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ABSTRACT

This thesis is a study of several theories of Non-standard Analysis.
Parfiﬁular-attention is paid to the theories presented by A. Robinson
ard E. Zakon.

Chapter.I.contains'background information from Mathematical Logic
ard leads to the definition of a Non-standard Model of Analysis. .

In Chapter II; we develop the direct product, the ultraproduct and
thé'reduced ultraproduét of a set of similar structures and "construct"
a'non-standardfmodel of‘analysis in the form of a reduced ultrapower of
tlie set of real nuﬁbers.' This model contains genuine "infinite" and
"infiﬁitesimal" elements’whi;h behave like those which we informally
think of in classical analysis.

Chapter III'contains fhe theory of Professor Abraham Robinson for
first order structures and languages. ' The .Finiteness Principle is
appliedbin_thevprodf.bf,the existence of Non-standard Models of Analysis.

Chapter IV contains the theory of Non-standard Analysis'presented
by Professor Elias Zékon. -This is ﬁhe main chapter in the paper. His
sat-theoretical approaéh is based on the notion of a superstructure whick
contains all of the set-theoretical "objects" which'exist on a set of
iﬁdividﬁals. A monomorphism is a one-to-one mapping from one superstrucﬂ
ture ihfo another_SuperstrﬁCture which preserves the validity of sentences.
'Thé existence of-monbmorphisms is proven using ultrapowers. A Non-stand-
ard Model;of Analysis is defined in terms of a monomorphism. This defini-

tion parallels the one given in Chapter I.



In Chapter V we define and prove the existence of an Extra-standard
Mcdel of Analysis, a concept which is similar to that of a Non-standard
Mcdel of Analysis. We also present Professor Robinson's theory for
higher ofder structures and l;nguages. We compare the theories presented

by Professors Robinson and Zakon along with that of Professor M. Shimrat.
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CHAPTER I

FIRST ORDER STRUCTURE AND LANGUAGE
' . MODEL '

This chapter contains definitions which lead to the definition of
a non-standard model.

Definition

A first order structurebéonsists of a set,éf individuals and, for
each n 2 1, a set Pn of n—ary’reiations such that if Rf is an
‘n-ary relation and -(ai,»,.. ’ an)}is an n-tuple of individgals,‘then
either R'(al, ool 5 an) holds (is true) in the structure or does
not hold in the structure.

.In order to discuss a.struétufe, we‘need a language.
Definition

A first order language consists of.

A. Atomic Symbols. .

(i) Individual objéct'symﬁéls or constan;s usﬁail&‘déndted by the
| iettef i »with subscripts which aréilower or uppér case
:lgtters éflthe alphabet.{ e.g. 'ia, iN.‘ -Theset>bfco§staﬁts
is afbitrary, but.fixéd.:

(ii)' Individﬁél-variables, denoted by 1owericase letters froﬁ the
‘énd-of‘the alphabet. e.g. u, v, w, x. The set of vériablés"
is supposed to be infinité, but cdﬁntablg;

(iii)v Rglation syﬁbols»of order n for each n 2 1, Where' n is

-the number of empty places in the symbol. e.g. R( ) and



(iv)

(v)

(vi)

S, , ) are of order 1 and 3 respectively. Each set

of nFary relatién symbols is of arbitrary, but specified
cardinal. A first order lénguagé always contains the binary
relation symbol, = ;(équality);

The connectives /\,(and), \/ (or), 7 (not), = (implies),
e (if and only if).:

The universal quantifier 'Y and the existential qﬁéntifier

.

The brackets [ and ].

Functional symbols are not considered tc be in the language.

Functions are represented in a structure by relations. For example,

a function f(x) = y will be represented by a relation S(x, y)

dofined by S(a, b) if and only if £(a) = b.

B.

 Atomic Formulae are obtained by filling the empty places in

relation symbdls with individualrconstaﬁts or variables. e.g. R(x),

’S(ié’uib"y)'

Well-formed Formulae are defined inductively as follows:

If X' is an atomic formula, then fX] is a well-formed

‘formula.

If X is a well-formed formula, then [7X] is a well-

formed formula.

If X and Y are well-formed formulae, then [XV Y], [X A YI.
[X =Y] and ([X © Y] are well-formed formulae.

If X 1is a well-formed formula, thken [(\fy)X] and [(:}y)x]



- are well—forméd formulae, provided X does not contain either
V) or (). |

Note that the symbols X and Y are not in the langﬁége. Rather,
they each represent a collection of symbols which is in the language.
Definition

‘An occurrence of a variable is called free if it is not in the

scope ofrany quanﬁifier over the same variable. Otherwise; it is a
Egggé_dccﬁrrence of the variable.

In [(:Bx)zj,H Z 1is the scope of the quantifier.
Definition 7 |

A well-formed fofmula which does not contain any ffee occhrrenceé
of variables is called a seﬂtence. Otherwise, the formula is called
a predicate.

For example, [(:]x) [7[x = ia]]] is a sentence and
[(\/X)‘[ﬁ (x =i 1=[x=y]]l isa predicate.

" Instead of éonsidering a language and then studying structurés.

for it, we will assume that, for a structure M, we have a language
1L which is'"iarge'enough" to contain a distinct name for each éleméht»of M.
That is, we have a one%tb—oné mapping from the'struéﬁure to the lang-
vage so that each individual a in M has associated with it an
individual constant ia in L and each n-ary relation R' in M
“has associgted with it an n-ary relation symbol 'R in L. We say
that i _dénotes a and R dendtes R'.
Definition

Let X be a sentence in>the language L. X 1is said to be defined



in M if each constant and n-ary relation symbol occurring in X
 dénotes aniindiVidual‘or:an ﬁ—ary relation respectively in M.
A sénteqce in L which is Aef£ned”in M may or may not»be true
o in M according to the réllowing rules:
(1) Let Y be an atomiC‘formulé. .X = [Y] is a sentence'where
Y is .of the form R(ial, vee s ian). R is an n-ary relatiqn symboi
and ia~’ cee s J’.a arerall constants.

Sinie_ X is dgfined‘in M, R denotes an n-ary relation R' in
M and -iai, cen é ian denote individuals ajs cee s an‘.in‘ M
respectively. X holds in M if and Oniy if vR'(ai, o Fo an)
holds in M. .Either R'(al, cee s an) holds in M or does not
hold in M. If X does not hold in M, we say that X is false
in M.
(ii). Let X = [-7Y] be defiged in M. Then Y is also defined
in M and X holds in M if and only if Y does not hold in M.
(ii1) If X = [YV z] is defined in M, then X holds in M if
and only if at least one of' Y and Z holds in M;
(iv) If X =[YA 2] is defined in M, 4th_env. X holds in M if
and only if both Y and Z hold 1n M.
(v) If X = tY =2Z], then X ﬁolds in M, if and only if z
holds in M or, whenever 2Z does not hold in M, then also Y
does>not.hold in M.
(vi) If X = tY’é?Z], then X holds in M if and only if both

Y-~and Z hold in M or both Y and Z <do not hold in M.

(vii) If X = [(:gy) Z(y)] 1is defined in M, then X holds in M-

\



vif and only if theré eXists:an individual censtant ia_ASuch that‘
Zéié)  hoids'in  M. - ihe cénstant .ia denotes-;n indi&idﬁél a of
M; anﬁ Z(i;)_ is the'séntence obtained by repl#cing_éath occurrence
of y ‘iﬁ: Z 75§  i;,_ If y .does not occur iner, theh X holds
in M if and only if Z holds in M.
(viii) If X = ‘[(Vy) Z(y)] is defined in M, then X holds in M
if and only if 2(i,) holds in M for every constant i  in L
whichvdenotes'an'iﬁdividuél a of M.‘;
Definition

ASuppoée X is a'septquevin.;h*ﬁwhich is defiped in the sttucture
M. If X  i$:true‘in M, then M . is a model of X. . Similarly,
if K 1is é.set of sentenbegygﬁd‘ifbeéch senience of K is true in a
s;fuéturé' M, then M is.a model of K.
Qgﬁinition

\Suppose that M aﬁd AM' are structures. M' is called an

“elementary extension of M if for every sentence X defined in M,

X 1is also defined in M' and X is true in M if and only if X is
true ih\ M'. |

| Let R beuthé”set of real numbers. Consider the first order struc-
Eute consisting of all real numberé and all'nfary relations of real
numbers. By éonvention; we aléo use,the'letfgr R rto denote this struc-
tuxé;_ Suppose that L Ais a fifst order. language containing a name fér “
eanhAfeai'number and a name for each n-ary relation of real numbers.
Lef ‘R be.the sef of sentences in L which are defined in R and let
K'  be the §et of séﬂtehces of K which are'true‘in R.. Then certainly
R 1515 model of K'.

Any model M of KXK' is an elementary extension of R. Indeed,

suppbse that X is a sentence which is defined in RA. If X is



trge»iﬁ  R, "andbif_ M  is a model of K', then.byvthe dgfinition of
model, X is_true in M. Noﬁ, suppdse‘that :X “isltrue in M.
Either X is true in R or X is false in R. If X is false in
R, then the sentence [7X] 4is true in R and is therefore in K'.
Hence, the sentence [ X]rris‘true in "M, but this is a contrédic—
tion. Theréforé,'x is true‘in R.
Definition |
Suppose that M and M' are structures such that M; is an
élementary extension of AM.' The set K of sentences which are
defined in a first_order.languageAandrare true in M will contain a distinct
name to denote-each individqél'of.'M. Since M' 1is a model of K,
M' will éontéin an individual to correspond to each individual of M.

If this copy in M' of the set of individuals of M is a proper sub-

set of the set of individuals of M', then M' is a proper'elementagy
“extension of M.
Definition

A'proper‘eleméntary extension of a structure M is called a non-

standard model ‘of - M. In particular, a prqper elementary extension of

the structure consisting of the set of all real numbers and the sets

_df'n-ary-relations of'realrﬁumbers is called a non—standard‘model of
anaizsis.
Definition

va"all_of the propoSitional‘connectives, /A, \V; T, =, S in a

well—formed_formula‘are in the scope of each of the quantifiers;'then

the formuila is in prenex normal form.

In general, a well-formed formula is not in prenex normal form.



.Thatiis, all of_the quantifiers do mot occur at the beginning of the
formula. But, fdr éVeryVSentehce':X,, there exists an equivaleﬁﬁ
sentence X' which is in'prenex ndrmal‘form where two senﬁences X
and X‘ are equivalent if they contain the same individual constants
and felatibn symbols ahd if [XeXx')] holds in_any structuré in which
X is défined. The procedure for obtaining the prenex normal form of
a well—formed éentence involves "factoring' the quantifiers "out of"
the sentence using such well-ﬁnown equivalences as [~ [(:HY) Z]] to
(Vy) 9 i]], = [.(Vy) z}1 to [(dw) 7211, [1(Vx) 2] = [x]]

to f[(:gx) [z =X]], etc. The steﬁé of this proceSsrare often called
érenex "reductionS". in carrying them out, one has to observe simple
cautions to avoid '"collisions' of boundvvariébies. For example, to
"factpr out" the inner \/x .quantifier'in {(E/x) [[(\/x) Z] = [X(x)11]).
change first to the equivalent [(x/y) [[(1fx) z] = [X(y¥)]11], and

then factor to get [(Yy) [(3x) [[z()] = [X(y)111].



 CHAPTER II

A NON-STANDARD MODEL OF ANALYSIS

Suppose {MA}AEI

is a set of similar structures. That is, the
same relations and functions are defined in each structure. The index
set I is non*émpty and may be finite or infinite.

Definition

The direct product of the:struc:hres M,, denoted B My, is
‘ ‘ Ael

the set of all functions f with domain I such that BACY R Mk

‘for each \ ¢ I.
~If a 1is an individual contained in each of the structures, then

the constant function £(A) ='a for all A = I is identified with

Suppose- R(xl, e xn) is an n—ary'rélation-in each of the

structures M (Variébles are placed in relations and functions

X
for easier réading). Let fl,'... s fn be elements of HiMA. Then,
- . Ael ’
we define that R(fl’ .oty fn) holds in T M, if and only if
ST : ' Ael

R(fI(A), .;. s fn(X)) holds in MA for each A e I.

As we commented»eaflier} there is no need to consider that functions,
as distinct from‘relationsiare'defined in our structures. However,
if the definition of relations on the direct product is interpreﬁed
in_thé case of functions, the result is the foliowing:

For any function @(xl, cee xn) which is interpretable in each

o (£ cee s fn) is interpreted in I MA by

of the‘structures' M 1
- Ael

A,



“thé;funCtion from;'I Qint6 the‘union \,} Mﬂ which has thé‘value
EL Q) ., fﬁ(x)) for edach A e I.

»   An idéa'é1ose1y1relétedftO'the direct product~is,thét';f a "teduced"“
_diféct-produét, for whose definitibn we‘require,thévfollowing newr
ébncepté;  | | |
Lafinition

A-fiiterx F on a non-empty set J isva non—empty»family of sub-
sets of J . with the following properties: |
KON S |
().i) O 1f | A e F ~and - _A:,S B _C_‘J‘v, :th_en B r.'r- F. .
(Qii).‘If, A, BecF, then ANB ¢ Fi: N

Definition -

'An ultrafilter on a set J is‘a‘filter‘-Ff‘wiEh the additional
::perérty; for each ASJ, AeF if and oﬁly‘if J Q.A & F.
Theo}em‘ N

‘Evefyffiitef on a noﬁ?émbty set J c#ﬁlbevexténded to an ult:a—:
fiiter; y‘ | |
Proof

Lét‘ G be the classiof a11>fi1ters on a hon-emptyléet J. G is

'vnbn—empty $in;é.tﬁe sét éonSistiﬁg of  j #ione is a filter on J.
Define thg rglation < on G: b& ?1'5 F, 'if and only if F = Fz..
Cléériy sltisna,bartial 6r&eriﬁg,of G.

 Let, {Fa}asH *be a‘chain of‘élements of G where H is some

index set. Consider F = ‘kj,Fd. F is & filter on J since (i)
S : aeH = -



10

¢ & F. If._¢ e F, then ¢ ¢ Fa for some «, but Fu is a filter
for each a. (ii) Suppose thatt A ¢ F and AES B= J. Ae F=
Ae Fd' for some a. ASB<S J =B ¢ Fa and therefore B ¢ F. (iii)

is a chain, there exists an

‘uppose that A, B e F. Sinqe {Fa}aeH

« € H, say o , such that AeF and B e F_ -. ANB¢eF

zince Fu is a filter. Therefore, AN y’e F and we conclude tHat
0 . .

is a filter on J.

Since F = \U Fa’ Fa < F for all o ¢ H. Thus, the chain
' aeH :

has ' F as an upper bound. Since {Fa}ueH is an arbitrary

\{Fa}asﬂ
chain of elements of"G, <we‘have that eac: chain has an upper bound
‘and, by Zorn's Lemma, -G 'hés a maximal element. Let U ‘be a
‘maximal element of G; Therefore, U 1is.a filter on J. We want
‘to show that U élso satisfies the condition: \fA =J, AeU&JT - A ¢_U.
;Now, A and J - A cannot both belong to U since their intersection
.is empty. Suppose that for some A = J, fA ¢ U‘ and J - A i U.
Let V %>{B | B=J and  AVLIB e U}, V;‘is non-empty since
:A.U.(J - A) = J e U. V. i§ a filter on -J' since (i) A ¢ U =é¢ ¢.V.

(i) _1f"Bl_ev and B, SB,=J, then AUB e¢U and AUB S .UB

2 2"

U is a filter implies A U B, € U. Therefore Bé €1Y,7. (iii) 1If
l,sz.s.V,' théﬁ AU B1 and ‘A L{Bz ae 'elementé of  U. There--
fore, (AUB)N (AUB) =AU B cU. Thus, B NB, V.

B

But, U is a proper subset of V.  ndeed, let B'e.U.
B‘AE AUB=AU BeU®=Bz¢eV. As we have seen above, J - A eV, thut
J-A é<U 'by aésumption. U being'a proper subset of v ”Contradicta

the maximal property of U..



: We,coﬁclude thét for every- A‘SfJ, AelU if‘and only if J - A ¢ U.

Thus,  U is an ultrafiiter. -If F ‘ié a filter on J, th;h'eithef;
F .is_én:ulttafilter ofﬁ'F is coﬁtaihed iﬁ;éome ultrafilter on J.

Supposé that 'f .ié a filfer on_ﬁhe index set I and that U;Iis an
ﬁltrafiltef\cdﬁfaining .F; Using 'U, we modify the direct product N
of the structures MA{
Definition

Suppose R'('xl,r..T s xn)- is an néary relation in ééch of‘the
Let £

structures M ces s fn be elements of it MA' ‘We now

A° .
c » - Xel
define R(f_ , ... , £) holds in T M, if and only if
: 1 : : z - Ael Av ' ,
(> e1 | R(fl(A)’,"’ . fn(k)) holds in MA} e U. Functions are

1’

irterpreted as in the direct product. The structure obtained in this

way is called an”ultrgproduct; 

In particular, since- each relation defined in the :MA'S‘ is defined
.in the ultraprodUct, and since each MA ~has the identity relation

defined in it, we have. a corresponding equivalence between any two

.t

‘elements f ‘and - g of the.ﬁltfaproduét} f '='g if and only if

'{A_é I'[vf(x) =lg(X)}'s U. This is an equivalence relation for we

see’that_ifv‘f '=' g and g =1 h, Vthénr f '="h since

e ‘1 | £V = h('x).}-; e 1 | me =gWIN eI | g =hM)}.
'Haﬁiﬁg“distingﬁished fthe'gquivalence rélgtion '="! from the

sﬁﬁbol for logical identity,':=, used iﬁ it's definition, we will now

‘babandén ﬁhe distingﬁiéhed notatién in favor of =, _which is in fact

to be‘inpéfpretéd by logical identity of equivalence classes, anyway,

11



as follows:
Definition

‘The reduced ultraproduct of the structures MA’ denoted by

M! = (I MX>U is the set of equivalence classes under the equivalence
Ael ’
relation =, (or '=').

If a 1is an individual contained in each structure MA’ then

the equivalence class of 'M'  containing the constant function f()) = a

for all X e I is identified with a. The reader should note how
the properties of the.ultrafilter“are involved in what follows next.
Now, suppose R(xi, cee xn) is an n-ary relation in each of

zhe structures MA' Let fl, .o 3, fn be elements of M'.  Then,

we define R(fl, et o iy fn) holds in M' if and only if

eee , f

Y eI | R(fl(A), el fn(k)) holds ‘in MA} € U, where fl’ a

Qre representatives of the equivalence classes fl, S fn respect-—
ively.
“This is well-defined since if fl', e fn' are representatives

of f respeétively,_thén (re1] R(fl'(k), cee fn'(A))v

eess o

A
{Aer1 | £ELQ) =£')IN o N {del l fn(A) = £ ')},

1,
hoids in M

Y :Hl

e I RGO, ..., £.(0) holds in M} N

For any function ¢(xl, .uie xn) which is intefpretable in each

5f the structures M we define ¢(xl, v s 4 xh) in M' by

A’
@(51’,"° . En) =o(f, (A, ... , £, X eI

That is, the value of ¢ in M' is the equivalence class of the

functionrdefined by values on the right, where fl’ ‘e ,fn are

'representatives_df the equivalence classes’ fl’ cee s fn respectively.

12



To show this is well—defined,‘suppose that

13

£, =£,'s ... , £ =£ ' and that ;(Ei, e En) =o(f, V), ..., £ (M),

- n

A e I.
Nou, {AeI|£G)=€"MIN .. AeT] £ )= Er0) £
(eI [ @(fl(x), ;5._, fn(A)) = ®(fl'(A), . fn'(A))}. This set

is an element of U since each member of the intersection (which is

finite) is an element of U. Therefore, @(fl'(k), cen fn'(l)) =

e s B = FETOD, RO,

$CE, (), ..., £ O)). Thus, o (f
A e-If
Let us consider the following example of a reduced ultraproduct.
Let I be the set of all prime numbers. For each p e I, let. Zp
be the finite field with-elements 0, ... ,p-1 where addition,

@, and multiplication, (9, are defined by

for any a, beZ, a ® b

P
a © b

The set '{Zp}peI‘ is a set of similar structures. The index set

remainder when p divides a +b .

‘remainder when p divides a * b .

I is infinite. Let F be the Fréchet filter on 1. That is, for
evéry A =1, A.evF if and only if I - A is ﬁinite. We can extend
F tbfan ultrafilter Urron I.:

As in the general éase, we 6btain the réduced ultraproduct

Z''= (12) U ThereleméntsAof Z' ‘are equivalence classes under
~pel ' '

the equivalence relation ' =, That is, if £ and g are functions.

such that  f(p) svzp and g(p) € Zp for each p € I, then f =g



if and_énly if {pel| £(p) = g(p)} e U.

Since the Struﬁtures are finite fields, each has additive identity
0 and mgltiplicative identity 1. We identify with O, the equivalence
class of Z' containing the constant function £(p) = 0 for all

p € I.. Let us denote this equivalence class by 0. .Similarly, we

cbtain 1.

Each structure has addition and multiplication defined in it.

Suppose that El and f, are elements of Z'. Then, following the

.general case we have El + fz =.f1(p) @ £ _(p), p € I. That is, for

each pel, £f,(p) and £,(p) are in Zp and £, (p) ® fz(p) ‘is
defined in ZP and takes a value in Zp. These Valdes, for each

p € I, define a function with domain I. The value of El + f2 is

the equivalence class containing this function. Similarly we héve

that fl 7‘f2 = fl(p) (G)sz(p), P e Iﬂ This ends the example.
Ipedreﬁ
Let X .be a Sentedce‘which is defined and‘holas’in each structure
of a set :{Mi}kal of simiiar strucfures and let U be an:ultra—
fiitér on the index set I. Then VX holds in the reduced ultraproduct.

M''= (D M) ..
: er A U

The proof is Qery direct. The properties of the uitrafilter, and
the definitions above‘ensure tﬁé resﬁlt for atomic sentences, those
without quantifiéfs or connectives. The result for arbitrary sentences
is established by induction. The proof is omitted.

"rLét us consider an applicatibn of this theorem. The following

14
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sentences characterize a field:
Vo (7 (Vo) [+ 9) +2=x+ (v + 2.
(39 1y = 0 A (Y [x+0 = x11.
(W) [(dy) Iy = =x Alx+ (=0 = 011].
(\fx) (¥/y)'[x +y =‘y + x].
(F0 (Fy) (J2) [ - y) 2=+ (v« 2)].
x]]. |
11].

() Iy = 1 A () [x - 1
(Y% x40 (dy) [x -y
%) (Fy) [x -y =y - x].
(70 (I9) () x - 2 = G-y + (- 2]

04+ 1.

Each of these sentences is true in each finite field Zp of our
previous example. Thus, by applying the above theorem, we bbtain-
that each of these sentences is‘élso true in the reduced ultraproduct
Zz'. Therefore, Z' is a field. The additive identity of the field

z' is 0 "and the multiplicative identity is 1. For example, if

f 1is any element of 2', then, by definition,
y | , by de

f+0=1£f(p) & 0, pel
=E'
Definition
If the elements of the set {Mk}XéI are all the same structure

M, then M' is called a feduced ultrapower of M.

Certainly the above theorem still holds. That is, if X is a
 'sentende'whiChsis"define& and holds in a structure M, . then X _holds
in a reduced'ﬁltfaPOWer of 'M.F Note also that a reduced ultrapower

of a structure M 'is an elementary extension of M,



Now, we will develop a reduced ﬁltrapower non-standard model of.

v analysis. Our structure is the set of real numbers R and the index
séé is. the set of natural numbers N = {0, i,:Z, e« }. Let ‘Fv be

-~ the Fréchet‘filter on N. That is, for eﬁery A< N, Ae F if and
only if N - A 1is finite. 'Lét U be an ultrafilter on N containing

F. Let *R =(IN R

be the reduced ultrapower of R where Rn =R
neN - ,

n)U
for all n e N. ‘Thereforé, :*R is the set of eduivalence classes
of functidn;~ f: N +‘R ‘under the eQuivaience relation =. That is,
for any functions f,¢g£ N>R, f =g if and only if {n € N | f(n) =
g(n)} e U.

Since *R is a reduced ulfrapowér of R, *R is an elementary
 éxtension of R. For *R to be a non-standard model of analysis,
we requifé that *2 be a proper elementaiy extension of RA. We do
Ihéve this property.- Indee&, chsider the function f: N>R defined
by ‘f(nj'= n for all n € &. rThis funétion‘belongs to an element,
say £, of »*R. Re;ail, that identified Qith each k e N is the
equivaleﬁcé.ciass 'E'.éontaining the constant function h(n) = k for
all n e N. In this way, N is;embedded in *R._. We. will show now

vthat ,f_ivN; That is, f is not in the copy of ‘N in  *R. For

IA

- every k € N,.{n e N | n<k}l is finite. Therefore, its complement

{neN | n > k} is a member of the ultrafiiter U. This implies that
f>k in *R. *N is the set of natural numbers in  *R where

g € *N if an only if {ne NUI g(n) e N} e U for g e g. - Then

ce:tainly' f e *N since {n e-N.I f(n) € N} = N é u. Therefore,‘

\

16
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We have an element of *R which is not in R. Indeed, the only

Way;thaf_ f= could be an element of the copy of R in *R would be

for f not being a natural number. We know that f is a natural
number in. - *R. *2 is a proper elementary =xtension of R and

therefore *R is a non-standard model of anilysis.

Let us examine ¥R more closely. Note that f is larger in *R

than every ordinary real number. We say that f is an "infinite"

number. Since R  is a field and *3Z is an elementary extension of

. R, *R is aisq a field. That is, the field axioms also hold in *R.

The additive idéntity of *R is 0 and since f +<5, f has multi-

plicative inverse %n The element % is calléd "infinitesimal"'
1.1 |
since ¥ < ;-'for every positive integer n.
Since f is’"infinite",__f'+ r and f - r ére "infinite" for

every r € . Also, n . f 1is infinite for every positive n e N.
Thus, in *R we have uncountably many "infinite" numbers and
"infinitesimals''.

Noterthatv *E-Tis-nonéArchimédean since £ > E .for every ordinary
natural number k. This'does not contradict *R being an elementary
extgnsion of R sin¢é the‘fac; that X2 is Archimedean cannot be
written as a>§entence in a first order language. ’That is, the
Archimedean brinéiple Stafes £Hat if 0 < a < b, then there exiSﬁs

a natural ﬁpmber n such that n - a>b and in a first order lang-
uége we.canﬁot_mention anything except ihdividuéléf Since the
indi#idhals in the structure R are real.nUmbers;‘ wé.cannot

mention sets of real numbers. Therefore, we cannot assert



the‘existéncerof Such an element in N, the set of nafural numbers.
In classical analysis we speak of "infinite" and ﬁinfinitesimal"
ﬁumbers‘althoughrthey do not'éxist. An_"infinite” number is used in
the sense of being "arbitrarily large" and an "infinitesimal" as being
“arbitrarily close to zero'. ‘The "infinite" and "infinitesimal" numbers
_whicﬁ exist in non-standard models of aﬁalysis actually "behave" like
the ones we informally thought of in classical analysis. This leads
to the possibility of doing.calculus in *R using infinitesimals.
For exampie, iﬁ claSsical analysis, a function f which is defined
“on the ihterﬁal V(a, b) 1is continuous at xo in (a, b) if and
only if for every pbsi;ivg number ¢ there exists a number & such
that if |x - xbl < S;, théniilf(x) —;f(xo)l <e. wa} in *R, our .
non-standard model bannalysis,flet the extensioﬁs’of'the function f£
and the,absolute‘value funétion be deﬁoted by the same symbols as in
R. vSupppse that a, b and X, arelin the copy of R in *R
and that xé is in the interval (a, b). Then, f is continuous
at X, if and only”if lf(x) f f(xo)| is infinitesimal whenevefb
|x - x |‘ is'infiniteéimal. With definitions like this, ccrrespdnding
to the definitions:in claSsicalianalysis, we can do célculusrin *R.
Now let us exaﬁine the nuﬁbér of non-standard models»of an&lysis‘
that we can obtain using an.ultrafiltef on the set of natural numbers
N:. Fifst, how many ultfafiltéfs exist on the set of natural numbers?
The follbwiﬁg theorem is the work of M. Shimrat.
Iheofém

The number of ultrafilters on N = {0, 1, 2,%., 1 ois 2 2X1

18
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Proof

‘To every infinite ordinal a < Wy assign a particular rearrange-

ment'of~rW; = {8 I»B < a} into a wfsequencé. That is, a sequence

(Y.)

' - containing each B < a exactly once. -
n“n<w B g -

—-sequence

Consider any mapping o: WA - {0, 1}. Thatvis, an

. 1 .
of 0's and "1's. The set of all such ¢ is of cardinality 2X1,

A

We will assign to each ¢ a filter base on XN given by a certain

w,~sequence (F ) . of subsets of N. The sets F are defined
i - a’a<w, : o :

by transfinite induction as follows:

Suppdée"¢:' W -~ {0, 1} .

1
Define F0\= {0, 2, 4, ...} if 90 =0
=l'

i - Al o
{fl’ 3, 5, ... } if @(0)

Now, assume for ény_ppsitivev a < w the folloiwng condition, denoted

1?
'Cd, is satisfied:

FE has been defined for all ¢ < a and

“Eun i 52 < a =>F. - F_ - is finite.

1 &, :gi

There are two casesltérconsidef. First,.suppose'that o is a

successor ordinal, o = 8 + 1. Then 'F, has been defined. Let
FB.= {ko’ Fl?'ng .;‘}thgre.the elements kd’ kl’ .o are in increas-

ing order.

'kq, .55

]
o

Define F, = {kp?’gz, }oif o(a)

1
’—. .

{kys kg, ke, oio b if @(a)
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Therefore, F, has been defined for all g <a+1 and

13
< < 1 = o . . fx _ . id. Henc.
L. 52 a + 1' ng ng if flnlte since FB. Fa is void. Hence,
" condition C - is satisfied.

o+1

Now, suppose that o is a limit ordinal. Rearrange the F into

2

an w-sequence (Gn) where_"Gn = FY (with the Yn as above). Define
0 . ,

n : _
Hn = ;:l Gi.‘ By the condltipn Ca’ in constructing Hn+l' for any

n 2 0, we have removed only a finite number of elements from ‘Hn and

since H = F_ 1is infinite, each H_ 1is infinite. Clearly H_ = H_, .
0 0 n n n+l

Lat H = {kno’ knl’ knz’ «+. } where the elements kno’,knl’ knz’ ces
are increasing in order; :
Now, define F_ = {;koo, k22, kuu, e } o if 7¢(a) =0
{k“,' koo kogs woe b OAE () =11
Fg has now been defined for'gll £ <a+ 1.’VIf B <'a . then
Fa - FB' is finite. Indeed? since there is an g for which HtS‘FB~
for all £ 2 n, and by the definition of F ., F, - FB contains a.

finite number of elements. Therefore, if gl < 52 <a+1, then

F_, - F is finite and condition Ca is satisfied.

£ £

2 1 +,

Hence, for each ¢ we have defined an w,-sequence of subsets of

1
N and each such sequence of subsets of N is a filter baSeL .Now,
considér the 2X! filters generated by these filter bases. If ¢
aﬁd. ¢' are distinct functions with corresponding filters F and‘ F

‘respectively, then F and F' are incompatible. That is, F and

F' haVe elements‘ K - and K' respectively such that KN K' = 4.

Chodse fqr'each filterv F an ultrafilter containing F. We obtain



21

la‘éet\of distihct_ulttafilters of cardinélicy 2X1 which provesvthe :
ﬁheorem.”

| lwa;vhow'méhy‘distinct'reduced ultrapowers of -Rn‘can be obtained
by’éOnSidering distinct_ultfafilteré;on the indexlset‘ N?  W. A. J.
Atukemburg'in f3]'remérkéd that under the continuum hypothesis, all
reducéd ﬁiﬁrapOWers of R obtained by using ultrafilters on N can
be shown to be isomorphic. ‘Tﬁerefore, there are at Ieast' 2X1

isombrphic reduced ultrapowers of R using the set' of natural numbers

as the index set.
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CHAPTER IIIX

FINITENESS 'PRINCIPLE

In Chapter{II, we develdped'a nén—standard‘model of analysis ih
the form of a reduced ultrapower. ‘In this chapter, we will
prove tﬁé exis£ence of non-sténaard ﬁddels of analysis without
"constructing":one as We'didrin Chapter II.
~An important theorem which will be applied in this chapter is the
Finiteness.Principle far first order 1anguages and structures. This
tﬁebrem is also called the‘Compactneés Theorem. A proof is available
in [6].
Theorem (Finiteness Principle)
Let K be a sét,of-senﬁences. If everyvfinite subset éf K has
“a model, then K has a model.
Here, K ié aISét of sentences in a firét order language and the
models are‘fifst order étructﬁréé.
| iet R' bev£he-sét of real numbers. Let K be ﬁhe set of
sentenceélin a first order language L which contains é distinct
individual cdﬁstant to denote éach‘real ﬁumber and a distinct n-ary
relation,symbol to denote each n-ary relation of real numbefs,_ Agéih,
Cwe assﬁme ;hat we have a one~to-one mapping from our st#ucture to the
langﬁage;‘ Let K' be the subset of K consisting ofvélllséntencés

of K which are true in R.



Choose an individual constant b of L which does not denote any
real number in 'R; That is, b * ir for every real number r. We
aséume that our language ‘Lk:contains "enough' constants to allow
this, where "enoughf means that, if necessary, we could embéd our
language L in a language L" so that the set pf atomic symbols of
L is a subset of the set of atomic symbols of L' and L' has the
individual constant we want. Since we could then consider the language
L', we may as well assume thatl L has such a constant. " The set R
orf realwnumberé has the binary relation of logical identity defined
on it. ,ThiS'felation is denoted in L bybthe symbol =. Therefore,
the sentence [i, = 1i,] in L holds in R if and only if c =d
wherevvic denotes ‘c € R and i, denotes d ¢ R.

‘Let - H be the set of sentences {[7 [b = ir]] | r e R}. Here
we intend that r shall range over all real numbers and ir denotes
r. in the language L. Consider the set of sentences ' K'UV H. We
want to show that K'U H has a model, sa§ M. This model M will
bé a non-standard model bf anaiysis since every'sentence in K' will
be true in‘7M' and M will contain an element cdrresponding'to " b.

To apply the Fiﬁiteness Principle, we need to prove that every
finite subset of K'LJ H has a model. Consider K'U H' where H'
is any finite subset of H. If K'U H' has a model, then it can be
shown that every finite subset of K'U H has a model. If H' is
an empty set of éentences, then K'V H' has R as a model. Therefore,
iét us suppose that H' consists of the sentences [7 [5 = ir 11, ... ,
1

_F7'[b = ir ]] where n = 1.
a0 ,

23



For any finite set of real numbers rs -+. , £ we can find a

r=al number s such'that s;+ T - for all k=1, ... , n. 'Thérefore,

R 1is a model of H'. Since R 1is ceftainlyra model of K', R is
a model of K'U H'. |

Now, by tﬁe Fihiteness.Priﬁciple, ‘k'kJ H has a model, . say *R.
This model fR contains an individual, say a, which is unequal
(in *R) to each individual of *p cérrespOnding to an individual
of R. Therefore, *R vis a non-standard model of anélysis.

Since R is a field and *R is a model of R, the field axioms
still hold in *R. 'Therefdre, from this element a we obtain the
multiplicative inverse of a, in-and the additive inverse of a, -a.
Recall that in Chapter II, we 6btained,a non-standard model of
analysis'cpntaining the "infinite" element £, This element £ is
an example of such an element a.

The relation "ﬁnequal‘to" between real numberé‘is a partiqular
kind of-relgtiop caliéd."goncufrent" since' b 1is unequal to T
cpncurréntly'for k=1, ... , n. For the purpose of the abové
theorem, it was sufficient to consider this one "concurrent" binary

relation. We could consider any number of concurrent relations

simultaneously. - We will define concurrent relation in Chaﬁter IV and

again in Chapter V and will indicate in Chapter V a pfoqf in which

more than one concurrent relation is considered simultaneously.
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CHAPTER 1V

SUPERSTRUCTURES AND MONOMORPHISMS

'nginition
Let A = A, be a set of individuals. An individual has no
elements, but is not the empty set. In {[8], E. Zakon defined the

snperstructure'vgv‘on A  as “' ‘e/ A where An+l}‘1s the set of
all subsets of k,j Ak Elements ogo AO are saidAto be of type O H
and elements of " k;n+i —_An are of type n + 1.

Since An<: Aﬁ;l efor' n 21, we have :,g Ak Aﬁ' and
since An,;'Ah+q‘E A for n 2 0, A e A' for all n. Since we may

express an ordered pair using the Tarski—Kuratowski definition,
(a, b) = {{a, b}, {b}} and hence an ordered n-tuple by (al; e s an) =

((al,.... , aﬁ_l), an), A contains all ordered n-tuples of elements

~

of‘;A.' A contains n-ary relations (set of n-tuples) where the n-tuples

of the n—ary relation all have corresponding places fllled by elements

from the same set in A.

For:ekample, let the set R of realenumnefs be taken as a set of
individuais;; fnen, the éupefstructure é one‘R.‘contains all real
numbers,'allfse:s of real numbersmand‘so_On. é also contains, for
'example, sets which have as elements both reelinumbers and sets of real
nunbers. ‘The relation of membership of a real number in a set of real

numbers exists in R as a set of ordered pairs where the first place

is filled by real numbers and the second place is filled by'sete of .

25
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real numbers.

v.In'order to discuss‘a superstructure we need a language. Let L
Béra first order lahguage wifh variables, connectives,'éonstants,
q&antifiers and brackets as defined in Chapter I so that there is a
one~to-one correspondence bethen all constants of L and all elements:
of’ A. Thus, if é is the superstructure, there is a constant in
L to denote each feal number, each .set of real numbe;s‘and,so:on.
For any élement a of a general superstructure A let its name in
L be ié' lehe superstructure has the relations.of logical identity
‘and ﬁembership. These relations are interpreted in L by the relgticn
symbols = and € respectively.

Atomiq formulae are of the form x ey and x =y where x and

y are variables or constants (names for elements of A). Well-
formed formulae are constructed from atomic formulae using brackets,
connectives and quantifiers. The only quantification allqwed is of

]

‘the fofm (ox e'iC)' or (k/x £ iC) where ’iC is the ngme of some

C ¢ ;.._ A reason for.this‘festriction.will be prdvidea iéﬁer‘in tﬁis
chapter. Note thét, for example,- [(ZBX a‘idj X € iD]. is a simplifi-
cation of [(‘Ex) [x € i-C A x e iD]].

To illustrate a sentence, the statement that O is the least

member of the set of natural numbers N € ® is written

[, ¢ 1] A [(Fx e 10 1, = x11.

To simplify.matters, we will follow the time-honored mathematical



practice of using objects as their own names as in [(\/x e C) x ¢ D]
rather ;han [(E/x € iC) X € iD]’f although formally, sentences
must contain names for the elements and not the elements themselves.
This devi;é will be used when tﬁére is no chance of confusion, fof
it increases readability..

Note that in the language L, the assertion (al, TN am) =b

is expressible by a well-formed sentence. Indeed, we always have

a EEIFNL An\J A0 for a large n so that the assertion

],

{31, oo am} =b céﬁ be written as (\/x € AnLJ AO) [x e b&x = af/

... Vx = am}. Therefore, {{al, az}, {az}} =b, i.e., (a,, a,) =b

can be written as a well-formed sentence. Similarly for (a., ... , a ) =b
. ; 1 m

by induction.

Now, suppose that A and B are two sets of individuals with

superstructures A and B .reSPectively and 1et ¢: A > B be a

mapping of A into B. We define d¢(a) = *a and ¢[a] = {*x | X € a}l

for all a € A. Note the difference between the definitions of ?(a)

and 9¢[a].

Since A € A for all n, o(A ) = *A . We set ¥a = W*a .,
n n n . n=0 n

If o is a well-formed formula, then *a is defined to be the

formula obtaihed from o by replacing eachconstant a occurring in o by

*a. Nothing-is changed except the elements of A. *a  is called

[(\/x € C) x.s D], then

the ¢-transform of a. For example, if a

*o

[(\/x e *C) # e *D).

Again this is a simplification of the following:



llfiiLA and vLB are»first‘ofder languages for A, and ﬁ _FeSpectiVely
and if}!’ort is a well-formed fémula of I;A, then *a is the formula
éf.iB obtained from a by‘répiabing each occurrence in. a ‘of the
 name 715‘ for each a E.X bytthe name i*a (in LB) for fa.
Nothing is changed except theinames of elements in A. If

o = [(\/g € iC) X € iD], then *a = [(E/x > i*C> X € i*D]'

' There is one example which should be noted.

_ Suppoge a'=,[(\fx € iAﬁLJ Ao)[x £ 1An\/ X € 1A01], then

o [(X/x € 1*(A-LJ A ))‘[x e ix, V x ¢ 1, ]]. We have l*(A U A)

v n 0 n o : n 0
instead of i*A‘ U *A L The simplified éase is in‘agréement. If
o=[CxeA UA)IxehA Vxechll, then *a=[(7xe*@A UAa)

n 0 n : 0" - - n 0
¥ N ¥
[x e *A Y x e a1l
Note that we are just now defining the ¢-transform of a sentence
~and we are not asserting anything about the truth of a sentence or of
its ¢-transform.

nginition‘

-~ oA

If ‘b is a member of B and b = *a for some a € A, then b
is célled a ¢-standard member of ﬁ,
For example, since Aﬁ € A for all'.n, @(An) =\’kAn .isva
Q%standard membefrof B for all n. |
Définition
I b77is a member 6f B and b.c *a for some a ¢ ;,_ tﬁen b
'is'célled a ¢-internal member of B. That is, if b is én element

of.a ¢—standard membér-of B, then b is a ¢-internal member of B.
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Any member of ﬁ which is not ¢—interna1 is called %-external.

For example, all‘elements of *A are @-internél,rsince‘if' be *&,
then b ¢ *An,.for some n and *An is a ¢-standard member of B-

The terﬁs'¢—standard, ¢—internal and ®-external are éhortened'to
rstandard; interﬁél.énd extérnél'respectively.

We will consider a particular kind of mappiﬁg between superstruéturés.
Definiéion”

-~

A mapping ¢¢: A > B 1is called a monomoxrphism if and only if

(i) 2($) = *¢ = ¢ where ¢ is the empty seﬁ.

(ii) A F a =B F‘*a' for évery well-formed sentence a. That

~

is, if the well-formed sentence o 1is true in A, then *a. is true

in B.

*

*a with a 1f a ¢ Ao. Therefore, *a =

‘We shall always identify
for  a € A0 .and‘ k < *x whenéver IXIQ-(AO)n for n > }.
zheofem Let &: &‘+ ﬁ be a monomorphism.

If a,fb, a5 eer 58 € A,A then

(1) *(a - b) = *a - %

G by - tant

(1i1) *@Ub) = *a U %
(1v) *{a} = {*a}

(v)’ *fa, ve. , 2} = {*é s +es 5 *a }
_ m

: 1 m 1
(vi)’ *(al,‘... ,a )= (*a, ... , ¥a ).

- m 17 m
Régarding'(i),,(i;) gnd (iii), if: a and‘ b are individuals, then
'a.ub‘=an_b'=a,~b=§bycxe_finicion, |
Proof |

mWe‘wiil prove (iii)»aﬁd (iv)f The other proofs are similar, and
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i;lustrate what is perhaps the basic proof techeique of honfstandard
anaiysié, therconstructidn of apprqpriate sentences and their trans-
formation under the moedmorphism._ |
(iii) If a, b e A, then} aube ;b Let a - [(\/x e(a v b))
[x € a\/ x € b]]. ‘Then *a = [(\/x € f(a Ub)) [x ¢ fa‘d x ¢ *bl].
‘A F q-=$ﬁ F *a.4an& we have ;(a.u b) fa U *b. Now, lee
= ['(Vx € .a) (-Vy e b) [;:_E aUbAyea U'Hi.
=[(Vxe*a) (Fye™ [xc*@UAyec*@Uub)ll. Akps=38F %
and we have *a.kl*b-g-*(a U b).  Therefore f(a U b) = fa U *b.
(iv) achA= {a} € Z& Let o = .[(\v'/x'e {a}) [x = a]]. Then
= [(\/x e *{a}) [x = *all. A F'q =%§'F‘*a._ Therefofee *{a} = {*a}
ahdvthe proef of (iv) is'eompiete. We can use>(iii) and (iv) to

prove (v).

{al, cee s A }= \v/ {a }

k=1
_ » m ; m
: * o * - e PR *
The;efore‘ {él”... . em} U {ak} = U { ak} { a5 vee s am}.

"’In theeprevious examﬁie,'che ¢-transform of the sen;enCe
[{\/x € C$ x € D] is t(\/x € *C) X € *D]." If ¢ is a monomofphiSﬁ,
then we have by (ii) of the definition of a monomorphism, if C is a
subset of D (1n A), then *C 1is a subset of *D (in B)
the'that if a is the sentence (\/x € A U A ) [x € A \/ X € A ]]
:and ¢ is a monomorphism, then by (iii) of the above theorem we can
now write

*a = [(\/x € *An\J *Ao) [x e *Ah‘v X e-*Ao]].



Earlier, we noted the difference between the definitions of ¢(a)

~

and ¢[a] for a ¢ A. If ¢ is a monomorphism, then by (v) of the
above theorem,if C is a finite set in A, then o(C) = ¢[C].
Zhedrem'

~ ~

If ¢: A-> B is a monomorphism from A into B, then each

standard member of ﬁ is also an internal member of B.
Proof
| Suppose' b is a standard member of ﬁ. That is, b = *a for

some a ¢ A. Therefore, ; F [a & An] for some n and since ©
is a‘monomorphism,' ﬁ F [*a,e *Ah]. *a e *An =b € fAn =b e *;.1
Since members of *A are internal, b is an internal’member of é.

Note that a monomorphism is a one-to-one mapping since .by (ii) of
the definition of a monomorphism, A F [7 [a = b]] =§£ E [ [*a = *b]],
for a, b € A. |

Also note that although it need not be defined this way we actuélly
“have (ii) of the definition of a monomorphism as A Ea F*ﬁ E *a.
Indeed, suppose .ﬁ = *a. Now; either A BEa or A‘¥'a. 1f A ¥ oo,
then & F"7[a].._ Siﬁce 7 [a] is a well-formed sentence,
'A F =7 [a] =9§ F‘*fﬁ [a]]. In obtaiﬁing the ¢-transform of a sentence,

*a for every element a of A occurring in the

we change a to
sentence. Nothing\else is changed. Therefore, *f7[a]]_- ‘7[fa]. Thus,
A F -7 [a] =3 E 7[*z]. This is a contradiction of B E *q,

Therefore B F *a =’A F a and we have ; E o é’ﬁ E *a.

If X 1is the set of sentences which are true in A and if ¢



32

-~

is a monomorphism of A into B, then.the sentences of K are also
true in B. . Thus, a monomorphism provides us with another model of

K. For example, suppose that A = A_ is a set of individuals with

‘ 0

supérstructure A and with a binary operation, ., defined on A.
Let K be the set of sentenées which define . as being a binary

operation and which assert that elements of A form a group under

‘thie operation. If ¢ is a monomorphism from A into another
superstructure B, then the sentences of K will also be true in B.

These sentences assert that there is a binary operation, *;, defined

on *AO and that the elements of <*A0 form a group under ..

Theorem

-~

If ¢ 1is a monomorphism from a superstructure A into a super-
structure B, then the internal members of B are exactly_the'elements
ety '
of *a=\J *a.
n=0 :

Proof

~ We know élready that if b e *A, then b is internal. Suppose

~

now that b is an internal member of B. Then b ¢ *a for some

ae€lA and so a € An for some n 2 0. Thus

+1
A.Fv[(\/x € a)_[x € An.U AO]] =Bk [(\/x e *a) [x € *AnlJ *Ad]] “and
be *a=b ¢ *Ah U'*AO. Thus, b e *A.

Theorem

No internal element can belong to any y € *AO.

Proof

. since VAO_consists of individuals, A,F [(\/x £ An) (\/y‘a Ao) [x ¢ v]1
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for every 'n. Therefore, B % [(\%x € *An) Yy e-*Ao)-[x ¢ yll for
" every n.
If x 1is internal, then x € *A9x e "kA.n for some n. Thus,

: B-F'[(\/y_s *AO),[X ¢ yll and the prodf is complete.

However, if a 1is a non-empty set in A, then *

a has internal

~

elements in B and is therefore non-empty. Indeed, if a ¢ An+1l
for some n 20 and a is non-empty, A F [(:gx‘s AnKJ Ao) x € a}. Thus,

g | * * : * * . g .
B F‘{(_jx e A U AO) x € 'a] .and "a has at least one internal

element.
Note that for any a € A, *a may have external members. If
*a € *Ao has external membérs, then *a is not a genuine individual.

We define a strict monomorphism which excludes these possibilities.
nginition

A monomorphism ¢ from 'A into é» is strict if and only if all
members of ﬁ*; have internal eleménts only (if any at all).

Therefore;' if ¢ is strict, the membefs of an internal set of
sets areAin;ernai.sets themselves., Note that althougﬁ allrmembers of
internal séfs are internal, not all iﬁterna} sets'negd be standard.
ﬁence thejfact'that a  is internal if and only if a- is a member of
a sténdaxd set characterizes internal, but does not characterize
staﬁdard,‘
areAgenuine individuals.

Also, if ¢ is strict, elements of *AO

Indeed, any vy € *Ao ‘cannot contain any internal elements and, since

¢ 1is strict, these are the'onlyieléments that y could contain.

If o A>3B isa strict monomorphism of A intdl B and if
X 1is a sentence in L ~which is defined and true in ‘;;: then let
usinbte thét X is true ih]‘g_'with any quantifiers in- X relagivized

to internal sets.
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To illustrate, let ¢: A > B be a strict monomorphism of A into B.

Let X be the sentence (\/Y € An+1U Ao) (VZ € An+1'U AO) (BW € An+l)

r(\v/x € AnU Ao)[x_s Wex e YN Z].
X states that for every two sets in A, there is a set which is their

~

intersection. The sentence X 1is true in A for each n. Consider the

- , %y _ " * * *, ;o %
o-transform of X. *X = (VY ¢ A, Y A0>(\/z c*a, U Ao)(:-]ws Ay

(Vx € "AnU*Ao)[x e WSx e YNZ].

¢ 1is a monomorphism implies that X is true in B for each n and since

~

We *An+l implies that We *A, W is internal. We have that W and
YN Z have the exact same elements in *An\J *Ao. It remains to prove
that all elements of W and YN Z are in *AhKJ*AO.

The following sentence is true in A for each m:

(Vu ¢ An__l_l)(\.?/v‘ eA)lveuvea UA]. Hence,

(\/u € An+1)(\/v € Am)[v eu=ve Ah\J AO] is t;ue‘in B for each

m., Now, if v e u e *A , then u 1is internal since *A is standard

and, by the definition of a strict monomorphism, v 'is also internal.

Hence; v € "'A.nl for some m and, by the above, v e u =v E'*Ah"}*Ao'
Therefore, all elements of W and Y/1Z are in *An L)*Ao. Each of

Y and VZ is a member of a standard set *An+1

*, _ % ‘
U *a (An+1U Ao). and
therefore internal. Therefore, we have that for every two internal sets

~

in B, there is an internal set in B which is their intersection.

Theorenm
Every monomo:phism o A’*_B' can be transformed into a strict one.
Proof

A

.For any y e A, we want. y' to have internal elements only (if
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any). Y€ *A %ty.e *An for some n 2 0. Suppose‘thatA Y E AO-

We replace y .by aﬁ.individual (possibly outside B) so fha; distin@t
élements;of_'*Ab are replaced by distinct individuals; ve éssume fhat
A _énd ﬁ»‘are_in some'"univgrse" which has "enough" such individuais;
Therefore, y has no eiements at all., .Any y € *AO cannoi contain any
iﬁternal elements, so we would not be changing any internal elémehts
which are not in *Ao.
If y e *An for n 2 1, we replace vy by"y f)*;. This
:emoves”aﬁy external elements from. y. We carry out this process in
 step§ fot n=1,2, ... .
| Therefo:e, for any element vy € *;, y has internal elements
only (if any) énd $ is‘a'strict7monomopphism. It can be argued, Gty
- the usuél inductive process on the length of &, that if o is a:
seﬁtenqe, and ¢ 1is a non-strict monomofbhism reﬁiaced by a strict
monqmorphism ¢'. according to the above séheme,‘wéfstill'have
A F a'ééng *a. The proof'formalizeS'the intuitive truth'that since
*> makes no‘éssertion about external-entiﬁies, their existe;cé¢is
irrelevant to_ﬁhe truth of *a.

Up_ﬁo now, our results have been based on the definition of a
monomdfphism of one superstructure into another.superétruéture. Now,
we will prove the éxistence 6f monomorphisms by cpnétructing one.

Given a suberstruttﬁre ;A we will construct a_monomorphism of ;

into another superstructure B. .This monomorphism will be developed

from an ultrapower of A.

35
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Recall the following definitions.
A filter F on a non-empty set J is a non-empty family of subsets
of J satisfying

(1) ¢ ¢ F.

(ii) If AeF and AS B <SJ, themn B ¢ F.

(iii) If A, B e F, then AN B¢ F.

An ultrafilter on a set J 1is a filter F on J with the

additional property
Vasi, acFreg-adr.
Applying a theorem proved in Chapter II, we can extend a filter
F on J to an‘ultrafilterv U{
Let J be a non-empty set and U an ultrafilter on J.  Let
A be a supérstructure on a set of individuals A = Ao. Let M be

the Set,of all maps of the form f: J -+ D, D ¢ A. Binary relations

are defined on M as follows:

€ and

\/f, geM, fég if and only if {i ¢ J | £(1) e g}t e U

and f g if and only if {i e J | £(i) = g(i)} ¢ U.

-~

M is called the U-ultrapower of - A (over J). For each c € A,

let ¢ denote the constant function on J ‘with value c. That is,

c(i) c, \/1 e J. Thefefore, c e M. In particular, $ €M and

. eM for n=0,1, ... .
n :

Theorem

For any f, g e M

(1) 1f ge f € An+1, then g € An or g € AD'

(11) (Ve e (dn) £ ¢ K.
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W
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At

Me

2 {ieJdJ | £{1) € An+1} e U and

| géf={ieJ| gli)e £(i)} e u.
'{:i.. e J | g@d) eAAn'U AY=2{ieyd | g@i) e £¢i)1 N {ied | £(i) « Anﬂ_};
Thus {i e J | g(i) e'An(J.AO} e U. Since Aﬁ(ﬁ AO-= ¢ for mn 2 1,
either {i»e'J | g(i)'e AleU-or {ie J | g(i) e 4z} e U.‘ Therefore,
g £ An~ or g ¢ Ao.; |

(1) £ eM=f: J ﬁ, D s'& and D e A =D e Aﬁ+1 for some
n 2 0. :_'_rhus, {ira‘ I £@) € A UA?LY=J¢eU and since ‘A N Aj =¢
for =n 2 1; we have that either {i ¢ J ]‘f(i) € Ah}‘e U or
{i é'J ] f(i) € AO} e U. In either case, we have f € Kn for some
n > 0.

Noté*fhat M vhas'elements Kn for each n and has the relation
¢ while: *A his elementéi *An for each n and has the relation .
'WE—mbdify the ultrapower I so that ¢ is replaced by «. Alsd the
relation é_ is réplaced by =. This modification is carried out in
steps'and requires the axiom of choice.

Let - *Ao be the reduced ultrapower of A0 over J. That is,

fer any functions f and g from J into A f =g 1if and only

0
if {ied ]‘f(i) = g(i)} € U and *Ao is t?e set df‘equivalgnce
ciasses under the equivalence relation =.

Let B, be a set of individuals resultiﬁg from replacing distinct
eéuivélence élaéses of *Ao, by distinct individuals. Let B be the
superstructure on B,.

We replaced the equivalance claéses by individuals since we wanted -
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to obtain a supetstructgre and equivalencg classes are not individuals
‘ééﬁording,to'the ﬁefiniﬁibn of an individﬁal in this chapter. 1In othef
chaptefs,:féf éx#ﬁple Chapter V, an indi;iduallis not necessarily
defined as it is'here; |

_SUpﬁqse that £ e M and £ €& KO', Therefore, E = {ie J.I_
f(i) é AO} é U. " Let fg:: J +‘A0 be a functionfrom’ J iﬁtq AO
such that g has the saﬁé respective values on E as f vdoés. It
isgpoésibie to find such a function g. Let g be the.equivalence éléss

of *A towhich g belongs. We choose f', called the fiber of f£,
' to;befthe individual in Bo- replacing g. Then, f' ¢ B  since
£ s-BO.- The same index set J and ultrafilter U are used in_‘M' to

define = and €& and in *Ao to define the equivalence classes.

Therefore, if f , £ & A, then f_ = f Of ' =f ", If £f&A
. 17 2 0 1 2 -1 2 I 0
_ haéfa-particular individual value, say a, on a member of U, and if

a is the equivaience class of *Ao containing the constant function

fré@,'J  into Ab With'that particular valué; then f' will be fhe‘
in@iv;dual in B replacing a. | |

“j%flf .ffénzl aﬁd..g‘é f, then g € EO by@(i) of the precedingu
ﬁhg&réﬁ.. Theféfﬁ?e,‘,s" ﬁas alfeady'been cﬁdséﬂ;“Choose o
:ffééz{g' |;g érf}-. Then, ‘f’ ¢ B since g’ e.£ ;f6r.evefj1 g ¢ f.

E §upposethat :f' e.ﬁwvhas been chosen fé;z f é_Kk for kr='0, we eyl D
) | by (i)iqf the

and g é:f,'ythen g é,Kh or..g & A

P € 0

n+1’

'prededingjthgérém. In eitﬁer case, g' has élrea&& been chosen.
:Cﬁﬁpse-,f' ={g" | g é'f}.",Agaiﬁ f' e B ‘since Vg'fé i>'for'every
‘gié,f; |

_v  Fér¢ach  f e‘M, f,é Kh for:some 'h =0, 1, ... 'by,(ii)'.of the

Vprécéding”theOrem; _Therefore, “f! ‘has been chosen. Leﬁ
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M = {f' | £ e M}. The & of M has been replaced by ¢ since

of M has been replaced

i1

gt £€g' ¢ f'. Note also that the
by - =. If f € Kn for some n and g = f, then g ébﬁn for

the same n ISince {ied | g(i) € An};g {ieJ| gl = £(i)}

fte

N {ieJ| f(i) € An}. If f, geM such that f 2 g and £, g & KO’

then we have seen that f

geft =g, Suppose that f, g ¢ Kn

fer some n.

g{i)} e U

f=2ga{icd]| £(1)
@ied| (VheM) (h() e £(1) ©h() e g} e U
&NVheMm) [he £9h ¢ gl
9(\/11' eM') [h' e f'©h"' e g']
@fl=g.|‘
Thus, fd: any f, ge M, £f =g&f' =g',
M' € B since for every f e M, f' ¢ B. M' is called the
modified U-ultrapower of A (over J). Even though the elements of
M are maﬁpings and not équivalence classes .and the elements of B0

ars individuals and not equivalence classes, this modification of M

to M' actually involves mapping equivalence classes of functions

which are individuals on .a member of U into equivalence classes of

functions which are individuals for every 1 £ J, mapping equivalence

classes of functions which are sets of individuals on a member of U

into sets of equivalence classes of functions which are individuals

for every i € J and so on.

~

B also contains for example, sets which have as elements both
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individuais replacing equivalence classes and sets of such iﬁdivi—

duals.
" We define a map ¢: A -+ B by ¢ (a) 275' = *a for every a e A.
a' is the fiber of the constant function a € M. In particular,

¢{¢) = ¢ and @(An) = (Kn)' for every n.
One can now prove, by induction on the complexity of sentences

as will be done in the Monomorphism Theorem, the

Uitrapower Theorem

Let o = a(xr,'... ’_xm) be a well-formed fq;mula in L - with
xi,';.; » X 'its only free vafiables and let fli’.“f'?'fm' e M'.
Tﬁen the sentence *?(fl""°° . fm') holds in M' if and oniy if
{ieJ| a(fl(i)_; ce+ » £(i)) holds in .;}' e U.  a(f, (1), ..., fm(li)_)
is defined in ‘; since for any i € J and any k = l,_..m , O,
fk(i) € A; |

Our aim is to show that o as.definedfiéAa'monomorpﬁism; In fact,
we have the

Mconomorphism Theorem

The mapping ¢: A - B defined by #(a) = a' = *a for every

ac A, is a strict monomorphism of »A into B. Moreover, M' is
exactly thé set *A of all internal elements of ‘B.

239951 'Torprove that ¢ 4is a moﬁomorphism, we must prove that

AF a = ﬁ E *a for every well—formed Sentenge a. The proof is by

induction on the number of logical symbols :], 7,V in «a. We

censider only these three logical symbols since all of the other
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1ogica1 symbols A, ;%, é*,\/ can be expressed in terms of :3, ‘7,\/,.
indeed, if ,X; Y and Z are well-formed formulae, then [X A Y] is
equivalent to 7 [[7X]V [7Y]], [X =Y] is equivalent to [[7 X]V YI,
[X ©Y] is equivalent to [[X =>Y] A [Y = X]], and [(\/y) Z(y)] is
equivalent to [7 [(3y) [72(]].

First, suppose that o does not contain any of :3, 7, V.

Thus, o 1is an atomic sentence and o = [a-s-b] or a = [a =b]
where a, b ¢ A. We have that aeb=at¢thb since

{iedJ | a(i) e b(i)} =J € U. Now, a ¢ b=>2a' e b' and since

a' = *a and b' = *b, we obtain a e b = *a ¢ *b. Similarly,
a="> Sa<b=a'=b" and we obtain a =b = *a = *p, Therefore,
if o is an atomic sentence, then ; E o =?ﬁ E *a.

Suppose that a(xl, cee s xm) and 8(y1, .o ,ryk) are well-
formed formulae in L where Xjs +ee X are the only free variables
in o and Yis e+ 5 ¥ are the only free variables in . Suppose
. bl’ cee bk € &, A F a(al, cee am)

that for any a - |

1? m

#‘g E *a(*al, cee *am) and A E B(bl’ cee bk) =§£ F *8(*b1, cee *bk).
We must prove that A E a(al, oo am) =B L *[7_a(a1, cee s 2]

and A F [a(al, e am)\/ B(bl, R bk)] =?§ F *[a(al, cee am)

\ B(bi, R bk)]. For any ais see s B, bl’ cee bk £ ;,

S e *bk e M'. Since U is an ultrafilter

and by the Ultrapower Theorem, we have B F ‘7[*a(*al, cee s *am)].

* * *
Bys oo 5 Aps b1

e{ied| a(a (i), ... , a_(i)) holds in A} ¢ U

©{ied | 7oa@ @), ..., a (i) holds in A} e U



&3k *[Fata, .., )]

Similarly, we obtain

i,F *[a(al, cee soal) \/B(bl, oo bk)]

€BE [*aC*a, ..., *a )V *8Cb, ..., *b)].
We have, by the Induction Hypothesis,

A,F"7a(al, iee am) =Bk ‘7[*&(*a1, ceeFy *am)]. That is, we

obtain a contradiction of the Inductioanypothesis with A F '7a(al,

=B [k *a *al, ... , *a ). similarly, we have by the Induction
o )

E]
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Hypothesis, A F a(al, cee am) V’B(bl, cee bk) =B = *u(*a s ses s *am)

1
\ *B(*bl, cee *bk).

Therefore, A F /a(a s cee s am) =SBk *[ a(al, cee s am)] and

A E [a(a;, cee am)‘v B(bl’ e y bk)] =9£ E *[a(al, cee am)
Ve, ..., b )]

Now, suppose that B(xl, cee s X y) is a well-formed formula

with x;, ..., xm, y its only free variables and suppose that for

-~

any a;, ... ,_am,‘b € A,

N o L ko $. . %
AE 8(a,, «-v , a_, b) =3B E *a¢( as «ee s tag, ).

We need to show that for any a cee o a', CeA,

1’

A = (:3y € C)‘B(a s eee s 3, y) =?B E (_jy e *0) *8(* cee 5 *a , W),

m
Suppose that A F (dy € C) B(al, cve s A, v). We can fix d € C

such that A E B(a cee o am; d). Therefore, by the Induction

~

Hypothesis, B F'*B(*al, e s *am, *3). Since *d e *c,
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ﬁ,F (:BYAE *c) *B(*al, eee , ta_, y).

Every well-formed formula in L is constructed from atomic

m

formulae using connectives and quantifiers. Thus, the above steps
show that if o is a well-formed sentence in L, then A Ea=B3B E fa.

Therefore, ¢ is a monomorphism.

‘The proof of M' = *A = U_*An is as follows:
n=0

If £' e€M', then f' is the fiber of amap f e M. f e M=f é'Kn
for some n = f' € (Kn)' = *An =S f' ¢ *A,

Now, if x ¢ *A, then x ¢ *An for some n. Thus, x € (Kn)'

and x = £f' for some f' ¢ M'. Therefore, x ¢ M' and the proof is

complete.
To prove that ¢ is strict, we need to prove that if y ¢ *A and

~

x ey, them x e *A. Now, if f'  is any element of M' = *A and
x e f', then x = g' for some g' € M' by construction since
£ ='{g‘ | g ¢ £}. Therefore x ¢ *A and ¢ is strict.
Consider the following example of the construction of a'monomorphism:'
Let R = RO be the set of real numbers and let é be the super-
structure on RO. Let N be the set of naturai numbers and let F
be the Fréchet filter on the index set N. We can extend F to an
ultréfilter U on N. Let B0 be a set of distinct individuals replacing
the equivalence classes of *Ro, the reduced U—ultrapower of RO over
N. We obtain the strict monomorphism &: & - B as in the genéfal case.
Let us examine this monomorphism.

ReR and ¢(R) =R'=*R=1{f'| £ ¢R}.

Let r € R. Then r ¢e M and r' = *r ¢ B is the individual replacing the
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equivalence class containing the constant function on N with value r.
certainly for T e M, rt R, and.so fr € fR. We identify *r_ with =«
and we can embed R into *R.

In the same way, *N contains a éopy of N. This copy of N is
a proper subset of *N. indeed, consider the function f € M defined
by f(n) =n, \/n e N. Recall that this ?unction occurred in
_Chapteriﬁ'in therexample of a non-standard model of analysis. Certainly
£ € N and therefore f' e *N. But f' is not in the copy of N.
Indeed, suppose f' = k' for some k e N. k € M 1is the constant
function k(n) = k for all n € N. f' =k'"=2f 2k=>{neN I f(n) = k} ¢ U,
This means that f takes the value k on an infinite subset of the
index set N and this is a contradiction of the definition of the
function f. Therefore, the copy of N in *N is a proper subset
of *N.
befinition

A binary relation b 1is said to be concurrent on a set D &
domain of b if and only if for any finite number of élements

a ... ,a_ of D, there exists some y in the range of b such

1’ m

ithat (ak, y) satisfies b for k=1, ... , m.
For example, the relation < on the natural numbers is a con-

current binary relation since given any finite set {al, cse o am}

of natural numbers we can find a natural number which is larger than

each of a -

1° m
?efinition

A monomorphism ¢: A + B is said to be enlarging (and *A s



,calied an enlargement of ;) if and only if for each concurrent
binéfy relation b ¢ A, there is some y ¢ *A such that (*a, y)
saﬁiéfies *» for ail a in the domain of b simultaneously. The
enlgrgement is ;alled strict if ¢ is strict.

In the construction of a monomorphism one can make special choiges
of the index set and the ultrafil;er to make ¢ enlarging. This is
involved in the proof of the

Enlargement Theorem

~

Fof every Suﬁerstructure A, there is a superstructure ﬁ and a
monomorphism &: A > g which is strict and enlarging.

Now, suppose that Ao is ;n infiniée set of individuals, Then,
by the axiom of choice, —Ao contains a countable subset AN which
can be identified with the set of natural numbers N. Thus A
contains a binary relation < on the elements of AN corresponding
to the binary relation < on the natural_qumbers. This relation
extends, under a monomonhism ¢, to a total ordering *< of *AN.
We haye that AN EE*AN' and < %< so that *< coincides with <

when restricted to AN. Since < 4is a concurrent binary relation,

if ¢ is enlarging, there exists some vy € *AN such that *a < y

for every a ¢ AN' Such an element y is called infinite.
*AN - Ay = {n e *AN | o is infinitel.
Even if ¢ 1is not enlarging we can have infinite elements. In

the preceding example, where RO is the set of real numbers, we have

that the copy of N in *N is a proper subset of *N so that
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M-Nt .
Definition
Given a monomorphism ¢: A > B where A0 contains a copy AN

of the set of natural numbers N, we call *A a non-standard model

of ;' if and only if *AN - AN $ o, (Actually *i is a model of
the set of sentences of the‘language»which are defined and true in A).

As we have seen above, if A0 is infinité and &: A > E is
enlarging, then *; is a non-standard model of A, since - *AN - AN + $.
Theorem

Let ¢: é > ﬁ be the strict monomorphiém of our previous
example. Then, there is no least infinite natural number. That is,
*N - N has no least member.
Proof

Suppose that a is anyAelement of *N - N. Certainly' a + *0
since ¥0 = $(0) for O e N. It is true in the set of ordinary
natural numbers that each h + 07 is the'sﬁccessor of another natural
number. Therefore, it is also true in *N and we‘havg a=0>b %+ *1
for an element b of *N. The binary relation *+ is the extension
o7 the relatiom + of N. Now, b 1is also an element of *N - N
since, if b is.in the copy of N, then so is a, but a ¢ *N - N.
Therefore, b e fN - N and b *< a. This proves that there is no
ieast infinite natural number.

Now, suppose that in our first order language described in the

beginning of this chapter, we had not required that all quantification

bz of the form (;fx e C) or (E/x € C) for C e A.
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Without this restriction we could write
o= [V (Vo [wey=weNMIALQW [veyll 2030 xeyAlV2)
zey=xs ZHH
which states that every non-empty subset of N has a least member.
We would obtain, é'% a =9£ E *q. Therefore,
BE LYy (Vo) wey=we *'ITANIY veyll 2130 xey
AL(Vz) z e y 2 x < 2]111.
ﬁow, *N‘— N 1is a subset of *N and *N - N + $. Therefore,
we would conclude that *N - N has a least member. This contradicts
the preceding theorem.

The restriction on quantification doés not lead us to a contradic-
tion. Recall the relativization of quantifiers to internal sets. With
the resttigtipn on quantification, we have the sentence

X = [(Vy € R)) [(\/w eR) [wey=we N11 A [(Ev e R) [v.e yl]
| S dxe® xey Al(VzeM zeyx < 2]l

We determined that the ¢ transform of X would read "every internal
non-empty subset of the set *N has a least member".f Since *N - N
has no least member, we must conclude that *N - N is not inte;nal. Thst
is, *N - N is external in *N and we have no contra&ict;on at all.

Note that the above example of the relativization of quantifiers to
internal~sgts is, in fact, true for all monomorphisms and not just for
strict monomorphisms. -Since *Rl is s;andard, y € *Rl implies that
f is internal. Therefore, ‘"\/y € *Rl" reads "for all internal sets
in *Rl". The least member x is internal since it is an element of

the standard set *N.



CHAPTER V

EXTRA~STANDARD MODEL OF ANALYSIS
HIGHER ORDER STRUCTURE AND LANGUAGE

In what we have done up to this point, "analysis" has meant the set
of ali sentences which are true of the set of ordinaryrreal numbers, the
usual model of analysis. We will return to this pattern later in this
chapter. Thié,sgt K ofisentences is vast beyond comprehension, and
there is no means of constructing more than a small part of K. Analysis
usually means the facts that can be deduced from a very restri;ted subset
of K called "axioms". For such restricted sets of axioms, the incomplete-
ness phenomena of Gddel are present. We shall prove below that we can
obtain models of the set of axioms which are not élementary extensions of
R and hence certainly not reduced ultrapowers of R.

Since the term "non-standard model' has been precisely defined, we
introduce a temporary designation to descfibe the kind of model we

want to discuss, an extra-standard model. An extra-standard model of

analysis is a model, say M, of some set of axioms for analysis such
that M contains more individuals than there are ordinary real numbers.
We proceed to outline the proof of the following theorem. |
Theorem

There are extra-standard models of analyéis which are not reduced
ultrapowers of the set of real numbers.
Proof

- The proof is divided into two parts.

(i) There are models, N', of the set of natural numbers O, i, 2, ...

which are not reduced ulcrapowets of the usual model, N.

(ii), Using fN', as in (i),.we can construct an extra-standard

model, R', of analysis. We then show that R' cannot be a.
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reduced ultrapower of the set of real numbers R.
Proof of (i)

If M is a model 6f Peano Arithmetic, and M 1is a reduced ultra-
power of the model M, ‘then M 1is an elémentary extension of M
(by a theogem étated in Chapter II).

Gédels Completeness Theorem states that a sentence A is provable
from the set of axioms T ifjand only if A 1is true in each model
of T.

Godels Second Incompleteness Theorem states that if Peano
Arithmetic is consistent then the sentence CON 1is not provable in
Peano Arithmetic. CON is the sentence ‘7:3x Prf(x, 0 = 1) where
Prf(x, 0 = 1) is a formula of Peano Arithmetic which expresses the
statement that "x is the Gddel number of a proof of 0 = 1",
Therefore, there must be a model M of Peano Arithmetic in which CON
is false. CON 1is true in the set of natural numbers N which is
the usual model of Peano Arithmetic. CON is true in any model
isomorphic to N, Therefore, M cannot be an elementary extension
of any model isomorphic to N. Hence, M cannot be a reduced ultra-
power of any model isomorphic to N. l(There will be an infinite
number in M which acts like the number of a proof of 0 = 1).
Therefore, there are models, N', of the set of natural numbers
which are not reduced ultrapowers of N.

Proof of (ii)

Just as we construct the set of real numbers F from the set of
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'natgral nqmbers N, we can construct R' from the model X' of
1. That_is,'we start with the elements of N' and construct the
set I‘ - of "integers"; the elements of N' along with their "negatives''.
Next, we construct the set Q' of '"rationals", the set of ordered
pairs in which the first pOsition-is filled by elements of I' and
the second position is filied by "non-zero' elements of I'. .Next, we-
considervﬁﬁe set of all Cauchy sequences of elements of Q' and
défine an equivalence relation on the set of sequences. Two sequences
are equivalent»if they converge to the same limit. We denote tﬁe set
of equivalence classes by £R'. Note that R' contains a copyv of
the set of real numbers R. Indeed, N' contains a copy of the set
of natural numbers N, and in the‘construction of R', we obtain a
.copy of the set of real numbers R from this copy‘of N.

" Now, »F' is not a reduced ultrapower of R&. Indeed, if.this
were so, then R' would be an elementary extension of R, but ﬁhe

statement

7[(3){) [x e i, APri(x, 0 = 1)]]

is true in R' where iN is interpreted by N', but not true in ZX,

where iN is interpreted by N. Therefore, R' cannot be an
elementary extension of R ‘and hence R' cannot be a reduced ultra-
power of R. R' 1is an extra-standard model of analysis.

We now return to a discussion of theories in which "analysis" means

the set of all sentences which are true of the set of ordinary real

numbers, the usual model of analysis.
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Suppose thiat we want to be able to reference more than one "type"
of entity, for example, real numbers and sets of real numbers. We
can proceed in two ways.

The first way, derived from the standard method used tc develop
mathematics within set theory, is to form the superstructure § on
the'gét of real numbers as in Chapter IV. The superstructure is a
"first order" stfucture since it formally refers to only one ''type"
of.entity, a set. We adopt a first order language for é and use
its variables uniformly to reference all "types'" of sets which we

~

intuitively think of as being different. For example, R contains

R =R the set of real numbers and Rl’ the set of all sets of

0’

"set" and, hence,

real numbers, but, set-theoretically, each is just a
of the same formal "type'.
Instead of this, we could consider a.étructure in which these

intuitively different "types" of entities are formally distinguished.

Such a structure is called a higher crder structure. The class T of

types‘is defiﬁed inductivel& as follows:
(i) O 1is a type (natural number zero)
(1i) If n is a positive integer and T,, ... , T, are types, then
(11, sy Tn) is a type.

individuals are of lowest type (ie. O0) and sets of individuals
and relations between individuals érerf higherAtype than in&ividuals.

Consider the following example of a higher order structure to be
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denoted by M. M contains all real numbers. Each real number is
assigned type 0. M contains all sets of real numbers and each set
of real numbers has type' (0).  For example, the set of natural numbers
N and the set of real numbers R each has type (0). M contains
the relation of logical identity between real numbers. This relation
is assigned type (0, 0) since the relation is a set of ofdered
pairs in which real numbers (entities of type 0) fill both the first
and second places. M contains the relation of membership of real
numbers in # set of réal numbers and this relation has type (0, (0)).
M  also contains the relations of addition and multiplication of real
numbers and these relations both have type (0, O, 0), since they are
each a set of ordered triples of real numbers. This example indicates
the method for forming types.

In order to discuss a higher order structure we need a higher

order language. A higher order language consists of constants to

denote each gntity of each type in the strﬁcture, and connectives,
quantifiers and brackets just as in a first order language. Regarding
variables, we could have a distinct set consisting of an infiﬁite
number of variables for each type 1, so that for any variable in

the language we know the type of the entity that it represents. For
each type 1 we woﬁld have a set of relation symbdls of the form

RT( s ese s ) where the numbers of embty places and the types of
entities that fill the empty places depend on T. For example; let
the addition and multiplication of real numbers be denoted by

and P (, , ) respectively. We write

S(O')lkonr 0)( e ) (0, 03.0)



S(o 0 0)(ia9 ib’ iC) and P( 0 0)(iaa ib, iC) for a4+ b = C
s E) s

0,
and a - b =c¢ respectively where each of a; b and c is»a real
number (entity of type 0) dénotedjby ia’ ib and 'ié in the language
respectively.

Customarily in a formal language we denote relation symbols in
the form R( , ) where R(ia” ib) might denote, for>example, a < b.
There is no reason wh& the same could not be denoted by a symbol such
as @T( s «s+ 5. ) with only one symbol ¢t( s +se 5 ) for each type
T. The number of empty places and the entities that fill the places
depend on 1.  The first argument'position of @T( s s 5 ) is
filled by a symbol which denotes the particular relation of type T
being described. The reasons for preferring this will appear. In
this case, we need only one set of variables since the position which
a variable fills in a relatibn symbol determines the type of entity
which it represents.

To illustrate an application of this relation symbol, suppose that
the relation of membership of a real number in a set of real numbers
is denoted in the language by the symbol €. Then, ¢ hés type
(0, (0)). The fact that the set of natural numbers, denoted in the

language by the constant i is non-empty, is written

N,’

~Note that the position which a symbol fills indicates the type of

entity which it represents. Thus, € has type (0, (0)), x has

53
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type 0 and iN has type (0).

If the symbols S and P  denote addition and multiplication
of real numbers respectively, and if ia’ ib, ic denote a, b, and ¢
respectivel +b = i i ¢ i, 1,1
spectively, then a b ¢ 1is written 200, o, 0)(S, i 1b’ 1C)
and a - b =c¢ is written ¢,
‘ (o, o,

Note that there is now no reason to consider that the' symbols

O)(P, i, 1., 1C).

€, P, S, which denote these relations are of a different kind

than the o;her constants i ic used in the formulae.

iN’ a’ ib’
We must make sure that whenever we write a formulg, each vari-
able or constant in the formula always fills positions of the same
type. Such formulae are called "stratified" and, by restricting
attention to stratified formulae we observe the spirit of a higher

‘order type theory by not allowing such formulae as

°(0, (O))(Es X, Xx) which expresses x € x, which lead to paradoxes

of set theory.

We assume tha;_a higher order language for a higher order
structure contains "enough' constants to be put into a one-to-one
correspondence with the entities of the structure of each type.
For example, if M is the higher ordér structufe described early in this
chapter with the set of real numbers as the set of individuals, and if

I. is a higher order language for M, then L contains a constant ir to denote



55

each real number r, a constant iB to denote each set of real
numbers B, the symbol = to denote the relation of logic;l identity
of real numbers, the symbol € to denote the membership relation of
a real number in a set of real numbers and symbols S and P to
denote addition and multiplication of real numbers respectively.

These are the constants denoting all-of.the entities of M. M
certainly does not contain all entities of all types that can enjoy a
set-theoretic existence based on the set of real numbers. If M did

contain all possible set-theoretic entities of all types then M

would be called a full structure.

Let K be the set of sentences formulated in the language ‘'L .
which are defined in M and let K' be the set of these senténces
which are true in M. A higher order structure *M is called a

higher order model of K' if all the sentences of K' are true in

M. It can be shown, as for first order models, that a sentence
which is defined in M is true in M if.and only if it is true in
*H.

M can be embedded in *M. Indeed, if a 1is an entity of M of

tyvpe 1, then this fact will be included in sentences of K'

-

containing ia' The sentences are true in *M, so there will be an
entity of type 1t in *M, say *a, which corresponds to a. We
identify a and *a for every entity a of M and this provides

us with the embedding. The mapping a -+ *a 1is one-to-one since

different entities of M are denoted by different constants in L,
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which in turn, denote different entities of *M.

Even if M is a fu11 structure,' *M need not be full. The
entities which are present in *M are éalled internal entitieé. If
*M is not fuli; then there are entities which do not exist in *M.
These entities are called extern@l, If an entity of *M corresponds
to an entity of M under the embedding of M into *M, then this
entity of *M is called standard.

O0f course, any higher order structure could be thought of as a sﬁb—
structﬁre (in an éppfopriately defined sense) of the full structure
over its set of»indivi&uals. One can consider that our structures
simply ignore some the the entities of the full structure.

If the copy in *M of the set of individuals of M 1is a proper

subset of the set of individuals of *M, then *M is a proper

extension of M and *M is called a higher order non-standard model

of M. (Actually *M is a model of K'; the set of sentences which
are defined and true in M).

The Fiﬁiteness Principle, which is stated in Chapter III for first
order languages and structures is also true for higher order languages
an& structures.. Therefore, if K 1is a set of sentences in a higher
order language such that every finite subsét of K has a higher
order model, then K has a higher order model. The proof of this
involves the following::

We add to our language L a one-place relation symbol _OT( ),

for each type 1, which allow us to state the type of an entity. Our
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new language is denoted by L'. For example, if r 1is a real number
(entity of type O0) we write [@d(ir)]. We also transform each.
sentence of L to a sentence of L'. For example, X = [(:ﬂx)

6(0, 0)) (e, %, iN)] becomes Xk = [(:}x) [eo(x),ﬂ @(0’.(0))(5, X, iN)]]'

For a sentence X of L, the new sentence XA of L' 1is called

the type transform of X.

We associate a first order structure M, . with M. The individuals.

A

of MA are the individuals and relations of M. The set of relations

i

MA consists of relations to interpret the relation symbols

Oi(' ).'and ¢T( s ses 5 )e Then, we 'prove that a sentence X -in

(o]

L is defined and true'in M if and only if‘it'é type transform X,
is défined and true in MA; At this point, we apply the Finiteness
Principle for first order languages and structures to prove the same
principle for higher order languages and structures.

We can see from this outline of the proof that the proof involves
putting all entities qf_all types in the higher order structure M
into one "type' of entity, the individﬁals of the first order structure

M This one ''type' parallels the superstructure of Chapter IV.

At
Now, each iﬁdividual of the first order structure is denoted in the
language L' by a constant, and each relation of MA is denoted by
a relation symbol in L'.

Recall the following definitions.
Dafinition

A binary relation b of a structure M is called concurrent
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if for every finite set «{al, st aﬁ} of elements in the domain of
b, there exists an element y in the range of b such that,_b(ai,‘y)

helds in M for i =

il
-
o/

Definition

A model “*M of_a struétufe M 1is called an enlargément of M if,

for every conéhrreﬁt binary relation b of M, there exists an
element y in *ﬁ such that *b(*x,'y) holds in *M for every X
in the domain of .b where *b _and * in *M vcorrespohd to b and
x in M'-respe;tively. We say that *M bounds each concurrent
relation b and that b has y as a bound.

As we prpved in Chapter IY, if the set of individuals of a
structure M is infinite, then any enlargement *M of M is a non-
standard model of M. Indeed, the binary relation + is concurrent
if the set of individuals is infinite, and since *M is an ehlargement
of M, *M bounds this binary relation. We obtaip aﬁvindividual y
of :*M such that vy # *a for every individual a of M. Therefore,
*M is a proper extensi;p of M and '*M is a non-standard model of
M.

Theorem

Each étructure M has an enlargement.

The proof of this theorem involves considéring more than one con-
current binary relation.simultaneously as we noted in Chapter III.

Lét K be the set of all sentences which are true in M and let H

be the set of sentences consisting of one sentence for each concurrent



binary relation B, Stating tha; b has a bound. We prove that
KUH has a model, say *M. Since *M is a model of K and *M
boﬁnds‘eaCh concurrent binary ;eiation of M simultaneously, *M  is
an enlargement of M.

If M is a fqll higher ordexr structure with set A of individuals,
‘then M resembles the superstructure ,& on A since each of M
and ; contains all the set-theoretic entities that exist based on
tﬁe_set of indiViduals _A. There is one difference. The theory of
types dbes not allow a set containing different types of elements.
A set has type (1) for some type T, so that each element of
the setrhas type 1. This excludes, for example, a set containing as
elements both individuals and sets of individuals; Such a set exists
in a superstructure since, for each n 2 0, An+1 is the set of ail
subsets of AOKJ A .

Shimrat in‘[7] developed ultrapowers and mappings similar to
those of Zakoﬁ in [8]. The main difference in these two approaches
is that,Zakon defined‘monomorphisms and then constructed ultrapowers
to prove the existence of monomorphisms, while Shimrat constructéd

ultrapowers and then used them to define monomorphism.
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