TRIANGULAR FINITE ELEMENT SOLUTION

 TO BOUNDARY VALUE PROBLEMSA thesis submitted to
Lakehead University
in partial fulfillment of the requirements
for the degree of
Master of Science

by
ONG HOON LIONG
1977

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611606
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

THESES
 M.S.
 1977
 058
 c.l

Copyright © Hoon Liong Ong 1977
\#250947
Canadian Thesis on Microfiche No. 34737

ACKNOWLEDGEMENT

I wish to thank my supervisor, Professor P.O. Frederickson, for his advice and encouragement during the preparation of this thesis.

Abstract

This Thesis discusses the triangular finite element solution to second order elliptic boundary value problems. The Barycentric Coordinate system, which some engineers call the areal coordinate system, is used throughout in this Thesis. Some fundamental parts of vector calculus are developed in this coordinate system, and are applied to the triangular finite element method.

We also present a new approach to error analysis based on the computation of Peano-Sard kerne1s [F6] of error functionals in the Barycentric Coordinate system. Some numerical quadrature formulas for the approximation of the load vector $F^{h}=\int f \phi d \mu$ are derived, and error bounds are estimated.

Several approximate inversion methods for the construction of an ε-approximate inverse to A in the iterative solution of the linear system $A x=y$ are discussed. These procedures include the truncation (TRq) method [B3], the least-squares (LSq) method [B3], the weighted truncation (WTq) method and the interpolation (INq) method. These ε-approximate inverses are applied to the iterative algorithm FAPIN [F4] to solve the linear system $A x=y$.

To illustrate the theory, three boundary value problems are solved numerically using piecewise linear splines in the RitzGalerkin method. Inhomogeneous boundary conditions are used in two
of the problems, and in one of these the differential operator is singular.

CONTENTS

Page
CHAPTER 1 FUNDAMENTAL CONCEPTS 1
1.1 Introduction 1
1.2 Basic notation 1
1.3 Barycentric Coordinates 3
1.4 Differentiation and integration in Barycentric Coordinates 8
1.5 The del operator ∇ and the Laplacian operator Δ 14
1.6 Sobolev space $H^{k}(\Omega)$ 18
1.7 Peano-Sard Kernel Theorem and its application 19
CHAPTER 2 FINITE ELEMENT SOLUTION TO THE SECOND ORDER ELLIPTIC PROBLEMS 30
2.1 Introduction 30
2.2 The variational form of the problem 31
2.3. Energy inner product 34
2.4 The Ritz-Galerkin method 37
2.5 Ritz-Galerkin method with triangular linear elements 40
2.6 Numerical quadrature formulas 45
CHAPTER 3 ERROR ANALYSIS 54
3.1 Introduction 54
3.2 Error bounds for interpolation on triangles 55
3.3 Error bounds of the Ritz approximation 71
r3.4 Quadrature errors and their effect on the numerical solution of boundary value problems 74
CHAPTER 4 SOLUTION OF THE DISCRETE LINEAR EQUATIONS 89
4.1 Introduction 89
4.2 Approximate inversion 90
4.3 Local operators 95
4.4 Best approximation 101
4.5 The algorithm FAPIN 108
4.6 Construction of approximate inverses 109
4.7 Experimental results 128
APPENDIX A FORTRAN PROGRAMS OF FAPIN FOR SOLVING A 1-LOCAL LINEAR SYSTEM IN A TRIANGULAR DOMAIN 142
Page
APPENDIX B FORTRAN PROGRAMS FOR PREDICTING THE LIMIT OF SEQUENCE 146
APPENDIX C FORTRAN PROGRAMS TO COMPUTE THE L^{2} NORM OF THE FUNCTION U-U 150
APPENDIX D FORTRAN PROGRAMS TO CONSTRUCT THE DISCRETE EIGENVALUE λ^{h} 153
APPENDIX E FORTRAN PROGRAMS TO SOLVE THE POISSON EQUATION $L U=-\Delta U+\lambda U=f \quad$ IN A TRIANGULAR DOMAIN Ω 158
BIBLIOGRAPHY 164

CHAPTER 1

FUNDAMENTAL CONCEPTS

1.1 INTRODUCTION

We begin this chapter by introducing the Barycentric Coordinate system, which some engineers call the areal coordinate system, and which is essential for a study of the triangular finite element method. Some fundamental results are given in this chapter that serve as a basis for the chapters that follow.

Sobolev spaces and Sobolev norms are defined in terms of Barycentric'Coordinates in Section 1.6. We state the generalized Peano-Sard Kernel Theorem in Section 1.7, followed by an example on the application of the Theorem and the construction of kernels of the error functional $E(f)$. Further demonstration on the app1ication of this Theorem will be given in Chapter 3. The non-uniqueness of the kernel is shown by giving an example.

1.2 BASIC NOTATION

Definition 1.2.1. Let τ be a set of triangles in a bounded polygonal domain Ω. We say τ is a triangulation of Ω ([S4], [P1], [B6]) if
(i) for each pair of distinct triangles in τ, they either intersect at exactly one vertex or intersect on one complete side or do not intersect at all.
(ii) the union of all the triangles in τ and their interior is Ω. We will denote by $\tau^{\text {h }}$ the triangulation of Ω, such that each element of τ^{h} is an equilateral triangle of side length equal to h. We also denote by Ω_{h} the set of all vertices of triangles T in τ^{h}. Elements of Ω_{h} are called nodes of τ^{h}. A node of τ^{h} is called an interior node if it does not lie on the boundary $\partial \Omega$ of Ω. The set of all interior nodes will be denoted by \AA_{h}.

Let L be the integer lattice in the plane. Since every element of L can be written as a linear combination of (1,0), $(-1,1),(0,-1)$ over the set of integer N, we can define a norm, called the hexagonal norm on L by

$$
|\alpha|=\min \left\{\sum_{j=1}^{3}\left|k_{j}\right|: \alpha=k_{1}(1,0)+k_{2}(-1,1)+k_{3}(0,-1), k_{j} \in N\right\}
$$

For each triangulation τ^{h} of Ω, there is an 1-1 correspondence between the set Ω_{h} and a subset Γ_{h} of L with the property that : for every T in τ^{h}, the distance between any two of the corresponding vertices of T in r_{h} is one. Elements of Ω_{h} will be denoted by X_{α}, where $\alpha \in \Gamma_{h}$. We denote by $\stackrel{\circ}{\Gamma}_{h}$ the set of $\alpha \in \stackrel{\circ}{\Gamma}_{h}$ s.t. $X_{\alpha} \in \stackrel{\circ}{\Omega}_{h}$.

We observe that for every member X_{α} of $\stackrel{\circ}{\Omega}_{h}$, the set $\left\{X_{\beta} \in \Omega_{h}:|\alpha-\beta|=1\right\}$ form a hexagon in Ω with centre X_{α}; this hexagon will be denoted by $\mathrm{X}_{\alpha}+\mathrm{H}$.

Denote by $P^{n}(\Omega)$ the space of polynomials of degree $\leq n$, by $C(\Omega)$ the space of all continuous real valued functions defined
on Ω, and by $C^{n}(\Omega)$ the space of real valued functions with continuous derivatives of order up to n.

Denote by $s^{n, q}$ the class of q-times differentiable real valued functions which are piecewise polynomials of degree n in each of the triangular elements $T \in \tau$. In particular, we will refer to the elements of $S^{1,0}$ as linear splines [F3].

Definition 1.2.2. A subset Z of a linear space X is an affine space iff $\lambda x_{1}+(1-\lambda) x_{2} \in Z$ whenever $x_{1}, x_{2} \in Z$ and $\lambda \in R$. A function $\xi: X \rightarrow X$ is affine iff
$\xi\left[\lambda x_{1}+(1-\lambda) x_{2}\right]=\lambda \xi\left(x_{1}\right)+(1-\lambda) \xi\left(x_{2}\right)$ whenever $x_{1}, x_{2} \in X$ and $\lambda \in R$.

Remark: Every affine function can be written as a linear function plus a constant C, thus, an affine function is linear iff the constant C is zero.

1.3 BARYCENTRIC COORDINATES

Let $T=A_{0} A_{1} A_{2}$ be any triangular element in τ. Consider the affine space X, generated by the three vertices of T, i.e.

$$
X=\left\{\sum_{i} \xi_{i} A_{i}: \sum_{i} \xi_{i}=1\right\}
$$

Since A_{0}, A_{1}, A_{2} are not collinear, they are affinely independent, :and any point $P \in X$ can be uniquely represented as

$$
\begin{equation*}
P=\xi_{0} A_{0}+\xi_{1} A_{1}+\xi_{2} A_{2} \quad \xi_{0}+\xi_{1}+\xi_{2}=1 \tag{1.3.1}
\end{equation*}
$$

Denote by $\xi_{i}, \mathbf{i}=0,1,2$ the three affine functions defined by the equation $\xi_{i}\left(A_{j}\right)=\delta_{i, j}$, where δ denotes the Kronecker delta function ([F3], [L1]). Then, we have

$$
\begin{equation*}
\xi_{i}(P)=\xi_{i} \text { for } i=0,1,2 \tag{1.3.2}
\end{equation*}
$$

Since the expression (1.3.1) is unique, the point P can be represented as

$$
P=\left(\xi_{0}(P), \xi_{1}(P), \xi_{2}(P)\right) \quad \text { or } \quad \text { simply } \quad P\left(\xi_{0}, \xi_{1}, \xi_{2}\right) .
$$

We will refer to this as the Barycentric Coordinates of P w.r.t. the triangle $T=A_{0} A_{1} A_{2}$.

If P is in the interior of T, then we have

$$
0<\xi_{\dot{Y}} \leqslant 1, \quad i=0,1,2 .
$$

Geometrically ([S4], [H4]),
ξ_{i} is the ratio of
$\frac{\text { Length of } P Q}{\text { Length of } A_{i} Q}=\frac{\text { Area of } P A_{i+1} A_{i-1}}{\text { Area of } A_{i} A_{i+1} A_{i-1}}$

Where Q is the point of intersection
of the two straight lines $A_{i} P$ and $A_{i+1} A_{i-1}$ as shown in Fig. 1.3.1. For this reason, some authors refer to this as an Areal Coordinate system. We might also use the term Affine Coordinate system:

We observe that $\xi_{i}(P)$ remains unchanged for all P lying on a line parallel to the side $A_{i+1} A_{i-1}$, in particular

$$
\xi_{i}\left(A_{i+1} A_{i-1}\right)=0 .
$$

Any polynomial of degree n on Ω can be expressed uniquely as a homogeneous polynomial of degree n in the Barycentric Coordinates w.r.t. a specific triangle $T=A_{0} A_{1} A_{2}$ in τ, or else as a polynomial of degree n in any two of the coordinates. For example, the polynomial $\xi_{0} \xi_{1} \xi_{2}$ which vanishes on all three sides of the triangle T is equivalent to the inhomogeneous polynomial $\quad \xi_{1} \xi_{2}-\xi_{1}{ }^{2} \xi_{2}-\xi_{1} \xi_{2}{ }^{2}$.

In order to compute the integral of polynomials over individual triangular element in τ, it is convenient to express the polynomial in terms of Barycentric Coordinates locally. But then another problem arises : the same polynomial will have different local expression over each of the triangular elements. This problem can be solved by establishing the relationships between the Barycentric Coordinates of a point $\mathrm{X} \in \Omega$ w.r.t. two different triangles in τ.

Let $T_{A}=A_{0} A_{1} A_{2}$ and $T_{B}=B_{0} B_{1} B_{2}$ be any two triangular elements in τ. Suppose $\left(\xi_{0}, \xi_{1}, \xi_{2}\right)$ and $\left(n_{0}, n_{1}, n_{2}\right)$ are the Barycentric Coordinates of a point $X \in \Omega$ w.r.t. T_{A} and T_{B} respectively. It follows from (1.3.1) and (1.3.2) that X can be represented as :

$$
\begin{equation*}
X=\xi_{0} A_{0}+\xi_{1} A_{1}+\xi_{2} A_{2}=\eta_{0} B_{0}+\eta_{1} B_{1}+\eta_{2} B_{2} \tag{1.3.3}
\end{equation*}
$$

Denote by $\left(\xi_{0}{ }^{\mathbf{B}}, \xi_{1}{ }^{B_{i}}, \xi_{2}{ }_{i}\right), i=0,1,2$ the Barycentric

Coordinates of B_{i} w.r.t. T_{A}.
Then we have

Substituting these into (1.3.3), we have

$$
x=\sum_{\mathbf{i}} \xi_{i} A_{i}=\sum_{\mathbf{j}} \eta_{\mathbf{j}}\left(\sum_{\mathbf{i}} \xi_{i}^{B_{j}} A_{\mathbf{i}}\right)=\sum_{\mathbf{i}}\left(\sum_{\mathbf{j}} \eta_{j} \xi_{i}^{B}\right) A_{i}
$$

Since the representation of X in terms of A_{0}, A_{1}, A_{2} is unique, we have

$$
\begin{equation*}
\xi_{i}=\sum_{j} \eta_{j} \xi_{i}^{B_{j}} \quad i=0,1,2 \tag{1.3.4}
\end{equation*}
$$

It is plain that the transformation $\Phi\left(n_{0}, n_{1}, n_{2}\right)=\left(\xi_{0}, \xi_{1}, \xi_{2}\right)$ described by (1.3.4) is a linear transformation; the map Φ can be written in matrix form as :
and $\quad \Phi\left(n_{0}, n_{1}, n_{2}\right)=\left(\tilde{\Phi}\left(\begin{array}{l}n_{0} \\ n_{1} \\ n_{2}\end{array}\right)\right)^{T}$
Thus, if f is a function mapping Ω into R, then by virtue of (1.3.1) and (1.3.2), there exists a function

$$
\begin{align*}
& \mathrm{F}: R^{3} \rightarrow R \quad \text { s.t. } \\
& f(P)=F\left(\xi_{0}(P), \xi_{1}(P), \xi_{2}(P)\right)^{\dagger} \tag{1.3.6}
\end{align*}
$$

i.e. the function f can be expressed as a function F in terms of the Barycentric Coordinates of P w.r.t. T_{A}. It follows from (1.3.4) that the function f can also be expressed as a function in terms of the Barycentric Coordinates of P w.r.t. T_{B} as

$$
\begin{equation*}
f(P)=F \cdot \Phi\left(n_{0}(P), n_{1}(P), n_{2}(P)\right) \tag{1.3.7}
\end{equation*}
$$

where Φ is the linear transformation characterized by the matrix $\tilde{\Phi}$ given in (1.3.5).

In particular, we are interested to look at the six matrices $\tilde{\Phi}_{j}$ of the hexagon $A_{\alpha}+H$. As shown in Fig. 1.3.2, let $T_{j}=A_{\alpha} A_{\alpha_{j}} A_{\alpha_{j+1}}$ be the six triangles of the hexagon $A_{\alpha}+H$. If $F\left(\xi_{0}, \xi_{1}, \xi_{2}\right)$ is an expression of a function $f: \Omega \rightarrow R$ in terms of the Barycentric Coordinates w.r.t. T_{1}, then,
 $F \cdot \Phi_{j}\left(\xi_{0}, \xi_{1}, \xi_{2}\right)^{\prime}$ is an expression of f in terms of the Barycentric Coordinates w.r.t. T_{j}. The six linear transformation Φ_{j} are given by :

$$
\tilde{\Phi}_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

† This representation F is not unique.

$$
\begin{aligned}
& \tilde{\Phi}_{2}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & 1
\end{array}\right) \\
& \tilde{\Phi}_{3}=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & -1 & -1 \\
0 & 1 & 0
\end{array}\right) \\
& \tilde{\Phi}_{4}=\left(\begin{array}{lll}
1 & 2 & 2 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
& \tilde{\Phi}_{5}=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 0 & 1 \\
0 & -1 & -1
\end{array}\right) \\
& \tilde{\Phi}_{6}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & -1 & 0
\end{array}\right)
\end{aligned}
$$

1.4 DIFFERENTIATION AND INTEGRATION IN BARYCENTRIC COORDINATES Let $T=A_{0} A_{1} A_{2}$ be a triangie in Ω. Define the first order linear differential operator w.r.t. the Barycentric Coordinate ξ_{i} [F6] by $D_{i}\left(\xi_{i}\right)=0$ and $D_{i}\left(\xi_{i \pm 1}\right)=\mp 1$ i.e. the counter clockwise normalized derivative of a function f in the direction parallel to the opposite side of A_{i}.

If f is a function mapping Ω into R, and if
$F\left(\xi_{0}, \xi_{1}, \xi_{2}\right)$ is an expression of f w.r.t. the triangle T, then we have

$$
\begin{equation*}
D_{i} f=\frac{\partial F}{\partial \xi_{i-1}}-\frac{\partial F}{\partial \xi_{i+1}} \tag{1.4.1}
\end{equation*}
$$

Let f and g be two real valued functions defined on Ω, If the derivatives $D_{i} f$ and $D_{i} g$ exist, then the operator $\mathrm{D}_{\mathbf{i}}$ has the following properties :

1. $D_{i}(f+g)=D_{i} f+D_{i} g$
2. $D_{i}(c f)=c D_{i} f \quad$ for any constant $c \in R$
3. $\sum_{i} D_{i} f=0$
4. $D_{i}(g f)=g D_{i} f+f D_{i} g$
5. $D_{i}\left(\frac{f}{g}\right)=\frac{D_{i} f}{g}-\frac{f}{g^{2} D_{i}} g$ if $g \neq 0$

The differential operator can be extended to any order through $D^{\alpha} f=D_{0}^{i_{1}} D_{1}^{i_{2}} D_{2}^{i_{3}}{ }^{f}$, where $\alpha=\left(i_{1}, i_{2}, i_{3}\right) \in N^{3}, D^{0}$ and D_{i}^{0} denote the identity operator. We will denote by $|\alpha|=i_{1}+i_{2}+i_{3} \quad$ the order of derivative of f.

$$
\text { Define } \int_{E} f d \mu_{T} \text { the normalized Lebesgue integral of } £
$$ on a measurable subset E of T, s.t. $\int_{T} 1 d \mu_{T}=1$ 。

Define $\int_{E} f d \mu_{\Omega}$ the normalized Lebesgue integral of f on a measurable subset E of Ω, s.t. $\int_{\Omega} 1 d \mu_{\Omega}=1$.

If Ω is a bounded polygonal region and τ is a triangulation of Ω, then we have

$$
\int_{\Omega} f^{\prime} d \mu_{\Omega}=\sum_{T \in \tau} \mu_{\Omega}(T) \int_{T} f d \mu_{T}
$$

In particular, if Ω is an equilateral triangle of unit side length and τ^{h} is an equilateral triangulation of Ω, we have $\mu_{\Omega}(T)=h^{2}$ for all $T \in \tau^{h}$. i.e.

$$
\int_{\Omega} f \mathrm{~d} \mu_{\Omega}=\mathrm{h}^{2} \sum_{\mathrm{T} \in \tau} \int_{\mathrm{h}} \mathrm{f} d \mu_{T}
$$

Fig. 1.4.1
As shown in Fig. 1.4.1, the triangle $T=A_{i} A_{i+1} A_{i-1}$ can be transformed into the standard triangle $A(1,0), B(0,1)$, $C(0,0)$ by using the affine function which maps $A_{i} \rightarrow C, A_{i+1} \rightarrow A$, and $A_{i-1} \rightarrow$. Thus if $f: T \rightarrow R$, then there exists a function

$$
\begin{align*}
& F: A B C \rightarrow R \text { s.t. } \\
& f(P)=F(\xi, \eta) \tag{1.4.4}
\end{align*}
$$

where (ξ, η) is the affine image of the point $P \in T$. The

Jacobian of this transformation is 2 . Thus, the integral $\int_{T} f d \mu_{T}$ can also be written as :

$$
\begin{equation*}
\int_{T} f \mathrm{~d} \mu_{T}=2 \iint_{A B C} F \mathrm{~d} \xi \mathrm{~d} \eta=2 \int_{0}^{1} \int_{0}^{1-\xi} \mathrm{F} \mathrm{~d} \xi \mathrm{~d} \eta \tag{1.4.5}
\end{equation*}
$$

Define $\int_{A_{i+1}}^{A_{i-1}} f(X) d X$ as the Lebesgue line integral of f along the line $A_{i+1} A_{i-1}$, normalized by $\int_{A_{i+1}}^{A_{i-1}} 1 d X=1$.

The following lemmas are some important properties of line and surface integrals :

Lemma 1.4.1. Let $f: T \rightarrow R$, if $D_{i} f$ exists on the side $A_{i+1} A_{i-1}$, then $\int_{A_{i+1}}^{A_{i-1}} D_{i} f(X) d X=f\left(A_{i-1}\right)-f\left(A_{i+1}\right)$

Proof : Using the affine transformation to map $A_{i+1} A_{i-1}$ onto $[0,1]$ through $A_{i+1} \rightarrow 0$ and $A_{i-1} \rightarrow 1$, then there exists a func $=$ tion $F:[0,1] \rightarrow R$, s.t. $f(P)=F(t)$ where t is the affine image of P. Thus,
$\int_{A_{i+1}}^{A_{i-1}} D_{i} f(X) d X=\int_{0}^{1} F^{\prime}(t) d t=F(1)-F(0)=f\left(A_{i-1}\right)-f\left(A_{i+1}\right)$
Lemma 1.4.2. $\int_{A_{i+1}}^{A_{i-1}} g D_{i} f d X=(g f)\left(A_{i-1}\right)-(g f)\left(A_{i+1}\right)-\int_{A_{i+1}}^{A_{i-1}} f D_{i} g d X$
Proof : The result follows from (1.4.3) and Lemma 1.4.1.
$\underline{\text { Lemna 1.4.3. }} \int_{T} D_{i} f d \mu_{T}=2 \int_{A_{i-1}}^{A_{i}} f d x-2 \int_{A_{i}}^{A_{i+1}} f d x$

Proof : From (1.4.1) and (1.4.5), we have

$$
\int_{T} D_{i} f d \mu_{T}=2 \iint_{A B C}\left(\frac{\partial F}{\partial \eta}-\frac{\partial F}{\partial \xi}\right) d \xi d \eta
$$

By Green's Theorem [H2], we get

$$
\int_{T} D_{i} f d \mu_{T}=-2(\oint F d \xi+\oint F d \eta)
$$

The symbol \oint denotes the line integral along the three sides of the triangle $C A B$ in the counter clockwise direction.

Since $\xi+\eta=1$ for all point $P(\xi, \eta)$ on $A B$, we have

$$
\int_{A}^{B} F d \xi+\int_{A}^{B} F d \eta=\int_{A}^{B} F d(\xi+\eta)=0
$$

It follows that

$$
\begin{aligned}
\int_{T} D_{i} f d \mu_{T} & =-2\left(\int_{C}^{A} F d \xi+\int_{B}^{C} F d \xi+\int_{C}^{A} F d \eta+\int_{B}^{C} F d \eta\right) \\
& =-2\left(\int_{C}^{A} F d \xi+\int_{B}^{C} F d \eta\right)
\end{aligned}
$$

Since $\int_{A_{i}}^{A_{i+1}} f d x=\int_{C}^{A} F d \xi$ and $\int_{A_{i-1}}^{A_{i}} f d x=-\int_{B}^{C} F d \eta$, we get

$$
\int_{T} D_{i} f d \mu_{T}=2 \int_{A_{i-1}}^{A_{i}} f d x-2 \int_{A_{i}}^{A_{i+1}} f d x
$$

Lemma 1.4.4 $\cdot \int_{T} g D_{i} f d \mu_{T}=2 \int_{A_{i-1}}^{A_{i}} f g d X-2 \int_{A_{i}}^{A_{i+1}} f g d X-\int_{T} f D_{i} g d \mu_{T}$

Proof : The result follows from (1.4.3) and Lemma 1.4.3.

We shall end this section by stating two very useful formulas of line and surface integrals of polynomials of the form :
$\begin{array}{lll}\mathrm{s}_{1} & \mathrm{~s}_{2} & \mathrm{~s}_{3}\end{array}$
$\xi_{1} \xi_{2} \xi_{3}$, where $s_{i}, i=1,2,3$ are three non-negative integers.

Lemma 1.4.5. $\int_{A_{i+1}}^{A_{i-1} \xi_{1} s_{1} s_{2} \xi_{3} s_{3}} \mathrm{dX}=\frac{s_{1}!s_{2}!s_{3}!}{\left(s_{1}+s_{2}+s_{3}+1\right)!} \delta_{0}, s_{i}$
where δ is the Kronecker delta function.

Proof : If $s_{i} \neq 0$ then the function $\xi_{1} s_{1} s_{2} \xi_{3} s_{3}$ vanishes on the side $A_{i+1} A_{i-1}$ and hence the right hand side of (1.4.10) vanishes. If $s_{i}=0$, then

$$
\int_{A_{i+1}}^{A_{i-1}}{ }_{\xi_{1}}^{s_{1}} \xi_{\xi_{2}}^{s_{2}} \xi_{3}^{s_{3}} d x=\int_{A_{i+1}}^{A_{i-1}}{ }_{\xi_{i-1}}^{s_{i-1}}{ }_{\xi_{i+1}}^{s_{i+1}} d X
$$

It follows from the affine transformation defined by $A_{i+1} \rightarrow 0$ and $A_{i-1} \rightarrow 1$ that

Applying itegration by parts to the above integral, the result (1.4.10) follows.

Lemma 1.4.6. $\int_{T} \xi_{1} s_{1} \xi_{2} s_{2} \xi_{3} s_{3} d \mu_{T}=\frac{s_{1}!s_{2}!s_{3}!}{\left(s_{1}+s_{2}+s_{3}+2\right)!}$

Holand and Bell [H4,p.84] and T. H. Lim [L1, p. 24] have presented a proof of the Lemma.
1.5 THE DEL OPERATOR ∇ AND THE LAPLACIAN OPERATOR \triangle

Suppose Ω is an open subet of R^{2} and U is a real valued function on Ω. Let e be a unit vector in Ω, then the derivative of U at a point $x \in \Omega$ in the direction e is defined as the limit

$$
\begin{equation*}
\tilde{D}_{e} U(X)=\operatorname{Lim}_{\varepsilon \rightarrow 0} \frac{U\left(X+\varepsilon_{e}\right)-U(X)}{\varepsilon} \tag{1.5.1}
\end{equation*}
$$

when the limit exists.
If $U \in C^{1}(\Omega)$, then there exists a vector function ([W1,P.159], [H3,P.374])
$\nabla U: \Omega \rightarrow R^{2}$ s.t.
$e \cdot \nabla U(x)=\tilde{D}_{e} U(X)$
for all unit vectors e in Ω. The function ∇U is called the gradient of U.

If $U \in C^{2}(\Omega)$, then the operator Δ defined by $\Delta U=\nabla \cdot \nabla U$ is called the Laplacian operator.

Let X be a point in the triangular element $T \in \tau^{h}$.
Denote by e_{i} the unit vector in the direction $A_{i+1} A_{i-1}$,
then the vector ∇U can be written in terms of $e_{i \pm 1}$ as follows : $\nabla U=\lambda_{i+1} e_{i+1}+\lambda_{i-1} e_{i-1}$
where $\lambda_{i \pm 1}$ are to be determined.
It follows from (1.5.2) that
$\frac{1}{h} D_{i \pm 1} U=e_{i \pm 1} \cdot \nabla U=\lambda_{i+1} e_{i+1} \cdot e_{i \pm 1}+\lambda_{i-1} e_{i-1} \cdot e_{i \pm 1}$

Since $A_{i} A_{i+1} A_{i-1}$ is an equilateral triangle, we have

$$
e_{i} \cdot e_{j}=\left\{\begin{align*}
1 & \text { if } i=j \tag{1.5.4}\\
-\frac{1}{2} & \text { if } i \neq j
\end{align*}\right.
$$

By substituting (1.5.4) into (1.5.3), we have

$$
\left\{\begin{array}{l}
\frac{1}{h} D_{i+1} U=\lambda_{i+1}-\frac{1}{2} \lambda_{i-1} \\
\frac{1}{h} D_{i-1} U=-\frac{1}{2} \lambda_{i+1}+\lambda_{i-1}
\end{array}\right.
$$

By solving the above linear equations, we obtain

$$
\left\{\begin{array}{l}
\lambda_{i+1}=\frac{2}{3 h}\left(D_{i-1} U+2 D_{i+1} U\right) \\
\lambda_{i-1}=\frac{2}{3 h}\left(D_{i+1} U+2 D_{i-1} U\right)
\end{array}\right.
$$

It follows that the gradient operator has a representation of the form : $\quad \nabla=e_{i+1} \frac{2}{3 h}\left(D_{i-1}+2 D_{i+1}\right)+e_{i-1} \frac{2}{3 h}\left(D_{i+1}+2 D_{i-1}\right)$

$$
=\frac{2}{3 h}\left[e_{i+1}\left(D_{i+1}-D_{i}\right)+e_{i-1}\left(D_{i-1}-D_{i}\right)\right]
$$

$$
=\frac{2}{3 h}\left[e_{i+1} D_{i+1}+e_{i-1} D_{i-1}-\left(e_{i+1}+e_{i-1}\right) D_{i}\right]
$$

Since $\sum_{i} e_{i}=0$, we have a symmetric representation of ∇ as follow :

$$
\begin{equation*}
\nabla=\frac{2}{3 h} \sum_{i} e_{i} D_{i} \tag{1.5.5}
\end{equation*}
$$

Lemma 1.5.1. Let U be differentiable in an open subset Ω of R^{2}, then at each point X in Ω for which $\nabla U(X) \neq 0$, the vector $\nabla U(X)$ points in the direction in which the derivative of U is numerically greatest, and the number $|\nabla U(X)|$ is equal to that maximum derivative.

Proof : Let e be a unit vector at a point X in Ω for which $\nabla U(X) \neq 0$. By equation (1.5.2), we have

$$
\begin{equation*}
\tilde{D}_{e} U(X)=e \cdot \nabla U(X)=|\nabla U(X)| \cos \theta \leq|\nabla U(X)| \tag{1.5.6}
\end{equation*}
$$

where θ is the angle between the two vectors e and $\nabla U(X)$.
The inequality (1.5.6) is sharp iff

$$
\mathrm{e}=\frac{\nabla \mathrm{U}(\mathrm{X})}{|\nabla \mathrm{U}(\mathrm{X})|}
$$

completing the proof.

Lemma 1.5.2. Let $T \in \tau^{h}$. If U and V are two differentiable functions in the triangle T, then

$$
\begin{equation*}
\nabla \mathrm{U} \cdot \nabla \mathrm{~V}=\frac{2}{3 \mathrm{~h}^{2}} \sum_{i}\left(\mathrm{D}_{\mathrm{i}} \mathrm{U}\right)\left(\mathrm{D}_{\mathrm{i}} \mathrm{~V}\right) \tag{1.5.7}
\end{equation*}
$$

Proof : It follows from equation (1.5.5) that

$$
\begin{aligned}
\nabla U \cdot \nabla V= & \left(\frac{2}{3 h} \sum_{i} e_{i} D_{i} U\right) \cdot\left(\frac{2}{3 h} \sum_{i} e_{i} D_{i} V\right) \\
= & \frac{4}{9 h^{2}} \sum_{i}\left[e_{i} \cdot e_{i}\left(D_{i} U\right)\left(D_{i} V\right)+e_{i} \cdot e_{i+1}\left(D_{i} U\right)\left(D_{i+1} V\right)+\right. \\
& \left.\quad e_{i} \cdot e_{i-1}\left(D_{i} U\right)\left(D_{i-1} V\right)\right] \\
= & \frac{4}{9 h^{2}} \sum_{i}\left[\left(D_{i} U\right)\left(D_{i} V\right)-\frac{1}{2}\left(D_{i} U\right)\left(D_{i+1} V+D_{i-1} V\right)\right] \\
= & \frac{4}{9 h^{2}} \sum_{i}\left[\left(D_{i} U\right)\left(D_{i} V\right)+\frac{1}{2}\left(D_{i} U\right)\left(D_{i} V\right)\right] \\
= & \frac{4}{3 h^{2}} \sum_{i}\left(D_{i} U\right)\left(D_{i} V\right)
\end{aligned}
$$

Lemma 1.5.3. In every $T \in \tau^{h}$, the Laplacian operator can be expressed as :

$$
\begin{equation*}
\Delta=\frac{2}{3 h^{2}} \sum_{i} D_{i, i} \tag{1.5.8}
\end{equation*}
$$

Proof : It follows from equation (1.5.5) that

$$
\begin{aligned}
\Delta & =\nabla \cdot \nabla=\left(\frac{2}{3 h} \sum_{i} e_{i} D_{i}\right) \cdot\left(\frac{2}{3 h} \sum_{i} e_{i} D_{i}\right) \\
& =\frac{4}{9 h^{2}} \sum_{i}\left(e_{i} \cdot e_{i} D_{i, i}+e_{i} \cdot e_{i+1} D_{i, i+1}+e_{i} \cdot e_{i-1} D_{i, i-1}\right) \\
& =\frac{4}{9 h^{2}} \sum_{i}\left[D_{i, i}-\frac{1}{2}\left(D_{i, i+1}+D_{i, i-1}\right)\right] \\
& =\frac{4}{9 h^{2}} \sum_{i}\left(D_{i, i}+\frac{1}{2} D_{i, i}\right) \\
& =\frac{2}{3 h^{2}} \sum_{i} D_{i, i}
\end{aligned}
$$

completing the proof.
1.6 SOBOLEVे SPACE $H^{k}(\Omega)$

Denote by $H^{k}(\Omega), k \geq 0$ the Sobolev space of real valued functions which together with their generalized derivatives up to the $\mathrm{k}^{\text {th }}$ order are square integrable over Ω [T1]. It is a linear subspace of $L^{2}(\Omega)$.

$$
\text { Denote by }(u, v)=\int_{\Omega} u v d \mu_{\Omega}=\sum_{T \in \tau} \mu_{\Omega}(T) \int_{T} u v d \mu_{T} \text { the }
$$

usual scalar product of the Hilbert space $L^{2}(\Omega)$.

Denote by $\left.\quad(u, v)_{k, T}=\sum_{|\alpha| \leq k} \frac{1}{h^{2|\alpha|}} \int \frac{T}{T} D^{\alpha} u\right)\left(D^{\alpha}{ }_{v}\right) d \mu_{T}$
by $\quad(u, v)_{k, \Omega}=\sum_{T \in T} \mu_{\Omega}(T)(u, v)_{k, T}$, then the Sobolev space $H^{k}(\Omega)$
is a Hilbert space with the scalar product $(u, v)_{k, \Omega}[T 1, p .55]$.
The corresponding Sobolev norm will be $\|u\|_{k, \Omega}=\left[(u, v)_{k, \Omega}\right]^{\frac{1}{2}}$.

Denote by $|u|_{k, T}=\left\{\sum_{|\alpha|=k} h^{-2 k} \int_{T}\left(D^{\alpha} u\right)^{2} d \mu_{T}\right\}^{\frac{1}{2}}$,
by $|u|_{k, \Omega}=\left\{\sum_{|\alpha|=k} h^{-2 k} \int_{\Omega}\left(D^{\alpha} u\right)^{2} d \mu_{\Omega}\right\}^{\frac{1}{2}} \quad$ the Sobolev semi-norm of u on the triangle T and the domain Ω respectively.

1.7 PEANO-SARD KERNEL THEOREM AND ITS APPLICATION

Peano-Sard Kernel Theorem : Let Ω be a bounded polygonal domain. If $E: H^{k}(\Omega) \rightarrow H^{k}(\Omega)$ can be represented as $\int_{\Omega} k f d \mu_{\Omega}$ for some $k \in S^{n, \ell}(\Omega)$, and $E(f)=0$ for all $f \in P^{k}(\Omega)$, then
$3 \kappa_{\alpha} \in S^{n+k, \ell+k}(\Omega),|\alpha|=k \quad$ s.t.

$$
\begin{equation*}
E(f)=\sum_{T \in \tau} \mu_{\Omega}(T) \int_{T}\left(\sum_{|\alpha|=k} \kappa_{\alpha} D^{\alpha} f\right) d \mu_{T} \tag{1.7.1}
\end{equation*}
$$

A proof of the Theorem was given by P. Frederickson [F6].

In the one dimensional case, we have the trapezoidal numerical quadrature for the integral $\int_{a}^{b} f d x$, which is exact for polynomials of degree ≤ 1, in the two dimensional case, we also have a similar numerical quadrature for the integral $\int_{T} f d \mu_{T}$ i.e.. $\frac{1}{3} \sum_{i} f\left(A_{i}\right)$, where $A_{i}, i=0,1,2$ are the three vertices of the triangle T. Clearly, this numerical quadrature is exact for polynomials of degree ≤ 1. By applying the Peano-Sard Kernel Theorem, we have the following lemma :

Lemma 1.7.1. If $f \in H^{2}(\Omega)$ and $E(f)=\int_{T} f d \mu_{T}-\frac{1}{3} \sum_{i} f\left(A_{i}\right)$, then $E(f)=\sum_{i} \int_{T} \kappa_{i} D_{i, i} f d \mu_{T}$
where $\kappa_{i}=-\frac{1}{12}\left(1-2 \xi_{i}+2 \xi_{i-1} \xi_{i+1}\right)$
$\underline{\text { Proof }: \int_{T} f d \mu_{T}-\frac{1}{3} f\left(A_{i}\right)=\frac{1}{3} \sum_{i} \int_{T}\left[f-f\left(A_{i}\right)\right] d \mu_{T}, ~(1)}$

$$
\begin{aligned}
& =\frac{1}{3} \sum_{i} \int_{T}\left[f-f\left(A_{i}\right)\right] D_{i}\left[\frac{1}{2}\left(\xi_{i=1}^{-\xi_{i+1}}\right)\right] d \mu_{T} \\
& =\frac{1}{3} \sum_{i}\left[2 \int_{A_{i-1}}^{A_{i}}\left(f-f\left(A_{i}\right)\right) \frac{1}{2}\left(\xi_{i-1}-\xi_{i+1}\right) d x-\right.
\end{aligned}
$$

$$
2 \int_{A_{i}}^{A_{i+1}}\left(f-f\left(A_{i}\right)\right) \frac{1}{2}\left(\xi_{i-1}^{-\xi_{i+1}}\right) d X-\int_{T} \frac{1}{2}\left(\xi_{i-1}^{\left.\left.\left.-\xi_{i+1}\right) D_{i} f d \mu_{T}\right], ~\right]}\right.
$$

Since ξ_{i+1} and ξ_{i-1} vanish on $A_{i-1} A_{i}$ and $A_{i} A_{i+1}$ respectively, we have

$$
\begin{aligned}
E(f)= & \frac{1}{3} \sum_{i}\left[\int_{A_{i-1}}^{A_{i}}\left(f-f\left(A_{i}\right)\right)\left(1-\xi_{i}\right) d x+\int_{A_{i}}^{A_{i+1}}\left(f-f\left(A_{i}\right)\right)\left(1-\xi_{i}\right) d x+\right. \\
& \left.\frac{1}{2} \int_{T} D_{i}\left(\xi_{i-1} \xi_{i+1}\right) D_{i} f d \mu_{T}\right] \\
= & \frac{1}{3} \sum_{i}\left[\int_{A_{i-1}}^{A_{i}}\left(f-f\left(A_{i}\right)\right) D_{i+1}\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right) d x-\right. \\
& \int_{A_{i+1}}^{A_{i}}\left(f-f\left(A_{i}\right)\right) D_{i-1}\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right) d x+\int_{A_{i-1}}^{A_{i}} \xi_{i-1} \xi_{i+1} D_{i} f d x- \\
& \left.\int_{A_{i}}^{A_{i+1}}{ }_{\xi_{i-1}} \xi_{i+1} D_{i} f d x-\frac{1}{2} \int_{T} \xi_{i-1} \xi_{i+1} D_{i ; i} f d \mu_{T}\right]
\end{aligned}
$$

$$
\begin{align*}
= & \frac{1}{3} \sum_{i}\left[\left(f-\left.f\left(A_{i}\right)\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right)\right|_{A_{i-1}} ^{A_{i}}-\int_{A_{i-1}}^{A_{i}}\left(\xi_{i}-\frac{1}{2}\right) D_{i+1}^{2} f d X-\right.\right. \\
& \left.\left(f-f\left(A_{i}\right)\right)\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right)\right|_{A_{i}} ^{A_{i+1}}+\int_{A_{i}}^{A_{i+1}}\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right) D_{i-1} f d X- \\
& \left.\frac{1}{2} \int_{T} \xi_{i-1} \xi_{i+1} D_{i, i} f d \mu_{T}\right] \\
= & \frac{1}{3}\left[\sum _ { i } \left[-\int_{A_{i-1}}^{A_{i}}\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right) D_{i+1} f d x+\int_{A_{i+1}}^{A_{i}}\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right) D_{i-1} f d x-\right.\right. \\
& \left.\frac{1}{2} \int_{T} \xi_{i-1} \xi_{i+1} D_{i, i} f d \mu_{T}\right] \\
= & \frac{1}{3} \sum_{i}\left[\int_{A_{i-1}}^{A_{i}}\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right)\left(D_{i} f+D_{i-1} f\right) d X-\right. \\
& \left.\int_{i+1}^{A_{i}}\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right)\left(D_{i} f+D_{i+1} f\right) d X-\frac{1}{2} \int_{T} \xi_{i-1} \xi_{i+1} D_{i, i} f d \mu_{T}\right] \tag{1.7.3}
\end{align*}
$$

The line integrals in (1.7.3) can be rearranged into the following form :

$$
\begin{align*}
E(f)= & \frac{1}{3} \sum_{i}\left[\int_{A_{i-1}}^{A_{i}}\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right) D_{i} f d x+\int_{A_{i}}^{A_{i+1}}\left(\xi_{i+1}-\frac{1}{2} \xi_{i+1}^{2}\right) D_{i} f d x-\right. \\
& \int_{A_{i}}^{A_{i+1}}\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right) D_{i} f d x-\int_{A_{i-1}}^{A_{i}}\left(\xi_{i-1}-\frac{1}{2} \xi_{i-1}^{2}\right) D_{i} f d x- \\
& \left.\frac{1}{2} \int_{T} \xi_{i-1} \xi_{i+1} D_{i, i} f d \mu_{T}\right] \tag{1.7.4}
\end{align*}
$$

By expressing $\xi_{i \pm 1}$ in the line integrals of (1.7.4) in terms of ξ_{i} and from Lemma 1.4.3., we obtain

$$
\begin{aligned}
& E(f)= \frac{1}{3} \sum_{i}\left[\frac{1}{2} \int_{T}\left(\xi_{i}-\frac{1}{2} \xi_{i}^{2}\right) D_{i, i} f d \mu_{T}-\frac{1}{2}\left(\int_{A_{i-1}}^{A_{i}}\left(1-\xi_{i}^{2}\right) D_{i} f d x-\right.\right. \\
&\left.\left.\int_{A_{i}}^{A_{i+1}}\left(1-\xi_{i}^{2}\right) D_{i} f d x\right)-\frac{1}{2} \int_{T} \xi_{i-1} \xi_{i+1} D_{i, i} f d \mu_{T}\right] \\
&= \frac{1}{3} \sum_{i} \int_{T}\left(\frac{1}{2} \xi_{i}-\frac{1}{4} \xi_{i}^{2}-\frac{1}{4}+\frac{1}{4} \xi_{i}^{2}-\frac{1}{2} \xi_{i-1} \xi_{i+1}\right) D_{i, i} f d \mu_{T} \\
&= \sum_{i} \int_{T}-\frac{1}{12}\left(1-2 \xi_{i}+2 \xi_{i-1} \xi_{i+1}\right) D_{i, i} f d \mu_{T} \\
& \text { completing the proof. }
\end{aligned}
$$

Unlike the one dimensional case, the Peano-Sard kernels for the linear interpolation error functional are not unique. We shall derive two different forms of Peano-Sard kernels for the linear spline interpolation remainder. These kernels will be applied to the finite element error analysis in Chapter 3.

Let $f: \Omega \rightarrow R$, then the piecewise linear interpolation of f on each triangular element $T=A_{1} A_{2} A_{3}$ is given by

$$
f_{I}\left(A_{0}\right)=\sum_{i} x_{i} f\left(A_{i}\right)
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is the Barycentric Coordinates of a point A_{0} w.r.t. T.

In order to obtain the kernels of the error functional $E\left(f, A_{0}\right)=f\left(A_{0}\right)-\sum_{i} x_{i} f\left(A_{i}\right)$, we need the relationships between the Barycentric Coordinates of a point P w.r.t. the triangles T and $T_{i}=A_{0} A_{i+1} A_{i-1}$.

Denote by $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ the Barycentric Coordinates of P w.r.t. T, by $\left(\xi_{i}^{T_{i}},{\underset{j}{i+1}}_{T_{i}}, \xi_{i-1}^{T_{i}}\right)$ the Barycentric Coordinates of P w.r.t. T_{i}. Then it follows from (1.3.4) that

Denote by $F\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ an expression of f w.r.t.
 w.r.t. the triangie $T_{i}=A_{0} A_{i+1} A_{i-1}$.

As shown in Fig. 1.7.1, let $D_{e_{i}} f$ be the normalized derivative of f in the direction $A_{i} A_{0}$, then from (1.4.1) we have

$$
\begin{aligned}
D_{e_{i+1}} f & =\frac{\partial F_{i}^{T}}{\partial \xi_{i}}-\frac{\partial F_{i}}{T_{i}} \\
& =\sum_{j} \frac{\partial F}{\partial \xi_{i}} \frac{\partial \xi_{j}}{\partial T_{i}}-\sum_{j} \frac{\partial F}{\partial \xi_{j}} \frac{\partial \xi_{j}}{\partial \xi_{i}} \\
& =\sum_{j} \frac{\partial F}{\partial \xi_{j}} D_{e_{i+1}} \xi_{j}
\end{aligned}
$$

Fig. 1.7.1

By substituting (1.7.5) into (1.7.6), we have

$$
\begin{align*}
D_{e_{i+1}} f & =\frac{\partial F}{\partial \xi_{i}} x_{i}+\frac{\partial F}{\partial \xi_{i+1}}\left(x_{i+1}-1\right)+\frac{\partial F}{\partial \xi_{i-1}} x_{i-1} \\
& =\frac{\partial F}{\partial \xi_{i}} x_{i}-\frac{\partial F}{\partial \xi_{i+1}}\left(x_{i}+x_{i-1}\right)+\frac{\partial F}{\partial \xi_{i-1}} x_{i-1} \\
& =x_{i}\left(\frac{\partial F}{\partial \xi_{i}}-\frac{\partial F}{\partial \xi_{i+1}}\right)+x_{i-1}\left(\frac{\partial F}{\partial \xi_{i-1}}-\frac{\partial F}{\partial \xi_{i+1}}\right) \\
& =\left\{\begin{array}{l}
-x_{i} D_{i-1} f+x_{i-1} D_{i} f \\
x_{i}\left(D_{i} f+D_{i+1} f\right)+x_{i-1} D_{i} f \quad \text { or } \\
-x_{i} D_{i-1} f-x_{i-1}\left(D_{i-1} f+D_{i+1} f\right)
\end{array}\right. \tag{1.7.7}
\end{align*}
$$

We observe that, though the representations of F and F^{T} are not unique, the final forms of $D_{e_{i+1}} f$ are independent of F and F_{i}.

Now we have three different expressions to resolve $D_{e_{i}} f$ in terms of the derivatives $D_{i} f$ and $D_{i \pm \underline{?}} f$ i.e.

$$
D_{e_{i}} f=\left\{\begin{array}{l}
x_{i+1} D_{i-1} f-x_{i-1} D_{i+1} f \tag{1.7.8}\\
\left(x_{i-1}+x_{i+1}\right) D_{i-1} f+x_{i-1} D_{i} f \\
-\left(x_{i-1}+x_{i+1}\right) D_{i+1} f-x_{i+1} D_{i} f
\end{array}\right.
$$

If $f \in H^{2}(\Omega)$, then the linear spline $f_{I}\left(A_{0}\right)=\sum_{i} x_{i} f\left(A_{i}\right)$ interpolates f in the triangle T, and the error functional $E\left(f, A_{0}\right)=f\left(A_{0}\right)-\sum_{i} x_{i} f\left(A_{i}\right)$ is exact for polynomials of degree ≤ 1, by Peano-Saxd Kernel Theorem, there exist kernels κ_{α}, s.t.

$$
E\left(f, A_{0}\right)=\int_{T} \sum_{|\alpha|=2}{ }^{k_{\alpha}} D^{\alpha} f d \mu_{T}
$$

The problem is how to construct the kernels κ_{α}.

Claim : The kernels : κ_{α} are piecewise constant (functions of $x_{i}, i=1,2,3$ only) and it can be written in the form :

$$
\begin{aligned}
E\left(f, A_{0}\right)= & \sum_{i} \int_{T_{i}}\left(\kappa_{i}^{i-1} D_{i, i-1} f+\kappa_{i}^{i+1} D_{i, i+1} f\right) d \mu_{i} \\
= & \sum_{i}\left\{2 \kappa_{i}^{i-1}\left[\int_{A_{i-1}}^{A_{0}} D_{i-1} f d x-\int_{A_{i+1}}^{A_{0}} D_{i-1} f d X\right]+\right. \\
& \left.2 \kappa_{i}^{i+1}\left[\int_{A_{i-1}}^{A_{0}} D_{i+1} f d x-\int_{A_{i+1}}^{A_{0}} D_{i+1} f d X\right]\right\}
\end{aligned}
$$

Rearranging the sums in the equation (1.7.11), we have

$$
\begin{equation*}
E\left(f, A_{0}\right)=2 \sum_{i} \int_{A_{i}}^{A_{0}}\left(\kappa_{i+1}^{i} D_{i} f-\kappa_{i-1}^{i+1} D_{i+1} f+\kappa_{i+1}^{i-1} D_{i-1} f-\kappa_{i-1}^{i} D_{i} f\right) d x \tag{1.7.12}
\end{equation*}
$$

From (1.7.9) and (1.7.10), we have

$$
\begin{aligned}
& D_{i-1} f=\frac{D_{e_{i}} f-x_{i-1} D_{i} f}{x_{i-1}+x_{i+1}} \\
& D_{i+1} f=-\frac{D_{e_{i}} f+x_{i+1} D_{i} f}{x_{i-1}+x_{i+1}}
\end{aligned}
$$

Substituting these into (1.7.12), we obtain

$$
\begin{aligned}
E\left(f, A_{0}\right)= & 2 \sum_{i} \int_{A_{i}}^{A_{0}}\left[\left(\kappa_{i+1}^{i}-\kappa_{i-1}^{i}\right) D_{i} f+\frac{\kappa_{i-1}^{i+1}\left(D_{e_{i}}^{f}+x_{i+1} D_{i} f\right)}{x_{i-1}+x_{i+1}}\right.
\end{aligned}+
$$

We want

$$
\left\{\begin{array}{l}
\frac{k_{i+1}^{i-1}+k_{i-1}^{i+1}}{x_{i-1}+x_{i+1}}=\frac{1}{2} x_{i} \\
k_{i+1}^{i}-k_{i-1}^{i}+\frac{x_{i+1} \kappa_{i-1}^{i+1}-x_{i-1} \kappa_{i+1}^{i-1}}{x_{i-1}+x_{i+1}}=0
\end{array}\right.
$$

It follows that

$$
\left\{\begin{array}{l}
\kappa_{i+1}^{i-1}+\kappa_{i-1}^{i+1}=\frac{1}{2} x_{i}\left(x_{i-1}+x_{i+1}\right) \\
\left(x_{i-1}+x_{i+1}\right)\left(\kappa_{i+1}^{i}-\kappa_{i-1}^{i}\right)=x_{i-1} \kappa_{i+1}^{i-1}-x_{i+1} k_{i-1}^{i+1}
\end{array}\right.
$$

By solving the above system of linear equation for $\mathrm{i}=1,2,3$, we obtain

$$
\begin{equation*}
\kappa_{i}^{i+1}=\frac{1}{2} x_{i} x_{i-1} \tag{1.7.13}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
E\left(f, A_{0}\right)=\sum_{i} \int_{T_{i}}\left(\frac{1}{2} x_{i} x_{i+1} D_{i, i-1} f+\frac{1}{2} x_{i} x_{i-1} D_{i, i+1} f\right) d \mu_{T} \tag{1.7.14}
\end{equation*}
$$

We shall derive the kernel of the same error functional $E\left(f, A_{0}\right)$ by a different approach and obtain another different kernel of $E\left(f, A_{0}\right)$.

$$
\begin{aligned}
E\left(f, A_{0}\right)= & f(X)-\sum_{i} x_{i} f\left(A_{i}\right) \\
= & \sum_{i} x_{i}\left(f(X)-f\left(A_{i}\right)\right) \\
= & \sum_{i} x_{i} \int_{A_{i}}^{A_{0}} D_{e_{i}} f(\S) d \S \\
& I t \text { follows from }(1.7 .8) \text { that } \\
& E\left(f, A_{0}\right)=\sum_{i} x_{i} \int_{A_{i}}^{A_{0}}\left(x_{i+1} D_{i-1} f-x_{i-1}^{D_{i+1}} f\right) d x \\
& =\sum_{i}\left(x_{i} x_{i+1} \int_{A_{i}}^{A_{0}} D_{i-1} f d x-x_{i} x_{i-1} \int_{A_{i}}^{A_{0}} D_{i+1} f d x\right)
\end{aligned}
$$

Rearranging the sums of the above line integrals, we have

$$
\begin{align*}
& E\left(f, A_{0}\right)=\sum_{i} x_{i-1} x_{i+1}\left(\int_{A_{i+1}}^{A_{0}} D_{i} f d x-\int_{A_{i-1}}^{A_{0}} D_{i} f d X\right) \\
& E\left(f, A_{0}\right)=\sum_{i}\left(-\frac{x_{i-1} x_{i+1}}{2}\right) \int_{T_{i}} D_{i, i} f d \mu_{i} \tag{1.7.16}
\end{align*}
$$

We observe that $(1.7 .16)$ can be written in the form
$E\left(f, A_{0}\right)=\sum_{i} \int_{T_{i}}\left(\frac{1}{2} x_{i-1} x_{i+1} D_{i, i-1} f+\frac{1}{2} x_{i-1} x_{i+1} D_{i, i+1} f\right) d \mu_{i}$

The kernels of f in (1.7.14) and (1.7.17) are not the same, so this example shows that the kernels are not unique. By equating the equations (1.7.14) and (1.7.17), we obtain the following identity :

If $f \in H^{2}(\Omega)$, then

$$
\sum_{i} \int_{T_{i}}\left[x_{i+1}\left(x_{i}-x_{i-1}\right) D_{i, i-1} f+x_{i-1}\left(x_{i}-x_{i+1}\right) D_{i, i+1} f\right] d \mu_{i}=0
$$

CHAPTER 2

FINITE ELEMENT SOLUTION TO THE SECOND ORDER ELLIPTIC PROBLEMS

2.1 INTRODUCTION

Consider the second order elliptic boundary value problem ([S4],[A1],[B4]), defined in a bounded open domain Ω with polygonal boundary $\partial \Omega$ by

$$
\left\{\begin{align*}
L u & =-\nabla \cdot(p \nabla u)+q u=f & & \text { in } \Omega \tag{2.1.1}\\
u & =g & & \text { on } \partial \Omega
\end{align*}\right.
$$

This differential equation arises in a variety of physical contexts, for example, the equation (2.1.1) is satisfied by the transverse deflection $u(X)$ of a membrane under uniform lateral tension T, which supports a load of $T f(X)$ per unit area. Under the assumptions p, q are smooth functions and

$$
\left\{\begin{array}{l}
\mathrm{p} \geq \mathrm{p}_{\min }>0 \tag{2.1.3}\\
\mathrm{q} \geq 0
\end{array} \quad \text { in } \Omega\right.
$$

the differential operator $L=-\nabla \cdot p \nabla+q$ is a $1-1$ continuous linear operator ([S3],[T1]) mapping $H_{g}^{2}(\Omega)$ onto $H^{0}(\Omega)$, where $H_{g}^{2}(\Omega)$ is the solution space defined by

$$
H_{g}^{2}(\Omega)=\left\{u \in H^{2}(\Omega): u=g \text { on } \partial \Omega\right\} .
$$

In general, if $g \neq 0$, then $H_{g}^{2}(\Omega)$ is not a linear space, but an affine subspace of $H^{2}(\Omega)$.

In particular, if $p=1$ and $q=0$, the equation
(2.1.1) reduces to the Poisson equation

$$
\begin{equation*}
-\Delta u=f \tag{2.1.4}
\end{equation*}
$$

2.2 THE VARIATIONAL FORM OF THE PROBLEM

The problem of solving a boundary value problem often turns out to be equivalent to the problem of minimizing a certain quadratic functional ([B4],[A1]).

The quadratic functional related to the linear equation (2.1.1) is given by

$$
\begin{equation*}
I(v)=\int_{\Omega}\left(p \nabla v \cdot \nabla v+q v^{2}-2 f v\right) d \mu_{\Omega} \tag{2.1.5}
\end{equation*}
$$

The solution of the differential problem $L u=f$ is expected to coincide with the function u that minimizes I. Since the integral (2.1.5) involves no second derivatives, the class of functions over which the integral $I(v)$ is to be minimized is enlarged to the space of admissible functions defined by

$$
H_{g}^{1}(\Omega)=\left\{u \in H^{1}(\Omega): u=g \quad \text { on } \quad \partial \Omega\right\}
$$

We observe that the admissible space $H_{g}^{1}(\Omega)$ is an
affine space, and can be written as $H_{0}^{1}(\Omega)+g$, where $H_{0}^{1}(\Omega)$ denotes the linear suspace $\left\{u \in H^{1}(\Omega): u=0 \quad\right.$ on $\left.\partial \Omega\right\}$

Before we proceed further, the first step is to check that a solution u to the differential problem does minimize I (v) .

Let u be an admissible function of the integral $I(v)$,
 function $u+\varepsilon v$ is still an admissible function of $I(v)$ and we have

$$
\begin{aligned}
I(u+\varepsilon v)= & \int_{\Omega}\left[p \nabla(u+\varepsilon v) \cdot \nabla(u+\varepsilon v)+q(u+\varepsilon v)^{2}-2 f(u+\varepsilon v)\right] d \mu_{\Omega} \\
= & \int_{\Omega}\left(p \nabla u \cdot \nabla u+q u^{2}-2 f u\right) d \mu_{\Omega}+2 \varepsilon \int_{\Omega}(p \nabla u \cdot \nabla v+q u v-f v) d \mu_{\Omega}+ \\
& \varepsilon^{2} \int_{\Omega}\left(p \nabla v \cdot \nabla v+q v^{2}\right) d \mu_{\Omega}
\end{aligned}
$$

It follows that
$\frac{d I}{d \varepsilon}(u+\varepsilon v)=2 \int_{\Omega}(p \nabla u \cdot \nabla v+q u v-f v) d \mu_{\Omega}+2 \varepsilon \int_{\Omega}\left(p \nabla v \cdot \nabla v+q v^{2}\right) d \mu_{\Omega}$
and
$\frac{d^{2} I}{d \varepsilon^{2}}(u+\varepsilon v)=2 \int_{\Omega}\left(p \nabla v \cdot \nabla v+q v^{2}\right) d \mu_{\Omega}$

$$
\text { Since } p>0, q \geq 0 \text { and } \nabla v \cdot \nabla v \geq 0 \text { for all } v \in H_{0}^{1}(\Omega)
$$

we have

$$
\frac{\mathrm{d}^{2} \mathrm{I}}{\mathrm{~d} \varepsilon^{2}}(\mathrm{u}+\varepsilon \mathrm{v}) \geq 0 \quad \forall \quad v \quad \text { in } H_{0}^{1}(\Omega)
$$

Thus, an admissible function u minimizes $I(v)$ iff
the first variation

$$
\left.\frac{\mathrm{dI}}{\mathrm{~d} \varepsilon}(u+\varepsilon v)\right|_{\varepsilon=0}
$$

vanishes for all v in $H_{0}^{1}(\Omega)$, that is, if and only if

$$
\begin{equation*}
\int_{\Omega}(p \nabla u \cdot \nabla v+q u v-f v) d \mu_{\Omega}=0 \tag{2.1.6}
\end{equation*}
$$

By Green's Theorem ([W1,p.346],[H2]) equation (2.1.6) is equivalent to

$$
\begin{equation*}
\int_{\Omega}[-\nabla \cdot(p \nabla u)+q u-f] v d \mu_{\Omega}-\int_{\partial \Omega} \frac{\partial u_{v}}{\partial n} d s=0 \tag{2.1.7}
\end{equation*}
$$

where $\frac{\partial u}{\partial n}$ is the outward normal derivative of u on $\partial \Omega$.
Since $v \in H_{0}^{1}(\Omega)$, the line integral of (2.1.7) vanishes
and we have

$$
\begin{equation*}
\int_{\Omega}[-\nabla \cdot(p \nabla u)+q u-f] v d \mu_{\Omega}=0 \tag{2.1.8}
\end{equation*}
$$

This holds for all $v \in H_{0}^{1}(\Omega) \quad$ iff

$$
-\nabla \cdot(p \nabla u)+q u=f
$$

Thus, the elliptic equation (2.1.1) turns out to be the Euler equation for the problem of minimizing the integral $I(v)$. Also, the second variation $\left.\frac{d^{2} I(u+\varepsilon v)}{d \varepsilon^{2}}\right|_{\varepsilon=0}$ is positive unless v is constant, which implies by the boundary condition, that v vanishes identically. Thus u will be the unique function which minimizes the quadratic function (2.1.5).

2.3 ENERGY INNER PRODUCT

Define a bilinear expression on $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$ by

$$
\begin{equation*}
a(u, v)=\int_{\Omega}(p \nabla u \cdot \nabla v+q u v) d \mu_{\Omega} \tag{2.3.1}
\end{equation*}
$$

It is easy to check that $a(\cdot, \cdot)$ has the following properties :
(i) $a\left(u_{1}+u_{2}, v\right)=a\left(u_{1}, v\right)+a\left(u_{2}, v\right)$
(ii) $a(u, v)=a(v, u)$
(iii) $a(\lambda u, v)=\lambda a(u, v)$ for all $\lambda \in R$
(iv) $a(u, u) \geq 0$ for all $u \in H_{0}^{1}(\Omega)$
(v) $a(u, u)=0$ iff $u=0$

Thus $a(\cdot, \cdot)$ is an inner product on the space
$H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$. This inner product is referred to as the energy inner product, and the norm defined by $\|u\|_{a}=[a(u, u)]^{\frac{1}{2}}$ will be referred to as the energy norm. In particular, if $p=1, q=0$, the corresponding energy norm will be denoted by $\|u\|_{\Delta}$.

Theorem 2.3.1. The energy norm $\|u\|_{a}$ is equivalent to the Sobolev norm $\|u\|_{1, \Omega}$.

The Theorem is proved by the following two 1 emmas.

Lemma 2.3.1. There is a constant $\rho>0$. Such that

$$
\|u\|_{a} \leq \rho\|u\|_{1, \Omega}
$$

Proof: From Lemma 1.5.2. we have

$$
\nabla u \cdot \nabla u=\frac{2}{3 h^{2}} \sum_{j}\left(D_{i} u\right)^{2}
$$

It follows that

$$
\begin{aligned}
a(u, u) & =\sum_{T \in \tau^{h}} \mu_{\Omega}(T) \int_{T}\left[p\left(\frac{2}{3 h^{2}}\right) \sum_{i}\left(D_{i} u\right)^{2}+q u^{2}\right] d \mu_{T} \\
& \leq \sum_{T \in \tau^{h}} \mu_{\Omega}(T) \max _{X \in \Omega}\left(\frac{2 p(X)}{3}, q(X)\right) \int_{T}\left(\frac{1}{h^{2}} \sum_{i}\left(D_{i} u\right)^{2}+u^{2}\right) d \mu_{T} \\
& =\max _{X \in \Omega}\left(\frac{2 p(X)}{3}, q(X)\right)\|u\|_{l, \Omega}^{2}
\end{aligned}
$$

Since $\mathrm{p} \geq \mathrm{p}_{\min }>0$ and $\mathrm{q} \geq 0$ in Ω, we have

$$
\begin{aligned}
& \max \left(\frac{2 p(X)}{3}, q(X)\right)>0 \\
& \text { Letting } \rho=\left[\max _{X \in \Omega}\left(\frac{2 p(X)}{3}, q(X)\right)\right]^{\frac{1}{2}}, \text { we get } \\
& \|u\|_{a}=[a(u, u)]^{\frac{1}{2}} \leq \rho\|u\|_{1, \Omega},
\end{aligned}
$$

completing the proof.

Lemma 2.3.2. There is a constant $\sigma>0$. Such that

$$
\sigma\|u\|_{1, \Omega} \leq\|u\|_{a}
$$

$$
\begin{aligned}
\text { Proof : } a(u, u) & =\sum_{T \in \tau} h^{\mu_{\Omega}(T)} \int_{T}\left[p\left(\frac{2}{3 h^{2}}\right) \sum_{i}\left(D_{i} u\right)^{2}+q u^{2}\right] d \mu_{T} \\
& \geq \min _{X \in \Omega}\left(\frac{2 p(X)}{3}\right) \sum_{T \in \tau} h_{\Omega} \mu_{\Omega}(T) \int_{T} \frac{1}{h^{2}} \sum_{i}\left(D_{i} u\right)^{2} d \mu_{T}
\end{aligned}
$$

By the Poincare inequality ([S4], [P1]), there is a constant $\tilde{\sigma}>0$, such that

$$
\int_{\Omega} \nabla u \cdot \nabla u d \mu_{\Omega} \geq \tilde{\sigma} \int_{\Omega} u^{2} d \mu_{\Omega} \quad \text { for all } u \in H_{0}^{1}(\Omega)
$$

Since $p \geq p_{\min }>0$ in Ω, we have

$$
\sigma=\left[\frac{1}{2} \min \left(\tilde{\sigma}, \min _{X \in \Omega}\left(\frac{2 P(X)}{3}\right)\right)\right]^{\frac{1}{2}}>0
$$

It follows that

$$
\begin{aligned}
\|u\|_{a} & =[a(u, u)]^{\frac{1}{2}} \\
& \geq \sigma\left[\sum_{T \in \tau} h_{\Omega}(T) \int_{T}\left(\frac{1}{\mathrm{~h}^{2}} \sum_{i}\left(D_{i} u\right)^{2}+u^{2}\right) d \mu_{\mathrm{T}}\right]^{\frac{1}{2}} \\
& =\sigma\|u\|_{1, \Omega}
\end{aligned}
$$

completing the proof.

2.4 THE RITZ-GALERKIN METHOD

Consider the equation

$$
\begin{equation*}
\mathrm{Lu}=f \tag{2.4.1}
\end{equation*}
$$

Assume (2.4.1) has a solution in the Hilbert space H with the inner product (\cdot, \cdot). If L is linear, symmetric and positive definite. Then as we have discussed in the last section, solving of (2.4.1) is equivalent to minimization of the quadratic functional

$$
\begin{equation*}
I(v)=(L v, v)-2(f, v) \tag{2.4.2}
\end{equation*}
$$

over an admissible space H_{B}.
The Ritz method ([S3], [P1], [B6], [A1]) is to replace H_{B} by a finite dimensional subspace S^{h} contained in H_{B}. The elements v^{h} of S^{h} are called trial functions. If ϕ_{i}, $i=1, \cdots, n$ are the n basis elements of S^{h}, then every member
of S^{h} can be written as

$$
\begin{equation*}
v^{h}=\sum_{i=1}^{n} \lambda_{i} \phi_{i} \tag{2.4.3}
\end{equation*}
$$

By substituting (2.4.3) into $I\left(v^{h}\right)$ and letting the derivatives $\frac{\partial I}{\partial \lambda_{i}}$ be zero for $i=1,2, \cdots$, n. The Ritz method turns out to be the solution of a system of linear equations of the form

$$
\begin{equation*}
\sum_{j=1}^{n} \lambda_{j}\left(L \phi_{j}, \phi_{i}\right)=\left(f, \phi_{i}\right) \quad \text { for } i=1,2, \cdots, n \tag{2.4.4}
\end{equation*}
$$

Since the linear operator L is symmetric and positive definite, the solution of (2.4.4) exists and is unique.

The main weakness of the Ritz method is the fact that it is applicable only to equations with symmetric and positive definite linear operators. Another method, called the Galerkin method is free from this constraint. We shall describe this method with an example of solving the equation (2.4.1).

An element $u \in H$ is called a weak (or 'generalized') solution of the problem (2.4.1) if

$$
(L u, v)=(f, v) \quad \text { for all } v \in H
$$

The Galerkin approximation to the problem $L u=f$ is to seek a weak solution in a finite dimensional subspace S^{h} of H ([S4],[P1],[B4],[M1]). Thus, if $\phi_{i}, i=1, \cdots, n$ are the n basis elements of S^{h}, it is sufficient to find $u^{h} \in S^{h}$, such
that

$$
\begin{equation*}
\left(\operatorname{Lu}{ }^{h}, \phi_{i}\right)=\left(f, \phi_{i}\right) \quad \text { for all } i=1,2, \cdots, n . \tag{2.4.5}
\end{equation*}
$$

It is easy to check that for a linear, symmetric and positive definite operator L , the two systems of equations (2.4.4) and (2.4.5) are identical. Thus the Galerkin method is a generalization of the Ritz method.

The linear operator $L=-\nabla \cdot p \nabla+q$ defined in (2.1.1) is linear and symmetric. As we have proved in Section 2.2, the inner product (Lu, v) is the same as the energy inner product $a(u, v)$, and from the result of Lemma 2.3.2. we know that L is positive definite. Thus, for this linear operator L , the Ritz method and the Galerkin method are equivalent, we shall refer to it as the Ritz-Galerkin method.

Denote by S^{h} a finite dimensional subspace of $H^{1}(\Omega)$, and by $\left\{\phi_{i}\right\}_{i=1}^{n}$ the n basis elements of S^{h}.

The Ritz-Galerkin solution to the problem (2.1.1) thus requires only the solution of the system of linear equations:

$$
\begin{align*}
& \int_{\Omega}\left(p \nabla u^{h} \cdot \nabla \phi_{i}+q u^{h} \phi_{i}\right) d \mu_{\Omega}=\int_{\Omega} f \phi_{i} d \mu_{\Omega} \tag{2.4.6}\\
& \text { for } i=1,2, \cdots, n \text {, }
\end{align*}
$$

where

$$
\begin{equation*}
u^{h}=g+\sum_{i=1}^{n} \lambda_{i} \phi_{i} \tag{2,4.7}
\end{equation*}
$$

2.5 RITZ-GALERKIN METHOD WITH TRIANGULAR LINEAR ELEMENTS

Given an equilateral triangulation τ^{h} of Ω, the simplest and most basic of all trial functions is the triangular linear elements. The trial function is linear inside each triangle and continuous across each edge ([S4],[P1],[C3]). Denote by $S_{g}^{1,0}$ the affine subspace define by

$$
S_{\mathrm{g}}^{1,0}=\left\{\phi \in S^{1,0}: \phi=\mathrm{g} \quad \text { on } \partial \Omega\right\} .
$$

For every element X_{α} of Ω_{h}, let ϕ_{α} be the trial function which equals 1 at X_{α} and zero at all other nodes. Then these pyramid functions ϕ_{α} form a basis for the trial space $S_{g}^{1,0}$. The dimension of $S_{g}^{1,0}$ equals to the number of elements in $\stackrel{\circ}{\Omega}_{\mathrm{h}}$.

Denote by $\left(\xi_{\alpha}, \xi_{\beta}, \xi_{\gamma}\right)$ the Barycentric Coordinates of a point X w.r.t. the triangle $T=X_{\alpha} X_{\beta} X_{\gamma}$.

The basis function
$\phi_{\alpha}(X)$ can be expressed as
$\phi_{\alpha}(X)= \begin{cases}\xi_{\alpha} & \text { if } X \in X_{\alpha}+H \\ 0 & \text { otherwise }\end{cases}$

Fig. 2.5.1

To construct the Ritz-Galerkin approximation with triangular elements, we need the following Lemma.

Lemma 2.5.1. $\int_{\Omega} \nabla \phi_{\alpha} \cdot \nabla \phi_{\beta} \mathrm{d} \mu_{\Omega}=\frac{4 \mu_{\Omega}(\mathrm{T})}{3 \mathrm{~h}^{2}}\left\{\begin{aligned}-1 & \text { if }|\alpha-\beta|=1 \\ 6 & \text { if } \alpha=\beta \\ 0 & \text { otherwise }\end{aligned}\right.$
(2.5.1)

Proof :

As shown in the above figure, let $T=A_{\alpha} A_{\beta} A_{\gamma}$ be a triangle of the hexagon $A_{\alpha}+H$, then we have

$$
\begin{aligned}
& \phi_{\alpha}=\xi_{\alpha} \\
& \text { and }
\end{aligned}
$$

$$
D_{\sigma} \phi_{\beta}\left\{\begin{aligned}
1 & \text { if }(\sigma, \beta) \in\{(\alpha, \gamma),(\gamma, \beta),(\beta, \alpha)\} \\
-1 & \text { if }(\sigma, \beta) \in\{(\alpha, \beta),(\beta, \gamma),(\gamma, \alpha)\} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

From Lemma 1.5.2., we get

$$
\begin{aligned}
\int_{\Omega} \nabla \phi_{\alpha} \cdot \nabla \phi_{\beta} \mathrm{d} \mu_{\mathrm{T}} & =\sum_{\mathrm{T} \in \mathrm{~T}}{ }_{\mathrm{h}} \mu_{\Omega}(\mathrm{T}) \int_{\mathrm{T}} \frac{2}{3 h^{2}} \sum_{\sigma}\left(\mathrm{D}_{\sigma} \phi_{\alpha}\right)\left(\mathrm{D}_{\sigma} \phi_{\beta}\right) \mathrm{d} \mu_{\mathrm{T}} \\
& = \begin{cases}2 \mu_{\Omega}(\mathrm{T}) \int_{\mathrm{T}} \frac{2}{3 h^{2}}(-1) \mathrm{d} \mu_{\mathrm{T}} & \text { if }|\alpha-\beta|=1 \\
6 \mu_{\Omega}(\mathrm{T}) \int_{\mathrm{T}} \frac{2}{3 h^{2}}(2) \mathrm{d} \mu_{\mathrm{T}} & \text { if } \alpha=\beta \\
0 & \text { otherwise }\end{cases} \\
& =\frac{\left.4 \mu_{\Omega} \mathrm{T}\right)}{3 \mathrm{~h}^{2}} \begin{cases}-1 & \text { if }|\alpha-\beta|=1 \\
6 & \text { if } \alpha=\beta\end{cases} \\
0 & \text { otherwise }
\end{aligned}
$$

completing the proof.

To construct the Ritz-Galerkin solution of (2.1.1) with the boundary condition $u=g$ on $\partial \Omega$, it is convenient to express the minimizing function u^{h} in terms of ϕ_{α} as

$$
\begin{equation*}
u^{h}=\sum_{\alpha \in \Gamma_{h}} \lambda_{\alpha} \phi_{\alpha} \tag{2.5.2}
\end{equation*}
$$

We observe that only those interior parameters λ_{α} in the equation (2.5.2) are to be determined. For those nodes which lie on the boundary $\partial \Omega$,

$$
\lambda_{\alpha}=g\left(X_{\alpha}\right) .
$$

$$
\text { By substituting the equation (2.5.2) into }(2.4 .6) \text {, we }
$$

have
$\sum_{\beta \in \Gamma_{h}} \lambda_{\beta} \int_{\Omega}\left(p \nabla \phi_{\alpha} \cdot \nabla \phi_{\beta}+q \phi_{\alpha} \phi_{\beta}\right) d \mu_{\Omega}=\int_{\Omega} f \phi_{\alpha} d \mu_{\Omega}$
for $\alpha \in \stackrel{\circ}{\Gamma}_{h}$

It follows from Lemma 2.5.1 that the system of linear
equations (2.5.3) becomes

$$
\begin{equation*}
\sum_{\beta \in \Gamma_{h}} \lambda_{\beta} L_{\alpha, \beta}=\int_{\Omega} f \phi_{\alpha} d \mu_{\Omega} \quad \text { for } \quad \alpha \in \stackrel{\circ}{\Gamma}_{h} \tag{2.5.4}
\end{equation*}
$$

where

$$
L_{\alpha, \beta}=\left\{\begin{array}{l}
\int_{T_{\alpha} \cup T_{\beta}}\left[-\frac{2}{3 h^{2}} \mathrm{p}(\mathrm{X})+\phi_{\alpha} \phi_{\beta} q(X)\right] d_{\Omega} \quad \text { if }|\alpha-\beta|=1 \\
\text { where } T_{\alpha} \text { and } T_{\beta} \text { are the two triangular elements in } \tau^{h} \\
\text { having the common side } X_{\alpha} X_{\beta} \\
\int_{X_{\alpha}+H}\left[\frac{4}{3 h^{2}} 2 p(X)+\phi_{\alpha}^{2} q(X)\right] d \mu_{\Omega} \quad \text { if } \alpha=\beta \\
0
\end{array}\right.
$$

In particular, if $p=1$ and q is a constant,
then

$$
L_{\alpha, \beta}= \begin{cases}\left(-\frac{4 p}{3 h^{2}}+\frac{q}{6}\right) \mu_{\Omega}(T) & \text { if }|\alpha-\beta|=1 \\ \left(\frac{8 p}{h^{2}}+q\right) \mu_{\Omega}(T) & \text { if } \alpha=\beta \\ 0 & \text { otherwise }\end{cases}
$$

Expressed diagrammatically, the discrete linear operator L^{h} associated with the continuous operator $L=-\Delta+q$ has a representation of the form :

(2.5.5)

If $q=0, L$ becomes the Laplacian operator $-\Delta$. The associated discrete Laplacian operator L^{h} has a representation of the form :

(2.5.6)

2.6 NUMERICAL QUADRATURE FORMULAS

For arbitary p, q and f, the integrals in the expression (2.5.3) cannot be computed exact1y, and some numerical quadrature will be necessary to approximate these integrals.

In this section, we shall derive some numerical quadrature formulas for the following four types of integrals :
(i) $F_{\alpha}=\int_{\Omega} f \phi_{\alpha} d \mu_{\Omega}$
(ii) $Q_{\alpha}=\int_{\Omega} q \phi_{\alpha}^{2} d \mu_{\Omega}$
(iii) $P_{\alpha, \beta}=\int_{T_{\alpha} \cup T_{\beta}} p d \mu_{\Omega}$
(iv) $Q_{\alpha, \beta}=\int_{\Omega} q \phi_{\alpha} \phi_{\beta} d \mu_{\Omega}$

The corresponding numerical quadrature will be denoted by $\tilde{\mathrm{F}}_{\alpha}, \tilde{\mathrm{Q}}_{\alpha}, \tilde{\mathrm{P}}_{\alpha, \beta}$ and $\tilde{\mathrm{Q}}_{\alpha, \beta}$ respectively.

We observe that the integrals F_{α} and Q_{α} have support over the hexagon $X_{\alpha}+H$. The simplest numerical quadrature is the 1-point formula, that is, F_{α} and Q_{α} are approximated by $a f\left(X_{\alpha}\right)$ and $b q\left(X_{\alpha}\right)$ respectively, where a and b are two constants to be determined.

To obtain the values of a and b, we may require that they be exact for constants f and q, that is

$$
\left\{\begin{array}{l}
\int_{\Omega} \phi_{\alpha} d \mu_{\Omega}-a=0 \\
\int_{\Omega} \phi_{\alpha}^{2} d \mu_{\Omega}-b=0
\end{array}\right.
$$

It follows that
$\mathrm{a}=\int_{\Omega} \phi_{\alpha} \mathrm{d} \mu_{\Omega}=6 \mu_{\Omega}(\mathrm{T}) \int_{\mathrm{T}} \xi_{\alpha} \mathrm{d} \mu_{\mathrm{T}}=2 \mu_{\Omega}(\mathrm{T})$
and
$\mathrm{b}=\int_{\Omega} \phi_{\alpha}^{2} \mathrm{~d} \mu_{\Omega}=6 \mu_{\Omega}(\mathrm{T}) \int_{\mathrm{T}} \xi_{\alpha}^{2} \mathrm{~d} \mu_{\mathrm{T}}=\mu_{\Omega}(\mathrm{T})$
By the symmetric form of the integrals $\int_{\Omega} f \phi_{\alpha} d \mu_{\Omega}$ and
$\int_{\Omega} q \phi_{\alpha}^{2} d \mu_{\Omega}, \quad$ it is easy to verify that the two numerical quadratures $\tilde{F}_{\alpha}=2 \mu_{\Omega}(T) f\left(X_{\alpha}\right)$ and $\tilde{Q}_{\alpha}=\mu_{\Omega}(T) q\left(X_{\alpha}\right)$ are exact for all polynomials of degree 1 .

To obtain numerical quardrature with higher order of accuracy, we require the following Lemma :

Lemma 2.6.1. Let ψ be a quadratic polynomial which takes the value 1 along the edges $X_{\alpha_{6}} X_{\alpha_{1}}$ and $X_{\alpha_{3}} X_{\alpha_{4}}$ and vanishes along the line $X_{\alpha_{2}} X_{\alpha_{5}}$ of the hexagon $X_{\alpha}+H$. Then
(i) $\int_{\Omega} \psi \phi_{\alpha} \mathrm{d} \mu_{\Omega}=\frac{\mu_{\Omega}(\mathrm{T})}{3}$
(ii) $\int_{\Omega} \psi \phi_{\alpha}^{2} \mathrm{~d} \mu_{\Omega}=\frac{\mu_{\Omega}(\mathrm{T})}{9}$

Proof : Denote the Barycentric Coordinates of a point $X \in X_{\alpha}+H$ w.r.t. the triangle $T_{j}=X_{\alpha} X_{\alpha_{j}} X_{\alpha_{j+1}}$ by (ξ, η, k). Then the polynomial ψ can be represented in terms of the Barycentric Coordinates of x w.r.t. the triangle $T_{1}=X_{\alpha} X_{\alpha_{1}} X_{\alpha_{2}}$ as $\psi(\xi, n, k)=n^{2}$

It follows from the transformation matrix we have developed in Section 1.3 that the local expression of $\psi(X)$ w.r.t. the six triangles T_{j} are as follow:

$$
\psi(\xi, n, k)= \begin{cases}k^{2} & \text { in } T_{2} \text { and } T_{5} \\ n^{2}+2 n k+\kappa^{2} & \text { in } T_{3} \text { and } T_{6} \\ \eta^{2} & \text { in } T_{1} \text { and } T_{4}\end{cases}
$$

It follows that

$$
\begin{aligned}
\int_{\Omega} \psi \phi_{\alpha} \mathrm{d} \mu_{\Omega} & =4 \mu_{\Omega}(\mathrm{T}) \int_{\mathrm{T}} \xi\left(n^{2}+\kappa^{2}+n \kappa\right) \mathrm{d} \mu_{\mathrm{T}} \\
& =4 \mu_{\Omega}(\mathrm{T})\left(\frac{2!2!}{5!}+\frac{2!2!}{5!}+\frac{2!}{5!}\right) \\
& =\frac{\mu_{\Omega}(\mathrm{T})}{3}
\end{aligned}
$$

Similarly, we have

$$
\int_{\Omega} \psi \phi_{\alpha}^{2} \mathrm{~d} \mu_{\Omega}=4 \mu_{\Omega}(\mathrm{T}) \int_{\mathrm{T}} \xi^{2}\left(n^{2}+\kappa^{2}+n \kappa\right) \mathrm{d} \mu_{T}=\frac{\mu_{\Omega}(\mathrm{T})}{9}
$$

completing the proof.

From the result of Lemma 2.6.1., we observe that the two numerical quadratures $\tilde{F}_{\alpha}=2 \mu_{\Omega}(T)$ and $\tilde{Q}_{\alpha}=\mu_{\Omega}(T)$ are not exact for all polynomials of degree 2.

Another numerical quadrature for F_{α} and Q_{α} exact for polynomials of higher degree can be derived as follows :

Assume the numerical quadrature for F_{α} has the form :

$$
\tilde{F}_{\alpha}\left(X_{\beta}\right)= \begin{cases}a f\left(X_{\beta}\right) & \text { if } \alpha=\beta \\ b f\left(X_{\beta}\right) & \text { if }|\alpha-\beta|=1 \\ 0 & \text { otherwise }\end{cases}
$$

Since \tilde{F}_{α} has two parameters a and b to be determined, and the one parameter numerical quadrature is exact for all polynomials of degree 1 , we may require the 7 -point formula to be exact for all polynomials of degree 2 .

If this is the case, we should have $F_{\alpha}-\tilde{F}_{\alpha}=0$ for f equal to 1 , and the quadrature polynomial ψ as defined in Lemma 2.6.1., that is

$$
\left\{\begin{array}{l}
\int_{\Omega} \phi_{\alpha} \mathrm{d} \mu_{\Omega}-\mathrm{a}-6 \mathrm{~b}=0 \tag{2.6.1}\\
\int_{\Omega} \psi \phi_{\alpha} \mathrm{d} \mu_{\Omega}-4 \mathrm{~b}=0
\end{array}\right.
$$

It follows from the result of Lemma 2.6.1. that
$\mathrm{b}=\frac{\mu_{\Omega}(\mathrm{T})}{12}$
By substituting this into (2.6.1), we have
$a=\frac{3}{2} \mu_{\Omega}(T)$

Expressed diagrammatically, the 7-point numerical quadrature can be represented as

(2.6.2)

The set $B_{T_{1}}^{n}=\left\{\xi^{S_{1}}{ }_{\eta}{ }^{S_{2}}{ }_{K} S_{3}: s_{i}\right.$ are non-negative integers and $\left.\sum_{i} s_{i}=n\right\}$ form a basis for all homogeneous polynomials of degree n on T_{1}, and these polynomials can be extended to Ω in a consistent way. It is not hard to verify that the 7-point formula for F_{α}
is exact for all polynomials in $\mathrm{B}_{\mathrm{T}_{1}}^{2}$. Since elements of $\mathrm{B}_{\mathrm{T}_{1}}^{1}, \quad \mathrm{~B}_{\mathrm{T}_{1}}^{3}$ are all odd functions, by the symmetric form of the integral F_{α} and the numerical quadrature $\tilde{\mathrm{F}}_{\alpha}$, the 7-point numerical quadrature \tilde{F}_{α} is exact for all polynomials in $\mathrm{B}_{\mathrm{T}_{1}}^{1}$ and $\mathrm{B}_{\mathrm{T}_{1}}^{3}$. Thus the 7-point formula \tilde{F}_{α} is exact for all polynomials of degree ≤ 3.

Similarly, the 7-point numerical quadrature for Q_{α} can be obtained by solving the following system of linear equations :

$$
\left\{\begin{array}{l}
\int_{\Omega} \phi_{\alpha}^{2} \mathrm{~d} \mu_{\Omega}-\mathrm{a}-6 \mathrm{~b}=0 \\
\int_{\Omega} \psi \phi_{\alpha}^{2} \mathrm{~d} \mu_{\Omega}-4 \mathrm{~b}=0
\end{array}\right.
$$

and this reduces to

It is easy to verify that the 7-point formula \tilde{Q}_{α} is consistent i.e. $Q_{\alpha}-\tilde{Q}_{\alpha}=0$ for all $q \in P^{2}(\Omega)$, by applying the symmetry arguments, we conclude that \tilde{Q}_{α} is exact for all polynomials of degree ≤ 3.

If we return our attention to the integrals $\int_{T_{\alpha} u T_{\beta}} p d \mu_{\Omega}$
and $\int_{\Omega} q \phi_{\alpha} \phi_{\beta} d \mu_{\Omega}$, we observe that $Q_{\alpha, \beta}$ has support over the two adjacent triangles T_{α} and T_{β}, and for the integral $P_{\alpha, \beta}$ we only have to integrate p over the triangles T_{α} and T_{β}.

The simplest numerical quadrature for $Q_{\alpha, \beta}$ is the
following 2-point formula

$$
\tilde{Q}_{\alpha, \beta}\left(X_{\gamma}\right)= \begin{cases}a q\left(x_{\gamma}\right) & \text { if } \gamma=\alpha \text { or } \beta \\ 0 & \text { el sewhere }\end{cases}
$$

To determine a, we may require $Q_{\alpha, \beta}-\tilde{Q}_{\alpha, \beta}=0$ for $\mathrm{q}=1$, that is

$$
\int_{\Omega} \phi_{\alpha} \phi_{\beta} \mathrm{d} \mu_{\Omega}-2 \mathrm{a}=0
$$

this reduces to
$a=\frac{\mu_{\Omega}(T)}{12}$

It is easy to check that the 2-point formula for $Q_{\alpha, \beta}$ is exact for all polynomials of degree ≤ 1.

Similarly, the 2-point formula for the integral $P_{\alpha, \beta}$ is

$$
\tilde{\mathrm{P}}_{\alpha, \beta}\left(X_{\gamma}\right)= \begin{cases}\mu_{\Omega}(T) & \text { if } \gamma=\alpha \text { or } \beta \\ 0 & \text { elsewhere }\end{cases}
$$

It is easy to verify that the 2 -point formula $\tilde{\mathrm{P}}_{\alpha, \beta}$ is exact for all polynomials of degree ≤ 1.

Numerical quadrature for $P_{\alpha, \beta}$ and $Q_{\alpha, \beta}$ exact for polynomials of higher degree can be obtained by putting weights at several points on the triangles T_{α} and T_{β} (see T. H. Lim [L1]).

CHAPTER 3

ERROR ANALYSIS

3.1 INTRODUCTION

Error bounds for the finite element method for elliptic boundary value problems are frequently of the form
$\left\|u-u^{h}\right\|_{a} \leq h^{s}\|u\|_{k, \Omega}$, where k is a constant independent of h, the mesh parameter. In this chapter, we apply a triangular version of the Peano-Sard Kernel Theorem, proved by Frederickson [F6], to construct some kernels for the error functions $u-u_{I}$ and $D_{i}\left(u-u_{i}\right)$ in the Barycentric Coordinates system. Error bounds are computed from these kernels and applied to the finite element analysis of elliptic boundary value problems, to obtain an upper bound for the constant k. The expression of norms in the interpolation error bounds are simplified by an application of the generalized Hardy inequality proved by P. Frederickson and W. Eames [F5], to the norm of the form $\left\|\|u\|_{L^{1}\left(T_{i}\right)}\right\| L^{2}(T)$, where T_{i} is a sub-triangle of T.

Barnhill and Gregory ([B1],[B2]) have app1ied the Sard Kernel Theorem in the rectangular coordinate system to obtain an error bound for the constant k, but their computation involves line integrals and is more complicated than the results we have obtained.

In Section 3.4, Peano-Sard Kernels for the 1 -point and

7-point numerical quadratures are derived, and the error bounds for these numerical quadratures are estimated. The quadrature errors introduced by computing \tilde{u}^{h} rather than u^{h} are also discussed in this section.
3.2 ERROR BOUNDS FOR INTERPOLATION ON TRIANGLES

Denote by $E(u, X)=u(X)-u_{I}(X)$ the error of u at $X \in \Omega$, where u_{I} is an interpolant of u. In particular, if u_{I} is a piecewise linear interpolation of u, then we have the following Theorem.

Theorem 3.2.1 If $u \in H^{2}(\Omega)$, then

$$
\begin{equation*}
\|E(u, \cdot)\|_{L^{2}(\Omega)} \leq \frac{h^{2}}{\sqrt{17.5}}|u|_{2, \Omega} \tag{3.2.1}
\end{equation*}
$$

To prove the Theorem, we need some auxiliary lemmas and the following generalized Hardy inequality.

Generalized Hardy Inequality : For any $u \in L^{p}(T), p>1$, define
Φ by $\Phi(X)=\frac{\int_{T} u(\S) d \mu_{T}(\S)}{\mu_{T}\left(T_{X}\right)}$, where T is the triangle $A_{0} A_{1} A_{2}$
and ${ }^{T} X$ is the triangle $X A_{1} A_{2}$.

Then $\Phi \in L^{\mathrm{p}}(\mathrm{T})$, and

$$
\|\Phi\|_{L}^{p_{(T)}} \leq \frac{2 \mathrm{p}}{\mathrm{p}-1}\|u\|_{L} \mathrm{p}_{(\mathrm{T})}
$$

A proof of the inequality has been given by Frederickson and Eames [F5].

Lemma 3.2.1. If the error functional $E(u, X)$ is expressed in terms of the kernels in equation (1.7.14) as

$$
E(u, x)=\sum_{i} \int_{T_{i}}\left[\frac{1}{2} x_{i} x_{i+1} D_{i, i-1} u(\xi)+\frac{1}{2} x_{i} x_{i-1} D_{i, i+1} u(\xi)\right] d \mu_{T_{i}}(\S)
$$

then

$$
\|E(u, .)\|_{L^{2}(T)} \leq \frac{1}{\sqrt{120}} \sum_{i}\left(\left\|D_{i, i-1} u\right\|_{L^{2}(T)}+\left\|D_{i, i+1} u\right\|_{L^{2}(T)}\right)
$$

Proof : Since $\mu_{T}\left(T_{i}\right)=x_{i}$, the equation (3.2.2) can be written
as

$$
\begin{equation*}
E(u, x)=\sum_{i} \int_{T}\left[\kappa_{i, i-1}(\xi) D_{i, i-1} u(\xi)+\kappa_{i, i+1}(\xi) D_{i, i+1} u(\xi)\right] d \mu_{T}(\xi) \tag{3.2.4}
\end{equation*}
$$

where

$$
\kappa_{i, i \pm 1}(\S)=\left\{\begin{array}{cl}
\frac{1}{2} x_{i \neq 1} & \text { if } \S \in T_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

By applying the triangle inequality and the Cauchy-Schwarz inequality to the equation (3.2.4), we have

$$
\begin{gather*}
|E(u, x)| \leq \sum_{i}\left(\left\|\kappa_{i, i-1}\right\|_{L^{2}(T)}\left\|D_{i, i-1} u\right\|_{L^{2}(T)}+\right. \tag{3.2.5}\\
\left\|\kappa_{i, i+1}\right\|_{L^{2}(T)}\left\|D_{i, i+1} u\right\|_{L^{2}(T)}
\end{gather*}
$$

Since the kernels $k_{i, i \pm 1}(X)$ vanish outside the triangle T_{i}, we have

$$
\begin{aligned}
\left\|x_{i, i \pm 1}\right\|_{L^{2}(T)}^{2} & =\int_{T} k_{i, i \pm 1}(x) d \mu_{T}(x) \\
& =\frac{1}{4} x_{i \mp 1}^{2} \mu_{T}\left(T_{i}\right) \\
& =\frac{1}{4} x_{i \mp 1}^{2} x_{i}
\end{aligned}
$$

Substituting this into (3.2.5), followed by taking the L^{2} norm of $E(u, X)$ over T, together with the application of the triangle inequality and the Cauchy-Schwarz inequality, we get

$$
\begin{align*}
\|E(u, \cdot)\|_{L^{2}(T)} \leq \sum_{i} & {\left[\left(\int \frac{1}{4} x_{i+1}^{2} x_{i} d \mu_{T}(X)\right)^{\frac{1}{2}}\left\|D_{i, i-1} u\right\|_{L^{2}(T)}+\right.} \\
& \left(\int \frac{1}{4} x_{i-1}^{2} x_{i} d \mu_{T}(x)\right)^{\frac{1}{2}}\left\|D_{i, i+1} u\right\|_{L^{2}}(T) \tag{T}
\end{align*}
$$

$$
=\frac{1}{\sqrt{120}} \sum_{i}\left(\left\|D_{i, i-1} u\right\|_{L^{2}(T)}+\left\|D_{i, i+1} u\right\|_{L^{2}(T)}\right)
$$

completing the proof.

Lemma 3.2.2. If the error function $E(u, X)$ is expressed in terms of the kernels in equation (1.7.16) as

$$
\begin{equation*}
E(u, x)=\sum_{i} \int_{T_{i}}\left(-\frac{1}{2} x_{i-1} x_{i+1}\right) D_{i, i} u(\xi) d \mu_{T_{i}}(\xi) \tag{3.2.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\|E(u, \cdot)\|_{L^{2}(T)} \leq \frac{2}{\sqrt{90}} \sum_{i}\left\|D_{i, i} u\right\|_{L^{2}(T)} \tag{3.2.7}
\end{equation*}
$$

Proof : It follows from (3.2.6) that

$$
|E(u, x)| \leq \sum_{i} \frac{1}{2} x_{i-1} x_{i+1}\left\|D_{i, i} u\right\|_{L 1\left(T_{i}\right)}
$$

By taking the L^{2} norm of $E(u, X)$ over the triangle T, together with the application of the triangle inequality and the Cauchy-Schwarz inequality, we have

$$
\begin{align*}
\|E(u, \cdot)\|_{L^{2}(T)} & \leq \sum_{i}\left(\int_{T} \frac{1}{4} x_{i-1}^{2} x_{i+1}^{2} d \mu_{T}(x)\right)^{\frac{1}{2}}\| \| D_{i, i} u\left\|_{L^{1}\left(T_{i}\right)}\right\|_{L^{2}} \tag{T}\\
& =\frac{1}{\sqrt{360}} \sum_{i}\| \| D_{i, i} u\left\|_{L^{1}\left(T_{i}\right)}\right\| \|_{L^{2}(T)}
\end{align*}
$$

Applying the generalized Hardy inequality to the norm $\left\|\left\|D_{i, i} u\right\|_{L^{1}\left(T_{i}\right)}\right\| L^{2}(T), \quad$ we have

$$
\|E(u, \cdot)\|_{L^{2}(T)} \leq \frac{2}{\sqrt{90}} \sum_{i}\left\|D_{i, i} u\right\|_{L^{2}(T)}
$$

completing the proof.

Remark: The reader may wonder why we use two different techniques to prove the Lemma 3.2.1 and Lemma 3.2.2. This is because the L^{2} norm of the kernal $k_{i, i}$ in (3.2.6) is

$$
\left\|k_{i, i}\right\|_{L 2}(T)=\frac{1}{2} x_{i-1} x_{i+1} x_{i}^{-\frac{1}{2}}
$$

and the L^{2} norm of $\frac{1}{2} x_{i-1} x_{i+1} x_{i}^{-\frac{1}{2}}$ does not exists. Thus we cannot apply the Cauchy-Schwarz inequality to obtain a L^{2} error bound for $E(u, X)$.

However, the technique for proving the Lemma 3.2.2 can be applied to Lemma 3.2.1., but the result will be

$$
\|E(u, \cdot)\|_{L^{2}(T)} \leq \frac{2}{\sqrt{90}} \sum_{i}\left(\left\|D_{i, i-1} u\right\|_{L^{2}(T)}+\left\|D_{i, i+1} u\right\|_{L^{2}(T)}\right)
$$

that is, a larger error bound is obtained.
Since the kernels for the error functional $E(u, x)$ are
not unique, as we have proved in Lemma 3.2.1 and Lemma 3.2.2, different kernels may end up with a different upper error bound. Now we shall combine the results of Lemma 3.2.1 and Lemma 3.2.2 to prove the Theorem 3.2.1.

Proof of Theorem 3.2.1.
It follows from the inequality (3.2.3) that

$$
\begin{aligned}
120\|E(u, \cdot)\|_{L^{2}(T)}^{2} & \leq\left[\sum_{i}\left(\left\|D_{i, i-1} u\right\|_{L^{2}(T)}+\left\|D_{i, i+1} u\right\|_{L^{2}(T)}\right)\right]^{2} \\
& \leq 12\left(\left\|D_{01} u\right\|_{L^{2}(T)}^{2}+\left\|D_{12} u\right\|_{L^{2}(T)}^{2}+\left\|D_{20} u\right\|_{L^{2}(T)}^{2}\right)
\end{aligned}
$$

From (3.2.7) we have

$$
\frac{45}{2}\|E(u, \cdot)\|_{L^{2}(T)}^{2} \leq\left(\sum_{i}\left\|D_{i, i} u\right\|_{L^{2}(T)}\right)^{2} \leq 3 \sum_{i}\left\|D_{i, i} u\right\|_{L^{2}(T)}^{2}
$$

The above two inequalities follow from the fact that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2} \leq n \sum_{i=1}^{n} a_{i}^{2} \quad \text { for } \quad \text { all } \quad a_{i} \in R
$$

It follows that

$$
\left(10+\frac{15}{2}\right)\|E(u, \cdot)\|_{L^{2}(T)}^{2} \sum_{|\alpha|=2}\left\|D^{\alpha} u\right\|_{L{ }^{2}(T)}^{2}=h^{4}|u|_{2, T}^{2}
$$

this reduces to

$$
\begin{aligned}
\|E(u, \cdot)\|_{L^{2}(\Omega)} & =\left(\sum_{T \in \tau} \mu_{\Omega}(T)\|E(u, \cdot)\|_{L^{2}(T)}^{2}\right)^{\frac{1}{2}} \\
& \leq \frac{h^{2}}{\sqrt{17.5}}\left(\sum_{T \in \tau} h_{\Omega}(T)|u|_{2, T}^{2}\right)^{\frac{1}{2}} \\
& =\frac{h^{2}}{\sqrt{17.5}}|u|_{2, \Omega}
\end{aligned}
$$

completing the proof.
To obtain an error bound for the energy norm
$\left\|u-u_{I}\right\|_{\Delta}$, we have the following Theorem.

Theorem 3.2.2. If $u \in H^{3}(\Omega)$ and u_{I} is a piecewise linear interpolation to u, then

$$
\left\|u-u_{I}\right\|_{\Delta} \leq\left(\frac{763}{1080}\right)^{\frac{1}{2}} h\|u\|_{3, \Omega}
$$

for sufficiently small $h \quad(|h| \leq 1)$.

To prove the Theorem, we need the following two lemmas.

Lemma 3.2.1. If $u \in H^{2}(\Omega)$ and u_{I} is a piecewise linear
interpolation of u, then the error of the derivative
$D_{i} E(u, x)=D_{i}\left(u(X)-u_{I}(X)\right), \quad X \in T=A_{i} A_{i+1} A_{i-1} \quad$ has a representation of the form .
(a) $D_{i} E(u, X)=\frac{1}{2} \int_{A_{i-1}}^{X} \S_{i}^{T}\left[x_{i} D_{i+1, i} u(\S)-x_{i+1} D_{i, i} u(\S)\right] d \S-$

$$
\frac{1}{2} \int_{X}^{A+1}{ }_{\S}{ }_{i}{ }_{i}\left[x_{i} D_{i-1, i} u(\xi)-x_{i-1} D_{i, i} u(\xi)\right] d \xi+
$$

$$
\frac{1}{4} \int_{T_{i}}\left[x_{i}\left(D_{i+1, i} u(\xi)-D_{i-1, i} u(\xi)\right)-\left(x_{i+1}-x_{i-1}\right) D_{i, i} u(\xi)\right] d \mu_{T_{i}}(\xi)
$$

where ${ }_{\S}{ }_{i} \mathrm{~T}_{\mathrm{i}}$ is the first Barycentric Coordinate of \S w.r.t. $T_{i}=X A_{i+1} A_{i-1}$
(b) In addition to that, if $u \in H^{3}(\Omega)$, then $D_{i} E(u, X)$ can be represented in terms of surface integrals of derivatives up to order 3 as

$$
\begin{gathered}
D_{i} E(u, x)=\frac{1}{2} \int_{T_{i}}\left[x_{i}\left(D_{i+1, i} u(\xi)-D_{i-1, i} u(\xi)\right)-\left(x_{i+1}-x_{i-1}\right) D_{i, i} u(\xi)-\right. \\
{ }^{\S} T_{i}{ }_{i}\left(x_{i}^{2} D_{012} u(\xi)-x_{i} x_{i+1} D_{i-1, i, i} u(\xi)-x_{i-1} x_{i} D_{i+1, i, i} u(\xi)+\right. \\
\left.\left.x_{i-1} x_{i+1} D_{i, i, i} u(\xi)\right)\right] d \mu_{T_{i}}(\xi)
\end{gathered}
$$

Proof : Denote by $D_{i+1}^{T_{i}}$. and $D_{i-1}^{T_{i}}$. the two normalized derivatives $D_{A_{i-1, X}} \cdot$ and $D_{X A_{i+1}}$. respectively.

Then

$$
\begin{aligned}
D_{i} E(u, x) & =D_{i}\left[u(x)-\sum_{j} x_{j} u\left(A_{j}\right)\right] \\
& =D_{i} u(x)-\left[u\left(A_{i-1}\right)-u\left(A_{i+1}\right)\right]
\end{aligned}
$$

$$
=\frac{1}{2}\left[\int_{A_{i-1}}^{X} D_{i+1}^{T}\left(\S{ }_{i} T_{i} D_{i} u(\xi)\right) d \xi-\right.
$$

$$
\left.\int_{X}^{A_{i+1}} D_{i-1}^{T}\left(\xi_{i}^{T} D_{i} u(\xi)\right) d \S\right]-\int_{A_{i+1}}^{A_{i-1}} D_{i} u(\xi) d \xi
$$

$$
=\frac{1}{2} \int_{A_{i-1}}^{X} \S_{i}^{T_{i}} D_{i+1}^{T_{i}}\left(D_{i} u(\xi)\right) d \xi-\frac{1}{2} \int_{X}^{A_{i+1}}{ }_{\S}{ }_{i}{ }_{i} D_{i-1} T_{i}\left(D_{i} u(\xi)\right) d \xi-
$$

$$
\frac{1}{2}\left(\int_{A_{i+1}}^{A_{i-1}} D_{i} u(\xi) d \xi-\int_{A_{i-1}}^{X} D_{i} u(\xi) d \xi\right)+\frac{1}{2}\left(\int_{X}^{A_{i+1}} D_{i} u(\xi) d \xi-\right.
$$

$$
\left.\int_{A_{i+1}}^{A_{i-1}} D_{i} u(\xi) d \xi\right)
$$

$$
\begin{align*}
& =\frac{1}{2} \int_{A_{i-1}}^{X}{ }_{i}{ }_{i}^{T} D_{i+1}^{T}\left(D_{i} u(\xi)\right) d \xi-\frac{1}{2} \int_{X}^{A+1}{ }_{\S}{ }_{i} T_{i} D_{i-1} T_{i}\left(D_{i} u(\xi)\right) d \S- \\
& \frac{1}{4} \int_{T_{i}} D_{i-1}^{T}\left(D_{i} u(\S)\right) d \mu_{T_{i}}(\S)+\frac{1}{4} \int_{T_{i}} D_{i+1}^{T i}\left(D_{i} u(\S)\right) d \mu_{T_{i}}(\S) \tag{3.2.8}
\end{align*}
$$

From (1.7.7) we have

$$
\begin{equation*}
D_{i \pm 1}^{T_{i}}\left(D_{i} u(\S)\right)=x_{i} D_{i \pm 1, i} u(\xi)-x_{i \pm 1} D_{i, i} u(\S) \tag{3.2.9}
\end{equation*}
$$

substituting this into (3.2.8), we obtain

$$
\begin{aligned}
D_{i} E(u, x)= & \frac{1}{2} \int_{A_{i-1}}^{X}{ }_{\xi_{i}}^{T}\left(x_{i} D_{i+1, i} u(\xi)-x_{i+1} D_{i, i} u(\xi)\right) d \S- \\
& \frac{1}{2} \int_{X}^{A_{i+1} \xi_{i}} T_{i}\left(x_{i} D_{i-1, i} u(\xi)-x_{i-1} D_{i, i} u(\xi)\right) d \xi- \\
& \frac{1}{4} \int_{T_{i}}\left(x_{i} D_{i-1, i} u(\xi)-x_{i-1} D_{i, i} u(\xi)\right) d \mu_{T_{i}}(\xi)+ \\
& \frac{1}{4} \int_{T_{i}}\left(x_{i} D_{i+1, i}^{\left.u(\xi)-x_{i+1} D_{i, i} u(\xi)\right) d \mu_{T}(\xi)}\right.
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2} \int_{A_{i-1}}^{X}{ }_{\xi_{i}}^{T_{i}}\left(x_{i} D_{i+1, i} u(\xi)-x_{i+1} D_{i, i} u(\xi)\right) d \xi- \\
& \frac{1}{2} \int_{X}^{A_{i+1}}{ }_{\xi} T_{i}\left(x_{i} D_{i-1, i} u(\xi)-x_{i-1} D_{i, i} u(\xi)\right) d \xi+ \\
& \frac{1}{4} \int_{T_{i}}\left[x_{i}\left(D_{i+1, i} u(\xi)-D_{i-1, i} u(\xi)\right)-\left(x_{i+1}-x_{i-1}\right) D_{i, i} u(\xi)\right] d \mu_{T_{i}}(\xi)
\end{aligned}
$$

We have proved the part (a).

Since ${ }_{\S}{ }_{i}{ }_{i}$ vanishes on the side $A_{i+1} A_{i-1}$, it follows
from (3.2.8) that

$$
\begin{aligned}
& D_{i} E(u, x)=\frac{1}{2}\left[\int_{A_{i-1}}^{X}{ }_{\xi_{i}}^{T}{ }_{i} D_{i+1}^{T}\left(D_{i} u(\xi)\right) d \xi-\int_{A_{i+1}}^{A_{i-1}}{ }_{\xi}{ }_{i}{ }_{i} D_{i+1}^{T}\left(D_{i} u(\xi)\right) d \xi\right]- \\
& \frac{1}{2}\left[\int_{X}^{A+1}{ }_{\xi_{i}} T_{i} D_{i-1}^{T}\left(D_{i} u(\xi)\right) d \xi-\int_{A_{i+1}}^{A_{i-1}}{ }_{\S} T_{i} D_{i-1}^{T}\left(D_{i} u(\xi)\right) d \xi\right]+ \\
& \frac{1}{4} \int_{T_{i}}\left[D_{i+1}^{T}\left(D_{i} u(\xi)\right)-D_{i-1}^{T}\left(D_{i} u(\xi)\right)\right] d \mu_{T_{i}}(\xi) .
\end{aligned}
$$

If $u \in H^{3}(\Omega)$, then by Lemma 1.4.3, we get

$$
\begin{align*}
& D_{i} E(u, x)=-\frac{1}{4} \int_{T_{i}}{ }^{D_{i-1}}{ }_{i}^{T}\left[\xi_{i}{ }_{i} D_{i+1}{ }_{i}^{T}\left(D_{i} u(\xi)\right)\right] d \mu_{T_{i}}(\S)- \\
& \frac{1}{4} \int_{T_{i}} D_{i+1}^{T}\left[\S_{i}^{T} D_{i-1}^{T}\left(D_{i} u(\xi)\right)\right] d \mu_{T_{i}}(\S)+ \\
& \left.\left.\frac{1}{4} \int_{T_{i}}{ }^{\left[D_{i+1}\right.}{ }_{i} D_{i} u(\xi)\right)-D_{i-1}^{T_{i}}\left(D_{i} u(\xi)\right)\right] d \mu_{T_{i}}(\xi) \\
& =\frac{1}{2} \int_{T_{i}}\left[D_{i+1}^{T}\left(D_{i} u(\xi)\right)-D_{i-1}^{T}\left(D_{i} u(\xi)\right)-\xi_{i}{ }_{i}{ }_{D_{i-1}}^{T_{i}}\left(D_{i+1}^{T_{i}}\left(D_{i} u(\xi)\right)\right)\right] d \mu_{T_{i}}(\xi) \tag{3.2.10}
\end{align*}
$$

From (3.2.9), we have

$$
\begin{aligned}
D_{i-1}^{T}\left[D_{i+1}^{T}\left(D_{i} u(\xi)\right)\right]= & D_{i-1}^{T}\left(x_{i} D_{i+1, i} u(\S)-x_{i+1} D_{i, i} u(\xi)\right) \\
= & x_{i}^{2} D_{012} u(\xi)-x_{i} x_{i+1} D_{i-1, i, i} u(\S)-x_{i-1} x_{i} D_{i+1, i, i} u(\xi)+ \\
& x_{i-1} x_{i+1} D_{i, i, i} u(\S)
\end{aligned}
$$

substituting this into (3.2.10), we get

$$
\begin{gathered}
D_{i} E(u, x)=\frac{1}{2} \int_{T_{i}}\left[x_{i}\left(D_{i+1, i} u(\xi)-D_{i-1, i} u(\xi)\right)-\left(x_{i+1}-x_{i-1}\right) D_{i, i} u(\xi)-\right. \\
\quad \S_{i}^{T}\left(x_{i}^{2} D_{012} u(\xi)-x_{i} x_{i+1} D_{i-1, i, i} u(\xi)-x_{i-1} x_{i} D_{i+1, i, i} u(\xi)+\right. \\
\left.\left.\quad x_{i-1} x_{i+1} D_{i, i, i} u(\xi)\right)\right] d_{\mu} T_{i}(\xi)
\end{gathered}
$$

completing the proof.

Lemma 3.2.2 If $u \in H^{3}(\Omega)$ and u_{I} is a piecewise linear interpolation of u, then

$$
\begin{aligned}
\left\|D_{i}\left(u-u_{I}\right)^{6}\right\|_{L^{2}(T)} \leq & \left.\frac{1}{\sqrt{12}} d D_{i+1, i} u\left\|_{L^{2}(T)}+\right\| D_{i-1, i} u \|_{L^{2}(T)}\right)+ \\
& \frac{1}{\sqrt{240}}\left\|D_{012} u\right\|_{L^{2}(T)}+ \\
& \frac{1}{\sqrt{720}}\left(\left\|D_{i-1, i, i} u\right\|_{L^{2}(T)}+\left\|D_{i+1, i, i} u\right\|_{L^{2}(T)}\right)+ \\
& \frac{2}{\sqrt{6}}\left\|D_{i, i} u\right\|_{L^{2}(T)}+\frac{2}{\sqrt{90}}\left\|D_{i, i, i} u\right\|_{L^{2}(T)}
\end{aligned}
$$

Proof: From Lemma 3.2.1. we have

$$
\begin{align*}
D_{i}\left(u(X)-u_{I}(X)\right)= & \frac{1}{2} \int_{T} x_{T}(\xi)\left(D_{i+1, i} u(\xi)-D_{i-1, i} u(\S)-\xi_{i}{ }^{T}\left(x_{i} D_{012} u(\xi)-\right.\right. \\
& \left.\left.x_{i+1} D_{i-1, i, i} u(\S)-x_{i-1} D_{i+1, i, i} u(\xi)\right)\right) d \mu_{T}(\xi)- \\
& \frac{1}{2} \int_{T_{i}}\left[\left(x_{i+1}-x_{i-1}\right) D_{i, i} u(\xi)+\xi_{i}{ }_{i} x_{i-1} x_{i+1} D_{i, i, i} u(\xi)\right] d \mu_{T}(\xi \tag{§}
\end{align*}
$$

where X_{T} denotes the characteristic function of T_{i}.
By applying the triangle inequality and the Cauchy-Schwarz inequality to the above equation, we have

$$
\begin{aligned}
\left|D_{i}\left(u-u_{I}\right)\right| \leq & \frac{1}{2} x_{i}^{\frac{1}{2}}\left(\left\|D_{i+1, i} u\right\|_{L^{2}(T)}+\left\|D_{i-1, i} u\right\|_{L^{2}(T)}+\right. \\
& \frac{x_{i}}{\sqrt{6}}\left\|D_{012} u\right\|_{L^{2}(T)}+\frac{x_{i+1}}{\sqrt{6}}\left\|D_{i-1, i, i} u\right\|_{L^{2}(T)}+ \\
& \left.\frac{x_{i-1}}{\sqrt{6}}\left\|D_{i+1, i, i} u\right\|_{L^{2}(T)}\right)+\frac{1}{2}\left|x_{i+1}-x_{i-1}\right|\left\|D_{i, i} u\right\|_{L^{1}\left(T_{i}\right)}+ \\
& \frac{1}{2} x_{i-1} x_{i+1}\left\|D_{i, i, i} u\right\|_{L^{1}\left(T_{i}\right)}
\end{aligned}
$$

by taking the L^{2} norm of $D_{i}\left(u-u_{I}\right)$ over the triangle T, together with the application of the triangle inequality and the Cauchy-Schwarz inequality, we obtain

$$
\begin{aligned}
\left\|D_{i}\left(u-u_{I}\right)\right\|_{L^{2}(T)} \leq & \frac{1}{\sqrt{12}}\left(\left\|D_{i+1, i} u\right\|_{L^{2}(T)}+\left\|D_{i-1, i} u\right\|_{L^{2}(T)}\right)+ \\
& \frac{1}{\sqrt{240}}\left\|D_{012} u\right\|_{L^{2}(T)}+\frac{1}{\sqrt{720}}\left(\left\|D_{i-1, i, i} u\right\|_{L^{2}(T)}+\right. \\
& \left.\left\|D_{i+1, i, i} u\right\|_{L^{2}(T)}\right)+\frac{1}{\sqrt{24}}\| \| D_{i, i} u\left\|_{L^{1}\left(T_{i}\right)}\right\| L^{2}(T)+ \\
& \frac{1}{\sqrt{360}}\left\|\left\|D_{i, i, i} u\right\|_{L^{1}\left(T_{i}\right)}\right\| L^{2}(T)
\end{aligned}
$$

applying the Generalized Hardy inequality to the norm $\left\|\|\cdot\|_{L^{1}\left(T_{i}\right)}\right\|_{L^{2}(T)}$, we have

$$
\begin{aligned}
\left\|D_{i}\left(u-u_{I}\right)\right\|_{L^{2}(T)} \leq & \frac{1}{\sqrt{12}}\left(\left\|D_{i+1, i} u\right\|_{L^{2}(T)}+\left\|D_{i-1, i} u\right\|_{L^{2}(T)}\right)+ \\
& \frac{1}{\sqrt{240}}\left\|D_{012} u\right\|_{L^{2}(T)}+\frac{1}{\sqrt{720}}\left(\left\|D_{i-1, i, i} u\right\|_{L^{2}(T)}+\right. \\
& \left.\left\|D_{i+1, i, i} u\right\|_{L^{2}(T)}\right)+\frac{2}{\sqrt{6}}\left\|D_{i, i} u\right\|_{L^{2}(T)}+ \\
& \frac{2}{\sqrt{90}}\left\|D_{i, i, i} u\right\|_{L^{2}(T)} .
\end{aligned}
$$

completing the proof.

Proof of Theorem 3.2.2.

$$
\begin{align*}
\left\|u-u_{I}\right\|_{\Delta}^{2} & =\sum_{T \in \tau} \mu_{\Omega}(T) \int_{T} \frac{2}{3 h^{2}} \sum_{i}\left[D_{i}\left(u-u_{I}\right)\right]^{2} d \mu_{T} \\
& =\sum_{T \in T} \frac{2 \mu_{\Omega}(T)}{3 h^{2}} \sum_{i}\left\|D_{i}\left(u-u_{I}\right)\right\|_{L^{2}(T)}^{2} \tag{3.2.12}
\end{align*}
$$

By applying the Cauchy-Schwarz inequality to the right hand side of the inequality (3.2.11), we get

$$
\begin{aligned}
\left\|D_{i}\left(u-u_{I}\right)\right\|_{L^{2}(T)} \leq & \left(\frac{1}{6}+\frac{1}{6}+\frac{1}{80}+\frac{1}{720}+\frac{1}{720}+\frac{4}{6}+\frac{4}{90}\right)^{\frac{1}{2}}\left(\frac{1}{2}\left\|D_{i+1} u\right\|_{L^{2}(T)}^{2}+\right. \\
& \frac{1}{2}\left\|D_{i-1} u\right\|_{L^{2}(T)}^{2}+\left\|D_{i, i} u\right\|_{L^{2}(T)}^{2}+\frac{1}{3}\left\|D_{012} u\right\|_{L^{2}(T)}^{2}+ \\
& \left\|D_{i+1, i, i} u\right\|_{L^{2}(T)}^{2}+\left\|D_{i-1, i, i} u\right\|_{L^{2}(T)}^{2}+ \\
& \left.\left\|D_{i, i, i} u\right\|_{L^{2}(T)}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

It follows that

$$
\begin{gathered}
\sum_{i}\left\|D_{i}\left(u-u_{I}\right)\right\|_{L^{2}(T)}^{2} \leq \frac{763}{720}\left\{\left\|D_{01} u\right\|_{L^{2}(T)}^{2}+\left\|D_{12} u\right\|_{L^{2}(T)}^{2}+\left\|D_{20} u\right\|_{L^{2}(T)}^{2}+\right. \\
\left\|D_{00} u\right\|_{L^{2}(T)}^{2}+\left\|D_{11} u\right\|_{L^{2}(T)}^{2}+\left\|D_{22} u\right\|_{L^{2}(T)}^{2}+ \\
\left\|D_{012} u\right\|_{L^{2}(T)}^{2}+\sum_{i}\left(\left\|D_{i+1, i, i} u\right\|_{L^{2}(T)}^{2}+\right. \\
\left.\left.\left\|D_{i-1, i, i} u\right\|_{L^{2}(T)}^{2}+\left\|D_{i, i, i} u\right\|_{L^{2}(T)}^{2}\right)\right\} \\
\leq \frac{763}{720} h^{4}\left(|u|_{2, T}^{2}+h^{2}|u|_{3, T}^{2}\right) \\
\leq \frac{763}{720} h^{4}\|u\|_{3, T}^{2} \quad \text { for sufficiently small } h(|h| \leq 1)
\end{gathered}
$$

Substituting this into (3.2.12), we have

$$
\left\|u-u_{I}\right\|_{\Delta} \leq\left(\frac{763}{1080}\right)^{\frac{1}{2}} h\left(\sum_{T \in T} \mu_{\Omega}(T)\|u\|_{3, T}^{2}\right)^{\frac{1}{2}}=\left(\frac{763}{1080}\right)^{\frac{1}{2}} h\|u\|_{3, \Omega}
$$

completing the proof.

3.3 ERROR BOUNDS OF THE RITZ APPROXIMATION

As we have discussed in Section 2.3, the energy norm $\|u\|_{a}=\left(\int_{\Omega}\left(p \nabla u \cdot \nabla u+q u^{2}\right) d \mu_{\Omega}\right)^{\frac{1}{2}}$ is equivalent to the Sobolev norm $\|u\|_{1, \Omega}$, and provides a means of measuring how close the Ritz approximation u^{h} is to the true solution u.

The following Theorem [S4,p.39] is fundamental to the Ritz theorey.

Theorem 3.3.1. [S3] If the function u minimizes $I(v)$ over the admissible space H_{g} and $S_{g}=S_{0}+g$ is a closed affine subspace of H_{g}, then
(a) $a\left(u-u^{h}, u-u^{h}\right)=\min _{v^{h} \in S_{g}} a\left(u-v^{h}, u-v^{h}\right)$
(b) $a\left(u-u^{h}, v^{h}\right)=0 \quad$ for all $v^{h} \in S_{0}$
(c) $a\left(u^{h}, v^{h}\right)=\left(f, v^{h}\right) \quad$ for all $v^{h} \in S_{0}$

In particular, if $S_{g}=H_{g}$, then

$$
\begin{equation*}
\cdot a(u, v)=(f, v) \quad \text { for all } v \in H_{0} \tag{3.3.4}
\end{equation*}
$$

Corollary 3.3.1. [S3] It follows from (3.3.2) that $a\left(u-u^{h}, u^{h}-g\right)=0$ and $a\left(u-u^{h}, u-u^{h}\right)=a(u-g, u-g)-a\left(u^{h}-g, u^{h}-g\right)$. Furthermore, since $a\left(u-u^{h}, u-u^{h}\right) \geq 0$, the strain energy in $u^{h}-g$ always underestimates the strain energy in $u-g$, that is $a\left(u^{h}-g, u^{h}-g\right) \leq a(u-g, u-g)$.

Corollary 3.3.2. Let u_{I} be an interpolant of u in S_{g}, then

$$
\begin{equation*}
a\left(u-u^{h}, u-u^{h}\right) \leq a\left(u-u_{I}, u-u_{I}\right) \tag{3.3.5}
\end{equation*}
$$

In fact $a\left(u-u^{h}, u-u^{h}\right)+a\left(u^{h}-u_{I}, u^{h}-u_{I}\right)=a\left(u-u_{I}, u-u_{I}\right)$

Proof: Inequality (3.3.5) follows directly from equation (3.3.1).

$$
\begin{aligned}
a\left(u-u_{I}, u-u_{I}\right) & =a\left(u-u^{h}+u^{h}-u_{I}, u-u^{h}+u^{h}-u_{I}\right) \\
& =a\left(u-u^{h}, u-u^{h}\right)+2 a\left(u-u^{h}, u^{h}-u_{I}\right)+a\left(u^{h}-u_{I}, u^{h}-u_{I}\right)
\end{aligned}
$$

since $u^{h}-u_{I} \in S_{0}$, from (3.3.2), we have

$$
a\left(u-u^{h}, u^{h}-u_{I}\right)=0
$$

which implies

$$
a\left(u-u^{h}, u-u^{h}\right)+a\left(u^{h}-u_{I}, u^{h}-u_{I}\right)=a\left(u-u_{I}, u-u_{I}\right)
$$

completing the proof.

To obtain an error bound for the energy norm $\left\|u-u^{h}\right\|_{a}$, we have the following Theorem :

Theorem 3.3.2. If $u \in H^{3}(\Omega)$ and u_{I} is a piecewise linear interpolant to u in $S^{1,0}$, then

$$
\left\|u-u^{h}\right\|_{a} \leq h \max \left[\left(\frac{763}{1080}\right)^{\frac{1}{2}}\|p\|_{\infty}^{\frac{1}{2}}, \frac{h\|q\|_{\infty}^{\frac{1}{2}}}{\sqrt{17.5}}\right\}\|u\|_{3, \Omega}
$$

Proof:

$$
\begin{align*}
\left\|u-u_{I}\right\|_{a} & =\left\{\int_{\Omega}\left[p \nabla\left(u-u_{I}\right) \cdot \nabla\left(u-u_{I}\right)+q\left(u-u_{I}\right)^{2}\right] d \mu_{\Omega}\right\}^{\frac{1}{2}} \\
& \leq\left[\|p\|_{\infty} \int_{\Omega} \nabla\left(u-u_{I}\right) \cdot \nabla\left(u-u_{I}\right) d \mu_{\Omega}+\|q\|_{\infty}\left\|u-u_{I}\right\|_{L^{2}(\Omega)}^{2}\right]^{\frac{1}{2}} \\
& \leq\|p\|_{\infty}^{\frac{1}{2}}\left\|u-u_{I}\right\|_{\Delta}+\|q\|_{\infty}^{\frac{1}{2}}\left\|u-u_{I}\right\|_{L^{2}(\Omega)} \tag{3.3.8}
\end{align*}
$$

The inequality (3.3.8) followed from the fact that

$$
\left(a^{2}+b^{2}\right)^{\frac{1}{2}} \leq a+b \quad \text { if } a, b \geq 0
$$

From Theorem 3.2.1. and Theorem 3.2.2. we have

$$
\begin{aligned}
\left\|u-u_{I}\right\|_{a} & \leq\left(\frac{763}{1080}\right)^{\frac{1}{2}}\|p\|_{\infty}^{\frac{1}{2}} h\|u\|_{3, \Omega}+\frac{\|q\|_{\infty}^{\frac{1}{2}} h^{2}}{\sqrt{17.5}}|u|_{2, \Omega} \\
& \leq h \max \left\{\left(\frac{763}{1080}\right)^{\frac{1}{2}}\|p\|_{\infty}^{\frac{1}{2}}, \frac{h\|q\|_{\infty}^{\frac{1}{2}}}{\sqrt{17.5}}\right\}\|u\|_{3, \Omega}
\end{aligned}
$$

The result of the Theorem follows from Corollary 3.3.2.

It follows from Theorem 3.3.2. that the Ritz-Galerkin solution to the problem $L u=f$ with linear element has a rate of convergence of order h in the energy norm.

3.4 QUADRATURE ERRORS AND THEIR EFFECT ON THE NUMERICAL SOLUTION

 OF BOUNDARY VALUE PROBLEMSIn this section, we shall derive the Peano-Sard kernel of the 1-point and 7-point numerical quadratures of the integral $\int_{\Omega} f \phi_{\alpha} d \mu_{\Omega}$ and obtain an error bounds for these two numerical quadratures. The effect of the quadrature errors to the solution of the boundary value problems is also discussed in this section.

For simplicity, we denote by X_{0} the centre X_{α} of the hexagon $X_{\alpha}+H$ and by $X_{j}, j=1, \ldots 6$ the six vertices of $X_{\alpha}+H$.

Ta get an estimate for the 1 -point numerical quadrature error, we have the following Theorem.

Theorem 3.4.1. If $f \in H^{2}(\Omega)$ and $\tilde{F}_{\alpha}(f)=2 \mu_{\Omega}(T) f\left(X_{\alpha}\right)$, then

$$
\begin{equation*}
\left(\sum_{\alpha \in P_{h}^{\beta}}\left|E\left(f, X_{\alpha}\right)\right|^{2}\right)^{\frac{1}{2}} \leq\left(\frac{23}{560} \mu_{\Omega}(T)\right)^{\frac{1}{2}} h^{2}|f|_{2, \Omega} \tag{3.4.1}
\end{equation*}
$$

To prove the Theorem, we need the following two auxillary lemmas.

Lemma 3.4.1. If $f \in H^{2}(\Omega)$ and $P\left(\xi_{0}\right)$ is a real valued function of ξ_{0} defined on each of the triangular elements $T_{j}=X_{0} X_{j} X_{j+1}$, then

$$
\sum_{j=1}^{6} \int_{X_{j}}^{X_{0}} P\left(\xi_{0}\right) D_{x_{j} x_{0}} f d x=-\sum_{j=1}^{6} \int_{T_{j}} \frac{1}{2} P\left(\xi_{0}\right) D_{00} f d \mu_{j}
$$

Proof:

We observe that along the side $X_{j} X_{0}, D_{X_{j}} X_{0} f$ can be decomposed into the sum of the two derivatives $D_{0} f$ and $D_{1} f$. Thus, we have

$$
\sum_{j=1}^{6} \int_{X_{j}}^{X_{0}} P\left(\xi_{0}\right) D_{X_{j}} X_{0} f d X=\sum_{j=1}^{6}\left[\int_{X_{0}}^{X} P\left(\xi_{0}\right) D_{0} f d X+\int_{X_{0}}^{X} P\left(\xi_{0}\right) D_{1} f d X\right]
$$

since the derivative $D_{1} f$ w.r.t. T_{j} along the side $X_{j} X_{0}$ is the same as the derivative $-D_{0} f$ w.r.t. T_{j-1}, we have

$$
\begin{aligned}
\sum_{j=1}^{6} \int_{X_{j}}^{X_{0}} P\left(\xi_{0}\right) D_{X_{j} X_{0}} f d x & =-\sum_{j=1}^{6}\left[\int_{X_{j+1}}^{X_{0}} P\left(\xi_{0}\right) D_{0} f d x-\int_{X_{0}}^{X_{j}} P\left(\xi_{0}\right) D_{0} f d X\right] \\
& =-\sum_{j=1}^{6} \int_{T_{j}} \frac{1}{2} P\left(\xi_{0}\right) D_{00} f d \mu_{j}
\end{aligned}
$$

completing the proof.

Lemma 3.4.2. If $f \in H^{2}(\Omega)$, then the error of the 1 -point numerical quadrature has a representation of the form :

$$
\begin{align*}
E\left(f, X_{\alpha}\right) & =\int_{\Omega} f \phi_{\alpha} d \mu_{\Omega}-2 h^{2} f\left(X_{\alpha}\right) \\
& =\sum_{j=1}^{6} \mu_{\Omega}(T) \int_{T_{j}}\left(\frac{\xi_{0}^{2}}{2}-\frac{\xi_{0}^{3}}{3}-\frac{\xi_{0} \xi_{1} \xi_{2}}{2}\right) D_{00} f d \mu_{T_{j}} \tag{3.4.2}
\end{align*}
$$

Proof :

$$
\begin{aligned}
E\left(f, x_{\alpha}\right) & =\int_{\Omega} f \phi_{\alpha} d \mu_{\Omega}-2 h^{2} f\left(x_{\alpha}\right) \\
& =\sum_{j=1}^{6} \mu_{\Omega}(T)\left[\int_{T_{j}} f \xi_{0} d \mu_{T_{j}}-\int_{T_{j}} f\left(x_{0}\right) \xi_{0} d \mu_{T_{j}}\right] \\
& =\sum_{j=1}^{6} \mu_{\Omega}(T) \int_{T_{j}}\left[f-f\left(x_{0}\right)\right] \xi_{0} d \mu_{T} \\
& =\sum_{j=1}^{6} \mu_{\Omega}(T) \int_{T_{j}}\left[f-f\left(x_{0}\right)\right]\left[D_{0} \frac{\xi_{0}}{2}\left(\xi_{2}-\xi_{1}\right)\right] d \mu_{T_{j}}
\end{aligned}
$$

It follows from Lemma 1.4.4 and the fact ξ_{1} and ξ_{2} vanish on $X_{j+1} X_{0}$ and $X_{0} X_{j}$ respectively that

$$
\begin{aligned}
& E\left(f, X_{\alpha}\right)=\sum_{j=1}^{6} \mu_{\Omega}(T)\left[\int_{X_{j+1}}^{X_{0}} \xi_{0}\left(1-\xi_{0}\right)\left(f-f\left(X_{0}\right)\right) d X+\right. \\
& \left.\int_{X_{0}}^{X} j_{\xi_{0}}\left(1-\xi_{0}\right)\left(f-f\left(X_{0}\right)\right) d x+\int_{T_{j}} D_{0}\left(\frac{1}{2} \xi_{0} \xi_{1} \xi_{2}\right) D_{0} f d \mu_{j}\right] \\
& =\sum_{j=1}^{6} \mu_{\Omega}(T)\left[2 \int_{X_{j+1}}^{X_{0}} \xi_{0}\left(1-\xi_{0}\right)\left(f-f\left(X_{0}\right)\right) d x+\int_{X_{j+1}}^{X_{0}} \xi_{0} \xi_{1} \xi_{2} D_{0} f d x-\right. \\
& \int_{X_{0}}^{X} \xi_{\xi_{0} \xi_{1} \xi_{2} D_{0} f d X-\int_{T}}^{\left.\frac{1}{2} \xi_{0} \xi_{1} \xi_{2} D_{00} f d \mu_{T}\right]} \\
& =\sum_{j=1}^{6} \mu_{\Omega}(T)\left[\left.2\left(\frac{\xi_{0}^{2}}{2}-\frac{\xi_{0}^{3}}{3}\right)\left(f-f\left(x_{0}\right)\right)\right|_{x_{j}} ^{x_{0}}-2 \int_{x_{j}}^{x_{0}}\left(\frac{\xi_{0}^{2}}{2}-\frac{\xi_{0}^{3}}{3}\right) D_{x_{j}} x_{0} f d x-\right. \\
& \int_{\mathrm{T}}^{\mathrm{j}} \frac{1}{2} \xi_{0} \xi_{1} \xi_{2} \mathrm{D}_{0}{ }_{0} \mathrm{fd} \mu_{\mathrm{T}}^{\mathrm{j}}{ }^{]} \\
& =-\mu_{\Omega}(T) \sum_{j=1}^{6}\left[\int_{X_{j}}^{X_{0}}\left(\xi_{0}^{2}-\frac{2}{3} \xi_{0}^{3}\right) D_{x_{j}} x_{0} f d x+\int_{T_{j}} \frac{1}{2} \xi_{0} \xi_{1} \xi_{2} D_{00} f d \mu_{T_{j}}\right]
\end{aligned}
$$

It follows from Lemma 3.4.1, that
$E\left(f, X_{\alpha}\right)=\sum_{j=1}^{6} \mu_{\Omega}(T) \int_{T_{j}}\left(\frac{\xi_{0}^{2}}{2}-\frac{\xi_{0}^{3}}{3}-\frac{1}{2} \xi_{0} \xi_{1} \xi_{2}\right) D_{00} f d \mu_{T_{j}}$
completing the proof.

Proof of Theorem 3.4.1.
Application of the triangle inequality and the Cauchy-Schwarz inequality to equation (3.4.2), we get

$$
\begin{aligned}
\left|E\left(f, x_{\alpha}\right)\right| & \leq \sum_{j=1}^{6} \mu_{\Omega}(T)\left[\int_{T_{j}}\left(\frac{1}{2} \xi_{0}^{2}-\frac{1}{3} \xi_{0}^{3}-\frac{1}{2} \xi_{0} \xi_{1} \xi_{2}\right)^{2} d \mu_{T_{j}}\right]^{\frac{1}{2}}\left\|D_{00} f\right\|_{L^{2}\left(T_{j}\right)} \\
& =\left(\frac{23}{3360}\right)^{\frac{1}{2}} \mu_{\Omega}(T) \sum_{j=1}^{6}\left\|D_{00} f\right\|_{L^{2}\left(T_{j}\right)}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \left.\sum_{\substack{\mathrm{o} \\
\alpha \in \Gamma_{\alpha}}}\left|E\left(f, X_{\alpha}\right)\right|^{2} \leq \frac{23}{3360} \mu_{\Omega}(T) \sum_{\alpha \in \dot{\Gamma}_{h}} \mu_{\Omega}(T)\left[\sum_{j=1}^{6}\left\|D_{00} f\right\|_{L^{2}\left(T_{j}\right)}\right)\right]^{2} \\
& \leq \frac{23}{560} \mu_{\Omega}(T) \sum_{\alpha \in{ }_{\mathrm{\Gamma}}^{\mathrm{\Gamma}}}\left[\mu_{\Omega}(T) \sum_{j=1}^{6}\left\|D_{00} f\right\|_{L^{2}\left(T_{j}\right)}\right]
\end{aligned}
$$

We observe that for each $T=X_{0} X_{1} X_{2} \in \tau^{h}$ and each i, the term $\left\|D_{i, i} f\right\|_{L^{2}\left(T_{j}\right)}^{2}$ appears in the right hand side of the above inequality at most once, thus we have

$$
\begin{aligned}
\left(\sum_{\alpha \in \stackrel{o}{\Gamma}_{\alpha}}\left|E\left(f, X_{\alpha}\right)\right|^{2}\right)^{\frac{1}{2}} & \leq\left[\frac{23}{560} \mu_{\Omega}(T)\right]^{\frac{1}{2}}\left(\sum_{T \in \tau} \mu_{\Omega}(T) \sum_{i=1}^{3}\left\|D_{i, i} f\right\|_{L^{2}(T)}\right)^{\frac{1}{2}} \\
& \leq\left[\frac{23}{560} \mu_{\Omega}(T)\right]^{\frac{1}{2}} h^{2}|f|_{2, \Omega}
\end{aligned}
$$

completing the proof.

To obtain an estimate for the 7 -point numerical quadrature error, we have the following Theorem.

Theorem 3.4.2. If $f \in H^{4}(\Omega)$ and \tilde{F}_{α} is the 7-point numerical quadrature of F_{α}, then

$$
\begin{equation*}
\left(\sum_{\alpha \in{ }^{\circ}}\left|E\left(f, X_{\alpha}\right)\right|^{2}\right)^{\frac{1}{2}} \leq 0.07208\left(\mu_{\Omega}(T)\right)^{\frac{1}{2}} h^{4}|f|_{4, \Omega}^{2} \tag{3.4.3}
\end{equation*}
$$

To prove the theorem, we need the following auxiliary

lemmas.

Lemma 3.4.3. If $f \in H^{4}(\Omega)$ and $P\left(\xi_{0}\right)$ is a real valued function of ξ_{0} defined on each of the triangular element $T_{j}=X_{0} X_{j} X_{j+1}$, then,

$$
\begin{align*}
& \sum_{j=1}^{6}\left[\int_{X_{0}}^{X_{j}} P\left(\xi_{0}\right) D_{200} f d x-\int_{X_{j+1}}^{X_{0}} P\left(\xi_{0}\right) D_{100} f d X\right] \\
& =\sum_{j=1}^{6} \int_{T} \frac{1}{2} P\left(\xi_{0}\right)\left(D_{0000} f-\frac{1}{2} D_{0012} f\right) d \mu_{T} \tag{3.4.4}
\end{align*}
$$

Proof :

$$
\begin{aligned}
& \sum_{j=1}^{6}\left[\int_{X_{0}}^{X_{j}} P\left(\xi_{0}\right) D_{200} f d X-\int_{X_{j+1}}^{X_{0}} P\left(\xi_{0}\right) D_{100} f d X\right] \\
& =\sum_{j=1}^{6}\left[\int_{X_{0}}^{X_{j}} P\left(\xi_{0}\right)\left(-D_{000} f-D_{100} f\right) d x-\int_{X_{j+1}}^{X_{0}} P\left(\xi_{0}\right)\left(-D_{000} f-D_{200} f\right) d X\right]
\end{aligned}
$$

$=\sum_{j=1}^{6}\left[\int_{X_{j+1}}^{X_{0}} P\left(\xi_{0}\right) D_{000} f d x-\int_{X_{0}}^{X} P\left(\xi_{0}\right) D_{000} f d x+\right.$

$$
\left.\int_{X_{j+1}}^{X_{0}} \dot{P}\left(. \xi_{0}\right) D_{200} f d X-\int_{X_{0}}^{X_{j}}\left(\xi_{0}\right) D_{100} f d X\right]
$$

$$
=\sum_{j=1}^{6}\left[\int_{T_{j}} \frac{1}{2} P\left(\xi_{0}\right) D_{0000} f d \mu_{T_{j}}+\int_{X_{j+1}}^{X} P\left(\xi_{0}\right) D_{200} f d X-\int_{X_{0}}^{X} P\left(\xi_{0}\right) D_{100} f d X\right]
$$

Fig. 3.4.1

As shown in Fig. 3.4.1, the derivative $-D_{100} f$ along $X_{j} X_{0}$ w.r.t. T_{j} is the same as $D_{220} f$ w.r.t. T_{j-1}, and $D_{200} f$ along $X_{j+1} X_{0}$ w.r.t. T_{j} is the same as $-D_{110} f$ w.r.t. T_{j+1}. Thus, these derivatives can be divided into two equal parts, half of them will be added to the line integral of the adjacent triangle. It follows that

$$
\begin{aligned}
& \sum_{j=1}^{6}\left[\int_{X_{0}}^{X_{j}} P\left(\xi_{0}\right) D_{200} f d X-\int_{X_{j+1}}^{X_{0}} P\left(\xi_{0}\right) D_{100} f d X\right] \\
& =\sum_{j=1}^{6}\left[\int_{T} \frac{1}{2} P\left(\xi_{0}\right) D_{0000} f d \mu_{T_{j}}+\int_{X_{j+1}}^{X_{0}} \frac{1}{2} P\left(\xi_{0}\right)\left(D_{200} f+D_{220} f\right) d x-\right. \\
& \left.\quad \int_{X_{0}}^{X} \frac{1}{2} P\left(\xi_{0}\right)\left(D_{100} f+D_{110} f\right) d X\right] \\
& =\sum_{j=1}^{6}\left[\int_{T} \frac{1}{2} P\left(\xi_{0}\right) D_{0000} f d \mu_{j}-\int_{X_{j+1}}^{X_{0}} \frac{1}{2} P\left(\xi_{0}\right) D_{210} f d X+\int_{X_{0}}^{X_{j}} \frac{1}{2} P\left(\xi_{0}\right) D_{120} f d X\right] \\
& = \\
& j=\int_{j=1}^{6} \int_{j}\left[\frac{1}{2} P\left(\xi_{0}\right) D_{0000} f-\frac{1}{4} P\left(\xi_{0}\right) D_{0012} f\right] d \mu_{T} \\
& \text { completing the proof. }
\end{aligned}
$$

Lemma 3.4.4. If $f \in H^{4}(\Omega)$, then the error functional of the
7-point numerical quadrature has a representation of the form

$$
\begin{align*}
E\left(f, X_{\alpha}\right)= & \int_{\Omega} f \phi_{\alpha} d \mu_{\Omega}-\mu_{\Omega}(T)\left[\frac{3}{2} f\left(X_{0}\right)+\frac{1}{12} \sum_{j=1}^{6} f\left(X_{j}\right)\right] \\
= & \frac{1}{24} \mu_{\Omega}(T) \sum_{j=1}^{6} \int_{T_{j}}\left\{\left[\left(\frac{1}{2}+\xi_{0}-8 \xi_{0}^{2}+5 \xi_{0}^{3}+\xi_{0} \xi_{1} \xi_{2}\right) \xi_{1} \xi_{2}-\frac{\xi_{0}}{2}-\frac{\xi_{0}^{2}}{4}+\right.\right. \\
& \left.3 \xi_{0}^{3}-\frac{13}{4} \xi_{0}^{4}+\xi_{0}^{5}\right] D_{0000} f+\frac{1}{2}\left(\frac{\left.\left.\xi_{0}, \frac{\xi_{0}}{2}-3 \xi_{0}^{3}+\frac{13}{4} \xi_{0}^{4}-\xi_{0}^{5}\right) D_{0012} f\right\} d \mu_{T_{j}}}{}\right. \tag{3.4.5}
\end{align*}
$$

Proof: We shall only give a brief proof for this lemma.

$$
\begin{aligned}
E\left(f, x_{\alpha}\right) & =\left[\int_{\Omega} f \phi_{\alpha} d \mu_{\Omega}-2 h^{2} f\left(X_{\alpha}\right)\right]+\frac{\mu_{\Omega}(T)}{12} \sum_{j=1}^{6}\left[f\left(x_{0}\right)-f\left(X_{j}\right)\right] \\
& =\left[\int_{\Omega} f \phi_{\alpha} d \mu_{\Omega}-2 h^{2} f\left(x_{\alpha}\right)\right]+\frac{1}{12} \mu_{\Omega}(T) \sum_{j=1}^{6} \int_{X_{j}}^{X_{0}} D_{X_{j}} x_{0} f d x
\end{aligned}
$$

It follows from Lemma 3.4.2 and Lemma 3.4.1 that

$$
E\left(f, x_{\alpha}\right)=\sum_{j=1}^{6} \frac{\mu_{\Omega}(T)}{24} \int_{T_{j}}\left(-1+12 \xi_{0}^{2}-8 \xi_{0}^{3}-12 \xi_{0} \xi_{1} \xi_{2}\right) D_{00} f d \mu_{j}
$$

It is not hard to get into the following step:

$$
\begin{aligned}
& E\left(f, x_{\alpha}\right)=\frac{\mu_{\Omega}(T)}{24} \sum_{j=1}^{6}\left[\int_{X_{j+1}}^{x_{0}}\left(-1-2 \xi_{0}+16 \xi_{0}^{2}-10 \xi_{0}^{3}\right) \xi_{2} D_{00} f d x+\right. \\
& \int_{X_{0}}^{X_{j}}\left(-1-2 \xi_{0}+16 \xi_{0}^{2}-10 \xi_{0}^{3}\right) \xi_{1} D_{00} f d x- \\
& \int_{T_{j}} \frac{1}{2}\left(-1-2 \xi_{0}+16 \xi_{0}^{2}-10 \xi_{0}^{3}\right)\left(\xi_{2}-\xi_{1}\right) D_{000} f d \mu_{T_{j}}- \\
& \int_{T_{j}}^{\left.D_{0}\left(\xi_{0} \xi_{I}^{2} \xi_{2}^{2}\right) D_{000} f d \mu_{T}\right]}
\end{aligned}
$$

after further evaluation, we have

$$
\begin{aligned}
E\left(f, X_{\alpha}\right)= & \frac{\mu_{\Omega}(T)}{24} \sum_{j=1}^{6}\left[\int_{X_{0}}^{X_{j}}\left(-\xi_{0}-\frac{\xi_{0}^{2}}{2}+6 \xi_{0}^{3}-\frac{13}{2} \xi_{0}^{4}+2 \xi_{0}^{5}\right) D_{200} f d X-\right. \\
& \int_{X_{j+1}}^{X_{0}}\left(-\xi_{0}-\frac{\xi_{0}^{2}}{2}+6 \xi_{0}^{3}-\frac{13}{2} \xi_{0}^{4}+2 \xi_{0}^{5}\right) D_{100} f d X+ \\
& \int_{T_{j}}\left(\frac{1}{2}+\xi_{0}-8 \xi_{0}^{2}+5 \xi_{0}^{3}+\xi_{0} \xi_{1} \xi_{2}\right) \xi_{1} \xi_{2} D_{0000} f d \mu_{T_{j}}
\end{aligned}
$$

Applying the Lemma 3.4.3, the result of Lemma 3.4.4 follows.

Proof of Theorem 3.4.2:
Applying the triangle inequality and the Cauchy-Schwarz
inequality to equation (3.4.5), we get

$$
\left|E\left(f, X_{\alpha}\right)\right| \leq \frac{\mu_{\Omega}(T)}{24} \sum_{j=1}^{6}\left(k_{0}\left\|D_{0000} f\right\|_{L^{2}\left(T_{j}\right)}+k_{1}\left\|D_{0012} f\right\|_{L^{2}\left(T_{j}\right)}\right)
$$

where $k_{0}=0.08495$ and $k_{1}=0.04297$
Applying the Cauchy-Schwarz inequality to the above inequality, we get

$$
\left|E\left(f, X_{\alpha}\right)\right| \leq \frac{\mu_{\Omega}(T)}{24}\left(6 k_{0}^{2}+6 k_{1}^{2}\right)^{\frac{1}{2}}\left\{\sum_{j=1}^{6}\left(\left\|D_{0000} f\right\|_{L^{2}\left(T_{j}\right)}^{2}+\left\|D_{0012} f\right\|_{L^{2}\left(T_{j}\right)}^{2}\right)\right\}^{\frac{1}{2}}
$$

It follows that

$$
\begin{align*}
\left(\sum_{\alpha \in \Gamma_{h}}\left|E\left(f, X_{\alpha}\right)\right|^{2}\right)^{\frac{1}{2}} \leq & 0.07208\left(\mu_{\Omega}(T)\right)^{\frac{1}{2}}\left\{\sum _ { \alpha \in \Gamma _ { h } } \mu _ { \Omega } (T) \sum _ { j = 1 } ^ { 6 } \left(\left\|D_{0000} f\right\|_{L^{2}\left(T_{j}\right)}^{2}+\right.\right. \\
& \left.\left\|D_{0012} f\right\|_{L^{2}\left(T_{j}\right)}^{2}\right\}^{\frac{1}{2}} \tag{3.4.6}
\end{align*}
$$

for each $T \in \tau^{h}$, since the terms $\left\|D_{0000} f\right\|_{L^{2}\left(T_{j}\right)}$ and $\left\|D_{0012} f\right\|_{L^{2}\left(T_{j}\right)}^{2}$ appear in the right hand side of the inequality (3.4.6) at most once, thus, we have

$$
\begin{gathered}
\left(\sum_{\alpha \in \Gamma_{h}} \left\lvert\, E\left(f,\left.X_{\alpha}\right|^{2}\right)^{\frac{1}{2}} \leq 0.07208\left(\mu_{\Omega}(T)\right)^{\frac{1}{2}}\left(\sum_{T \in T^{h}} \mu_{\Omega}(T) \sum_{|\beta|=4}\left\|D^{\beta} f\right\|_{L^{2}(T)}^{2}\right)^{\frac{1}{2}}\right.\right. \\
=0.07208\left(\mu_{\Omega}(T)\right)^{\frac{1}{2}} h^{4}|f|_{4, \Omega}
\end{gathered}
$$

completing the proof.

We know from Section 2.5 that the Ritz-Galerkin solution to the linear operator $L u=-\nabla \cdot(p \nabla u)+q u=f$ turns out to solve the following system of linear equations:

$$
\int_{\Omega}\left(\mathrm{p} \nabla \mathrm{u}^{\mathrm{h}} \cdot \nabla \phi_{\alpha}+\mathrm{qu}{ }^{\mathrm{h}} \phi_{\alpha}\right) \mathrm{d} \mu_{\Omega}=\int_{\Omega} \mathrm{f} \phi_{\alpha} \mathrm{d} \mu_{\Omega}, \quad \alpha \in \frac{?}{?}_{h}
$$

or it can be written as

$$
\begin{equation*}
a\left(u^{h}, \phi_{\alpha}\right)=F_{\alpha}=\left(f, \phi_{\alpha}\right) \tag{3.4.7}
\end{equation*}
$$

If the integral F_{α} is approximated by a numerical quadrature $\tilde{\mathrm{F}}_{\alpha}$, then we are solving

$$
\begin{equation*}
a\left(\tilde{u}^{\mathrm{h}}, \phi_{\alpha}\right)=\tilde{\mathrm{F}}_{\alpha} \quad \alpha \in \stackrel{\circ}{\Gamma}_{h} \tag{3.4.8}
\end{equation*}
$$

where $\tilde{u}^{h}=\sum_{\alpha \in f} \tilde{\lambda}_{\alpha} \phi_{\alpha}$ is a solution to the linear system (J.4.s).

From (3.4.7) and (3.4.8) we get

$$
a\left(u^{h}-\tilde{u}^{h}, \phi_{\alpha}\right)=F_{\alpha}-\tilde{F}_{\alpha}=E\left(f, \chi_{\alpha}\right)
$$

It follows that

$$
a\left(u^{h}-\tilde{u}^{h}, u^{h}-\tilde{u}^{h}\right)=\sum_{\alpha \in \Gamma_{h}}\left(\lambda_{\alpha}-\tilde{\lambda}_{\alpha}\right) E\left(f, x_{\alpha}\right)
$$

this reduces to

$$
\begin{equation*}
\left\|u^{h}-\tilde{u}^{h}\right\|_{a}^{2} \leq \sum_{\alpha \in \Gamma_{h}}\left|\lambda_{\alpha}-\tilde{\lambda}_{\alpha}\right|\left|E\left(f, x_{\alpha}\right)\right| \tag{5.4.9}
\end{equation*}
$$

By applying the Cauchy-Schwarz inequality to the equation (3.4.9), we get

$$
\begin{equation*}
\left\|u^{h}-\tilde{u}^{h}\right\|_{a}^{2} \leq\left(\sum_{\alpha \in \Gamma_{h}}\left(\lambda_{\alpha}-\tilde{\lambda}_{\alpha}\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{\alpha \in \Gamma_{h}}\left|E\left(f, X_{\alpha}\right)\right|^{2}\right)^{\frac{1}{2}} \tag{3.4.10}
\end{equation*}
$$

To obtain an upper bound for $\left(\sum_{a \leq \sum_{h}}\left(\lambda_{a}-\tilde{\lambda}_{a}\right)^{2}\right)^{\frac{3}{2}}$ in terms of the L^{2} norm $\left\|u^{h}-u^{h}\right\|_{L^{2}(\Omega)}$, we need the following Lemia.

Lemma 3.4.5. Let $u(X)=\sum_{c_{0} \in \Gamma_{h}} \lambda_{c_{i}} \phi_{c_{i}}(X)$ and vanishes on 3.2 . Then

$$
\|u\|_{L^{2}(\Omega)}^{2} \geq \frac{1}{2} H_{a}(T) \sum_{u \in \tilde{\Gamma}_{h}} \lambda_{a}^{2}
$$

Proof : $\quad\|u\|_{L^{2}(\Omega)}^{2}=\int_{\Omega} u^{2} d \mu_{\Omega}$

$$
\begin{aligned}
& =\mu_{\Omega}(T) \sum_{T \in \tau} \int_{T}\left(\lambda_{\alpha} \phi_{\alpha}+\lambda_{\beta} \phi_{\beta}+\lambda_{\gamma} \phi_{\gamma}\right)^{2} d \mu_{T} \\
& =\frac{1}{6} \mu_{\Omega}(T) \sum_{T \in \tau}\left(\lambda_{\alpha}^{2}+\lambda_{\beta}^{2}+\lambda_{\gamma}^{2}+\lambda_{\beta} \lambda_{\gamma}+\lambda_{\gamma} \lambda_{\alpha}+\lambda_{\alpha} \lambda_{\beta}\right)
\end{aligned}
$$

where $\lambda_{\alpha}, \lambda_{\beta}, \lambda_{\gamma}$ are the values of u at the three vertices of $T=X_{\alpha} X_{\beta} X_{\gamma}$.

$$
\text { Since } \lambda_{\alpha}^{2}+\lambda_{\beta}^{2}+\lambda_{\gamma}^{2}+2\left(\lambda_{\beta} \lambda_{\gamma}+\lambda_{\gamma} \lambda_{\alpha}+\lambda_{\alpha} \lambda_{\beta}\right) \geq 0
$$

for all $\lambda_{\alpha}, \lambda_{\beta}, \lambda_{\gamma} \in R$, we have

$$
\begin{equation*}
\sum_{T \in \tau}\left(\lambda_{\alpha}^{2}+\lambda_{\beta}^{2}+\lambda_{\gamma}^{2}+\lambda_{\beta} \lambda_{\gamma}+\lambda_{\gamma} \lambda_{\alpha}+\lambda_{\alpha} \lambda_{\beta}\right) \geq \sum_{T \in \tau} h^{\frac{1}{2}}\left(\lambda_{\alpha}^{2}+\lambda_{\beta}^{2}+\lambda_{\gamma}^{2}\right) \tag{3.4.11}
\end{equation*}
$$

$$
\text { Since } \lambda_{\alpha}=0 \text { for all } X_{\alpha} \in \partial \Omega \text {, and for each } \alpha \leq \frac{\Gamma_{h}}{h} \text {, }
$$

there are six triangles T in τ^{h} with the common vertex X_{c}, thus the right hand side of the inequality (3.4.11) can be written as $3 \sum_{\alpha \in \Gamma_{h}} \lambda_{\alpha}^{2}$. It follows that

$$
\|u\|_{L^{2}(\Omega)}^{2} \geq \frac{1}{2} \mu_{\Omega}(T) \sum_{\alpha \in \Gamma_{h}} \lambda_{c u}^{2},
$$

completing the proof.

Since $u^{h}-\tilde{u}^{h}$ is a piecewise linear function on Ω and vanishes on the boundary $\partial \Omega$, we can apply Lemma 5.4 .5 to the inequality (3.4.10) to get

$$
\left\|u^{h}-\tilde{u}^{h}\right\|_{a}^{2} \leq\left(\frac{2}{\mu_{\Omega}(T)}\right)^{\frac{1}{2}}\left\|u^{h}-\tilde{u}^{h}\right\|_{L^{2}(\Omega)}\left(\sum_{\alpha \in \frac{1}{I_{h}}}\left|E\left(f, x_{\alpha}\right)\right|^{2}\right)^{\frac{1}{2}}
$$

From Lemma 2.3.2 we have

$$
\left\|u^{h}-\tilde{u}^{\mathrm{h}}\right\|_{a} \geq \sigma\left\|u^{\mathrm{h}}-\tilde{u}^{\mathrm{h}}\right\|_{1, r} \geq \sigma\left\|u^{\mathrm{h}}-\tilde{u}^{\mathrm{h}}\right\|_{L^{2}(\Omega)}
$$

It follows that

$$
\left\|u^{h}-\tilde{u}^{h}\right\|_{a} \leq \frac{\sqrt{2}}{\sigma\left(\mu_{\Omega}(T)\right)^{\frac{1}{2}}}\left(\sum_{\alpha=\Gamma_{h}}\left|E\left(f, x_{c i}\right)\right|^{2}\right)^{\frac{1}{2}}
$$

If the 1 -point numerical quadrature is used, from
Theorem 3.4.1 we have

$$
\left\|u^{h}-\tilde{u}^{h}\right\|_{a} \leq\left(\frac{23}{280}\right)^{\frac{1}{2}} \frac{1}{\sigma} h^{2}|f|_{2, \Omega},
$$

and if the 7 -point numerical quadrature is used, from Theorem 3.4.2 we have

$$
\left\|u^{h}-\tilde{u}^{h}\right\|_{a} \leq \frac{0.1019}{\sigma} h^{4}|f|_{4, \Omega}
$$

If u is the exact solution to $L u=f$, from the triangle inequality, we get

$$
\left\|u-\tilde{u}^{\mathrm{h}}\right\|_{a} \leq\left\|u-u^{\mathrm{h}}\right\|_{a}+\left\|u^{\mathrm{h}}-\tilde{u}^{\mathrm{h}}\right\|_{a}
$$

From Theorem 3.3.2 we know that the energy norm $\left\|u-u^{h}\right\|_{a}$ has an order of accuracy $O(h)$, whereas the energy norm $\left\|u^{h}-\tilde{u}^{h}\right\|_{a}$ has an order of accuracy $O\left(h^{2}\right)$ and $O\left(h^{4}\right)$ for the 1-point and 7 -point numerical quadrature respectively. Thus, both the numerical quadratures are consistent [V2] in the energy norm, that is, the solution still has an order of accuracy $O(h)$ in the energy norm for the 1-point and 7 -point numerical quadrature.

CHAPTER +

SOLUTION OF THE DISCRETE LINEAR EQUATIONS

4.1 INTRODUCTION

It is well known that discrete two dimensional boundary value problems become very hard to solve by the usual iterative algorithms as the number n of data points become large. P.O. Frederickson has introduced an algorithm FAPIN [F4] to solve this type of problem. In particular, the algorithm FAPIN solves the Ritz-Galerkin approximation in $O(n)$ operations and $O(n)$ storages.

In this chapter, we lean heavily on the first few sections of Frederickson [F4] and many of our results come from this source.

The algorithm FAPIN requires an approximate 1-local inverse C. This approximate inverse can be constructed by the TRq or LSq method introduced by Benson [B3]. The TRq method is generalized to the weighted truncation (ITq) method by multiplying a weight W to CA-I.

We then introduce a new technique for the construction of an optimal ε-approximate inverse to A, which we refer to as the interpolation method, (INq). Numerical results with each approximate inversion technique considered are presented, serving as a basis of comparison of different constructive methods.

We end this chapter by presenting some numerical examples for the solving of the Poisson equation in a triangular domain with homogeneous and inhomogeneous boundary conditions, and in one of these, the differential operator is singular.

4.2 APPROXIMATE INVERSION

Let $\|\cdot\|_{x}$ and $\|\cdot\|_{y}$ be the norms of the Banach spaces X and Y respectively, and let A be a bounded linear operator mapping X into Y. For a given y in the range of A, we are interested in constructing a numerical solution $x \in X$ s.t.

$$
\begin{equation*}
A x=y \tag{4.2.1}
\end{equation*}
$$

We recall two definitions from Frederickson [F4]:

Definition 4.2.1. Given $0<\varepsilon<1$, then an element $x \in X$ is called an e-approximate solution to (4.2.1) if

$$
\begin{equation*}
\|y-A x\|_{y} \leq \varepsilon\|y\|_{y} \tag{4.2.2}
\end{equation*}
$$

Definition 4.2.2. For $0<\varepsilon<1$, a linear operator $C: Y \rightarrow X$ is called an ε-approximate inverse to A if

$$
\begin{equation*}
\|A x-A C A x\|_{y} \leq \varepsilon\|A x\|_{y} \quad \text { for all } \quad x \in X \tag{4.2.3}
\end{equation*}
$$

If A is nonsingular, then (4.2.3) is equivalent to the inequality

$$
\begin{equation*}
\|I-A C\| \leq \varepsilon \tag{4.2.4}
\end{equation*}
$$

which is known ([F7], [V1]) to be a sufficient condition for the convergence of the iterative process

$$
\left\{\begin{array}{l}
r_{k}=y-A x_{k} \tag{4.2.5}\\
x_{k+1}=x_{k}+C r_{k}
\end{array}\right.
$$

to a solution to (4.2.1) for any initial approximation x_{0} and any y in the range of A.

If A is singular, Frederickson [F7] has shown that the iterative process (4.2.5) still works, provided only that (4.2.1) has a solution.

Theorem 4.2.1. [F7] If C is a nonsingular ε-approximate inverse to A, then the following are equivalent:
(a) There exists an $x_{0} \in X$, such that the iteration procedure (4.2.5) converges
(b) Equation (4.2.1) has a solution
(c) For any starting vector $x_{0} \in X$, the sequence $\left\langle x_{k}\right\rangle$ of (4.2.5) converges to a solution to (4.2.1), and the map : $x_{0} \rightarrow x$ is affine and onto the set of all solutions to (4.2.5).

Proof : (a) \Rightarrow (b)

$$
\text { Let } x \text { be an element of } X \text { s.t. }
$$

$$
x_{k} \rightarrow x
$$

From (4.2.5) we have

$$
\begin{aligned}
& \mathrm{Cr}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}+1}-\mathrm{x}_{\mathrm{k}} \rightarrow 0 \\
& \mathrm{r}_{\mathrm{k}}=\mathrm{y}-\mathrm{Ax} \mathrm{x}_{\mathrm{k}} \rightarrow \mathrm{y}-\mathrm{Ax}
\end{aligned}
$$

from which it follows that

$$
C(y-A x)=0
$$

Since C is nonsingular, we have

$$
y=A x
$$

Now we want to prove (b) \Longrightarrow (c)
Let $x^{*} \in X$ s.t. $A x^{*}=y$
From (4.2.5) we have

$$
\begin{aligned}
r_{k+1} & =y-A x_{k+1} \\
& =y-A\left(x_{k}+C r_{k}\right) \\
& =\left(y-A x_{k}\right)-A C\left(y-A x_{k}\right) \\
& =A\left(x^{*}-x_{k}\right)-A C A\left(x^{*}-x_{k}\right)
\end{aligned}
$$

Since C is an ε-approximate inverse to A, we have

$$
\left\|r_{k+1}\right\|_{y} \leq \varepsilon\left\|A\left(x^{*}-x_{k}\right)\right\|_{y}=\varepsilon\left\|r_{k}\right\|_{y}
$$

It follows that

$$
\begin{equation*}
\left\|r_{k}\right\|_{y} \leq \varepsilon^{k}\left\|r_{0}\right\|_{y} \tag{4.2.6}
\end{equation*}
$$

From (4.2.5), we have

$$
\begin{aligned}
\left\|x_{m}-x_{n}\right\|_{x} & =\left\|C r_{m-1}+C r_{m-2}+\cdots+C r_{n}\right\|_{x} \quad \forall m>n \\
& \leq\|C\|\left(\left\|r_{m-1}\right\|_{y}+\left\|r_{m-2}\right\|_{y}+\cdots+\left\|r_{n}\right\|_{y}\right) \\
& \leq\|C\|\left\|r_{0}\right\|_{y}\left(\varepsilon^{m-1}+\varepsilon^{m-2}+\cdots+\varepsilon^{n}\right) \\
& <\|C\|\left\|r_{0}\right\|_{y} \varepsilon^{n} /(1-\varepsilon) \rightarrow 0 \text { as } n \rightarrow \infty \text { which }
\end{aligned}
$$

implies $\left.<x_{k}\right\rangle$ is a Cauchy sequence in X and hence converges to a point $x \in X$.

Thus $\mathrm{Ax}_{\mathrm{k}} \rightarrow \mathrm{Ax}$
From (4.2.6), we have $r_{k} \rightarrow 0$, hence

$$
y-A x_{k} \rightarrow 0
$$

or $\quad A x_{k} \rightarrow y$

It follows that $A x=y$
To prove that the map described by (4.2.5) is affine, let $x_{1, k}$
and $x_{2, k}$ be any two elements of x and

$$
\lambda_{1}+\lambda_{2}=1
$$

then from

$$
x_{k}=\lambda_{1} x_{1, k}+\lambda_{2} x_{2, k} \text { follows }
$$

$$
\begin{aligned}
x_{k+1} & =x_{k}+C\left(y-A x_{k}\right) \\
& =\lambda_{1} x_{1, k}+\lambda_{2} x_{2, k}+\lambda_{1} C y+\lambda_{2} C y-\lambda_{1} C A x_{1, k}-\lambda_{2} C A x_{2, k} \\
& =\lambda_{1}\left[x_{1, k}+C\left(y-A x_{1, k}\right)\right]+\lambda_{2}\left[x_{2, k}+C\left(y-A x_{2, k}\right)\right] \\
& =\lambda_{1} x_{1, k+1}+\lambda_{2} x_{2, k+1}
\end{aligned}
$$

Thus the map $x_{0} \rightarrow x$ described by (4.2.5) is an affine map.
To prove that it is onto the range of A is easy, if $A x=y$ we simply choose $\mathrm{x}_{0}=\mathrm{x}$.

The implication from (c) to (a) is trival, completing the proof. Define by $\rho_{m}=\frac{\left\|r_{m}\right\|_{y}}{\left\|r_{m-1}\right\|_{y}}$ the reduction factor [V1] at
iteration m, if $\left\|r_{m-1}\right\| \neq 0$, where r_{m} is the residual vector defined in (4.2.5).

If the largest eigenvalue λ in modulus of the linear operator I-AC is dominant, and if r_{0} is not orthogonal to the eigenvector V corresponding to λ, then the limit of ρ_{m} exists and [B5, p. 269]

$$
\lim _{\mathrm{m} \rightarrow \infty} \rho_{\mathrm{m}}=\rho(\mathrm{I}-\mathrm{AC})
$$

Thus, the spectral radius $\rho(I-A C)$ serves as a basis of comparison of how well the operator C approximates the inverse of

A in an iterative algorithm.
In terms of actual computations, the spectral radius ρ of the operator I-AC can be estimated from the computation of the reduction factor ρ_{m} in an iterative algorithm to the solution of the equation

$$
A x=0
$$

with a random initial vector x .
If we order the eigenvalues of the operator I-AC so that

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n}\right|
$$

Then the rate at which the sequence ρ_{m} converges depends on the dominance ratio : [V1]

$$
\delta=\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}<1
$$

the convergence of the estimate ρ_{m} of ρ is slow when δ is close to 1 . However, the convergence of the sequence ρ_{m} can be accelerated by the application of a non-linear sequence-to-sequence transformations proposed by D. Shanks [S3]. A Fortran program to perform this transformation is given in Appendix B.

4.3 LOCAL OPERATORS

For the purpose of solving the system of linear equations produced by the Ritz-Galerkin solution to the linear operator
$\mathrm{Lu}=\mathrm{f}$ on a bounded polygonal domain Ω, we restrict our attention to finite dimensional linear spaces X and Y.

Denote by $X_{\Gamma_{h}}$ the space of real valued functions on the integer lattice Γ_{h} defined in section 1.2 , and let $Y_{\Gamma_{h}}$ be a subspace of X : We say that the Iinear operator $A: X_{\Gamma_{h}} \rightarrow Y_{\Gamma_{h}}$ is a q-local operator for some integer q if the value of $A x$ at a point $\alpha \in \Gamma_{h}$ depends only on the values of x in a q-neighbourhood of α; [F4], more precisely, if

$$
\left[(A x)_{\alpha} \neq 0\right] \Rightarrow\left[\exists \quad \beta \in \Gamma_{h}, \quad|\alpha-\beta| \leq q, \quad \text { and } \quad x_{\beta} \neq 0\right],
$$

where $|\cdot|$ is the hexagonal norm defined in Section 1.2 .

$$
\text { Thus, for any q-1ocal operator } A: X_{\Gamma_{h}} \rightarrow Y_{\Gamma_{h}} \text {, there }
$$ are elements $a_{\alpha, \beta}$ s.t. for any point $\alpha \in \Gamma_{h}$

$$
\begin{equation*}
(A x)_{\alpha}=\sum_{|\beta| \leq q^{2, \beta}}{ }^{a}{ }_{\alpha+\beta}^{x} \tag{4.3.1}
\end{equation*}
$$

In particular, if A is a 1-local operator, then at each point $\alpha \in \stackrel{\circ}{\Gamma}_{h}$, expressed diagrammatically, A has a representation of the form

A :

Denote by n the number of points in Γ_{h}, then the implementation of (4.3.1) allows storage of A in $7 n$ locations and evaluation of $A x$ in $7 n$ multiplications.

Let A be a q_{1}-local operator and C be a q_{2}-local operator defined on the linear space $X_{\Gamma_{h}}$. We seek the linear operator B such that for any $x \in X_{\Gamma_{h}}$

$$
B x=C(A x)
$$

In terms of the representation (4.3.1), B can be

$$
\begin{equation*}
(B x)_{\alpha}=\sum_{|\beta| \leq q_{1},|\gamma| \leq q_{2}}^{c_{\alpha, \beta} a_{\alpha+\beta, \gamma} x_{\alpha+\beta+\gamma}} \tag{4.3.2}
\end{equation*}
$$

The sum extends over only those α and β for which $\alpha+\beta \in \Gamma_{h}$. As we can see from (4.3.2), β is a $\left(q_{1}+q_{2}\right)$-local operator.

In particular, if A is a constant coefficient 1-local operator with a representation of the form

(4.3.3)
and C is also a constant coefficient 1-local operator with a representation of the form

C :

(4.3.4)
then the composition of $C A$ is a 2-local operator. The graph of $B=C A$ is shown in (4.3.5).

It is easy to see that if A and C are constant coefficient local operators, then the composition commutes, i.e. $A C=C A$.

In this case, $A C$ can be written as a convolution operator.

(4.3.5)

4.4 BEST APPROXIMATION

For every triangulation τ^{h} of Ω there is a least integer $\&$ such that $|\alpha| \leq 2^{\ell-1}$ for every $\alpha \in \Gamma_{h}$, we write Γ^{ℓ} for F_{h} and define, using the recurrence

$$
\begin{equation*}
\Gamma^{k-1}=\left\{\alpha: Z\left|\beta,|\beta| \leq 1, \quad 2 \alpha+\beta \in \Gamma^{k}\right\}\right. \tag{4.4.1}
\end{equation*}
$$

the sets Γ^{k} for $1 \leq k \leq \ell$
We observe that $|\alpha| \leq 2^{k-1}$ if $\alpha \in \Gamma^{k}$, and in particular, Γ^{1} has at most 7 points.

Denote by X^{k} the linear space of real valued functions defined on Γ^{k}, and define the sequence of interpclation operators $Q^{k}: X^{k-1} \rightarrow X^{k} \quad$ through

$$
\begin{equation*}
x_{\beta}^{k}=\left(Q^{k} x^{k-1}\right)_{\beta}=\sum_{\alpha \in I}{ }_{i-1}^{k} \phi_{\alpha}^{k}(B) x_{\alpha}^{k-1} \tag{4.4.2}
\end{equation*}
$$

where

$$
\phi_{\alpha}^{k}(\beta)= \begin{cases}\frac{1}{2} & \text { if }|2 \alpha-\beta|=1 \\ 1 & \text { if } \beta=2 \alpha \\ 0 & \text { otherwise }\end{cases}
$$

The set $\left\{\phi_{\alpha}^{k}\right\}_{\alpha \in \Gamma}^{k-1}$ form a basis for the space $U^{k}=Q^{k}\left(X^{k-1}\right)$.

Define the sequence of projection operators

$$
\begin{array}{r}
\mathrm{P}^{k}: x^{k} \rightarrow x^{k-1} \text { by } \\
r_{\alpha}^{k-1}=\left(P^{k} r^{k}\right)_{\alpha}=\sum_{\beta \in \Gamma^{k}} \phi_{\alpha}^{k}(\beta) r_{B}^{k} \tag{4.4.5}
\end{array}
$$

Beginning with $A^{\ell}=A$ and $Y^{\ell}=Y$, we define the sequence of operators $A^{k}: X^{k} \rightarrow Y^{k}$ by

$$
\begin{equation*}
A^{k-1}=P^{k_{A}^{k}} Q^{k}: X^{k-1} \rightarrow Y^{k-1} \tag{4.4.4}
\end{equation*}
$$

Then in terms of the representation (4.3.1), A^{k-1} can be represented as

$$
\begin{aligned}
\left(A^{k-1} x^{k-1}\right)_{\alpha} & =\sum_{|\gamma| \leq 1} \phi_{\alpha}^{k}(2 \alpha+\gamma) \sum_{|\sigma| \leq 1} a_{2 \alpha+\gamma, \sigma}^{k} \sum_{\beta} \sum_{|\gamma+\sigma-2 \beta| \leq 1} \phi_{\alpha+\beta}^{k}(2 \alpha+\gamma+\sigma) x_{\alpha+\beta}^{k-1} \\
= & \sum_{|\beta| \leq 1,|\gamma| \leq 1,|\sigma| \leq 1}^{\beta, \gamma, \sigma} \oint_{\alpha}^{k}(2 \alpha+\gamma) a_{2 \alpha+\gamma, \sigma^{\phi}{ }_{\alpha+\beta}^{k}}^{k}(2 \alpha+\gamma+\sigma) x_{\alpha+\beta}^{k-1}
\end{aligned}
$$

or

$$
\begin{equation*}
\mathrm{a}_{\alpha, \beta}^{\mathrm{k}-1}=\sum_{\substack{\gamma, \sigma|\leq 1,|\sigma| \leq 1\\| \gamma+\sigma-2 \beta \mid \leq 1}} \phi_{\alpha}^{k}(2 \alpha+\gamma) \mathrm{a}_{2 \alpha+\gamma, \sigma^{\phi} \alpha+\beta}^{k}(2 \alpha+\gamma+\sigma) \tag{4.4.5}
\end{equation*}
$$

In particular, if A is the 1-local discrete Lapacian operator derived in (2.5.6), it is easy to verify that A is invariant under the collection.

Thus, we have

for all $1 \leq k \leq \ell$

$$
\text { If } A^{k} \text { is a constant coefficient operator of the form }
$$

(4.4.7)
then we have

It follows that $A^{k-1}=\lambda A^{k}$ for some constant λ iff

$$
\begin{aligned}
& \quad\left\{\begin{array}{l}
\frac{5}{2} a_{0}^{k}+9 a_{1}^{k}=\lambda a_{0}^{k} \\
\frac{5}{2} a_{1}^{k}+\frac{1}{4} a_{0}^{k}=\lambda a_{1}^{k}
\end{array}\right. \\
& \text { iff } \quad \lambda=4 \text { or } 1
\end{aligned}
$$

The two constant coefficient a_{0}^{2} and a_{1}^{2} of A^{2} are related by

$$
\begin{cases}a_{0}^{\ell}=-6 a_{1}^{\ell} & \text { if } \lambda=1 \\ a_{0}^{\ell}=6 a_{1}^{\ell} & \text { if } \lambda=4\end{cases}
$$

Given an element r^{k} in the range of A^{k}, we are asked to find an element $x^{k} \in X^{k}$ s.t.

$$
\begin{equation*}
A^{k} x^{k}=r^{k} \tag{4.4.9}
\end{equation*}
$$

Let r^{k-1} be the image of P^{k} at r^{k}, if x^{k-1} is the the solution of the equation

$$
A^{k-1} x^{k-1}=r^{k-1}
$$

We are interested to know how close the solution x^{k-1} is to x^{k} ? This question is answered by the following Theorem [F4]:

Theorem 4.4.1. If A is symmetric and positive definite, then the operator A^{k-1} defined by (4.4.4) is the Ritz-Galerkin best approximation to A^{k} in the subspace $U^{k}=Q^{k}\left(X^{k-1}\right)$ of X^{k}.

Proof: We define the quadratic functional related to (4.4.9) by

$$
F\left(x^{k}\right)=\left\langle A x^{k}-2 r^{k}, x^{k}\right\rangle
$$

where

$$
\begin{equation*}
\left\langle x^{k}, y^{k}\right\rangle=\sum_{\alpha \in \Gamma} x^{k} y_{\alpha}^{y_{\alpha}^{k}} \tag{4.4.10}
\end{equation*}
$$

Let x^{k} be an element of U^{k} and $\varepsilon \in R$. Then wie have

$$
\begin{aligned}
F\left(x^{k}+\varepsilon v^{k}\right)= & \left\langle A^{k}\left(x^{k}+\varepsilon v^{k}\right)-2 r^{k}, x^{k}+\varepsilon v^{k}\right\rangle \\
= & \left\langle A^{k} x^{k}-2 r^{k}, x^{k}>+\varepsilon\left(\left\langle A^{k} x^{k}, v^{k}\right\rangle+\left\langle A^{k} v^{k}, x^{k}\right\rangle\right.\right. \\
& -2\left\langle r^{k}, v^{k}>\right)+\varepsilon^{2}\left\langle A^{k} v^{k}, v^{k}\right\rangle
\end{aligned}
$$

Since A^{k} is symmetric i.e. $\left\langle A^{k} x^{k}, v^{k}\right\rangle=\left\langle A^{k} v^{k}, x^{k}\right\rangle$, we have

$$
F\left(x^{k}+\varepsilon_{v}^{k}\right)=F\left(x^{k}\right)+2 \varepsilon\left(\left\langle A^{k} x^{k}, v^{k}\right\rangle-\left\langle r^{k}, v^{k}\right\rangle\right)+\varepsilon^{2}\left\langle A^{k} v^{k}, v^{k}\right\rangle
$$

It follows that

$$
\frac{\mathrm{dF}}{\mathrm{~d} \varepsilon}\left(\mathrm{x}^{\mathrm{k}}+\varepsilon \mathrm{v}^{\mathrm{k}}\right)=2\left(\left\langle\mathrm{~A}^{\mathrm{k}} \mathrm{x}^{\mathrm{k}}, \mathrm{v}^{\mathrm{k}}>-\left\langle\mathrm{r}^{\mathrm{k}}, \mathrm{v}^{\mathrm{k}}>\right)+2 \varepsilon<\mathrm{A}^{\mathrm{k}} \mathrm{v}^{\mathrm{k}}, v^{\mathrm{k}}>\right.\right.
$$

and

$$
\frac{\mathrm{d}^{2} \mathrm{~F}}{\mathrm{~d} \varepsilon^{2}}\left(\mathrm{x}^{\mathrm{k}}+\varepsilon v^{\mathrm{k}}\right)=2<\mathrm{A}^{\mathrm{k}} v^{k}, v^{k}>
$$

A^{k} is positive definite implies

$$
\left.\frac{d^{2} \mathrm{~F}}{\mathrm{~d} \varepsilon^{2}}\left(\mathrm{x}^{\mathrm{k}}+\varepsilon v^{\mathrm{k}}\right)\right|_{\varepsilon=0}>0 \quad \text { if } v^{k} \neq 0
$$

Thus \dot{x}^{k} minimizes F iff the first variation $\left.\frac{d F}{d \varepsilon}\left(x^{k}+\varepsilon v^{k}\right)\right|_{\varepsilon=0}$
vanishes for all v^{k} in U^{k} i.e.

$$
\left\langle A^{k} x^{k}, v^{k}\right\rangle=\left\langle r^{k}, v^{k}\right\rangle \quad \text { for all } v^{k} \varepsilon U^{k}
$$

Since the functions $\phi_{\alpha}^{k}, \alpha \in \Gamma^{k-1}$ form a basis for U^{k}, this holds for all v^{k} in U^{k} iff

$$
\left.<A^{k} x^{k}, \phi_{\alpha}^{k}\right\rangle=\left\langle r^{k}, \phi_{\alpha}^{k}\right\rangle \quad \text { for all } \alpha=r^{k-1}
$$

$x^{k} \in U^{k}$ implies it can be written as

$$
x^{k}=\sum_{\alpha \in \Gamma} x_{\alpha-1}^{k-1} \phi_{\alpha}^{k}=Q^{k} x^{k-1}
$$

It follows that

$$
\left\langle A^{k} Q^{k} x^{k-1}, \phi_{\alpha}^{k}>=\left\langle r^{k}, \phi_{\alpha}^{k}\right.\right.
$$

From (4.4.10) we have

$$
\sum_{\beta \in \Gamma}\left(A^{k} Q^{k} x^{k-l}\right)_{\beta} \phi_{\alpha}^{k}(\beta)=\sum_{\beta \in \Gamma} r_{\beta}^{k} \phi_{C i}^{k}(B)
$$

From (4.4.3) we get

$$
\left(P^{k} A^{k} Q^{k} x^{k-1}\right)_{\alpha}=\left(P^{k} r^{k}\right)_{a} \quad \text { for all } a \in I^{k-1}
$$

It follows that

$$
P^{k} A^{k} Q^{k} x^{k-1}=P^{k} r^{k}=r^{k-1}
$$

From (4.4.4) we get

$$
A^{k-1} x^{k-1}=r^{k-1}
$$

i.e. A^{k-1} is the Ritz-Galerkin best approximation to A^{k} in the subspace U^{k}.

However, in general if A^{k} is not symmetric and positive definite, then the operator A^{k-1} can only be described as the Galerkin approximation to A^{k}.

4.5 THE ALGORITHM FAPIN

P.O. Frederickson [F4] introduced a new algorithm FAPIN to solve a large sparse linear systems of a certain class in $0(n)$ operations. In particular, it solves all finite element approximations, over a sufficiently regular mesh.

FAPIN is an iterative algorithm. At the beginning of the $n^{\text {th }}$ pass one has an approximation x_{n} to the solution of Ax $=y$. An inner loop of FAPIN requires a 1 -local ε-approximate inverse $C^{k}: Y^{k} \rightarrow X^{k}$ to A^{k}. If $A X=y$ has a solution, Theorem 4.2.1 tells us that the initial vector x_{0} can be random.

The iteration begins by computing the residual vector $r^{\ell} \leftarrow y-A x_{n}$, continues by evaluating the residual vector r^{k} defined by (4.4.3) from r^{ℓ} to $r^{\ell 0}$, the residual vector at the bottom level $\ell 0$. Next, the approximate solution $z^{20}=C^{20} r^{20}$ is computed in the space $z^{\ell 0}$ and then one works back up from $k=\ell 0$ to $k=\ell-1$, first interpolating and then refining this approximation:

$$
\begin{align*}
& z^{k} \leftarrow Q^{k} z^{k-1} \\
& z^{k} \leftarrow z^{k}+C^{k}\left(r^{k}-A^{k} z^{k}\right) \tag{4.5.1}
\end{align*}
$$

At the top level, $k=\ell$, these assignments are replaced by

$$
\begin{align*}
& x_{n}^{\ell} \leftarrow x_{n}^{\ell}+Q^{\ell} z^{\ell-1} \\
& x_{n+1}^{\ell}+x_{n}^{\ell}+C^{\ell}\left(y-A x_{n}^{\ell}\right) \tag{4.5.2}
\end{align*}
$$

A detailed coding of the algorithm in Fortran to solve the linear system $A x=y$ in a triangular domain is given in Appendix A.

The actual programs compute the norm of $r^{\hat{\imath}}$ while computing r^{ℓ} and this is used to allow an early exit when tolerance ε has been achieved.

In general, if the operator A is not constant, then the lower approximations A^{k} must be computed first according to the equation (4.4.5). The corresponding approximate inverses C^{k} must also be evaluated. Techniques for construction of these approximate inverses will be discussed next.

4.6 CONSTRUCTION OF APPROXIMATE INVERSES

Benson [B3] has introduced several techniques to construct an approximate inverse for certain band matrices. In this section, we put the Truncation Technique (TRq) and Least-squares

Technique (LSq) [BJ] into a slightly modified form and apply it to an l-local linear operator A, to construct a 1-local operator C, an e-approximate inverse to A. The TRq method is generalised by multiplying a weight W to the operator $C A$; we refer to this method as the Weighted Truncation Technique (WTq). However, approximate inverses obtain by these methods are not optimal. We introduce another new technique call Interpolation Technique (INq) to construct an optimal approximate inverse of A. This optimal inverse speeds up the convergence of the algorithm remarkably.

Denote by TRq(CA) the truncated q-local operator, where C and A are all q-local linear operators.

The TRq approximate inverse of A can be constructed by solving the system of linear equations

$$
\begin{equation*}
\left.\operatorname{TRq}^{(C A}\right)_{\alpha, \beta}=\delta_{(0,0), \beta}, \quad|\xi| \leq q \tag{4.6.1}
\end{equation*}
$$

where δ denotes the Kronecker delta.
If A is the operator defined in (4.3.3) and the l-local approximate inverse to A has the form (4.3.4), then it follows from (4.3.5) that the TRq approximate inverse C can be obtained by solving the following system of equations:

$$
\left\{\begin{array}{l}
a_{1} c_{0}+\left(a_{0}+2 a_{1}\right) c_{1}=0 \\
a_{0} c_{0}+6 a_{1} c_{1}=1
\end{array}\right.
$$

$$
\text { If } a_{0}^{2}+2 a_{0} a_{1}-6 a_{1}^{2} \neq 0 \text {, the above system of linear equations }
$$

has an unique solution, i.e.

$$
\left\{\begin{array}{l}
c_{0}=\frac{a_{0}+2 a_{1}}{a_{0}^{2}+2 a_{0} a_{1}-6 a_{1}^{2}} \\
c_{1}=\frac{a_{1}}{6 a_{1}^{2}-2 a_{0} a_{1}-a_{0}^{2}}
\end{array}\right.
$$

In particular, if A is the discrete Laplacian operator given in (4.4.6), then C has a representation of the form:

C:

Results with the TRq method applied to the discrete Laplacian operator A on a triangular domain at each level ℓ are tabulated below and graphically in Fig (4.6.4),

ℓ	n	ρ
2	15	0.3333
3	45	0.3591
4	153	0.4115
5	561	0.4612
6	2145	0.4757
7	8385	0.4751

where $n=\left(1+2^{l-1}\right)\left(1+2^{\ell}\right)$ is the total number of equations.
The TRq method can be generalized by multiplying a weight W to the operator $C A$, where W is a constant coefficient r-local operator.

The WTq approximate inverse C can be constructed by solving the system of linear equations
$\operatorname{TRq}(\mathrm{CAW})=\mathrm{TRq}(W)$

If A and C are of the form (4.3.3) and (4.3.4) respectively, and W is a 1-1ocal operator with a representation of the form

W:

then it follows from (4.3.5) and (4.3.2) that the linear system (4.6.2) becomes

$$
\left\{\begin{array}{l}
\left(a_{0} w_{0}+6 a_{1} w_{1}\right) c_{0}+6\left[a_{1} w_{0}+\left(a_{0}+2 a_{1}\right) w_{1}\right] c_{1}=w_{0} \tag{4.6.3}\\
{\left[a_{1} w_{0}+\left(a_{0}+2 a_{1}\right) w_{1}\right] c_{0}+\left[\left(a_{0}+2 a_{1}\right) w_{0}+\left(2 a_{0}+15 a_{1}\right) w_{1}\right] c_{1}=w_{1}}
\end{array}\right.
$$

The linear system (4.6.3) always has an unique solution
if

$$
6\left[a_{1} w_{0}+\left(a_{0}+2 a_{1}\right) w_{1}\right]^{2} \neq\left(a_{0} w_{0}+6 a_{1} w_{1}\right)\left[\left(a_{0}+2 a_{1}\right) w_{0}+\left(2 a_{0}+15 a_{1}\right) w_{1}\right]
$$

In particular, if W is chosen as A, then the linear system (4.6.3) becomes

$$
\left\{\begin{array}{l}
\left(a_{0}^{2}+6 a_{1}^{2}\right) c_{0}+12 a_{1}\left(a_{0}+a_{1}\right) c_{1}=a_{0} \tag{4.6.4}\\
2 a_{1}\left(a_{0}+a_{1}\right) c_{0}+\left(a_{0}^{2}+4 a_{0} a_{1}+15 a_{1}^{2}\right) c_{1}=a_{1}
\end{array}\right.
$$

We observe that the system (4.6.4) always has a solution. If A is the discrete Laplacian operator, we have

$$
\left\{\begin{array}{l}
c_{0}=17 / 89=0.1910112 \tag{4.6.5}\\
c_{1}=3 / 89=0.0337079
\end{array}\right.
$$

Results with the WTq method applied to the discrete Laplacian operator A on a triangular domain at each level \& are tabulated below and graphically in Fig (4.6.4),

ℓ	n	ρ
2	15	0.1011
3	45	0.1461
4	153	0.1510
5	561	0.1698
6	2145	0.1746
7	8385	0.1748

$$
\text { Denote by }\|\cdot\|_{\alpha, 2}=\underset{|\beta| \leq q}{ }\left(\sum_{\alpha, \beta}\right)^{2} \text { the discrete } \ell^{2}
$$

norm of the q-local operator A at the point $\alpha \in \stackrel{\circ}{\Gamma}_{h}$, by $g_{\alpha}=\|\cdot\|_{\alpha, 2}^{2}$. If C and A are the linear operators defined in (4.3.4) and (4.3.3) respectively, then

$$
\begin{equation*}
g_{\alpha}=\|C A-I\|_{\alpha, 2}^{2}=\left(a_{0} c_{0}+6 a_{1} c_{1}-1\right)^{2}+6\left[a_{1} c_{0}+\left(a_{0}+2 a_{1}\right) c_{1}\right]^{2}+30\left(a_{1} c_{1}\right)^{2} \tag{4.6.6}
\end{equation*}
$$

We observe that g_{α} is a function of the parameters c_{0} and c_{1}, the methods of calculus enable us to find the values of c_{0} and c_{1} that minimize g. The approximate inverse C obtained by this method is called the LSq approximate inverse and we refer to this technique as the LSq method.

From (4.6.6) we have

$$
\begin{aligned}
& \frac{\partial g_{\alpha}}{\partial c_{0}}=2\left(a_{0} c_{0}+6 a_{1} c_{1}-1\right) c_{0}+12\left[a_{1} c_{0}+\left(a_{0}+2 a_{1}\right) c_{1}\right] a_{1} \\
& \frac{\partial g_{\alpha}}{\partial c_{1}}=2\left(a_{0} c_{0}+6 a_{1} c_{1}-1\right)\left(6 a_{1}\right)+12\left[a_{1} c_{0}+\left(a_{0}+2 a_{1}\right) c_{1}\right]\left(a_{0}+2 a_{1}\right)+60 a_{1}^{2} c_{1}
\end{aligned}
$$

To minimize g_{α}, we require $\frac{\partial g_{\alpha}}{\partial c_{0}}=0$ and $\frac{\partial g_{\alpha}}{\partial c_{1}}=0$, i.e.

$$
\left\{\begin{array}{l}
\left(a_{0}^{2}+6 a_{1}^{2}\right) c_{0}+12 a_{1}\left(a_{0}+a_{1}\right) c_{1}=a_{0} \\
2 a_{1}\left(a_{0}+a_{1}\right) c_{0}+\left(a_{0}^{2}+4 a_{0} a_{1}+15 a_{1}^{2}\right) c_{1}=a_{1}
\end{array}\right.
$$

We observe that the above system of linear equations turns out to be the same as the WTq method applied to same operator $C A$ with a weight $\mathrm{W}=\mathrm{A}$.

In general, if the six coefficients $a_{\alpha, \beta},|\beta|=1$ are not equal, then the approximate inverse C at each point $\alpha \in \stackrel{\circ}{\Gamma}_{h}$ has 7 parameters to be determined. It follows from (4.3.2) that

$$
\begin{array}{r}
g_{\alpha}=\|C A-I\|_{\alpha, 2}^{2}=\left(\sum_{|\beta| \leq 1} c_{\alpha, \beta^{2}}{ }^{2} \alpha+\beta,-\beta^{-1}\right)^{2}+\sum\left(\sum_{\beta} \sum_{\alpha, \beta} c_{\alpha+\beta, \gamma-\beta}\right)^{2} \\
1 \leq|\gamma| \leq 2|\beta| \leq 1 \\
|\gamma-\beta| \leq 1
\end{array}
$$

To minimize g_{α}, we require $\frac{\partial g_{\alpha}}{\partial c_{\alpha, \sigma}}=0$ for $\sigma \in \Gamma_{h},|\sigma-\alpha| \leq 1$. Now

$$
\begin{aligned}
& \frac{\partial g_{\alpha}}{\partial c_{\alpha, \sigma}}=2\left(\sum_{|\beta| \leq 1} c_{\alpha, \beta^{2}}{ }_{\left.\alpha+\beta,-\beta^{-1}\right)} a_{\alpha+\sigma,-\sigma}+\right.
\end{aligned}
$$

which gives

$$
\begin{aligned}
& \begin{array}{c}
a_{\alpha+\sigma,-\sigma}\left(\sum_{|\beta| \leq 1 ;} c_{\alpha, \beta} a_{\alpha+\beta,-\beta}-1\right)+\sum_{\underset{\alpha}{ }} a_{\alpha+\sigma, \gamma-\sigma} \sum_{\beta} c_{\alpha, \beta}{ }^{a}{ }_{\alpha+\beta, \gamma-\beta}=0 \\
1 \leq|\gamma| \leq 2 \quad|\beta| \leq 1
\end{array} \\
& |\gamma-\sigma| \leq 1 . \quad|\gamma-\beta| \leq 1 \\
& \text { for } \sigma \in \Gamma_{h},|\sigma-\alpha| \leq 1 \text {. }
\end{aligned}
$$

Thus, the 1-local LSq-approximate inverse of A at the point $\alpha \in \stackrel{\circ}{\Gamma}_{h}$ can be obtained by solving the above linear system of 7 equations. This linear system of equations can also be written as

$$
\begin{aligned}
& \sum_{|\beta| \leq 1}{ }^{c}{ }_{\alpha, \beta} \sum_{\substack{\gamma \\
|\gamma| \leq 2,|\gamma-\sigma| \leq 1 \\
|\gamma-\beta| \leq 1}} a_{\alpha+\sigma, \gamma-\sigma}{ }^{a_{\alpha+\beta, \gamma-\beta}={ }_{\alpha+\gamma,-\sigma}} \\
& \text { for } \sigma \in \Gamma_{h},|\sigma-\alpha| \leq 1
\end{aligned}
$$

The sum extends over only those γ for which $\gamma-\sigma, \gamma-\beta$
$\epsilon \Gamma_{h}$.

If A is a constant coefficient 1-1ocal operator, we are also interested to construct an approximate inverse of A by the application of LSq method to the weighted operator ACA, and
try to minimize the expression

$$
\begin{aligned}
& \mathrm{g}_{\alpha}=\|A C A-\mathrm{A}\|_{\alpha, 2}^{2} \\
& \text { It follows from (4.3.5) and (4.3.2) that } \\
& g_{\alpha}=\left[\left(a_{0}^{2}+6 a_{1}^{2}\right) c_{0}+12 a_{1}\left(a_{0}+a_{1}\right) c_{1}+a_{0}\right]^{2}+6\left[2 a_{1}\left(a_{0}+a_{1}\right) c_{0}+\left(a_{0}^{2}+4 a_{0} a_{1}+15 a_{1}^{2}\right) c_{1}-a_{1}\right]^{2} \\
& +6\left[a_{1}^{2} c_{0}+2 a_{1}\left(a_{0}+3 a_{1}\right) c_{1}\right]^{2}+6\left[2 a_{1}^{2} c_{0}+2 a_{1}\left(2 a_{0}+3 a_{1}\right) c_{1}\right]^{2}+114 a_{1}^{4} c_{1}^{2} \\
& \text { Let } \frac{\partial g_{\alpha}}{\partial c_{0}}=0 \text { and } \frac{\partial g_{\alpha}}{\partial c_{1}}=0 \text {. we have } \\
& \left\{\begin{array}{l}
\left(a_{0}^{4}+36 a_{0}^{2} a_{1}^{2}+48 a_{0} a_{1}^{3}+90 a_{1}^{4}\right) c_{0}+24 a_{1}\left(a_{0}^{3}+3 a_{0}^{2} a_{1}+15 a_{0} a_{1}^{2}+15 a_{1}^{3}\right) c_{1} \\
=a_{0}^{3}+18 a_{0} a_{1}^{2}+12 a_{1}^{3} \\
4 a_{1}\left(a_{0}^{3}+3 a_{0}^{2} a_{1}+15 a_{0} a_{1}^{2}+15 a_{1}^{3}\right) c_{0}+\left(a_{0}^{4}+8 a_{0}^{3} a_{1}+90 a_{0}^{2} a_{1}^{2}+240 a_{0} a_{1}^{3}+340 a_{1}^{4}\right) c_{1} \\
=3 a_{0}^{2} a_{1}+6 a_{0} a_{1}^{2}+15 a_{1}^{3}
\end{array}\right.
\end{aligned}
$$

In particular, if A is the discrete Laplacian operator, then we have

$$
\left\{\begin{array}{l}
c_{0}=103 / 597=0.1725293 \tag{4.6.8}\\
c_{1}=1117 / 48556=0.0230044
\end{array}\right.
$$

Application of the above approximate inverse to the algorithm FAPIN on a triangular domain, the numerical results are tabulated below and graphically in Fig (4.6.4).

ℓ	n	ρ
2	15	0.1258
3	45	0.1539
4	153	0.1691
5	561	0.1714
6	2145	0.1672
7	8385	0.1637

The approximate inverse C determined by the $T R q$ or LSq method is usually not optimal, however, it can be improved by the INq method. This method is feasible only in the constant coefficient case. For simplicity, we shall introduce this technoque with an example for the construction of an optimal ε-approxmate inverse to the discrete Laplacian operator A.

Let $\tilde{\mathbf{c}}_{0}$ and \tilde{c}_{1} be two approximate parameters of the operator C obtain by $T R q$ or $L S q$ method. Then the optimal values of c_{0} and c_{1} can be obtained by the following steps:

Step I. $\quad \tilde{c}_{0}$ is held fixed. Perturbing c_{1} about the point \tilde{c}_{1}, we obtain a set of experimental data $\left(\rho, c_{1}\right)$. The point where ρ has a minimum can be obtained by plotting the graph of ρ against c_{1}.

Step II. Perturbing c_{0} about \tilde{c}_{0}, for each fixed values of c_{0}, carry out the same procedures as in Step I to obtain a set of points $\left(c_{0}, c_{1}\right.$ opt,$\left.\rho_{\min }\right)$.

Step III. c_{1} is held fixed instead of c_{0}, repeating the whole procedures as in Step I and II, we obtain another set of points $\left(c_{0}{ }^{\mathrm{opt}}, \mathrm{c}_{1}, \rho_{\text {min }}\right)$.

Step IV. Plotting the graph of c_{1} against c_{0} for the data (c_{0}, c_{1} opt) and ($c_{0}{ }^{\text {opt }}, c_{1}$) collected in Step II and III, we find that the curves intersect at a point $\left(c_{0}{ }^{\text {opt }}, c_{0}{ }^{\mathrm{opt}}\right)$, this is the optimal solution of the operator C.

To illustrate the method, three graphs of c_{1} against c_{0} for the data collected in Step II and III of the INq method at level $\ell=2,3$ and 4 are plotted in Fig (4.6.1), Fig (4.6.2) and Fig (4.6.3) respectively. In order to have a clear picture of the behaviour of ρ near the optimal solution ($c_{0}{ }^{\text {opt }}, c_{1}{ }^{\text {opt }}$), three contour graphs of ρ at different height are also plotted in these graphs.

The INq ε-approximate inverses C at level $\ell=2,3$ and 4 are shown in Table 4.6.1. Application of these INq ε-approximate inverses C to the algorithm FAPIN, the spectral radius of the operator I-AC at each level ℓ are shown in Table 4.6.2 and graphically in Fig 4.6.4.

Table 4.6.1

ℓ	$c_{0}{ }^{\text {opt }}$	c_{1} opt
2	0.1786	0.03569
3	0.1803	0.02921
4	0.1825	0.02791

Table 4.6.2

ℓ	$\|c\|$	n	opt. level $\ell=2$	opt. leve1 $\ell=3$
		0.0003	0.0578	opt. Ieve1 $\ell=4$
3		0.2224	0.0822	0.0821
4	153	0.3072	0.1370	0.0950
5	561	0.3318	0.1510	0.1037
6	2145	0.3368	0.1528	0.1001
7	8385	0.3326	0.1532	0.1190
			0.1310	

Fig. 4.6.1
(INq method, $\ell=2$)

From the experimental results, we observe that the INQ ε-approximate Inverse C varies from one level to another level, they are only optimal at the constructed level. In order to have a clear picture of the behaviour of the spectral radius as ℓ becomes large, a chart of the spectral radius ρ against ℓ for the various construction techniques are plotted in Fig 4.6.4.

As we can see from the graphs in Fig 4.6.4, the rate of convergence is independent of n for equations in the class considered. When ℓ becomes large, the spectral radius of I-CA, ρ tends to a certain value.

We observe that the spectral radius $\rho(I-A C)$ for C constructed by the LSq method or WTq method with weight $\mathrm{W}=\mathrm{A}$ are not too far away from its optimal value. We are interested to know what is the best choice of the weight W, to make the WTq approximate inverse becomes optimal?

$$
\begin{align*}
& \text { If } W \text { is a 1-local operator, from (4.6.3), we have } \\
& \left\{\begin{array}{l}
\left(a_{0} c_{0}+6 a_{1} c_{1}-1\right) w_{0}+6\left[a_{1} c_{0}+\left(a_{0}+2 a_{1}\right) c_{1}\right] w_{1}=0 \\
{\left[a_{1} c_{0}+\left(a_{0}+2 a_{1}\right) c_{1}\right] w_{0}+\left[\left(a_{0}+2 a_{1}\right) c_{0}+\left(2 a_{0}+15 a_{1}\right) c_{1}-1\right] w_{1}=0}
\end{array}\right. \tag{4.6.12}
\end{align*}
$$

The linear system (4.6.12) has non-trivial solutions iff

$$
6\left[a_{1} c_{0}+\left(a_{0}+2 a_{1}\right) c_{1}\right]^{2}=\left(a_{0} c_{0}+6 a_{1} c_{1}-1\right)\left[\left(a_{0}+2 a_{1}\right) c_{0}+\left(2 a_{0}+15 a_{1}\right) c_{1}-1\right]
$$

It follows that $\left(c_{0}, c_{1}\right)$ are related by
$\left(6 a_{1}^{2}-2 a_{0} a_{1}-a_{0}^{2}\right) c_{0}^{2}-\left(2 a_{0}^{2}+9 a_{0} a_{1}-12 a_{1}^{2}\right) c_{0} c_{1}+6\left(a_{0}^{2}+2 a_{0} a_{1}-11 a_{1}^{2}\right) c_{1}^{2}+$

$$
2\left(a_{0}+a_{1}\right) c_{0}+\left(2 a_{0}+21 a_{1}\right) c_{1}-1=0
$$

In particular, if A is the discrete Laplacian operator $a_{0}=6, a_{1}=-1$, we have

$$
\begin{equation*}
78 c_{1}^{2}-6 c_{0} c_{1}-18 c_{0}^{2}+10 c_{0}-9 c_{1}-1=0 \tag{4.6.13}
\end{equation*}
$$

The locus of the above equation is a hyperbola with $c_{0} \geq 0.3047298$ or $c_{0} \leq 0.2281788$.

The $\operatorname{LSq}(A C A) \varepsilon$-approximate inverse obtain in (4.6.8) and the INq ε-approximate inverses at level $\ell=2,3$ and 4 cannot fix into the equation (4.6.13) exactly. For each c_{1} we have constructed before, the corresponding \ddot{c}_{0} obtain from (4.6.13) which is closest to those constructed value c_{0} and the corresponding weight W are tabulated below:

Construction Technique	constructed		From (4.6.13)	Weight	
	c_{0}	c_{1}	\tilde{c}_{0}	w_{0}	w_{1}
TRq	0.2222222	0.0555556	0.2222222	1	0
LSq(AC-I)	0.1910112	0.0337079	0.1910112	6	-1
LSq(ACA-A)	0.1725293	0.0230044	0.1725503	4.704	-1
INq, $\ell=2$	0.1786	0.03569	0.1943	6.400	-1
INq, $\ell=3$	0.1803	0.02921	0.1833	5.322	-1
INq, $\ell=4$	0.1825	0.02791	0.1811	5.169	-1

4.7 EXPERIMENTAL RESULTS

We now discuss some numerical examples of boundary value problems, whose solutions have been approximated by the Ritz-Galerkin approximation discussed in Chapter 2.

Consider the problem

$$
\begin{cases}L u=-\Delta u\left(x_{0}, x_{1}, x_{2}\right)=\frac{4}{3} \sum_{i} \sin \left(1-2 x_{\mathbf{i}}\right) & \text { in } \Omega \tag{4.7.1}\\ u=0 & \text { on } \Omega\end{cases}
$$

where Ω is an equilateral triangle of unit side length, and $\left(x_{0}, x_{1}, x_{2}\right)$ is the Barycentric Coordinates of a point x in the triangle Ω.

The unique solution to (4.7.1) is

$$
u\left(x_{0}, x_{1}, x_{2}\right)=\sin \left(x_{0}\right) \sin \left(x_{1}\right) \sin \left(x_{2}\right)
$$

The solution of (4.7.1) was approximated by minimizing the quadratic functional

$$
I(u)=\int_{\Omega .}\left[\nabla u \cdot \nabla u-\frac{8}{3} u \sum_{\mathbf{i}} \sin \left(1-2 x_{i}\right)\right] d \mu_{\Omega}
$$

over the piecewise linear subspace $S_{0}^{1,0}$ of $H_{0}^{1}(\Omega)$.
It follows from (2.5.4) and (2.5.6) that we are solving the 1 -local linear system

$$
\mathrm{Au}^{\mathrm{h}}=\frac{3 \mathrm{~h}^{2}}{4 \mu_{\Omega}(\mathrm{T})} \int_{\Omega} \mathrm{f} \phi_{\alpha} \mathrm{d} \mu_{\Omega}=\frac{\mathrm{h}^{2}}{\mu_{\Omega}(\mathrm{T})} \int_{\Omega} \tilde{\mathrm{f}}_{\alpha}{ }_{\alpha} \mathrm{d} \mu_{\Omega}
$$

where A is the discrete Laplacian operator defined in (4.4.6) and $\tilde{f}=\sum_{i} \sin \left(1-2 x_{i}\right)$

If the 1 -point numerical quadrature is used, then we are solving the linear system

$$
A \tilde{u}^{h}=2 h^{2} \tilde{f}\left(X_{\alpha}\right)
$$

The numerical results are given in Table 4.7.1. The
quantity s in this table is

$$
s=\log \left(\frac{\left\|u-\tilde{u}^{h_{1}}\right\|_{L^{2}(\Omega)}}{\left\|u-\tilde{u}^{h_{2}}\right\|_{L^{2}(\Omega)}}\right) / \log \left(\frac{h_{1}}{h_{2}}\right)
$$

The norm $\left\|u-u^{h}\right\|_{L^{2}(\Omega)}$ is approximated by applying some
numerical quadrature to each of the triangular elements $T \in \tau^{h}$. In our numerical experiment, the third order Gregory type formula [L1, p74] are used to approximate the norm $\left\|u-\tilde{u}^{\mathrm{h}}\right\|_{L^{2}(\Omega)}$.

We see from Table 4.7.1 that the accuracy seems to be $O\left(h^{2}\right)$ in the norm $\|\cdot\|_{2}$ $L(\Omega)$

Table 4.7.1. (1-point formula)

ℓ	h	$\left\\|u-\tilde{u}^{h}\right\\|_{L}{ }^{2}(\Omega)$	s
2	0.25	5.4427×10^{-3}	
3	0.125	1.3725×10^{-3}	1.99
4	0.0625	3.4390×10^{-4}	2.00
5	0.03125	8.6298×10^{-5}	2.00

If the 7 -point numerical quadrature is used, then
$v_{\alpha}^{h}=h_{|\beta| \leq 1}^{2} F_{\alpha, \beta} \quad$ where $F_{\alpha, \beta}$ is the 7-point numerical
quadrature apply to the function

$$
\mathbf{f}=\sum_{\mathbf{i}} \sin \left(1-2 x_{\mathbf{i}}\right)
$$

The numerical results for the 7 -point numerical quadrature are given in Table 4.7.2

We see from the Table 4.7 .2 that the accuracy seems ro be $O\left(h^{2}\right)$ in the norm $\|\cdot\|_{L^{2}(\Omega)}$

Table 4.7 .2 (7-point formula)

Z	h	$\left\\|\mathrm{u}-\tilde{u}^{\mathrm{h}}\right\\|_{L^{2}(\Omega)}$	s
2	0.25	5.6333×10^{-3}	
3	0.125	1.4339×10^{-3}	1.97
4	0.0625	3.6016×10^{-4}	1.99
5	0.03125	9.0370×10^{-5}	2.00

Our second example is the problem of inhomogenous boundary condition defined by

$$
\begin{cases}L u=-\Delta u\left(x_{0}, x_{1}, x_{2}\right)=\frac{8}{3} \sum_{\dot{i}}\left(1-2 x_{i}\right) e^{-x_{i}^{2}} & \text { in } \Omega \tag{4.7.2}\\ u\left(x_{0}, x_{1}, x_{2}\right)=\sum_{i} e^{-x_{i}^{2}} & \text { on } \partial \Omega\end{cases}
$$

where Ω is an equilateral triangle of unit side length.
The unique solution to (4.7.2) is

$$
u\left(x_{0}, x_{1}, x_{2}\right)=\sum_{i} e^{-x_{i}^{2}}
$$

The Ritz-Galerkin approximation to the problem (4.7.2) in the finite dimensional affine space $S_{g}^{1,0}$ yields the following system of linear equations:

$$
\mathrm{Au}^{\mathrm{h}}=\frac{\mathrm{h}^{2}}{\mu_{\Omega}(\mathrm{T})} \int_{\Omega} f \phi_{\alpha} \mathrm{d} \mu_{\Omega}
$$

where $f=2 \sum_{i}\left(1-2 x_{i}\right) e^{-x_{i}^{2}}$ and A is the discrete Laplacian operator.

If the 1 -point or 7 -point numerical quadrature is used, we are solving the following 1 -local linear system

$$
A \tilde{u}^{\mathrm{h}}=\mathrm{F}^{\mathrm{h}}
$$

This linear system can be solved by the algorithm FAPIN as easy as the homogeneous boundary condition case by simply preset the values of \tilde{u}^{h} on the boundary of Ω_{h} by $\sum_{i} e^{-x_{i}^{2}}$ instead of zeros.

The results of the 1 -point and 7 -point numerical quadratures are given in Table 4.7 .3 and Table 4.7 .4 respectively. It seems from the results in these tables that the accuracy of the Ritz-Galerkin solution to the problem (4.7.2) are probably $O\left(h^{2}\right)$.

Table 4.7 .3 (1-point formula)

ℓ	h	$\left\\|\mathrm{u}-\tilde{u}^{\mathrm{h}}\right\\|_{L^{2}(\Omega)}$	s
2	0.25	1.9278×10^{-2}	
3	0.125	4.7939×10^{-3}	2.01
4	0.0625	1.1945×10^{-3}	2.00
5	0.03125	2.8678×10^{-4}	2.06

Table 4.7 .4 (7-point formula)

\imath	h	$\left\\|\mathrm{u}-\tilde{u}^{\mathrm{h}}\right\\|_{L^{2}(\Omega)}$	s
2	0.25	2.0306×10^{-2}	
3	0.125	5.1281×10^{-3}	1.99
4	0.0625	1.2849×10^{-3}	2.00
5	0.03125	3.1192×10^{-4}	2.04

As we can see from the first two examples, although the 7 -point formula is more accurate than the 1 -point formula, when they are applied to the Ritz-Galerkin approximation, for certain types of function u, the error in the 1 -point formula may cancel off part of the error induced by the Ritz-Galerkin approximation and give a better approximation to the true solution u than using
the 7 -point formula would give.
Our last example is to apply the algorithm FAPIN to
solve the problem.

$$
\left\{\begin{align*}
L u & =-\Delta u+\lambda u=f & & \text { in } \Omega \tag{4.7.3}\\
u & =\sin \left(x_{0}\right) \sin \left(x_{1}\right) \sin \left(x_{0}-x_{1}\right) & & \text { on } \partial \Omega
\end{align*}\right.
$$

with f chosen to be Lu and

$$
u=\sin \left(x_{1}-x_{2}\right) \sin \left(x_{1}\right) \sin \left(x_{2}\right)
$$

where Ω is an equilateral triangle of unit side length, and λ is equal to one of the eigenvalues of the operator $\Delta u=\lambda u$.

$$
\text { If } u_{\lambda}=\sin \left(2 \pi x_{0}\right)+\sin \left(2 \pi x_{1}\right)+\sin \left(2 \pi x_{2}\right) \text {, then it is easy }
$$

to check that $u_{\lambda}=0$ on $\partial \Omega$ 。
For this function u, we have

$$
\begin{aligned}
& D_{i} u_{\lambda}=-2 \pi \operatorname{Cos}\left(2 \pi x_{i+1}\right)+2 \pi \operatorname{Cos}\left(2 \pi x_{i-1}\right) \\
& D_{i, i}{ }_{\lambda}=-4 \pi^{2} \sin \left(2 \pi x_{i+1}\right)-4 \pi^{2} \sin \left(2 \pi x_{i-1}\right)
\end{aligned}
$$

It follows that

$$
\Delta u_{\lambda}=\frac{2}{3} \sum_{i} D_{i, i} u=-\frac{16 \pi^{2}}{3} \sum_{i} \sin \left(2 \pi x_{i}\right)=-\frac{16 \pi^{2}}{3} u
$$

Thus $\lambda=-\frac{16 \pi^{2}}{3}$ is the eigenvalue corresponding to
the eigenfunction $u_{\lambda}=\sum_{i} \sin \left(2 \pi x_{i}\right)$ of the Laplacian operator Δ. In fact, $\lambda_{n}=-\frac{16 n^{2} \pi^{2}}{3}$ are the eigenvalues corresponding to the eigenfunctions $u_{\lambda}=\sum_{i} \sin \left(2 n \pi x_{i}\right)$ for all $n \in N$ When $\lambda=-\frac{16 \pi^{2}}{3}$, the operator $L=-\Delta+\lambda I$ is singular. It follows from (2.5.5) that the Ritz-Galerkin solutions to (4.7.3) is the solution of the following linear system

$$
\begin{equation*}
L^{h} u^{h}=\left(A^{h}+\lambda B^{h}\right) u^{h}=\frac{3 h^{2}}{4} \int_{\Omega} f \phi_{\alpha} d \mu_{\Omega} \tag{4.7.4}
\end{equation*}
$$

where A^{h} is the discrete Laplacian operator and $B^{h}=\frac{h^{2}}{8} \tilde{B}^{h}, \tilde{B}^{h}$ can be represented as

If the 1 -point or 7 -point numerical quadrature is used, we are solving the linear system

$$
\begin{equation*}
L^{h} \tilde{u}^{h}=\left(A^{h}+\lambda B^{h}\right) \tilde{u}^{h}=F^{h} \tag{4.7.5}
\end{equation*}
$$

In this case, $\lambda=-\frac{16 \pi^{2}}{3}$ is approximately equal to the discrete eigenvalue λ^{h} of L^{h}. Thus the linear operator L^{h} is nearly singuiar. The linear system (4.7.5) becomes difficult to solve by some algorithm. However, if (4.7.5) has a solution. Theorem 4.2.1 tells us that a solution to (4.7.5) is constructed by (4.2.5).

Since the problem (4.7.3) has a solution

$$
u=\sin \left(x_{0}\right) \sin \left(x_{1}\right) \sin \left(x_{0}-x_{1}\right)
$$

thus the linear system (4.7.5) still can be solved by the algorithm FAPIN, although L^{h} is almost singular.

It follows from (4.4.8) that the Ritz-Galerkin best approximation to the operator L^{k} at the $k^{\text {th }}$ level can be written as

$$
\left\{\begin{array}{l}
L^{\ell}=A^{h}+\lambda B^{h} \\
L^{k-1}=A^{k}+4 \lambda B^{k} \quad \text { for } \quad 2 \leq k \leq \ell
\end{array}\right.
$$

or they can be expressed in terms of A^{h} and \tilde{B}^{h} as

$$
L^{k}=A^{h}+4^{\ell-k}\left(\frac{\lambda h^{2}}{8}\right) \tilde{B}^{h} \quad \text { for } \quad 2 \leq k \leq \ell
$$

The approximate inverse for L^{k} at level k can be constructed by the $W T q$ method for a proper choice of weight W.

If u is a solution to the equation (4.7.3), since L is singular, it implies $u+k u_{\lambda}$ is also a solution to $L u=f$, where k is a constant and u_{λ} is the eigenfunction of Δ corresponding to the eigenvalue λ. Because of the symmetry of the algorithm we are using, the solution $\tilde{\mathrm{u}}^{\mathbf{h}}$ is, like $\tilde{\mathrm{F}}$, antisymmetric with respect to the line $x_{1}-x_{2}=0$. Thus $\kappa=0$, and we are able to compare $\mathrm{u}^{\text {h }}$ with u.

Numerical results with the 1 -point and 7 -point formulas apply to (4.7.4) are given in Table 4.7 .5 and Table 4.7 .6 respectively. It seems from these tables that the accuracy of the Ritz-Galerkin solutions to the problem (4.7.3) for the 1 -point and 7-point numerical quadratures are both $0\left(h^{2}\right)$.

Table 4.7 .5 (1-point formula)

ℓ	h	$\left\\|\mathrm{u}-\tilde{u}^{\mathrm{h}}\right\\|_{L^{2}(\Omega)}$	s
2	0.25	1.5042×10^{-2}	
3	0.125	3.3667×10^{-3}	2.16
4	0.0625	8.9534×10^{-4}	1.91
5	0.03125	2.2858×10^{-4}	1.97

Table 4.7 .6 (7-point formula)

ℓ	h	$\left\\|u-\tilde{u}^{h}\right\\|_{L^{2}(\Omega)}$	s
2	0.25	1.8307×10^{-2}	
3	0.125	2.9901×10^{-3}	2.61
4	0.0625	7.7986×10^{-4}	1.94
5	0.03125	1.9813×10^{-4}	1.98

An even more striking demonstration is provided by taking $\lambda=\lambda^{h}$, in this case the linear operator L^{h} is almost singular, and yet the linear system still can be solved by the algorithm FAPIN.

Numerical results for $\lambda=\lambda^{K}=-52.810$ at level $\ell=5$ are given in Table 4.7.7. The norm $\left\|F^{h}-L^{h} \tilde{u}_{k}^{h}\right\|_{2}$ in this table is the root-mean-square of the residual $F^{h}-L^{h} \tilde{u}_{k}^{h}$

Table 4.7.7 ($\left.L^{h} u^{h}=\left(A^{h}+\lambda B^{h}\right) u^{h}=F^{h}, u_{0}=0\right)$

Iteration	$\left\\|F^{h}-L^{h} u_{k}^{h}\right\\|_{2}, \lambda^{h}=-52.810$	
	1-point formula	7 -point formula
	3.0428×10^{-2}	3.0430×10^{-2}
1	4.6462×10^{-3}	4.6464×10^{-3}
2	3.5905×10^{-4}	3.5907×10^{-4}
3	2.8968×10^{-5}	2.8963×10^{-5}
4	3.5354×10^{-6}	3.5372×10^{-6}
5	3.8152×10^{-7}	3.7858×10^{-7}
6	1.2493×10^{-7}	1.2448×10^{-7}
7	6.4122×10^{-8}	6.4493×10^{-8}

The rate of convergence for the 1 -point and 7 -point formula with $\lambda^{h}=-52.810$ are showed in Table 4.7 .8 and Table 4.7.9 respectively.

Table 4.7.8 (1-point formula, $\lambda^{h}=-52.810$)

ℓ	h	$\left\\|u-\tilde{u}^{\mathrm{h}}\right\\|_{L^{2}(\Omega)}$	s
2	0.25	1.5626×10^{-2}	
3	0.125	3.3356×10^{-3}	2.23
4	0.0625	8.5449×10^{-4}	1.96
5	0.03125	1.8673×10^{-4}	2.19

Table 4.7.9 (7-point formula, $\lambda^{h}=-52.810$)

ℓ	h	$\left\\|u-\tilde{u}^{\mathrm{h}}\right\\|_{L^{2}(\Omega)}$	s
2	0.25	1.9033×10^{-2}	
3	0.125	2.9610×10^{-3}	2.68
4	0.0625	7.4242×10^{-4}	2.00
5	0.03125	1.6120×10^{-4}	2.20

We observe that as ℓ becomes large, the vector F^{h} in the linear system $L^{h} u^{h}=F^{h}$ tends to zero and u^{h} tends to the exact solution u. But in terms of actual computing, because of the round off error, the Ritz-Galerkin solution to the problem
$\mathrm{Lu}=\mathrm{f}$ can only give a good approximation in single arithmetic if the level ℓ is less than 6 . However, a better approximation can be obtained by refining, the mesh and using the double precision arithmetic.

APPENDIX A

FORTRAN PROGRAMS OF FAPIN FOR SOLVING A 1-LOCAL LINEAR SYSTEM IN A TRIANGULAR DOMAIN

In this appendix, we describe in detail the FORTRAN subroutine FAPIN for solving a 1-local linear system $A x=y$ in a triangular domain Ω.

As shown in Fig. Al, the integer
lattice $\left(i_{1}, i_{2}\right)$ of the triangular grids are numbered from top to bottom for i_{1} and from left to right for i_{2}. The vectors x^{k}, y and r^{k} are all stored in each of the one dimensional array X, Y and R respectively. In particular,

Fig. A1 we store $x_{i_{1}, i_{2}}^{k}$ as $X(N(K)+M(I 1)+I 2), r_{i_{1}, i_{2}}^{k}$ as $R(N(K)+M(I 1)+I 2), \quad y_{i_{1}, i_{2}}^{\ell} \quad$ as $\quad Y(M(I 1)+I 2)$.

Starting with $N(1)=0, M(11)$ represents the total number of points in row 1, row $2, \because$ up to row ($i_{1}-1$). Similarly, with $N(L)=0, N(K)$ indicates the total number of points in Γ^{2}, $\Gamma^{\ell-1}$, \cdots up to Γ^{k-1}.

In each of the iteration, the residual vector $r^{\ell} \leftarrow y-A x$ and $r^{k} \leftarrow r^{k}-A^{k} x^{k}$ are computed in the subroutine RESINV by setting the logical parameter RESIDU $=\cdot$ TRUE•, the vectors $x^{k} \leftarrow x^{k}+B^{k}\left(r^{k}\right)$ are also evaluated in this subroutine by setting

RESIDU $=$ •FALSE $\cdot \quad$ The projection steps $\mathrm{r}^{\mathrm{k}-1} \leftarrow \mathrm{P}^{\mathrm{k}}\left(\mathrm{r}^{\mathrm{k}}\right)$ and interpolation steps $x^{k}+Q^{k}\left(x^{k-1}\right)$ are carried out in the subroutine FAPIN. Once the norm $\|r\|$ is less than the tolerance TOL or when the number of iterations reaches NIT-1, the computed results are passed to the calling program.

Fig. A1

Fig. A. 2

```
C A SUBRUUTINE TU SULVE THE LINEAR SYSTEM A.X = Y IN A TRIANGULAR DOMAIN.
CLK : AN INTEGER ARRAY OF UIMENSION = K, LK(K) = 2**K.
G \:AN INTEGER ARRAY OF DIMENSICN = K; STRUCTURE CONSTANTS, N(K) =
        total number of points in the triangllaf lattice in level k-1,
        LEVEL K,...,LEVEL L.
    A: AN INTEGER ARFAY OF'DIMENSICN = 1+2**K;STRUCTURE CONSTANTS,M(I1)=
        TOTAL NUMBER OF POINTS IN ROW1, ROW2.....ROG(I-1).
    X : AN ARRAY OF DIMENSION = DIMXY, TO STORE THE VECTOR XK, FROM K = L
        T0 K = 2. xx(11,I2)=x(iv(K)+M(I1)+I2).
    O : AN AFKAY OF DIMENSION = DINXR, TO STORE THE PESIDUAL VECTORS RK,
        FFCM TOP LEVEL K=L TU UOTTDM LEVEL K=2. RK(II,I2)=R(N(K)+M(I1)+I2)
    IT : ON RETURN,IT SHOWS THE NUMBER OF NORNS CCMFUTED.
    NCFM: AN INTEGER AGRAY DF DTMENSIDN = NIT,IT SHOWS THE HISTROY OF THE
        NORM OF THE RESIUUAL R.
    TOL : SUBRGUTINE RETURNS X GHEN NIFM OF & HAS less than the tolerance
        TOL GR NUMBER OF ITERATICNS REACHES NIT-1.
        SUEEDUTINE FAPIA (X,R,Y,NCRM,LK,N,N,EIMXF,DIMY,DIMLK,DIMM,IT,NIT,
        * TOL,AO, 41,CO,C1)
        INTEGER DIMXR,DIIAY,OIMLK,DIMM,LK(DIMLK),M(DIMM),N(OIMLX)
        REAL NORM(NIT),X(UIMXK),R(DIMXP),Y(DINY)
        HEAL AO(DIMLK),A1(DIMLK),CO(DINLK),CI(DIMLK)
        CUMMON L,K,SQNM
        L=DIMLK
        L_L=L-1
        NL=2**L
C TQ STUPE THE TMG COMSTANT COEFFICIENTS OF -AK IN AO(K),AI(K).
        DO 100 I=2,L
        AO(I)=-AO(I)
        A1 (I)=-A1(I)
    100 comtinue
C NLZ is the tOTAL NUMBEE OF INTERIGf fCINTS
        NL_2=(NL-1)*(NL-2)/2
        NIT1=NIT-1
        DO OOI IT=1,NITI
        K=L
        SONM=0.0
C TC COMPUTE R=Y-A.X.
        CALL FESINVYX,R,Y,LK,M,N,DIMXP,DIMY,DIMLK,DIMM,AO,AI,.TRUE..,
        * SALLMESORT(SGMRUE.)
        SUNM=SGRT(SONM/NLZ)
        NORM(IT)=SQNM
        IF(SGNM -LT. TOL) RETURN
C IF L F 2 ,TO COMPUTE X2=C(H2).
        IF(L.EQ.2) GO TO 500
C PROJECT FK TOLEVEL K-1.
        DO 800 LL=2,L1
        K=L-LL+1
        JK1=LK(K)
        DO 800 I 1=3,JK1
        J3=N(K)+M(11)
        13=N(K+1)+M(2*11-1)
        IK1=1 1-1
        DO 800 I 2=2, IK1
        J= J3+I2
        I=13+2*I 2-1
        300 R(J)=R(I)+0.5*(R(I-I)+R(I+1)+R(I- P*II+1)+R(I-2*II+2)+R(I+2*I1)+
                F(1+2*[1-1))
```

C ra COMPUTE $\times 2=$ C(R2).
CALL PES INV (R, X,Y,LK, M, N, DIMXR, DIMY, DIMLK,DIMM,CO,C1, FALSE.,
: \quad FALSE.)
C TO INTERPOLATE X IN THE SPACE K+1 FQGM SFACE K.
C TO COMPUTE $\times K=$ OK $(\times K 1)$, WHERE K1 $=K-1$. $500 \quad J K 1=L K(K-1)$ DO 300 I $1=2$, JK 1
J3 $=N(K-1)+M(11)$
$I 3=N(K)+M(2 * I 1-1)$
00300 I $2=2$. 11
$I=13+2 * 12-1$
$J=J 3+12$
IF (K.EQ.L) GO TO 350
$x(I)=x(J)$
$x(I-1)=0 \cdot 5+(x(J)+x(J-1))$
$x(1+2 * I 1-2)=0.5 \div(x(j-1)+x(J+I 1))$
$x(1+2 * 11-1)=0.5 *(x(J)+x(J+I 1))$
GO TO 300
C AT TOP LEVEL L, XL=XL $+G L(X L 1)$.
$350 \times(I)=\times(J)+\times(I)$ $x(1-1)=0.5+(x(J)+x(J-1))+x(I-1)$
$x(1+2 * I 1-2)=0.5 *(x(J-1)+x(J+I 1))+x(I+2 * I 1-2)$ $x(I+2 * I 1-1)=0.5 *(x(J)+x(J+I 1))+x(I+2 * I 1-1)$ 300 CONTINUE
C TO COMPUTE RK $=$ RK-AK $(X K)$. CALL RESINV K, F, Y, LK, M, N, DIMXR, DIMY, DIMLK, DIMM,AO,A1, FALSE.,
C TE COMPUTE $x K=\dot{X K}+$ TRUE. $)$ (RK).
5.0 CALL RESINVIR,X,Y,LK,M,N,DIMXR,DIMY,DIMLK,DIMM,CO,CI, FALSE.,

* $1 F(K$ FALSE.)

IF (K.EQ.L) GO TU 901
$K=K+1$ GOTO 600
301 CONT INUE
IT=NIT
C TO COMPUTE R $=Y-A(X)$ AND THE NORM OF THE. FESIMUAL F. SQNM=0.
CALL RESINV (X, $\mathcal{C}, Y, L K, M, N, D I M X R, D I M Y, D I M L K, D I N M, A O, A 1, ~-T R U E ., ~$ ヶ •TRUE.)
NGFM(NIT) = SURT (SQNM/NLE)
RE TURN
END

APPENDIX B

FORTRAN PROGRAMS FOR PREDICTING THE LIMIT OF SEQUENCE

In Chapter 4, we have mentioned that the convergence of a sequence can sometimes be accelerated by the application of a family of non-linear sequence-to-sequence transformations proposed by D. Shanks [S3]. These transformations are defined as follows. Let $\left\{x_{n}\right\}$ be a sequence of numbers, let

$$
\Delta x_{n}=x_{n+1}-x_{n}
$$

and let k be a positive integer. Then a new sequence $\left\{B_{k, m}\right\}(m=k, k+1, k+2, \cdots)$, 'the $k ' t h$ order transform of $\left\{x_{n}\right\}$ ", is defined, if the denominator does not vanish, by

$$
\begin{align*}
&\left|\begin{array}{cccc}
x_{m-k} & \cdots & x_{m-1} & x_{m} \\
\Delta x_{m-k} & \cdots & \Delta x_{m-1} & \Delta x_{m} \\
\Delta x_{m-k+1} & \cdots & \Delta x_{m} & \Delta x_{m+1} \\
\vdots & & \vdots & \vdots \\
\Delta x_{m-1} & \cdots & & \Delta x_{m+k-1}
\end{array}\right| \tag{1}\\
& \left.\begin{array}{cccc}
1 & \cdots & 1 & \vdots 1 \\
\Delta x_{m-k} & \cdots & \Delta x_{m-1} & \Delta x_{m} \\
\Delta x_{m-k+1} & \cdots & \Delta x_{m} & \Delta x_{m+1} \\
\vdots & & \cdots & \vdots \\
\Delta x_{m-1} & \cdots & & \Delta x_{m+k-1}
\end{array} \right\rvert\,
\end{align*}
$$

We observe that the expression in (1) can be written as

$$
B_{k, m}=\left|\begin{array}{ccccc}
\Delta x_{m-1} & \cdots & \Delta x_{m-k+1} & \Delta x_{m-k} & x_{m-k} \\
\vdots & & \vdots & \vdots & \vdots \\
\Delta x_{m+k-2} & \cdots & \Delta x_{m} & \Delta x_{m-1} & x_{m-1} \\
\Delta x_{m+k-1} & \cdots & \Delta x_{m+1} & \Delta x_{m} & x_{m}
\end{array}\right|
$$

and the value $B_{k, m}$ is the solution of the following system of linear equations :

$$
\left(\begin{array}{ccccc}
\Delta x_{m-1} & & \Delta x_{m-k+1} & \Delta x_{m-k} & 1 \tag{2}\\
\vdots & & \vdots & \vdots & \vdots \\
\Delta x_{m+k-2} & \cdots & \Delta x_{m} & \Delta x_{m-1} & 1 \\
\Delta x_{m+k-1} & \cdots & \Delta x_{m+1} & \Delta x_{m} & 1
\end{array}\right)\left(\begin{array}{l}
z_{0} \\
z_{k-1} \\
B_{k, m}
\end{array}\right)=\left(\begin{array}{l}
x_{m-k} \\
\\
x_{m-1} \\
x_{m}
\end{array}\right)
$$

Thus the value of $B_{k, m}$ can be obtained by Gaussian Elimination. The whole procedure is carried out by the two subroutines SEQSMT and DETERM as shown in Fig. B1 and Fig. B2 respectively. At the end of the execution, the program SEQSMT
returns the transformed sequence $\left\{B_{k, m}\right\}$ stored in the array $B K$ and the order of transformation for each term $B_{k, m}$ stored in the integer array ORDER to the calling program.

Fig. B1

```
C SEOSMT IS A SUBRDUTINE TO GENEFATE A NEN SEQUENCE BK(M) IN ACCELERATING
C THF CONVERGENGE OF SLUNLY CGNVERGENT SEQUENCES AND IN INDUCING
C CCNVEFGENT OF SUME DIVERGENCE SEQUENCES. IN CASE thE NATRIX INDUCE Ey
C THE fEGUIREC כROER OF TRANSFGRMATICN IS SINGULAR, THE ORDER OF
    TRANSFGRMATION WILL BE REDLCEO TC A LCWEF ORDER.
DAFANETEFS OF THE SUBROUTINE REQUIPE:
    1. x: an array cf the jriginal seguence
    2. N: DIMENSION OF THE ARRAY X
    3. K: THE OHDEF OF ThANSFORMAT IJN OF THE SEQUENCE X (N) (BETWEEN O
                                    AND (N-1)/2).
    4. JK: REAL AIRRAY, TO STDRE THE GENERATED NEN SEGUENCE.
    5. DIMBK: DIMENSION OF BK, DIMEK = N-2*K.
    6. A : AN DUMMY ARRAY UF DIAMENSICN KPI BY KP2
    7. KP1 : EQUAL TU K+1
    8. KP2 : EQUAL TOK+2
        9. ORDER : AN INTEGER ARRAY (DIMENSION=DIMBK) TC STORE THE ORDFR
                        OF TRANSFGRMATION.
    SUEFOUTINE SEQSMT(X,N,K,BK,DIMBK,A,KP1,KP2,CRDER)
    INTEGER DIMEK, ORDER
    DIMENSION X(N), OK(DIMEK),A(KFI,KP2),CFDEF(OIMBK)
        IF(N.GE.2*K+1) GO TO 4
        KK=(N-1)/2
C IF ORDER OF TRANSFORMATION IS CUT OF RANGE,STOP RUN.
        WRITE (5,65) KK
    66 FORMAT ('O','ORDER OF TRANSFGRNATICN MLST EE EETNEEN I AND •, I2)
        STOP
        4 \mp@code { A M K = N - K }
        DO 1CO NK=KP1,NMK
        K1=KP1
        k2=KP2
        CALL DETERM(X,N:MK,K1,K2,A,BKM,E1)
            GO TO 110
C IF THE COEFFICIENT MATRIX UF THE LINEAR EGUATIDNS IS SINGULAR, REDLCE
            THE ORDER OF TRANSFORMATICN FOR THE TERN BK(M) EY 1.
    1 K1=K1-1
        K2=к2-1
        CALL DETERM(X,N,MK,K1,K2,A,BKM,E1)
    110 ORDER(MK-K)=K1-1
100 BK (MK-K)=BKM
        RE TURN
        END
```

```
C THE MF THGO UF GAUSSIAN ELIMINATICN TN COMPUTF. THE RATIO OF TWO
    DETERMINANTS.
    #AHTIAL FIVUTAL CUNUENSATIUN IS USFO- A SEARCH IS MADE IN EACH COLLMN
    FOF THE LARGEST ELEMENT EELDN THE DIAGCNAL, BUT OTHER COLUMNS ARE
    NOT SEARCHED.
    SUEROUTINE DETEKN(X,N,NK,KF1,KP2,A,EKN,*)
    DIMENSION A(KP1,KPZ),X(N)
    SMALL=0.1E-30
    IF (KP1.GE.2) GG TD 100
    BK:N=X(MK)
    FETURN
C TO CREAT THE AUGMENTEU MATRIX A(I,J)
    100 K=KP1-1
            OO 7EO I=1,KP1
            DO 700 J=1.K
            II=mk+I -J
    700 A(I,J)=X(II)-x(II-1)
    A(I,KP1)=1.
    750 A(I,KP2)=X(MK+I-KP1)
C GEGIN THE PAFTIAL PIVOTAL CONDENSATION
    DO 600 1I=1.K
    IIP1=I I +1
    L=II
C FIND TEFNM IN COLUNIN II OUV UR EELCW MAIN DIAGCNAL, THAT IS LAPGEST IN
C ABSGLUTE VALUE. AFTER THE SEARCH, L IS THE RON NUMBER OF THE
C LAHGFST ELENENT.
    DO 400 I=ITPI,KPI
    40C IF (ABS(A(I,II)).GT.ABS(A(L,II))) L=I
C IF THF MATRIX IS SINGULAR, RETURN EACK TO THE CALLING PROGRAM TO
    REUUCE THE UROER OF TRANSFDRMATION BY & AND PEENTER THIS SUPPRCGRAM
    If (ABS(A(L,II)).LT.SMALL) RETURN1
    IF (L.EQ.II) GU TO 500
C INTEFCHANGE ROUS L ANO II, FROM DIAGONAL RIGHT
    DO 410 J=II,KF2
    TEMP=A(II,J)
    A(II,J)=A(L,J)
    410 A(L,J) =TEMP
C El_IMINATE ALL ELEMENTS IN COLUMN I I JFLOW MAIN DIAGCNAL
    500 DO E0O I=IIPI,KPI
        FACTOR=A(I,II)/A(II,II)
        DO 600 J=IIP1,KP2
    500 A(I,J)=A(I,J)-FACTOR*A(II,J)
C IF THE MATRIX IS SINGULAR, RETURN EACK TO THE CALLING PRGGRAM TO
    REDUCE THE OHDER OF TRANSFORMATION BY I AND REENTER THIS SUEPRGGRAM
    IF(AES(A(KP1,KP1)).LT.SMALL) RETURN1
    EKM=A(KP1,KP2)/A(KP1,KP1)
    RETURN
    END
```

Fig. B2

APPENDIX C

FORTRAN PROGRAMS TO COMPUTE THE L^{2} norm of the function $U-U^{h}$

This appendix contains FORTRAN FUNCTION subprograms to compute the L^{2} norm of the error functional $U-U^{h}$, where U^{h} is the Ritz-Galerkin solutions to U in the finite dimensional subspace $S_{g}^{l, 0}$.

Fig. C2 contains the FUNCTION subprogram BYCO to compute the Barycentric Coordinates of the integer lattice ($\mathrm{i}_{1}, \mathrm{i}_{2}$) (see Appendix A) w.r.t. the triangle $X_{0} X_{1} X_{2}$.

Fig. C1 contains the FUNCTION subprogram L2SQ. It interpolates the function U^{h} and then computes the square of the L^{2} norm of the function $U-U^{h}$ in each of the triangle $Y_{0} Y_{1} Y_{2}$ by using some numerical quadratures on a triangle T. The Barycentric Coordinates of the three vertices $\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{Y}_{2}$ are given by the calling program, and the Barycentric Coordinates of each point $X\left(x_{0}, x_{1}, x_{2}\right)$ in $Y_{0} Y_{1} Y_{2}$ w.r.t. the large triangle $X_{0} X_{1} X_{2}$ are computed according to the linear transformation (1.3.4) given in Chapter 1.

Fig. C3 contains the FUNCTION subprogram L2NORM. It computes the L^{2} norm of $U-U^{h}$ over the triangle $X_{0} X_{1} X_{2}$.

Fig. C1

Fig. C2
c to compute the darycenteic coordinates of a point in the triangle C T.

```
SUBROUTINE GYCO(II,I Z,H.BC)
REAL BC(3)
SMALL=1 .E-35
3C(1)=1.-(11-1.)*H
IF(AES(BC(1)).LT.SMALL) BC(1)=0.
BC(3)=(12-1.)*H
IF (ABS(BC(3)).LT.SMALL) BC(3)=0.
3C(2)=1.-3C(1)-3C(3)
IF (ABS(BC(2)).LT.SMALL) EC(2)=0.
EETUFN
ENO
```

Fig. C3

C A FUNCTIOV SUBدRUGYAM TJ EUMPUTE THE LZ NCRN OF THE FUNCTION (U - x)
C IN A TRIANGULAF DOMAIN T, WHEREX IS THE RITZ-GALERKIN SOLUTICN TO
c U AT LEVEGL.
G QUACON IS TFE QJADRATURE NORMALIZE CDNSTANT.
c $N L=2 * * L$ 。
FUNCTIGN _ 2NURM (X, M, DIMX, DIMM, NL, NH, NOQUAD, OUADT, QUACON)
INTEGER DIMX, DIMM,M(UIMA)
REAL L 2NORM - QUADT(NOQUAD), X(DIMX),YO(3),Y1(3),Y2 (3)
REAL L2SG
EPROR=0.
$H=1 . / N L$
DO $90 \quad \mathrm{I} 1=1, \mathrm{NL}$
DO 90 12 2 1, I 1
$I=M(I 1)+I 2$
CALL BYCO(II,I2,H,YO)
CALL BYCO(I $1+1,12, H, Y 1)$
CALL BYCO(I1+1, I $2+1, H, Y 2)$
C YO,YI,Y2 ARE THE BARRYCENTKIC CODRDINATES DF THE THREE VERTICES OF T. ERROR=ERRJR $+L 2 S Q(N H, N D Q U A D, Q U A D T, X(I), X(I+I 1), X(I+I 1+1), Y O, Y 1, Y 2)$
IF (I2.EQ.I1) GO TO $\because 0$
CALL BYCO(I1, I $2+1, H, Y 1)$
ERRCR=ERROR+L2SQ(NH,NOQUAD, QUADT, X(I),X(I+1),XYI+I1+1),YO,Y1,YZ)
90 CONTINUE
L2NORM = SQRT (ERROR* QUACUN)
RETURN
END

APPENDIX D

FORTRAN PROGRAMS TO CONSTRUCT THE DISCRETE EIGENVALUE λ^{h}

This appendix contains four FORTRAN subprograms to solve the generalized eigenvalue problem

$$
A^{h} x^{h}=\lambda^{h} B^{h} x^{h}
$$

in a triangular domain Ω.
The algorithm can be described as [F7]

$$
r^{(k)}
$$

$$
\left(A^{h}-\lambda h_{B}\right)^{\prime} x^{(k)}
$$

$$
w^{(k)}
$$

$$
B_{x}{ }_{x}(k)
$$

$v^{(k)}$
$\left(r^{(k)}, x^{(k)}\right) /\left(w^{(k)}, x^{(k)}\right)$
$x^{(k+1)} \quad-\quad x^{(k)}-C^{h} r^{(k)}$
$\lambda^{(k+1)}$
$\lambda^{(k)}+v^{(k)}$

Fig. D1 contains the subprogram RESIDU. It computes the residual $r^{(k)}$, the vector $w^{(k)}$ and the approximate eigenvector $x^{(k)}$. The inner products $\left(r^{(k)}, x^{(k)}\right)$ and $\left(w^{(k)}, x^{(k)}\right)$ are also computed in this subprogram while evaluating $r^{(k)}$ and $w^{(k)}$ by setting INNPRO $=\cdot$ TRUE \cdot

Fig. D2 contains the subprogram APRINV. It constructs an $W_{q} \varepsilon$-approximate inverse C^{h} to $A^{h}-\lambda(k)_{B}{ }^{h}$ by calling the subprogram Gauss listed in Fig. D3 to solve a system of linear equations.

The step (1) is not executed unless $\left|v^{(k)}-v^{(k-1)}\right|<$ EPS, where EPS is a given constant. After $\left|v^{(k)}-v^{(k-1)}\right|$ is less than the tolerance $T O L$ or the number of iterations reaches NIT, the subprogram EIGEN returns a series of sucessive approximate eigenvalues to the calling program.

Fig. D1

```
C----TG FEFINE THE EIGENVECTOF X AND CCMPUTF THE RFSICUAL=(A-EIGVAL.I)X
C----TO CQMPUTE THE VECTOR RK OP WK, ACO=AAO, ACI=AA1, XR=X, RX=R,
C INNPRO=.TRUE.
C----TO FEFINE THE EIGENVECTOP X, ACO=-CO, ACI=-CI, XR=R, RX=X,
    I NNORO=.FALSE.
        SUEFOUTINE KESIDU(XR,RX,N,DIMXI,DIMM,ACO,ACI,SUMRX, NL, INNPRO)
        INTFGER DIMXR,DIMM,M(JIMM)
        REAL XF(DIMXR),FX(DIMXR)
        LOGICAL INNPRJ
        SMALL=1.E-35
        DO 100 II=3,NL
        IK 1= I 1-1
        DO 100 I2=2,IK1
        I=m(I1)+I2
        YX=RX(I)
        IF (INNPRO) YX=0.
        RX(I) = Y X+Aこ0* XR(I) + ACI* (XR(I-I)+XP(I+1)+XR(I-II)+XR(I-II+1)+
        *
                            XR(I+II)+XR(I+II+1)
C----TO COMPUTE THE INNER NRODUCT IF INNPRO = TRUE.
        IF(INVPRO.AN).ABS(RX(I)).GT.SMALL.AND.ABS(XR(I)).GT.SMALL)
        * SUMRX=SUMRX+XR(I)*RX(I)
    1:0 CONTINUE
        RETURN
        END
```

```
G---CONSTRUCTION GF THE NTQ AFPAOXIMATICN INVERSE C OF THE LINEAR
    GPEPATOR a wITH wEIGHTS wO,N1.
        SUBFOUTINE APRINV(AO,A1,CO,C1,WO,W1)
        FEAL A(2,3),C(2)
        A(1,3) = NO
        A(2,3)=w 1
        A(1,1)=AO*WO+6.*A1*N1
        AOP2A1=AO+2.*A1
        A(2,1)=A1**O+AOP 2A 1**1
        A(1,2)=6.*A(2,1)
        A(2,2)=AOP2A1*WO+(15.*A1+2.*A0)**1
        CALL GAUSS (A,C,2,3,01)
        C0=C(1)
        C!=C(2)
        RETURN
        1 WRITE(6,77)
    77 FORMAT(* THE AUGMENTED MATRIX IS SINGLLAR')
        STOP
        END
```

Fig. D2

```
G THL METHOD OF GAUSSIAN ELIMI NATICN FOR SDLVING SIMULTANEDUS LINEAR
C EQUATIONS.
G:AFTIAL PIVITAL CONDENSATIUN IS USEC- A SEAFCH IS MADE IN EACH COLUMN
        FOR THE LARGEST ELEMENT EELON THE DIAGONAL. BUT DTHER COLUMNS ARE
        NOT SEARCHED.
        SUGROUTINF GAUSS (A,X,N,NP1,*)
        REAL A(N,NP1),X(N)
        SMALL=0.1E-35
        NM1=N-1
G BEGIN THE PARTIAL PIVOTAL GONDENSATION
        DO 600 K=1,NM1
        KP1 =K+1
        L=K
C FINO TFMQ IN CJLUMN K, ON OR GELOW MAIN DIAGONAL, THAT IS LARGEST IN
C AESOLUTE VALUE. AFTER THE SEARCH, L IS THE ROW NUMBER OF THE
G largest element.
        DO400 I=KP1,N
    400 IF (ABS(A(I,K)).GT.ABS(A(L,K))) L=I
        IF (AES(A(L,K)),LE.SMALL) RETUFNI
        IF (L.EQ.K) GO TO 500
G INTERCHANGE ROWS L AND K, FRCM DIAGONAL RIGHT
        DC 410 J=K,N21
        TEMP=A(K,J)
        A(K,J)=A(L,j)
        410 A(L,J)=TEMP
C ELIMINATF ALL ELEMENTS IN COLUMN K BELOW MAIN OIAGONAL
        500 D0 600 I=KPI,N
        FACTOF=A(I,K)/A(K,K)
        DO 000 J=KP1,NP1
        600 A(I, J)=A(I,J)-FACTOR*A(K,J)
C BACK SUESTITUTION
        IF(AES(A(N,V)).LT.SMALL) RETISNN1
        X(N)=A(N,NO1)/A(N,N)
        OD710 IN=1, NW1
        I=N-IN
        IP I=I +1
        SUM=0.
        DO 700 J=[ P1,N
    700 SUN:=SUM+A(I,J)*X(J)
    710 X(I)=(A(I,NP1)-SUM)/A(I,I)
        RETURN
        END
```

Fig. D3

Fig. D4

APPENIX E

FORTRAN PROGRAMS TO SOLVE THE POISSON EQUATION
$L U=-\Delta U+\lambda U=\mathbf{f}$ IN A TRIANGULAR DOMAIN Ω

This appendix contains FORTRAN programs to solve the boundary value problem
$\left\{\begin{array}{lr}L U=-\Delta U+\lambda U=f & \text { in } \Omega \\ U=g & \end{array}\right.$

Fig. E1 is the Fortran subroutine SPRANY, to produce an analysis report of the norms of the residue \mathbf{r} and the spectral radius of the linear operator $I-C^{h} L^{h}$, where C^{h} is an ε approximate inverse to the discrete linear operator L^{h}.

Fig. E2 contains the FORTRAN subroutine PRINTG to print out the vector X, Y or R in an triangular form.

Fig. E3 contains the FUNCTION subprogram U, the exact solution of $L U=f$.

Fig. E4 contains the main program to construct the RitzGalerkin solution to $L U=f$.

Fig. E1

Fig. E2

```
…-.-Preint out the cuntents of values in the artay xor or y in a
C .... TFIANGULAR FORM.
C----K SPEGIFY THE LEVEL AT AHICH \(x\) DR R TC EE paINTED.
C———TO PRINT \(X\) IF \(\times Y\) K \(=1\).
C....-TO PFINT Y IF XYR \(=20\)
C-..-TO PRINT 2 IF XYR \(=3: ~\)
    SUBRCUTINE PRINTG(X,R, Y,LK,M,N,DIMXR,DIMY,DIMLK,OIMM,XYR,K)
    INTEGEE DIMXR,DIMY,DIMLK.DIMN, XYR,LK(DIMLK),M(DIMN),N(DIMLK)
    REAL X (DIMXR),R(DIMXR),Y(DIMY),P(8)
    \(J=1\)
    IKO=1
    IK1 \(=\) LK \((K)+1\)
    IF (XYR.NE.Z) GO TO 70
C-----TO FFINT THE INTERIOR NUINTS OF Y.
        IKO \(=3\)
        IK1=LK (K)
    70 DO 200 \(11=1 \mathrm{KO}, 1 \times 1\)
        J3 \(=\mathrm{N}(\mathrm{K})+\mathrm{M}(11\) )
        1K \(3=1\)
        1K4 = I 1
        IF (XYR.NE.Z) GU TO 72
        IK 3 = C
        IK \(4=11-1\)
    72 DO 250 12=1K3.1n4
C----DNLY PRINT OUT THE FIRST 3 VALUES IN EACH RCW.
        IF (J.GT. 8 ) GO IC 24
        \(1=j 3+12\)
        GO TO (15.15.17),XYR
        \(15 \mathrm{P}(\mathrm{J})=\mathrm{x}(\mathrm{I})\)
        601025
        \(16 \quad P(J)=Y(I)\)
        GO TO 25
    17 F(J) \(=R(I)\)
    \(25 \mathrm{~J}=\mathrm{J}+1\)
    2 So continue
    24 13=J-1
    66 FOFMAT (OE10.7)
        Wh: 1TE (6.06) (P(J), J=1, [3)
        \(J=1\)
    200 continue
        \(J=J-1\)
```



```
        RE TURN
        END
```

Fig. E3

FUNCTICN U ($\times 0, \times 1, \times 2$)
$U=S I N(\times 0) \div S I N(x 1) * S I N(X 0-X 1)$
RE TUFN
END

Fig. E4

```
C-M-TO SGLVE THE LINEAK SYSTEM A.X = Y WITH THE HOMOGENEGUS GOUNDARY 
    INTEGER ORDLR(40,4)
    INTEGER LK(5),M(33),N(5)
    INTEGEF DIMXR,DIMY,DIMM
    RミAL NORM(40),X(774),R(774),Y(561),A(5,5),L2ERR(5),GATE(4)
    REAL AAO(S),AA1(5),CCO(5),CC1(5),QUADT(E),L2NORN,XX(3)
    DI MENSICN SPECTK(40,5)
    LOGICAL UNEPT,SEVENP
    EQUIVALENCE (XX(1),XO),(XX(2), X1):(XX(3), X2)
    F(X0, X1, X2)=3.*SIN(2.*(X0-X1))-SIN(2.*X0)+SIN(2.*X1)-
    * 3%.47842*SIN(XC)*SIN(X1)*SIN(XO-X1)
        SMALL=1.E-3亏
C----IF THE l-JJINT NUMERICAL QUADQATURE IS LSED, ENEPT=.TRUE.
    CNEPT=.TRJE.
C----IF THE 7-POINT NUMERICAL CUADRATURE IS USED, SEVENP=.TRUE.
    SEVENP=.TRUE.
    DIMM=33
    DIMY=56.1
    DIMXR=774
C--.-AO,A1 ARE THE TNO CONSTANT COEFFICIENTS DF THE DISCPETE LINEAR
C GPEEATOR A.
    AO=6.
    41=-1.
C-.-SET UP THE QUAJRATURE COEFFICIENTS FCR COMPUTING THE LZ NOFM.
    NH=2
    NOQUAD=6
    OUADT(1)=0.
    OUADT(2)=1.
    OUADT(3)=1.
    QUADT(4)=0.
    OUADT(5)=1.
    QUADT(6)=0.
    IF(.NOT.GNEPT) GO TO }7
    10 DO 112 L=2.5
        L 1=L-1
        K=L
        NL=2**L
        H=1./NL
        HH=H**2
        QUACON=FH/3.
        EIGV=-52.31
C----TO COMPUTE THE TWO CONSTANT CDEFFICIENTS OF AK AND CK.
        BK=EEIGV*0.125*HH
        DO 600 I=1,L1
        K=L-I+1
        AAO(K)=6.*(1.+BK)
        AA1(K)=BK-1.
C-----TO CCMPUTE THE APPROXIMATE INVERSE CK.
        CALL APRINV (AAO(K),AAI(K),CCO(K),CCI(K))
        EK=4.*8K
    500 CONTINUE
```



```
    जWITE(6,H2)
    35 FURMAT(: , I 2, 1 X , 4 (jx, E16.7))
    Oी \(74 \mathrm{~J}=2\), L
    WhTTE ( 6,85 ) J, AAO (J), AAI (J), CCO (J), CCI (J)
    74 CONTINUE
C-- -- CCNSTRUCT THE STRUCTJRE CONSTANTS, N.
    \(M(1)=0\)
    \(I K I=N L+1\)
    DO \(30 \quad \mathrm{I}=2\), IKI
    I \(1=1-1\)
    \(30 M(1)=M(11)+I 1\)
C----CENSTRUCT THE STRUCTURE CEASTANTS, LK.
    LK. \((1)=2\)
    1) \(50 \quad \mathrm{I}=2, \mathrm{~L}\)
    50 LK(I) =2*LK (I-1)
C----COMSTRUCT THE STRUCTURE CCNSTANTS. N.
    \(N(L)=0\)
    DO \(40 \quad \mathrm{I}=1\), L.
    \(K 1=L-I\)
    \(40 N(K 1)=N(K!+1)+(1+L K(K 1)) \div(1+L K(K 1+1))\)
        \(1 K 1=N(1)\)
        \(00777 \mathrm{I}=1, \mathrm{I} \times 1\)
        \(\times(I)=0\).
        777 к(1) \(=0\).
        SQNM \(=0\).
            \(1 K 1=N L+1\)
C-- AFPLY THE \(7-\)-OINT OR 1-PCINT FCRNULA TO SET UP THE VECTOR Y。
```



```
    00768 I \(2=1\) - I 1
    \(I=I 2+M(11)\)
    CALL BYCO( il , I2, H,XX)
C———HFESET THE SOUNDARY VALUES OF \(x\) AT THE TOP LEVEL L.
```



```
            IF (ONEPT) GO TO 760
            \(\hat{A}(I)=F(\times 0, \times 1, \times 2)\)
    758 CONT INUE
            \(\mathrm{FO}=1.5\) 합
            \(F_{1}=H H / 12\).
    \(300 \quad \mathrm{HZ}=2 \cdot \mathrm{HH}\)
        DO 100 II \(=3\),NL
            \(1 K 2=11-1\)
            DO 100 I \(2=2, I K 2\)
            \(\mathrm{I}=\mathrm{I} 2+\mathrm{M}(\mathrm{I} 1)\)
            IF (CNEPT) GO TU 405
            \(Y(I)=F O * R(I)+F 1 *(R(I-1)+R(I+1)+R(I-I 1)+R(I-I 1+1)+R(I+I 1)+\)
            -
            GC TO 170
    405 CALL BYCO(I1,I2,H,XX)
    \(Y(1)=H 2+F(X 0, X 1, \times 2)\)
    170 IF (ABS (Y (I)).GT•SMALL) SGNM=SGNM + Y (I) \(\ddagger \neq 2\)
    100 CONTINUE
        \(E P S=1 \cdot E-08\)
©-----CMMPUTE THE NOEM OF \(Y\).
    NL. \(2=(N L-1) *(N L-2) / 2\)
    SONM=SQRT (SQNM/NL2)
    IF (SQNM.GT.SMALL) EPS =EPS*SGNA
    NIT=40
C———--ZEROIZED THE VECTOR R.
    IK1=N(LI)
    DO \(750 \quad \mathrm{I}=1\), \(\mathrm{I} \times 1\)
    \(R(I)=0\).
```

```
------CALL FAPIN TO SOLVE THE LINEAR SYSTEM A.X = Y。
                            CALL FAPIN (X,F,Y,NGRNGLK,N,N,DIMXR,DINY,L,DIMM, IT,NIT•EDS•AAD,AAI
-...-ENTEF THE SPRANY SUBK
    AND OUTPUT THE ANALYTICAL RESULTS.
    \(K=4\)
    \(K P 1=K+1\)
    \(K\) K \(2=k+2\)
    CALL SPRANY (NORM,SPECTK, ORDER,K, IT,A,KP1,KPZ)
C-----PRINT OUT THE KITZ-GALERKIA SOLUTICNS.
    WR ITE(6.122)
    122 FOFMAT(' \(-\quad\) HITZ-GALERKIN SOLUTIONS, \(X=*\) )
    CALL PRINTG(X,R,Y,LK,M,N,DIMXR,DIMY,L,DINM,1,L)
C----PRINT OUT THE INTEFIOR PCINTS JF Y.
    121 FOFMAT(: INTERIOR FJINTS CF \(Y=\) : )
    WRITE(5.121)
    CALL PRINTG(X,R,Y,LK,M,N,DIMXR,DIMY,L,DIMM,2,L)
    \(1 K 1=N L+1\)
C————PRINT DUT THE EXACT SULUTICNS OF \(x\).
            DO उE7 II=1, IK1
            00857 I 2=1, 11
            CALL BYCO(Ii.I2, H,XX)
            \(I=I 2+M(11)\)
            \(\mathrm{H}(1)=U(\times 0, \times 1, \times 2)\)
    357 CUNTINUE
    123 FOFMAT(1- EXACT SOLUTICNS, \(x=1\) )
    WRITE(5,123)
                            CALL PFINTG(X,F,Y,LK,M,N,DIMXQ,DIMY,L,DIMM, Z,L)
C-- - ERFOF ANALYSIS: COMPUTATION OF LZ NORM AND RATE CF CCNVERGENCE.
    L2ERF(L) \(=\) L \(2 N U R M(X, M, D I M Y, D I M M, N L, N H, N C Q U A D, Q U A D T, Q U A C C N)\)
    6 FGRMAT (: L2ERR \(=\) : ElO.7)
    write \((6,6)\) LéERK(L)
    IF (L.GT.2) RATE(L-2) =(ALDG(L2EPR(L1))-ALOG(L2ERR(L)))/ALDG(2.)
    112 COMTINUE
C———-PRINT OUT THE ANALYTICAL RESULTS.
```



```
        WRITE \((5,61)\)
    63 FORMAT(3X,I1,4X,E14.7,2(5X,E14.7))
        \(L=5\)
        DO 02 I \(=2, L\)
        \(\mathrm{H}=2\). 九 \(*(-\mathrm{I})\)
        IF (I.EQ.2) GO TO 67
        WRITE (6.63) I, H, L2ERR(I), FATE(I-2)
        GO TO 62
    67 WFITE (6,63) I,H,L2ERR(I)
    E2 CUNTINUE
    77 IF (. NUT.SEVENP) GO TO 64
        DNEPT=.FALSE.
        SEVENP = .FALSE.
        GO TO 10
    64 STOP
    END
```

[A1] Aziz, A.K., The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, Academic Press, New York (1972).
[B1] Barnhill, R.E. and Gregory J.A., Interpolation Remainder Theorems on Triangular Domains with Application to Finite Element Error Bounds, Numer. Math. 25, P.215-229 (1976).
[B2] Barnhill, R.E. and Gregory J.A., Interpolation Remainder Theory from Taylor Expansions on Triangles, Numer. Math. P. 401-407 (1976).
[B3] Benson, M.W., Iterative solution of Large Scale Linear Systems, Thesis, Lakehead University (1973).
[B4] Birkhoff, The Numerical Solution of Elliptic Equations, SIAM, Regional Conference Series, Vol. 1 (1971).
[B5] Bodewig, E., Matrix Calculus, Interscience Publishers, Inc., New York (1959).
[B6] de Boor, C., Mathematical Aspects of Finite Elements in Partial Differential Equations, Academic Press, New York (1974).
[B7] Bramble, J.H. and M.Zlamal, Triangular Elements in the Finite Element Method, Math. of Comp. 24, P. 809-821 (1970).
[B8] Bramble, J.H., J.A.Nitsche and A.H.Schatz, Maximum-Norm Interior Estimates for Ritz-Galerkin Methods, Math. of Comp. 29, p. 677-688 (1975).
[B9] Brandt, A., Multi-level Adaptive Solutions to Boundary Value Problems, Research Rept., Weizmann Institute of Science, Rehovot, Israel IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
[B10] Broy, M., Numerische Lösung höchdimensionaler Linearer Gleichungssysteme endliecher Netze, Thesis, T.U. München, (1975) .
[C1] Collatz, Functional Analysis and Numerical Mathematics, Academic Press, New York (1966).
[C2] Collatz, L., The Numerical Treatment of Differential Equations, Springer-Verlag, New York (1966).
[C3] Courant, R., Variational Method for the Solution of Problems of Equilibrium and Vibrations, Bull. Amer. Math. Soc. 49, P. 1-23 (1943).
[F1] Falk, R.S., Error Estimates for the Approximation of a Class Variational Inequalities, Math. of Comp. 28, P. 963-971 (1974).
[F2] Fedorenko, P.P., The speed of Convergence of One Iterative Process, USSR Computation Math. and Math. Physis, 19, P. 227-235 (1964).
[F3] Frederickson, P.O., Generalized Triangular Splines, Math. Rept. 7, Lakehead University, Canada (1971).
[F4] Frederickson, P.O., Fast Approximate Inversion of Large Sparse Linear System, Math. Rept. 7, Lakehead University, Canada (1975).
[F5] Frederickson, P.O. and W. Eames, Generalized Hardy Inequa- t lity, to appear.
[F6] Frederickson, P.O., Affine Analysis, to appear.
[F7] Frederickson, P.O., Fast Solution of Generalized Eigenvalue Problems, to appear.
[H1] Hewitt E. and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York (1969).
[H2] Hildebrand, F.B., Advanced Calculus for Applications, Pren-tice-Hall, Inc., Englewood Cliffs, New Jersey (1976).
[H3] Hoffman K., Analysis In Enclidean Space, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1975).
[H4] Holand, I., and K. Bell, eds., Finite Element Methods In Stress Analysis, Tapir, Trondheim, Norway (1969).
[K1] Kantorovich and Krylov, Approximate Method of Higher Analysis, Interscience Publishers, Inc., New York (1964).
[L1] Lim, T.H., Higher Dimensional Numerical Quadrature, Thesis, Lakehead University (1974).
[M1] Marchuk, G.I., Methods of Numerical Mathematics, SpringerVerlag, New York, Heidelberg Berlin (1975).
[M2] Martin Schechter, Principles of Functional Analysis, Academic Press, New York (1971).
[M3] Martin, H.S., L^{2} Error Bounds for the Rayleigh-Ritz-Galerkin Methods, SIAMJ. Numer. Anal. 8, P. 737-748 (1971).
[N1] Nitsche J.A. and A.H. Schatz, Interior Estimates for RitzGalerkin Methods, Math. of Comp. 28, P. 937-958 (1974).
[P1] Prenter, P.M., Splines and Variational Method, John Wiley \& Sons, New York (1975).
[S1] Sard, Linear Approximation, Mathematical Survey 9, American Mathematical Society, Providence, Rhode Island (1963).
[S2] Schwartz, D., Linear Operators, Interscience Publishers, Inc., New York (1957).
[S3] Shanks D., Nonlinear Transforms of Divergent and Slowly Convergent Sequences, J. Math. Phys. 34, P. 1-42 (1958).
[S4] Strang, G. and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J. (1973).
[T1] Teman, R., Numerical Analysis, D. Reidel Publishing Company, Dordrecht, Holland (1973).
[V1] Varga, R.S., Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1962).
[V2] Varga, R.S., The Effect of Quadrature Errors in the Numerical Solution of Two-Dimensional Boundary Value problems by Viriational Techniques, Aequationes, Math. 7, P. 36-58 (1972).
[W1] Williamson R.E., R.H. Crowell and H.F. Trotter, Calculus of Vector Functions, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1968).
[W2] Whiteman, The Mathematics of Finite Elements and Application, Academic Press, New York (1965).
[Y1] Yosida. K, Functional Analysis, Aċademic Press, New York (1965).
[Y2] Young, D.M., Iterative Solution of Large Linear Systems, Academic Press, New York (1971).
[Z1] Zlamal, M., On the Finite Element Method, Numer. Math., 12 P. 394-409 (1968).

