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ABSTRACYT

Higher order finite difference methods are discussed‘with respect
to speed and accuracy: when used in the_solution of élliptic partial
différential equations.

Although fast direct methods for solving elliptic partial
differential equations are currently often discussed in the literature,
the methods usuélly lean towards using the conventional five-point
differencing on a uniform rectangular mesh which gives rise to block
tridiagonal and.tridiagonal matrices of Toeplitz form. For the
solution of large linear éyétems which resﬁlt from the use of a
finite difference formula involving more'mesh-points, the matrix

equation
XA + AY = F

~is used instead of the ﬁsual:composite matrix approach. Although

the matrices involved become less sparse, the operétion count remains
O(n3) when using an n x n mesh. "However, for a comparable accuracy,
n is much smaller for a higher order finite difference formula than

that required for a standard five-point formula.
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CHAPTER 1

INTRODUCTION

Partial>Differential Equations are of interest since these
arise in the mathematical formulation of many physical problems,
for example, in equilibrium or steady-state problems the equilibrium
configuration @ in a domain D. is to be determined by solving_ther

differentigl equation
L[g] = F
within D, subject to certain conditions
Bi[¢]7= gs

on the»bouﬁdary; oD , of D . Usually the integfation dom;in D
is closed and‘boﬁnded. Such problems are'knOWn as boundary value
problems. Steady”viscoﬁsflow,7steady temperature’diétribution and
equilibrium stress in elasticity can be mentioned as examples of
.steady-state problems. The governing equations for such problems

are elliptic.

1.1 NOTATION AND CONVENTIONS.

Unless otherwise mentioned, the follbwing notation and conventions
are assumed.
Scalar variables are denoted by lowercase letters, e.g. a, b,

ansasB'



Column vectors are denoted by underscored lowercase letters,
e.g. V, W, Z .
Matrices are denoted by capital letters, e.g. A, B, C .

The. elements of a column vector v are usually indicated as

v = [v., Vs V cee 5 V

1 3°
The elements of a row vector'-vT are denoted by

T [v., v v v_]
V12 Vg2 Yge s oo Tplooe

| <

The elements of a matrix, A , are usually indicated as

The value of a function f(x, y) , evaluated at a point.

(xj, yi) is denoted as fi,j .

It is also understood that
[3P+q
(x, y) & ——

u(Psq)
axpayq

u(x, y) .

The usual notation O(hm) is used to indicate a truncation

. m
error of order h .

1.2 TYPES OF PROBLEMS TO BE SOLVED.

In the ensuing work the numerical solution of the elliptic

partial differential equation



2 , 2
a(x) ——a—z-u(x, y) + B(x) %u(x, y) + y(x)u(x, y) + o(y) —a—zu(x, y)
x" oy

+ ¥Y(y) %'u(x, y) + E(yulx, y) = f(x, y) ,
a(x) , e(y) >0 (1.2.1)
is considered on the rectangular region:

R: X £ x s,xn s Y £y < Yo

with Dirichlet boundary conditions. The solﬁfion u(x, y) of the
equation (l.2.l)vi$ required to take on prescribed values on the
boundary dR of the regioh R where ﬁ(x, y) is assumed to be
sufficiently smooth on and within therregion R . For the existence
of a unique solution to (132,1), it is further assumed that the
coefficients @, B, Y, O, ¥, £ and the function f satisfy the
required conditions (Courant and Hilbert [8], page 334).

Well known examples of elliptic partial differential equations
are Poisson's équatioﬁ |

a'2 _ éz .

— ulx, y) +.——§-u(x,.y)'= f(x,‘y}> (1.2.2)

9> - .. ay

and Laplace's equation,

52 52 -
—fi-u(x, y) + ——E-u(x, y) =0 (1.2.3)
ax oy

which can be obtained from equation (1.2.1) by setting
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a(x) = o(y) =

2

m

B(x) = v(x) = W(y)A E(y) = 0

and for Laplace's equation, f(x, y) =0
For convenience, only equations of the form (1.2.2) and (1.2.3)
are considered. The generalization for the equation (1.2.1) is

straight forward but involves tedious manipulation.

1.3 DISCRETIZATION AND MATRIX EQUATION.

The method ofvfinite differencing deals with the discretization
of an arbitrary problem involving partial differential equations
(Forsythe and Wasow [10], page 178) and, in particuiar, in this
work; with the problem ouflined~in section 1.2. To apply this
method, a network of mesh-points is first established through out the
region'of interest. These mesh-points are the pbints of intersection
of mesh-lines drawn parallel to the axes éovering the region. The
terms 'grid-point', 'pivotal-point', 'nodal-point' and 'lattice-
point' also refer to a mesh-point. After this point the term 'mesh'
will be used to denote the network thus obtained, and synonymous to
lattice or grid and 'point' will be referred to as mesh-point..

Along the x-axis the mesh-lines are drawn through,

X < X, < 44 € Xo < 440 <X .
0 1 - J . n+l °

y0 < y1 e Syp < e < ym+l .



and the respective mesh-spacings are defined as follows:

By = X541~ %5 > 3 =00,
(1.3.1)
kg = V41 Y10 1S o(1)m .

It is shown in fig. (l.l) how the basic approximation involves
the replacement of a continuous region by a mesh of discrete points
within R .

Let

denote the true solution to the equation (1.2.2) at the internal

points of
{txj, yi) : 1= 0(1)m +1,3=0(Q)m+ 1}~ (1.3.2)
where
u; 5 = ulxy, y;)

is the exact value of the solution at (xj, yi) )
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Fig. 1.1 DISCRETE APPROXIMATION OF A
CONTINUOUS TWO DIMENSIONAL REGION.

The transition from the entire continuous region to a finite set
of points destroy the possibility of an exact calculation of the
derivatives (Kantorovich and Krylov [15], page 199). The derivatives
in equation (1.2.2) are approximated in terms of h , k , and their

finite difference expressions involving central, forward or backward




differencing at each point within the region of interest. The
boundary conditions are also approximated as such. This'is a
method of reducing the problem of differential equations to a
linear algebraic systém by using a mesh (Kantorovich and Kryloy
[15], page 199, Forsythe and Wasow [lQ], page 175-176). This

process is called discretization. Let

‘ i=1(1m,
A=1a,.] »
1] 1(1)n ,

denote the solution of the system of finite difference equations
thus arrived at. In general the true solution U differs from A
at a particular point. The difference revgaiing the discrepancy
between the solution of the differential equétioﬁ and the solution
of the system of approximating difference equations .on a mesh of
particuiar size is called the discretiéatioh error. Taylor's series
expansioﬁs may be used to investigate this error of'discretization
for each replacement.

It can be noted that approximate values at non—mesh-pqints may
be evaluated from the discrete solution by ihterpolatory techniques
(Ames [2], page 15).

The discretization of equation (1.2.2) by finite difference
technique leads to a matrix équation'(Bickley and McNamee [5]) of

the form

\

AV + WA = G (1.3.3)



where V, W, G are known matrices and A is the solution matrix.

In discretizing equation,(l;2.2),‘the axes are so chosen that the

x variation is indicated by the column suffix j and the y

~ variation by the row suffix i , that is, i 1increases vertically

upward and

j horizontally to the right asvin fig. 1.2.

xY

b 4 X X e o o X b I, 4
n+l

Fig. 1.2 SYSTEM OF AXES SHOWING PROJECTIONS
OF DISCRETIZATION POINTS




With this setup, the matrix

e
I

1(1)n ,
v =[v. .], . (1.3.4)
1(1l)n , '

[
H

‘arises when a finite difference expression is substituted in equation

(1.2.2) for the x-derivative at the internal points of (1.3.2).
Likewise, the matrix

1(1)m ,

W= [w, .] , (1.3.5)
' 1(m ,

e
1

e
L]

is obtained when y-derivatives in (1.2.2) are replaced by the finite
difference expression at the same internal points of (1.3.2).
The values of the function f(x, y) evaluated at the internal

points of (1.3.2) in the process of discpetizafion is denoted as

‘ i=1(1)m-,
F=[f .1, (1.3.6)
>J j = 1(1)n ,
where
fi,j = f(xj,.yi) .

The pbesgribed values of the function at the boundary points

are denoted as

e
1l

B=[b, .] , o (1.3.7)
1(1)n .

P
L
o

"
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Equations (1.3.6) and (1.3.7) can be combined to give

1(1)m ,

e
i

.37 7837 5 2 1 .

(8S]
"

‘The matrices A and G are of the same order.
It can be observed that if the x-increment is indicated by row
suffix i and the y-incremenf by column suffix j then with the

altered notation
{(xi, yj): i=01m+ 1, j =01 + 1} ,

the matrix equation (1.4.3) takes the form

VA + AW = G
where
. i1i=1(1)m ,
V=[v,.]l,
1] i = 1(1)m ,
i=1(1)n ,
W= [w, .] , »
1 5 = 1(1m ,

and the matrices - A and G remain of the same order.

l.4 HIGHER ORDER DISCRETIZATION.

The recent literature (Hockney [13], Buzbee, Golub and Nielson
[6], Swarztrauber [21], Bank and Rose [4], Sweet [20]) seem to

concentrate on the use of five-point difference formula on a
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uniform rectangular mesh for the solution of equations of the form
(1.2.1). The conventional composite matrix formulation using tri-.
diagonal and block tridiagonal‘matrices of Toeplitz form appears to
be used frequently.

In the ensuing work the numerical solutién of elliptic'partiél
differential equations is investigated using higher order discretiza-
tion formulae on a uniform rectangular mesh. The solution of the
corresponding system of difference equations is obtained by sqlving
a matrix equation of the form (1.3.3) rather than using a linear |
system which'involves a composite matrik. |

The solutioh matrix, A , of the finite différénCe sjstem
(1.3.3) at each internal-point of (1.3.2) is found by using the

algorithm SOLVEXAAY (Hoskins, Meek and Walton [14]).



CHAPTLR 2

DISCRETIZATION FORMULAE

2.1 INTRODUCTION.

Finite difference schemes can be used:for the solution of a
variety Qf prbblems in physics and engineering. The region on
which the solution is desired is replaced by a finite set of points
and the governing partial differentia; équafion of the problem is
approkimated by finite difference formulae at each of these pointé.
Finite difference formulae for discretization of some partial
differential equations can be found in Abramowitz and Stegun [1],
and Collatz [7]. Such discretizations may lead to a matrix eQUation

" of the form (1.3.3).

2.2 FINITE DIFFERENCE OPERATORS AND
THEIR RELATION TO DERIVATIVES.

Consider a mesh defined in section 1.3 where mesh-spacings hj
and ki ~are given in (1.3.1). The following notation for various
differences and related operators is used. They are applied to a

function

0(1)m + 1 ,

H

i
u = u(xj, yi) . ¥

0(L)n + 1,

over a constant mesh-spacing

-12-
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=2
1
=2
-
J
i

0(1)n ,

and (2.2.1)

~
1]
o
v
"
"

0(1)m

The following are standard definitions for difference operators
(S. Goldberg [12]).

Centralrdifference:‘

Gxui,j = ui ., :}-— u. .1 (2.2.2)
G +5 1,3 -3
Forward difference:
Axui,j = ui,j+l - ui,j (2.2.3)
Backward difference:
Vu, . =u, . -u. . H 2.2.4
X 1,] 1,] 1,J-1 ¢ )
Differential Operator:
' _ du '
Dxui,j = H (2-2.5)
X=X
]
Shift Operator:
Exui,j = ui,j+l (2.2.6)

with similar expressions for the y-direction. 1In subsequent
developments x-directional expressions are derived and y-directional

expressions are taken to be analogous.
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The following operational identities are immediate from (2.2.2)

to (2.2.4) and (2.2.6):

1l _ 1
2 -2
8, = E, - E, ° (2.2.7)
A, =E -1, (2.2.8)
v =1-pg% (2.2.9)
x x . L] L]

The finite difference approximation to derivatives can be
obtained by relating the operator D with others in (2.2.2) to

(2.2.6). 1In dériving relations between operators the Taylor's series

expansion
2 3
h Bui . 'h2 9 ui . h3 2 ui .
Uigel TW I R AT ot T It
,j ’J . e ax . ax
can be re-written as
’ 2 3
_ h R 2 h 3
Exui’j = (l + 11 DX+—2—IDX +'3—!'Dx + ...)ui’j
hDX
= e U, . .
1,]
The relation
hDX
Ex = e (2.2.10)

is useful since thi Eguality between operators as in (2.2.10) means
n h*D

that E and Z —ZTi give identical results when used for any
z .

polynomial of degree n for any n (Fox, L. [11], page 4). It is
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known that all finite difference formulae are based upon polynomial
approximation, that is, they give exact results when operating upon
a polynomial of proper degree. In all other cases the formulae are
approxim#tions and are usually expressed in series form. Since only
a finite number of terms can be used, the truncation error is éf
concern. The presence of such errors are indidated by using.the 0
notation.

The relations (2.2.7) - (2.2.9) and (2.2.10) give rise to the

following:

hD_, = logeEX

X
= 1oge(l + A,) (2.2.11)
= —loge(l - Vx) (2.2.12)
; -1 GX - )
= 2 sinh > (2.2.13)

The first derivative of u with respect to x at x = x. can

J

be expressed in terms of forward differences as follows:

du _1 ( 1,2 1,3 1.,%

i~ = E o - F At T A - At ...)ui,j (2.2.1%)

X=X. 2
] 3 .
from which an expression for — u(x, y) at x = xj can be formed,
" 9x ‘ '

viz:
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2
2—121 = -—lz— [1og(1 + Ax)] u. .
ax h’ >
X=X .
’ 5 137
=L a2 A3 4 1L % 5,5, 137 46
= = (Ax A+ 50y - T A+ Too O ...)ui’j

h

A similar formula can also be derived at the point Xj-l by setting

“i,5 7 B

in equation (2.2.14) (Fox, L. [11], page 7 ), i.e.

du _ 1

v = E [log (1 + Ax)]ui,j

‘ =X,

*y

= £ [log (1 + A)] (1 + ADu,
. h e x x°71,3-1
1 1,2 1,3, 1 4 1 ,5
% h(Ax M VR 20 Be ¥ - °) ij-1

and for the second derivative one can obtain

=1 2 1 L 1 5 13 .6 11 ,7
- 7 h2 (Ax T 12 At 12 By 180 éx * T80 S "',ui,j-l

3 (2.2.16)

This process can be repeated for the point (j-2) and (j-3)

to yield
82 1 2 3 1 .4 1 .6 1 .7
u
il = — A +A - —A +—=—A - =—A + ...]lu
2 2 ( -) i,3-
9x h X X 12 x 90_‘x 90 x i,3-2
X=X,

J- (2.2.17)

and

(2.2.15)
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2
9 u 11,2 3 11 4 1 .5 1,6
—— T — + +__- - —— ——— P . . - . .
5 5 AX 2Ax 15 Ax 15 Ax + 30 Ax ul,]_3 (2.2.18)

X . h
: X=X, '
]
The forward differences in the expressions for uxx(xj’ yi) can be

evaluated using the following convenient form:

APy, | = % (—l)K(P,u. .
1,3 5, L1°1,3+p-R

where (E) are binomial coefficients.
Similar formulae involving backward differences can be established

using equation (2;2.12). The central difference expressiontfor second’

derivatives is obtained'from equation (2.2.13):

2 P
é.._u; - ( g Sinh—l _X) u
52 h 21 71,3
X:Xj 2
2 2 2 2 2
3 . 5 . - : 7
- -%—(6X _ 21 6+ 13 >_1 2 S 5, + ...] u;
h 2%.31 2tes5t 2°%.71 >J
172 1.4 1 6. 1 .8 1 .10
"2 (6x 15 % * 90 5% ~ S0 Sx T 3150 O )ul,j
(2.2.19)

2.3 FINITE DIFFERENCE FORMULAE.

2.3.1  FIVE-POINT FORMULA.

Consider the points (xj, yi), (xj, yi+l)’ (Xj’ yi—l)’ (Xj—l’ yi)
and (xj+l’ yi) on the rectangular mesh (1.3.2), as illustrated in

fig. (2.1). An approximate expression for Laplace's operator
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at a point (xj, yi) can be obtained by forming the differences of

the values of u at the point

ya
V.
)e}+l
y
i ﬁF——
*;. ;[ 1 ox.
J-1 Jj+1
Vi1
--}.
~
¥ R
' 7
i< h —| X x
1 1 J

Fig. 2.1 FIVE-POINT MODE

(xj, yi) and the four points closest to it (Kantorovich and Krylov
[15], page 181). The following expressions are obtained by using

Taylor's series expansion for a uniform mesh:
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_,.(1,) _ hT o (2,) e 230, w4 ) .
Uil T %, T PUL3 T ar YiLg toar YiLg " T i, o
(1,) h (2 ) h (3 ) h (4 )
u. . - uu, . = hu. —_— _— —_— PP
i,J-1 1,3 i,j 2! "i,] 3! _1,3 br "i,j
(2.3.1)
2 -3 4
LG K G2) K GL3) kG
Usp1,3 T 85,5 TR YT Wl far Yyt g Yy Yoo
2 3 4
- (,1) . k (,2) k (,3) . k (,u)
Uio1,5 T %,5 T MMy Y ar¥is AT Ui,y tonr YiL -

The replacement for Laplace's operator is then obtained by
adding all the equations‘in (2.3.1) term by term (Kantorovich and

Krylov [15], page 181):

S VS He ¥ = 0 Ml ¥ Bl 15 RN I SN S0
(4, ) 4 ( H) ,
12 uy 30 12 i .o (2.3.2)
Hence, the approximation
5%u 3%y J%,3-1 T M5 Y Yy 5
2 t{ T2 T 2
ax dy | h
X=X. : V=y
] t U q.5 - 2ui .+ Uy 5
+ 2] gl 2Tl (2:3.3)
2

2 2
with a truncation error of O(h") + 0(k’) .
The five-point approximation (2.3.3) for Laplace's operator can
also be obtained from equation (2.2.19) and its analogue for the

y-derivative using term by term addition.
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Thus the approximation is

2
2 2
_3__‘;_ +3_211 zizﬁxui.+i26u. . F e
X=X Y=y ’
J 1

u, . - 2u, . . . - 2u, .
= i,j-1 1,] i,j+1 + i-1,3 1s]

. -2 ;
h K

which has the error of the same order as in (2.3.3).
Discretizatibn‘of Poisson's equation (1;2.2) with»Dirichlet; 

boundary COnditions over a rectanéular‘region by the five—poinf

formula (2.2.4) leads to the matrix equation (1.3.3) (Bickley and

McNamee [5]) where

e

It )
-1 2 -1
o -1 2 .
V==
h . .
. -1 2 ,
- 7 nxn ',
2 -1 h
-1 2 -1
W=
k .
-1 2
~ mem s
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and G = -F + B1 +_B2

with F (fi j) = {f(xj, yi): i=11m , j = 1)} ,

s

{(aij): i=1(1)m , j = 1(1)n}

A

fu o)
1,0 1,0+l
2.0 2,0+l
¥3,0 U3,n+l
1
B =% 0
h
~um,0 m,n+l.) °
‘tu u u u )
0,1 0,2 0,3 °°° Yo,n
1
B, = — 0
2 2
: k
("m+1,1 Ym+1,2 “mt1,3 " Ymtl,n,

It may be noted that the central difference 6perator —62 is
used rather than 62 in order that V and W may have positi#e
eigenvalues.

It is understood that the unspecified elements in the matrices

are 2zero.

2.3.2 A NINE-POINT FORMULA.

Consider Poisson's equation (1.2.2). The solutions of the exact

equation (2.3.2) and the approximate equation (2.3.3) in finite
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differences for the same boundary conditibns do not in general agree
exactly. (Kantorovich and Krylov [15], page 182). The measure of
the discrepancy between them is indicated by the truncation error
o(h?) + O(kz) . The accurac& may be improved by a higher order
finite difference formula designed to reduce fhe truncation error.
Such techniques are discussed in Kantorovich -and Krylov [15],
page 182-199, Collatz [7], Fox [11]; page 260. In addition t; the
values of the function u at the points used in section (2.3.1),

s yi—2) and

consider the values at (xj_2, yi), (xj+2, yi), (xj
(xj, yi+2) as well. An analysis similar to that in section (2.3.1)
may be carried out to produce an approximation of the form (2.3.3)
This can also be accomplished by taking the first. two terms from

gquatibn (2.2.19) and its analogue er_the’y—derivatiQe and then

~adding them together. -Hence

1 72 1 b 1 .2 1 .4
= % " 17 % Y15 +f_z‘(‘sy‘.u vl i,3
h” Kk
e U 1 Wi ¥ 2 Mt 0% Btk P T > MR VR
2 '
h
~u, o .+ 16u. . . - 30U, . + 16u... . - U...
+ i-2,7] 1—1,]7 21,] i+l,] 1+2,7] (2.3.5)
k.

By Taylor's series expansioﬁ it can be shown that
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1 l 2 1 4 1 2 1 .4 (2,) (,2)
— |6 - =6 )u. . —_— 6" - = ) .. = Uty oLty
R2 VX 12 xl1,] * T A 12 'y “1,3 ulaJ u1,3
1 .4 (6,) 1. .4 (,6)
) h ui,j 30 k ui,j + ...
. . . N 4
which indicates a local truncation error of O(h ) + 0(k') . The

stencil in (2.3.5) may be referred to as a 9-point cross of mesh-

points.

2.3.3 COMPLEXITY NEAR BOUNDARIES.

Consider the discrétization of Poisson's equation (1.2.2) with
Dirichlet boundary conditions using the stencil (2.3.5) on a
rectangular region assuming that h and k- can be chosen so that
the boundaries are mesh-lines. When the stencil (2.3.5) is appliéd
to pointsbnéar the bouﬁdaries; values of the function u - are
required at some points‘oufside the solution region as iﬁdicated in .

fig. (2.2).
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Fig. 2.2 9-POINT CROSS OF MESH-POINT

To avoid such situations forward-difference or a backward-différence
formulae involving th¢ same number of points as in (2.3.5) can be
used for points near the boundaries,rbut the truncation error is
likely to be of lower order in h or k , being reduced, for

example from O(h“) to ‘O(hs)‘.

2.3.4  BOUNDARY ADJUSTMENT FOR
A NINE-POINT FORMULA.

Consider the first two terms in equation (2.2.16) for the.

replacement of the second derivative, u.. at points on the mesh-line
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L1l ,2 1 sy
A LR, 4x)“i,j-1

(2.3.6)
h .

and the corresponding replacement for uyy' at points on the mesh-line

y = y°.+ k is

~

u JL-(AZ jL-Au]u
vy 42 ly 127y i-1,3

(2.3.7)

A similar replacement can be done using backward differencing for the

points on mesh-line x = X+l = h and y = Ym+1 ~ k.

'Addition of equations (2.3.6) and (2.3.7) and subsequent Taylor's

series. expansion produce

1 2 1 4 1 .2 1 .. 7 (2
1z (Ax T 17 Ax)ui,j—l vz by - 12 Ay)ui—l,j = U5
3 3

G2 _nd 5 K

+ u,’>’ o+ ... (2.3.8)

i3 12 7i,j 12 71,3
. e qe . 3 3
which indicates a local truncation error of 0O(h™) + O(k ) .

It may be noted that the discretization of equation (1.2.2)

using equation (2.3.6) and equation (2.3.5) at the points
y; =¥, tik,i=2(1)m-1

. : . : 3 3
along x = X, + h gives a local truncation error of O(h ) + O(k )

and that the error due to the discretization by (2.3.7) and (2.3.5)

at the points

X. = x. +3h , 3§ =2(1)n -1

3 0
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y
along y =y, +k is of order O(h') + o(x®) . A similar analysis
may be carried out for the points near the other boundaries.

Discretization of equation (1.2.2) with Dirichlet boundary

condition by (2.3.5) and (2.3.8) leads to a matrix equation (1.3.3)

where
4
20 -16 1 h
-6 30 -16 .
-4 -16 30
! 1 -16 ) ;
V=—=
12h 1 . ) 1
. . . -y
-6
L] . 20
N
nxn ,
20 -6 -4 1 3
-16 30 -16 1
1 -16 30 -16 1
_ 1 . . .
12K
L 1 -y -6 20

mxm ,



with,
r \
1y 5 Y0 Uy e MY ne
Hu, o 2.0 U el Y2 n41
Bl : 12 . . L) .
12h . .
. 0
\ llum,O -fum,O —um,n+l llum,n+lJ .
( 11 11 11 11 A
Ilug Yo,2 Y0,3 Yo,n-1 Y0,n
“Yo,1 Yo,2 Yo,3 Mo,n-1 Yo,n
B, = ]‘2 0
12k :
“Un+l,1 Ymtl,2 “Un+1,3 “Ymt+l,n-1 ““mt+l,n
\ll“m+1,1 Miny1,2 0 Hnea,s 118,41 ,0-1 .llum+1;3

and matrices A and F are as in section 2.3.1.

2.3.5 A MODIFIED NINE-POINT FORMULA.

It is clear from equation (2.3.5) and (2.3.8) that the discreti-
zation error varies from O(h3) + O(k3) to O(h“) + O(ku),. To
increase the accuracy of (2.3.8) to that of (2.3.5), consider the
value of the function at an additional internal pdint‘while approxi-

mating the second derivative by forward or backward differencing at a
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relevant point (Kantorovich and Krylov [15], page 196) to obtain

A A

Ugx T Uyy © T2 % Y12 x}ui,j—l,

L [a2 1,4 1 .5
XX vy, hZ ( X

L (2~ L a4 145, |
"5 (8, - 3285 + 15 8wy 5 (2.3.9)

The Taylor's series expansion gives

1 2 1l 4 1 5)
h2 (Ax 12 Ax * 12 Ax ui,j-l T

2 .
;L.(A L
k

1.5
y 1257 EE'Ay)ui-l,j

(2,) (,2) 26 . 4 (6,) 26 .4 (,6) ‘
ui,j + ui,j + 350 h ui,j * 350 k ui,j + e (2.3.10)

which indicatés a local truncation error of the same order as in
(20305)o
Discretization of equation (1.2.2) with Dirichlet boﬁndary

condition by (2.3.5) and (2.3.9) leads to the matrix equation (1.3.3)

where
(15 -16 1 )
m 30  -16 .
-1y -16 30 . : -1
v=-210 s 1°  -1s ) ) 6
12h
-1 1 . . -14
. 4
. 15

o’ .
nxn ,
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(15 m -14 6 -1 N
-16 30 -16 1
1 -16 30 -16 1
W:__!'.7
12K . . ) . .
: -1 6 -14 i 15
mxm ,

and B2

and the matrices A , F are as before. The matrices B1

are also as ‘in section (2.3..4) except that the coefficients of

u, and u. (1 = 1(1)m) in the first and last columns of

i,0 i,n+tl ?

B1 , as well as the coefficients of ug 3 ~and
9

in the first and last rows of B, are now 10 rather than 11.

"um+l,j (G} =;l(l)n)

2.3.6 AN ALTERNATiVE NINE-POINT FORMULA.

In section (2.3.4) a less accurate nine-point formula is used
at points close fo the boundaries and a nine-point formula of section
(2.3.2) is used at the remaining interior pbints.* Later in section
(2.3.5) a modification is done by taking'the value of the function
at an additional internal point while using the one-sided (forward
or backward) differencing. It may be desirable to use a nine4point

formula at all points in the solution region. Such a nine-point
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formula, which may be referred to as a 9-point square of mesh-points,

is as follows.

From equation (1.2.2) it follows that

a“ 5t 52 ,
—u(x, y) + ——5 u(x, y) = —5 f(x, y)
L 2,2 2
9x x 9y X :
(2.3.11)
) 2" 2
5 ulx, y) + —ulx, y) = —5 f(x, y)
9x 9y dy dy
Taylor's'series expansion of equation (2.3.4) are
1.2 (2,) L), b (e, h° (8,)
- = 2 O,
h? *x%i,5 T 0,5 Y 12 1,3 360 i, T 20160 "i,5 T U7
R N OF D WO 6O K LG8)
K2 ¥ 1.3 TiL] 12 360 1,5 7 20160 "i,3 el

i= 1(1)m, j = 1(1)n .

The difference between u, and values of u.

>

(circled in fig. 2.3) are tabulated and Taylor's series expansion

gives:
2 2 2 7 22 2'
1 252, =k ,(2,2) u(u 2) 4(652)
12h2 X'y i,3 12 "i,] 144 1,3 4320 T1,3 St
n2iH
LK 2 Q8 . K8 1(6,2)
44 Ti,j 1728 i.j te 4320 1,3 S

(2.3.14)

at additional points

(2.3.12)

(2.3.13)
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2 .
12,2, b (2,2 maE (2,m) | hE (2,6)
2 xyi,j 12 i, . 144 "i,j 4320 1,3 toc
12k
N 4 2 ; 6
h™  (4,2) © h'k"™ (4,u4) h (2,6)
P Y,y Yz Y, toortuwszo iy Yoo
(2.3.15)

i=11m, 3 =211 .

y A
Var ¥ N
AS 74 A\ -
i - e
i+l,]-1 i+l1,]+1
i &
u. .
_ 1,7
-4 4‘$ \V
i-1,1-1 Yio1.4-1

%Y

J—

Fig. 2.3 9-POINT SQUARE OF MESH-POINT
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Addition of equations from (2.3.12) to (2.3.15) and use of equation
(2.3.11) gives (Kantorovich and Krylov [15] , page 185, Forsythe and

Wasow [10], page 193)

1 .2 1 .2 11 (2,)
{ =6 + =6 +— 8§ 8.} .= f, .+ —= f£.72
2
h2 X K y 12 h ) | i,] 12 |
k2 (,2) 4 4
Y B
Eﬁ'fi,j + O(h ) + 0(k ),
i=11)m , j = 1(1)n . (2.3.16)

If h = k the equations (2.3.11) through (2.3.16) yield (Kantorovich
and Krylov [15], page 210, Forsythe and Wasow [10], page 194-195,

Smith [19] page 1u3)

1 ) (2,) ., (,2)
2 5, + ‘Sy g ‘Sy) e (f + 57
(4,) (2,2), (,4) ’ .6
360 (f + f i35 i,j ) + 0(h™)
i=1Qm , j=1(1n (2.3.17)

The system of difference equafions (2.3.16) can be represented by a

matrix equation as follows (Walton [25], page 139)

AV + WA - ——-(h + k ) WAV = G (2.3.18)
" where
: 2 2
- _h” o kT 111
G=-F=gzR-T35+B +B, + 12,(h2 "2 )c_
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F, A, B, ,B, ,V and W as in section (2.3.1) and

2

r = [£22)

i,3
S =v{f§:§) , i=1Q)m 5 j = 1(1)n .
C = (ci,j) s
11 = Yoo T Mo,1 " Yo,2 T 1,0 * 2,0
°L,n ~ Y,n-1 " ®o,n ¥ Yo,n+1 T M1,ne1 T U2 ne1
°m,1 ~ %n-1,0 T Pm,0 * Ume1,0 T 1,1t Umel,2
Cm,n = Ym-1,n T 2um,n * “m+l,n-1 " M1t um+l,n+l
cl’j = uQ,j—l —72u0’j + go,j+l » 3 =2(1)n -1
°my3 T Umtl,i-1 T Pme1,3 T Umer,ger 0 3 7200 -2
5,10 7 %i-1,0 ~ Mi,0 T Yyyp,0 0 17 2WM -2
®ion T Y-l T PMine1 T Vier,ner 0 13 20M -1
ci,j =0 for i=2(1)m -1 and j = 2(ljn - 1.

‘ . . . 2 b,
For Laplace's equation the coefficients of h and k in

equation (2.3.17) vanish.

Hence this nine-point formula is a more

accurate finite difference approximation of Laplace's equation for

h =

k (Fox [11], page 261, Smith [19], page 143). But for h = k ,
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the finite difference approximation of Laplace's equation is given
. e as : . _ 4 4
by (2.3.16) which indicates a local truncation error of O(h ) + 0(k )

since cancellation does not occur as in (2.3.17).

2.3.7 A THIRTEEN-POINT FORMULA.

Following the analysis given in section (2.3.2) a thirteen-point
formula usiﬁg central differencing can be obtained by taking‘the first
three terms from equation (2.2.19) and its y-analogue.

Addition and Taylor's series expansion give:

L (62 -1t s 1), _1_(,2'_*1_',‘* ;6) -
2 ®x 712 % T 90 %xl%i,3 Tz % T 12 % T Te0 Olt,5
(2,) . (,2) . 1 .6(8,) 1 .6.(,8)
Uy + ui,j + 550 h ui9j t 55 k ui,j + oo,
i=1()m, 3= 1(1n . (2.3.18)

The difficulties mentioned in section (2.3.3) also arise invapplying'

~

this formula at points on mesh-lines Xy + h s Xg * 2h , x 1 h ,

n+

X1 " 2h,y, + k , y0‘+ 2k > Y1 ~ k , V1 = 2k . Proceeding as
in section (2.3.4), the replacement for second derivatives at points

on mesh-lines x, + h and Yo k may be obtained by taking the

0

first four terms in equation (2.2.16) and its y—analogue{ thus

- _l_( 2 1,4 1,5 13 .6 | |
U = h2 Ax 12 AX + 15 Ax 180 AX)ui,j—l e (2.3.19)
and
14,2 1,4 1 .5 13 .6
Yyy © 12 (Ay "1 Y138y T Teo Ay %1,y e (2.3.20)
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Addition of equations (2.3.19) and (2.3.20) and subsequent Taylor's

expansion yiéld,

L2 Logw o dys 186y .1y 1o 1os
2 (Ax iz % * 12 % T 180 % Ui,5-1 7t 2 ATyt
13 6 _ (2, (,2) 11 .5 (7,) 11 .5 (,7)
180 “yl"i-1,5 T YiL,5 YU, T Teo MY, I8 M Ui,y Yoo
i=1(1)m , j = 1(1)n . (2.3.21)
A similar replacement for Uy and uyy for the points on mesh-lines

XO + 2h and Yo t 2k . can be made by using the first four terms in

equation (2.2.17) and its y-analogue respectively to obtain:

1 4% 1 .6

19,2 | 1
—E'lA th 12 % T30 Ax)ui,j—Q T3 (A tay -8
h Tk
1 .6 - .(25) (,2) 1 .5 .(7,) 1 .5 (,7)
+ 30 A )ui—Q,j = ui,j + ui,j + 50 h ui,j + 30 k ui,j + ..
i=11)m , J=1(1)n (2.3.22)

Approgimations'similéf to (2.3.21) and (2.3.22) involving»backward
differencing for the points ﬁéar the other boundaries can aléo be
constructed as above;

The diééretization of equation (1.2.2) using the formula
(2.3.18), (2.3.21) and (2.3.22) for the respective internal points

will produce a matrix equation of the form (1.3.3) where



- ) -228

(147
225

—470
285
-93

13

" 147 225
420
27 =270

27

~228 .
420

~-200

-470

-200._

4380

-270

G=-F+B +B,

27
-270

490
~270

27

285

-270

490

~36-

27
-270
. 430
=270

27

-93
12
27

-270

12

-93

-15

285

-200

-470

L2
-15
-200
420

-228

120

13

-93

285
-470
225

147

225

-228

147

nxn ,

mXm ,



with
4
l37ul’0 —.'L3ul:’0
l37u2,o -131.12’0
1
2 L ]
180h .
&37u,,0- —lSun,O
”
137u
-13u
2u
B, = - 2
180k
2un+l,l
“8u a1
137u

-37-

].37u0’2

-13uo,2

24y 9

2un+l,2

“18u 100

370 41,0

2un+l,3

_lsun+1,3

1379 11,3

.. 137u

137ul,m+l

1379, me1

n,m+1l 137un,m+1’

2un+l,m

—lsun+l,m

n+lﬂ5

The only non-zero elements of B1 + B, -occur in the first,

second, third, last, second to last, and third to last rows and

columns.

It may be noted that the matrices V and W become less sparse

as more points enter into the difference formulae.




2.3.8

A MODIFIED THIRTEEN-POINT FORMULA.

It appears from formula (2.3.21) and (2.3.22) that the accuracy

near the boundary is of order O(hs) + 0(k ) due to the use of one-

sided (forward or backward) differencing involving the same number

of points as in the central differencing of the function at the

internal points.

In order to have the same order forall the trunca-

tion error terms, a technique similar to that discussed in section

(2.3.5) can be applied using equations (2.2.16) and (2.2.17). The

stencil thus formulated for discretizing equation (1.2.2) leads to

the matrix equation (1.3.3) where

and

[ 70
486
-855
670

-324

-214
378
-130
-85

54

27
-270
490
=270

27

180n%V

-2
27
-270
490

=270

27

I
N

54

-130
. 378

=214

-11

90

324

670

-855

486

70
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180k2w = Z2 and
e 3 )
70 486 -855 670 -324 90 jll
=21y 378 -130 -85 54 -16 2
27 -270 490 -270 27 -2
2 27 =270 490  -270 27 -2
2 -16 54 -85 -130 378 =214
-11 30 -324 670  -855 486 70
~ ‘ Zmxm ,
and matrices A and F are as before. The matrices Bl' and B2
are also as in section (2.3.7) except that the coefficient of us g
-9
and u. (1 = 1(1)m) in the first and last columns of B, as
i,n+l v 1
well as the coefficients of u_ . and u (7 = 1(1)n) in the

0,3 m+1l,]

first and last rows of B1 are now 126 rather than 137 and the

coefficients of a 40 and Ui on+l (i = 1(1)m) in the second

and one but last columns of B1 as well as the coefficients of

u . and u (j§ = 1(1)n) in the second and oﬁe_but last rows

0,3
of B

m+l,]

2 afé -11 instead of —;3.

2.3.9 A SEVENTEEN-POINT FORMULA.

Following the analysis given in the preceding sections a
seventeen-point stencil involving central differencing can be formulated .

by taking the first four terms from equation (2.2.19). Adding to its
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y-analogue and expanding by Taylor's series produces:

19,2 1 4 1 (6 1 .8 1 g2 1 4 1 6 _ 1 .8}
2 8% 12 % * 30 %k " 560 %x/Ui,5 T 2 (6y 12 % Y30 % " s60 6y)ui,j

. ) 8 8 .
RN CTO RN O R SN T IO A GS LI

Y, T Y,y T 3T50 4,3 3150 1,3
e A . 8
This indicates a local truncation error of order O(h8) + 0(k7) .
A similar analysis as in the previous cases can be carried out for

adjustment at the boundaries of this stencil. Adjustments are required

+ h, X_ + 2h, x_ + 3h, x

0 0 0 n+l - Sbs

at points along the mesh-lines: x

X - 2h, x - h, and the corresponding mesh-lines parallel to

n+l n+l

the x-axis. The approximations for the second derivative at points

along X, + h, X, + 2h and X, ¥ 3h obtained from equation (2.2.16),

(2.2.17) and (2.2.18) are.
2 " 1 5 . 6 7 8
T P L L B - L

xx 2 12 %% T 12 ®°x T 180 °x T 180 °x ~ %60 Ax)ui,j—l ’

1 7 47 8

1 (A2 ¥ A L \* 1 A° A+ A ) '
u z 12 % T30 % T 90 “x T sono SxlVi,3-2 °
and
1 (.2 3 11 .4 1 .5 1 .6 1 .8
Ukx n? (Ax T T T 12 % T30 % T Seo Axlui,j’3 )

Adding to these the respective y-approximations and subsequent
Taylor'é series expansions, indicates,as in section (2.3.4), that the
error will vary from order O(h7) + 6(k7) to O(h8) + O(ke) . For
poiﬁts near the other boundaries, a truncation error of this order

also occurs.
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For equation (1.2.2), this formula gives rise to the matrix
equation (1.3.3) where V, W are given in pages 42 and 43. The

matrices A and F are as before. The matpices B and B2

1

are given in pages 44 and Uu5.
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2.3.10 A TWENTY ONE-POINT FORMULA.

Using the same approach as previously, the matrices on pages
47 through 50 are obtained in discretizing equation (1.2.2) by a
twenty oﬁe-point formula. The local truncation error due to the
use of central differencing formula is O(hlo) + O(klo) and that
due to the use of one-sided differencing for the same number of
points as in central differencing is O(hg) + 0(k%) . ‘However, in
both the seventeen and twenty one-point formula the order of accuracy
at all points over the solution region could belmade identical by
improving the accﬁracy near the boundaries as in the procedure out-
lined in section (2.3.5).

It can be noted that the number of non-zero rows and coiumns in
B, ‘"and B, increases with the increase in number of points used

1

in the formula.
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CHAPTER 3

SOME RECENT DEVELOPMENTS FOR THE
DISCRETE SOLUTION OF ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS

3.1 INTRODUCTION.

Many physical problems require the solution of elliptic partial
differential equations of the form (1.2.1). In solving such an
equation by finite difference methods, one usually encounters a

‘large system of linear algebraic equations, which in composite

matrix formulation can be represented by

MX = Y (3.1.1)

where M is an n x n matrix of block tridiagonal form, viz.
( h
Al Cl
B, As s
AN
S \\\\\\ ~ \\\ (3.1.2)
N AN
\ N Cn—l
NN
Np Yo
n n
\ /

The matrlces -Ai’ Bi

"and Ci

are of order p

-51-
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Define X to be the vector whose components comprise the

i-thvertical line of the array X ,

X,
ip
\ J

The block vector X can be written with ®; as components,

X
k—na

The vector Y has the same block form as X .
The usual Gaussian elimination method is not always satisfactory
for such a system (Forsythe and Wasow [10], § 21.2-3). In the sequel

some recent fast direct methods for the solution of system of the

form (3.1.1) are reviewed.
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3.2 THE CYCLIC ODD-EVEN REDUCTION
AND FACTORIZATION ALGORITHM.

This method is taken from Buzbee et al [6].

Consider the system of equation (3.1.1) where

A -T )
-T A -T
N N\ ‘
M = . N ‘\\ (3.2.1)
. N | A
N \\LT
N N
N
L /

with the assumptions,
(i) TA=AT , A and T are of order p ,
‘s k+1 . cos .
(ii) n =2 - 1 where k is any positive integer

Then the system>(3.l.l) with (3.2.1) may be written as

Ax) - Tx, =y, »
“Txs )t ARy - T§ﬁ+l =y;-3%2, 8 «..,n-1,  (3.2.2)
_Tﬁn—l + A§n =¥ -

Multiplying the 1lst and 3rd equations by T and adding them to
A times the 2nd, multiplying the 3rd and 5th equations by T and
‘adding them to A times the uWth equation, and continuing in this
fashion, the system in (3.2.2) can be reduced to two lower order

.systems
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N7 N ¢ )
(1) (L
-T X5 Ty. + Ay, + Ty
(1) (1) (1)
A -T LI Tys + Ay, + Tyg
~N ~ ~
~ < NG
\\ ~ ~N -
~ \\ \\ .
~ ~ ~
~ ~ —T(l)
~ ~N -
~ ~
> () (1) .
-1 A %n-1 BTSN o
J - /
(3.2.3)
where
att) o A% _ op? (3.2.4)
G G
and
¢ N ¢
(A 0 NES y o+ Tx, )
0 A Q X ¥q t T§Q + T§4
N\ N
NN N . (3.2.5)
NN N '
N N ‘o
NN .
NN
0 AJ §n Yn * Tzn—l
\ N/ \
. k+1 . .
Since n = 2 - 1, the new system in (3.2.3) is of block
dimension (2k - 1) involving x with even indices, and the system

in (3.2.5) is of block dimension 2K The system (3.2.3) is also

block tridiagonal and of the form (3.2.1). So the same reduction can
be repeated until only one block remains. The process of reducing the

system of equations in the above fashion is. called cyclic reduction.



for

where

Define sequences,
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A(O) = A
T(0) - T
(o _
y_j)=1j,3=l,2, ces I,
2 2
A(r+l) - _2(T(r)) + (A(r)> .
(3.2.6)
r = o, l, 2, LRRERY k 3
o) _ (p(p)y
(r+1) _ _(r)_(r) (r)_(r) (r) (r)
5 =T Yy YA Ly YT Ygeon o
jo=ie2n , i=1, 2,3, ..., 2P 1
h = 2r—l
After r reduction the new system of equations is
(r) (r) M ) ( (r) )
r r r
A -1 Xoh Lon
(r) (r) (r) (r)
T A -T ¥2+2h ¥5.2n
~N ~ ~
~N . ~ \\ -
~ ~ \\ . =
~ ~ ’ . .
~ ~ S (r)
N ~ RG] § 1PN Y3.on
~ N .
RECONNENES I B :
7 \.’ / g. s

and
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N
(r-1) 1. (r-1)
0 Xn NN
(r-1) (r 1),
0 -0 X3h
AN \\\\ (r-1)
N\ N AN E(2i-1n| _ [X(235-1)
0
NN ‘
NN\
(r-1)
~ 0 A /\ / -
which are of block dimensions 2k+l—r -1 énd 2k+l—r

After k steps (3.2.2) reduces to the single
A0, oy
2 2

From (3.2.4), it follows that A(l)

A and T . By induction it can be shown that A(r)

aApolynomial'of degree :r in A and T .

+ Tx

(r-1)

—2h

+ 1)

+ T(

(r-1)
2 2h

(r-1)
=j+2h

respectively.

P X p matrix equation

(3.2.75'

is a polynomial of degree 2 in

in (3.2.6) is

A linear factorization of A(P) produces (Buzbee et al [6])
r
(r) 2 :
A = I | (A - x.(x)T) , (3.2.8)
i21 =j
J
where
23 - 1 . r
ij(r)'—'QCOS——jZ-;"_E—?I’,]:l,Q, .y .
Set
¢ =4 - x (0T
J —J

(r 1)

~ %on

(r-1)
T Z(5-1)2h
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Then, to solve (3.2.7) put

VA - -
= Z k
L 2
and respectively solve
(k) . k
Gj . Ej+l = Ej for j =1, 2, ..., 2 .
Thus,
X, =2 .
¢ SFa
The numerical calculation of zgr) in (3.2.6) is subject to

considerable round off errors in many cases of interest (Buzbee et al
[6]). Buzbee et al give Buneman variants of cyclic odd-even reduction

and factorization (CORF).

3.3 BUNEMAN VARIANT TWO OF CORF.

The difference between the Buneman algorithm and CORF algorithm
lies in the way that the right hand side is calculated at each stage
of the reduction.

Assume,
T=1I_, (3.3.1)

the identity matrix of order p in the system (3.2.2).
The Buneman variant two of CORF consists of three phases:

preprocessing, reduction and backsubstitution.
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r) (0)

The matrices A( are computed from A = A using the
recurrence

2

() _ ae10" o

A =

and then using identities in (3.2.8).

The vectors gér) are computed starting with
(0) .
_q_,_j =lj: jz]_'._’ 2, +¢.5 N
and
(1) (0) (0) -1 _(0)
gj = 3j-1 + gj+l + 2A qj 5 =1, 2, ..., n-1
The remaining ggr) are determined for r = 2, ..., k and
5= 28, 2.0, ..., XL

using
e R
+ (A(r-l))—l(_ggfgi) + ﬂéﬁéﬁ) _ g§f£2) . 2g§r—l))
-9 e - e
where,



-59-

Define
(-1) (-1) (0) _ -
9 _ }_+ g, . l.+ S% = EO =% =0,
1-3 1+3
then the solution vectors §j are given for r = k, «.., 0 and
5= 28, 30", ..., KL OF
by
X =}_( (r) = (r-1) = (r-1)|
27218 $5-2h T Y4+2n
(r) —l( (r) )
+ (A7) gj + §j—uh + §ﬁ+4h
Here §j+4h and Ej—uh are computed at a previous step in the back-
substitution.
All matrix computation can be performed using the factored form
of A(r) .

Define an operation as consisting of a multiplication or division
plus an addition or subtraction and considering only those computations
which contribute to the asymptotic count, then the operation count

for CORF for an n ¥ n mesh in (Dorr [9])

g9 2
§-n logzn s

whereas for the Buneman variant two of CORF it is (Swarztrauber [22])

3 21
n log,n .
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3.4 THE MARCHING ALGORITHM.

This is taken from Bank and Rose [4].

Consider, for simplicity, p = n in (3.1.1) with (3.2.1) and
2

(3.3.1). Premultiplication of this linear system by an n° x n

permutation matrix P yields the partitioned system,

- ™ r B ™\
-1 A -I il’, _Y.z

A

 -I
N\
NN
AN N 5 ] = 1. (3.4.1)

'-\—I\A

N

-I
=k A En—l Xn
A -I o) X y
. J )™
For convenience, this may be written as
5 | c [_ 5
PM = ] = —_—

where the symbols B, C, R, X, y are used to denote their corresponding

submatrices in (3.4.1). Using the modified Chebyshev polynomials,

So(a} =1, Sl(a) = a, Se(aj = asﬂ_l(a) - Sz_é(a); £ =2



-Bl-=

the factorization of PM is

B | c I l 0 B l C
= - (3.4.3)
R | O RB l I 0 ' 8, (A)
Here
RB™T = [-s,(a), -5,(A) -3 (A)]T
1 5 5 s ey n-1
The block solution of (3.4.3) is carried out as follows:
I | oll*% y
_l‘l = |— (3.u4.4)
| RB I ¥n ¥
and
B l c X v
l == (3.4.5)
0 | s (&) X Y
From (3.4.4),
v=y (3.4.6)
and
lN _lN

Vo =Yy - RB°V =y, -RB7Y (3.4.7)
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Note that R and B are sparse whereas RB_l is not, hence

it is advantageous to solve first

Bzv'_ = z s W = [ll’ Wos sees En—l] (3.4.8)

and then

=y; - R = -(Awy - w, - y;)

Ya TNy sl 1
= - W, (3.4.9)
Equation (3.#.5)»yi§lds,
BX = ¥ - Cx (3.4.10)
and
SpAdx, = vy
= - W, (3.4.11)

Computation of (3.4.11) can be simplified with the use of the

identity (Bank and Rose [u4]),

n ,

s (a) = TT (a - r ()I) ,
j=1

rn(j) = 2 cos = Ijl

The algorithm (3.4.6) to (3.4.11) may be summarized as follows:
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W1 T ¥, (uéing (3.4.8))
Woo T AW - Y
~n-j = AEn—]-l T W42 T Inoge1 0 3<j<n
Z T 4
(A -r (DDz5 =2, 3 »1=<3=n
%2 T Zp
X1 © A T Yy (using (3.4.10))
-3 T .Azsn-jﬂ T X542 T Lnog+1 0 2<j<n-1

The asymptotic operation count for this algorithm is [4]
0(n’10g,, (/1))

for an n X n mesh where

3.5 A DIRECT METHOD FOR THE DISCRETE SOLUTION
OF SEPARABLE ELLIPTIC EQUATIONS.

The following is taken from Swarztrauber [21].
If equation (1.2.1) with Dirichlet or Neuman boundary conditions
is discretized using the five-point formula a linear system as in

equation (3.1.1) arise where
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\\\ (3.5.1)
N N N
N \\\_ AN
Bn-l An-—l Cn—l
L L

and vectors X and Y are as in section (3.1.1). The block size

n 1is assumed to be of the form 2k - 1 . Each of the bldcks

of M in (3.5.1) is éf order p and are of the following form,

B, = b.I (3.5.2)
A; = A+ a;l (3.5.3)
Ci = ciI (3.5.4)

where bi’ a;, c; are scalars and the matrix A is tridiagonal.
The reduction of the system is carried out as follows: eliminate
the unknowns Ei-l N §i+l between the three block equations cor-

responding to block rows i - 1, i, i + 1 . Multiplying these rows

by matrices 5i,v$£, @& (yet to be determined) and add, then

0;B; 1%X5 o * (038, 4

Lt oAt

+ ¢iBi) i1 lpiBi+l)§i

%, + (0;C,

(65C; *+ VihA; 0% 0 * ¥5Ci1%i40

+

O3 1 * ¥y * Vi

]

(3.5.5)



In order to eliminate X,

Since the matrices

number of solutions.

A:

l’
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io1 ° §i+l » choose
1Ay * 03By = 0

iCi * WihA =0

Bi» Cy

i

such that

(3.5.6)

(3.5.7)

commute, this system has an infinite

For simplicity select,

9 = Biea®
®3 7 A
Vi = Cify

i

Ai+1

1

Substitution of these equations in (3.5.5) yields

B,
1

where

g{1)
1

NeR

1

Nep
1

and

(1)
i

(1)

Xi 2

=B

+ Agl)x.
i =

A

iA541851

B.A

18441811

C:A

i i—lci+l

B.A

ifie1dsoa

(1) _ (D)
PO Ry TV
- Ay BByt CiAy 0Bin

T Aiafiads

+ C.A

ifio1d541

(3.5.8)
(3.5.9)

(3.5.10)

(3.5.11)

(3.5.12)

(3.5.13)

(3.5.14)

(3.5.15)
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The system in (3.5.11) is block tridiagonal and has about half

(Qk-l - 1) of the unknown vectors X for 1 =2, 4, ..., 2k -2 .
The general algorithm is as follows:
Define bl =c =0 and for i=1,2, ..., n,
(o) _
(0) _
(o) _
c; ' = oyl (3.5.18)
and
Xéo) = I3 (3.5.19)

From (3.5.17) and (3.5.13) it can be observed that AiO) is linear

in A and Agl) is a cubic polynomial in A . The degree of Air)
would triple at each step of reduction. ‘Therefore to reduce the

degree of the polynomial and consequently the amount of computation,

define for r = O, l, ..., k - 2 and
i=Uh, 28h, ..., (25770 O 1),
where
h = 2r-l )
B§r+l) - (G§r+l))-lB§r)A§£;hB§f;h (3.5.20)
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(r+l) _ (r+l) -1, (), () .(r) (r) ,(r) ,(r) (r), () (r)
=) = Gy 7)) T(By AL onCion T Aionfison®i  t G AL onBivon’
(3.5.21)
(r+1) _ (r+l) -1, (), (r) () :
,Ci = (G ) 1 Al 2hCi+2h (3.5.22)
and
(r+1) _ (r+1) -1 (r) (r) .(r) (r) . (r) (v) (r) () ()
i = (6 ) By A onBion T Ailonfisonds T Ag -2n7i Yi42n’
(3.5.23)
where
(r+1) _ (r l) (r-1)
G T T AL AL (3.5.24)

is a common divisor of the right-hand sides of (3.5.20),(3.5.21) and
(3.5.22).

Also define §0 = §4h 0 . Then for each r and

k-vr

i = 2h, 2:2h, ..., (2°°F - 1)e2n,
the block tridiagonal system,
(r) (r) (r) _ (r)
i Eion T A5 E Y G Epon T (3.5.25)
takes the form
(k-1) (k-1)
A x =y (3.5.26)
2k-l —ék—l —ék—l

when r =k - 1 .
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Now solve for §-k 1 from (3.5.26) and for r = k - 2, k - 3, ...,0

and

k-r

i = 2h, 3*2h, 5°2h , ... (2 - 1)2h .

The remaining unknowns are evaluated using (3.5.25):

_ o)1, (r) () (r)_ :
2 = A7) Ty - By Ry o T O Ryaon) (3.5.27)

The vectors X on the right hand side are known from a

—2h * Zis2n
previous step in the back-substitution process.

As r increases the matrices Air) s Bgr) s Cir) fill rapidly
which can be expensive. These matrices can be expressed as polynomials
in the single matrix A and instead of storing the matrices, compute

and store the zeros. of the polynomial that represent them.

Define

then, in the preprocessing phase, zeros are computed fromvthe'

polynomial,
(r+1) _ (r 1), (r-1) -1, —(r)— (r-1),(r) ,(r-1)
Ay = Ay Aren ) e Y onBiin Aieonfi-sh
(r) (r), (r) —(r) —(r) (r-1),(r) (r 1)
AjonPi Pieon Y %ieonYi Pion Aioonfissn ) (3.5.28)
r =0, 1,2, cuiy k-2, 3 =4h, 2°8h, ..., (2T1 - 1y.un
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where

i
ar) [ ] a, (3.5.29)
j=1-2h+1

i .

Y
Jj=1

cj (3.5.30)

The reduction phase is:

§r+l) - (A(r—l) (r—l))—l(aéf)Agr-l) (r) (v)

i i-h Pisn i+h Pisondi-on

(r) (@) () , ), (r-1),(r-1) (r)
T A onfieondi  tYi Ain Ajoon Yieon) (3.5.31)

and the back substitution phase is

- (Agr))fl(zir) _ E{r)A(r-l) —(r), () ) (3.5.32)

% i “i+n Rion T Vi “in¥i+on

The algorithm so far is unstable. It may be stabilized by writing

the reduction phase as

2+ EDGEE)  FOGED TG, - o
(3.5.33)
where
o™ = Ay
o = A e

k-r-1

for r=0,1, ..., k-2, and i = 4h, 2+4h, ..., (2 - 1)+4h
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and the back substitution phase as:

= (a®)y-1,(r-1), (r-1), (r) _ ~Hr) ,(r-1),-1
X = (A7) A n Apn Ty meg TR ) TRy oy

_ ;ﬁr)(A(r-l))-l }

ith ) Ziion (3.5.34)

For an n X n 'mesh, Swarztrauber [21] finds the asymptotic

operation count to be

O(anqgQH)

3.6 A CYCLIC REDUCTION ALGORITHM FOR SOLVING
TRIDIAGONAL. SYSTEM OF ARBITRARY DIMENSIONS.

The follbwing is taken from a paper by R. A. Sweet [20].

Consider the following system

'A I N 2N N
- ?il X—l
-1 A -1 52 XQ
-I A -1 §3 13
= (3.6.1)
-I A -I 54 X#
-I A -I §5 ZE
TOA %] |5
" s . 4 L /

Similar linear combinations as in section (3.2) except with
T=1

yield,
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fA(l) -I ) K§Q\ ’Ayz ty, ot XG‘ f_;lf
-I PR | x| = |Ay, vty tys| = Xﬁl) (3.6.2)
L -1 B(l)J 3—(6/ LAZG + ¥s ) ‘_él)/
where |
A(l) = A2 _ o1 ) B(l) - A2 _ 1. .

From this example, the following two distinct cases become
evident.

Define

h =2 ,Jr=nrh

where n, is the block size at r reduction and

(0)

A = B = A
o0 _ o
JO = no =n .
Case I: nr is an even number. In this case the unknowns '§J will .
' r
not be eliminated. The new equation for x5 is obtained by multiplying

(r) L

the last equation by A and addition of the last but one equation

to it.
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(r)

Case II: n, is an odd number. Here X5 is to be eliminated at
r .
this step while X5 _h will not be eliminated. The new system for
r
X5 _p is obtained by multiplying the last but one equation by A
r

and adding to it the preceding equation plus (
the last equation.
Consider the system (3.1.1) with (3.2.1) and (3.3.1).

Above considerations along with

(0)
. =0
o>
0]
ﬂ_j =Xj31=192’ ey I,

yield at the (r+l) 1lst step the reduced syétem of equations:
r .

A(r+l) 1

™~ \\\\ ~
~ N N
N -1 A(r+l) o1
-I B(r+l)(c(r+l))—
4 (r+1)_(r+l1) ‘ (r+l1)
r r+ . r+
A Pon T on
(r+l) (r+1) (r+l)
A h Ty
(1) (r+l) (r+1)
A + q )
-BJr+l—2h ,1-2h
B(r+l)(c(r+l))—lE§r+l) + q(r+1)
L r+1 r+l

B(r))—lc(r)A(r)

times

NG R

Zon

ST

X

—Jr+l—2h
1 X
J \_Jr+l J
(3.6.3)
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where
ATt (02 oy (3.6.4)
(r+1) _ _(r) (r)-1, (r) (r) (r)
Ej = Bj' + (A ) (gj + Ej—h + Bj+h) (3.6.5)
(r+1) _ (») (r) (r+1) . B
ﬂj = gﬁ-h + gﬁ+h + QEﬁ s 3 = 2h, %h, ..., Jr+l - 2h
(3.6.6)
and, in case I,
p(r1) o (@) _ (7)o erl) () (3.6.7)
E§r+l)‘= Eér) + (B(r))—lc(r)(ggr) + Eérzh) (3.6.8)
‘r+1 r r r
(r+l) . (v) (r+1) :
=q .+ D s J .. = Jd (3.6.9)
r+l B S v+l ¥ '
ﬁhile, in case 1I,
B(r+l) ='A(r)(A(r)B(r) _ C(r)) _ B(r) i C(r+l) - B(r) (3.6.10)
(r+l) _ Bérzh + (A(r))_l(gérzh + Eér) + E§r32h) (3.6.11)
r+l r r r r
(r+l1) 3 (r32h + 2§r+l) + (B(r))—lc(r)A(r)(gér) " Eér+l))
r+l r r+l r r+l
(3.6.12)
Jr+l = Jr - h

Using this general reduction scheme the original system under consideration

may be reduced at step r = s to the single equation.
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(s),.(s),-1 (s), (s),-1 _(s) (s)
B (c ) gc_JS B (c ) ) + 95
S S
or, B(s)(§J - Eés)) = C(S)EES) (3.6.13)
s s s
(r) (r) (r)

It appeabs from (3.6.4), (3.6.7) and (3.6.10) that A , B , C

are polynomials in the original matrix, A . It has been shown in

section (3.2) that A(r) has degree 2 © . Suppose 'B(r) has degree
Kr and C(r) has degree Zr . Then from (3.6.7) and (3.6.10),
K+ 2 , case I
T
K, = (3.6.14)
K, + 2r+l , case II
and
£ , case I
I’ .
ﬁr = (3.6.15)

K. 4 case II
v

Now substituting A 2 cos 6 , it can be shown that

At 2 o1 Ly,
r- 2
2
(r) _ 1
B —UK(jA)Q
P
C(r) _ Ug»( %-A) ,
T
where,
K,=2 +& and 0<£ < 2 1, and
m_ (2i - 1)
T (@) = [ | (20 - 2 cos ~=2_— =20
m i-1 2m
o im
um(a) = l-l (2a - 2 cos —— )
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denote respectively the Chebyshev polynomial of the first and second
kinds.

Equation (3.6.13) can be written as

k : ¥ . ,
s s
T (s) ()2 T (4 - w81’
i=l-(A Ai e s P s )= i=1 (A g g s ‘
where
(s) _. i
)‘i -2cos————ks+ln )
(s) _ i
us = 2 cos Z;—:quf R

To avoid the matrix multiplication of the form
(A - ul)g

a technique suggested'by Swarztrauber [21, page'llua] can be used.

The following algorithm follows from the analysis.

_ (s)
1. Set 25 = 4y
s
2. Solve the linear system
(s)iy> _ (,(s) (s)
Z; =2, 9t 25 for 1=1,2, ..., £s 2
3. Solve the linear system
(A - A(S))z =z for i = 4. £ k
i 53 ZHA1 s+l’ Ts+2° s ?
Heo Xy TRy ot E
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(s)

Observe that Ai and N should be selected so that ui is as

(s)

close as possible to one of Ai which reduces considerably‘the
‘accumulation of round off errors.

The computation of the last part of (3.6.12) is done by a
similar algorithm. The remaining unknowns are thenvcomputed_by the

usual back substitution process.

The asymptotic operation count for this algorithm is (Sweet [20])
2
0(n logzn)

for an n X n mesh.

3.7 THE NUMERICAL SOLUTION OF THE MATRIX EQUATION
XA + AY = G.

Hoskins et al [14] presented an iterative method for solving the

matrix equation
XA + AY = G (3.7.1)

where X, Y, G are known matrices of orders m X m, n X n, m X n

respectively. The algorithm is:

Step 1. Whiie X# I and Y # I execute steps 2 to L.
Step 2. Set G = —:QL— (¢ + X Tey™h)

Step 3. Set X = % (x + X7

Step 4. Set Y = —é— (v + v

Step 5.

=
1

N+
o
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After s application of steps 2 to 4 of the above algorithm the

following eduation is obtained:

XsA + AYS = GS (3.7.2)

where

Multiplication of equation (3.7.2) on the left by X;l and on the

right by Y;l produces

1 1

x 1A+ avt = xle v (3.7.3)
= S S S 8

Addition of equation (3.7;2) and (3.7.3) and division by 2 gives,

1 1

2

1 -1 -1, 1 - -1
5 (XS + XS YA + A(Ys + YS ) = 5 (GS + XS GsYs )

from which it is clear‘that

o)

_ 1 ~1 -
Cs41 7 2 (Gg + Xs Gs¥s
converges to 2A whenever

1

)

1 —
X+l §'<Xs + Xy
- (3.7.4)

1 -1
E(YS-'-YS)

Ys+l
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converges to the identity matrix I . It can be shown (Hoskins, et al
[14] ) that convergence occurs when the eigenvalues of either X and

Y or -X and -Y have positive real parts.

Let
~ 1
B
s -1
13 |
and
g, = x|

The iteration (3.7.4) can be generalized to

_ % -1 _
Xoyp = 8 X, + B X" ,s=0,1,2, ...
where

28
g = =

s ~ ~ oy 20

(13s + /_(BSCS))

BS = S SaS

~ ~

In the case that X and Y have real spectra, Bs+l’ Cs+l can be

found from

Boyp 1 - Bg» Gy =1+ E
where
5 -/AcT |2
E‘ S S s



-79-

The operation count for this algorithm is [1u4]
0(n>)

for an n X n system.



CHAPTER &4

SOLUTION OF MATRIX EQUATIONS ARISING
FROM HIGHER ORDER DISCRETIZATIONS

4.1 INTRODUCTION.

‘It has been mentioned earlier that discretization of equation
(1.2.2) on the uniform rectangular mesh (1.3.2) leads to a métrix
equation of the form (1.3.3) which can also be wfitten in composite
or block form as (Bickley and McNamee [5], Mitchell [16], page 102,

Varga [24], page 196-197):

Mx =y (4.1.1)
where
w+vllI vle vv3lI cee vnlI
Vl2I w+v22I v32I .o vnQI
VlBI Vo3 w+V33I . VnSI
M = i . . (4.1.2)
vlnI VQnI VSnI e w+vnnI R
~ /
X = M8y @ps vees @03 8505 Agp we Bpp3 g7s cee 3 s 3pp e 3]
vy = [fll, fl2’ oo fln; f2l’ f22, cres f2n; f3l’ ceed fml’ fm2’ P fmn]

-80-
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The matrix A 1is a numerical approximation of the discretized
solution of equation (1.2.2) at the internal points of (1.3.2). The
matrix V 1is of dimension n X n, W is mxm and I is an
identity matrix of order m X m .

In this chapter attempts are made to generalize the methods [4],
[6], [20] and [21] for the solution of the matrix equation (4.1.1)
where (4.1.2) arise from a higher order finite difference approxima-
tion to the equation'(l.2.2) with Dirichlet boundary condition.

Finite difference appro#imations to equation (1.2.2) with Dirichlet
boundary conditions using the standard five-point formula on uniform

rectangular meshes produce matrix equations of the form (4.1.1) where

M= \\\ \\\ \\\ (4.1.3)
N

-1 A
" S
The square diagonal submatrices
~ N
4o -1
B TR |
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are of order n and the I's are n X n identity matrices.
In the special case mentioned above the matrices V and W

are

-~ 7 nxn ,

- ZJ mXm .

However, it may be observed that the fast direct methods of
Chapter 3 are designed for the solution of the matrix equation

(4.1.1) where M is tridiagonal and usually of the form (4.1.3).
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4.2 HIGHER ORDER DISCRETIZATION AND
FAST DIRECT METHODS. '

Consider the following system

an D ; ~ r§1\ !’zi N
-I A -D I %, Yo
I -I A -D I X5 Y
I -I A -D I Xy Yy
I -I A -D I Xg Yg
= (4.2.1)
I -I A -D I Xs Is
I -I A -D I X Yy
I -I A -D I Xg 28
I -I A =D Xg Yq

I -I A X
—10
- 2

where matrix

D=dI , d is a scalar,
A  1is any quin-diagonal matrix,

I is an n x n identity matrix.

An aftempt to generalize the reduction process of section 3 is
as follows: Multiply the third and fourth equations respectively
by A and D and add the first, second and fifth equations to them,

multiply the fifth and sixth equations respectively by A and D
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and add third, fourth and seventh equations to them and continue the

process, then the system of equation (4.2.1) may be written as

( 2 ~ 2 Y () C o )
2A-I  A®-2D+2I  2A-D I X, ¥,
I 2A-1 a2-2p+21  24-D? I ¥
%3 I3

2 2 & _
1 2A-1 A®-2D+21  2A-D x| = |3 (4.2.2)

I 2A-1 a%-2p+21 §

e

X9
) 7’

where

zi = Ay, + Dzu tY Y Yyt Y s
i@ = Azs + Dy, +y3 ty, *+ Y7 >
Y5 = Ay, + Dyg + ¥y + ¥t Yg »
¥y = Mg + DYy +Yy + Yg -

The reduced system of equation in (4.2.2) is no longer of the
form (4.2.1) and therefore, cannot be reduced further in the same way.
Higher order finite difference approximations, for example, a

nine-point approximation to equation (1.2.2) in a special case as

above gives rise to a matrix M of the following form:



where

=W1+-J--2—I s

-85-
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and the matrix W is as in section (2.3.4) with the order of the
identity matrices the same as the order of W . It can be observed
that the métrix M and its diagonal submatrices have bandwidth
greater than 5. The use of the nine-point formula of section (2.3.5)
will add one more element in each of the first and last rows of the
matrix M and its diagonal submatrices. It appears, therefore, that
higher order formulae and their corresponding modification will
increase the bandwidth of the matrix M and adversely affect the
usefulness of the cyclic reduction algorithm for a system as ih
(4.2.1). The system of equation (4.1.1) where matrix M,’ as ébove,
obtained using a higher order formula cannot be solved using the
marching algorithm since it also takes advantage of the special
block structure of the matrix M

However, an interesting result can be obtained with the use of
an alternate nine-point approximation~of section (2.3.6).

If m=n, the equation (2.3.16) can also be'reérranged as

(4.1.1) where M is of the form (3.2.1) with

A= \\ \ (4.2.3)

and
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(4.2.4)

The linear system (4.1.1) may be written, using the notation of

chapter 3, as follows:

(4.2.5)

Multiplication of (4.2.5) by block matrix Diag[T—l] (Bank [3],

page u4-16) yields,

7l
-1 T o1
NG D
\\\\\\\\ .
\\\\\
\

(4.2.6)
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where

A
e
IA
o]

TEi = y. 5 1

=1

The matrix M of (4.2.6) has the special form as in section
(3.4) except when T-lA is likely to be full. The solution of
(4.2.6) may be carried out (Bank [3], page u4-17) using the generalized
marching algorithm. Here PMPT is dealt with instead of PM 3 P
is the permutation matrix and pl its transpose.

k+1

Suppose n 1is of the form 2 -1, k=0 . Since the

matrices (4.2.3) and (#.2.4) are symmetric tridiagonal and
AT = TA

the Qdd—even'cyclic reduction and its Buneman variant can be applied
for the solution of the linear system (4.2.5)..

The algorithm of section (3.7), in general, can be applied for
the solution of linear systems which arise from any finite difference
approximation of elliptic partial differential equations with Dirichlet
boundary conditions on a rectangular region. The algorithm works
for any pair of matrices V and W which may have complex spectra
provided the real parts of their eigenvalues are positive. It appears
to be numerically stable even when V and W are not too well
conditioned (Walton [25], page 90), and there is no significant
change in either complexity of implementétion or number of operations
when used for matrix equations which arise from higher order discreti-

zations of elliptic partial differential equations.



CHAPTER 5

NUMERICAL ILLUSTRATIONS

5.1 INTRODUCTION.

In this chapter, some model problems are considered for numerical
illustration. Throughout this chapter the region of solution is taken
to be a unit square. A uniform mesh is‘used for convenience. It
has n = 15 internal mesh-lines parallel to each axis. The spacing,

h , between mesh lines, is given by

The maximum absdlute actual efror, that is, maximum deviation of the
numerical solution of the problem from the analytic solution is

determined in absolute value. The relative errors are also tabulated.

Let
i=21(1)m ,
U = [uij] s
' j = 1()n ,
where
ui,j = u(x.j,‘yi) .
be the analytic and
i=1(1)m ,
A = [aij] s
j = 1(1)n

be the numerical solution of a problem at the internal points of

(1.3.2) respectively, then the maximum absolute error, ey is given

by

-8a-
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1(1)m
e, = max maxju, . - a. .f (5.1.1)
i j ):I 3] l(l)n s

}.—J.
"

e
"

and the maximum relative error, er is given by

[
[

1(1)m ,

e = max max 1] 1] . (5.1.2)
r - . . u. .

1()n .

(SN
it

It has been indicated that a solution correct to seven decimal
places can be achieved for matrices up to 63 x 63 in fewer than five
iterations when'using the algorithm in section (3.7) (Hoskins et al
[14]). The following examples illustrate that higher order discreti-
zation formulae yield a higher order of accuracy as was anticipated
by using a more accurate Taylor's series expansion. The accuracy,
indicated in chapter 2, due to the use of formulae from section (2.3.1)
to section (2.3.8) can be achieved in five or less iterations whereas
6 and 7 iterations are required respectively for the 17-point and
21-point formulae. For large n , the operation count remains
O(n3) .

The condition numbers of the matrices of chapter 2 are tabulated
since the behaviour of the matrices with respect to the inverse is
correlated with their condition number (Todd [23], page 45). If M

is the matrix, the condition number is (Todd [23], page uu)
— l :
x(M) = |ImM|| ||M ] (5.1.3)

where the norm used is the maximum absolute row sum. In the following
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tables the nine-point formula of section (2.3.4) is referred to as
9-point (a), the alternate 9-point formula as 9-point (b), and the
13-point formulae of sections (2.3.7) and (2.3.8) as lS—péint (a)
and lS—pgint (b) respectively.

The algorithm SOLVEXAAY for 9-point (b) was implemented using
both equations (2.3.16) and (2.3.17). |

The calculations summarized in the following sections were
performed using double precision arithmetic in APL on an IBM/360

model 50 computer.

5.2 EXAMPLE 1.

Consider the Dirichlet problem

2 2
—Ef-u(x, y) + —Ei-u(x, y) = 2" in R : 0 < x < 1, 0y 21,
ox oy '
X
e y=0,
e’ x =0,
ulx, y) =
el+y , X =1,
x+1

which has the analytic solution

u(x, y) = &Y

The maximum absolute actual and relative errors for this problem

are summarized in tables (5.1) and (5.2).
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Table 5.

1

NUMBER OF ITERATIONS

DISCRETIZATION
L 5 6 7
' ) -4 -4
5-point 1.7715x%10 1.3995x10
) -5 -7 -7
9-point (a) | 5.3253x10 5.2339x10 5.2347x10
g-point (b) -5 - -
Equation | 5.2689x10 1.0934%10 1.0970x10" 7
(2.3.16)
9-point (b) s 10 T -
Equation 5.2592x10 9.7817x10 2.8016x10 2.8015x10 t!
(2.3.17) '
. -4 -9 -9
13-point (a) | 1.8379x10 7.9606%10 1.6559%10
x -3 -7 -11 -11
13-point (b) | 1.3303x10 4.1547%10 9.8259x10 9.8211x10
. ' -3 -6 -12 -12
17-point 6.0683%10 4.6013%10 8.7987x10 5.5768%10
. -2 | . -5 | -8 ' -13
21-point 3.5367x10 2. 4l6L4x10 4.6630%10 1.4677%10

GREATEST ABSOLUTE_BRROR FOR EXAMPLE 1.
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Table 5.

2

NUMBER OF ITERATIONS

DISCRETIZATION
4 5 6 7
i =5 | -5
5-point 5.8603x10 5.1454%10
9-point (a) | 2.8215x107° | 1.0084x10"7 | 1.0076x10" 7
g-point (b) -5 _8 -8
- Equation 2.2689x%10 4.0265%10 4.,0324x10 -
(2.3.186)
9-point (b) _s : “10 11 a1
Equation | 2.2428x10 2.4732x10 1.0291%10 1.0291x10™"
(2.8.17) ‘
. -5 -9 : 210 -11
13-point (a) | 5.002u4x10 1.2208x10 3.3613x10 3.3613x10
. | -3 -8 » -11 -11
13-point (b) | 0.2040%10 6.3715%10 3.3019%10 3.3019%10
. -y -7 ~12 12
17-point 9.4786X10 7.0563%10 3.4950%10 1.3197%10
. -3 | | -5 -9 ‘ ~14
21-point 5.4237x10 '3.7517x10 7.1510%10 5.9274x10

GREATEST RELATIVE ERROR FOR EXAMPLE 1.
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5.3 EXAMPLE 2.

Consider the problem

2 2

% ulx, y) + Lz u(x, y)
Ix oy

2{x(x - 1) + y(y - 1)} in

R:0<x<1,0sys<1,

1
o
o}
B
Q
w

u(xs Y)

which has the solution

u(x, y) = x(x - Ly(y - 1)

The problem was discretized using the different schemes in Chapter 2
with h = 1/16 . Note that this model problem has no truncation
error. The errors in the numerical solution, A , are due to round

off and are summarized in tables (5.3) and (5.4).
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Table 5.3

NUMBER OF ITERATIONS

DISCRETIZATION
4 5 6 7
5-point | 4.6736x107 | 7.9283x10 13 | 5.6205x1071% | 5.8286x10718
9-point (a) | 6.2303x1077 | u.5848x107'% | 5.5511x10 1% | 5.8286x1071°
9-point (b) _7 _12 -15 15
Equation | 5.9591x10 9.0132x10 1.3877x10 1.4155%10
(2.3-16)
g-point (b) -7 ‘ -12 -15 -15 -
Equation | 5.9591x10 9.0132x10 1.3877x10 1.4155%10
(2.3.17)
13-point (a) | 6.5003x1077 | 1.8103x10 2! | 2.4286x10716 | 2.4980x107 16
13-point (b) | 1.3691x107°% | 1.5610x10710 | 3.5388x10 16 | u.0939x107 16
17-point | 8.6702x10 ° | 4.8188x10 10 | 1.2975x1071% | 1.2836x1071°
21-point 2.5968x10" 8 | 2.1316x1072 | 4.8511x10 1% | 4.sugux107 1%

GREATEST ABSOLUTE ERROR FOR EXAMPLE 2.
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Table 5.

u

NUMBER OF ITERATIONS

DISCRETIZATION
m 5 6 7
‘5-point | 8.0218x10 ° | 1.2685x10 ‘! | 1.uuiex107'* | 1.ue28x1071*
9-point (a) | 9.9685x10°° | 7.8ou2x107'! | 1.3356x107'* | 1.3780x107 1"
9?point (.b) -6 ~10 | -14 -14 7
Equation | 9.5845x10 1.5170%10 3.2132x10 3.2369x10
(2.3.16)
g-point (b) -6 -10 -14 -14
Equation | 9.5845x10 1.5170%10 3.2132%10 3.2369%10
(2.3.17)
. -5 -10 | -15 -1y
13-point (a) | 1.0400%10 2.9917x10 9.979x10 1.0231x10
s -5 -9 -15 ' =14
13-point (b) | 3.4367x10 > | 3.1190x10 9.4739x10 1.088x10
. - - -8 -in | -1
17-point 1.3872x10 1.3423%10 8.8423x10 4.1179x10
. -4 -7 -10 -12
21-point 4.2u40x10 ¢ | 5.2905x10 2.9036%10 1.4130%10

GREATEST RELATIVE ERROR FOR BXAMPiE 2.
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5.4 EXAMPLE 3.

Consider the model example'

2 2
3 5 2 i )
—5 u(x, y) + — ulx, y) = -2n sin mx sin 7y in
Ix oy
R:0<x<1,0sy<1,
u(x,y)=l s Yy =0,

=1 + sin 7 sin My » X =1,

=1 +sinmsinm™ ,y =1,

which has the solution
u(x, y) = 1 + sin 7x sin wy .

The results of the experiment with this example are summarized

tables (5.5) and (5.6).
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Table 5.5

NUMBER OF ITERATIONS

DISCRETIZATION _
4 5 6 7
) -3 -3
5-point 3.2281x10 ° | 3.2189x10
9-point (a) | 1.541ux10"> | 2.1245x107°
g9-point (b) -5 -5
Equation 1.0430%10 2.4869x%10
(2.3.16)
g-point (b) -5 -8 -8
Equation | 2.6412x10 6.2637x10 6.2830%10
(2.3.17)
. -5 -7 -7
13-point (a) | 5.5076%10 7.0755%10 7.0721x10
. -5 -7 -7
13-point (b) | 5.5076X10 7.0755%10 7.0721x10
17-point 9.0u4ux10 ¥ | 6.u840x10"7 | 2.1832x108 | 2.1831x10 8
, -3 -5 9 | -10
21-point 5.1726%10 3.5413%10 6.2987%10 6.3961x10

GREATEST ABSOLUTE ERROR FOR EXAMPLE 3.
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Table 5.6

DISCRETIZATION t

NUMBER OF ITERATIONS

u 5 6 7
. -3 -3
5-point 1.6140%10 1.6094x10
. -6 -5 -5
9-point (a) | 8.0230x10 1.7777%x10 1.7777%x10
9-point (b) -6 -5 -5
Equation 7.4630%10 1.2434x10 1.2434x10
(2.3.186)
9-point (b) -5 -8 -8
Equation. 1.3462x10 3.1318x10 3.1415x10
(2.3.17) ‘
. -5 -7 -7
13-point (a) | 3.2859x10 5.9205x10 5.9177%10
. -5 -7 : -7
13-point (b) | 3.2859x10 5.9205%10 5.9177x10
. -4 -7 -8 -8
17-point 8.7128x10 6.2462x10 1.8268x10 1.2867x10
3 -3 -5 -9 ' -10
21-point 4.9830%10 3.4115%10 6.0677x10 ~ | 5.3520%10

GREATEST RELATIVE ERROR FOR EXAMPLE 3.
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5.5 EXAMPLE 4.
Finally consider the problem
32 2

;—E-u(x, y) + géf-u(x, y) =0 in R:0<x<1,0<y<1
X y

u(x, 0) = u(x, 1) = sin ™= ,

~u(0, y) = u(l, y)

n
(@]
v

which has the analytic solution
: m 1 .
u(x, y) = sech % cosh m(y - 5-) sin wx .

Since the differential equation is Laplacian, both of equation (2.3.16)

and (2.3.17) are essentially the same. The experimental results are

tabulated in tables (5.7) and (5.8).
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Table 5.7

NUMBER OF ITERATIONS

DISCRETIZATION
4 5 6 7
5-point 1.8393x1073 | 1.8392x1073
9-point (a) | 2.2169x107° | 1.3958x10°°
. - -6 -9 -9
9-point (b) | 7.7471x10 5.4303x10 ° | 5.4400x10
13-point (a) | 2.1397x107° | 4.2493x10 ’ | 4.2u76x1077
13-point (b) | 1.043ux10""% | 1.3041x1077 | 1.0998x10”7
17-point 4.,0068x10 ¥ | 3.3425x107 7 | 9.9760x10 ° | 9.9761x10 2
21-point 2.4226x10 ° | 1.7674x10"° | 2.9069x10 ° | 3.7630x10 10

GREATEST ABSOLUTE ERROR FOR EXAMPLE U.
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Table 5.8

NUMBER OF ITERATIONS

DISCRETIZATION
4 5 6 7
, -3 -3
5-point 4.6152x10 4.6149%10
. -4 ~b
9-point (a) | 1.0192X10 1.1136%10
. . -5 -8 -8
9-point (b) | 1.9070%10 1.3625%10 1.3649%10
- . . . ! -5 -6 -6
13-point (a) | 5.6988x10 4.2L88%X10 4. 248UX10
. -7 -7
13-point (b) 6.9285%10 6.780u4x10
. =4 -7 -7
17-point 4.7808%x10 3.9882x10 1.0613%10
21-point 2.8907x10 3 | 2.1090x107° | 4.3754x10" 2 | 3.7743x10 °

GREATEST RELATIVE ERROR FOR EXAMPLE 4.
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5.6 CONDITION NUMBERS OF THE MATRICES
WHICH ARISE IN DISCRETIZATION.

The condition numbers of matrices encountered during the use of
different discretization formulae are calculated using formula (5.1.3).
Those for matrices V of section (2.3.1) through section (2.3.10)
are shown in table (5.9) and those for matrices W of above sections

in table (5.10) for different orders. It can be observed that for

The results of tables (5.9) and (5.10) are shown graphically in

figures (5.1) through (5.4).
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Table 5.9

ORDER OF MATRIX

DISCRETIZATION 10%10 15x15 20%20 25%25
5-point 60 128 220 338
g-point (a) 80 170.66 293.33 450.66
13-point (a) 105.25 224 .53 385.91 592.90
13-point (b) 208.83 445,51 765.72 1176.42
017—point 395.24 843.19 1449.23 2226.55
21-point 2280.41 3454 ,32 5478.57 8074.93

Condition numbers of

the matrices

V of Chapter 2.
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Table 5.10
ORDER OF MATRIX
DISCRﬁTIZATION 10x10 15x15 20x20 25x25
5-point " 60 128 220 338
9-point 83.29 178.2 306.61 471.32
13-point (a) 123.35 258.69 445,13 68k .24
13-point (b) 185.78 321.6 553.43 850.73 .
17-point 350.04 526.09 797.u6 1225.86
21-point 11698.55 2374.95 3265.38 4155.93

Condition numbers of the matrices W of Chapter 2.
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CONDITION NUMBER

13-point (a)

‘9-point (a).

ORDER OF MATRIX

Figure 5.1

Condition number of matrices V of Chapter 2.
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CONDITION NUMBER

21-point

17-point

13-point (b)

ORDER OF MATRIX

Figure 5.2

Condition number of matrices V of Chapter 2.’
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CONDITION NUMBER

13-point (a)

9-point (a)

ORDER OF MATRIX

Figure 5.3

Condition number of matrices W of Chapter 2.
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CONDITION NUMBER

17-point

!

[

|

|

l

} -17-point
l

{ 13-point (b)
| i
l

10 15 20 25
ORDER OF MATRIX

Figure 5.4

Condition number of matrices W of Chapter 2.




CHAPTER 6

SUMMARY AND CONCLUSIONS

The results of Chapter 5 indicate that very accurate numerical
approximations to elliptic partial differential equations can be
obtained when using higher order discretization formulae provided
the analytic solutions are sufficiently smooth. A particular
desired accuracy can also be achieved using substantially fewer
internal mesh-points when applying a higher order discretization.

A discretization using thevfive—point formula on a uniform mesh with

a spacing of

=
I
3=

gives an accuracy of

oh’) = o( =) .

X
2
n
In‘general, the accuracy obtained using a (4p+l)-point formula with
a uniform mesh-spacing
k:_];
m
is

A

2p, _
O(k™ ) = of
m2p

The truncation errors involved are of the same order provided

m=8n . (6.1)
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The relationship is illustrated in Table (6.1) assuming that the
desired accuracy for a given problem can be achieved theoretically

by using the five-point formula on a mesh of 161051 x 161051 internal

points.
Table 6.1
CONDITION NUMBER

DISCRETIZATION 'NUMBER - OF OF HATRLX

INTERNAL POINTS ' W

5-point 161051x161051 1.2968x10"°

9-point (a). 401x401
13-point (a) 54x54

17-point 20%20 1449.23 | 797.46
21-point 11x11 | 2s97.62 | 2u97.06

Tabulation of number of internal points and condition
numbers of matrices for the same accuracy using various

formulae.
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The condition number of the matrices V and W , of chapter 2, for
different discretization formulae are given in the last column of
table (6.1). The condition numbers for V and W for the five-point

formula are calculated using formula (5.1.3) and

2
-1
| s 22D,

| |m
with equality when n 1is odd. .The norm used is the maximum absolute
row sum (Rutherford [18]). It appears that condition numbers of
matrices V and W for fhe l7—poinf formula are different since the
matrices are different. A similar result appears for the 2l1-point
fofmula. To obtain the condition numbers for the 20 x 20 and’
11 x 11 matrices involved in the 17- and 2l-point formulae respectively,
the machine inverses of the matrices were used. Due to machine storage
limitations, similar results are not available for the #Ol x 401
and 54 x 54 matrices corresponding to the 9-point (a) and 13-point (a)
entries of Table (6.1).

Since the mesh-spacing affects the discretization and round-off
errors in the opposite sense (Ames [2], page 24, Ralston [17], page 80),
the results for the fivewpoint_formula due to the use of:a mesh-size
as indicated above will be subject to severe round-off errors. The
theoretical implication 6f relation (6.1) are, therefore, not desirable
for large n when using a five-point formula. However, the results
illustrate that a desired accuracy can be achieved with higher order
formulae using substantially fewer points. The maximum relative error

in case of example 1 of Chapter 5 are compared pairwise for different
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discretization formulae for a practical illustration of relation

(6.1) and presented in tables (6.2) to (6.5).

tions, corresponding results using a five-point formula on a mesh

with a sufficient number of internal points for a comparable accuracy
are not available in all the cases. However, an approximate size of

such a mesh as given by relation (6.1) is indicated for each of the

tables (6.3) to (6.5).

Due to machine limita-

Table 6.2
pISCRETI. | ORDER OF NUMBER OF ITERATIONS
ZATION MATRIX u 5 6
. ‘ -5 -5 . -5
5-point 25%25 6.8403%10 1.9537%10 1.9539%x10
. -5 -5 . =5
9-point 5%5 1.2389%x10 1.2404%10 1.2404%10
Maximum relative error.
Table 6.3
ORDER NUMBER CFVITBRATIONS
DISCRETIZATION| OF
MATRIX Yy 5 6
. : -5 -8 . -8
g9-point (a) | 18x18 | 4.4636%10 4.3960%10 4.,3779%10
. -5 -8 -8
13-point (a) 7x7 2.5550%10 4.3862%x10 4.6898x10

Maximum relative errors for accuracy comparable to solution when

using a five-point formula on an n X n mesh where

n = 340 .
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17-point

10%10 | 3.4992x10™ " | 2.u575%x10"

Table 6.4
ORDER NUMBER OF ITERATIONS
DISCRETIZATICN OF -
MATRIX L 5 6
4 -9 -
13-point (a) | 21x21 1.1896%x10 6.3173%10 3.5143x10_11
7 11

4.1145x10

Maximum relative errors for accuracy comparable to

. . L
a five-point formula on an n X n mesh where n = 10 .

solution when using

Table 6.5
prscrer- | ORDER ; NUMBER OF ITERATIONS
ZATION | yaTRIX 4 5 6 7
. -4 -6 -12 ' —13
17-point | 20x20 | 8.2773x10 2.7019x10 6.2131x10 17 | 1.1742x10"
. -3 -5 -9 -13
21-point | 11x11 | 8.7227x10°° | 4.1666x10 ° | 3.8520x10 1.4754x10

Maximum relative error for accuracy comparable to that of five-point

4
formula on an n X n mesh where n = 16 x 10

It appears from table (6.1) that matrices corresponding to

higher order discretization formulae are better conditioned than

matrices corresponding to the five-point formula when used to obtain

the same order of accuracy.
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The operation count for the methods cited in Chapter 3 for the
solution of elliptic partial differential equations with Dirichlet

boundary conditions using the five-point formula is
2
0(n logzn) R

for'an n X n mesh, whereas that for the method of Hoskins et al

[14] for any order of discretization is
O(ms)

for an m X m mesh.

For p22 and m> 1,

m2p>m

i.e. mePlong > m
i.e. mQPlongp > m
hence n2log2n > m3 , using relation (6.1).

Therefore, it appears that the speed of O(ms) Poisson solvers
based on higher order discretizations compares fa;ourably with fhe
speed of fast, i.e. O(anOan) , Poisson solvers based on a five
point discretization formula.

Although more work is required initially to set up the discreti—_
zation matrices for highér order formulae, they need only be set up
once and may be used for any problem when the same mesh is used.
This is a small price to pay for the increase in accuracy and spéed

obtained when using higher order discretization formulae with the

algorithm SOLVEXAAY.
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