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ABSTRACT 

This thesis presents an axiomatic approach to the theory of in- 

ner measures. 

In Chapter I, we recognize that an axiomatic approach analogous 

to that for the theory of outer measures is not appropriate: such 

an approach involves only a finiteness concept, and consequently, 

as soon as countable collections are involved, it fails. It is then 

natural for us to speculate that our model should permit the change 

of limits. This idea leads us to the definition of an inner measure. 

In Chapter II, we consider a space of finite measure and charact- 

erize inner measurability. We also prove that the definitions of 

inner measurability given by Young and Caratheodory are equivalent, 

and that Lebesgue’s definition of measurability is equivalent to 

those given by Young and Caratheodory. Then, the assumption that the 

space has finite measure is dropped, and we study the inner measures 

induced by a measure. 

In Chapter III, inner measures are contracted so as to guaran- 

tee that they are countably additive over their classes of inner 

measurable sets, and so that they always generate an outer measure. 

The last part of this chapter deals with conditions under which the 

set function generated by an inner measure y^ is a regular 

outer measure. 

Finally, in Chapter IV, some relation between a sequence of 

contracted inner measures and the associated measure spaces is estab- 

lished . 



NOTATION AND TERMINOLOGY 

Throughout, X is given space. P(X) is the power set of X. 

R = [_oo^oo], A set function is a function from a subclass of P(X) 

to R. If there can be no ambiguity, the intersection sign is 

omitted. A* is the complement of A. 

LEBESGUE'S CONDITION FOR MEASURABILITY: p. 2. 

YOUNG’S DEFINITION OF INNER MEASURABILITY: p. 2. 

OUTER MEASURE: Definition, p. 2. 

SUPERADDITIVE SET FUNCTION: Definition, p. 4. 

ALGEBRA: A subclass of P[X) which is closed under finite unions 

and complementation, p. 4. 

o-ALGEBRA: An algebra closed under countable unions, p. 4. 

p. 4. 

: A set of all positive integers, p. 4. 

|A|: Number of elements in the set A, p. 4. 

MONOTONE INCREASING: A set function y is monotone increasing (or 

simply called ’monotone’) if whenever A => B, y (A) ^ y (B) , p. 4 

COUNTABLY SUPERADDITIVE: A set function y is countably superaddi- 

tive over P(X) if, whenever {B } is a sequence of pairwise 
oo oo 

disjoint sets from P(X), y( u B ) > y(B ), p, 5. 
n=l n=l 

n: p. 5. 

n-MEASURABLE: Definition, p. 5. 

CARATHEODORY’S METHOD OF DEFINING MEASURABILITY: p. 5. 

M(ri): p. 6. 
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ADDITIVE OVER A CLASS OF SETS C; Definition, p. 7. 

FINITELY ADDITIVE: A set function y is finitely additive over a 

subclass of P(X) if, whenever A^^,... ,A^ are pairwise 

disjoint sets from the subclass whose union is also in the 
ri n 

subclass u A.) = I y(A.)s p. 9. 
i=l ^ i=l ^ 

COUNTABLY ADDITIVE: A set function y is countably additiver over 

a subclass of P(X) if, whenever is a sequence of 

pairwise disjoint sets from the subclass whose Union is also in 
oo c» 

the Subclass, ( u B ) = y(B ), p. 9. 
n=l ^ n=l 

rj-NULL: Definition, p, 10. 

U-NULL: p. 10. 

: p. 10 . 

]^-MEASURABLE: p. 10. 

y^ = INNER MEASURE: Definition, p. 11. 

A DECREASING SEQUENCE OF SETS: is a decreasing sequence of 

sets if Bj^ => B2 => . . ., p. 11. 

i/m CONDITION: p. 11. 

MONOTONE AND BOUNDED : A real sequence ^ is monotone if 

- ^n ^ (called monotone increasing), or 

s for all n (called monotone decreasing). 

is bounded if there exists a number K such that lx I < K 
’ n' 

for all n, p. 11. 

CARATHE0b0RY*S INNER MEASURE: Definition, p. 12. 
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H*: p. 12. 

y*: p. 12. 

a,3: p. 12. 

a-MEASURABLE KERNEL: Definition, p. 12. 

a-MEASURABLE, 3-MEASURABLE: p. 12. 

U*-MEASURABLE KERNEL: p. 12. 

y*-MEASURABLE: p. 12. 

M(y*) : p. 13 . 

y*-MEASURABLE: p. 13. 

lim y*(K ): The limit superior of a sequence of real numbers defined 
n-x»   

as lim y*(K ) = inf sup y*(K ), p. 13. 
n-x» ^ n>k ^ 

yi = LEBESGUE'S INNER MEASURE: Definition, p. 14. 

INCREASING SEQUENCE OF SETS: increasing sequence of 

sets if B]^ c B2 c ..., p. 16. 

Cy^): p. 16. 

y-MEASURABLE KERNEL: p. 19. 

a-MEASURABLE COVER: Definition, p. 19. 

y*-MEASURABLE COVER: p. 19. 

REGULAR OUTER MEASURE: Definition, p. 20. 

M(y*): p. 25. 

X 
y : Definition, p. 26. 

yg: Definition, p. 26. 

y : p. 26. 

MEASURE: A measure is a countably additive, non negative, set 

function, p. 27. 

V 



RING: A subclass of sets of P(X) closed under union and differ- 

ence, p. 27. 

p. 27. 

M(yo): p. 27. 

restricted to M(y^) (used systematically throughout), 

p. 27. 

dol^CUo): P- 27. 

y : Definition, p. 27. 

yo-MEASURABLE KERNEL: p. 27. 

y-MEASURABLE KERNEL: p. 27. 

y^ = A CONTRACTION OF y^: Definition, p. 29. 

y^-MEASURABLE: Definition, p. 29. 

M(y^): p. 30. 

C 
y : Definition, p. 31. 

ycl^CPc^' P- 

y^: p. 34. 

M(y^): p. 34. 

y^|M(y^): p. 34. 

y^-MEASURABLE KERNEL: p. 35. 

y°: Definition, p. 35. 

y^-MEASURABLE COVER: p. 36. 
00 

{C^}: A sequence of y^-measurable sets such that u is 
i=l 

finite, p. 39. 

{y }: A sequence of inner measures associated with {C.}, p. 39. 
vj • 1 
1 

(M(y^ ^ measure space (a a-algebra ) together with a 
v^i 

measure y^ on it), p, 39. 
'^i 

vi 



CO 

M(y [Here, 

p. 39. 

uC. is the shorthand for u C.) 
^ i=i ^ 

p. 39. 

p. 39. 

y^-NULL: p. 42. 
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INTRODUCTION: SOME HISTORICAL REMARKS 

In 1898, Emile Borel [1] gave a descriptive definition of a 

measure as follows: 

(1) It 'is a funat-ion from a otass D of subsets of the real 

line to [0^°^); D is closed under differences and finite unions; 

(2) the measure of the union of a finite number of pairwise 

disjoint sets from D equals the sum of their measures; 

(3) the measure of the difference of two sets from fD (a 

set and a subset) is equal to the difference of their measures; 

(4) every set whose measure is not zero is uncountable, 

The existence of such a descriptive measure can be seen by tak- 

ing iV to be the class of all finite unions of intervals from the 

real line, taking the length of each interval to be its measure and 

extending this in the obvious way. However, the description did 

not include the idea of countable additivity. Based upon Borel’s 

ideas, H. Lebesgue in 1901 [5] defined a measure for any set in the 

interval [a,b] to be a non-negative number satisfying the follow- 

ing conditions: 

(1) Two congruent sets have the same measure; 

(2) the measure of the union of a finite or countable number of 

pairwise disjoint sets is the sum of the measures of the summands; 

(3) the measure of the set [0^1] is 1. 

The importance of countable additivity for a measure was 

1 
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realized; however, the three conditions are incompatible as there 

do exist non-measurable sets in [0,1]. (Lebesgue did not know this 

at the time: the first non-measurable set was constructed by 

Van Vleck in 1908 [15].) Taking the length of a segment [a,b] or 

of the interval to be its measure m, Lebesgue gave a con- 

structive definition of a measurable set. He first defined the 

outer measure of each set A <= [a,b] by 

m (A) = inf{\m((a.jh.)): A c \j(a .^b.)}. 

He then defined the inner measure m^[A) of A to be b-a-m^([a,b]-A) 

and defined A to be measurable if m^(A) = m^(A). 

Lebesgue's definitions for outer and inner measures were also given 

by G. Vitali in 1904 [14], and by W. H. Young, also in 1904 [17]. 

However, Young defined measurable solely in terms of an outer 

measure m : 
e 

a set A ts sa-id to be outer-measurable if and only if, 

for aVl D such that Ar\D = 0, m^(A)-Hn^(D) = m^(AuD). 

Thus, a class of outer-measurable sets, a class of inner- 

measurable sets, and their common part (called the additive class) 

were constructed. It turns out that in each class, the correspond- 

ing set function is countably additive. 

In 1914, C. Caratheodory [2] introduced his axiomatic definition 

of an outer measure: 

an outer measure is a set function from PCX) 

to iR satisfying the following conditions: 
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Ca) 

(b) 

(o) 

He called a set A y*-measurable if, for any P «= x, the equality 

V.*(P) = v=^(PA) + (PA 

is satisfied. He then defined an inner measure for any 

A c X by 

\i;^(A) = supi\i*(M) : M c: Aj M is \i*-measurable}. 

This inner measure possesses all the usual properties of the Lebesgue 

inner measure and, for a set A, whose outer measure is finite, to 

be y*-measurable, it is necessary and sufficient that y*(A) = y^ C^). 

Subsequently, the concept of 'inner measure' was relegated to a minor 

role in Measure Theory. As John von Neumann [16] pointed out, an 

axiomatic treatment using inner measure defined analogously to the 

axiomatic definition of an outer measure 'is not appropriate': the 

intrinsic properties of inner measures so defined are just not strong 

enough to generate an equivalent theory. Recently, however, inter- 

est in inner measure has been revived [12] [13], and the main ob- 

ject of this thesis is to present an axiomatic treatment which in- 

cludes Caratheodory's inner measure as a special case. 

= 0; 

■if A then y^Mj < 

if /is (rny sequence of subsets of then 

n=l n=l 



CHAPTER I 

DEFINITION OF INNER MEASURES 

in this chapter, we first introduce the definition of a super- 

additive set function and obtain an algebra of measurable sets. We 

then define inner measures and extend the algebra to a a-algebra. 

Definition 1,1. A superaddit'ive set funotton on a space X ts a 

function y_ from P(X) to IR satisfying the following conditions: 

(a) ]^((^) = 0; 

(b) if A 0 B = (f)^ ]i(A u B) > \^(A) + ^(B), 

Obviously, from (a) and (b) , }^CA) > 0 for all A «= x. 

Throughout this thesis, ^ will denote a superadditive set func- 

tion on a space X. 

Example 1.2. Let X = 

PCA) 

Define for all A c 

r 

|A| -1, if 0 < I A| < oo; 

\ 0, if A = (j); 

0°, if A is infinite. 

by 

U so defined is a superadditive set function. 

Proposition 1.3. y_ is monotone increasing. 

Proof. Let A ci B. Then, 

yCB) = PCA U CB-A)) 

> yCA) + RCB-A) 

^ PCA). 

4 
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Proposition 1.4. is countably superadditive. 

Proof. Let ^ sequence of pairwise disjoint subsets of X. 

Then, by induction on superadditivity, we have 

1 1 

for all i, and 

so, by Proposition 1.3, 

cx> 1 

This implies the required result. 

Remark 1.5. It is clear from the previous proposition that if we are 

to get some reasonable results concerning ’countable' collections of 

sets, as distinct from finite collections, we must impose more condi- 

tions on the superadditive set function. This will be done when we 

define 'inner measures’. 

Definition 1.6. Let n he a set function from P(X) to /R. A set 

A X is said to be T\-measurable if^ for any P ^ X such that n(P) 

is finite^ 

This is Caratheodory’s method of defining measurability. Unless 

otherwise specified, this method is used systematically throughout 

this thesis. Also, from now on, will always denote a set function 

from P(X) to |R with the property that nC«|)) = 0. 

nCP) = nCPA) + x\(PAn. 



6 

We shall let M(n) denote the collection of all n-measurable 

sets, and again, this notation is used systematically throughout. 

Proposition 1,7. Let A^B e Therij A u B e Mfnj. 

Proof. Let P c X be such that n(P) is finite. Then, since 

A e M (n) , 

Adding equations (1) and (2), and using the measurability of B, we 

have 

n(PB) = n(PBA) + n(PBA'), (1) and 

n(PB’) = n(PB'A) + nCPB'A'). (2) 

n(P) = nCPBA) + n(PBA') + n(PB»A) + nCPB'A»). 

C3) 

Replacing P in (3) by P(A u B), we have 

nCP(A U B)) = n(PBA) + n(PBA») + n(PB’A) + nC4>). 

(4) 

Subtracting (4) from (3), we have the required result. 

Proposition 1.8. If A e M(r\)y 
n 

then u A . e M(r\), 
. ^ ^ 
i=l 

Proof. By induction, using the previous proposition. 

Proposition 1.9. M(r)) ts otosed under comptementation, 



Proof. Obvious. 

Proposition 1.10. If A^B e then A-B e H(r\). 

Proof. A-B = (A' u B) ' e MCn). 

Corollary 1.11. ^(T\) ts an atgebna. 

Proof. This follows from Propositions 1.7 and 1.9. 

Proposition 1.12. Let A be ^-measTxrable, Let and be 

any subsets of A and A' vespeetiveZy such that u E2) is 

finite, Then^ 

T\(EI U E2) — ^(Ei) + T\(E2) • 

Proof. Since A is n-measurable and nCEi ^ E2) is finite, we 

have 

n(Ei u E2) = n((Ei u E2)A) + r)((Ei u E2)A’) 

= n(Ei) + nCE2). 

Definition 1.15. n is said to be additive over a oZass of sets 

€ P(X)j ify for A_,B e ^ whose union is aZso in and A B 

r\(A u B) = T\(A) -h x](B). 

Example 1.14. A superadditive set function need not be additive 

over M(y). For, let X = {1,2}, and define y^{{l}) = i£({2}) = 

and y(X) = Then, M(y) = P(X), but 
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Proposition 1.15. Let e HCn) and be pairwtse disQovnt, 
\YL 

Then^ for any P X such that n (P) -is ftntte^ 

n n 
nC u PA.) = I MPA.). 

1=1 ^ i=i 

Proof. We use induction. Since A2 e W(n), we have 

nCP) = T1CPA2) + n(PAi). 

Replacing P by PCA1UA2), we have 

2 2 
n( u PA ) = I nCPA.) 

i=l ^ i=l 

Hence, the proposition holds true for n = 2. Suppose that it holds 

true for n = k, i.e., 

k k 
n( u PA.) = I n(PA ) 

i=l i=l 

To prove that it is true for n = k+I, we observe that, since 

A^^^ £ ^(n), we have 

nCP) = hCPAj^^^) + hCPAjJ,^^). 

k+1 
Replacing P by u PA., we have 

i=l 

k+1 
n( u PA^) = + n( u PA^) 

i=l i=l 
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k 

= ^CP\+i) + I ^CPA.) 
i=l 

k+1 

= I nCPAJ. 
i=l ^ 

Hence, it is true for all n, 

Proposition 1.16. If r\(X) is finitey then n is finitely additive 

over M Tnj. 

Proof. This follows from Proposition 1.15 upon replacing P by X. 

Proposition 1.17. If r\(Xj is finitey theny for AyB e M(r])y 

T[(A U B) = t\(A) + r\(B) + T\(AB), 

Proof. ri(A u B) = n(A u (B-A)) 

= n(A) + n(B-A) 

= n(A) + nCB-BA) 

= nCA) + nCB) - n(BA). 

Example 1.18. If n(X) is finite, then n is finitely additive over 

M(p), which is an algebra. However, i£ need not be countably addi- 

tive over M(]£) . The following is an example. 

For all A c z^, define 

PCA) 

if A' 

if A' 

is infinite; 

is finite. 

Then, M(p) = {A : if A is finite, then A' is infinite, and if A 
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is infinite, then A* is finite}. n is then finitely but not count- 

ably additive over M(vO. 

Definition 1.19. A set A is sa'id to he r\-nuVl if A is T\-measurable 

and n (A) = 0. 

Proposition 1.20. A subset of a -^nutt set is 

Proof. Let A <= B and B be p^-null. By monotonicity. Proposition 

1.3, }^CA) = 0; we shall show that A e M(]£) . For any P c x such 

that y(P) is finite. 

y(P) > y(PA) + y(PA') 

= y(PA’) 

^ y(PB') 

= yCPB) + y(PB’) 

= }^(P) , since B e M(y^). 

And so, A e M(y). 

Remark 1.21. y^(A) = 0 does not imply that A is ^-measurable. The 

following is an example. 

Let X = {1,2,3}, and define 

A|-I. 

PCA)= < 
0, 

if A 7^ (|), A c X; 

if A = (|). 
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Then, ]£({1}) = 0, but {1} is not y_-measurable, because 

PCX) PC{1}) + P({2,3}) . 

Definition 1.22. An 'inner measure on a space X 'is a superadd'itive 

set funct'iony p^j from P(X) to IR -such that: 

if is a decreasing sequence of subsets of Xj and 

finitej then 

00 

tim \i (B J = ]i ( n B ). 
^ An A - n n-x» n=l 

We shall call the above condition the ^i/m condition*, Through- 

out, p^ will denote an inner measure on a space X. 

Remark 1»25. We note that in Remark 1.21, the superadditive set 

function ^ is an inner measure. 

Remark 1.24. The introduction of the i/m condition in Definition 

1.22 permits the change of limits which is crucial in obtaining count- 

able collections of sets (Remark 1.5). It is important that we did 

not specify the kind of sets in the sequence this is an import- 

ant feature in constructing our theory of inner measures. Also, we 

restrict p^(Bi) to be finite so as to guarantee the existence of 

finite limits for the sequence since it is monotonic and 

bounded. Nevertheless, the restriction is intended to keep in accord- 

ance with that of n(P) in Definition 1.6, in defining n-measurability. 

Remark 1.25. From Example 1.18, we see that a superadditive set 



12 

function need not be an inner measure. 

Remark 1.26. We shall call a set function y* a Caratheodory*s 

inner measure if y* is induced by an outer measure y* in the 

form of 

]i^(A) - sup{]i*(M) : M ^ M is -measurable}. 

We shall show that Caratheodory's inner measure is an inner measure. 

The proof that it is a superadditive set function is straight-forward 

and is omitted. We shall only prove that y* satisfies the i/m 

condition. Before doing that, we first state a definition and a lemma 

Definition 1.27. Let aj 3 be set functions from P(X) to !R. Let 

K A X. K is said to be an ^-measurable kernel^ with respect to 

gj for Aj if K is oL-measurable and ^-measurable^ and a(K) = ^(A) 

If there can be no ambiguity, 'with respect to g' will be 

dropped. 

Lemma 1.28. Let y,^ be Caratheodory's inner measure induced by an 

outer measure y^. Then^ there exists a -measurable kernel^ with 

respect to y,^j for any A X, 

Proof. If y*(A) = the result holds. Suppose that P*(A) is 

finite. Then, given any n, there exists c A, being y*- 

measurable, such that 

P*CA) - ^ < y*(M^) 
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< y* C u M ) . 
V n n=l 

00 

Hence, P^(A) ^ y*C u M ). Equality follows from the monotonicity 
1 ri 00 n=l 

of y^. u M is y*-measurable since M(y*} is a a-algebra [Munroe 
n=l ^ 

[7], Theorem 11.2, p. 87], and also, it is fairly trivial to check 
oo oo 

that u M is also y.-measurable. Hence, u M is a y*-measur- 
n=l n=l 

able kernel for A. 

Proposition 1.29. Caratheodory's dnner measure^ y^^ -is an -inner 

measure. 

Proof. In view of Remark 1.26, we need only prove the i/m condition. 

Let ^ decreasing sequence of sets such taht is 

finite. Corresponding to each B^, there exists a y*-measurable 

kernel K . Since {B } is a decreasing sequence of sets, 
OO oo 00 

n u B = n B . By [Munroe [7], Corollary 10.8.1, p. 84], we have 
k=l n=k " n=l " 

y*( n u K ) > lim y*(K ). 
1 1 1 n 
k=l n=k n-H» 

Hence, 

00 

p*( n 
n=l 

> u«( n u K ) 
k=l n=k 

= VI*( n u K ), 
k=l n=k ^ 

since n u K e M(y*), 
k=l n=k 

> lim y*CK ) 
J1-X30 
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= lim 
n-x» 

= lim y*(B ), since limit exists, 

oo 

- \ V- 
n=l 

Remark 1.30. There are two possible ways of generating an inner 

measure: Lebesgue's method (which we shall specify below) and 

Caratheodory's method (which we have stated in Remark 1.26). We 

shall show that an inner measure is not necessarily generated by 

either method. We first define a Lebesgue’s inner measure. 

Definition 1.31. Let he an outer measure and v^*(X) be fintte. 

A set function y^ generated in the form of 

yi(i4) = y^rz) - (A*) ^ for all A Xy 

is eatted a Lehesgue's inner measure. 

yi so defined need not be an inner measure. For, suppose it is 

an inner measure. Then, 

(X) = y*(X), and so, 

y*(A) = yi(X) - yi(A'). 

Let A,B be any subsets of X: 
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Vim - Ui((A u B)’) = y*(A u B) 

^ y*(A) + y*(B) 

= Vim - mCA') + yiCX) - yi(B’) 

Hence, we have 

^l(A’) + yi(B') ^ yi(X) + yi(A’B’). (*) 

Now, let X = {1,2,3}, and define 

= <1 
0, if |A| £ 1; 

1, if IAI > 2. 

y^ so defined is an inner measure. Let A = {1}, and B = {2}. 

Applying the result of (*), we have a contradiction. 

Next, we consider Caratheodory’s inner measure. 

Let X = {1,2,3}. Define y^ as in Remark 1.21. y^ so de- 

fined is an inner measure. Now, suppose y^ is induced by an outer 

measure y* as in Remark 1.26. Suppose that {1} is y*-measurable; 

then {2,3} must be y*-measurable since M(y*) is a a-algebra. 

Hence, we have 

which is not the case, and so {1} is not a*-measurable, and {2,3} is 
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not y*-measurable. Similarly, {2} and {1,3}, {3} and {1,2} are 

all non-y*-measurable. Thus only (|) and X are y*-measurable, 

and then by our supposition, y^({2,3}) must be 0 if y* induces 

y^ -- but y^{{2,3}) = 1. 

oo 

Proposition 1.32. If ,,, e then u ^ 
n=l 

i 

Proof. Let P c X be such that y.(P) is finite. Let M. = u A . 
n=l 

From the increasing sequence of sets {PM^}, we have an increasing 

sequence {y^(PM^)}, and from {PMj^}, we have a decreasing sequence 

{y^(PM^)}. Both real sequences converge, and so. 

y^CP) = lim P^(PM!_) + lim y^(PM.) 
i-H» i->oo 

y^C n PMp + lim y^(PM^), by the i/m condition, 
i=i i-x» 

< y^( n PM^) + y^C u PM^) 
i=l i=l 

Hence, u M. e M(y.), and thus, ^ A e M(y.) 
' . ^ 1 A ’ T n A 1=1 n=l 

Corollary 1.33. Mfy^y) is a a-algebra. 

Proof. This follows from Corollary 1.11 and Proposition 1.32. 

Proposition 1.34. Let A.. . _,A^j ... e be pai-ruJise d'isQO'int, 
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Then^ for any P ^ X such that Vf.(P) 'is finite^ 

y.r u PA } = I V.JPA ) 
A ^ n ^ ^ L n 

n=l n=l 

Proof. Since {P( u A )’} is a monotonically decreasing sequence 
n=l 

n 

of sets, we have 

i «> i 
lim y.(P( u A )') = y.( n P( u A )') 

n=l 1=1 n=l 

oo 1 

n n 
i=l n=l 

PA’) 
n 

= n PA;). 
n=l 

i i <» 
From Proposition 1.15, u PA ) = ^ 

n=l ^ n=l n=l 
i 
u A e M (y ^), we have 

, n ^ A'^ 
n=l 

00 oo i 

y.(u PA)+y.(n PA')=y.(u PA)+y.(P(u A)') 
A^ , n A , n A^ , n A . n 

n=l n=l n=l n=l 

i i 

= I PA(PA ) + PA CPC P A )') 
n=l n=l 

Take limits with respect to i, we have 

y.(u PA)+y.(n PA') = lim J y.(PA )+limy.(PCu A)') 
A^ T n A , n . A^ n . A , n-^ n=l n=l 1-^ n=l n=l 
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y p,(PA ) + y.C n PA') 
n=l n=l 

And so, y*Cu PA) = Y PA CPA ). 
’ A^ T n A n 

n=l n=l 

Corollary 1.55. For any sequence seta from and 

any P ^ X such that UA.(P) '^S fintte^ 

y.Tu PA ) ^ y y. (PA ). 
A . n A n 

n=i n=l 

Proof. We decompose u A into the union of pairwise disjoint. 
n=l 

n 

y^-measurable, sets. That is, we have 

i-1 

^ PV = “ V^» 
n=l 1=1 n=0 

where AQ is defined to be (|). By the previous proposition, we have 

OO OO i — 1 

y.( u PA ) = y n.(P(A. - u A )) 
n=l 1=1 n=0 

< I y^CPAp. 

i=l 

In case if is finite, then we have, in general. 

PAC^ A) y y (A). A^ , n < A n 
n=l n=l 



CHAPTER II 

CHARACTERIZATION OF INNER MEASURABILITY 
AND THE INDUCTION OF INNER MEASURES 

In this chapter, we assume that for each subset of X, there 

exists a ^-measurable kernel with respect to and that y^CX) is 

finite. We recall that is a superadditive set function (Defini- 

tion 1.1) used throughout this thesis. We then characterize ^- 

measurability. Basing on the characterization, and assuming that 

y* is a regular outer measure (which we shall define below) and 

that y*(X) is finite, we prove easily the equivalence of Young’s 

(see Introduction) and Caratheodory’s definitions of inner measurabil- 

ity. Also, we prove that Lebesgue’s inner measure (Definition 1.31) 

and Caratheodory’s inner measure (Remark 1.26) are identical, and 

Lebesgue's condition for measurability (i.e., A Is measurdble if 

y*(A) = y*(A), see Introduction) is also equivalent to Young's and 

Caratheodory's. 

Definition 2.1. Let 3 be set functions from P(X) to iR. Let 

A F X, F is said to he an a-measurahie cover^ with respect to 

3j for if F is ct-measurabte and ^-measurabley and o.(F) = 3(^4). 

If there can be no ambiguity, 'with respect to 3’ will be 

dropped. 

Definition 2.2^ If every subset of X has a -measurable covery 

with respect to the outer measure y^j then y^ is said to be a 

19 
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Tegular outer measure [Munroe [7]j p. 94], 

Proposition 2.5. A set A X %s '^measurable iff \^(A) + )^(A*) = \^(X), 

Proof. If A is ]£-measurable, then obviously, we have 

1£(A) + ]^(A') = JM_(X) . We now prove the converse. Let and K2 

be ]£-measurable kernels for A and A’ respectively, and for any 

P c: X, let K be a y_-measurable kernel for P. Since Kj is ]^- 

measurable, we have 

p(Ki) + y(K’) = u(X). 

Also, we have assumed that 

y(A) + y(A’) = y(X). 

From the two equations above, we obtain 

y(A') = y(K’). 

From K2 c A' KJ, we have KK2 *= KA' c KKJ, and obtain 

y(KKp - yCKA') < y(KKp - yCKK^) 

= i^CKCK’-K^)), by Prop. 1.16, 

^ PCK’-K^) 

= y(K') - yCK^,) 

= y(A‘) - y(A’) 

= 0. 
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Hence, yC^A’) y(KKj). It follows 

y(PA) + y (PA») > 

that 

li(KK^) 

ECKK^) 

y(K) 

+ |£(KA') 

+ y(KKp 

= y (P) 

> y(PA) + y(PA’). 

And so, A is ]£-measurable. 

Proposition 2.4. A set ^4 «= J is -^measurable iff for all D ^ X 

such that A Vi D = 

\i(A) -h -[i(D) = \x(A u D). 

Proof. The proof is straight-forward if we apply Proposition 2.3, 

and is omitted. 

Proposition 2.5. A set A X is -^measurable if there exist i£- 

measurable sets E and F such that 5" c ^ c F and \i(F-E) = 0. 

Proof. A-E is a subset of F-E which is ^-null. By Proposition 

1.20, A-E is j£-null, and so A = (A-E) u E e M(^). 

Proposition 2.6. Let A^B he any -two subsets of X. If there exist 

'^measurable sets M\ => Ay and M2 ^ B such that \^(MiM2) = Oy 

then 
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CaJ ]UA V B) = ]^(A) + ]^(B); 

(b) the un'ton of the )^measvirdhte kernels for A and 

a ^measurable kernel for A u B. 

Proof. Let Ki,K2 and K be T£-measurable kernels for A,B 

A u B respectively, and and M2 be as stated. Then, 

K-M2 ^ A, and K-Mi c: B. 

Also, 

y^(K-M2) + = y^C(K-M2) u (K-Mi)) 

= y_(K-MiM2) 

= y(K) - P(MIM2) 

Hence, we have 

= y(K). 

y(A) + nCB) > I^CK) 

= y (A u B) . 

Also, 1£(A U B) > u K2) 

= y(Ki) + y(K2) 

B is 

and 

= y(A) + y(B), and so, both (a) and (b) are proved. 



23 

Remark 2,7. In the previous proposition, if B = A', then A is 

l£-measurable by Proposition 2.3. This result holds analogously for 

outer measures. 

Lemma 2.8. [Munroe [7]j Theorem 12,2^ p. 96], If is a regular 

outer measure and is finite^ then A X is ]!*-measurable 

iff 

\x’^(A) + = \i*(X), 

Proof. Omitted. 

Proposition 2.9. Let y^ be an outer measure^ and v"^(X) be 

finite. Then^ y* is regular iff the following two definitions 

are identical:. 

(a) \xi(A) = ]A*(X) - ]i*(A')j 

(b) \i^(A) = sup{\i*(M) : M Aj M z Mfy^j}. 

Proof. Suppose y* is regular. Then, there exists a y*-measurable 

cover F for A', and let K be a y*-measurable kernel, with res- 

pect to y^, for A. Then, we have 

yi(A) = y*(X) - y*(A') 

= y*(X) - y*(F) 

= y*(F») 

< y*(A), since F * «= A and F e M(y*). 
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Also, 

Vi* (A) = y*(K) 

= y*(X) - u*(K') 

^ y*CX) - y*(A») 

= yi(A). 

Hence, yi (A) = y*(A) for all A <= X. 

Conversely, let K be a y*-measurable kernel, with respect to 

for A. Then, 

y*(X) - y*(A») = y*(K), 

i ,e., 

y*CA') = y*(X) - y*(K) 

= y*(K’). 

Hence, K' is a y*-measurable cover for A’. 

Remark 2.10. From this proposition, it follows that y^ is, in 

this case, an inner measure because y* is, by Remark 1.26, and 

Lebesgue’s is identical with Caratheodory's. 

Proposition 2.11. Let y^ be a regular outer measure and -is 

finite, y^ is Caratheodory's inner measure induced by y"^. The 

following are equivalent: 
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ia) A e 

(h) A z Mry*;; 

(o) y (A). 

Proof. Since X e M(y*), we have y*(X) = P*(X). (a) implies (b) 

Let A e M(y*), and let Kj and K2 be y*-measurable kernels for 

A and A' respectively. Then, we have 

y*(X) = y*(X) 

= y*CA) + y*(A') 

= y*(Ki) + y*(K2) 

= y*(X) - y*(Kp + y*(X) - y*(Kp. 

Hence, 

y*(X) = y*(K’) + y*(K’) 

> y*(A’) + y*(A) 

^ U*(X) . 

By Lemma 2.8, A e M(y*). 

(b) implies (c): This is obvious. 

(c) implies y* (A) = y* (A) . Then, we have 

P*(A) + y*(A') = y*(A) + y*(A') 
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= U*(A) + y*(X) - y*(A), by Prop. 2.9, 

= y*CX) 

= y*(x). 

Remark 2,12. In this case, we have proved farily easily that 

Lebesgue’s condition for measurability is equivalent to Caratheodory's, 

and hence, also to Young’s. 

Definition 2.15. Def'lne \x^(A) and \XQ(A) by 

(a) \i^(A) = 'inf{\i(F) : F ^ A^ F z R}j if such a cover exists; 

— otherwise; 

Cb) \IQ(A) = sup{]i(E) : E c: Aj E e R}, 

Here, y is a measure on a ring R which has the property 

that y(A) is finite for all A e R, and also, that whenever {A } 
oo 

is a sequence of sets from R such that ^ y(A ) is finite, then 
1T1 

u A e R. 
1 ^ n=l 

y is known to be an outer measure [12], and the proof that 

yo is an inner measure is merely a duplicate of that given in Pro- 

position 1.29. T. P. Srinivasan [12] proves that M(y^) = M(yo). 

Also, he shows that it is not necessarily true that 

y^|M(y^) = yo I^Cyo) • In our case, we shall study the relation be- 

tween M(yo) and M(y*), and also yg and y^, where y* is a 
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Caratheodory’s inner measure induced by y (Remark 1.26). 

Proposition 2.14. M(yo^ =M(yj^j, 

Proof. Direct proving is not easy. Instead, we apply a proof simi 

lar to that given in [12] and get M(y ) = M(y^). Since we have 

pointed out already that M(y ) = M(yo), we have M(yo) = M(y*). 

Remark 2.15. Since y is a measure on M(y ), y* is then a 

measure on M(y*) because, obviously, y*lM(y*) = y^|M(y^). We 

have also mentioned that y |M(y ) is not necessarily equal to 

Pol^Cyo)j conclude that the two inner measures So induced are 

not identical even on M(y*). More specifically, y*(A) > yo(A), 

for all Ac X. However, if we define y (A) by 
X' 

y^(A) = sup{\iQ(M) : M ^ Ay M e M(yo)}i 

then it is routine to check that for any A c X, there exists a 

yg-measurable kernel, with respect to y^, for A. If V^(A) = °°, 

then y (A) = ygCA). We consider those sets A such that yo(A) 

is finite and let K be a yg-measurable kernel, with respect to 

y^, and E be a y-measurable kernel, with respect to yg, for A 

Then, 

y^(A) = yg(K) 

^ PoCA) 

= y(E) 
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And so, in this case, y CA) = UQCA). 



CHAPTER III 

CONTRACTION OF INNER MEASURES 
AND INDUCTION OF OUTER MEASURES 

The definition of an inner measure y. allows us to obtain a A 

a-algebra of y^-measurable sets. In the case of Caratheodory’s 

inner measure y^ is an inner measure which is a measure on 

M(y^). It is not, however, generally true that an inner measure 

y^ is always a measure on M(y^). In Example 1.14, the superaddi- 

tive set function y^ is an inner measure and M(]£) is a a-algebra 

However, is not a measure on M(y). 

In this chapter, we shall ’contract' (which we shall define be 

low) the inner measure y^, so that it is always a measure on 

M(y^), and that it always generates an outer measure. 

Definition 5.1. FOT any c define \i^(A) by 

V^(A) = \i^(CA)^ 

where C is ]x^-measurable and is finite, 

y^ is called a ^contraction' of y^. 

Definition 5.2. A set A X is ^-measurabte iff for any P c z 

such that \x^(P) is finite^ 

y^(P; - M^(PA) + M^(PA'), 

29 
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[The restriction that (P) be finite is immaterial in this 

chapter. It becomes important in Chapter IV.] 

The following proposition is an obvious consequence of results 

of Chapter I, and the fact that y^(X) is finite. The proof is 

omitted. 

Proposition 3.3. If y^ is an Inner measure on C s M/y^,) and 

Is finite^ then the contraction y^ of y^ has the 

following properties: 

(a) It Is an Inner measure on X; 

(b) MTy^j Is a a-atgebra; 

(o) Vet • e pairwise disjoint. Then^ 

for any F ^ X, 

^ = I, n=l n=l 

(d) It Is countabt additive over Mfy^j. 

Proposition 3.4. Mfy^j <= MTy^/). 

Proof. Let B e M(y^). For any P c x, we have 

y^CP) > y^CPB) + y^(PB') 

= y^(CPB) + y^(CPB') 

= y^ (CP), since B e M(y^), 

= y^-(P)» and so, Be M(y^). 
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Example 3.5. It follows from the previous proposition that is 

also a measure on M(p^). However, the reverse inclusion need not 

hold: 

Let A c (X-G) be such that A is not -measurable. Then, 

for any P «= x, we have 

UcCP) ^ y^^CPA) + y^^CPA’) 

= P^CCPA) + P^(CPA’) 

= (CP) 

= 

It follows that A is p^-measurable. 

C 
Definition 3.6. Fov any A defi-ne p (A) by 

(A) = inf{\i^(F) ; F 3 A, F e 

where p^ is a contraction of p^ defined in Definition 3,1. 

Remark 3.7. Since X e ^^(P^), F always exists. It is obvious 

C 
from the definition that p (A) is finite for all A c x, and 

C C 
y (4^) = and also, p is monotone. 

Proposition 3.8. For any A ^ Xj there exists a VL^-measurable 

C C . , 
set F ^ A such that V^Q^b') = P (A)^ where p is defined in 

Definition 3.6. 
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Proof. Let A be any subset of X. Given there exists 

F G Mfy^) and F => A such that 
n C n 

ycCF„) < y'^CAD . i . 

This holds true for all n. Hence, we have 

00 

y ( n < y^(A) 
n=l 

And so. 

oo 

y^( n F^) < y'^(A) . 

n=l 

Equality follows immediately from the monotonicity of y . Since 
oo 

M(y ) is a a-algebra, by Proposition 3.4(b), n F e M(y ), and 
*1 T1 L./ oo n=l 

n F is our F. 

n=l 

Corollary 3.9. u defined in Definition 3,6 is subadditive. 

Proof. 

F2 3 B, 

Let A n B = 4). Let 

and (A) 

y^(A) + y^(B) = 

> 

Fi,p2 e M(y^) such that F^ 

and 1^Q(F2) = (B) . Then, 

h(^CFi) + y^-CFz) 

y^(FiUF2) +. y^(F2F2) 

y^(FiUF2) + y(,(FiF2) 

y^(AuB) . 

A, 
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Corollary 3,10. In Propos'ition 3.9j F is a v^-measurable cover^ 

C with respect to \i j for A, 

Q 
Proof. We need only prove that F e M(y ). 

Let P be any subset of X, and FQ e M(y^) be such that 

Fo ^ P and (F ) = U^CP3« Then, 

U^CP) = U(,(Fo) 

= PJ^CFQF) + ^(^(FoF*), since F e 

= U^(FoF) + /CFOF') 

G C C 
^ V> (PF) + u (PF'), since y is monotone, 

r 
> y (P), by Corollary 3.9. 

And so, F e M(y^) . 

C Corollary 3.11. y defined in Definition 3,6 is an outer measure. 

C 
Proof. In view of Remark 3.7, we need only prove that y is count- 

ably subadditive. 

Let sequence of subsets of X, and F^ be the 

corresponding y^-measurable cover for for all n. Then, we 

u B^) S u"( u F^) 
n=l n=l 

have 



< 

n=l 

I y (B^). 
n=l 

by Corollary 1.35, 

Remark 5.12. Our model, in addition to being a generalization of 

inner measures as considered by Caratheodory, Lebesgue and Srinivasan 

can also be used as a starting point in the development of Measure 

Theory. . The concept of inner measures is also applied to topological 

spaces [Tops(|)e [13] ]. 

In the following, we ask the question: Given the inner measure 

Up defined in Definition 3.1, we obtain a measure y |M(y ) on 
LJ LI U 

C 
MCy^) which is a a-algebra. We then induce an outer measure y 

C 
by Definition 3.7, and from y , we induce Caratheodory’s inner 

measure y^ (Remark 1.26). What is the relation between y^ and 

y^, and between M(y^) and M(y^)? 

C C 
Obviously, and M(y ) are both a-algebras, and y is 

Q 
a regular outer measure. Since y (X) is finite, the outer-measurab 

C 
ility criterion of Lemma 2.9 can be applied. Likewise, a y -measur- 

able kernel exists, with respect to y’, for each subset of X, 
L# 

by Lemma 1.28. Also, since is finite, the y^-measurability 

criterion (Proposition 2.3) is applicable. It follows from Proposi- 

tion 2.12 that M(y^) = M(y^), and y^|M(y^) and y^|M(y^) are 
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identical. We can show easily that M (y ) «= M (y ): 
C 

Let A c MCy^) . Then, we have 

p^(A) + = Pj,(A) + P(,(A') 

= 

c 
= y (X), as desired. 

And so, we have the relation: 

c M(y^) = M(y^) . 

It is unlikely that we can then relate y and y'. However, if we 

assume that a y^-measurable kernel exists, with respect to y^, for 

any subset of X, then we have 

y^(A) < y^!.(A), for all A c x. 

We next consider a set function y^ as follows: 

Definition 3.15. For any A c defi^ne y^ (A) by 

\i^ CA) = 

where y^ ds the contracted dnner measure deftned tn Deftndtion 3,1. 

Proposition 3.14. Let y^ be the set function defined in Definition 

3,13j and y be the regular outer measure defined in Definition 

3,6. Thenj for each A c there exists a ^-measurable hemely 

with respect to y^j for A^ iff y® and y are identical. 
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Proof. By assuming that for each A c x, there exists a y^-measur- 

able kernel, with respect to y^, for A, we first prove that for 

each A, there exists a y^-measurable set E => A such that 

y^,(E) = yO(A). 

Let K be a y^-measurable kernel, with respect to y^, for 

A». Then, 

y°(A) = y^(X) - y^(A') 

= y^(X) - y^(K) 

= y^(K'), and K' is the desired 

set E. 

It follows that, for all A X, 

yO(A) > y‘"(A). 

c 
Now, let F be a y^-measurable cover, with respect to y , for 

A. Then, 

y^(A) = y^(F) 

= y^(X> - y^(F') 

> y^(X) - y^;(A') 

= y“(A). 

Hence, we have y^CA) = y (A), for all A X. 

Conversely, we assume that y® and y are identical. By 
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C 
the way y is defined, there exists a y -measurable cover F, 

Li 

c 
with respect to y , for each A c x. Also, since we have assumed 

Q 
that y ^(A) = y (A), we have 

y^(X) - y^CA’) = Vc(F)* 

This implies that 

y^(A') = y^(X) - y^(F) 

= y^ CF ’) , and F ' 

is a y^-measurable kernel, with respect to y^, for A'. That is, 

for each subset of X, there exists a y^-measurable kernel, with 

respect to y^. 

Corollary 5.15. Let y^ be the set function defined in Definition 

. C 
3,13j and y be the regrutar outer measure defined in Definition 

3,6, Theny for each A ^ Xy there exists a \x^-measurable set 

E ^ A such that \i^(E) = \i^(A) iff y*^ and y are identical. 

Proof. By assuming the existence of such a y^-measurable set E in 

the corollary, we have y*^(A) = y (A) for all A «= x, by following 

the same proof given in Proposition 3,14. Conversely, if y^ and 

y are identical, then, by the same proposition, there exists a 

y^-measurable kernel, with respect to y^, for each subset of X. 

This implies the existence of such a y^-measurable set E as stated 

in the corollary. 
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Remark 3.16. Outer measures are frequently obtained by inducing 

them from measures. We have shown that an outer measure can always 

be generated from an inner measure (Corollary 3.11), and in terms 

of an inner measure as defined in Definition 3.13. 



CHAPTER IV 

SEQUENCES OF CONTRACTIONS OF INNER MEASURES 

In this chapter, we consider an increasing sequence {C.} of 
oo 

u.-measurable sets such that P* ( u C.) is finite, ) is 
A A^. , C. 

1=1 1 

the associated sequence of inner measures contracted from and 

obviously, (M(y^ ^^ measure spaces for all i. 
i i 

Proposition 4.1. (a) For any A X such that (A) 'Is f'in'tte, 

y^^ (A) = lim y^ (A); 
•i -i-H® i. 

oo 

ih) Mfy >> = n ); where C. is def'lned 
Uo. • ^ O. 'I' 

to be C ,-C. for i = and CQ = 0* 

Proof. Part (a): Let be finite. Then, 

1 1=1 

= y^C u C.A) 
1=1 

= 'I y^ (C^A), by Proposition 1.34, 
i=l 

= lim I y^(C.A) 
n^ i=l 

n 
= lim y.( n C.A) 

_ A^. T 1 ^ n-K» 1=1 

n 
= lim y.( n (C.-C. ,)A) 

A . , ^ 1 1-1 ^ 
n-x» 1=1 

= lim y. fC A) 
A n 

nrx» 

39 
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Part (b): 

Let B e ) • 

we have 

= lim (A), as desired, 
n-^ n 

oo 

We shall first show that ^ M )• 
^i i=l i 

Then, for any P c x such that (P) is finite. 

y^( u C.P) = y^C u C.PB) + y^( u C.PB'). 
i=l i=l i=l 

OO oo 

Also, since P^C u C.P) = y^( u C^P), we have 
i=l i=l 

OO 00 00 

y. ( u C.P) = y,C u C.PB) + y,( u C.PB'). 
A''. _ 1 ^ A^. ^ 1 A^. 1 1 ^ 

1=1 1=1 1=1 

Applying Proposition 1.34, we have 

I 
i=l 

U^(CiP) = I 
i=l 

p^(C.PB) + I 
i=l 

y^CC.PB’) 

= I (y^(C.PB) + y^(C.PB')), 
i=l 

which gives 

I (U^CC^P)-(P^(C^PB)+U^(C^PB>))) = 0. 
i=l 

But, y^(C^P) ^ y^(C^PB) + y^(C^PB'), for all i, hence, we have 

p^(C^P) = P^(C.PB) + p^(C^PB'), for all i. 

and so. BE n M(pp^ ). 
» -1 V-* • 

1=1 1 
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Next, we shall prove that n M(y— ) c ). Let 
i=l 

00 

Be n M(y— ). Then, for any P c x such that P A (P) is finite, 
• «i ^ 

1=1 1 

we have 

11 1 

1=1 1=1 

= y^ C u C.PB) + y. C u C.PB') 
1=1 1=1 

= I y^CC^PB) + I y^(C^PB'), by Proposition 1.34, 
i=l i=l 

= I (U^(C^PB) + p,(C,PB')) 
i=l 

A'- i 

= I (y^ (PB) + y- (PB')) 
i=l ^i ^i 

= I y— (P), since Be n M(y— ), 
i=l ^i i=l ^i 

= I y^CC,P) 
1=1 

= y^( u C.P), by Proposition 1.34, 
i=l 

= ^A(.^ 
1=1 

^uC. 
1 

Hence, B e ) 
i 
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Proposition 4.2. => =3 H(\i^^) => , . . . 
C2 

Proof. From the previous proposition, we have M(y ^ ) = n M(y— ) 
U Lf • . 1 Li • 

1 1 = 1 1 

This implies that 

n+1 

M Cvi(^ ) = n M (y^ ), for n = 1,2,3,... . 
n+1 i=l i 

It follows that 

n+1 
M[y^ ) = n M(y^ 

^n+1 i=l ^i i-1 

n 
= C n )) n M(y^ ) 

i=l ^i i-1 n+1 n 

= M(y^ ) n M(y^ _^ ) . 

n n+1 n 

Hence, we have WChp ) )> for n = 1,2,3,... . 
n+1 n 

Note that by Example 3.6, the set inclusion can be proper 

Remark 4.3. There is another advantage of contracting an inner 

measure y • we can obtain more y^-null sets, and more 
A C 

y^-measurable sets of finite measures. Here, y^ is the contracted 

inner measure. We have shown in Example 3.6 that there may exist 

sets which are y^-measurable but not y^-measurable. In the example 

A is actually a y^-null set. On the other hand, if we pick any set 

A =3 C such that A is not y^-measurable, then clearly, A is 

y^-measurable and = y^(C). In this case, (A) is finite 

if P^{C) is. 
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