysis. We also present Professor Robinson *s theory for 

higher order structures and languages. We compare the theories presented 

by Professors Robinson and Zakon along with ;:hat of Professor M. Shimrat. 
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CHAPTER I 

FIRST ORDER STRUCTURE AND LANGUAGE 

MODEL 

This chapter contains definitions which lead to the definition of 

a non-^standard model. 

Def iiiit ion 

A first order structure consists of a set of individuals and, for 

each 1, a set P of n-ary relations such that if R* is an 
n 

n-ary relation and (a^, ..^ , a^) is an n-tuple of individuals, then 

either R*(a- , ... , a ) holds (is true) in the structure or does 

not hold in the structure. 

In order to discuss a structure, we need a language. 

Definition 

A first order language consists of 

A. Atomic Symbols. 

(i) Individual Object symbols or constants usually denoted by the 

letter i with subscripts which are lower or upper case 

letters of the alphabet, e.g. i^, The set of constants 

is arbitrary, but fixed. 

(ii) Individual variables, denoted by lower case letters from the 

end of the alphabet. e.g. u, v, w, x. The set of variables 

is supposed to be infinite, but countable. 

(iii) Relation symbols of order n for each n ^1, where n is 

the number of empty places in the symbol, e.g. R( ) and 



9 9 S( , , ) are of order 1 and 3 respectively* Each set 

of n-ary relation symbols is of arbitrary, but specified 

cardinal. A first order language always contains the binary 

relation symbol, = (equality). 

(iv) The connectives A (and), V (or), (not), (implies 

^ (if and only if). 

(v) The universal quantifier and the existential quantifier 

3. 

(vi) The brackets [ and ]. 

Functional symbols are not considered tc be in the language. 

Fimctions are represented in a structure by relations. For example, 

a function f(x) = y will be represented by a relation S(x, y) 

defined by S(a, b) if and only if f(a) = b. 

E, Atomic Formulae are obtained by filling the empty places in 

relation symbols with individual constants or variables. e.g. R(x) 

C. Well-formed Formulae are defined inductively as follows: 

If X is an atomic formula, then [X] is a well-formed 

formula. 

If X is a well-formed formula, then [“7 X] is a well- 

formed formula. 

If X and Y are well-formed formulae, then [X V Y], [X A Y] 

[X Y] and [X ^ Y] are well-formed formulae. 

If X is a well-formed formula, then [(Vy)X] and [(3y)X] 
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are well-formed formulae, provided X does not contain either 

(Vy) or (3y) • 

Note that the s3mibols X and Y are not in the language. Rather, 

they each represent a collection of symbols which is in the language. 

Definition 

An occurrence of a variable is called free if it is not in the 

scope of any quantifier over the same variable. Otherwise, it is a 

bound occurrence of the variable. 

In [(]jx)Z], Z is the scope of the quantifier. 

Definition 

A well-formed formula which does not contain any free occurrences 

of variables is called a sentence. Otherwise, the formula is called 

a predicate. 

For example, [(3x) [*7 [x = i ]]] is a sentence and 
3> 

[(Vx) ["7 [x = i ] [x = y]]] is a predicate. 
- S 

Instead of considering a language and then studying structures 

for it, we will assume that, for a structure M, we have a language 

L which is "large enough’V to contain a distinct name for each element of M. 

That is, we have a one-to-one mapping from the structure to the lang- 

uage so that each individual a in M has associated with it an 

individual constant i^ in L and each n-ary relation in M 

has associated with it an n-ary relation s)rmbol R in L. We say 

that i denotes a and R denotes R\ 
a 

Definition 

Let X be a sentence in the language L. X is said to be defined 



in M if each constant and n-ary relation symbol occurring in X 

denotes an individual or an n-ary relation respectively in M. 

A sentence in L which is defined in M may or may not be true 

in M according to the rollowing rules: 

(i) Let Y be an atomic formula. X = [Y] is a sentence where 

Y is of the form R(i , ... , i ). R Is an n-ary relation symbol 
a a 

1 n 
and i , , i are all constants, 

a a 
1 n 

Since X is defined in M, R denotes an n-ary relation R* in 

M and i , , i denote individuals a , ... , a in M 
a, ’ * a 1 * * n 

I n 
respectively. X holds in M if and only if R’(a^, ... , a^) 

holds in M. Either R’(a , .... a ) holds in M or does not 

hold in M. If X does not hold in M, we say that X is false 

in M. 

(ii) Let X = [~7 Y] be defined in M. Then Y is also defined 

in M and X holds in M if and only if Y does not hold in M. 

(iii) If X = [Y V Z] is defined in M, then X holds in M if 

and only if at least one of Y and Z holds in M, 

(iv) If X = [Y A Z] is defined in M, then X holds in M if 

and only if both Y and Z hold in M. 

(v) If X = [Y Z], then X holds in M, if and only if Z 

holds in M or, whenever Z does not hold in M, then also Y 

does not hold in M. 

(vi) If X = [Y^Z], then X holds in M if and only if both 

Y and Z hold in M or both Y and Z do not hold in M. 

(vii) If X = [(I3y) Z(y)J is defined in M, then X holds in M 



if and only if there exists an individual constant i such that 
- ■ ^ 

Z(i ) holds in M. The constant i denotes an individual a of 
• a a 

M and Z(i ) is the sentence obtained by replacing each occurrence 

of y in Z by i . If y does not occur in Z, then X holds 

in M if and only if Z holds in M. 

(viii) If X == [(\/y) 2(y)] is defined in M, then X holds in M 

if and only if Z(i ) holds in M for every constant i in L 
-■ a ■ ' a \ 

which denotes an individual a of M. 

Definition 

Suppose X is a sentence in L which is defined in the structure 

M. If X is true in M, then M is a model of X. Similarly, 

if K is a set of sentences and if each sentence of K is true in a 

structure M, then M is a model of K. 

Definition 

Suppose that M and M’ are structures. is called an 

elementary extension of H if for every sentence X defined in M, 

X is also defined in M’ and X is true in M if and only if X is 

true in M*. 

Let i? be the set of real numbers. Consider the first order struc- 

ture consisting of all real numbers and all n-ary relations of real 

numbers. By convention, we also use the letter R to denote this struc- 

ture. Suppose that L is a first order language containing a name for 

each real number and a name for each n-ary relation of real numbers. 

Let K be the set of sentences in L which are defined in R and let 

K* be the set of sentences of K which are true in i?. Then certainly 

R is a model of K*. 

Any model M of K’ is an elementary extension of R, Indeed, 

suppose that X is a sentence which is defined in i?. If X is 
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true in R, and if M is a model of K\ then by the definition of 

model, X is true in M, Now, suppose that X is true in M. 

Either X is true in R or X is false in R, If X is false in 

i?, then the sentence [“7 X] is true in R and is therefore in K\ 

Hence, the sentence [~7 X] is true in M, but this is a contradic- 

tion. Therefore, X is true in R, 

Definition 

Suppose that M and M’ are structures such that M’ is an 

elementary extension of M. The set K of sentences which are 

defined in a first order language and are true in M will contain a distinct 

name to denote each individual of M. Since M’ is a model of K, 

MV will contain an individual to correspond to each individual of M. 

If this copy in M* of the set of individuals of M is a proper sub- 

set of the set of individuals of M’, then M* is a proper elementary 

extension of M. 

Definition 

A proper elementary extension of a structure M is called a non- 

standard model of M. In particular, a proper elementary extension of 

the Structure consisting of the set of all real numbers and the sets 

of n-ary relations of real numbers is called a non-standard model of 

analysis. 

Definition 

If all of the propositional connectives. A, V» “7 , ^ in a 

well-formed formula are in the scope of each of the quantifiers, then 

the formula is in prenex normal form. 

In general, a well-formed formula is not in prenex normal form. 



That is, all of the quantifiers do not occur at the beginning of the 

formula. But, for every sentence X, there exists an equivalent 

sentence X* which is in prenex normal form where two sentences X 

and X' are equivalent if they contain the same individual constants 

and relation symbols and if [X^XV] holds in.any structure in which 

X is defined. The procedure for obtaining the prenex normal form of 

a well-formed sentence involves "factoring*' the quantifiers "out of" 

the sentence using such well-known equivalences as [“7 [(3y) Z]] to 

[<Vy) [-7 z]]. [-7 [(V/y) Z]3 to [Gy) [-?Z]]. [[(\/x) Z] =4 [X] ] 

to [(jx) [Z ^X]], etc. The steps of this process are often called 

prenex ’’reductions". In carrying them out, one has to observe simple 

cautions to avoid "collisions** of bound variables. For example, to 

’’factor out" the inner \/x quantifier in [(Vx) [[(Vx) Z] [X(x)]]] 

change first to the equivalent [(\^y) [[(Vx) Z] ^ [X(y)]]], and 

then factor to get [(Vy) [(_Jx) [ [ Z(x) ] [X(y> ] ] ] ] . 
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CHAPTER II 

A NON-STANDARD MODEL'OF ANALYSIS 

Suppose K -r is a set of similar structures. That is, the 
A A C i. 

same relations and functions are defined in each structure. The index 

set I is non-empty and may be finite or iitfinite. 

Definition 

The direct product of the structures M, , denoted II M, , is 
A, ^ A 

AS I 
the set of all functions f with domain I such that f(A) e M, 

A 

for each X el. 

If a is an individual contained in each of the structures, then 

the constant function f(X) = a for all X e I is identified with 

a. 

Suppose R(x^, ... , is an n-ary relation in each of the 

structures M^. (Variables are placed in relations and functions 

for easier reading). Let f . ... , f be elements of II M*, Then, 
. Xel 

we define that R(f » ••• » f ) holds in H if and only if 
1 n . _ A Xel 

R(f (X), ... , f (X)) holds in M. for each X e I. 
1 n A 

As we commented earlier, there is no need to consider that functions, 

as distinct from relations are defined in our structures. However, 

if the definition of relations on the direct product is interpreted 

in the case of functions, the result is the following: 

For any function ... , x^) which is interpretable in each 

of the structures M , ^>(f,, ... , f ) is Interpreted in H M by 
A 1 n , _A Ael 



the function froi which has the value 

<^(f^(X), ... , 

An idea closexy rexautia to cne aixect product is that of a "reduced 

direct product, for whose definition we require the following new 

concepts. 

Definition 

A filter F on a non-empty set J is a non-empty family of sub- 

sets of J with the following properties: 

(i) <j) i F. 

(ii) If A £ F and A SB ^ J, then B e F. 

(lii) If A, B e F, then A H B c F. 

Definition 

An ultrafilter on a set J is a filter F with the additional 

property: for each A — J, A e F if and only if J A F. 

Every filter on a non-empty set J can be extended to an ultra- 

filter. 

Proof 

Let G be the class of all filters on a non-empty set J. G is 

non-empty since the set consisting of J alone is a filter on J. 

Define the relation < on G by F, < F^ if and only if F S F . 

Clearly < is a partial ordering of G. 

Theorem 

Let {F } „ be a chain of elements of G where H is some 
OL aeH 

index set. Consider F = F . F is a filter on J since (i) a, 
aeH 



cf: i F. If d) e F, then 6 e F for some a. but F is a filter 

for each a. (ii) Suppose that A e F and A ^ B ^ J. A e F =4 

A e F for some a. A^B S J B e F and therefore B e F. (iii) 
a a 

Suppose that A, B e F. Since (F } .. is a chain, there exists an 
^ a aeH 

(t e H, say a , such that A e F and B e F . AY) B e F 
0 a a 

0 0 0 
since F is a filter. Th€*refore, A O 1 c F and we conclude that 

ot 
0 

is a filter on J. 

Since F ~ F , F < F for all a e H. Thus, the chain 
Ot a 

aeH ^ ^ 
S”F } „ has F as an upper bound. Since {F } „ is an arbitrary 

a aeH ^ a aeH 

chain of elements of G, we have that each chain has an upper bound 

and, by Zorn^s Lemma, G has a maximal element. Let U be a 

maximal element of G. Therefore, U is,a filter on J. We want 

to show that U also satisfies the condition: VA J, A e U ^ J - A 

Now, A and J - A cannot both belong to U since their intersection 

. is empty. Suppose that for some A — J, A ^ U and J - A ^ U. 

Let V = {B ] B S J and A U B c U}. V is non-empty since 

•A U (j - A) = J e U. V is a filter on J since (i) A^ U V. 

(ii) If B, e V and B ' ^ B^^ J, then A U B, e U and A U B^ ^ ; 
1 12 1 1 

U is a filter implies A U B^ e U. Theiefore B^ e V. (iii) If 

B, , B e V, then A U B and A U B a e elements of U. There- 

fore, (A U B^) n (A U B^) = A U (B^ A B^) e U. Thus, D B^ e V, 

But> U is a proper subset of V. ".ndeed, let B e U. 

B S A U B A U B e U B e V. As we have seen above, J - A e V, hut 

J - A i U by assumption. U being a proper subset of V contradicts 

the maximal property of U. 
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. We conclude that for every A S J, A e U if and only if J - A^ U. 

Thus, U is an ultrafilter. If F is a filter on J, then either 

F is an ultrafilter or F is contained in some ultrafilter on J. 

Suppose that F is a filter on the index set I and that U is an 

ultrafilter containing F. Using U, we modify the direct product 

of the structures M . 
A 

Definition 

Suppose R(x^, ... , is an n-ary relation in each of the 

structures M,. Let , ... , f be elements of n IL , We now 
X 1 n , T X Xel 

define R(f , ... , f ) holds in II if and only if 
1 n . _ A 

XGI 

{X s I J R(f^(X), ... , holds in M^} e U. Functions are 

interpreted as in the direct product. The structure obtained in this 

way is called an ultraproduct. 

in particular, since each relation defined in the ’s is defined 

in the ultraproduct, and since each has the identity relation 

defined in it, we have a corresponding equivalence between any two 

elements f 'and g of the ultraproduct. f ’=’ g if and only if 

{X e I I f(X) = g(X)} e U. This is an equivalence relation for we 

see that if f '=' g and g h, then f h since 

{A e I I f <X) = h(X)} 5 {X E I j f (X) = g(X>} A {X E I | g(X) = h(X)}. 

Having distinguished the equivalence relation *=' from the 

smbol for logical identity, =, used in it’s definition, we will now 

abandon the distinguished notation in favor of =, which is in fact 

to be interpreted by logical identity of equivalence classes, anyway. 



as follows; 

Definition 

M I _ 

The reduced ultraproduct of the structures , denoted by ■ A 

( n is the set of equivalence classes under the equivalence 
Xel 

relation =, (or f _ t )* 

If a is an individual contained in each structure M. , then 
A 

the equivalence class of M* containing the constant function f(A) = 

for all A e I is identified with a. The reader should note how 

the properties of the ultrafilter are involved in what follows next. 

Now, suppose R(x^, ... , x^) is an n-ary relation in each of 

the structures M ■. Let f , , f be elements of M’. Then , 
A 1 n 

vie. define R(f^, ... , f^) holds in M’ if and only if 

{A e I I R(f (A), ... , f (A)) holds in M.} e U, where f . ... , f 
1 n A In 

are representatives of the equivalence classes f^, ... , f^ respect- 

ively . 

This is well-defined since if ••• > representatives 

of f ^ , . . . , f^ respectively, then {A el | R(f^’(A), ... , 

holds in M, } — {A e I | R(f (A), ... , f (A)) holds in M } /A 
A 1 n A 

{X e I I f ,(X) = f,'(X)} ... A {X £ I I f (X) = f ' (X)}. 
1 1 n n 

For any function . . . , x^) which is interpretable in each 

of the structures Mv, we define <I*(x,, ... , x ) in M* by 

... , f^) = 4>(f^(A), ... , f^(A», A e I. 

That is, the value of in M* is the equivalence class of the 

function defined by values on the right, where f,, ... , f are 
1 n 

representatives of the equivalence classes f^, ... , f^ respectively. 
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To show this is well-defined, suppose that 

= fj’, ... » and that -(f^» ... » = ^(fj(X), ... , 

X e I. 

Now, {X e l I f '(X) = f/(X)} n ... {X € I I f (X) = f ’(X)} 
i i n n 

{X e I I 4) (£ (X) , . *. , f (X)) = 4> (f ' (A), . ,. , f ’ (X))}. This set 
I n 1 n 

is an element Of U since each member of the intersection (which is 

finite) is an element of U. Therefore, 4^(f ^(X), ... , f ‘(X)) = 
1 n 

4>(f^(X), ... , f^(X)). Thus, 4>(f^, ... , f^^) = $(fj’(X), ... , fj^’(X)), 

X E I. 

Let us consider the following example of a reduced ultraproduct. 

Let I be the set of all prime numbers. For each p e I, let Z 
P 

be the finite field with elements 0, ... , p - 1 where addition, 

(J) , and multiplication. Cl) , are defined by 

for any a, b e Z , a ® b = remainder when p divides a + b 
P 

^ O ^ = remainder when p divides a • b 

The set {Z } _ is a set of similar structures. The index set 
p pel 

I is infinite. Let F be the Frechet filter on I. That is, for 

every A ^ I, A e F if and only if I - A is finite. We can extend 

F to an ultrafilter U on I. 

As in the general case, we obtain the reduced ultraproduct 

Z’ = ( n Z ) „. The elements of Z* are equivalence classes under 
T P U 

pel 

the equivalence relation =. That is, if f and g are functions 

such that f (p) ^ g(p) ^ each p e l, then f = g 
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if and only if {p E I | f(p) = g(p)} e U. 

Since the structures are finite fields, each has additive identity 

0 and multiplicative identity 1. We identify with 0, the equivalence 

class of Z’ containing the constant function f(p) = 0 for all 

p e I. Let us denote this equivalence class by 0* Similarly, we 

obtain 1. 

Each structure has addition and multiplication defined in it. 

Suppose that f^ and f^ are elements of Z’. Then, following the 

general case we have f + f = f (p) 0 f^(p), p el. That is, for 

each p e I, f^(p) and are in Z^ and f^(p) 0 f^Cp) is 

defined in Z and takes a value in Z . These values, for each 
P P 

pel, define a function with domain I. The value of f^ + f^ is 

the equivalence class containing this function. Similarly we have 

that f^ *^2 ~ P ^ This ends the example. 

Theorem 

Let X be a sentence which is defined and holds in each structure 

of a set {M-}, _ of similar structures and let U be an ultra- 
X Xel 

filter on the index set I. Then X holds in the reduced ultraproduct 

Xel 

The proof is very direct. The properties of the ultrafilter, and 

the definitions above ensure the result for atomic sentences, those 

without quantifiers or connectives. The result for arbitrary sentences 

Is established by induction. The proof is omitted. 

Let us consider an application of this theorem. The following 



sentences characterize a field: 

(Vx) (Vy) (Vz) [(x + y) + z = x + (y + z)]. 

(Gy) [y = 0 A (\/x) [x 4- 0 = x] ]. 

(V^) [(Gy) [y = -X A [x 4- (-x) = 0]]]. 

(Vx) (VV) [x + y = y + x] . 

( 7x) ( 7V) (V'z) [ (x • y) • z - X • (y * z)]. 

(Jy) [y 1 A (Vx) [x • 1 = x] i. 

(Vx) [x =1= 0 =7 (Jy) tx • y = 1] ] . 

(Vx) cVy) [x • y = y * x]. 

(v/x) (Vy) (Vz) [x . (y + z) = (x • y) + (x • z)]. 

0 + 1. 

Each of these sentences is true in each finite field Z of our 
P 

previous example. Thus, by applying the above theoremj we obtain 

that each of these sentences is also true in the reduced ultraproduct 

Z’. Therefore, Z’ is a field. The additive identity of the field 

Z’ is 0 and the multiplicative identity is 1. For example, if 

f is any element of Z\ then, by definition, 

f H- 0 = f(p) (4) 0, p £ I 

^ f 

Definition 

If the elements of the set {M, ^ are all the same structure 
A Xel 

M, then M/ is called a reduced ultrapower of M. 

Certainly the above theorem still holds. That is, if X is a 

sentence which is defined and holds in a structure M, then X hold 

in a reduced ultrapower of M, Note also that a reduced ultrapower 

of a structure M is an elementary extension of M. 



Now, we will develop a reduced ultrapower non-standard model of 

analysis. Our structure is the set of real numbers R and the index 

set is. the set of natural numbers N = {0, 1, 2, ... }. Let F be 

the Frechet filter on N. Tt^at is, for every A ^ N, A e F if and 

only if N - A is finite. Let U be an ultrafilter on N containing 

F. Let *R =( n R ) be the reduced ultrapower of R where R - R 
neN 

for all n e N. Therefore, *R is the set of equivalence classes 

or functions f: N i? under the equivalence relation =. That is, 

for any functions f, g: N fl, f - g if and only if {n e N | f(n) = 

g(n)} e U. 

Since R is a reduced ultrapoxi7er of A, 7? is an elementary 

jJL ’ ' 

extension of R. For R to be a non-standard model of analysis, 

we require that R be a proper elementary extension of 7?. We do 

have this property. Indeed, consider the function f: N -> 7? defined 

by f(n) = n for all neN. This function belongs to an element, 

say f, of *R. Recall, that identified with each k e N is the 

equivalence class k containing the constant function h(n) = k for 

all n e N. In this way, N is embedded in *R, . We will show now 

that f i N- That is, f is not in the copy of N in *R, For 

every k e N, {n e N | n < k} is finite. Therefore, its complement 

{n e N I n > k} is a member of the ultrafilter U. This implies that 

f > k in *7?. *N is the set of natural numbers in *7? where 

g e *N if an only if {n e N | g(n) e N} e U for g e g. Then 

certainly f e ^N since {n e N | f(n) e N} = N e U. Therefore, 



17 

f e *N - N. 

We have an element of *R which is not in R. Indeed, the only 

way that could be ah element of the copy of R in *R would be 

for f not being a natural number. We know that f is a natural 

number in *R is a proper elenentary extension of R and 

therefore R is a non*-standard model of analysis. 

Let us examine *R more closely. Note that f is larger in *R 

than every ordinary real number* We say that f is an "infinite" 

number. Since R is a field and *R is an elementary extension of 

Rf *R is also a field. That is, the field axioms also hold in *R, 

The additive identity of *R is 0 and since f ^ 0, f has multi- 

plicative inverse The element i is called "infinitesimal" 

since Y ^ n every positive integer n. 

Since f is "infinite", f+ r and f - r are "infinite" for 

every r e R, Also, n • f is infinite for every positive n e N. 

Thus, in *R we have uncountably many "infinite" numbers and 

"infinitesimals". 

Note that *i? is non-Archimedean since f > k for every ordinary 

natural number k. This does not contradict *R being an elementary 

extension of R since the fact that R is Archimedean cannot be 

written as a sentence in a first order language* That is, the 

Archimedean principle states that if 0 < a < b, then there exists 

a natural number n such that n • a > b and in a first order lang- 

uage we cannot mention anything except individuals. Since the 

individuals in the structure R are real numbers, we cannot 

mention sets of real numbers* Therefore, we cannot assert 
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the existence of such an element in N, the set of natural numbers. 

In classical analysis we speak of "infinite" and "infinitesimal" 

numbers although they do not exist. An "infinite" number is used in 

the sense of being "arbitrarily large" and an "infinitesimal" as being 

"arbitrarily close to zero". The "infinite" and "infinitesimal" numbers 

which exist in non-standard models of analysis actually "behave" like 

the ones we informally thought of in classical analysis. This leads 

to the possibility of doing calculus in *R using infinitesimals. 

For exainplej in classical analysis^ a function f Which is defined 

on the interval (a, b) is continuous at x^ in (a, b) if and 

only if for every positive number e there exists a niomber 6 such 

that if lx - XQ1 <6, then |f(x) - f(x^)| < e. Now, in our 

non-standard model of analysis, let the extensions of the function f 

and the absolute value function be denoted by the same symbols as in 

R, Suppose that a, b and x^ are in the copy of R in R 

and that x^ is in the interval (a, b). Then, f is continuous 

at X if and only if |f(x) - f(x ) is infinitesimal whenever 

|x - x^l is infinitesimal. With definitions like this, corresponding 

to the definitions in classical analysis, we can do calculus in *R, 

Now let us examine the number of non-standard models of analysis 

that we can obtain using an ultrafilter on the set of natural numbers 

N. First, how many ultrafilters exist on the set of natural numbers? 

The following theorem is the work of M. Shimrat. 

Theorem 

The number of ultrafilters on N = {0, 1, 2, ... } is > 2^^. 
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Proof 

To every infinite ordinal a < assign a particular rearrange- 

ment of - {3 I 3 < ot} into a to-sequence. That is, a sequence 

(Y )' containing each 3 < a exactly once, n n<0) ; , . 

Consider any mapping : W {0, 1} . That is , an oi -sequence 

of O's and l*s. The set of all such is of cardinality 2^^. 

We will assign to each $ a filter base on W given by a certain 

G) -sequence (F ) of subsets of The sets F are defined 
1 a a<oi^ a 

by tranSfinite induction as follows: 

Suppose W -> {0, 1} , 
0). 

F 
Define F = UO, 2, 4, .. 

0 

{1, 3, 5, .. 

. } if <I>(0) = 0 

. } if 4)(0) = 1 

Now, assume for any positive a < , the folloiwng condition, denoted 

C y is satisfied: 
a*- 

F^ has been defined for all C < ot and 

C ■ < C < OL =4 F^ - F^ is firiite. 
■ : .h. : : 

There are two cases to consider. First, suppose that a is a 

successor ordinal, a = 3 + 1. Then F- has been defined. Let 

Fg = {k^, j ...} where the elements k^, k^, ... are in increas- 

ing order. 

Define: F = 
. a ■ {kQ, >2, kj^, ... } if <^(a) 0 

{k^, k^, kg, ... } if <^(a) = 1 



Therefore, has been defined for all ^ < d + 1 and 

C, < < a + i F^ - F_ if finite since F^ - F is void. Hence, 
1 2 ^2 3 a 

condition G . is satisfied. 
a+X 

Now, suppose that a is a limit ordinal. Rearrange the F^ into 

an ca-seqtience (G ) where G = F (with the y as above). Define 
n ^ ^n ^ 

= /^ G^. By the condition C^, in constructing any 

n > 0, we have removed only a finite number of elements from H and 
n 

since H = F is infinite, each H is infinite. Clearly H 2 H 
n n n+1 

Let H = {k , k , k , ... } where the elements k , k , k , 
n no nl’ ni no nl’ nl* 

are increasing in order. 

Now, define F = 
a 

{k^ , k , k, , ... } if $(a) = 0 
00 22* 44 

{k , k , k_ , ... } if <I>(a) = 1 
1 i O J D D 

has now been defined for all ^ < a + 1. If 3 < a then 

F - F- is finite. Indeed, since there is an n for which HP'S F„ 
ot 3 . £ : 3 

for all Z > n, and by the definition of F , F - F_ contains a 
a a 3 

finite number of elements. Therefore, if < a + 1, then 

F_ - F_ is finite and condition C ,, is satisfied. 
^2 ^1 a+1 

Hence, for each we have defined an oj^-sequence of subsets of 

N and each such sequence of subsets of N is a filter base. Now, 

y 1 
consider the 2 filters generated by t^ese filter bases. If 

and are distinct functions with corresponding filters F and F* 

respectively, then F and F* are incompatible. That is, F and 

F* have elements K and K* respectively such that KHK* * (j). 

Choose for each filter F an ultrafilter containing F. We obtain 



a set "of distinct ultrafilters of cardinality 2^^ which proves the 

theorem. 

Now, how many distinct reduced ultrapowers of R can be obtained 

by considering distinct ultrafilters on the index set N? W, A, J. 

Luxemburg in [3] remarked that under the continuum hypothesis, all 

reduced ultrapowers of R obtained by using ultrafilters on N can 

y 1 
be shown to be isomorphic. Therefore, there are at least 2^ 

isomorphic reduced ultrapowers of R using the set of natural numbers 

as the index set. 



CHAPTER III 

FINITENESS PRINCIPLE 

In Chapter IIj we developed a non-standard model of analysis in 

the form of a reduced ultrapower. In this chapter, we will 

prove the existence of noh-standard models of analysis without 

^‘constructing" one as we did in Chapter IT. 

An important theorem which will be applitid in this chapter is the 

Finiteness Principle for first order languages and structures. This 

theorem is also called the Compactness Theorem. A proof is available 

in [ 6 ]. 

Theorem (Finiteness Principle) 

Let K be a set of sentences. If every finite subset of K has 

a model, then K has a model. 

Here, K is a set of sentences in a first order language and the 

models are first order structures. 

Let i? be the set of real numbers. Let K be the set of 

sentences in a first order language L which contains a distinct 

individual constant to denote each real number and a distinct n-ary 

relation symbol to denote each n-ary relation of real numbers. Again, 

we assume that we have a one-to-one mapping from our structure to the 

language. Let K* be the subset of K consisting of all sentences 

of K which are true in i?. 
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Choose an individual constant b of L which does not denote any 

real number in R. That is, b ^ i^ for every real number r. We 

assume that our language L contains "enough" constants to allow 

this, where "enough" means that, if necessary, we could embed our 

language L in a language L’ so that the set of atomic symbols of 

L is a subset of the set of atomic symbols of L* and L' has the 

individual constant we want. Since we could then consider the language 

L’, we may as well assume that L has such a constant. The set R 

of real numbers has the binary relation of logical identity defined 

on it. This relation is denoted in L by the symbol =. Therefore, 

the sentence [i = i,] in L holds in R if and only if c = d 
c d 

where i denotes c e R and i, denotes d e R. 
c d 

Let H be the set of sentences {[~7 [b = i^.]] I re /?}. Here 

we intend that r shall range over all real numbers and i^ denotes 

r in the language L. Consider the set of sentences K’ U H. We 

want to show that K* U H has a model, say H. This model M will 

be a non-standard model of analysis since every sentence in K’ will 

be true in M and M will contain an element corresponding to b. 

To apply the Finiteness Principle, we need to prove that every 

finite subset of K'U H has a model. Consider K' U H* where H' 

is any finite subset of H. If K’U H' has a model, then it can be 

shown that every finite subset of K'VJ H has a model. If H* is 

an empty set of sentences, then K* W H* has R as a model. Therefore, 

let us suppose that H' consists of the sentences [~7 [b = i ]], ... , 

[“7 [b = i ]] where n > 1. 
n 



For any finite set of real numbers r,, , r We can find a 
1 n 

real number s such that s r^^ for all k = 1, ... , n. Therefore, 

R is a model of H*. Since R is certainly a model of K*, i? is 

a model of K* U H*. 

Now, by the Finiteness Principle, K* U H has a model, say *R. 

This model *R contains an individual, say a, which is unequal 

(in *R) to each individual of *R corresponding to an individual 

of R. Therefore, R is a non-standard model of analysis. 

Since R is a field and *R is a model of R, the field axioms 

still hold in *R, Therefore, from this element a we obtain the 

multiplicative inverse of a, and the additive inverse of a, -a. 

Recall that in Chapter II, we obtained a non-standard model of 

analysis containing the "infinite" element f. This element f is 

an example of such an element a. 

The relation "unequal to" between real numbers is a particular 

kind of relation called "concurrent" since b is unequal to r^^ 

concurrently for k =1, ... , n. For the purpose of the above 

theorem, it was sufficient to consider this one "concurrent" binary 

relation. We could consider any number of concurrent relations 

simultaneously. We will define concurrent relation in Chapter IV and 

again in Chapter V and will indicate in Chapter V a proof in which 

more than one concurrent relation is considered simultaneously. 
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CHAPTER IV 

SUPERSTRUCTURES AXD MONOMORPHISMS 

Definition 

Let A = AQ be a set of individuals. An individual has no 

elements, but is not the empty set. In [8], E. Zakon defined the 

since A e A ,, A for n > 0, A e A for all n. Since we may 
n n+l n ^ 

express an ordered pair using the Tarski-Kuratowski definition, 

(a, b) = {{a, b} , {b}} and hence an ordered n-tuple by (a^, ... , a^) = 

of A. A contains n-ary relations (set of n-tuples) where the n-tuples 

of the n-ary relation all have corresponding places filled by elements 

For example, let the set R of real numbers be taken as a set of 

individuals. Then, the superstructure R on R contains all real 

numbers, all sets of real numbers and so on. R also contains, for 

example, sets which have as elements both real numbers and sets of teal 

numbers. The relation of membership of a real number in a set of real 

numbers exists in R as a set of ordered pairs where the first place 

is filled by real numbers and the second place is filled by sets of 

Since A d A . f or n ^ 1 
n n+l 

(Ca 
1 

a ,), a ), A contains all ordered n-tuples of elements 
n-1 n ^ 

from the same set in A 
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real numbers. 

In order to discuss a superstructure we need a language. Let L 

be a first order language with variables, connectives, constants, 

quantifiers and brackets as defined in Chapter I so that there is a 

one-to-one correspondence between all constants of L and all elements 

of A. Thus, if E is the superstructure, there is a constant in 

L to denote each real number, each set of real numbers and so on. 

For any element a of a general superstructure A let its name in 

L be i^. The superstructure has the relations of logical identity 

and membership. These relations are interpreted in L by the relation 

s),Tnbols = and s respectively. 

Atomic formulae are of the form x e y and x = y where x and 

y are variables or constants (names for elements of A). Well- 

formed formulae are constructed from atomic formulae using brackets, 

connectives and quantifiers. The only quantification allov7ed is of 

the form (3 x e ip) ( 3x s i ) where i is the name of some 

C c A. A reason for this restriction will be provided later in this 

chapter. Note that, for example, [(3x s i_) x s i^] is a simplifi- 
w U . 

cation of [(jx) [x e i^ A ^ ^ * 

To illustrate a sentence, the statement that 0 is the least 

member of the set of natural numbers N c H is written 

^^^0 ^ ^ [(Vx e i^) < X]]. 

To simplify matters, we will follow the time-honored mathematical 



practice of using objects as their own names as in [(Vx e C) x £ D] 

rather than [ ( T/X e i ) x e , although formally, sentences 

must contain names for the elements and not the elements themselves. 

This device will be used when there is no chance of confusion, for 

it increases readability. 

Note that in the language L, the assertion » ••• > 

is expressible by a well-formed sentence. Indeed, we always have 

a,, ... , a e A U for a large n so that the assertion 

{a, ... , a } —b can be written as (Vx e A U A ) [x e b X = a V 
1 m n 0 1 

Vx = • Therefore, {{a^, a^}, (a2}} = b, i.e., (a^, a^) - b 

can be written as a well-formed sentence. Similarly for (a^, ••• » a^) 

by induction. 

Now, suppose that A and B are two sets of individuals with 

superstructures A and B respectively and let : A -> B be a 

ys /V 

mapping of A into B. We define (a) = *a and ^>[a] = {*x j x e a} 

for all a e A. Note the difference between the definitions of $(a) 

and ^‘[a]. 
00 

Since A e A for all n, $(A ) = *A . We set *A = W *A . 
n n n „ n 

n=0 

If d is a well-formed formula, then *OL is defined to be the 

formula obtained f rom a by replacing each constant a occurring in a 

a. Nothing is changed except the elements of A, a is called 

the 4>-transform of a. For example, if a = [(Vx e C) x e D], then 

*a - [(Vx e *C) X e *D]. 

Again this is a simplification of the following: 



If and are first order languages for A and B respectively 

and if. a is a well-formed formula of L/, then *a is the formula 
,.A 

of Lg obtained from a by replacing each occurrence in a of the 

name i for each a e A by the name ii* (in L„) for *a. 

Nothing is changed except the names of elements in A, If 

a = [ (Vx e i^) X e i^^] , then *a = [ (Vx e i:<t^) x £ • 

There is one example which should be noted. 

Suppose a = [ (Vx e i^ A ^ ^ ^A ^ ^ ^ ^A ^ ^ * then 
n 0 n 0 

^ ^ ^*(A U A„)^ H ^ ® ^*(A U A„) ■n o n 0 ^n 0^ 
*a = [(V 

instead of y simplified case is in agreement. If 
n 0 * 

« = [ (Vx e A^ U AQ) [X e A^ V X e then *a = [ ( 7 x £ * (A^ U A^)) 

[x £ ’^A V X £ *A.]]. 
n 0 

Note that we are just now defining the 4>-transform of a sentence 

and we are not asserting anything about the truth of a sentence or of 

its <J>-transform. 

Definition 

<|L 

If b is a member of B and b = a for some a s A, then b 

is called a ^-standard member of B. 

For example, since A e A for all n, $(A ) = *A is a 
n n , n 

4>"Standard member of B for all n. 

Definition 

If b is a member of B and be *a for some a e A, then b 

is called a 4>-internal member of B. That is, if b is an element 

of a ^-standard member of B, then b is a ^-internal member of B. 



Any member of B which is not ^-internal is called ^>-external. 

For example, all elements of are ^-internal, since if b e *A, 

then be A for some n and A is a ^-standard member of B. 
n n 

The terms ^-standard, ^-internal and <i>-external are shortened to 

standard, internal and external respectively. 

We will consider a particular kind of mapping between superstructures 

Definition 

A mapping A -> B is called a monomorphism if and only if 

(i) where ({) is the empty set. 

(ii) A 1= a B H for every well-formed sentence a. That 

is, if the well-formed sentence a is true in A, then *a is true 

in B. 

We shall always identify *a with a if a e AQ. Therefore, *a = 

for a e A^ and X ~ *X whenever X ^ (A^)^ for n > 1. 

Theorem Let ; A B be a monomorphism. 

If h» «•, , a tA, then 
1 m 

(i) * (a - b) = *a - *b 

(ii) *(a n b) -» *a n *b 

(iii) *(a U b) = *a U *b 

(iv) "^{a} = {*a} 

(v) *{a , ... , a } = {*a , ... , *a} 
i m 1 m 

(vi) > • • • » ~ > • • • > * 

Regarding (i), (ii) and (iii), if a and b are individuals, then 

a U b = aPib = a - b = by definition. 

Proof 

We will prove (iii) and (iv). The other proofs are similar, and 
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illustrate what is perhaps the basic proof technique of non-standard 

analysis, the construetion of appropriate sentences and their trans- 

formation under the mohomorphism. 

(iii) If a, b e A, then a U b e A. Let a = [(Vx e(aU b)) 

[x e a V X e b]]. Then *a = [(Vx e *(a U b)) [x e *a V x e *b]]. 

A (= a B (= *a and we have * (a U b) S *a U *b. Now, let 

3 [ (VX e a) (Vy e b) [x e a U h f\ y e a U b]] , 

*3 = [(Vx c *a) ( \/y e *b) [x e * (a U b) A y e *(a U b)]]. A h 3 *3 

and we have *a U *b S ’^(a U b). Therefore *(a U b) - *a U *b. 

(iv) a e A {a} e A. Let a = [(Vx e {a}) [x = a]]. Then 

= [(Vx e *{a}) [x = *a]i, A [= a =^B |= *0t. Therefore *{a} = {*a} 

and the proof of (iv) is complete. We can use (iii) and (iv) to 

prove (v), 

m 
{a , • • a , a } v^y (3-1 

1 m 1 , k k=l 

m m 
Therefore ^{a, , ... , a } = \J *{a, } = {’^a. } = {*a. , ... , *a }, 

1 m - k , k 1 ■ m 
k=i k=i 

In the previous example, the ^-transform of the sentence 

[(Vx e C) X e D] is [(Vx e *C) x e *D]. If is a monomorphism, 

then we have by (ii) of the definition of a monomorphism, if C is a 

subset of D (in A), then *C is a subset of (in B), 

Note that if a is the sentence [(Vx e A^ U A^) [x e A^V x e 

and <I> is a monomorphism, then by (iii) of the above theorem we can 

now write 

*a * [(Vx e V *-^0^ ^ *^n ^ ^ ^ 
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Earlier, we noted the difference between the definitions of <l>(a) 

and <^>[a] for a e A. If $ is a monomorphism, then by (v) of the 

above theorem, if C is a finite set in A, then ^>(C) = <^[C]. 

Theorem 

If <J>: A B is a monomorphism from A into B, then each 

standard member of B is also an internal member of B. 

Proof 

Suppose b is a standard member of B. That is, b = *a for 
■A ^ 

some a e A. Therefore, A [= [a e A ] for some n and since $ 
n 

A A 

is a monomorphism, B k [*a e *A ] . *a e *A b e *A b e *A. • 

Since members of *A are internal, b is an internal member of B, 

Note that a monomorphism is a one-to-one mapping since by (ii) of 

the definition of a monomorphism, A f= [~7 [a = b]] B [“7 [*a - *b]], 

for a, b e A. 

Also note that although it need not be defined this way we actually 

have (ii) of the definition of a monomorphism as A h cc B h 

Indeed, suppose B f= *a. Now, either A a or A a. If A a, 
A 

then A h ~J [otj. Since ~1 [a] is a well-formed sentence, 
A A . 

A h "7 [a] B 1= * [~7 [ot]]. In obtaining the <I>-transform of a sentence, 

we change a to *a for every element a of A occurring in the 

sentence. Nothing else is changed. Therefore, ^[^[oi]] “ Thus, 

A h ~7 [ot] B [= "VE^ot]. This is a contradiction of B t= *ot. 
A A A A 

Therefore B A ^ a and we have A ^ dt ^ B r 

If K is the set of sentences which are true in A and if 
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is a monomorphism of A into B, then the sentences of K are also 

true in B. Thus, a monomorphism provides us with another model of 

K, For example, suppose that A = A^ is a set of individuals with 

superstructure A and with a binary operation, ., defined on A. 

Let K be the set of sentences which define . as being a binary 

operation and which assert th^t elements of A form a group under 

the operation. If 0 is a monomorphism from A into another 

superstructure B, then the sentences of K will also be true in B. 

These sentences assert that there is a binary operation, defined 

on that the elements of "^AQ form a group under *. . 

Theorem 

If $ is a monomorphism from a superstructure A into a super- 

structure B, then the internal members of B are exactly the elements 

of ^A = CJ *A . 
n 

n«o 

Proof 

We know already that if b e *A, then b is internal. Suppose 
At 

now that b is an internal member of B. Then b e *a for some 

a e A and so a e A , . for some n i 0. Thus 
n+1 

A h [( Vx e a) [x e A^ U AQ ] ] B (= [(Vx e *a) [x e and 

b e *a b e *A U *A . Thus, b e *A. 
n 0 

Theorem 

No internal element can belong to any y e 

Proof 

Since AQ consists of individuals, A^ [(Vx e A^) (Vy £ AQ) [X 4 y]] 



for every n. Therefore, [(Vx e (Vy e *AQ) [x ^ y]] for 

every n. 

If X is internal, then x E *A X e *A for some n. Thus, 
n 

h 1= [(Vy c i yl^ proof is complete. 

However, if a is a non-empty set in A, then *a has internal 

elements in B and is therefore non-empty. Indeed, if a e A , 
n+l 

for some n > 0 and a is non-empty, A f= [(3x e A^U A^) x e aj. Thu 

B f= [(_dx e *A^ U *A^) X e *a] and *a has at least one internal 

element. 

Note that for any a e A, a may have external members. If 

a e A^ has external members, then a is not a genuine individual. 

We define a strict monomorphism which excludes these possibilities. 

Definition 

A monomorphism $ from A into B is strict if and only if all 

members of *A have internal elements only (if any at all). 

Therefore^ if .is strict, the members of an internal set of 

sets are internal sets themselves. Note that although all members of 

internal sets are internal, not all internal sets need be standard. 

Hence the fact that a is internal if and only if a is a member of 

a standard set characterizes internal, but does not characterize 

standard. 

Also, if $ is strict, elements of ’^AQ are genuine individuals. 

Indeed, any y e ^A^ cannot contain any internal elements and, since 

is strict, these are the only elements that y could contain. 

If A -> B is a strict monomorphism of A into B and if 

X is a sentence in L which is defined and true in A, then let 

us note that X is true in B with any quantifiers in X relativized 

to internal sets. 
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To illustrate, let A B be a strict monomorphism of A into B. 

Let X be the sentence (VY C A ^ U A )(VZ e A U A )(3W e A ,,) 
n+1 0 0 n+1 

(VX e A^UAQ)[X e W^x e YOZ]. 

X states that for every two sets in A, there is a set which is their 

intersection. The sentence X is true in A for each n. Consider the 

^-transform of X. *X = (VY e *A^)(Vz e *A^^^ U *A^) (3w e 

(\/x e *k U *A ) [x E W^x e Y H Z] 
n o 

$ is a monomorphism implies that X is true in B for each n and since 

W e ’^A ,, implies that W e *A, W is internal. We have that W and 
n+1 

Y H Z have the exact same elements in *A U *A„. It remains to prove 
n o ^ 

tliat all elements of W and Y H Z are in *A U*A_. 
n 0 

The following sentence is true in A for each m: 

(Vu e A - )(Vv e A ) [v G u=^ v G A U A ]. Hence, 
n+1 m no 

(Vu G *A ,,)(Vv G *A ) [v e u V G *A U*A^] is true in B for each 
n+1 m n 0 

m. Now, if V G u G *A then u is internal since *k is standard 
n+1 n+1 

and, by the definition of a strict monomorphism, v is also internal. 

Hence, v e *A for some m and, by the above, v e u v G *A U »A . 
’ m ’ n o 

Therefore, aH elements of W and Y D Z are in *A U *A^. Each of 
• no 

Y and Z is a member of a standard set *A ,, LJ *A^ ~ * (A . U A^) and 
n+1 0 n+1 0 

therefore internal. Therefore, we have that for every two internal sets 

in B, there is an internal set in B which is their intersection. 

Theorem 

Every monomorphism A B can be transformed into a strict one. 

Proof 
JK - 

For any y e *A, we want y to have internal elements only (if 
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* y e *A ^ y e *A for some n > 0. Suppose that ye *A . . n w 

We replace y by an individual (possibly outside B) so that distinct 

elements of *A^ are replaced by distinct individuals. We assume that 

A and B are in some "universe" which has "enough" such individuals. 

Tlierefore, y has no elements at all. Any y e ^AQ cannot contain any 

internal elements, so we would not be changing any internal elements 

which are not in 

If ye *A^ for n a 1, we replace y by y O ’^A. This 

removes any external elements from y. We carry out this process in 

steps for n = 1, 2,^ ... . 

Therefore, for any element y e *A, y has internal elements 

only (if any) and is a strict monomorphism. It can be argued, by 

the usual inductive process on the length of a, that if a is a 

sentence, and <I> is a non-strict monomorphism replaced by a strict 

monomorphism according to the above scheme, we still have 

A4= a ^ B h *a. The proof formalizes the intuitive truth that since 

Ci makes no assertion about external entities, their existence is 

irrelevant to the truth of *a. 

Up to now, our results have been based on the definition of a 

monomorphism of one superstructure into another superstructure. Now, 

we will prove the existence of monomorphisms by constructing one. 

Given a superstructure A we will construct a monomorphism of A 

into another superstructure B. This monomorphism will be developed 

from an ultrapower of A. 
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Recall the following definitions. 

A filter F on a non-empty set J is a non-empty family of subsets 

of J satisfying’ 

(i) |(> i F. 

(ii) If A e F and A ^ B - J, then B e F. 

(iii) If A, B e F, then A ^ B e F. 

^ ultrafilter on a set J is a filter F on J with the 

additional property 

VA S J, A e F ^ J - A i F. 

Applying a theorem proved in Chapter II, we can extend a filter 

F on J to an ultrafilter U. 

Let J be a non-empty set and U an ultrafilter on J. Let 

A be a superstructure on a set of individuals A = A^. Let M be 

the set of all maps of the form f: J D, D e A. Binary relations 

e and = are defined on M as follows: 

Vf, g e M, f eg if and only if {i e J | f(i) e g(i)} e U 

and f = g if and only if {i e J | f(i) = g(i)} e U. 

M is called the U-ultrapower of A (over J). For each c e A, 

let c denote the constant function on J with value c. That is, 

cCi) = c Vi e J. Therefore, c e M. In particular, e M and 

A e M for n = 0, 1, .... 

Theorem 

For any f, g e M 

(i) If g e f e then g e g e A^. 

(ii) (Vf e M) (3n) f e A . 
n 
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Proof 

(i) f e A =4 {i e J I f (i) e A } e U and 
n+l ' n+1 

g e f {i e J I g(i) e f (i)} e U. 

{i E J 1 g(i) E A U A } ^ {i E J I g(i) E f(i)}n {i e J | f (i) E A , 
n u n+l 

Tlius {i E J I g(i) E A^ U A^} E U. Since ^ ~ for n > 1* 

either {i E J | g(i) ^ s U * or {i E J | g(i) e A^} E U. Therefore:, 

g s A^ or g E A^. . 

(ii) f E M =4 f: J D, D e A and D E A D E for some 

n 0. Thus, {i e J | f(i) E A U A } = J E U and since A H A. = <|) 
' n 0 n 0 

for n > 1, we have that either {i E J I f(i) E A } E U or 

{i E J I f (i) E AQ} E U. In either case, we: have f e A^ for some 

h > 0. 

Note that M has elements A for each n and has the relation 
n 

E while *A has elements *A for each n and has the relation t. 
n 

We modify the ultrapower M so that e is. replaced by E. Also the 

relation ^ is replaced by =. This modification is carried out in 

steps and requires the axiom of choice. 

Let *AQ be the reduced ultrapower of A^ over J. That is, 

fcr any functions f and g from J into A^, f = g if and only 

if {i E J I f(i) = g(i)} E U and *A^ is the set of equivalence 

classes under the equivalence relation =. 

Let BQ be a set of individuals resulting from replacing distinct 

equivalence classes of *A^ by distinct individuals. Let B be the 

superstructure on B^. 

We replaced the equivalance classes by individuals since we wanted 
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to obtain a superstructure and equivalence classes are not individuals 

according to the definition of an individual in this chapter.^ In other 

chapters, for example Chapter V, an individual is not necessarily 

de?fined as it is here. 

Suppose that f e M and f e A^. Therefore, E = {i e J | 

f(i) e AQ} e U. Let g: J A^ be a function from J into A^ 

sueh that g has the same respective values on E as f does. It 

Is possible to find such a function g. Let g be the equivalence class 

of *A^ to which g belongs. We choose f*, called the fiber of f, 

to be the individual in replacing g. Then, f* e B since 

f* e B . The same index set J and ultrafilter U are used in M to 
0 

define = and e and in *AQ to define the equivalence classes. 

Therefore, if f , f t A , then f = f <=> f ’ = f ’. If f e A 

has a particular individual value, say a, on a member of U, and if 

a is the equivalence class of containing the constant function 

from J into A^ with that particular valued then f* will be the 

individual in B^ replacing a. 

f If f e Aj^ and g e f, then g e A^ byid(i) of the preceding 

theorem. Therefore, g* has already been chtSseh. Choose 

f* ■= {g’ I g G f}. Then, f* G B since g G B for every g G f. 

Suppose that f * G B has been chosen for - f t A^^ for k * 0, ... , n 

If; f G A^^^, and g c f, then g e A^ or ; g e A^ by (i) of the 

preceding theorem. In either case, g* has already been chosen. 

Ghoise f* = {g* I g G f}. Again f* e B since g* e B for every 

g e f. 

For each f G M, f t A^ for some n =0, 1, ... by (ii) of the 

preceding theorem. Therefore, f* has been rhosen. Let 



M* = {f* I f e M}. The e of M has been replaced by e since 

g e f ^ g* e f*. Note also that the = of M has been replaced 

by =. If f £ A for some n and g = f, then g e A for 

the same n since {i £ J | g(i) £ A^} ^ {i £ J | g(i) = f(i)) 

f\ {i £ J I f(i) £ A }. If f, g £ M such that f = g and f, g £ A 
n 

then we have seen that f = g f' = g* . Suppose that f, g ^ 

for some n. 

f = g ^{i £ J I f(i) = g(i)} £ U 

^{ie J I (Vhe M) (h(i) e f(i) ^h(i) £ g(i))} e U 

44 (\/h £ M) [h £ f ^ h £ g] 

44 (Vh’ £ M’) [h* £ f* ^h* £ g^] 

44 f' = g’. 

Thus, for any f, g e M, f = g^f* “ g*. 

M* ^ B since for every f £ M, f’ e B. M' is called the 

modified U-ultrapower of A (over J). Even though the elements of 

M are mappings and not equivalence classes and the elements of B^ 

are individuals and not equivalence classes, this modification of M 

to M* actually involves mapping equivalence classes of functions 

which are individuals on a member of U into equivalence classes of 

functions which are individuals for every i e J, mapping equivalence 

classes of functions which are sets of individuals on a member of U 

into sets of equivalence classes of functions which are individuals 

for every i £ J and so on. 

B also contains for example, sets x^rhich have as elements both 



individuals replacing equivalence classes and sets of such indivi- 

duals . 

We define a map 4>: A B by <J>(a) = aV = *a for every a e A. 

a’ is the fiber of the constant function a G M. In particular, 

$(4)) = (f) and $(A^) = every n. 

One can npw prove, by induction on the complexity of sentences 

as will be done in the Monomorphism Theorem, the 

Ultrapower Theorem 

Let a = ct(x, , , x ) be a well-formed formula in L with 
1 ’ m 

XV, ••• ) X its only free variables and let f,** ••• > f * e M*. 1 m 1 m 

Then the sentence ’^aCf ’ ... , f *) holds in M* if and only if 
1 m 

{i e J I a(f-(i), ... , f (i)) holds in A} e U. a(f,(i), ... , f ( 
1 m 1 m 

is defined in A since for any i e J and any k = 1, ... , m, 

f^(i) e A. 

Our aim is to show that as defined is a monomorphism. In fact 

we have the 

Mcnomorphism Theorem 

The mapping 0: A B defined by $(a) = a* = *a for every 

a e A, is a strict monomorphism of A into B. Moreover, M* is 

exactly the set *A of all internal elements of B. 

Proof To prove that <I> is a monomorphism, we must prove that 

A 1= a B h for every well-formed sentence a. The proof is by 

Induction on the number of logical symbols 3» “7 »V in a. We 

consider only these three logical symbols since all of the other 



logical symbols /\ , ^ ,\/ can be expressed in terms of -7 ,V . 

Indeed, if X, Y and Z are well-formed formulae, then [X A Y] is 

equivalent to “7 [ ["7 X] V [~7Y]], [X Y] is equivalent to [ ["7 X] V 

[X^Y] is equivalent to [[X=^Y] A [Y X] ] , and [(Vy) Z(y)] is 

equivalent to [~7[(j]y) [~?Z(y)]]]. 

First, suppose that a does not contain any of 3, “/, V. 

Thus, a is an atomic sentence and a = [a e b] or a = [a = b] 

where a, b e A. We have that a e b a e b since 

{i e J I a(i) e b(i)} = J e U. Now, a e b a* e b' and since 

a'* = *a and b' = *b, we obtain a t b *a e *b. Similarly, 

a = b =^a = b =4a' = b* and we obtain a = b *a = *b. Therefore, 

if a is an atomic sentence, then Ah ot B f= *a. 

Suppose that ct(x^, ... , x^) and 3(yj^, ... , y^^) are well- 

formed formulae in L where x . ... , x are the only free variables 

in a and y , ... , y. ate the only free variables in 3. Suppose 
1 K. 

that for any a,, ...,a,b,, ... ,b, GA, AF=a(a,, ... ,a) J 1* 'ml k ' 1’ * m 

... 9*3.) and Ah3(b, ... ,b,)=^Bh *3 (^b , ... , *b 1 m -i iC 1 ‘ 

We must prove that A h “7 a(a   a ) B h * ["7 ot (a » ••. > a )] r' I ^9 ’ m I I- / J» ’ m 
A Ak 

and Ah [“(Sj. ••• , V 6(bj^, ... , bj^)] =»B1= *[“(3j a^) 

y 6(bj, .... bj^)]. For any a^, ... , a^, b^, ... , b^^ z A, 

*3.., ... , *a , *b, , ... , *b, z M’. Since U is an ultrafilter 
1 m l k 

and by the Ultrapower Theorem, we have B |= “7 [*ot(*a,, ... , *a ) ] 
^ ■ m ■ 

^'{i e J I a(a^(i), ... , a^(i)) holds in A} ^ U 

^ {i e J I ~7ot(a^(i), ... , 3^(±) holds in A} e U 
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1= *[-7a(a^, ... , ] • 

Similarly, we obtain 

B (= ^^[a(a , ... ,a ) V3(b , ... , b )] 
1 ml ic 

h ... . *a^) V ’'6(*bj, ... . 

We have, by the Induction Hypothesis, 

A \= ~1 a(a. , . .. , a ) B [= ~7 [*a("^a, , . . . , *a ) ]. That is, we 
1 m 1 m 

obtain a contradiction of the Induction Hypothesis with A |= ~7 ct(a,, .. , » a ) 
1 m 

=4 B *a(*a,, ... , *a ). Similarly, we have bv the Induction I 1 ’ . m 

Hypothesis, A h a(a . ... , a ) V B(b . ... , b, ) B ,^ *a(*a,, ... , *a ) 
I m 1 K 1 m 

V*3(*b^, ... , 

Therefore, At= “a (a , ... , a ) =^B[=* *[“7 a (a , ... , a )] and 

A h [a(a^, ... , a^) V 3(b^, ... , b^) ] B \= *[a(a^, ... , a^) 

V 3(bj, ... , ]. 

Now, suppose that S(x^, ... , x^, y) is a well-fomed formula 

with Xj, ... , x^, y its only free variables and suppose that for 

any a ^, ... , a^, b e A, 

A h B(a , ... , a , b) B [= *B(*a , ... , *a , *b) . 
1 m I m 

We need to show that for any a,, ... , a , C e A, 

A h (3y € C) 6(a^, ... , a^, y) =» B h (-^y e *C) *S(*a^, ... , *a^, y). 

Suppose that AF (3y e C) B(a,, ... , a , y). We can fix d e C 

st,?.ch that A h B(a, , ... , a , d). Therefore, by the Induction 1 m 

Hypothesis, B j= *3(*a^, ... , *a^, *d). Since *d e *C, 
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B h (3y e *C) ... t y). 

Every well-formed formula in L is constructed from atomic 

formulae using connectives and quantifiers. Thus, the above steps 

show that if a is a well-fomed sentence in L, then A [= a =4 B f= *a. 

Therefore, 4> is a monomprphism. 

The proof of M* = *A = "^A is as follows: 
n-0 ^ 

If f^ e M*, then f * is thes fiber of a map f e M. f e M f e A^ 

for some n f * e (A ) * = *A =4 f * e *A. 
n n 

Now, if X e *A, then x e *A for some n. Thus, x e (A )* 
n n 

aiid X = f’ for some f’ e M*. Therefore, x e M* and the proof is 

complete. 
A 

To prove that $ is strict, we need to prove that if y e *A and 

X e y, then x e *A. Now, if f* is any element of = *A and 

X e f*, then x = g’ for some g' E M’ by construction since 

f'* = I g ^ Therefore x e *A and is strict. 

Consider the following example of the construction of a moriomorphism: 

Let i? = i?Q be the set of real numbers and let R be the super- 

structure on i?„. Let N be the set of natural numbers and let F 
0 

be the Frechet filter on the index set N. We can extend F to an 

ultrafilter U on N. Let be a set of distinct individuals replacing 

the equivalence classes of *R^, the reduced U-ultrapower of over 

N. We obtain the strict monomorphism i? B as in the general case. 

Let us examine this monomorphism. 

i? e i? and <t>(R) = R^ = = {f* | f e R), 

Let r e i?. Then r e M and r* = *r e B is the individual replacing the 
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equivalence class containing the constant function on N with value r. 

Certainly for r e M, re/?, and so *r e We identify *r with r 

and we can embed R into *R, 

In the same way, contains a copy of N. This copy of N is 

a proper subset of *N. Indeed, consider the function f e M defined 

by f(n) = n, Vn e N. Recall that this function occurred in 
! 

Chapter ]I in the example of a non-standard model of analysis. Certainly 

f e N and therefore f* e ^N. But f* is not in the copy of N. 

Indeed, suppose f* = k* for some k E N. k e M is the constant 

function k(n) = k for all n e N. f* = k^ f = k {n e N ] f(n) = k} e U, 

This means that f takes the value k on an infinite subset of the 

index set N and this is a contradiction of the definition of the 

function f. Therefore, the copy of N in *N is a proper subset 

of *N. 

Definition 

A binary relation b is said to be concurrent on a set D S 

domain of b if and only if for any finite number of elements 

, . .. , a^ of D, there exists some y in the range of b such 

that (a^^, y) satisfies b for k = 1, ... , m. 

For example, the relation < on the natural numbers is a con- 

current binary relation since given any finite set ••• » 

of natural numbers we can find a natural number which is larger than 

each of a_, ... , a . 

Definition 

A mbnomorphism : A -► B is said to be enlarging (and *A is 
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C9.11ed an enlargement of A) if and only if for each concurrent 

binary relation b e A, there is some y e *A such that (*a, y) 

satisfies b for all a in the domain of b simultaneously. The 

enlargement is called strict if 4> is strict. 

In the construction of a monomorphism one can make special choices 

of the index set and the ultrafilter to make $ enlarging. This is 

involved in the proof of the 

Enlargement Theorem 

For every Superstructure A, there is a superstructure B and a 

monomorphism A B which is strict and enlarging. 

Now, suppose that A^ is an infinite set of individuals. Then, 

by the axiom of choice, A^ contains a countable subset A^ which 

can be identified with the set of natural numbers N. Thus A 

contains a binary relation < on the elements of A^ corresponding 

to the binary relation < on the natural numbers. This relation 

extends, under a monomorphism , to a total ordering *< of 

We have that A^^ ^ A^^ and < ^ < so that < coincides with < 

when restricted to A^. Since < is a concurrent binary relation, 

if <I> is enlarging, there exists some y e such that *a < y 

for every a e A^. Such an element y is called infinite. 

*A^ “ Aj^ = {n G *A^ I n is infinite}. 

Even if is not enlarging we can have infinite elements. In 

the preceding example, where 7?^ is the set of real numbers, we have 

that the copy of N in is a proper subset of *N so that 
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*N - N + 4>. 

Definition 

Given a monomorphism A -> B where contains a copy A^ 

of the set of natural numbers N, we call *k a non-standard model 

of A if and only if *A^ - A^ =j= 6. (Actually *A is a model of 

the set of sentences of the language which are defined and true in A), 

As we have seen above, if A is infinite and «I>: A B is 

enlarging, then *A is a non-standard model of A, since *A^ - A^ =f 

Theorem 

Let : i? -> B be the strict monomorphism of our previous 

esrample. Then, there is no least infinite natural number. That is, 

- N has no least member. 

Proof 

Suppose that a is any element of *N - N. Certainly a =|= *0 

since *0 = <J>(0) for 0 e N. It is true in the set of ordinary 

natural numbers that each n ^ 0 is the successor of another natural 

number. Therefore, it is also true in *N and we have a = b *+ *1 

for an element b of *N. The binary relation *+ is the extension 

of the relation 4- of N. Now, b is also an element of *N - N 

since, if b is in the copy of N, then so is a, but a e *N - N. 

Therefore, b e **N - N and b *< a. This proves that there is no 

least infinite natural number. 

Now, suppose that in our first order language described in the 

beginning of this chapter, we had not required that all quantification 

be of the form (jTx e C) or (t/x e C) for C e A. 
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Without this restriction we could write 

a = [(Vy) C(\/w) [w e y w e N] ] A [ (3 v) [v e y] ] [ (3 x) [x e y A [(Vz) 

2 e y=>x < z]]]] 

which states that every non-empty subset of N has a least member. 

We would obtain, i? h a B |= *a. Therefore, 

B h [(Vy) [(Vw) [w e y w €•• *N]] A [(3v) [v e y]] [(3x) [x e y 

A [(Vz) z e y X i z]]]]. 

Now, *N - N is a subset of *N and *N — N =j=. Therefore, 

we would conclude that *N — N has a least member. This contradicts 

the preceding theorem. 

The restriction on quantification does not lead us to a contradic- 

tion. Recall the relativization of quantifiers to internal sets. With 

the restriction on quantification, we have the sentence 

X * [(Vy e i?j) [(Vw e J?) [w e y w e N]] A [(3v e i?) [v £ y]] 

[ (3X e N) [x e y A [ (Vz e N) z e y x < z] ] ] ]. 

We determined that the 4> transform of X would read "every internal 

non-empty subset of the set *N has a least member". Since *N - N 

has no least member, we must conclude that *N - N is not internal. That 

is, *N - N is external in and we have no contradiction at all. 

Note that the above example of the relativization of quantifiers to 

internal sets is, in fact, true for all monomorphisms and not just for 

Strict monomorphisms. Since is standard, y e implies that 

y is internal. Therefore, "Vy e reads "for all Internal sets 

in The least member x is internal since it is an element of 

the standard set *N. 
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CHAPTER V 

EXTRA-STANDARD MODEL OF ANALYSIS 
HIGHER ORDER STRUCTURE AND LANGUAGE 

In what we have done up to this point, "analysis" has meant the set 

of all sentences which are true of the set of ordinary real numbers, the 

usiicil model of analysis. We will return to this pattern later in this 

chapter. This set K of sentences is vast beyond comprehension, and 

there is no means of constructing more than a small part of K. Analysis 

usually means the facts that can be deduced from a very restricted subset 

of K called "axioms". For such restricted sets of axioms, the incomplete 

ness phenomena of Godel are present. We shall prove below that we can 

obtain models of the set of axioms which are not elementary extensions of 

R and hence certainly not reduced ultrapowers of R. 

Since the term "non-standard model" has been precisely defined, we 

introduce a temporary designation to describe the kind of model we 

want to discuss, an extra-standard model. An extra-standard model of 

analysis ; is a model, say M, of some set of axioms for analysis such 

that M contains more individuals than there are ordinary real numbers. 

We proceed to outline the proof of the following theorem. 

Theorem 

There are extra-standard models of analysis which are not reduced 

ultrapowers of the set of real numbers. 

Proof 

The proof is divided into two parts. 

(1) There are models, N’, of the set of natural numbers 0, 1, 2, .. 

which are not reduced ultrapowers of the usual model, N. 

(ii) Using N*, as in (i), we can construct an extra-standard 

model, i?*, of analysis. We then show that R' cannot be a . 



reduced ultrapower of the set of real numbers R, 

Proof of (i) 

If M is a model of Peano Arithmetic, and M is a reduced ultra- 

power of the model M, then M is an elementary extension of M 

(by a theorem stated in Chapter II). 

Gbdels Completeness Theorem states that a sentence A is provable 

from the set of axioms F if and only if A is true in each model 

of r. 

Gbdels Second Incompleteness Theorem states that if Peano 

Arithmetic is consistent then the sentence CON is not provable in 

Peano Arithmetic. CON is the sentence ~7 J]x Prf(x, 0 = 1) where 

Prf(x, 0=1) is a formula of Peano Arithmetic which expresses the 

statement that "x is the Gbdel number of a proof of 0 = 1". 

Therefore, there must be a model M of Peano Arithmetic in which CON 

is false. CON is true in the set of natural numbers N which is 

the usual model of Peano Arithmetic. CON is true in any model 

isomorphic to N. Therefore, M cannot be an elementary extension 

of any model isomorphic to N. Hence, M cannot be a reduced ultra- 

power of any model isomorphic to N. (There will be an infinite 

number in M which acts like the number of a proof of 0=1). 

Therefore, there are models, N', of the set of natural numbers 

which are not reduced ultrapowers of N. 

Proof of (ii) 

Just as we construct the set of real numbers R from the set of 



natural numbers N, we can construct R' from the model IV of 

(i). That is, we start with the elements of N' and construct the 

set I* of "integers", the elements of N’ along with their "negatives' 

Next, we construct the set Q* of "rationals", the set of ordered 

pairs in which the first position is filled by elements of I* and 

the second position is filled by "non-zero" elements of I*. Next, we 

consider the set of all Cauchy sequences of elements of Q* and 

define an equivalence relation on the set of sequences. Two sequences 

are equivalent if they converge to the same limit. We denote the set 

of equivalence classes by /?* . Note that i?’ contains a copy of 

the set of real numbers R, Indeed, N* contains a copy of the set 

of natural numbers N, and in the construction of R\ we obtain a 

copy of the set of real numbers R from this copy of N. 

Now, fi" is not a reduced ultrapower of R, Indeed, if this 

were so, then i?' would be an elementary extension of R, but the 

statement 

[(3x) [x E i^ APrf(x, 0 = 1)]] 

is true in R* where i^^ is interpreted by N', but not true in i?, 

where i^ is interpreted by N. Therefore, R’ cannot be an 

elementary extension of R and hence i?' cannot be a reduced ultra- 

power of R, i?' is an extra-standard model of analysis. 

We now return to a discussion of theories in which "analysis" means 

the set of all sentences which are true of the set of ordinary real 

numbers, the usual model of analysis. 
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Suppose that we want to be able to reference more than one "type" 

of entity, for example, real numbers and sets of real numbers. We 

can proceed in two ways. 

The first way, derived from the standard method used to develop 

mathematics within set theory, is to form the superstructure R on 

the set of real numbers as in Chapter IV. The superstructure is a 

"first order" structure since it formally refers to only one "type" 

of entity, a set. We adopt a first order language for E and use 

its variables uniformly to reference all "types" of sets which we 

intuitively think of as being different. For example, R contains 

R = R^i the set of real numbers and R^, the set of all sets of 

rcial numbers, but, set-theoretically, each is just a "set" and, hence, 

of the same formal "type". 

Instead of this, we could consider a structure in which these 

intuitively different "types" of entities are formally distinguished. 

Such a structure is called a higher order structure. The class T of 

types is defined inductively as follows: 

(i) 0 is a type (natural number zero) 

(ii) If n is a positive integer and T^, ... , are types, then 

(T , ., T^) is a type, 
i n 

Individuals are of lowest type (ie. 0) and sets of individuals 

and relations between individuals are of higher type than individuals. 

Consider the following example of a higher order structure to be 
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denoted by M. M contains all real numbers. Each real number is 

assigned type 0. M contains all sets of real numbers and each set 

of real numbers has type (0). For example, the set of natural numbers 

N and the set of real numbers R each has type (0). M contains 

the relation of logical identity between real numbers. This relation 

is assigned type (0, 0) since the relation is a set of ordered 

pairs in which real numbers (entities of type 0) fill both the first 

and second places. M contains the relation of membership of real 

numbers in a set of real numbers and this relation has type (0, (0)). 

M also contains the relations of addition and multiplication of real 

numbers and these relations both have type (0, 0, 0), since they are 

each a set of ordered triples of real numbers. This example indicates 

the method for forming types. 

In order to discuss a higher order structure we need a higher 

order language. A higher order language consists of constants to 

denote each entity of each type in the structure, and connectives, 

quantifiers and brackets just as in a first order language. Regarding 

variables, we could have a distinct set consisting of an infinite 

number of variables for each type x, so that for any variable in 

the language we know the type of the entity that it represents. For 

each type x we would have a set of relation S3onbols of the form 

> ••• i ) where the numbers of empty places and the types of 

entities that fill the empty places depend on x. For example, let 

the addition and multiplication of real numbers be denoted by 

S, > » ) and P, N( , > ) respectively. We write (OyOfOj Co»o»o) 
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®{0, 0, 0)^^a’ i, , i ) and P 
b c c (o, 0, o) a 

i, , i ) for a + b = c 
b e 

and a • b = c respectively where each of a, b and c is a real 

number (entity of type 0) denoted by i , i, and i in the language 
,' ^ D O 

respectively. 

Customarily in a formal language we denote relation symbols in 

the form R( , ) where R(i ,, i, ) might denote, for example, a < b. 
^ D 

There is no reason why the same could not be denoted by a S3rmbol such 

as ( , ... , ) with only one symbol , ... , ) for each type 

T. The number of empty places and the entities that fill the places 

depend on x. The first argument position of <l>^ (,..., ) is 

filled by a s3nnbol which denotes the particular relation of type x 

being described. The reasons for preferring this will appear. In 

this case, we need only one set of variables since the position which 

a variable fills in a relation symbol determines the type of entity 

which it represents. 

To illustrate an application of this relation symbol, suppose that 

the relation of membership of a real number in a set of real numbers 

is denoted in the language by the symbol e. Then, e has type 

(0, (0)). The fact that the set of natural numbers, denoted in the 

language by the constant i^, is non-empty, is written 

Note that the position which a symbol fills indicates the type of 

entity which it represents. Thus, e has type (0, (0)), x has 
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type 0 and has type (0). 

If the symbols S and P denote addition and multiplication 

of real numbers respectively, and if i^, i^, i^ denote a, b, and c 

respectively, then a + b = c is written v(S, i , i^, i ) 
^ ^ * (o, 0, o) a’ b’ c' 

and a • b = c is written . ,, (E, i , i. * i ). 
(O, 0, O) b’ c' 

Note that there is now no reason to consider that the' symbols 

e, P, S, which denote these relations are of a different kind 

than the other constants i.., i , i,_, i used in the formulae. 
N a * b c 

We must make sure that whenever we write a formula, each vari- 

able or constant in the formula always fills positions of the same 

type. Such formulae are called "stratified" and, by restricting 

attention to stratified formulae we observe the spirit of a higher 

order type theory by not allowing such formulae as 

, NN(G» X, x) which expresses x e x, which lead to paradoxes 
(o, (o)) 

of set theory. 

We assume that a higher order language for a higher order 

structure contains "enough" constants to be put into a one-to-one 

correspondence with the entities of the structure of each type. 

For example, if M is the higher order structure described early in this 

chapter with the set of real numbers as the set of individuals, and if 

L is a higher order language for M, then L contains a constant i^ to denote 



each real number r, a constant to denote each set of real 

numbers B, the symbol = to denote the relation of logical identity 

of real numbers, the symbol e to denote the membership relation of 

a real number in a set of real numbers and symbols S and P to 

denote addition and multiplication of real numbers respectively. 

These are the constants denoting all of the entities of M. M 

certainly does not contain all eintities of all types that can enjoy a 

set-theoretic existence based on the set of real numbers. If M did 

contain all possible set-theoretic entities of all types then M 

would be called a full structure. 

Let K be the set of sentences formulated in the language L 

which are defined in M and let K* be the set of these sentences 

which are true in M. A higher order structure is called a 

higher order model of K' if all the sentences of K’ are true in 

M. It can be shown, as for first order models, that a sentence 

which is defined iri M is true in M if and only if it is true in 

*M. 

M can be embedded in *M. Indeed, if a is an entity of M of 

type Tj then this fact will be included in sentences of K' 

containing i^. The sentences are true in so there will be an 

entity of type T in *M, say *a, which corresponds to a. We 

identify a and *a for every entity a of M and this provides 

us with the embedding. The mapping a. -^ * a is one-to-one since 

different entities of M are denoted by different constants in L, 



which in turn, denote different entities of ^M, 

Even if M is a full structure, *M need not be full. The 

entities which are present in are called internal entities. If 

M is not full, then there are entities which do not exist in M. 

These entities are called external. If an entity of *M corresponds 

to an entity of M under the embedding of M into *M, then this 

entity of is called standard. 

Of course, any higher order structure could be thought of as a sub 

structure (in an appropriately defined sense) of the full structure 

over its set of individuals. One can consider that our structures 

simply ignore some the the entities of the full structure. 

If the copy in of the set of individuals of M is a proper 

subset of the set of individuals of *M, then is a proper 

•JL 

extension of M and M is called a higher order non-standard model 

of M. (Actually is a model of , the set of sentences which 

are defined and true in M). 

The Finiteness Principle, which is stated in Chapter III for first 

order languages and structures is also true for higher order languages 

and structures. Therefore, if K is a set of sentences in a higher 

order language such that every finite subset of K has a higher 

order model, then K has a higher order model. The proof of this 

involves the following: 

We add to our language L a one-place relation symbol ( )» 

for each type x, which allow us to state the type of an entity. Our 
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new language is denoted by L*. For example, if r is a real number 

(entity of type 0) we write [0Q(i^)]. We also transform each 

sentence of L to a sentence of LV. For example, X = [(3x) 

*^(0, (0)) becomes = [(3x) [Q^Cx) A ^ ^ ’ 

For a sentence X of L, the new sentence X^ of L* is called 

the type transform of X. 

We associate a first order structure with M. The individuals, 

of are the individuals and relations of M. The set of relations 

of consists of relations to interpret the relation symbols 

0^( ) and ( , ... , ). Then, we prove that a sentence X in 

L is defined and true in M if and only if it*s type transform X^ 

is defined and true in M . At this point, we apply the Finiteness 

Principle for first order languages and structures to prove the same 

principle for higher order languages and structures. 

We can see from this outline of the proof that the proof involves 

putting all entities of all types in the higher order structure M 

ic‘to one ’’type” of entity, the individuals of the first order structure 

. This one "type" parallels the superstructure of Chapter IV. 

Now, each individual of the first order structure is denoted in the 

language L* by a constant, and each relation of M. is denoted by 

a relation symbol in L\ 

Recall the following definitions. 

Definition 

A binary relation b of a structure M is called concurrent 
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if for every finite set {a^, ... , a^} of elements in the domain of 

b, there exists an element y in the range of b such that b(a^, y) 

holds in M for i= 1, ... , n. 

Definition 

A model of a structure M is called an enlargement of M if, 

for every concurrent binary relation b of M, there exists an 

element y in such that *b(*x, y) holds in for every x 

in the domain of b where *b and *x in correspond to b and 

X in M respectively. We say that bounds each concurrent 

relation b arid that b has y as a bound. 

As we proved in Chapter IV, if the set of individuals of a 

structure M is infinite, then any enlargement of M is a non- 

standard model of M. Indeed, the binary relation =f is concurrent 

if the set of individuals is infinite, and since M is an enlargement 

of M, bounds this binary relation. We obtain an individual y 

of such that y =|= *a for every individual a of M. Therefore, 

is a proper extension of M and is a non-standard model of 

M. 

Theorem 

Each structure M has an enlargement. 

The proof of this theorem involves considering more than one con- 

current binary relation simultaneously as we noted in Chapter III. 

Let K be the set of all sentences which are true in M and let H 

be the set of sentences consisting of one sentence for each concurrent 



binary relation b, stating that b has a bound. We prove that 

K U H has a model, say *M. Since is a model of K and 

bounds each concurrent binary relation of M simultaneously, is 

an enlargement of M. 

If M is a full higher order structure with set A of individuals, 

then M resembles the Superstructure A on A since each of M 

and A contains all the set-theoretic entities that exist based on 

the set of individuals A. There is one difference. The theory of 

types does not allow a set containing different types of elements. 

A set has type (T) for some type x, so that each element of 

the set has type x. This excludes, for example, a set containing as 

elements both individuals and sets of individuals. Such a set exists 

in a superstructure since, for each n ^ 0, is the set of all 

subsets of A U A . 
0 n 

Shimrat in [7] developed ultrapowers and mappings similar to 

those of Zakon in [8]. The main difference in these two approaches 

is that Zakon defined monomorphisms and then constructed ultrapowers 

to prove the existence of monomorphisms, while Shimrat constructed 

ultrapowers and then used them to define monomorphism. 
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