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ABSTRACT 

Higher order finite difference methods are discussed with respect 

to speed and accuracy when used in the solution of elliptic partial 

differential equations. 

Although fast direct methods for solving elliptic partial 

differential equations are currently often discussed in the literature, 

the methods usually lean towards using the conventional five-point 

differencing on a uniform rectangular mesh which gives rise to block 

tridiagonal and tridiagonal matrices of Toeplitz form. For the 

solution of large linear systems which result from the use of a 

finite difference formula involving more mesh-points, the matrix 

equation 

XA + AY = F 

is used instead of the usual composite matrix approach. Although 

the matrices involved become less sparse, the operation count remains 

3 
0(n ) when using an n x n mesh. However, for a comparable accuracy, 

n is much smaller for a higher order finite difference formula than 

that required for a standard five-point formula. 
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CHAPTER 1 

INTRODUCTION 

Partial Differential Equations are of interest since these 

arise in the mathematical formulation of many physical problems, 

for example, in equilibrium or steady-state problems the equilibrium 

configuration 0 in a domain D. is to be determined by solving the 

differential equation 

L[ei] = F 

within D, subject to Certain conditions 

Bi[0] = gi 

on the boundary, 8D , of D . Usually the integration domain D 

is closed and bounded. Such problems are known as boundary value 

problems. Steady viscous flow, steady temperature distribution and 

equilibrium stress in elasticity can be mentioned as examples of 

steady-state problems. The governing equations for such problems 

are elliptic. 

1.1 NOTATION AND CONVENTIONS. 

Unless otherwise mentioned, the following notation and conventions 

are assumed. 

Scalar variables are denoted by lowercase letters, e.g. a, b, 

X, y, a, 3 . 

-1- 
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Column vectors are denoted by underscored lowercase letters, 

e.g. V, w, £ . 

Matrices are denoted by capital letters, e.g. A, B, C . 

The, elements of a column vector v are usually indicated as 

The elements 

The elements 

V = [v , v , V , ... , V ] . 
^ '■ 1 ’ 2 3 ’ n^ 

of a row vector v are denoted by 

V = [Vj, V^, V3, ... , vj 

of a matrix, A , are usually indicated as 

A = [a. .] . 

The value of a function f(x, y) , evaluated at a point 

Cx., y.) is denoted as f. . . 
J ^ 19 3 

It is also understood that 

(P9^)/ \ — 
u (x, y) = 

,p+q 

8x^8y^ 
u(x, y) . 

m 
The usual notation 0(h) is used to indicate a truncation 

error of order h^ . 

1.2 TYPES OF PROBLEMS TO BE SOLVED. 

In the ensuing work the numerical solution of the elliptic 

partial differential equation 



3 3 3 
a(x) —^ u(x, y) + 3(x) u(x, y) + y(x)u(x, y) + 0(y)—-r-u(x, y) 

3x^ 9x ^^2 

+ y(y) ^ u(x, y) + C(y)u(x, y) = f(x, y) , 

a(x) , 0(y) > 0 (1.2,1) 

is considered on the rectangular region 

R: X. ^ X ^ X s y« ^ y ^ y_ » 

with Dirichlet boundary conditions. The solution u(x, y) of the 

equation (1.2.1) is required to take on prescribed values on the 

boundary 3R of the region R where u(x, y) is assumed to be 

sufficiently smooth on and within the region R . For the existence 

of a unique solution to (1,2.1)9 it is further assumed that the 

coefficients a, YS i C and tlie function f satisfy the 

required conditions (Courant and Hilbert [8], page 334). 

Well known examples of elliptic partial differential equations 

are Poisson's equation 

2 2 
—^ u(x, y) + -~ u(x, y) = f(x, y) (1.2.2) 
3x 3y 

and Laplace's equation, 

2 2 

—^ u(x, y) + —^ u(x, y) = 0 (1.2.3) 
3x 3y 

which can be obtained from equation (1.2.1) by setting 
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a(x) = 0(y) = 1 , 

3(x) = Y(X) = 'i'(y) = C(y) = 0 

and for Laplace's equation, f(x, y) = 0 . 

For convenience, only equations of the form (1.2.2) and (1.2.3) 

are considered. The generalization for the equation (1.2.1) is 

straight forward but involves tedious manipulation. 

1.3 DISCRETIZATION AND MATRIX EQUATION. 

The method of finite differencing deals with the discretization 

of an arbitrary problem involving partial differential equations 

CForsythe and Wasow [10], page 178) and, in particular, in this 

work, with the problem outlined in section 1.2. To apply this 

method, a network of mesh-points is first established through out the 

region of interest. These mesh-points are the points of intersection 

of mesh-lines drawn parallel to the axes covering the region. The 

terms 'grid-point', 'pivotal-point', 'nodal-point' and 'lattice- 

point' also refer to a mesh-point. After this point the term 'mesh' 

will be used to denote the network thus obtained, and synonymous to 

lattice or grid and 'point' will be referred to as mesh-point. 

Along the x-axis the mesh-lines are drawn through, 

X <x <...<x.<...<x - . 
0 11 n+1 

and those along the y-axis are drawn through 

y„ < < ••• < yi < ••• < y^^^ . 
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and the respective mesh-spacings are defined as follows; 

hj = , j = 0(l)n , 

’"i = ^i+i - yi > i • 

(1.3.1) 

It is shown in fig. (1.1) how the basic approximation involves 

the replacement of a continuous region by a mesh of discrete points 

within R , 

Let 

U = 

denote the true solution to the equation (1.2.2) at the internal 

points of 

{(Xjj y^) : i = 0(l)m + 1 , j = 0(l)ii + l}^ (1.3.2) 

Where 

“i,j = yi^ 

is the exact value of the solution at Cxj, y^) 
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Fig. 1.1 DISCRETE APPROXIMATION OF A 

CONTINUOUS TWO DIMENSIONAL REGION. 

The transition from the entire continuous region to a finite set 

of points destroy the possibility of an exact calculation of the 

derivatives (Kantorovich and Krylov [15], page 199). The derivatives 

in equation (1.2.2) are approximated in terms of h , k , and their 

finite difference expressions involving central, forward or backward 

' % 
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differencing at each point within the region of interest. The 

boundary conditions are also approximated as such. This; is a 

method of reducing the problem of differential equations to a 

linear algebraic systdm by using a mesh (Kantorovich and Krylov 

[15], page 199, Forsythe and Wasow [10], page 175-176). This 

process is called discretization. Let 

i = l(l)m , 

A = [a. .] , 
j = iCDn . 

denote the solution of the system of finite difference equations 

thus arrived at. In general the true solution U differs from A 

at a particular point. The difference revealing the discrepancy 

between the solution of the differential equation and the solution 

of the system of approximating difference equations on a mesh of 

particular size is called the discretization error. Taylor’s series 

expansions may be used to investigate this error of discretization 

for each replacement. 

It can be noted that approximate values at non-mesh-points may 

be evaluated from the discrete solution by interpolatory techniques 

(Ames [2], page 15). 

The discretization of equation (1.2.2) by finite difference 

technique leads to a matrix equation (Bickley and McNamee [5j) of 

the form 
\ 

AV + WA = G (1.3.3) 
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where V, W, G are known matrices and A is the solution matrix. 

In discretizing equation (1.2.2), the axes are so chosen that the 

X variation is indicated by the column suffix j and the y 

variation by the row suffix i , that is, i increases vertically 

upward and j horizontally to the right as in fig. 1.2. 

Fig. 1.2 SYSTEM OF AXES SHOWING PROJECTIONS 

OF DISCRETIZATION POINTS 
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With this setupj the matrix 

i = l(l)n 5 

V = [v. .] , (1.3.4) 
3 = l(l)n , 

arises when a finite difference expression is substituted in equation 

(1.2.2) for the x-derivative at the internal points of (1.3.2). 

Likewise, the matrix 

i = l(l)m , 
W = [w. J , Cl.3.5) 

j = l(l)m , 

is obtained when y-derivatives in Cl.2.2) are replaced by the finite 

difference expression at the same internal points of Cl.3.2). 

The values of the function f(x, y) evaluated at the internal 

points of (1.3.2) in the process of discretization is denoted as 

i = l(l)m , 
F = [f. ] , (1.3.6) 

j = l(l)n , 

where 

f. . 

The prescribed values of the function at the boundary points 

are denoted as 

B = [b. .] 
i = l(l)m , 

5 ■ (1.3.7) 
3 = l(l)n . 
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Equations (1.3.6) and (1.3.7) can be combined to give 

G = [f. . + b. .] 
i = l(l)m , 

j = l(l)n . 

The matrices A and G are of the same order. 

It can be observed that if the x-increment is indicated by row 

suffix i and the y-increment by column suffix j then with the 

altered notation 

{(x., y^): i = 0(l)m + 1, j = 0(l)n +1} , 

the matrix equation (1.4.3) takes the form 

VA + AW = G 

where 

V 

W 

[v. .] 
1,3 

[w. .] 
1,3 

i = l(l)m , 

j = l(l)m , 

i = l(l)n , 

j = l(l)n , 

and the matrices A and G remain of the same order. 

1.4 HIGHER ORDER DISCRETIZATION. 

The recent literature (Hockney [13], Buzbee, Golub and Nielson 

[6], Swarztrauber [21], Bank and Rose [4], Sweet [20]) seem to 

concentrate on the use of five-point difference formula on a 



uniform rectangular mesh for the solution of equations of the form 

(1.2.1). The conventional composite matrix formulation using tri- 

diagonal and block tridiagonal matrices of Toeplitz form appears to 

be used frequently. 

In the ensuing work the numerical solution of elliptic partial 

differential equations is investigated using higher order discretiza- 

tion formulae on a uniform rectangular mesh. The solution of the 

corresponding system of difference equations is obtained by solving 

a matrix equation of the form (1.3.3) rather than Using a linear 

system which involves a composite matrix. 

The solution matrix, A , of the finite difference system 

(1.3.3) at each internal point of (1.3.2) is found by Using the 

algorithm SOLVEXAAY (Hoskins, Meek and Walton [14]). 



CHAPTilR 2 

DISCRETIZATION FORMULAE 

2.1 INTRODUCTION . 

Finite difference schemes can be used for the solution of a 

variety of problems in physics and engineering. The region on 

which the solution is desired is replaced by a finite set of points 

and the governing partial differential equation of the problem is 

approximated by finite difference formulae at each of these points. 

Finite difference formulae for discretization of some partial 

differential equations can be found in Abramowitz and Stegun [1], 

and Collatz [7]. Such discretizations may lead to a matrix equation 

of the form (1.3.3). 

2.2 FINITE DIFFERENCE OPERATORS AND 
THEIR RELATION TO DERIVATIVES'. 

Consider a mesh defined in section 1.3 where mesh-spacings hj 

and are given in (1.3.1). The following notation for various 

differences and related operators is used. They are applied to a 

function 

i = 0(1 )m + 1 , 
u = u(x., y.) , 

J j = 0(l)n + 1 , 

over a constant mesh-spacing 

-12- 
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hj = h , j = 0(l)n , 

and (2.2.1) 

kji^ = k j i = 0(l)m 

The following are standard definitions for difference operators 

(S. Goldberg [12]). 

Central difference: 

6 u. . = u 
X 1,3 

- u 

+ - TT 

(2.2.2) 

Forward difference: 

Au. .=u. -u. . 
X 1,3 1,3+1 i»3 

(2.2.3) 

Backward difference: 

V u. . = u. . - u. . ^ 
X 1,3 i»3 i>3-l 

(2.2.4) 

Differential Operator: 

n _ 
X 1,3 3x 

X=Xj 

Shift Operator: 

E u. . = u. .. - 
X 1,3 1,3+1 

(2.2.5) 

(2.2.6) 

with similar expressions for the y-direction. In subsequent 

developments x-directional expressions are derived and y-directional 

expressions are taken to be analogous. 
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The following operational identities are immediate from (2.2.2) 

to (2.2.4) and (2.2.6): 

6 = E - E 
XXX 

(2.2.7) 

A = E - 1 , 
X X ’ 

V = 1 - E ^ . 
X X 

(2.2.8) 

(2.2.9) 

The finite difference approximation to derivatives can be 

obtained by relating the operator with others in (2.2.2) to 

(2.2.6). In deriving relations between operators the Taylor’s series 

expansion 

2 3 
3u. . , 2 3 u. . , 3 3 u. . 

‘i.j+l -i,j • 1! 3x 2! 3^2 3! 3^3 
u. . ., = u. . + 

can be re-written as 

I u. . = 11 + D 
X 1,3 \ 11 

2 „ 3 
h ^2 h ^3 

X + 2T “x + 3T + • • • 

hD 
X 

e u. . 
1,3 

The relation 

] u. . 
I 1,3 

hD. 

^x = ® (2.2.10) 

is useful since the equality between operators as in (2.2.10) means 
n h'^D'^ 

that E and ^ 
TT 

give identical results when used for any 

polynomial of degree n for any n (Fox, L. [11], page 4). It is 
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known that all finite difference formulae are based upon polynomial 

approximation, that is, they give exact results when operating upon 

a polynomial of proper degree. In all other cases the formulae are 

approximations and are usually expressed in series form. Since only 

a finite number of terms can be used, the truncation error is of 

concern. The presence of such errors are indicated by using the 0 

notation. 

The relations (2,2.7) - (2.2.9) and (2.2.10) give rise to the 

following: 

hD = log E 
X ^e X 

= log (1 + A^) (2.2.11) 
‘-'e X 

= -log^d - V^) (2.2.12) 

= 2 sinh -Y (2.2.13) 

The first derivative of u with respect to x at x = Xj can 

be expressed in terms of forward differences as follows: 

8u 
8x 

1 / A 1 ^ 1 1 A"^ ^ = ^IA - L +— A -—A + 
h l X 2 X 3 X 4 X 

2 

...lu. . (2.2.14) 
/ ^ 9 H 

x=x. 
3 

from which an expression for —^ u(x, y) at x = x. can be formed, 
3x ^ 

viz: 
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afu 

3x^ 
x=x. 

: 

= :^{ 
.2 .3 ^ 11 .4 5.5^ 137 .6 A - A + A - -^ A + -rTtTT A 
X X 12 X 6 X 180 X 

-...|u. . I lO 
(2.2 

A similar formula can also be derived at the point t>y setting 

u. . = E u. 
1,3 X 1,3-1 

in equation (2.2.14) (Fox, L. [ll], page 7 ), i.e 

3u 
3x 

x=x. 
3 

[log^a + A^)]u.^j 

= vT [log^d + (1 + A X i,3~l 

1/A ^ 1 A2 1 A3 ^ 1 A** 1 A5 ^ \ 
= T-P^ +7C-A --F-A + VTT A “ ^ + ... 1 u. . , h\ X 2 X 6 X 12 X 20 x J 1,3-1 

and for the second derivative one can obtain 

a^u 

3x^ 
= 4. [A^ . i A-* + J. A® + A" 
'2 I X 12 X 12 X 180 X 180 x 

x=x. 
3 

. u. . , 
/ 1»3-1 

(2.2.16) 

This process can be repeated for the point (3-2) and (3-3) 

to yield 

2 
9 u 

9x 

1|2 3 14 16 17 I 
-V|A +A - A + 7^ A - 7^^ A + ... u. . ^ , 2 \ X X 12 X 90 X 90 X j i,j-2 

x=x. 
3 (2.2.17) 

.15) 

and 
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41A" . 2A^ 
,2 1 X X 12 X 
h 

1 1 
12 ^x 90 ^x 

x=x 

.ju. . . (2.2.18) 
ijJ-3 

The forward differences in the expressions for u (ji.j y*) can be 
XX 3 ^ 

evaluated using the following convenient form: 

n 

I 
1=0 

A^u. . = I (-l/[?)u. .. „ 

where | ^ j are binomial coefficients. 

Similar formulae involving backward differences can be established 

using equation (2.2.12). The central difference expression for second 

derivatives is obtained from equation (2.2.13): 

a^u 

ax" 
= (- I h 

sinh 
-1 

] u. . 
/ 1,3 

x=x. 
3 2 2 2 

6 - + 1-^6^ 

h- ■ 2"-3! ^ 2‘*-5! ^ 
= ;T{' 

2 2 2 ^ 
1 -3 -5 ^7 , I 

-   0 + . . . I u. . 

2^-7! "" ■ 

,2 Px 12^x 90 560 ^x ^ 3150 ^x 
n 

...)u. . 
i i»3 

(2.2.19) 

2.3 FINITE DIFFERENCE FORMULAE. 

2.3.1 FIVE-POINT FORMULA, 

Consider the points (x^ , y^), (x^ , > ^1-1^’ ^^j-l’ ^i^ 

and rectangular mesh (1.3.2), as illustrated in 

fig. (2.1). An approximate expression for Laplace’s operator 

^2 a a 
+ 

2 2 
ax ay 
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at a point obtained by forming the differences of 

the values of u at the point 

Fig. 2.1 FIVE-POINT MODE 

(Xj » "the four points closest to it (Kantorovich and Krylov 

[15]5 page 181). The following expressions are obtained by using 

Taylor’s series expansion for a uniform mesh: 
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, Cl,) ^ (2,) ^ (3,) h‘^ (4,) ^ 
u. . , - u. . = hu. ! + — u. ! +-rr^* • +777"^* • + ... 
1,3+1 1,3 1,3 21 1,3 3! 1,3 4! 1,3 

u. . - - u. . 
1,3-1 1,3 

u. - . - u. . 
1+1,3 1,3 

l.D 2! 1,3 3! i,j 41 i,3 

(2.3.1) 

. (,1) . ,,(,2) . k\ (,3) . k“ „(,4) 
KU. . + TT-r- U. . + U. . + 77-p U. . + 

1,3 2! 1,3 3! 1,3 4! 1,3 

u. _ i - u. . = 
1-1,3 1,3 1,3 2! i,3 31 1,3 4! “i,j 

The replacement for Laplace * s operator is then obtained by 

adding all the equations in (2.3.1) term by term (Kantorovich and 

Krylov [l5j, page 181): 

u. . . - 2u. . + u. u. _ . - 2u. . + V . 
1,3-1 1,3 1,3+1 ^ 1-1,3 1,3 1+1,3 _ ^(2,) ,2) 

1,3 1,3 

12 1,3 12 1,3 
(2.3.2) 

Hence, the approximation 

3x^ 
X=Xj y=y: 

u. . T - 2u. . + u. . - 
~ 1,3-1 1,3 1,3-H 

u. T . - 2u. . + u. _ . 
1-1,3 1,3 1+1,3 (2.3.3) 

2 2 
with a truncation error of 0(h)+0(k). 

The five-point approximation (2.3.3) for Laplace's operator can 

also be obtained from equation (2.2.19) and its analogue for the 

y-derivative using term by term addition. 
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Thus the approximation is 

3x^ 

d U 

3y^ 
x=x y=y: 

12 1 2 
-^6u. .+—r-6U. . + ... 
h2 y ^’3 

u. . - 2u. . + u. . - u. _ . 

2 
h 

2u. . + u. . . x,3 1+1,1 

(2.3.4) 

which has the error of the same order as in (2.3.3). 

Discretization of Poisson's equation (1.2.2) with Dirichlet ; 

boundary conditions over a rectangular region by the five-point 

formula (2.2.4) leads to the matrix equation (1.3.3) (Bickley and 

McNamee [5]) where 

✓ 
2 -1 

-1 2 -1 

V 
-1 2 

S 

X 

-1 2 
•^nxn , 

'2 -1 

-1 2 -1 

W 

S. 
-1 2 

mxm » 
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and G = -F + 

with F = (f. .) = {f(x., y.): i = l(l)m , j = l(l)n} , 
1 >3 3 

A = i = l(l)m , j = l(l)n} 

B, = 
, 2 

u 

u 

u 

1,0 

2,0 

3,0 

CTti,0 

u 

u 

u 

l,n+l 

2 ,n+l 

3 jD+l 

u 
■m,n+lj ’ 

u 
0,1 

u 
0,2 ^0,3 *•* ^0,n 

0 

^m+1,1 ^m+1,2 ^m+1,3 '** ^m+l,n 
k ^ 

It may be noted that the central difference operator -6 is ' 

2 
used rather than 6 in order that V and W may have positive 

eigenvalues. 

It is understood that the unspecified elements in the matrices 

are zero. 

2.3.2 A NINE-POINT FORMULA. 

Consider Poisson's equation (1.2.2). The solutions of the exact 

equation (2.3.2) and the approximate equation (2.3.3) in finite 
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differences for the same boundary conditions do not in general agree 

exactly. (Kantorovich and Krylov [15], page 182). The measure of 

the discrepancy between them is indicated by the truncation error 

0(h ) + 0(k ) . The accuracy may be improved by a higher order 

finite difference formula designed to reduce the truncation error. 

Such techniques are discussed in Kantorovich and Krylov [15], 

page 182-199, Collatz [7], Fox [llj, page 260. In addition to the 

values of the function u at the points used in section (2.3.1), 

consider the values at ^i^’ ^^j+2’ ^i^’ ’ ^i-2? 

(Xj , well. An analysis similar to that in section (2.3.1) 

may be carried out to produce an approximation of the form (2.3.3) 

This can also be accomplished by taking the first two terms from 

equation (2.2.19) and its analogue for the y-derivative and then 

adding them together. Hence 

+ 

1 .4 1 1.2 1 ,4 
12 *^x ) ^i,j ^2 (‘^y 12 Vhi,j 

-u. . „ + 16u. . - 30u. . + 16u. - u. . 

-u. ^ . + 16u. . 
1-2,3 1-1,3 

30u. . + 16u. T . 
1,3 1+1,3 ""i+2,3 

By Taylor's series expansion it can be shown that 

(2.3.5) 



-23- 

1 

h 
2 12 X 

u. . i.D 
1 

k 
2 12 

u. . 
1.: 

) 

1 
90 

,4 (6,) 
h u. : 

1,1 90 1,3 

4 4 
which indicates a local truncation error of 0(h ) + 0(k ) . The 

stencil in (2.3.5) may be referred to as a 9-point cross of mesh- 

points . 

2.3.3 COMPLEXITY NEAR BOUNDARIES. 

Consider the discretization of Poisson’s equation (1.2.2) with 

Dirichlet boundary conditions using the stencil (2.3.5) on a 

rectangular region assuming that h and k can be chosen so that 

the boundaries are mesh-lines. When the stencil (2.3.5) is applied 

to points near the boundaries, values of the function u are 

required at some points outside the solution region as indicated in 

fig. (2.2). 
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Fig. 2.2 9-POINT CROSS OF MESH-POINT 

To avoid such situations forward-difference or a backward-difference 

formulae involving the same number of points as in (2.3.5) can be 

used for points near the boundaries, but the truncation error is 

likely to be of lower order in h or k , being reduced, for 

4 3 
example from 0(h ) to 0(h ) . 

2.3.4 BOUNDARY ADJUSTMENT FOR 
A NINE-POINT FORMULA. 

Consider the first two terms in equation (2.2.16) for the 

replacement of the second derivative, u at points on the mesh-line 
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X = XQ + h , thus 

u - 
XX 

1 
12 

u. (2.3.6) 

and the corresponding replacement for ^yy points on the mesh-line 

y = + k is j j 0 

u 
yy 12 

A*^)u. . . 
y/ 

(2.3.7) 

A similar replacement can be done using backward differencing for the 

points on mesh-line x = x ■ - h and y = y ^ - k . 
^ n+1 ^ “^m+1 

Addition of equations (2.3.6) and (2.3.7) and subsequent Taylor’s 

series.expansion produce 

12 
u. . - + 
I9I-I 12 

) u. . 
I i-io 

u 
(2,) 
ijj 

+ u. 
(,2) 

12 i,j 
KL 
12 

(2.3.8) 

3 3 
which indicates a local truncation error of 0(h ) + 0(k ) . 

It may be noted that the discretization of equation (1.2.2) 

using equation (2.3.6) and equation (2.3.5) at the points 

y^ = y^ + ik , i = 2(l)m - 1 

3 3 
along X = XQ + h gives a local truncation error of 0(h ) + 0(k ) 

and that the error due to the discretization by (2.3.7) and (2.3.5) 

at the points 

Xj = XQ + jh , j = 2(l)n - 1 
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4 3 
along y = TQ + k is of order OCh ) + OCk ) . A similar analysis 

may be carried out for the points near the other boundaries. 

Discretization of equation (1.2.2) with Dirichlet boundary 

condition by (2.3.5) and (2.3.8) leads to a matrix equation (1.3.3) 

where 

20 -16 1 

-6 30 -16 

-4 -16 30 

1 1 -1 fi 

nxn , 

W = 
12k 

20 -6 

-16 

-16 

-4 

30 -16 

30 -16 

1 -4 -6 20j 
mxm 
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g = -F + 

with, 

12h 

llu -u. 
2,0 2,0 

llu ^ -u ^ 
m,0 m,0 

-u, -. llu. . 
l,n+l l,n+l 

■^2,n+l ^^^2,n+l 

-u ^ llu 
m,n+l m,n+l 

^2 = 
12k 

llu^ ^ llu^ _ llu. . 
0,1 0,2 0,3 

-u 
0,1 

•u -u. 
0,2 0,3 

llu^ . llu. 
0,n-l 0,n 

-u -u. 
0,n-l 0,n 

^m+1,1 ^m+1,2 ^m+1,3 ^m+l,n-l ^m+i,n 

llu - llu ^ llu . 
m+1,1 m+1,2 m+1,3 

llu , , llu , 
m+l,n-l m+l,n y 

and matrices A and F are as in section 2.3.1. 

2.3.5 A MODIFIED NINE-POINT FORMULA. 

It is clear from equation (2.3.5) and (2.3.8) that the discreti- 

3 3 4 4 
zation error varies from 0(h ) + 0(k ) to 0(h ) + 0(k ) . To 

increase fhe accuracy of (2.3.8) to that of (2.3.5), consider the 

value of the function at an additional internal point while approxi- 

mating the second derivative by forward or backward differencing at a 
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relevant point (Kantorovich and Krylov [15], page 196) to obtain 

^ ^ 1 I .2 1 A** ^ 1 
U + U - —X- I A - -irzr A + -r-^r A IU. . - XX yy ,2 \ X 12 X 12 xl i,D-l 

n 

-4" • (2.3.9) .2 i y 12 y 12 yl i-l,3 

The Taylor’s series expansion gives 

1 K2 1 ^ 1 A^l ^ 1 /A2 1 .4 ^ 1 .S\ -r- I A - *7-;r A + — A U. . , + —;r I ^ ” T7T A + —r A IU. _ . 
^2 \ X 12 X 12 xl 1,3-1 j^2 \ y 12 y 12 yl i-l,3 

C2.) (.2) 26 26 
u. . + u. . + "--v- n u. . + ■^-■77 K u. . + ... 

1,3 1,3 360 1,3 360 1,3 
(2.3.10) 

which indicates a local truncation error of the same order as in 

(2.3.5). 

Discretization of equation (1.2.2) with Dirichlet boundary 

condition by (2.3.5) and (2.3.9) leads to the matrix equation (1.3.3) 

where 

V = 
12h 

15 

4 

-14 

6 

-1 

-16 

30 

-16 

1 

1 

-16 

30 

-16 

1 

-1 

6 

-14 

4 

15 
nxn , 
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W = 
12k 

15 

-16 

1 

4 

30 

-16 

-14 

-16 

30 

6 

1 

-16 

-1 

4 15 
mxm 5 

and the matrices A , F are as before. The matrices and 

are also as in section (2.3.4) except that the coefficients of 

u. ^ and u. , . (i = l(l)m) in the first and last columns of 
ijO i,n+l 

B, , as well as the coefficients of . ^d u , ■ . (j = l(l)n) 
1 ’ 0,3 m+1,3 

in the first and last rows of are now 10 rather than 11. 

2.3.6 AN ALTERNATIVE NINE-POINT FORMULA. 

In section (2.3.4) a less accurate nine-point formula is used 

at points close to the boundaries and a nine-point formula of section 

(2.3.2) is used at the remaining interior points. Later in section 

(2.3.5) a modification is done by taking the value of the function 

at an additional internal point while using the one-sided (forward 

or backward) differencing. It may be desirable to use a nine^point 

formula at all points in the solution region. Such a nine-point 
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formula, which may be referred to as a 9-point square of mesh-points, 

is as follows. 

From equation (1,2.2) it follows that 

*+ 4 
3 3 
 r- u(x, y) + —2 2 
3x 3x 3y 

4 4 

—I—- u(x, y) + u(x, 
3x 3y 3y 

f(x, y) 

f(x, y) . 

(2.3.11) 

Taylor’s series expansion of equation (2.3.4) are 

A = u^2,) ^ hi „(4.) + _hl u^6,) ^ ^(8,) ^ _ 
X i,j i,j 12 i,j 360 i,j 20160 i,j 

2 
_ (,2) k (,4) k (,6) k (,8 

<S U, . — U. . + U. . + ^ U. . + _ U. 
y 1,3 1,3 12 1,3 360 1,3 20160 1,3 

i = l(l)m, j = l(l)n . 

u<>?> . . 

(2 

(2 

The difference between u. . and values of u at additional points 
10 

(circled in fig. 2.3) are tabulated and Taylor's series expansion 

gives: 

^ ^ u^2:2) + h!tl u<^.2) + hV „(6,2) 

12h^ ^ y 12 1,3 144 i,j 4320 i,j 
+ ... 

+ Jslu (2,4) ^ h!kl^^(4,4) . J<Lu(6»2) . 
144 i,j ^ 1728 i,3 + *•• + 4320 ^i,j ^ 

.3.12) 

.3.13) 

(2.3.14) 
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12k 

1 2 2 — 6 6 u. . 
2 X y 1,3 

^ ,,(2,2) . (2,4) „(2,6) 
12 i,j 144 i,j 4320 i,j 

+ . . . 

J2I ,,(‘^.2) . hV (4,4) 
144 i,j 1728 i,j 4320 i,j 9 

(2.3.15) 

i = l(l)m , 3 = l(l)n i 

Fig. 2.3 9-PGINT SQUARE OF MESH-POINT 
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Addition of equations from (2.3.12) to (2.3.15) and use of equation 

(2.3.11) gives (Kantorovich and Krylov [15], page 185, Forsythe and 

Wasow [lO], page 193) 

1 '~~?r 6 + —7T 6 + TTT i —T" t —^ I 6 6 }u. . - f. . + -77;“ f. ^2 X y 12 \^2 ^2 f x y 1,3 1,3 12 1, 
h ^(2,) 

j 

+ ^ + 0(h“) + ock"*) , 

i = i(l)m , j = l(l)n . (2.3.16) 

If h = k the equations (2.3.11) through (2.3.16) yield (Kantorovich 

and Krylov [15], page 210, Forsythe and Wasow [10], page 194-195, 

Smith [19] page 143) 

>- f ^ ^ 1 ^ ^ -16 + 6 +—-fiolu, .=f. . +-T I V ^7 K V Vl -1 -I T T 1 

4 

+ 1 sVlu. . = f. . + ^ + f(,pj 
2 l x y 6 X y/ 1,3 1,3 12 1 1,3 1,3 J 

+ + O(h^) 
360 I 1,3 1,3 1,3 / 

i = l(l)m , j = l(l)n (2.3.17) 

The system of difference equations (2.3.16) can be represented by a 

matrix equation as follows (Walton [25], page 139) 

AV + WA - + k^ ) WAV = G (2.3.18) 

where 
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with matrices F, A, , V and W as in section (2.3.1) and 

-1*^1 ’ V 

S = ^ ^ l(l)m , j = l(l)n . 

C = (c. .) , ' 
1 J J 

^11 " ^00 “ ^^0,1 ^0,2 “ ^^1,0 ■^^2,0 

^l,n ^0,n-l ^^0,n ^0,n+l “ ^^l,n+l '^2,n+l 

c ,=u ,^-2u ^+u -_-2u., ,+u m,l m-1,0 m,0 m+1,0 m+1,1 m+1,2 

c = u . - 2u + u '- 2u 
m,n m-l,n m,n m+l,n-l m+l,n m+l^n+l 

■=l.j = "o,j-l - 2^0,j “o.j+1 ’ ^ = 2(l)n - 1 

c . = U■ . . . - 2u . + u , j = 2(l)n - 1 
m,3 m+1,3-1 m+1,] m+1,3+1 

c. ^ = u. - - - 2u. ^ , i = 2(l)m - 1 
1,1 1-1,0 1,0 1+1,0 

c. = u. - ■ . - 2u. ,n + u. . _ , i = 2(l)m - 1 
i,n 1-1,n+1 i,n+l i+l,n+l 

c. . = 0 for i = 2(1)m - 1 and j = 2(l)n - 1 . 
^ > 3 

2 4 
For Laplace's equation the coefficients of h and k in 

equation (2.3.17) vanish. Hence this nine-point formula is a more 

accurate finite difference approximation of Laplace's equation for 

h = k (Fox [llj , page 261, Smith [19] , page 143). But for h k , 
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the finite difference approximation of Laplace’s equation is given 

4 4 
by (2.3.16) which indicates a local truncation error of 0(h ) + 0(k ) 

since cancellation does not occur as in (2.3.17). 

2.3.7 A THIRTEEN-POINT FORMULA. 

Following the analysis given in section (2.3.2) a thirteen-point 

formula using central differencing can be obtained by taking the first 

three terms from equation (2.2.19) and its y-analogue. 

Addition and Taylor's series expansion give: 

_1_ + A 
,12 X 90 xPi,j ^ ''y 12 ''y ’ 190 ''y IV 12 V 190 vi i,j 

,C2.) ^ ^ 1 1 ^6^(,8) ^ 
1,3 1,3 560 1,3 560 1,3 

i = 1(1)m , j = 1(1)n . (2.3.18) 

The difficulties mentioned in section (2.3.3) also arise in applying 

this formula at points on mesh-lines XQ + h , XQ + 2h , ^ ’ 

" 2h,yQ + k , yQ + 2k , y^^^^ - k , ~ 2k . Proceeding as 

in section (2.3.4), the replacement for second derivatives at points 

on mesh-lines + h and y^ + k may be obtained by taking the 

first four terras in equation (2.2.16) and its y-analogue; thus 

u 
XX 

A 
2 

2 1 4 1 5 13 6 

~ 12 \ 12 ~ iM ^x 
lu. . ^ 
/ 1,3-1 

and 

1 A*+ ^ 1 
12 \ 12 \ 

13 61 
T577 ^ u. _ . ... 180 yl 1-1,3 

(2.3.19) 

(2.3.20) 
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Addition of equations (2.3.19) and (2.3.20) and subsequent Taylor's 

expansion yield. 

_1 i .2 
2 

1 .4 . 1 A5 13 A 6 
I tr - — + — 
l x 12 X 12 

A'^ - non “ 1^- • 1 + "V ( ^ X 180 xj 1,1-1 3^^ 1 y 12 y 12 y 

13 ,6 
A 

\ (2,) (,2) 11 ,5 (7,) 
I 1-1,1 lO lO 180 1,1 180 y 18, + •••’ 

i = l(l)m , j = l(l)n . (2.3.21) 

A similar replacement for u^^ and u^y for the points on mesh-lines 

+ 2h and y^ + 2k can be made by using the first four terms in 

equation (2.2.17) and its y-analogue respectively to obtain: 

12 
1 
90 12 

A 
4 

y 

90 y 
)u . = u^^!^ + u^’?^ + 
I 1-2,1 1,1 1,1 

1 ,5 (7,) 
7r;r h u . : 90 1,: 90 

,5 (,7) 
k u. ’. 

i = 1(1)m , j = 1(1 )n (2.3.22) 

Approximations similar to (2.3.21) and (2.3.22) involving backward 

differencing for the points near the other boundaries can also be 

constructed as above. 

The discretization of equation (1.2.2) using the formula 

(2.3.18), (2.3.21) and (2.3.22) for the respective internal points 

will produce a matrix equation of the form (1.3.3) where 
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V = 
180h' 

147 

225 

-470 

285 

-93 

13 

-228 

420 

■200 

-15 

12 

-2 

27 

-270 

490 

-270 

27 

-2 

-2 

27 

-270 

490 

-270 

27 

-2 

-2 

12 

-15 

-200 

420 

-228 

13 

-93 

285 

■470 

225 

147 
nxn , 

^ 147 

-228 

27 

-2 

W = 

180k 

225 

420 

•270 

27 

:,470 

■200 

490 

■270 

285 

-15 

-270 

490 

-93 

12 

27 

-270 

-2 

13 

13 

-2 

-2 

27 

12 

-93 

-2 

-15 -200 420 -228 

285 -470 225 147 
mxm , 

G = -F + + B2 
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with 

= 
180h 

137UT _ -13u^ * 2u 0 2UT -13u_ 137u. 
1,0 1,0 1,0 l,m+l l,m+l l,m+l 

^^*^^2,0 ^^^2,0 ^^2,0 
2u« - -13u- - 137u_ _ 

2,n+l 2,m+l 2,m+l 

137u - -13u _ 2u ^ 0 2u ^ -l3u _ 137u _ 
n,0 n,0 n,0 n,m+l n,ra+l n,m+l 

= 
180k 

137u 
0,1 

2u 
0,1 

0 

2u 

137u 
0,2 

137u 
0,3 

-13u_ - -13u_ „ -13u- „ 
0,1 0,2 0,3 

2u 
0,2 

2u 
0,3 * 

2u 
n+1,1 n+1,2 

2u 
n+1,3 

-13u - _ -13u ^ -13u T ^ 
n+1,1 n+1,2 n+1,3 

137u , , 137u , ^ 137u , ^ 
n+1,1 n+1,2 n+153 

. 13 7u 

. -13u 

2u 

2u 

. -13u 

. 137u 

0 ,m 

0 ,m 

0 ,m 

0 

n+1 ,m 

n+l,m 

h+l,m 

The only non-zero elements of occur in the first, 

second, third, last, second to last, and third to last rows and 

columns. 

It may be noted that the matrices V and W become less sparse 

as more points enter into the difference formulae. 



2.3.8 A MODIFIED THIRTEEN-POINT FORMULA. 

It appears from formula (2.3.21) and (2.3.22) that the accuracy 

5 5 
near the boundary is of order 0(h ) + 0(k ) due to the use ^of one- 

sided (forward or backward) differencing involving the same number 

of points as in the central differencing of the function at the 

internal points. In order to have the same order for all the trunca- 

tion error terms, a technique similar to that discussed in section 

(2.3.5) can be applied using equations (2.2.16) and (2.2.17). The 

stencil thus formulated for discretizing equation (1.2.2) leads to 

the matrix equation (1.3.3) where 

and 

f 

ISOh^V = Z 

70 

486 

-855 

.670 

-324 

90 

-11 

-214 

378 

■130 

-85 

54 

-16 

2 

27 

-270 

490 

-270 

27 

-2 

-2 

27 

•270 

490 

■270 

27 

-2 

2 

-16 

54 

-85 

•130 

378 

•214 

-11 

90 

-324 

670 

-855 

486 

70 

nxn 
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180k W = Z. and 

^2 = 

70 

-214 

27 

-2 

486 

378 

■270 

27 

■855 

•130 

490 

■270 

670 

-85 

-270 

490 

2 

-11 

-324 

54 

27 

-270 

90 

■16 

-2 

27 

-16 54 

90 -324 

-11 

2 

-2 

-85 -130 

670 -855 

378 -214 

486 70 

•^mxm , 

and matrices A and F are as before. The matrices and 

are also as in section (2.3.7) except that the coefficient of u. . 
1,0 

and u. , (i = l(l)m) in the first and last columns of B, as 
i,n+l 1 

well as the coefficients of . and u - . (j=l(l)n) in the 
Oo m+lo 

first and last rows of B^^ are now 126 rather than 137 and the 

coefficients of a u. _ and u. (i = 1(1)m) in the second 15 u 1 jn-hl 

and one but last columns of B^^ as well as the coefficients of 

u^ . and u . . (j=l(l)n) in the second and one but last rows 
0,3 m+1,3 

of B2 are -11 instead of -13. 

2.3.9 A SEVENTEEN-POINT FORMULA. 

Following the analysis given in the preceding sections a 

seventeen-point stencil involving central differencing can be formulated 

by taking the first four terms from equation (2.2.19). Adding to its 
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y-analogue and expanding by Taylor’s series produces: 

1_ 
2 

6^ - 
X 

1 
12 

1 
90 

6® - 
X 560 

)u. . I 1,3 K- 

1 
12 

1 
90 

1 >8 
560 y 

lu. . 
I 1,3 

1,3 ■ 1,3 

_hl_ (10,) 
3150 i,j 3150 i,j '’■••• 

8 8 
This indicates a local truncation error of order 0(h ) + 0(k ) . 

A similar analysis as in the previous cases can be carried out for 

adjustment at the boundaries of this stencil. Adjustments are required 

at points along the mesh-lines: x„ + h, x^ + 2h, x + 3h- x ^ - 3h, 

- 2h, corresponding mesh-lines parallel to 

the x-axis. The approximations for the second derivative at points 

along X + h, X + 2h and x + 3h obtained from equation (2.2.16), 
0 0 0 

(2.2.17) and C2.2.18) are 

~ 1 /A^ 1 ^ 1 A^ 13 6 11 7 29 8 
^xx 2 ( \ ~ 12 ^x 12 ~ 180 ^x 180 ^x 560 \ 

h 
)^i,j-l ’ 

1 / 2 3 1 4 1 6 1 7 47 8 
u A + A -r^A +7^A -T^A + —^ A 
XX 2 \ X X 12 X 90 X 90 X 5040 x )“l,j-2 > 

and 

1 IOA3 11 A^ 1.5 1.6 U - —7T |A + 2A + -r-— A - 
XX - 2 \ X X 12 X 12 

h 

A5 ^ 1 A5 1 A + A - ^ A u. . . 
X 90 X 560 xl 1,3-3 

Adding to these the respective y-approximations and subsequent 

Taylor’s series expansions, indicates,as in section (2.3.4), that the 

7 7 g g 
error will vary from order 0(h ) + 0(k ) to 0(h ) + 0(k ) . For 

points near the other boundaries, a truncation error of this order 

also occurs. 
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For equation (1.2.2), this formula gives rise to the matrix 

equation (1.3.3) where V, W are given in pages 42 and 43. The 

matrices A and F are as before. The matrices B, and B 
1 2 

are given in pages 44 and 45. 
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2.3.10 A TWENTY ONE-POINT FORMULA. 

Using the same approach as previously, the matrices on pages 

47 through 50 are obtained in discretizing equation (1.2.2) by a 

twenty one-point formula. The local truncation error due to the 

use of central differencing formula is 0(h^^) + 0(k^^) and that 

due to the use of one-sided differencing for the same number of 

points as in central differencing is O(h^) + O(k^) . However, in 

both the seventeen and twenty one-point formula the order of accuracy 

at all points over the solution region could be made identical by 

improving the accuracy near the boundaries as in the procedure out- 

lined in section (2.3.5). 

It can be noted that the number of non-zero rows and columns in 

and increases with the increase in number of points used 

in the formula. 
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CHAPTER 3 

SOME RECENT DEVELOPMENTS FOR THE 

DISCRETE SOLUTION OF ELLIPTIC PARTIAL 

DIFFERENTIAL EQUATIONS 

3.1 INTRODUCTION. 

Many physical problems require the solution of elliptic partial 

differential equations of the form (1.2.1). In solving such an 

equation by finite difference methods, one usually encounters a 

large system of linear algebraic equations, which in composite 

matrix formulation can be represented by 

where M is an n x n matrix of block .tridiagonal form, viz. 

MX = Y (3.1.1) 

( 
A 
1 

C 
1 

M (3.1.2) 

n n n 

The matrices A^, and C^^ are of order p 

-51 
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Define to be the vector whose components comprise the 

i-th vertical line of the array X , 

X. = 
—1 

^i2 

X. 
ip 

, 1 < i < n 

The block vector X can be written with x^ as components. 

/ N 
X, 

2.2 

X = 

X 
V. -n > 

The vector Y has the same block form as X . 

The usual Gaussian elimination method is not always satisfactory 

for such a system (Forsythe and Wasow [lO], § 21.2-3). In the sequel 

some recent fast direct methods for the solution of system of the 

form (3.1.1) are reviewed. 
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3.2 THE CYCLIC ODD-EVEN REDUCTION 
AND FACTORIZATION ALGORITHM. 

This method is taken from Buzbee et al [6]. 

Consider the system of equation (3.1.1) where 

/ 
A -T N 

\ \ \ 

\ 

\ 
\ 

\ 
\ 

(3.2.1) 

with the assumptions, 

Ci) TA = AT , A and T are of order p , 

k+1 
Cii) n = 2 - 1 where k is any positive integer 

Then the system C3,l.l) with (3.2.1) may be written as 

AXi 

-Tx. , + Ax. - 
-3-1 -3 

-Tx , 
—n-1 

" ’^^2 ^ ^1 ’ 

Tx^^j^ = y^ ,j = 2, 3, ...,n-l , (3.2.2) 

Multiplying the 1st and 3rd equations by T and adding them to 

A times the 2nd, multiplying the 3rd and 5th equations by T and 

adding them to A times the 4th equation, and continuing in this 

fashion, the system in (3.2.2) can be reduced to two lower order 

systems 
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A(1) _T(1) 

^(1) ^a) _^(i) 

V 

where 

-T (1) 

_^C1) ^(.1) 

^2 

X. 

—n~l 

+ ^y.2 ■*■ *^y.3 

^Zs + + Ty =L4 

Ty _ + Ay _ + Ty 
=^-2 —n~l -n 

(3.2.3) 

= A^ - 2T^ (3.2.4) 

and 

T^^^ = T^ , 

A 0 

^ ^ \ 

\ \ \ 
\ \ ' 

\ \ 
\ „ \ 

k+1 

0 

0 ■ A X 
—n 

V. ^ 

y + Tx^ 

Z3 + TX2 ^ "^-4 

y + Tx ■ 
-n —n-1 

(3.2.5) 

Since n = 2 - I9 the new system in (3.2.3) is of block 

dimension (2 - 1) involving 3c with even indices, and the system 

k 
in (3.2.5) is of block dimension 2 . The system (3.2.3) is also 

block tridiagonal and of the form (3.2.1). So the same reduction can 

be repeated until only one block remains. The process of reducing the 

system of equations in the above fashion is. called cyclic reduction. 
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Define sequences, 

= A 

T^O) = T 

(0) 
y j = y.j > j = 15 2, ..., n 

for (3.2.6) 

r= 0, 1, 2, ... k j 

TCr+l) ^ 

Cr+1) _ (r) (r) (r) Cr) (r) (r) 
y* =T y. + A y. +T y. , 
—3 —3-2h —3 —3+2h ’ 

j = i*2h , i = 1, 2, 3, . . . , 2^'*'^“^ - 1 , 

where 

h = 2 
r-1 

After r reduction the new system of equations is 

ACD _^(r) 

^Cr) ^(r) 

\ 

-T 
(r) 

\ _^Cr) ^Cr) 

-2h 

X 

^ r ^ 

^2h 

..M 
2-2h 

Ol, —3 -2h 

-2-2h 

>) 
•^j-2h 

J 

and 



-56- 

0 

\ 

\ \ \ 
\ \ 
\ \ 

0 
Cr-1) 

X 

X 

•3h 

(2j-l)h 

(r-l) (r-1) 

^ ^ -2h 

(r-1) 
y.o^. + ^l-2*2h -2h I 

^(2j-l) l-j-2h ^j-lX2h 

which are of block dimensions 2^"^^ ^ - 1 and 2^^^ ^ respectively. 

After k steps (3.2.2) reduces to the single p x p matrix equation 

‘“’ik-i'l;’ 
2 2 

(3.2.7) 

From C3.2.4), it follows that is a polynomial of degree 2 in 

Cir) 
A and T . By induction it can be shown that A in (3.2.6) is 

a polynomial of degree : r in A and T . 

(r) 
A linear factorization of A produces (Buzbee et al [6]) 

^r 

(A - x.(r)T) , (3.2.8) 

j=l 

where 

x^.(r) ^ 2j - 1 2 cos — ;— ir ^r+1 j = 1, 2, 2 

Set 

= A - x.(k)T 
3 -3 
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Then, to solve (3.2.7) put 

and respectively solve 

2 
k 

Thus 

considerable round off errors in many cases of interest (Buzbee et al 

[6]). Buzbee et al give Buneman variants of cyclic odd-even reduction 

and factorization (CORF). 

3.3 BUNEMAN VARIANT TWO OF CORF. 

The difference between the Buneman algorithm and CORF algorithm 

lies in the way that the right hand side is calculated at each stage 

of the reduction. 

As sume 

T = I. 
■p 

(3.3.1) 

the identity matrix of order p in the system (3.2.2). 

The Buneman variant two of CORF consists of three phases: 

preprocessing, reduction and backsiibstitution 
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The matrices are computed from = A using the 

recurrence 

A(r) ^ (^(r-1))^ _ 21 

and then using identities in (3.2.8). 

(r) 
The vectors are computed starting with 

(0) 
q. = y. 

-3 
3 “ 1> 2, ***9 n 

and 

Cl) CO) ^ (0) ^ • -I o 1 

aj = + 2A , ] = 1, 2, n-1 

(r ) 
The remaining q^ are determined for r = 2, ..., k and 

. r 3? k+1 r 
j = 2 , 2.2^" , ..., 2'""^-' - 2 

using 

Cr) _ (r-1) (r-2) ^ Cr-1) 
=-j “ %-2h %-h % 

, Cr-2) ^ (r-1) 
■^j+h %+2h 

, (r-l).-l/ ^(r-2) 
(A ) l-a.j_3h +%-2h 

(r-2) (r-l)l 
ij-h + 23.. ) 

(r-2) (r-1) 
“ %+h -i+2h - q 

(r-2) 
■j+3h 

where, 

h = 2 
r-2 
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Define 

X 
—n 

0 

then the solution vectors x. are given for r = k • • s 0 and 

2 
k+1 

2 
r 

••• 9 

by 

Here x. 
-j+4h 

and X. are computed at a previous step in the back- 

substitution . 

All matrix computation can be performed using the factored form 

of . 

Define an operation as consisting of a multiplication or division 

plus an addition or subtraction and considering only those computations 

which contribute to the asymptotic count, then the operation count 

for CORF for an n x n mesh in (Dorr [9]) 

whereas for the Buneman variant two of CORF it is CSwarztrauber [22]) 

2 
3n log^n . 

- n log^n , 
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3.4 THE MARCHING ALGORITHM. 

This is taken from Bank and Rose [4]. 

Consider, for simplicity, p = n in (3.1.1) with (3.2.1) and 

2 2 
C3.3.1). Premultiplication of this linear system by an n x n 

permutation matrix P yields the partitioned system. 

—n-1 

X 
—n 

r 
^2 

^n 

^1 

(3.4.1) 

PM = 

R 

X 

X 
—n 

y 

^1 

where the symbols B, C, R, x, ^ are used to denote their corresponding 

submatrices in (3.4.1). Using the modified Chebyshev polynomials. 

SQ(a) = 1, S^(a) = a, S^(a) = , t ^ 2 
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the factorization of PM. is 

Here 

S (A) 
n 

(3,4.3) 

RB ^ = [-S,(A), -S_(A), -S ,(A)]’’ 
1 2 n-1 

The block solution of (3.4.3) is carried out as follows 

RB 
-1 

V 

-n 

y 
(3.4.4) 

and 

S (A) 
n 

X 
> r ~ 

V 

X 

/ V 
-n 

(3.4.5) 

From C3.4.4), 

V = y (3.4.6) 

and 

V 
—n 

•piv •*.. -Lrs/ ^ —. -LTS-' 

RB = y - RB (3.4.7) 
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Note that R and B are sparse whereas RB ^ is not, hence 

it is advantageous to solve Yirst 

= I. ’ ^ -n-1^ (3.4.8) 

and then 

Xn "" Xi " ■ X-2 “ 

E - W, (3.4.9) 

Equation (3.4.5) yields. 

Bx = V - Cx 
-n 

(3.4.10) 

and 

Sn^^>2in = Xn 

~ ” -0 
(3.4.11) 

Computation of (3.4.11), can be simplified with the use of the 

identity (Bank and Rose [4]), 

^n^A) = TT (A - r’j^(j)I) » 
j=l 

= 2 cos . 

The algorithm (3.4.6) to (3.4.11) may be summarized as follows 
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w T = -y 
-n-l -n 

(using (3.4.8)) 

w „ = Aw T - y T 

-n-2 -n-l -n-l 

w .=Aw .^-w ._-y ,3<j<n 
-n-3 -n-:-l -n-3+2 =^n-]+l 

CA - r^(j)I)£j = , 1 < j < n 

X = z 
—n —n 

X _ = Ax - y 
-n-l -n ^n 

(using (3.4.10)) 

X .=Ax ,_-x .^-y .^,2<j<n-l 
—n-] —n-3+1 —n-3+2 —n-j+l 

The asymptotic operation count for this algorithm is [4] 

0(n^log2(^/k)) 

for an n x n mesh where 

n = k2 - 1 , > 1 

3.5 A DIRECT METHOD FOR THE DISCRETE SOLUTION 
OF SEPARABLE ELLIPTIC EQUATIONS. 

The following is taken from Swarztrauber [21]. 

If equation (1.2.1) with Dirichlet or Neuman boundary conditions 

is discretized using the five-point formula a linear system as in 

equation C3.1.1) arise where 
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1 

M 

B. 
2 2 

\ \ \ 
B 
n-1 n-1 n-1 

(3.5.1) 

B 
n 

A 
n 

/ 

and vectors X and Y are as in section (3.1.1). The block size 

k 
n is assumed to be of the form 2 - 1 . Each of the blocks 

of M in (3.5.1) is of order p and are of the following form. 

B^ = b^I (3.5.2) 

A. = A + a.I (3.5.3) 
1 1 

Cl Oil (3.5.4) 

where b^, a^, c^ are scalars and the matrix A is tridiagonal. 

The reduction of the system is carried out as follows: eliminate 

the unknowns 2L[ ^ > —i+1 the three block equations cor- 

responding to block rows i-l,i, i+1. Multiplying these rows 

by matrices 0^, (j)^, (yet to be determined) and add, then 

0.B. -X. - + (0.A. + (^).B.)x. . + (0.C. + <J).A. + i|).B.^_)x. 
1 1-1—1-2 1 1-1 ^1 1 -1-1 1 1-1 ^1 1 ^1 1+1 —1 

(A.C. +il).A. T)X. _ + iJ).C. _x 
^^11 ^1 1+1 —1+1 ^1 1+1—: i+1—i+2 

= 0.y. , + d).y. + \J;.y. 
1-1-1 ^1—1 ^1—1+1 

(3.5.5) 
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In order to eliminate x. _ , x. . , choose 0. , d). , ijj. such that 
-1-1 —1+1 1 ^1 1 

0.A. , + = 0 
1 1-1 ^1 1 

(j).C. + Tp.A. _ = 0 
^11 ^1 1+1 

(3.5.6) 

(3.5.7) 

Since the matrices A^, commute, this system has an infinite 

number of solutions. For simplicity select. 

0. = A. ,B. 
1 1+1 1 

). = -A. ,A. ^ 
1 1-1 1+1 

= C.A. , 
1 1 1-1 

(3.5.8) 

(3.5.9) 

(3.5.10) 

Substitution of these equations in (3.5.5) yields 

^Cl) ^ .(1) ^ _(1) _ (1) 
B. X. ^ + A. X. + C. X. - = y. 
1 -1-2 1—1 1 —1+2 ^1 

(3.5.11) 

where 

1 1 1+1 1-1 
C3.5.12) 

1 
, - A. ,A.^_A. + C.A. .B.^_ (3.5.13) 

1 1+1 1-1 1-1 1+1 1 1 1-1 1+1 

1 
C.A. ,C. , 
1 1-1 1+1 

C3.5.3.4) 

and 

y^^^ = B.A. y. - A. ,A. y. + C.A. y. (3.5.15) —1 1 1+1—1-1 1-1 1+1—1. 1 1-1—1+1 
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The system in (3.5.11) is block tridiagonal and has about half 

k” 1 k 
(2 - 1) of the unknown vectors for i = 2, 4, ..., 2 -2 . 

The general algorithm is as follows: 

Define b. = c =0 and for i = 1, 2,..., n , 

1 
b^I 

1 
A + a^I 

Cil 

(3.5.16) 

(3.5.17) 

(3.5.18) 

and 

= y.i (3.5.19) 

From (3.5.17) and (3.5.13) it can be observed that linear 

in A and is a cubic polynomial in A . The degree of 

would triple at each step of reduction. Therefore to reduce the 

degree of the polynomial and consequently the amount of computation, 

define for r= 0, 1, ..., k - 2 and 

i = 4h, 2-4h,...., - l).4h. 

where 

h 2 
r-1 

9 

1 

, (r+l).-l (r) (r) (r) (Gi ) B. A.^2h®._2j^ (3.5.20) 
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Cr+1) _ . Cr+l)x-l,-^Cr) Cr) CP) 
^ ^i+2h^i-2h i-2h i+2h 1 1 i-2h l+2h 

(3.5.21) 

(r+l) ^ Cr+1) -1 Cr) (1.) (r) 
1 11 i-2h i+2h 

(3.5.22) 

and 

.p(r+i)x-l.g(p).(r) (r) 
(G. ) (B. A._^2h®i-2h 

i-2h*i+2h^i ^ i-2h i 2.i+2h-^ 

(3.5.23) 

where 

■1 

^(r-l)^(r-l) 
i-h i+h 

(3.5.24) 

is a common divisor of the right-hand sides of (3.5.20),(3.5.21) and 

(3.5.22). 

Also define = x, , = 0 . Then for each r and 
—0 -4h 

i = 2h, 2*2h, ..., (2^"^ - l)-2h. 

the block tridiagonal system. 

1 —i-2h 1 —1 1 —i+2h 1 

takes the form 

(k-1) ^ 
^k-l —2k-l —2k-l 

(3.5.25) 

(3.5.26) 

when r = k - 1 . 
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Now solve for x from (3.5.26) and for r=k-2,k-3, ...,0 
2^ j- 

and 

i = 2h, 3*2h, 5*2h , ... (2^ ^ - l)-2h . 

The remaining unknowns are evaluated using (3.5.25): 

X£ ^i-2h 1 -i+2h^ (3.5.27) 

The vectors x. , x. on the right hand side are known from a 
—i-2h —i+2h ^ 

previous step in the back-substitution process. 

. (r) (r) (r) 
As r increases the matrices A^, » ’ *^i fill rapidly 

which can be expensive. These matrices can be expressed as polynomials 

in the single matrix A and instead of storing the matrices, compute 

and store the zeros.of the polynomial that represent them. 

Define 

= I 9 

then, in the preprocessing phase, zeros are computed from the 

polynomial, 

1 i-h i+h 1 'i-2h i+h i+2h i-3h 

^i-2h 1 ^i+2h i+2h^i ^i-h ^i-2h^i+3h ^ 
(3.5.28) 

(2 
k-r-1 

r = 0, 1, 2 . . , k - 2, i = 4h, 2‘4h, . . . , - l)*4h 
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where 

1 

' i 

j=l-2h+l 

i+2h-l 

TT c 
j=i ^ 

a. 
1 

The reduction phase is: 

—1 i-h i+h 1 i+h i+2h—i-2h 

(3.5.29) 

(3.5.30) 

i-2h i+2h^i ^ ^i ^i-h i-2h ^i+2h^ 
(3.5.31) 

and the back substitution phase is 

X. = (A^’^^)-^(y^’"^ - 
—1 1 —1 1 1+h —i-2h 

(3.5 
1 1-h—i+2h 

The algorithm so far is unstable. It may be stabilized by writing 

the reduction phase as 

E-i 

Cr+1) _ —(r)y . (r-l).-l (r) , —(r), „ (r-l).-1 (r) 
= “i ) ai_2h + (*i+h ^ Ei+2h - Ei 

(r) 

where 

—1 1-h i+h —1 

“1 1 1-h i+h —1 

(3.5.33) 

for r= 0, 1, ..., k - 2, and i = 4h, 2*4h, ..., (2 
k-r-1 

- l)«4h 

32) 
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and the back substitution phase as: 

—1 1 1-h i+h 1 i-h —i-2h 

^i ^ i+h ^ -i+2h-^ 
(3.5.34) 

For an n x n mesh, Swarztrauber [21] finds the asymptotic 

operation count to be 

0(n Ipg^n) . 

3.6 A CYCLIC REDUCTION ALGORITHM FOR SOLVING 
TRIDIAGONAL SYSTEM OF ARBITRARY DIMENSIONS. 

The following is taken from a paper by R. A. Sweet [20]. 

Consider the following system 

A -I 

A -I 

-I A -I 

-I A -I 

-I A -I 

-I A 

r > 
2-1 

22 

X. 

26 

26 

r ^ 
2.1 

23 

26 
V ^ 

(3.6.1) 

Similar linear combinations as in section (3.2) except with 

T = I 

yield 
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A 

-I 

(1) 
-I 

-I 

-I 

r \ 

^2 

-4 

-6 

Ay 2 + y 1 + y 3 

AZ4 + Z3 + ys 

AZe + Zs 

LQ 

y4 

^6 

(1) 
4 

(1) 

(3,6.2) 

where 

= A^ - 21 , = A^ - I . 

From this example, the following two distinct cases become 

evident. 

Define 

h = 2 , J = n h 
’ r r 

where n^ is the block size at r reduction and 

A(0) _ g(0) _ A 

= I 

^0 = ^0 = ^ 

Case I: n is an even number. In this case the unknowns x_ 
r —J 

will 

not be eliminated. The new equation for x is obtained by multiplying 
J 

(r) 
the last equation by A and addition of the last but one equation 

to it. 
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Case II: n is an odd number. Here 
r —u) 

is to be eliminated at 

this step while 5^ ^ will not be eliminated. The new system for 

(r) 
3^ is obtained by multiplying the last but one equation by A 

^ Cr) —1 Cr) Cr) 
and adding to it the preceding equation plus (B ) C A times 

the last equation. 

Consider the system (3.1.1) with (3.2.1) and (3.3.1). 

Above considerations along with 

(0) 
= 0 

Co) - • _ n o 
— y^ ...,n, 

yield at the Cr+1) 1st step the reduced system of equations: 

A 

-I 

Cr+1) 

-I 

B 
(r+1).^(r+l).-l 

(C 

/ 

-2h 

X, , 
—4h 

^ ,-2h 
r+1 

2j 
r+1 

.(r+l)^(r+l) 

* 2-2h 

(r+1) (r+1) 

* E4h 

,(r+l) (r+1) 

Ej ,,-2h 
r+1 

^2h 

(r+1) 

2h 

(r+1) 

^h 

4. % -2h 
r+1 

V 

(r+1). (r+1).-1 (r+1) (r+1) 
B (C ) Ej + Sj 

r+1 r+1 

(3.6.3) 



-73 

where 

(3.6.4) 

(r+1) (r) 
I , 

-3 

Cr)^-1, (r) 

-j 
' + pj T1 + p: 

(r) (r) 
^^j-h + E-j+h 

(3.6.5) 

(r+1) (r) . (r) (r+1) 

-j Ijlh + Ej+h + %' 3 = 2h, 4h, .., J - 2h 
r+1 

(3.6.6) 

and, in case I, 

fiCr+l) ^ ^(r)g(r) _ ^(r) ^ ^(r+1) ^ ^(r) 

Cr+1) _ (r) , Cr).-1 (r), Cr) (r) 
Pj - Ej + (B ) C (qj + Pj 

r+1 r r r 

3j 
(r+1) _ _(r) 

r+1 'r 
-h ^ 

(r+1) 

r+1 
, J = J 
’ r+1 r 

(3.6.7) 

(3.6.8) 

(3.6.9) 

while, in case II, 

B 
Cr+l) ^ ^(r)(^(r)g(r) _ ^(r)^ _ ^(r) ^ ^(r+1) ^ g(r) 

£j 
(r+1) 

r+1 

(r) (r),-l, (r) 
PT V + (A ) (q;-' + p ^ -h 

r 
-h 

r r 

(r) (r) . 
^ Ej -2h^ 

(r+1) 
% - 

r+1 
3j -2h Ej + (B > C A (aj + Ej ^ 

r r+1 r r+1 

(3.6.11) 

(r+1) 
) 

(3.6.12) 

J = - h 
r+1 r 

Using this general reduction scheme the original system under consideration 

may be reduced at step r = s to the single equation. 



-74- 

or B (2j - 2j ) - C qj 
O s s 

(3.6.13) 

Cr) fr^ 
It appears from (3.6.4), (3.6.7) and (3.6.10) that A , B , C 

are polynomials in the original matrix, A . It has been shown in 

^ ex' j 
section (3.2) that A has degree 2 . Suppose B has degree 

(r) 

and has degree Z_^ . Then from (3.6.7) and (3.6.10), 

K + 2 case I 

^ = (3.6.14) 

r+1 
+ 2 , case II 

and 
Z , case I 
r 

I = 
r 

(3.6.15) 

K , case II 
r 

Now siibstituting A = 2 cos 0 , it can be shown that 

(r) 
2T ( y A) 

2 

B 
(r) 

j A) , 

,(r) _ 
( jAY , 

r 

where, 

K = 2^ + £ and 0 < Z < 2^ - 1 , and r r r » 

m 
T^Ca) = rr (2a - 2 cos , m : ' 2m 

1=1 
m 

u^(a) = ] T^2a - 2 cos 
ITT 

i=l 
m + 1 ) 



-75- 

denote respectively the Chebyshev polynomial of the first and second 

kinds. 

Equation (3.6.13) can be written as 

TT (A - xf )i)(^ - 4^>)= rt (A - 
i=l s s i=l s 

where 

( s ) i 
X. ^ = 2 cos ^IT , 
1 k + 1 s 

Cs) ^ i _ p. = 2 cos u . 
s 

To avoid the matrix multiplication of the form 

(A - yl)q 

a technique suggested by Swarztrauber [21, page 1143] can be used. 

The following algorithm follows from the analysis. 

1. Set 

2. Solve the linear system 

(A - , 

:. = z. - + z. , for i = l, 2, ...,£ , 
-1 -1-1 —1 ’ ’ ’ ’s’ 

3. Solve the linear system 

(A-X^^^)z. =z. T , for i = Z ■ y Z ...,k , 
1 —1 -1-1 ’ s+1’ s+2’ ’ s ’ 

^ = 2j + ^ • 
4. 
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accumulation of round off errors. 

The computation of the last part of (3.6.12) is done by a 

similar algorithm. The- remaining unknowns are then computed by the 

usual back suibstitution process. 

for an n x n mesh. 

3.7 THE NUMERICAL SOLUTION OF THE MATRIX EQUATION 
XA + AY = G. 

Hoskins et al [14] presented an iterative method for solving the 

matrix equation 

where X, Y, G are known matrices of orders mxnijnxnjmxTi 

respectively. The algorithm is: 

Step 1. While X ^ 1 and Y 5C I execute steps 2 to 4. 

The asymptotic operation count for this algorithm is CSweet [20]) 

XA + AY = G (3.7.1) 

Step 4. 

Step 2. 

Step 3. 

Set G = y (G + X“^GY”^) 

Set X = i (X + X"^) 

Set Y = ~ iY + Y~^) 

Step 5. A 
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After s application of steps 2 to 4 of the above algorithm the 

following equation is obtained: 

X A + AY = G 
S S s 

where 

(3.7.2) 

Y = — CY + ) Y = Y 
s 2 ^ s s-1^ ’0 ’ 

s = 1, 2, ... 

Multiplication of equation (3.7.2) on the left by and on the 

right by Y ^ produces 
s 

X'^A + AY"^ = X“^G Y'^ (3.7.3) 
s s s s s 

Addition of equation (3.7,2) and (3.7.3) and division by 2 gives, 

J CX^ + X-^)A + i A(Y^ + =1 (G^ + 

from which it is clear that 

G = T (G + X ^G Y ^) 
s+1 2 s s s s 

converges to 2A whenever 

X = (X + X ^) 
s+1 2s s 

Y = ^ (Y + Y ^) 
s+1 2s s 

(3.7.4) 
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converges to the identity matrix I . It can be shown (Hoskins, et al 

[14]) that convergence occurs when the eigenvalues of either X and 

Y or -X and -Y have positive real parts. 

Let 

B =  V 
" iIx-^ 

and 

C = X s ' ' s 

The iteration (3.7.4) can be generalized to 

X =aX + 3X^,s = 0, 1, 2, 
s+1 s s s s ’ » » s 

where 

2B 
a = 

(B^ + /~(B 2 )) s s s 

3 = B C a s s s s 

In the case that X and Y have real spectra, B ,, C ^ can be 
^ s+1 s+1 

found from 

B _ -1-E ,C _ -1 + E , 
s+1 s’ s+1 s ’ 

where 

E = s 

B - 
s s s 

B + , 
s S S f 

2 
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The operation count for this algorithm is [14] 

O(n^) 

for an n x n system. 



CHAPTER 4 

SOLUTION OF MATRIX EQUATIONS ARISING 

FROM HIGHER ORDER DISCRETIZATIONS 

4.1 INTRODUCTION. 

It has been mentioned earlier that discretization of equation 

(1.2.2) on the uniform rectangular mesh (1.3.2) leads to a matrix 

equation of the form (1.3.3) which can also be written in composite 

or block form as (Bickley and McNamee [5], Mitchell [16], page 102, 

Varga [24], page 196-197): 

Mx = y (4.1.1) 

where 

M = 

'^13^ 

''i I In 

^21^ 

W+V22I 

23 

"2n^ 

''32^ %2^ 

v_ I ... w+v I 
3n nn 

(4.1.2) 

-■ ^^11’ ^12’ •••’ ^In’ ^21’ ^22 ••• ^2n’ ^31’ ••• ’ %1’ ®m2 •••’ 

[f 11’ 12’ 
f • f f 
In’ 21’ 22’ 2n’ 31’ 'ml’ m2’ 

f ] mn"^ 

-80- 
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The matrix A is a numerical approximation of the discretized 

solution of equation (1.2.2) at the internal points of (1.3.2). The 

matrix V is of dimension nxn, W is mxm and I is an 

identity matrix of order m x m . 

In this chapter attempts are made'to generalize the methods [4], 

[6], [20] and [21] for the solution of the matrix equation (4.1.1) 

where (4.1.2) arise from a higher order finite difference approxima- 

tion to the equation (1.2.2) with Dirichlet boundary condition. 

Finite difference approximations to equation (1.2.2) with Dirichlet 

boundary conditions using the standard five-point formula on uniform 

rectangular meshes produce matrix equations of the form (4.1.1) where 

M = 

A -I 

-I A -I 

\ \ 
\ \ \ 

-I A 

The square diagonal submatrices 

A = 

(4.1.3) 
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are of order n and the I’s are n x n identity matrices. 

In the special case mentioned above the matrices V and W 

are 

V = 

2 -1 

-1 -1 

\ \\ 
\ \ 
\ \ 

-1 2 
nxn , 

W = 

-1 

-1 -1 

\ \ \ 
\\ \ 

\\ 
-1 

/ mxm 

However, it may be observed that the fast direct methods of 

Chapter 3 are designed for the solution of the matrix equation 

(4.1.1) where M is tridiagonal and usually of the form (4.1.3). 



-83- 

4.2 HIGHER ORDER DISCRETIZATION AND 
FAST DIRECT METHODS. 

Consider the following system 

A -D 

-I A -D 

I -I A -D 

I -I A -D 

I 

I -I A -D 

I -I A -D 

I -I A -D 

I -I A -D 

I -I 

I -I 

f '\ 

^1 

X, 

X, 

-7 

^10 

^1 

^7 

-10 

(4.2-.1) 

where matrix 

D = dl 5 d is a scalar, 

A , is any quin-diagonal matrix, 

I is an n X n identity matrix. 

An attempt to generalize the reduction process of section 3 is 

as follows: Multiply the third and fourth equations respectively 

by A and D and add the first, second and fifth equations to them, 

multiply the fifth and sixth equations respectively by A and D 
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and add third, fourth and seventh equations to them and continue the 

process, then the system of equation (4.2.1) may be written as 

r 2 A-1 

I 

A -2D+2I 

2A-I 

I 

2A-D 

A^-2D+2I 

2A-I 

I 

2A-D I 

A^-2D+2I 2A-D 

9 
2A-I A -2D+2I 

X 

y 

^5 

^7 

2-1 

^5 
(4.2.2) 

where 

£i = *23 + % + Z.1 + Z.2 + Zg > 

23 = *^5 + % + Zs + 24 + 2-7 ’ 

2s = *2.7 + »2s + 26 + Ze + 2g . 

27 = *2g + °2io +27 + 2s ■ 

The reduced system of equation in (4.2.2) is no longer of the 

form (4.2.1) and therefore, cannot be reduced further in the same way. 

Higher order finite difference approximations, for example, a 

nine-point approximation to equation (1.2.2) in a special case as 

above gives rise to a matrix M of the following form: 
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and the matrix W is as in section (2.3.4) with the order of the 

identity matrices the same as the order of W . It can be observed 

that the matrix M and its diagonal submatrices have bandwidth 

greater than 5. The use of the nine-point formula of section (2.3.5) 

will add one more element in each of the first and last rows of the 

matrix M and its diagonal submatrices. It appears, therefore, that 

higher order formulae and their corresponding modification will 

increase the bandwidth of the matrix M and adversely affect the 

usefulness of the cyclic reduction algorithm for a system as in 

(4.2.1). The system of equation (4.1.1) where matrix M, as above, 

obtained using a higher order formula cannot be solved using the 

marching algorithm since it also takes advantage of the special 

block structure of the matrix M . 

However, an interesting result can be obtained with the use of 

an alternate nine-point approximation of section (2.3.6). 

If m = n , the equation C2.3.16) can also be rearranged as 

(4*1.1) where M is of the form (3.2.1) with 

20 -4 

-4 20 -4 

A (4.2.3) 

-4 20 
/ 

and 
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N 

T = 

4 1 

14 1 

\W 
\\\ 
\ \ ^ 

1 4 

(4.2.4) 

Tlie linear system (4.i.l) may be written, using the notation of 

chapter 3, as follows: 

A -T 

-T A ' -T 

\ \ 
\w 
\ \ 

-T 

-T A 

^1 

^2 

—n-1 

X 
—n 

V. 

^2 

2n-l 

V* y 

(4.2.5) 

Multiplication of C4.2.5) by block matrix Diag[T (Bank [3], 

page 4-16) yields. 
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where 

Tz. = y. , 1 < i < n . 
—1 —1. 

The matrix M of (4.2.6) has the special form as in section 

(3.4) except when T is likely to be full. The solution of 

(4.2.6) may be carried out (Bank [3], page 4-17) using the generalized 

T . . . 
marching algorithm. Here PMP is dealt with instead of PM ; P 

T 
is the permutation matrix and P its transpose. 

k+1 
Suppose n is of the form 2 - 1 , k ^ 0 . Since the 

matrices (4.2.3) and (4.2.4) are symmetric tridiagonal and 

AT = TA 

the odd-even cyclic reduction and its Buneman variant can be applied 

for the solution of the linear system (4.2.5). 

The algorithm of section (3.7), in general, can be applied for 

the solution of linear systems which arise from any finite difference 

approximation of elliptic partial differential equations with Dirichlet 

boundary conditions on a rectangular region. The algorithm works 

for any pair of matrices V and W which may have complex spectra 

provided the real parts of their eigenvalues are positive. It appears 

to be numerically stable even when V and W are not too well 

conditioned (Walton [25], page 90), and there is no significant 

change in either complexity of implementation or number of operations 

when used for matrix equations which arise from higher order discreti- 

zations of elliptic partial differential equations. 



CHAPTER 5 

NUMERICAL ILLUSTRATIONS 

5.1 INTRODUCTION. 

In this chapter, some model problems are considered for numerical 

illustration. Throughout this chapter the region of solution is taken 

to be a unit square. A uniform mesh is used for convenience. It 

has n = 15 internal mesh-lines parallel to each axis. The spacing, 

h , between mesh lines, is given by 

h = 1 = J:. 
n + 1 16 * 

The maximum absdlute actual error, that is, maximum deviation of the 

numerical solution of the problem from the analytic solution is 

The relative errors are also tabulated. 

i = 1(1)m , 

> 

j = l(l)n , 

determined in absolute value. 

Let 

where 

u. . 
1,3 

u(Xj, y^) , 

be the analytic and 

A [a. .] 
13 

i = l(l)m , 

j = l(l)n 

be the numerical solution of a problem at the internal points of 

(1.3.2) respectively, then the maximum absolute error, e^ is given 

by 

-89- 
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e 
a 

max max]u 

i j 

i = l(l)m , 

j = l(l)n , 

and the maximum relative error, e^ is given by 

i = iCDrn , 
u. . - a. . 

u. . ’ 

j = l(l)n . 

e = max max 
r 

1 3 

(5.1.1) 

(5.1.2) 

It has been indicated that a solution correct to seven decimal 

places can be achieved for matrices up to 63 x 63 in fewer than five 

iterations when using the algorithm in section (3,7) (Hoskins et al 

[14]). The following examples illustrate that higher order discreti- 

zation formulae yield a higher order of accuracy as was anticipated 

by using a more accurate Taylor’s series expansion. The accuracy, 

indicated in chapter 2, due to the use of formulae from section (2.3.1) 

to section (2.3.8) can be achieved in five or less iterations whereas 

6 and 7 iterations are required respectively for the 17-point and 

21-point formulae. For large n , the operation count remains 

0 Cn ^ ) . 

The condition numbers of the matrices of chapter 2 are tabulated 

since the behaviour of the matrices with respect to the inverse is 

correlated with their condition number (Todd [23], page 45). If M 

is the matrix, the condition number is (Todd [23]j page 44) 

x(M) = I|M|I I|M ^11 (S.1.3) 

where the norm used is the maximum absolute row sum. In the following 



tables the nine-point formula of section (2.3.4) is referred to a^ 

9-point (a), the alternate 9-point formula as 9-point (b), and the 

13-point formulae of sections (2.3.7) and (2.3.8) as 13-point (a) 

and 13-point (b) respectively. 

The algorithm SOLVEXAAY for 9-point (b) was implemented using 

both equations (2.3.16) and (2.3.17). 

The calculations summarized in the following sections were 

performed using double precision arithmetic in APL on an IBM/360 

model 50 computer. 

5.2 EXAMPLE 1. 

Consider the Dirichlet problem 

2 2 

—^ u(x, y) + —^ u(x, y) = 20^"^^ in R:0<x<l, 0<y<l, 
9x dy 

u(x, y) 

X 

y 

i+y 

X+l 

y = 

X = 

X = 

y = 

0 , 
0 , 
1 , 

1 ; 

which has the analytic solution 

u(x, y) = . 

The maximum absolute actual and relative errors for this problem 

are summarized in tables (5.1) and (5.2). 
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Table 5.1 

DISCRETIZATION 
NUMBER OF ITERATIONS 

5-point 1.7715x10 
-4 

1.3995x10 
-4 

9-point Ca) 5.3253x10 
-5 

5.2339x10 
-7 

5.2347x10 
-7 

9-point Cb) 
Equation 
(2.3.16) 

5.2689x10 
-5 

1.0934x10 -7 1.0970x10 -7 

9-point (b) 
Equation 
(2.3.17) 

5.2592x10 
-5 

9.7817x10 -10 2.8016x10 
-11 2.8015x10 -11 

13-point (a) 1.8379x10 
-4 

7.9606x10 
-9 

1.6559x10 
-9 

13-point (b) 1.3303x10 
-3 

4.1547x10 
-7 

9.8259x10 
-11 

9.8211X10 
-11 

17-point 6.0683x10 
-3 

4.6013x10 
-6 

8.7987x10 
-12 

5.5768x10 
-12 

21-point 3.5367x10 
-2 

2.4464x10 
-4 

4.6630x10 
-8 

1.4677x10 
-13 

GREATEST ABSOLUTE ERROR FOR EXAMPLE 1 



-93- 

Table 5.2 

NUMBER OF ITERATIONS 
DISCRETIZATION 

5-point 5.8603x10 
-5 

5.1454x10 

9-point (a) 2.8215x10 
-5 

1.0084x10 
-7 

1.0076x10 -7 

9-point Cb) 
Equation 
(2.3.16) 

2.2689X10 
-5 

4.0265X10 
-8 

4.0324x10 
-8 

9-point (b) 
Equation 
(2.3.17) 

2.2428X10 
-5 

2.4732X10 
-10 

1.0291X10 
-11 

1.0291X10 
-11 

13-point Ca) 5.0024x10 
-5 

1.2208x10 
-9 

3.3613x10 
-10 

3.3613x10 
-11 

13-point Cb) 0.2040x10 
-3 

6.3715x10 
-8 

3.3019x10 
-11 

3.3019x10 
-11 

17-point 9.4786x10 
-4 

7.0563x10 
-7 

3.4950x10 
-12 

1.3197x10 
-12 

21-point 5.4237x10 
-3 

3.7517x10 
-5 

7.1510x10 
-9 

5.9274x10 
-14 

GREATEST RELATIVE ERROR FOR EXAMPLE 1. 



5.3 EXAMPLE 2. 

Consider the problem 

2 2 
3 3 
—2 ‘‘‘ —2 “ 2{x(x - 1) + y(y -1)} in 
3x 3y 

R:0<x<l,0<y<l, 

u(x, y) = 0 on 3R 

which has the solution 

u(x, y) = x(x - l)y(y - 1) . 

The problem was discretized using the different schemes in Chapter 2 

with h = ^/16 . Note that this model problem has no truncation 

error. The errors in the numerical solution, A , 

off and are summarized in tables (5.3) and (5.4). 

are due to round 
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Table 5.3 

DISCRETIZATION 
NUMBER OF ITERATIONS 

5-point 4.6736x10 
-7 

7.9283x10 
-13 

5.6205x10 
-16 

5.8286x10 
-16 

9-point (a) 6.2303x10 
-7 

4.5848x10 
■12 

5.5511x10 -16 
5.8286x10 

-16 

9-point Cb) 
Equation 
(2.3.16) 

5.9591x10 
-7 

9.0132x10 
-12 

1.3877x10 
-15 

1.4155x10 
-15 

9-point Cb) 
Equation 
(2.3.17) 

5.9591x10 9.0132x10 
-12 

1.3877x10 -15 
1.4155x10 -15 

13-point (a) 6.5003x10 
-7 

1.8103x10 
-11 

2.4286x10 
-16 

2.4980x10 -16 

13-point (b) 1.3691x10 -6 1.5610x10 -10 3.5388x10 4.0939x10 

17-point 8.6702x10 
—6 

4.8188x10 
-10 

1.2975x10 -15 
1.2836x10 -15 

21-point 2.5968x10 
-8 

2.1316x10 
-12 

4.8511x10 
-15 4.8494x10 -15 

GREATEST ABSOLUTE ERROR FOR EXAMPLE 2. 
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Table 5.4 

NUMBER OF ITERATIONS 
DISCRETIZATION 

5-point 8.0218x10 
-6 

1.2685x10 
-11 

1.4416x10 
-14 

1.4628x10 
-14 

9-point Ca) 9.9685x10 
-6 

7.8042x10 
-11 

1.3356x10 
-14 

1.3780x10 
-14 

9-point Cb) 
Equation 
(2.3.16) 

9.5845x10 
-6 

1.5170x10 
-10 

3.2132x10 
-14 

3.2369x10 
-14 

9-point (b) 
Equation 
(2.3.17) 

9.5845x10 1.5170X10 
-10 

3.2132x10 
-14 

3.2369x10 
-14 

13-point (a) 1.0400x10 2.9917x10 
-10 

9.979x10 
-15 

1.0231x10 
-14 

13-point (b) 3.4367x10 
-5 

3.1190x10 
-9 

9.4739x10 
-15 

1.088x10 -14 

17-point 1.3872x10 
-4 

1.3423x10 
-8 

8.8423x10 
-14 

4.1179x10 
-14 

21-point 4.2440x10 
-4 

5.2905x10 
-7 

2.9036x10 
-10 

1.4130x10 
12 

GREATEST RELATIVE ERROR FOR EXAMPLE 2. 
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5.4 EXAMPLE 3. 

Consider the model example 

3^ 3^ 2 
u(x, y) + —— u(x, y) = -2'rr sin TTX sin iry in 

3x 3y 

R : 0 < X < 1 , 0 < y < 1 , 

u(x, y) = 1 > y = 0 , 

= 1 + sin IT sin ny , x = 1 , 

= 1 + sin IT sin TTX , y = 1 , 

= 1 5 X = 0 

which has the solution 

u(x, y) = 1 + sin TTX sin Try . 

The results of the experiment with this example are summarized in 

tables C5.5) and (5.6), 
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Table 5.5 

DISCRETIZATION 
NUMBER OF ITERATIONS 

5-point 3.2281x10 
-3 

3.2189x10 
-3 

9-point (a) 1.5414x10 
-5 

2.1245x10 -5 

9-point Cb) 
Equation 
(2.3.16) 

1.0430x10 
-5 

2.4869x10 
-5 

9-point Cb) 
Equation 
C2.3.17) 

2.6412x10 
-5 

6.2637x10 6.2830x10 
-8 

13-point (a) 5.5076x10 
-5 

7.0755x10 
-7 

7.0721x10 
-7 

13-point Cb) 5.5076x10 
-5 

7.0755x10 
-7 

7.0721x10 
-7 

17-point 9.0444x10 6.4840x10 
-7 

2.1832x10 -8 2.1831x10 -8 

21-point 5.1726x10 
-3 

3.5413x10 
-5 

6.2987x10 
-9 

6.3961x10 
-10 

GREATEST ABSOLUTE ERROR FOR EXAMPLE 3. 
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Table 5.6 

NUMBER OF ITERATIONS 
DISCRETIZATION 

5-point 1.6140x10 
-3 

1.6094x10 
-3 

9-point (a) 8.0230x10 
-6 

1.7777x10 
-5 

1.7777x10 
-5 

9-point Cb) 
Equation 
C2.3.16) 

7.4630x10 
-6 

1.2434x10 
-5 

1.2434x10 
-5 

9-point (b) 
Equation 
(2.3.17) 

1.3462x10 
-5 

3.1318x10 
-8 

3.1415x10 
-8 

13-point Ca) 3.2859x10 
-5 

5.9205x10 
-7 

5.9177x10 -7 

13-point Cb) 3.2859x10 
-5 

5.9205x10 
-7 

5.9177x10 
-7 

17-point 8.7128x10 
-4 

6.2462x10 
-7 

1.8268x10 
-8 

1.2867x10 
-8 

21-point 4.9830x10 
-3 

3.4115x10 
-5 

6.0677x10 
-9 

5.3520x10 
-10 

GREATEST RELATIVE ERROR FOR EXAMPLE 3. 
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5.5 EXAMPLE 4. 

Finally consider the problem 

—^ u(x, y) + —2" y) = 0 in R:0<x<l, 0<y<l, 
8x 9y 

uCx, 0) = u(x, 1) = sin TTx , 

u(0, y) - u(l, y) = 0 , 

which has the analytic solution 

u(Xj y) = sech ^ cosh 7r(y - ^ ) sin TTX . 

Since the differential equation is Laplacian, both of equation C2.3.16) 

and (2.3.17) are essentially the same. The experimental results are 

tabulated in tables (5.7) and (5.8). 
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Table 5.7 

DISCRETIZATION 
NUMBER OF ITERATIONS 

5-point 1.8393x10 -3 1.8392x10 -3 

9-point (a) 2.2169x10 
-5 

1.3958x10 

9-point Cb) 7.7471x10 
-6 

5.4303x10 
-9 

5.4400x10 
-9 

13-point Ca) 2.1397x10 
-5 

4.2493x10 
-7 

4.2476x10 
-7 

13-point Cb) 1.0434x10 
-4 

1.3041x10 -7 1.0998x10 -7 

17-point 4.0068x10 -4 3.3425x10 -7 9.9760x10 ^ 9.9761x10 -9 

21-point 2.4226x10 -3 1.7674x10 
-5 

2.9069x10 
-9 

3.7630x10 -10 

GREATEST ABSOLUTE ERROR FOR EXAMPLE 4. 
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Table 5.8 

DISCRETIZATION 
NUMBER OF ITERATIONS 

5-point 4.6152x10 
-3 

4.6149X10 
-3 

9-point (a) 1.0192x10 
-4 

1.1136x10 
-4 

9-point (b) 1.9070X10 
-5 

1.3625X10 1.3649X10 
-8 

13-point (a) 5.6988x10 
-5 

4.2488X10 
-6 

4.2484X10 
-6 

13-point Cb) 6.9285x10 
-7 

6.7804x10 
-7 

17-point 4.7808x10 
-4 

3.9882x10 
-7 1.0613x10 -7 

21-point 2.8907x10 -3 2.1090x10 
-5 4.3754X10 -9 3.7743X10 

-9 

GREATEST RELATIVE ERROR FOR EXAMPLE 4. 
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5.6 CONDITION NUMBERS OF THE MATRICES 
WHICH ARISE IN DISCRETIZATION. 

The condition numbers of matrices encountered during the use of 

different discretization formulae are calculated using formula (5.1.3) 

Those for matrices V of section C2.3.1) through section (2.3.10) 

are shown in table (5.9) and those for matrices W of above sections 

in table (5.10) for different orders. It can be observed that for 

m = n , 

T 
W = V . 

The results of tables (5.9),and (5.10) are shown graphically in 

figures (5.1) through (5.4). 
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Table 5.9 

DISCRETIZATION 

ORDER OF MATRIX 

10X10 15X15 20X20 25x25 

5-point 60 128 220 338 

9-point (a) 80 170.66 293.33 450.66 

13-point (a) 105.25 224.53 385.91 592.90 

13-point (b) 208.83 445.51 765.72 1176.42 

17-point 395.24 843.19 1449.23 2226.55 

21-point 2280.41 3454.32 5478.57 8074.93 

Condition numbers of the matrices V of Chapter 2. 
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Table 5.10 

DISCRETIZATION 

ORDER OF MATRIX 

10x10 15x15 20x20 25x25 

5-point 60 128 220 338 

9-point 83.29 178.2 306.61 471.32 

13-point (a) 123.35 258.69 445.13 684.24 

13-point (b) 185.78 321.6 553.43 850.73 

17-point 350.04 526.09 797.46 1225.86 

21-point 1698.55 2374.95 3265.38 4155.93 

Condition numbers of the matrices W of Chapter 2. 
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Figure 5.1 

Condition number of matrices V of Chapter 2. 
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10 15 20 25 

ORDER OF MATRIX 

Figure 5.2 

Condition number of matrices V of Chapter 2. 
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Figure 5.4 

Condition number of matrices W of Chapter 2. 



CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The results of Chapter 5 indicate that very accurate numerical 

approximations to elliptic partial differential equations can be 

obtained when using higher order discretization formulae provided 

the analytic solutions are sufficiently smooth. A particular 

desired accuracy can also be achieved using substantially fewer 

internal mesh-points when applying a higher order discretization. 

A discretization using the five-point formula on a uniform mesh with 

a spacing of 

gives an accuracy of 

O(h^) = 0( ^ ) . 
n 

In general, the accuracy obtained using a (4p+l)-point formula with 

a uniform mesh-spacing 

k 
1 
m 

IS 

O.(k^P) = 0( ) . 
m ^ 

The truncation errors involved are of the same order provided 

m = C6.1) 

-110- 
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The relationship is illustrated in Table (6.1) assuming that the 

desired accuracy for a given problem can be achieved theoretically 

by using the five-point formula on a mesh of 161051 x 161051 internal 

points. 

Tabulation of number of internal points and condition 

numbers of matrices for the same accuracy using various 

formulae. 
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The condition number of the matrices V and W , of chapter 2, for 

different discretization formulae are given in the last column of 

table (6.1). The condition numbers for V and W for the five-point 

formula are calculated using formula (5.1.3) and 

with equality when n is odd. The norm used is the maximum absolute 

row sum (Rutherford [18]). It appears that condition numbers of 

matrices V and W for the 17-point formula are different since the 

matrices are different. A similar result appears for the 21-point 

formula. To obtain the condition numbers for the 20 x 20 and 

11 X 11 matrices involved in the 17- and 21-point formulae respectively, 

the machine inverses of the matrices were used. Due to machine storage 

limitations, similar results are not available for the 401 x 401 

and 54 x 54 matrices corresponding to the 9-point (a) and 13-point (a) 

entries of Table (6.1). 

Since the mesh-spacing affects the discretization and round-off 

errors in the opposite sense (Ames [2], page 24, Ralston [17], page 80), 

the results for the five-point formula due to the use of a mesh-size 

as indicated above will be subject to severe round-off errors. The 

theoretical implication of relation (6.1) are, therefore, not desirable 

for large n when using a five-point formula. However, the results 

illustrate that a desired accuracy can be achieved with higher order 

formulae using substantially fewer points. The maximum relative error 

in case of example 1 of Chapter 5 are compared pairwise for different 
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discretization formulae for a practical illustration of relation 

(6.1) and presented in tables (6.2) to (6.5). Due to machine limita- 

tions , corresponding results using a five-point formula on a mesh 

with a sufficient number of internal points for a comparable accuracy 

are not available in all the cases. However, an approximate size of 

such a mesh as given by relation (6.1) is indicated for each of the 

tables (6.3) to (6.5). 

Table 6.2 

DISCRETI- 
ZATION 

ORDER OF 

MATRIX 

NUMBER OF ITERATIONS 

5-point 25x25 6.8403x10 
-5 

1.9537x10 
-5 

1.9539x10 
-5 

9-point 5x5 1.2389x10 
-5 

1.2404x10 1.2404x10 
-5 

Maximum relative error. 

Table 6.3 

DISCRETIZATION 
ORDER 
OF 

MATRIX 

NUMBER OF ITERATIONS 

9-point (a) 18x18 4.4636x10 4.3960x10 
-8 

4.3779x10 
-8 

13-point (a) 7x7 2.5550x10 
-5 

4.3862x10 
-8 

4.6898x^10 
-8 

Maximum relative errors for accuracy comparable to solution when 

using a five-point formula on an n x n mesh where n == 340 . 
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Table 6.4 

DISCRETIZATION 
ORDER 
OF 

MATRIX 

NUMBER OF ITERATIONS 

13-point (a) 21x21 1.1896x10 
-4 

6.3173x10 
-9 

3.5143x10 -11 

17-point 10X10 3.4992x10 
-4 

2.4575X10 
-7 

4.1145x10 
■11 

Maximum relative errors for accuracy comparable to solution when using 
. 4 

a five-point formula on an n x n mesh where n - 10 

Table 6.5 

DISCRETI- 
ZATION 

ORDER 
OF 

MATRIX 

NUMBER OF ITERATIONS 

17-point 20x20 8.2773x10 2.7019x10 
-6 

6.2131x10 
-12 

1.1742x10 
-13 

21-point 11x11 3.7227x10 
-3 

4.1666x10 
-5 

3.8520x10 
-9 

1.4754x10 
-13 

Maximum relative error for accuracy comparable to that of five-point 
4 

formula on an n x n mesh where n - 16 x lo 

It appears from table (6.1) that matrices corresponding to 

higher order discretization formulae are better conditioned than 

matrices corresponding to the five-point formula when used to obtain 

the same order of accuracy. 
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The operation count for the methods cited in Chapter 3 for the 

solution of elliptic partial differential equations with Dirichlet 

boundary conditions using the five-point formula is 

2 
0(n log2n) , 

for an n x n mesh, whereas that for the method of Hoskins et al 

[14] for any order of discretization is 

O(m^) 

for an m x m mesh. 

For p > 2 and m > 1 , 

2p 3 
m > m 

. 2p 3 
i.e. pm log2^ > m 

2p_ p 3 
i.e. m log^^Tn > m 

2 3 
hence n log2i^ > 5 using relation (6.1). 

3 
Therefore, it appears that the speed of 0(m ) Poisson solvers 

based on higher order discretizations compares favourably with the 

2 
speed of fast, i.e. 0(n log2n) , Poisson solvers based on a five 

point discretization formula. 

Although more work is required initially to set up the discreti- 

zation matrices for higher order formulae, they need only be set up 

once and may be used for any problem when the same mesh is used. 

This is a small price to pay for the increase in accuracy and speed 

obtained when using higher order discretization formulae with the 

algorithm SOLVEXAAY. 
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