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PREFACE

My interest in Astronomy in general and in Celestial
Mechanics (CM) in particular dates from prior to 1955. When asked
to define CM 1 sometimes assert, although somewhat facetiously,
that "It is the study of the motions of the heavenly bodies!'". The
reactions from my interlocutors to the preceding range quite widely:
from a deadly silent and suspicion -~ filled glare to hearty and
jovial laughter. But, I maintain, that when taken in its strictly
scientific sense, it is a fairly good and encompassing definition.
It is, indeed, an all-encompassing one when the Earth is admitted
to the class of heavenly bodies, as, of course, it should.

As an undergraduste at McGill University I was introduced
to and inspired by the awesome "numberfcrunching"»capabilities of
digital computers. These machines represented a significant ad-
vance in the state of the art of performing scientific calculations,
especially when compared to myself even with the aid of Chambers's
Seven-Figure Mathematical Tables [1]%*!

This thesis, therefore, represents a significant portion
of the work I have carried out during the past two years in the
consolidated fields of Numerical Analysis, Computer Science, and

CMB

% Numbers in brackets refer to items in the Bibliography.
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ABSTRACT

This thesis deals primarily with solving systems of
autonomous ordinary nonlinear differential equations arising in
Celestial Mechanics initial value problems using various finite-—
difference techniques. Those methods investigated are the classi-
cal Runge-Kutta, Gill's modification to the classical Runge-Kutta,
Runge—-Kutta-Nystrdm, rational extrapolation & la Bulirsch and
Stoer, and Taylor's series.

For the Two-Body Problem, the Taylor's series technique
is about 2.9 times faster (for approximately maximum attainable
precision) than rational extrapolation, which was the second fastest
of those algorithms investigated. Taylor's series is capable of
yielding the most precise results of those methods scrutinized.

In the case of the Eleven-Body Problem in which the Solar
System is simulated for over 60 years, rational extrapolation is
about 8.5 times faster than the Taylor's series technique for
approximately maximum attainable precision in results. The model
is strictly based on Newtonian mechanics, using point masses. The
angle with vertex at the heliocentre and subtended by the positions
of Mercury based on Newtonian mechanics and Einsteinian General
Relativity was about 29,35 seconds of arc in the wrong direction,
while the corresponding secular excess perihelion shift predicted
by Einstein was about 25.89 seconds. The total error angle was,

therefore, about 55.24 seconds. Error angles for the other planets



were less by much more than an order of magnitude. Coordinate
uncertainties in the initial conditions (especially in the velocity
components) severely limit the predictive capability of a Solar
System treatment as an initial value problem.

Acceleration components in the Eleven-Body Problem were
evaluated with considerable effort to minimize load module execution
times, within the constraints imposed byvéﬁe FORTRAN language - an
advance in the state of the art may well have been achieved therein.

A lunar ephemeris of geocentric radii vectores was pre-
pared from the software of the Eleven-Body Problem. The maximum
residual observed with respect to the widely available j = 2
ephemeris was about 11 km (in a mean distance of 384,400 km),

over a 4 year interval.
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CHAPTER 1
A SUCCINCT SURVEY OF CELESTIAL MECHANICS
1.1. INTRODUCTION
Celestial Mechanics (CM) applied te the Solar System
has been a considerable impe;us in the development of mathematics
[2,3]. For those who may be naive in the former we supply a brief

treatment, with emphasis on those aspects bearing most heavily on

this thesis.

1.2. GENESIS

Assuming an evolutionary development of the species Homo
sapiens, probably two salient features thereof at least facilitated
his contemplation of the cosmos, namely: his progressing intellect
and his transition from quadruped to biped. The former character-
istic is facetiously illustrated in a set of cartoons [7]. It is
reasonable to suspect that the ancient Egyptian builders of the
Great Pyramids of Giza (about 2500 B.C.) strove for an astronomical
orientation thereof [11]. Hoyle believes that Stonehenge was em-
ployed as an observatory for the Sun and Moon (about 1500 B.C. or
earlier) [12], and, indeed, that it may have served as a repository
of such information [4]. Numerous other sites seem to support the
corresponding former premise [13,14]. An excellent recent discussion
pertaining to many aspects of Astronomy in the ancient world is avail-~
able [5]. Further information on the history of Astronomy may be

obtained [96].



1.3. THE GREEKS

The writings of Aristotle surely point out the inter-
disciplinary characteristic of his great intellect. Unfortunate-
ly, although he must have observed falling bodies travelling close
to the Earth, he does not seem to have carried out rigorous experi-
ments upon which to base his Eonclusions [15]. He strongly differ-
entiates between terrestrial and heavenly motion [25], in clear
contradistinction to the teachings of Newton [70]. However, care
must be exercised when attempting a critical analysis of Aristotle's
philosophy: that this is so is evident from a study of two trans-
lations regarding his thoughts on falling bodies - .the words ad-
jacent to "gold or lead" possess a radically different precise
mathematical meaning [26]. Supporting evidence is available [27].
Indeed, it seems that Aristotle hgs even been mis-quoted by the
great Galileo [29]! The preceding demonstrates that historical
works, by the passage of time, and derived literature, by the preju-
dices of its authors, should not necessarily be construed as fidu-
cial representations of their sources of reference: they, there-
fore, should be considered with some suspicion. We would probably
do well to apply the same principle to even contemporary scientific
literature also, but in so doing we admit a measure of prejudice.
It shall be our intent to be as objective as possible throughout
the thesis. Continuing then, Aristotle advocated the geocentric
theory, the deferent-epicyclic theory of planetary motion (the

"Spheres of Eudoxus") [8,10], the immutability of the heavens [16], and



diurnal motion caused by rotation of the celestial sphere [30].

Heracleides considered the possibility of diurnal motion
resulting from terrestrial rotation [17].

Aristarchus advanced the heliocentric theory, with cir-
cular orbits [8,41].

Ptolemy, in his Almagest [31], synthesized contemporary
theories, in essential agreement with Aristotle [9]. We note in
passing that the astrolabe [34], known in his time, still serves

as a practical device in the U.S. Navy [35].

1.4. NICOLAUS COPERNICUS

Copernicus [18,50] advocated the heliocentric theory [36],
which is probably his outstaﬁding astronomical contribution [37].
He also advanced, in "De revolutionibus orbium coelestium', diurnal
motion caused by Earth's rotation, and the deferent-epicyclic theory
of planetary motion [32]. Although the motivation for his researches

is not clear [38], calendar reform could have been responsible [42].

1.5. TYCHO BRAHE

Tycho's great contribution to CM was his naked-eye
observations of Solar System bodies: tables (correct to 2 minutes
of arc [45,46,48,172], compared with Ptolemy's 10) thereof were
given to Kepler [19]. ﬁis "nova'" did little to further the cause
of Aristotelian immutability [51], but he advocated an essentially

geocentric theory, complete with epicycles [43]. His lunar theory



was impressive [44].

1.6. GALILEO GALILEI

Galileo [20,52] applied the refracting telescope to ob-
serve the heavens [45], and by consequence strongly advocated the
heliocentric theory, albeit with circular orbits. His observations
demonstrated the falsity of Aristotelian immutability and the
differentiation between terrestrial and heavenly motion. 'He sup-
ported the notion of the rotation of the Earth, and wielded together
mathematics and physics (based on empiricism). Although it is
possible that he did not perform his falling—bédy experiments from

the leaning tower at Pisa [28], he was quite familiar with the

kinematics involved [47].

1.7. JOHANNES KEPLER

Kepler [21,53,81] is primarily remembered for his three
laws of plametary motion. His study of the Martian orbit led to
the first two [48]. Mars' rapid motion in right ascension at present
(May, '74) [229] and its proximity to Castor and Pollux in Gemini
yield a spectacularly discernable shift in position (to the naked eye)
on a daily basis. No doubt similar motions inspired both Tycho [51]
and Kepler. The predictive advantage of the Keplerian theory over
those of Ptolemy and Copernicus is readily apparent [49]. His
heliocentric and heliodynamic theories [33], therefore, represented

a significant advance in the state of the art of CM, and they



certainly aided the grand synthesis established by Newton.

1.8. SIR ISAAC NEWTON

Newton's [22,54,67,68,77,78] three laws of motion and
his law of universal gravitation, obtained through inductive reason-
ing, were skillfully employed to explain a host of phenomena, not
the least of which was the Two-Body Problem in his '"Philosophiae
Naturalis Principia Mathematica" [69]. An excellent introduction
to the Principia is available [71], as is an excellent treatment
of the development of CM up to about 1850 [72], while his early
development is aptly traced [74]. We find it difficult to attempt
to improve upon the references cited; in summary Newton "'stood on
the shoulders of giants" (Kepler [75,239],etc.), supported the
heliocentric and heliodynamic theories, related terrestrial and
heavenly phenomena (to the point of predicting artificial Earth
satellites [70]), relied on telescopic observations, and, of
course, employed his powerful intellect to effect his grand syn-
thesis.

The Principia was not initially received with open arms:
on the continent, "Il n'a peut-étre pas été accueilli avec la
considération qu'il méritait.", while at his alma mater, "Newton's
system was introduced in Cambridge under the aegis of Cartesian
‘theory" [76]. Descartes' "Théorie des Tourbillons'" or, more de-
scriptively, his vortex theory of planetary motions, published

in his "Principia philosophiae'”, and the demise thereof are aptly



described [79].

There exists extremely powerful evidence that Newton
"fudged", that is: he manipulated data to suit his purposes [80].
Although such action can hardly be condoned, his "System of the
World" nevertheless remains a very close approximation to macro-

scopic reality.

1.9. URBAIN-JEAN-JOSEPH LE VERRIER

Le Verrier's [23] work was of extreme importance in the
advance of CM: his prediction of Neptune [55,73,82,83] served
strikingly Newton's concept of universal gravitation (although in
retrospect the discovery must be labelled somewhat fortuitous),
while his (Le Verrier's) inability to account for the excess peri-
helion motion of Mercury sowed the seeds for the ultimate demonstra-

tion of the shortcomings thereof [56,58,85,86].

1.10. ALBERT EINSTEIN

Einstein [24,57,84] published a paper [88] explaining
the observed motion of Mercury. The scientific community continues
to display considerable respect for his work [87,89,238], although
the situation is far from being empirically, and, indeed, possibly

theoretically resolved [86,242].

1.11. HELTOCENTRIC UNIQUENESS
Considerable effort has been carried out in the preceding

sections to trace the development of the heliocentric and helio-



dynamic theories. However, in the remote past it seems plausible

that the Sun and Jupiter formed a binary stellar system [118]. The
origin and evolution of the Solar System, under the preceding hypothesis,
make possible a novel plethora of theories indeed, although Kuiper

[175] has, at least in part, anticipated Drobyshevski [118].

1.12. NUMERICAL INTEGRATION

Due to the paucity of closed-form [60] solutions in CM
[59], a popular quantitative approach is numerical integration [121].
This class of techniques is not recent: it dates si;ce at least
1800 [126]. Bond (1849) and Encke (1852) employed it [91]. Dirichlet
(1858) supposedly applied it to mechanics in general [204]. Watson
(1868) used it in his study of comets and asteroids [92]. Cowell
and Crommelin (1910) used the method known by the former author to
study the motion of Halley's Comet [93]. Taylor's series are be-
coming popular (See Section 2.7.). Modern digital computers have
certainly encouraged the employment of numerical integration [61,93,

94,95,97,104,172] as well as analytical techniques [106,165,166].

1.13. THE SPACE PROGRAM

The Soviet Union first realized Newton's prediction of
artificial Earth satellites (See Section 1.8.) with the launching
of Sputnik I on 4 October 1957 [63]. With that event CM became
an extremely important and practical field of knowledge [65]. The

U.S.A. landed the first man on the Moon on 20 July 1969 and brought



him safely back [64]. The principles of CM have been successfully
applied to increasingly sophisticated planetary exploration: Mariner 9
to- Mars [197], Pioneer 10 to Jupiter [198], Mariner 10 to Venus [199]
and Mercury [200], etc. Earth satellites, such as: ERTS-1 [201]

and SMS-1 [202] have provided invaluable information regarding man's
abode. With such developments, CM has become an experimental as
well as the classical passive field [94]. There can be little doubt
that CM will continue to play an important role in man's efforts

in space [203,208,209].

1.14. POSSIBLE RELATIONSH;PS‘WITH CLIMATOLOGY‘

The powerful predictive attribute of CM could have
important consequences in climatology. There is evidence, albeit
far from conclusive at present, that the planetary positions are
related to sunspot cycles, and that the latter are related to the
Earth's climate [109,110,111,112]. Gribbin [109] felt that climatic
prediction might ease the impact of drought conditions in several
areas of the world. However, a more recent assessment of the sit-
uvation in the Sahel downgrades the importance of climate thereon
[113]. Contradictory evidence is available [114]. 1In more general
terms, the astronomical influence on terrestrial climate has both
its protagonists [115] and antagonists [116]. Clearly, more re-
search is required in climatology and is being carried out [117,240].
Research in CM would seem to be justified solely on the possibility

that it might shed some light on conditions in man's abode.



CHAPTER 2
THE TWO-BODY PROBLEM

2,1. INTRODUCTION

This problem was solved by Newton in his Principia [69],
in an effort to explain the motions of the planets in the Solar
System. As the Solar System is sparsely populated, and the Sun
is by far the largest mass, the motion of a particular planet re-
ferred to the Suﬂ can be well approximated through a consideration
of just these two bodies. An analytical development (based on
Newtonian mechanics) will be presented and we shall discuss the
salient properties of the motion. Then we shall solve the system
of differential equations by various finite-difference techniques.
Cowell's method of numerical integration will be employed (See

section 1.12.).

2.2 ANALYTICAL DEVELOPMENT
The vector differential equation of the Two-Body Problem

may be written [119]

) =
e L opr _
d t2 rd

) 1)

where p = Gm +mp) . (2)

The symbolism employed is normal in CM and is defined in the

reference.
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Kepler's first law may be stated: a closed orbit
(r (t+T) = r(t) , where t, T<® and T is the period
defined below) is an ellipse with m; at a focus. His second
law asserts: the areal velocity of the radius vector is constant.
The third law relates the period T to various orbital para-

meters:

T = 2nm /«—ﬁi (3)

We rewrite (1) :

2 ¥ -
d< r - - pr %)
d t2 r3

Since the motion is planar, two Cartesian coordinates
suffice to uniquely define r . We write (4) as two scalar

equations:

§ = - —PX :
X (x2 + y2)3/2 ()
§ = - By (6)

(’xz + y2)3/2
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Putting p= 1 in (5) and (6) givés

X=-—% ’ (7)
(xz + y2)3/2
o}; - - y (8)
(xz + y2)3/2
wWith
x(0) = 1, y(0) = 0, x(0) = 0, ¥(0) =1, (9

the exact analytical solution of the system (7) and (8) is [127]

x(t) = cos t, y(t) = sin t, which is the parametric
representation of a circle with radius 1 unit and center at the
origin. In this case, the semimajor axis is 1 unit in length, and
from equation (3)

T = 2«. (10)
In order to treat elliptic motion we introduce the eccentricity
e (0€e<l). Circular motion is a special case of elliptic motion
with e = 0. The motion is started at pericenter with

x(0) =1, y(0) = 0, x(0) = O. (11)

We need to determine y(0) as a function of e.

Writing x(0)=1 = rp = a(l - e), we obtain
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a=71- . - (12)

/z;;
T

p

Now v

4/2 - (1 - e) . Therefore,

y(0) =V = ,/1 + e 13)
Equation (13) relates the magnitude of the pericentric velocity
to the eccentricity.
To determine the period of the motiom, we use (3) with p=1

T = 2723 . (14)

Equation (13), although quite simple, caused some consternation

while perusing related literature [137] (See Appendix 3.).

In a Banach space, the solution of the system (7) and (8), sub-
ject to initial conditions (11) and (13) (0<e<l), exists and is
unique. This follows implicitly and is, therefore, by no means

mathematically rigorous [119].
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2.3. THE CLASSICAL RUNGE~-KUTTA TECHNIQUE
This technique [122,125] remains popular, probably due to .its
simplicity. We shall integrate the system (7) and (8), subject to

(9), over 10 orbits to study the performance of the algorithm.

2.3.1. THE COMPUTING ENVIRONMENT

Appendix 1 includes most of the system output for the example
with discretization interval x 4 x 10_4 (STP=PI*4D-4). The com~
puter employed throughout work on this thesis was the one. at Ehe
Lakehead University Computer Centre, an IBM System/360 Model JHS50
(with 1024K of LCS (Large Core Storage) and 256K of ﬁain Storage),
running under Release 21.7 (Most of the work done for this thesis
was run under this release.) of Operating System/360 MVT (with
HASP) [134,135].

Appendix 1 A shows the JCL, allocation-~deallocation messages,
and accounting routine output conveniently displayable within an 8.5
x 11'' page size. The load module resided in a region of LCS.

Appendix 1 B shows the FORTRAN source employed [123,130], which
was written to produce a reasonably efficient load module (One
whose core requirement and execution time would tend to be minimal,
although these are somewhat conflicting characteristics. Wherever
possible this philosophy has been applied to all FORTRAN programs.
Also wherever possible the H level compiler with option OPT=2 [133]
was employed. It should be noted at this point that the optimized
load module was regarded with an element of suspicion as it can

produce incorrect results: runs with OPT=0 were employed to verify
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proper output in some cases.).

Appendix 1 C shows the SYSOUT=A information produced by the exec-
ution of the load module in the GO step. The top line shows the
values of the initial conditions as

x(0) =1, y(0) =1, %(0) = 0, ¥(0) = 1.
The next lower line lists the values of the variables for t = 21,
and so on for t up to and including 207 (corresponding to the end of
the tenth orb:i.t)‘j The gap between the y and % columns was reduced
for convenient display, and hand printed annotations (to clearly dis-
tinguish between system output and the annotations) ;ere added.

We choose Appendix 1 for detailed display because the results, for
the step sizes examined, are the most accurate, and the accuracy
criterion is of paramount interest in CM. The same program, except
for the value of FORTRAN variable STP (the step size), was also run.
Graph 1 is a plot of the step size versus the CPU time of the GO

step (Appendix 1 A) for 10 orbits.

2.3.2, ANALYSIS OF OQUTPUT

Appendix 1 C shows a general trend: the combination of algorithm
error and roundoff error increases with the integration interval.
These two sources of error merit prime consideration in numerical
analysis; they usually must be tolerated and their effect is to
limit the accuracy of results. Algorithm errors [124] can be reduced
by employing "better" (in the sense of decreasing these errors;
notwithstanding the circular reasoning involved) algorithms. We

shall study this aspect later. Roundoff errors [136] can be reduced
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in at least 2 ways: an improved hardware~software arithmetic capa-
bility (single-precision (approx. 7 decimal digits)-»double-preci-
sion (approx. 16)-wextended-precision (approx. 34) [130,131,132]),
and software which yields a multiple-precision capability from a
limited hardware-software capability (See Appendix 2.). As double-
precision arithmetic was the best available from the computer, and
time was lacking to develop multiple-precision software, only the
former was employed throughout most of the arithmetic required for
the thesis.

Let us now concentrate on algorithm errors; in general, analysis
of such errors is difficult [127,129]. Even for our rather simple
problem, equations (6) [128] prove to be of little utility. Perhaps,
however, this criticism is unwarranted as it is difficult to iso-
late algorithm and roundoff errors. Rewriting equations (6) [128],

and maintaining symbolic consistency we obtain

° 1 4 X 45 _

Ax=- 5880 h [66t sin t +-~§-(cos 2t + 2cos t 31, (15)
. Y 4 45

Ay = —§§§6-h [66t cos t Y (sin 2t + 2sin t)]. (16)

At the end of complete orbits, t = 2q{ n, n integral and=1,

Ax 20, 17)
e 1 4
Ay =555 b Lestl. (18)
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For the example of Appendix 1, after 10 orbits x, admittedly,
has not decreased too much, while y = 8;22x10_11.Ay in this case is
about 0.359x10—1l. After 1 orbit x is closer to its ideal value than
before, while y = 1.136x10_12, and Ay = O.359x10—12. Therefore,
equations (17) and (18) improve as the integration interval decreases,

which is borne out by Fig. 7 [127].

For the case of STP=321(x10~4 the agreement of equations (17) and

(18) is significantly better than in the former. From the first to

the tenth orbit x changes less. At the end of the first orbit y
19555x10-9, while equation (18) givesdy = 1.470x 10‘9° Even in
this case,however, at the end of the 10th orbit y = 2.316x 10_8,

1.470x10°2.

while (18) gives Ay
In summary, x is much better behaved (in the usual mathematical
sense) than y for orbit closing studies. This has also been borne out
using other algorithms, therefore, we shall concentrate our attention
on y-»(approaching) 0 rather than on x-»1. The radius vector is to
be avoided as it takes undue advantage of the value of x in pre-
senting itself in a favourable light (since y<<€x).
Data related to Appendix 1 were plotted on Graphs 1 and 4. Graph
1 is a plot of step size versus CPU time required to execute the
load module. Some words of caution regarding the abscissa values are
in order. Although the interval timer has a resolution of approxi-
mately 16.67 msec. [138,139], subsequent executions of the GO step
(Appendix 1 A) willnot, in general, yield equal CPU times within

that resolution. Indeed, a study was carried out on a similar load
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module and the ratio between the longest and shortest runtimes ob-
served was about 1.31. Generally the ratio is about 1.10 or less.
The explanation, however, is quite straightforward: the MVT option
of 0S/360 was in use (See section 2.3.1 and references.). With only
1 job executingﬁinAa possible multiprogramming environment, the
observed runtimes should be almost constant and minimum. When MVT is
exploited I/0 operations involving the multiplexor channel occur
asynchronously with the CPU, the channel has some circuitry in com-
mon with the CPU and degrades the CPU performance, while the interval
timer continues to chalk up time inappropriately attéibuted to.a
load module. Even selector channel operation can contribute to in-
creased CPU times for an unrelated load module as only one set of
core addressing lines effectively exists: the selector channel gener-
ally has precedence over the CPU forvthis resource. In summary, the-
refore, runtimes in general are far from constant for subsequent
executions of identical load modules.

Graph 1 vividly reinforces an intuitively obvious concept: as the
step size decreases, the computational effort required to complete
a fixed integration interval increases. Graph 4 is a plot of the ab-
solute value of the logarithm (to base 10) of the absolute wvalue of
y after 10 orbits versus the logarithm of the CPU time, for various
integration schemes. The classical Runge-Kutta technique curve is
labelled RK4, and is displayed with the other curves for facile
comparison. The RK4 data were obtained from Appendix 1, and similar
runs (further information available from the author on these and

other details). Graph 4 readily shows that as the step size decreases
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from 321:’x10—4 t:o'l;‘(\'xlO_4 the technique performs better, but from
41tx10-4 to1fx10_4 the technique degrades in that increased compu-
tational effort results in less accurate y values. The most probable

explanation for this latter performance is the effect of roundoff.

2.3.3. ADVANTAGES

1. Simplicity. A perusal of Appendix 1 B shows that the program
is short and is very easy to write. Subroutines are avoided to speed
up execution times by reducing modular programming linkage require-
ments [140].

2. Accuracy. Graph 4 demonstrates that the algorithm can close
(reproduce) y to better than-lO“10 in an equivalent arithmetic en-

vironment of about 16 significant decimal digits.

2.3.4. DISADVANTAGES

1. No accuracy criterion. Although the algorithm is capable of
highly accurate results (See section 2.3.3.), it possesses no such
automatic capabilities. Results, therefore, warrant the closest
scrutiny on the part of the user. With modern high speed hardware,
there is little justification for excluding an accuracy criterion,
although user scrutiny is still required.

2. Discontinuous step size availability. In order to close the
integration interval at multiples of 21 (of the independent variable,
time), a step size which is a submultiple thereof is required. This

disadvantage can be circumvented by more sophisticated programming
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to allow a final step to be taken, not necessarily with the value

used throughout the interval of integration, to close that interval.
3. Speed. The algorithm is slow, especially when compared with

rational extrapolation and ‘Taylor's series (See Graph 4.), except for

very low closing accuracies.

2.4, THE CLASSICAL RUNGE-KUTTA (GILL'S MODIFICATION) TECHNIQUE
This technique also remains popular [141,142]; additional theory

may‘be found [143].

2.4.1. ALGORITHM IMPLEMENTATION

Appendix 4 shows details in a similar fashion to Appendix 1. Sub-
routine DRKGS [141] was employed essentially as received, except that
the DIMENSION statement was appropriately coded, and the FORTRAN
statement with statement number 7 was removed to prevent unwanted
output values, and the statement immediately following was given sta-
tement number 7 (See Appendix 4 B.). Unfortunately the subroutine was
written using BCDIC instead of EBCDIC (See conversion table [144].),
which yields a rather strange-appearing listing. The driving program
and subroutines FCT and OUTP were written to accommodate subroutine
DRKGS. Other rums were carried out using an accuracy criterion of
10—14 (variable PkMT(A)) and various initial step sizes (variable

PRMT(3)).
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2.4.2., ANALYSIS OF OUTPUT

Graph 2 presents the corresponding data to Graph 1 (See section
2.3.2.), while Graph 4 presents a relevant curve labelled DRKGS. DRKGS
is slower than RK4, but is capable of producing essentially the same

maximum accuracy value of y.

2.4.3. ADVANTAGES

1. Simplicity. Appendix 4 B shows that subroutine DRKGS is rea-
sonably short and efficiently written.

2; Flexibility. The employment of subroutine FCT to define the
system of differential equations represents a m;rked advance in the
state of the art over RK4. Although execution speed will suffer as
a result, the storage requirement could be greatly reduced especially
for a complicated system.

3. Accuracy. Graph 4 shows that the algorithm can close y to be-
tter than 10-10, as for RK4. A built-in accuracy criterion, coupled
with an essentially continuous step size capability represent signifi-

cant advantages over RK4. Results, however, still require user

scrutiny (See section 2.3.4.).

2.4.4., DISADVANTAGES
1. Speed. The algorithm is slow (Graph 4) compared with RK4, due

to its increased complexity.
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2,5. THE RUNGE-KUTIAFNYSTRﬁM TECHNIQUE

The two previous techniques share a salient characteristic: the
second order system (7) and (8) is reduced to a first order systenm,
which is then solved. We wonder if a direct numerical integration
of the original system might be advantageous: Henrici [126] reports
no significant benefit in general for single step methods, however,
Fehlberg [145] asserts that execution times can be reduced by a
factor of 2 or more. This situation obviously requires further in-

vestigation.

2.5.1. ALGORITHM IMPLEMENTATION

The algorithm employed [146] was the complete fourth-order one
(K=0, 1, 2, 3), with fK and 8y corrected to f and gy , respect-
ively, in the RHSs of equations 70. Appendix 5 displays details as

usual.

2.5.2. ANALYSIS OF OUTPUT
Graph 3 is virtually identical to Graph 1, while the output
listings are so close, for a given step size, to those of RK4 that

they were not plotted on Graph 4, in order to avoid confusion.

2.5.3. SUMMARY
The present algorithm performs virtually identically to RK4 for
the system (7) and (8), although it is slightly more accurate for

large step sizes, and slightly less accurate for small.
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2.6. THE RATIONAL EXTRAPOLATION TECHNIQUE
This technique commands considerable respect [147,148,149,150,156,
157] from the numerical analysis community: it therefore merits our

close scrutiny.

2.6.1. ALGORITHM IMPLEMENTATION

Appendix 6 shows details for the Two-Body Problem. The double-~
precision version of the software [149] was, in essence, employed (
See Appendix 6 B.). Appendix 6 C shows most of the load module output.

Appendix 6 A shows the JCL, etc. The load module resided in a
region of LCS.

Appendix 6 B shows the FORTRAN employed. Most of the FORTRAN was
taken from the double-precision version of DESUB (See Fig.5 [151]),
and punched into cards. Comments [130] were not included. Since
portions of the DESUB listings were hard to read, the software was
tested using Fig. 3 [152], and debugged. The software was then app-
lied to solve the system (7) and (8) (reduced to a first-order system),
subject to initial conditions (9). The driving program is the first

1 .
1 and is the local error tolerance

‘displayed. Variable EPS = 3.6x10°
[153]. Other jobs were run using various values of EPS.

Subroutine FCT (Appendix 6 B) was renamed from FEVAL [152], and
advantage was taken of the IMPLICIT statement [130], and these chan-
ges, along with appropriate subsequent ones, were propagated through-

out the software.

In subroutine DDESP (Appendix 6 B), variable DERR was omitted,
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and variable DDEOUT was renamed from XOUTX [151].

In sgbrOutine XDDE (Appendix 6 B), the DIMENSION statement was a-
ppropriately coded, variables DEMAX and NMAX were altered, and state-
ment 20 was so labelled after the two preceding statements were
omitted from the original [151]. In the assignment statement for XP
(second statement following statement 40), FLOAT was omitted (not
required).

In subroutine DDESUB (Appendix 6 B), the COMMON statement variables
were reordered to force double-word boundary alignment [130], and the
DIMﬁNSION statement was appropriately coded. ‘

In subroutine DREDIF, ‘the above two changes were incorporated.

In subroutine DDERSB, the above two changes were made. The DATA
statement is redundant for the compiler employed. The execution times
for the assignment statements for D(2), D(4), and D(6) (starting at
the second statement preceding statement 201) could be reduced some-
what by cutting down on the number of divisions required, but this
was not done. In the assignment for DT(I,l) (third statement follow-
ing statement 206) there is no need to make the constant .5 become
.5D0 to ensure double-precision results [130]. Statement 242 was al-
tered and two statements following it were added to eliminate the
need for subroutine DERR, and carry out an absolute-error convergence
test [151,154]. In the statement immediately following statement 30,
double-precision results are maintained [130], while the. execution
time could have been reduced by coding H=H*.5 instead of H=H/2.

In subroutine DDEOUT, the DIMENSION statement was appropriately
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coded, the COMMON statement labelled UNITS was redundant, the print-
ing of the title was suppressed, and statement 85 was altered to
provide a convenient output format [151].

Subroutine DERROR was essentially unchanged.

The enumeration of the preceding changes, etc. should facilitate

a comparison with the reference [151].

2.6.2. ANALYSIS OF OUTPUT

The curve labelled R.E.. on Graph 4 passes through relevant data
from Appendix 6, etc. As can readily be seen the behaviour is the
most complicated of the techniques investigated: Indeed, the curve
seems to possess a cusp (at about EPS = 4x10_11). An abrupt increase
in accuracy occurs from EPS = 3.65x10_11 to 3.649x10_11° A stable re-

gion occurs from EPS= 3.649x10-11 to about 2.5x10_11

, and the curve
continues to drop with decreasing values of EPS, probably due to
roundoff.

While such an interesting behaviour would merit a theoretical in-
vestigation, such was not attempted primarily because the details of
the behaviour (timewise) are subject to the factor of about 1.31 (
See section 2.3.2.). The corresponding error in the abscissae is
1og10 1.31 = 0.117, which is plotted, certainly does not have a poss-
ible insignificant effect upon the shape of the curve. The cusp, for
example, could be wiped out. It would be possible to effectively eli-

minate this error by having only 1 job executing: a dedicated compu-

ter. Unfortunately this concept had to be abandoned as the Computer
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Centrg was designed to cater to several users simultangoqsly,_lt should
be obvious that the abscissa error applies to all curves, not to just
the one labelled R.E. Strictly speaking,tﬁis error is directly appli-
cable to the curves only if they are representative of minimal times,
and the error can be positive or negative. In summary, it is unfor-
tunate that the abscissae are quite inaccurate (and irrelevant)

when considered as a set. A theoretical investigation thereof is de-
emed worthless.

In the driving program, H was arbitrarily set to 1. Tests were
carried out using various values of H for a fixed vaiue of EPS. Re-
sults indicate that since H is an initial step size which is auto-
matically modified by the software to meet the specified convergence
criterion [149], its value has only a slight impact on results (Det-

ails are not included but may be obtained from the author.).

2.6.3. ADVANTAGES

1. Speed. The technique is the fastest investigated, save for
Taylor's series (Graph 4).

2. Accuracy. The algorithm can close y to better than O.41x10—11.

A built-in continuous accuracy criterion is available. However,

results, as usual,must be srutinized (See section 2.3.4.).

2.6.4. DISADVANTAGES

1. Complexity. The software is the most involved that has so far

been investigated.
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2.6.5, INTEGRATION OF A HIGH ECCENTRICITY ORBIT

Appendix 7 shows details (not available in Appendix 6) for the
integration of (7) and (8) subject to the initial conditions (11)
and (13) with eccentricity e = 0.8. The period of the motion is giv-
en by (14), which is variable SP ( for specified point) in the driv-
ing program (See Appendix 7 A.). Appendix 7 software is similar to
that of Appendix 6.

Results show (Appendix 7 B) that the algorithm can adequately in-
tegrate an orbit whose eccentricity is much higher than any consider-
%d in the Solar System model (See section-§.2.), but that more degra-
dation is present than for e = 0. Results, as usual, warrant user

scrutiny.

2.7. THE TAYLOR'S SERIES TECHNIQUE

Brook Taylor [158], a contemporary of Sir Isaac Newton, in his
"Methodus incrementorum directa et inversa" begqeathed to the mathe-
matical world the extremely important infinite series now known as
Taylor's series [159]. The closely related power series has been
shown to be an effective device for the solution of differential
equations arising in CM [160,161,162], while Taylor's series per se
are also valuable [155,163]. As a general purpose technique, Taylor's
series, until recently, has not faired too well. However, with the
advent of more powerful digital computers nonnumeric applications,

specifically algebraic manipulations, have breathed new life into
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an old series for solving systems of ordinary differential equations
[99,108,137,155,164,165]}. The highly encouraging work of Norman [166]

prompted investigation of the technique.

2.7.1. ALGORITHM IMPLEMENTATION

Appendix 9 records most of the rather extensive private communication
involved. Appendix 8 shows details for the Two-Body Problem.

A good description of the use of the TAYLOR system is available
[168]. In essence, a FORTRAN-like description of the differential eq-
uations, along with initial conditions is supplied (See Appendix 8 B.).
The TAYLOR system then produces a set of subroutinesdriven by an ex-
ternally supplied main program (Appendix 8 C). Appendix 8 D shows the
load module output.

Appendix 8 A shows the JCL, etc. From Norman's tape and consider-
able processing thereof, a load module called TAYLORIV was added to
JOBLIB [167]. In the first job step the input is shown in Appendix 8
B (along with some generated output), while the salient output is
shown in Appendix 8 C (followed by the driving program). The second
job step was required to bypass a problem involving concatenation of
data sets with unlike attributes [167]. A standard cataloged proced-
ure invoking the H level FORTRAN compiler, etc. concludes the JCL.

Although the step size is not readily available to the user, a
parameter known as EPSILON (the local error-per-step) is [168]. In
Appendix 8 B, EPSILON = 10—6. Other jobs were prepared using various

values of EPSILON. The load modules resided in regions of LCS.
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2.7.2. ANALYSIS OF OUTPUT

The curve labelled T.S. on Graph 4 passes through relevant data.
For the values of y investigated, Taylor's series is clearly the
fastest technique, and it is capable of producing the most accurate

output.

2.7.3. ADVANTAGES

1. Speed. The technique is the fastest of those investigated (
Graph 4).

2. Accuracy.. Graph 4 shows that the algorithm can close y to be-
tter than 10 % (actually to better than 0.48x10712, A built-in
continuous accuracy criterion is included. Results, as usual, still
require user scrutiny.

3. Simplicity. The technique is clearly simple to use: the system
of equations along with initial conditions is supplied virtually in
their mathematical form in a FORTRAN-like languagge. A simple FORTRAN
driving program is also required. From these two inputs, results from
a powerful technique follow: the TAYLOR system represents a signifi-
cant advance in the state of the art of solving systems of ordinary
differential equations arising from initial value problems, from
the viewpoint of simplicity.

4. TFlexibility. The TAYLOR system can handle an extremely varied

system of differential equations [168].
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2.7.4. DISADVANTAGES

1. Complexity. The simplicity and flexibility features (See sec-
tion 2.7.3.) from the user's viewpoint are offset somewhat by increased
resources of implementation: Appendix 8 A shows that the first job
step ran in a region of storage of 350K (although the same input
(Appendix 8 B) has been successfully handled in 292K), which is greater
than the region required for the H level FORTRAN compiler {(250K). This
should not pose undue difficulties, however, in a modern scientific
computing environment.

The subroutines generated by the TAYLOR system (Appendix 8 C)
can be speeded up somewhat by careful modification over the optimized
version of the object module (See section 2.3.1l.). This was not
attempted as the technique is already the fastest investigated.

In some of the high accuracy runs the message IHC2081 was pro-
duced, indicating that an exponent underflow had occurred [133]. An
exponent underflow occurs when an attempt is made to represent a
magnitude which is too small (less than about 10_78 [133]) to be
handled by fioating-point arithmetic [138]. One possible method to
reduce exponent underflows would be to use a lower value for the
keyword TERMS (default and maximum value is 16) [168], without losing
accuracy. However, an investigation did not greatly substantiate this
premise (details not included but are available). A related problem

is that of overflows [169].
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CHAPTER 3
THE ELEVEN-BODY PROBLEM
3.1. INTRODUCTION
A model of the Solar System will be discussed. An analytical devel-
opment of the model will be made, and the resulting system of differ-
ential equations will be solved using the techniques of rational
extrapolation and Taylor's series from Chapter 2. Results will be

extensively discussed.

3.2. SOLAR SYSTEM MODEL

The Solar System is complicated [38,62,104,165,170,174;175]. In
order to study the motions of the bodies therein, the system will have
to be simplified in order to render it both mathematically and com-—
putationally tractable. Of course, the simplifications will play
their role in downgrading the interpretive utility of results [107,
172,173]. The simplifying assumptions are as follows:
1) the model is based on Newtonian mechanics,
2) the bodies are treated as point masses,
3) only gravitational interactions are considered, and
4) only the 9 principal planets, the Sun, and one optional body are
“involved.

For our purposes the optional body is the Moon, although it could
be Toro [178], Halley's comet[173,179,180], Mariner 10 [197], etc.,
as long as the preceding assumptions hold. The optional body interacts

fully with the others: it is not considered massless. This is an

30
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important consideration when the optional body is the Moon since the
lunar perturbation of the terrestrial orbit is not negligible [171].
However, the influence of the three latter optional bodies on the
rest of the system would normally be quite insensible. The Moon was
treated as the optional body because its motion is of great interest
to us.

The shortcomings of the model are not negligible. In order to be
reasonably complete we discuss the following theories and effects
which have not been included:

1) Einsteinian General Relativity (See section 1.10.5,

‘Although this theory produces results that differ greatest from
Newtonian mechanics in the case of the planet Mercury, it affects the
others as well [243]. It would have been mathematically tractable to
include an approximation to this theory [185], and, indeed, highly
desirable and instructive.

In order to treat the 1l1-Body Problem (the 9 principal planets,
the Moon, and the Sun) as an initial value problem it was natural to
employ the latest available sets of initial conditions [181,189].
These were available for 1913 August 21d.0.UT, 1971 September 6d4.0
UT, 1972 October 10d.0 UT, and 1973 November 14d.0 UT, and at inter-
vals of 400 days [184,190]. Unfortunately, the standard deviations
(Line 2 [18%]) for %, ¥y, and Z for Mercury give rise to differences
in results which far exceed the relativistic effects (See section
3.4.3.).

2) Asphericities, Mascons, etc.
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Assumption 2 neatly neglects all these relevant effects since all
bodies are treated as point masses. These effects, of course, can be
treated by Newtonian mechanics, and are probably of greatest import-
ance for the Earth and Moon [185,187]. Solar oblateness, however,
could prove to be of crucial importance in denigrating Einsteinian
General Relativity [86,187,191].

3) Solar Radiation Pressure and the Solar Wind.

Solar radiation pressure in the case of the planets may be neglec-
ted[183]. It might be of importance if the optional body were of the
type of the Echo 2 satellite. The solar wind might bénof importance
if the optional body were like Echo .2 or the present geosynchronous
satellites [192].

4) Tidal Friction.

This effect has a long-term significance for the Earth-Moon
system [6,40,182,186,194,195]. The secular increase in the Earth-
Moon radius vector is about 3 cm/year [194]. An excellent treatise
on the short-term analysis of tides is available [193].

5) Temporal Decrease of the Universal Gravitational Constant.

Van Flandern believes "... that gravity is decreasing", account-
ing for a 4 cm/yr. secular increase in the Earth-Moon distance [196].
This figure would appear to be at odds with Goldreich's (See 4) above.).
Clearly, the implications for cosmology are of crucial importance
and further work on separating these effects is necessary [90,191,

196].
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3.3. ANALYTICAL DEVELOPMENT
The vector differential equation of the Eleven-Body Problem may

be written [120]

o Gm +m,) T 11 T, - T, T
T = - + Cm,|{ — - —d . (19)
i 3 =5 ] 3 3
r J . . T,
i 1] J

jfi, i=2,3, ..., 11,

where r,o =[G = x4 7y -y 4 - 2P L o)

Equations (19) are a rewritten form,of equations (5.63) of the
reference. The system (19) of autonomous nonlinear ordinary differ-
ential equations has 10 known independent classical algebraic inte-
grals in Euclidean three-space. Since 60 independent integrals are
required for a solution in general, numerical integration techniques
would seem to be a reasonable approach for an approximate solution
(See section 1.12.) [98,100,101,121,176,177,204,244]. As an approxi-
mation to the Solar System, solutions of the system (19) would seem
to ex?st and be unique [205].

The origin of the Euclidean three-space is the Sun, which is a
noninertial frame of reference. The heliocentric and heliodynamic
theories, as developed in Chapter 1, will be employed. In the system

(19), m represents, therefore, the solar mass.
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3.4. THE RATIONAL EXTRAPOLATION TECHNIQUE
The success achieved using this method on the Two-Body Problem

(See section 2.6.) led to its utilization on the Eleven-Body Problem.

3.4.1. ALGORITHM IMPLEMENTATION

Appendix 11 shows details in a similar fashion to Appendix 6 (See
section 2.6.1.).

Appendix 11 A shows the JCL, etc. with the load module module in
a region of Main Storage rather than LCS (See section 2.3.1.).

Appendix 11 B shows the FORTRAN used. The main program has vari-
able EPS = 10é11, and H was arbitrarily set to FB. The array YSTART
initially contains the 60 initial conditions required (See section
3.3.), which were taken from Line 3 [189] (See section 3.2.). Correct-
ed values were used (See Appendix 10 D.). YSTART(1l) through YSTART
(6) contain x, y, 2z, X §, z, respectively, for Mercury (i = 2, in
the system (19). See section 3.3.). YSTART(7) through YSTART(12)
contain the corresponding values for Venus (i = 3). The YSTART array
continues with values for Earth (i = 4), Moon (i = 5), Mars (i = 6),
Jupiter (i = 7), Saturn (i = 8), Uranus (i = 9), Neptune (i = 10),
and Pluto (i = 11).

The heliocentric gravitational constant (-GM1l) was obtained from
the definimg equation [207], using the Gaussian gravitational constant
[206,188] and the improved conversion factor for the AU [188]. Vari-

ables GM2 through GM1l are the gravitational constants for Mercury
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through Pluto, obtained through the reciprocal solar masses [103,188].
When variable J of the DO loop is 1, the integration proceeds from
time = 0 (XSTART=0) to time = 800 days (XEND=SP#*2). When J = 2, the
integration proceeds from time = 0 to 800 and then back to 0 to
determine how well the initial conditions can be reproduced.

The Systéme Internationale D'Unités [66] has been employed, except
for time [184].

Subroutine FCT is rather extensive, nevertheless it was coded to
execute about as fast as possible. The system (19) was reduced to a
first-order system (as in Appendix 6 B) using statements DY(1)=Y(4)
through DY(57)=Y(60). R 2 through R11l are the f? for Mercury through
Pluto. RX 2 3 through RZ101ll constitute a minimum necessary set of
values for-(xj - xi), (yj - yi), and (zj - Zi) to be used for equa-
tions (20). RX 2 3 is the x-component of the distance from body 2
{Mercury) to body 3 (Venus), and similarly for the remaining compon-
ents. These components correspond to (fj - ?i) in the system (19).
Notice that no RX 3 2, etc. is evaluated, since RX 3 2 = - RX 2 3,

RX 3 2 is effectively available through complementation rather than
through the slower but obvious subtraction, etc. Machine Language
combination. The saving in execution time throughout the system
should be substantial, although no test therefor was carried out.

R 2 3 through R1011 correspond to a minimum necessary set of f?j
in the system (19).Multiplications instead of exponentiations (e.g.,

RX 2 3*RX 2 3 instead of RX 2 3%%2) were employed to possibly reduce

execution time.
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A few words about the coordinate system [189] would seem to be in
order at this point. The system probably has its origin at the center
of mass of the Sun. The reference plane is probably the mean Equator
of the Earth and the reference direction (x) is probably the mean vernal
equinox. Both references probably include luni-solar precession but
not nutation at the beginning of the Besselian solar year 1950.0. The
y-direction is probably in the reference plane perpendicular and
counterclockwise to the x-direction. The z-direction is probably
perpendicular to the x-y plane, and probably in the same direction
pointed to by the Earth's mean North pole at 1950.0. Further inform-
ation on coordinate systems, etc. is available f210].

The evaluation of the RHSs of the system (19) requires considera-
ble explanation. DY( 4), DY( 5), and DY( 6) are the acceleration (

X, ?, ?, respectively) components for Mercury. Corresponding sets of
components were written for the remaining bodies (i = 3-11). The
computer’'s floating-point arithmetic capability only approximates
the real number system (See section 2.3.2.). In order to reduce the
computational effort and hence the execution time related to (19)
within the confines of FORTRAN, the distributive law, etc. of the

field postulates valid for the real number system will be exploited

[211]. The system (19) may then be rewritten
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Combining the second and fourth terms yields

ri j=2 T.

11 . - 1
- c:.mi?i Cm.T, E Cm, [T, - ?i
T,=- g - -—%—l+ J"]—3—,jfi s (22)
j=2 T,
3 ij .

i=2,3, ..., 11.

The corresponding partial components of acceleration represented
by the second term of (22) are WAX, WAY, and WAZ. These are common
throughout the system and are evaluated once per execution of the
subroutine. The first term in (22) represents the heliocentric effect
(clearly the dominant term), and is the term immediately to the left
of WAX, WAY, and WAZ in the FORTRAN statements for the acceleration
components. The right-most term in (22) is represented by the remain-
ing terms (all those except the last two) in the FORTRAN statements
for the acceleration components.

Except for increased DIMENSION statement constants, etc., subroutines
DDESP, XDDE, DDESUB, and DREDIF are identical to their counterparts

in Appendix 6 B. Subroutine DDERSB, in addition to the above differ-



38

ences, uses a relative-error convergence test (in the statement imm-
ediately preceding statement 240) in Appendix 11 B rather than the
absolute~-error one (See section 2.6.1.).

Subroutine DDEOUT in Appendix 11 B, in addition to the above
DIMENSION differences, outputs values in their original units and
not in the SystEme Internationale D'Unités, and title information
was included (See section 2.6.1.).

Subroutines DERROR are identical in Appendices 11 B and 6 B.

3.4.2. ANALYSIS OF OUTPUT

Appendix 11 C shows the output. The corrected (See Appendix 10 D.)
Line 3 values [189] are available immediately below the title and
subtitle. They are, of course, the initial values from the main pro-
gram at time = 0 (variable X, denoted by the subtitle). The first
line contains coordinates x, y, z, while the second line gives %, Vs
z. These two lines give the 6 coordinates for Mercury. Similarly,
pairs of lines follow for Venus, Earth, Moon, Mars, Jupiter, Saturn,
Uranus, Neptune, and Pluto. Unless otherwise advised, this system of
coordinate display will be rigidly adhered to.

At time = 0.34566x108 seconds (UT) or 400 days later, the set of
coordinates appears directly under the set for time = 0. At time =
800 days, the coordinates are similarly displayed. The results of
the backward integration are similarly displayed, following those of

the forward one.
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3.4.2.1. EFFECT OF VARIABLE EPS

Variable EPS was of extreme importance for the Two-Body Problem
(See section 2.6.2.), as is also the case here.

We compare Appendix 11 C (forward integration at time = 400 days;
X, ¥, z) with the corresponding corrected Line 4 values [189]. Agree-
ment in all cases is very good: the values from our integration fall
within the corresponding Line 2 standard deviations [189] of the
Line 4 values. The Line 2 deviations are applied, without modifica-
tion, to the Line 3,4, and 5 values (See Appendix 10 D for justifi-
cation.). In all cases, the angles with vertices at the heliocenter
and subtended by our position of a particular body and that of Line
4 are much less than 1 second of arc (See Appendix 12. ,Incidental
calculations, such as this one have been carried out using the Uni-
versity of Waterloo's WATFIV [212] instead of FORTRAN IV in order to
reduce turnaround time. Unfortunately, however, arithmetic results
from the former are not as reliable as those from the latter in
general. This calculation uses the Cosine Law to determine the
maximum error angle (in seconds of arc) caused by the standard dev-
iations applied to the Line 5 coordinates (x, y, z) of Mercury.).

We now compare our values at time = 800 days with the correspond-
ing Line 5 values [189], as above. Again agreement is good: our val-
ues fall within the standard deviations of the Line 5 values, except
for Mercury and the Moon. In the two latter cases, it seems that the
shortcomings of our Solar System model are starting to rear their

ugly heads (See section 3.2.).



40

We now compare the initial values (x, y, z) in Appendix 11 C with
the corresponding ones that were produced by the backward integration.
Algorithm ané roundoff errors should produce some degradation in the
latter. Agreement in all cases is quite good: for Mercury agreement
is exact for 9 significant digits, Venus has 9, Earth has 10, Moon
has 9, Mars has 10, Jupiter has 12, Saturn has 11, Uranus has 11,
Neptune has 11, and Pluto has 12. The degradation is as expected:
the faster bodies have more in general than the slower ones. This
problem is somewhat analogous to that encountered in solving "stiff"
systems of differential equations [148], on which much literature
has been written. Appendices 13 through 16 contain. the output as in
Appendix 11 C, except for various other wvalues of EPS. The best over-
all performance seems to be had from EPS in the range 10—10 to 10_11.

Something seems to be limiting the number of significant digits

obtainable.

3.4.2.2. EFFECT OF INTERCHANGING BODIES

A job identical to Appendix 11, except that Mercury and Pluto
were interchanged, was run (details not included). We compared results
of the backward integrations at time = 0 (for x, y, z). In general,
an extra significant digit was obtained, compared with the results
of section 3.4.2.1. (between initial wvalues and corresponding back-
ward integration results). Therefore it would seem that most of the
degradation in the previous section is simply beyond our control

with the available arithmetic capability (See section 2.3.2.).
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3.4.2.3. EFFECT OF AN ALGORITHM ERROR ON THE RESULTS OF A BACKWARD
INTEGRATION

A job (results in Appendix 17) identical to that which produced
Appendix 14, except that in subroutine FCT the statement for DY (4)
had "-UE*RX 2 7" instead of "+UE*RX 2 7" (the partial effect of Ju-
piter on Mercury's ¥ was deliberately made erroneous), was run. For
Appendix 17, as in section 3.4.2.1 , agreement for Mercury is exact
for 9 significant digits, while agreement on the forward integration
at time = 800 days for Mercury's x is exact for only 2 significant
digits (when compared with the corresponding value oé Line 5 [189]).
For Appendix 14, agreement for Mercury is exact for 9 significant
digits for the backward integration, while the agreement correspond-
ing to the above comparison is 5 significant digits (which is much
better than 2).

We, therefore, conclude that a good closing in a backward integra-
tion is no assurance that the'algorithm is correct. From section
3.4.2.1 we can conclude that if the algorithm is correct then back-
ward integration values agree well with the corresponding initial
values. The results of the present section indicate that the converse

of the preceding statement is not, in general, true.

3.4.3. EXTENDED MODELLING OF THE SOLAR SYSTEM
Appendix 18 shows part of the output of a job similar to Appendix
14, except that the integration used Line 1 [189] instead of Line 3

for initial values and the integration yielded values at 200 day



42

intervals through 1976 Jan. 23d.0 UT. The CPU time was 1382 min. 21.84
sec. and the job charge was $7,246.75! The computational requirements
of extended (timewise) and accurate Solar System modelling are cer-
tainly not trivial.

The initial conditions are shown, as well as values corresponding
to Lines 3, 4, 5, and values corresponding to 1975 July 7d.0 UT and
1976 Jan. 23d.0 UT.

We compared corresponding Line 5 values in a similar fashion to
Appendix 12 (See section 3.4.2.1.). Appendix 19 shows results for
Mercury: 29.35+ seconds of arc is the heliocentric error angle,
while the corresponding secular excess perihelion motion predicted

by Einstein (See section 3.2, and references.) is 25.88+ seconds of
-arc. Recall that Appendix 18 results are based on Newtonian mechanics:
at first glance, the near equality of the two values of the error
angle is highly encouraging. Further recall that Mercury should be
ahead of its position in orbit under General Relativity than under
Newtonian mechanics. Examination of the coordinates reveals, unfor-
tunately, that the opposite is actually the case. Therefore, a

more realistic error angle is the sum of the two values, or about
55.24 seconds of arc.

Mercury caused even greater problems before the receipt of Oester-
winter's letter (See Appendix 10 D.). The presence of errors in
Table X [189], in addition to those listed, was suspected (See Appen-
dix 10 C.). The glaring error for Venus, it must be admitted, was

not noticed. A run similar to Appendix 13, except that Line 3 [189]
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values for initial conditions were used, instead of the corrected
value for Z, etc. (See Appendix 10 D.). Appendix 13 results for x,
vy, and z, respectively, for Mercury (fqrward integration? time = 800
days) are (with the similar run results directly under in parentheses)
0.1071 8638 4705 9226D 00, 0.2588 7886 9163 8346D 00, and
(0.1071 7208 3814 4920D 00) (0.2588 8267 7961 2633D 00)
0.1276 2946 9455 9271D 00.

(0.1276 3290 3940 0052D 00)

The values in parentheses were obtained using a value of Z which
differed by only 1 standard deviation from the value used in Appendix
13. This difference causes effects much greater than those due to
General Relativity, unfortunately. Coordinate uncertainties in the
initial conditions (especially in the velocity components), therefore,
severely limit the predictive ability of a Solar System treatment as
an initial value problem. Clearly, this aspect of the problem warrants
further research: model differences might be a culprit (See Appendix
10 D.):

Similar runs to Appendix 19 were carried out for the other bodies
for the heliocentric error angles: Venus, 3.28+x10n2 seconds of arc;
Earth, 1.67+x10_2; Moon, 1°55+; Mars, 1.78+x10_1; Jupiter, 3.43+x10—3;
Saturn, 2.66+x10-3; Uranus, 0.0; Neptune, 2.17+klO-3; and Pluto,

2.17x1073

. The large angle for the Moon probably is due to model
deficiencies (such as: terrestrial oblateness, see section 3.2.).

Consideration of the General Relativistic effect for the other bodies

has not been attempted, due to the rather dismal performance for
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Mercury (discussed in the preceding paragraphs).

An identical run which produced the results of Appendix 18 was
carried out, except that Mercury and Pluto were interchanged. The
number of exact significant digits was recorded for 1976 Jan. 234.0
UT between the two runs: Mercury, 8; Venus, 7; Earth, 8; Moon, 7;
Mars, 9; Jupiter, 7; Saturn, 9; Uranus, 9; Neptune, 9; and Pluto, 10.
Algorithm and roundoff errors are now producing significant degrada-
tion of results (See sections 3.4.2.1 and 3.4.2.2.), but the General
Relativistic effect for Mercury shouldlstill be observed (if suffic-
iently accurate initial conditions be available). An extended-preci-
sion arithmetic (See section 2.3.2.) run corresionding to Appendix
18 with considerably more favourable agreement with a corresponding
run with Mercury and Pluto interchanged than above would add more
confidence to the results than is presently the case. However, com~-

parisons, where possible, gave good agreement [241].

3.4.4. LUNAR EPHEMERIS OF GEOCENTRIC RADII VECTORES

The optional body in our Solar System model is the Moon (See sec-
tion 3.2.). The motion of the Moon presented a challenge to the
ancients [5,13,61], Newton [69,71], Pierre Simon (Marquis De Laplace)
[214], and modern investigators. A good summary of the situation is
provided in the following quote: "Our old friend and neighbor, the
Moon, is once again an embarrassment to those philosophical funda-
mentalists who believe that simplicity is a measure of credibility

in physical description.” [216]. The most recent lunar research does
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not rely in whole on the positioﬁs as tabulated in the natiomnal
ephemerides [217]. Probably the best lunar ephemeris presently wide-
ly available through joint publications of NAO and HMNAO is that des-
ignated j = 2 [218]. Residuals in the geocentric radii vectores there-
in seem to have been at least 6 km [218,215]. However, recent work
from the LURE gave residuals of about 5 m, with prospects for centi-
metric residuals [219,220].

The j = 2 ephemeris for 1972-1975 is available [222,226,230,236].
In order to limit the computational requirement, we attempted to re-
produce only the geocentric radii vectores [221,225,228,234]. A
reasonably good explanation of the ephemerides ;s available [2357,
while a more thorough discussion is, unfortunately, somewhat dated
[210]. A .good tutorial on astronomical time systems [237], and an
overall appraisal of astronomical systems of units [102] warrant

perusal.

3.4.4.1. ALGORITHM IMPLEMENTATION

Appendix 20 shows some of the details,and is similar to Appendix
11. Appendix 20 A shows only the FORTRAN source which is different
from Appendix 11 B. In(the driving program, the initial conditions
are those of Line 3 corrected (See section 3.4.1.), but the integra-
tion proceeded for 1600 days, with printout at intervals of 0.5 day,
and only a forward integration was carried out. In subroutine DDEOUT,
only variables U (time from epoch of initial conditions, in days)
and R (the Earth-Moon radius vector (the Fuclidean norm), in units of

the Earth's equatorial radius [234]) were printed out (See Appendix
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20 A and compare with Appendix 11 B.).

3.4.4.2. ANALYSIS OF OUTPUT

Appendix 20 B shows the output only from 1975 Sept. 11d.5 UT (
1466.5 days from 1971 Sept. 6d4.0 UT) to 1976 Jan. 23d.0 UT (1600.0
days from epoch). Only this portion of the ephemeris was displayed
in Appendix 20 B for space requirements and also because probably
the maximum residuals with respect to the j = 2 ephemeris occurred
in this range. Probably the maximum absolute value of the residuals
throughout the 1600 day interval occurred at 1975 No;. 7d.5 UT (See
Appendix 21.), and was about 11.11 km.

The independent variable for the initial conditions [189] was UT
[184,210,235,237], as it was for Appendix 20. The independent varia-
ble for [234], etc. was ET. In order to compare residuals the common
time base, UT, was employed since interpolation in [234], etc. was
very convenient. In Appendix 21 variable DT represents the approxi-

.....

mate value of AT = ET - UT, applicable at 19757ﬁov. 7d4.5 UT [232].
Variable DUT represents the geocentric distance at 1975 Nov. 7d.5

UT, interpolated from the corresponding ET value [236]. Variable

DNE represents the distance from North's ephemeris (See Appendix 20

B at time 0.152356D 04.). The remainder of Appendix 21 is self-explan-
atory. The difference (DUT - AO) is about 3.26 km in this case, which
is not negligible.

Attention is called to the fact of the corrections for the equa-

torial horizontal parallax of the Moon [233], applicable to [223,
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227,231] and which were noted in Appendix 10 E A. Attention is also
called to the important correction for Earth's equatorial radius =
6 378 160 m, not 6 378 160 km [224], applicable to [221]. Both of
these errors caused some consternation.

The residual, with respect to the j = 2 ephemeris, was about
-11.11 km. Probably the maximum positive residual was about 8.3 km
and it occurred at 1975 Oct. 28d.5 UT. The qualifier "probably" is
required in the preceding because a rigorous comparison was not
carried out throughout the 1600 day integration. This could have eas-
ily been done: the j = 2 ephemeris is available in machine readable
form (At least cards could be prepared from [234], etc.), and a pro-
gram could easily have been written (somewhat more sophisticated
than that in Appendix 21) to compare the distances. Lack of time was
the prime reason for abandoning this approach. Another reason is
that the j = 2 ephemeris is not very good: it seems to possess resi-
duals with respect to reality of at least 6 km (See section 3.4.4.).
Another reason is that the Line 2 [189] standard deviations relevant
to the Earth-Moon system can give rise to a maximum residual of just
over 89.755 km, with respect to coordinates without Line 2 values
applied (A run similar to Appendix 20 revealed this.).

A better ephemeris than the j = 2 one was sought to test Appendix
20, therefore (See Appendices 10 E and 10 E A.). Unfortunately, we
did not receive any LURE results (See also section 3.4.4.). These
results, no doubt, would have revealed a model shortcoming, namely:

that the terrestrial oblateness was neglected (See section 3.2.).
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It would have been most interesting to attempt to isolate this effect
and explain its magnitude theoretically.

Several rumns similar to Appendix 20 were carried out using various
values of EPS (See section 3.4.2.1.) and interchanging of bodies
(See section 3.4.2.2.). Again a rigorous inspection has not been
carried out, but it seems highly probable that throughout the range,
6 exact significant digits can be obtained, giving a maximum uncer=-
tainty in a particular value of the radius vector of about 0.64 km
(algorithm and roundoff error). Of course, in order to fully exploit
this capability, much better initial conditions would be required
(lower Line 2 values [189]), and at least the effect of terrestrial
oblateness would have to be included in our model. Indeed, it would

be a great privilege to continue doing such interesting lunar research!

3.5. THE TAYLOR'S SERIES TECHNIQUE
The outstanding success achieved with this method on the Two-Body
Problem (See section 2.7.) certainly necessitated an evaluation of

its performance on the Eleven-Body Problem.

3.5.1. ALGORITHM IMPLEMENTATION

Appendix 22 shows most of the details for generating the FORTRAN
source (See section 2.7.). Considerable difficulties were encountered
in applying Norman's software [166] to the Eleven-Body Problem. His
assistance is gratefully acknowledged (See Appendix 9.). In Appendix

9 G the following quotations are of interest: "I'm terrified by the
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pages & pages of equations you are feeding my program! I can, however,
explain some of the storage problems- which are my fault.', "For big
problems you are rather more liable to have trouble with the amount

of code TAYLOR generates: your 1l body thing is (by some way) the
biggest problem it has ever met and, as you see, although I can gen-
erate FORTRAN the FORTRAN compilers don't like routines that long.",
and "At least you can console yourself that my program doesn't make
your research project trivial & unchallenging!".

Appendix 22 A shows the JCL, etc. The effort required was consid-
erably greater than that for the Two-Body Problem (See section 2.7.1
and Appendix 8.). Tape NORMAN was also copied on tape LUT177 (See
Appendix 9 F.). The first job step copied the second file to a data
set on disk storage and sequence numbered that data 'set (See Appendix
22 B.) [213]. The data set was not listed in this job step because
it consisted of 4698 source records (SYSIN) of Assembler Language.

The second job step altered the statement with sequence number
0013290 to make the change recommended by Norman (See Appendix.9 G.)
at the actual location 38016’ not 37C16 (See Appendix 22 C.).

The third job step bypassed a problem with 0S/360 (involving
concatenation of data sets with unlike attributes (See section 2.7.1.)).

The catalogued procedure ASMFCLG, etc. ultimately generated the
FORTRAN source in the catalogued data set FOR74092, corresponding to
the TAYLOR input (See Appendix 22 D.). The TAYLOR input was prepared
using parts of subroutine FCT and the driving program (See Appendix

11 B.) according to the rules [168]. The number of terms employed
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was 8, instead of the default value of 16 because, with the latter
value, execution times of over 1000 minutes of CPU time of the load
modules ultimately generated no significant output (as compared with
Appendix 23 E.).

The procedure FORTGCLG, etc. failed during compilation since one
of the generated subroutines was too large (See Appendix 9 G.). De-
tails of the failure are not included.

Appendix 23 gives details of a successful run. Appendix 23 A shows
the JCL, etc. The first job step essentially sequence numbered the
data set from FOR74092, similarly to the first job step of Appendix
22 A (See Appendix 23 B.). The second job step made changes to the
data set from FOR74092 to allow a successful execution (See Appendix
23 C.). As should be readily apparent, a lot of effort was required.

The modified source (See Appendix 23 C.) and the driving program
(See Appendix 23 D.) were successfully executed using the procedure
FORTGCLG, etc. (See Appendix 23 E.). Many underflows (511 or over)
were produced during execution (message: THC208I [133]), but no
attempt was made to eliminate them (See Appendix 9 G.). Underflows
and overflows seem to be a fact of life when employing Taylor's
series (See section 2.7.4.).

In Appendix 22 D, EPSILON = 10-6 (See section 2.7.1.), which was
effectively reduced to 10-14 in Appendix 23 C (See sequence numbers
00058060, 00058210, 00058390, 00058900, and 00059080.

Also in Appendix 23 C, at sequence number 00061780, the corrected

value for Mercury's Z was employed (See Appendix 10 D.).
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Appendix 24 used an effective EPSILON = 10-15. Appendix 24 A shows
only the FORTRAN employed which is different from that in Appendix
23. Routines not shown are exactly as in Appendix 23. The driving
program, in addition to printing results at time = 400 days, punched
a deck of cards for input to the job of Appendix 25. The CPU time
for the load module (which resided in LCS) was 1024 min. 17.04 sec.

The job of Appendix 25, using an effective EPSILON = 10—15, inte-
grated the system from time = 400 days to 800 days. Appendix 25 A
shows the FORTRAN using the same scheme as for Appendix 24. The deck
of cards from the job of Appendix 24 was read in subroutine SETUP.

Results are shown in Appendix 25 B. The CPU.time for the load module

(residing in a region of LCS) was 1010 min. 05.55 sec.

3.5.2. ANALYSIS OF OUTPUT

The output (See Appendices 23 E, 24 B, and 25 B.) is only for a
forward integration because of the excessive load module execution
times involved. At a given time, the coordinates x, y, and z are
printed for the 10 bodies as a set, followed by %, ¥, and Z printed
as a set. The alternation described in section 3.4.2 does not apply
here. At time = 800 days (See Appendix 25 B.), x, y, and z for
Mercury through Pluto are printed, and are followed by X, vy, and Z
for Mercury through Pluto.

As in section 3.4.2 agreement for forward integrations at time
= 400 days and 800‘days is very good with Line 4 (corrected) and 5

values [189], respectively.
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We now compare the forward integration values (x, y, z) at time
= 800 days in Appendix 11 C with the corresponding ones in Appendix
25 B. Agreement in all cases is quite good: for Mercury agreement
is exact for 11 significant digits, Venus has 8 (a small z-component
is the culprit), Earth has 12, Moon has 11, Mars has 11, Jupiter has
10, Saturn has 11, Uranus has 13, Neptune has 12, and Pluto has 12.
A similar comparison of Appendices 11 C and 23 E yields 10, 10, 11,

10, 9, 10, 11, 11, 13, and 12.

3.5.3. CONCLUSIONS

It is difficult to ascertain which set of values is better, algor-
ithm and roundoff errors seem to be affecting both techniques to
about the same degree (See section 3.5.2.).

There is little doubt about which technique is faster: the load
module of Appendix 23 ran for 975 min. 48.22 sec. of CPU time in a
region of LCS, while only a forward integration of Appendix 11 requir-
ed 114 min. 47.82 sec. of CPU time in a region of LCS (The load mod-
ule was created using procedure FORTGCLG to be entirely compatible.).
Therefore, for approximately maximum attainable precision, the ration-
al extrapolation technique is about 8.5 times faster than the Taylor's
series technique. In the case of the Two-Body Problem the latter was
about 2.9 times faster (See Graph 4.).

The principal disadvantage of Taylor's series is the size of the
load module generated, and the accompanying long execution time (See

Appendixes 9 F and G.). It would have been possible, through careful
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reprogramming, to speed up the Taylor's series technique, but it is
doubtful that a factor of about 8.5 could even be halved. Experi-
mentation with the TERMS keyword [168] showed that 8 was about the
optimal value (execution timewise) for the Eleven-Body Problem.
Similar studies regarding the number of terms employed have been

made [137,169].



CHAPTER 4
MATHEMATICAL ASPECTS OF THE ALGORITHMS
4.1. THE CLASSICAL RUNGE-KUTTA TECHNIQUE
4.1.1. INTRODUCTION
This technique can be employed to solve systems of ordinary
differential equation [143]. We are given the system

vy = £50,€0) 5y, (8)5.nehy (D), (23)

subject to the initial conditions

yi(to) = yiO ’ (24)

and we seek approximate values ;;(to + h) to yi(t0 + h).

The independent variable t does not appear explicitly in the
RHSs of the system (23) (See the system (7) and (8), section 2.2.) -
and is incremented by h, and i =1, 2 ..., n. The increment
h (not necessarily constant) is successively applied to advance
the solution to the desired value of t. Existence and uniqueness

properties of the solutions are assumed [122, 125].

4,1.2. ALGORITHM FOR A SINGLE FIRST ORDER.EQUATION
The method approximates the Taylor's series solutions,
2
LJ h A -
vyt + ) =y, (e)) +hy, (&) + 57 y,(E) + ...,

through terms of order h , without requiring derivatives beyond

54
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the first, Instead, four evaluations of the first derivatives
are employed.

The solution may be obtained [143] by evaluating

A = ?f(yo) R

A = hf(y +.5A) ,

A, =hi(y + .54) , (25)
A, = hE(y  +A) ,

F(e +h)=y(t)+%’—(A F2A +2A +A) .
0 0 1 2 3 L

4.1.3. ALGORITHM FOR A SYSTEM OF FIRST ORDER EQUATIONS
For the system (23) with i = 1, 2, the solution may be

obtained from [122]

o)
|

1 = hE, (s Yy

A, =hf (y + .54, 7y, +.5B),

B2 = hf2(y10'+ 'SAI’ Y0 + 65B1) s (26)
A, = hf‘l(y10 + .54, ¥,, + 5B,) ,

B =

3= hfz(y10 + .5A2, Y50 + .532) s

g
]

hf + A + B
1(y10 3’ Y20 3) ?
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B = hf + A + B
y 2(y10 3° Y20 3) ?

_ 1
t + +=(A + + 24 + ,
V(g +B) =y +gla + 24 +24 +4A)

¥( +h) =y + %{B 4+ 2B + 2B + B)
2 0 2 L

20 1 3
Also, for the system.(ZB) with i=1, 2, ..., n, the solution
(26) may be extended with n sets of formulae (A, B, C, ..., N)

rather than 2 [122].

4.1.4. REDUCTION OF A SECOND ORDER SYSTEM TO ONE OF FIRST ORDER
The systems (7) and (8) and (22) are of second order. We may

write them

¥ = 81y (), y, (), .uny ¥ (ED). (27)

Letting

vy hi(yl(t), yz(t), oo ¥ (€)), (28)
and differentiéting (28) w. r. t. t we obtain
¥y = hi(yl(t), yz(t), cees yn(t))- (29)
Equating RHSs of (27) and (29) gives
hi(yl(t), yz(t), cees ¥ (8)) = gi(yl(t), yz(t), cees ¥ (B)). (30)
Through the introduction of the auxiliary variables hi’ the
system (27) of n equations may be considered reduced to the

system (28) and (30) of 2n first order equations. The former

system may now be solved by the algorithms of section 4.1.3., etc.

4.1.5. ALGORITHM IMPLEMENTATION

The system (7) and (8), with initial conditions (9) was solved
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(See section 2.3.). Appendix 1 B was prepared by reducing the
system to a first order one (See section 4.1.4.), and applying
the algorithm of section 4.1.3., using initial value variables
(X1, Y1, DXIDT, DYIDT) and increment variables (X2, Y2, DX2DT,
DY2DT). Variables STP, Al, etc. correspond to h, AI’ respec-
tively. The rest of the program should be reasonably self-

explanatory.

4.2. THE CLASSICAL RUNGE-KUTTA (GILL'S MODIFICATION) TECHNIQUE
4.2,1. INTRODUCTION

The objective is as in section 4.1.1., but the accumulation
of roundoff errors is limited along with reducing storage

requirements [143].

4.2.2. ALGORITHM FOR A SINGLE FIRST ORDER EQUATION
The following calculations are required [143]

1
A== ,A =1-1/.5, A3 =1+ /.5, Au =%

k, = hf(yo), Yo =, F A1(k1 - Zqo) s

0
k, = hf(yA), Yp =Vt Ak, - ql) R
k= hf(yB), Yo=Y t As(k3 - qz) R

k = hf(yc), ?Tto +h) =y, + Aq(k,+ - 2q3) R (3D

=q + - - Ak
4 9 3A1(k1 2q0) Al.l’
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q, + 3A2(k2 - ql) - Azkz,

o0
N
]

U3 = qy + 385(k; - q)) - Ak,

q = 4 + 38, (k, - 2q;) - Ak,

with q, initially zero. For the next step 4, is the immediately

4

prior 9 and Yo is ¥.

4.,2.3. ALGORITHM FOR A SYSTEM OF FIRST ORDER EQUATIONS
The algorithm is an extension of that of section 4.2.2., and
details, along with a flow chart for the FORTRAN program (subroutine

DRKGS) of section 2.4.1., are available [143].

4.3, THE RUNGE-KUTTA-NYSTROM TECHNIQUE
4.3.1. INTRODUCTION
We are given a system such as that of (7) and (8)
%= f(x, ), ¥ = g(x, y), (32)
and the goal is to solve the system without prior reduction to a

first order one (See sections 4.1.4. and 2.5.).

4.3.2. ALGORITHM DEVELOPMENT

The solution of the system-(32) may be written [146]
. 2 3 5
kg + xgh + b} f, +0(h),

k=0

b
n

3 (33)

* Y} e f, + O(hs)

x +h c s
koo KK

A
n
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fo = f(xo, Yo), (X = 0),
. 2 K1
fK = f(x0 + xoaKh + h AZO YKlfA’ (34)
K-1

. 2 ‘
yooh + Zo Yi8y)» (K =1, 2, 3)

with analogous expressions for y. In (33) and (34) xd, Yo»
io, &0 are the initial values for the infegration step, and h
is the step size.

The coefficients o must be found such that the

k* 'k * %k’ %k
RHSs of (33) are of fourth order. "Equations of condition for the
coefficients are available by equating corresponding terms of a

Taylor's series solution of (32) and the RHSs of (33). From these

equations a set of coefficients can be had: results are in Table 1.

TABLE 1
Coefficients For A Fourth Order Formula
e YR °x Kk
A 0 1 2
K

13 1
0 =2 =
¢ 120 8
1 1 1 3 3
3 18 10 8

2 2 3 3
2 =2 = = 2
3 0 9 40 8

1 1 1 1
3 1 = = — =
3 0 6 60 8
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4.4. THE RATIONAL EXTRAPOLATION TECHNIQUE
4.4.1, INTRODUCTION

An approximate solution to the system (23) subject to'(24)
(See section 4.1.1.) based on a discretization methgd (the'midpoint—-

.rule) can be improved by extrapolation [157].

4.4,2, ALGORITHM DEVELOPMENT

Suppose the discretization method [157] yields T(h) for the
n th equation for a nonzero step size, then the true value T(0)
can usually be better approximated by the extrapolated value
fm(O) of a rational function fm(h) such that

-

Tm(hj) = T(hj), j =0, «.., m, hj_+ 0. (35)

The extrapolated values associated with the midpoint-rule

(which determines i)

(1) _ (D)
T, =1 (), (36)

are obtained with the aid of
(m) _ . (m) _
AT = Cp = T(hm),

(m-k+1)__(m-k+1)

c W
ar{m ) o LS - Jk=1, 2, ..o,y m,
Puk | ool | (mokel)
n_ | ATk-1 k-1
m -
h 2 37
m-k- (m-k) .. (m-k+1)
ke pp(mekly
(@ h- k-1 k-1
¢ = . L k=1, 2, .., m,
Mook | k) Cmoter)
b k-1 k-1



61

_ op(m-k+1) (m-k)
m
Téo) =3 ATém_k),
k=0

with

(i) _ @) _ oG- o (D (-1

Wl = Cy ATk (z Ty Ty )

and

(1) _ (@) _ G+

AT = Ty T, s
1) _ @) _ ()
Cx T Te-1

successively for m =0, 1, 2, ... . See section 2.6.1. for

programming details.

4.4.3., CONVERGENCE CRITERION

The extrapolation has converged [154] wﬁen every y,, at each
iﬂtegration step, has met a user specified convergence criterion.
The test consists of comparing two successive extrapolation values
at the end of the integration step. We define the difference between
the two values for i = j to be Dj’ and the error tolerance given

“18 . pps < 1, in Appendices

in the calling sequence to be EPS (10
6 and 11). The absolute error criterion (See Appendix 6 B 10.) is
le| <EPS, j=1, 2, ..., n, while the relative error criterion

is (See Appendix 11 B 18.) |Dj/yj| <EPS, j =1, 2, ..., n.
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4,5. THE TAYLOR'S SERIES TECHNIQUE
4.5.1. INTRODUCTION
Taylor's series can be directly employed to yield an approximate

solution to the system (23) subject to (24) (See section 4.1.1.).

4.5.2. ALGORITHM DEVELOPMENT

The Taylor's series

A

are successively evaluated in a sequence of overlapping domains

le~18

0 3t

(t1 replaces to, etc.) [155]. The principal difficulty (See
(M
’

i the j th derivative of

sectian 2.7.) lies in procuring vy
Yy from a set of recurrence relations. These relations follow
after reduction of the system (23) to a canonical form.

The local error-per-step e (EPSILON) for p terms for each

i is readily specified (See section 2.7.1l.). The required step

size h =t - ty at time t, can be obtained from the truncation
error ‘
y D (e ) (e - Pt
E(t) = D1 > £y < ‘tkk < t, (39)
by setting
E(t) = R()nPL - | (40)

where R(t) 1is approximated by the constant

R = max lyij)l. (41)
1<i<n
p-2<i<p
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An estimate can be had from (40) and (41)
1 -

b= 6 (x) o (42)
where Ck came from the immediately prior step. Subsequently a

- sequence hl can be obtained such that (40) is satisfied by ome

or more members of the set. See Appendices 8 C, 23 C, and 24 A.
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Leaf 64 omitted in page numbering.
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=% LAKEHEAD UNIVERSITY COMPUTER CENTRE APPEMNDIX 1 Al

5 (/RMARNDDS JOR T1R10125,0030,340015+509,7Re De NIARTH® ,TYPRUN=HALD,
&J /7. CLASS=D MSGLEVEL=(1,41) -

7/ EXEC FORTHCLG,PARM FDRT='DDT=2,1ID¢

XXFART FXEC PGM=IFKAANO,REGIDN=250K

XXSYSPRINT JD SYSOUT=A,SPACEZ=(CYL.(2,5))

XXSYSPUNCH DD SYSNUT=8,SPACZ=(CYL,(N:5))

XXSYSUT1 DN UNIT=2314,NCB=(RECFM=T,BLKSTIZE=1ING),SPACI=(rYL (1,%5))
XXSYSUT2 ) UNIT=23184,DCB=(RECFM=F 4BLKSIZT=1024)+SPACE=(CY_+(1,5))
XXSYSLIN DD DSN=ELDADSET S UNIT=2314401SP=(MID42PASS)+SPACI=(2Y1.5(2,45))
//FORTLSYSIN DD *

1IEF2361 ALLOC. FNOR RMARNOOS FORT

IFF2371 362 ALLOCATFD T SYSPRINT

IFF2371 331 ALLOCATED TO SYSPUNCH

1IEF2371 135 ALLNCATED TO SYSUT!

1EF2371 136 ALLDCATED TH SYSUT?2

IFF2371 138 ALLNCATED TO SYSLIN

1IEF2371 214 ALLOCATED TO SYSIN

IEF1421 - STEP WAS EXECUTED - COND CIDE 0000

YEF28SY SYS74042,TNBA2444RVONN,RMARNDOS RIND 14D 2 DELFTED

1EF28S1T VOl SFR NNS= ADMPO2,

1EF2A51 SYS74042,TNB4 244 (RVOD0 RMARINODS.ROON1403 DELFTED

1IEF28ST VOL SFR NNS= SPLUO2,

IFF28S1 SYS74042,TNRA2448,2V000.RMARNNOS,LDANSEY DPASSFED

TEF2RS51 VAL SFR NNS= ADMP)Y?,

IFF3731 STED® /FORT /7 STARTYT 74043,043}
~ |1EF3741 STEP /FORT / STO> 74043,0434 CPU OMIN 24,77SEC MAIN 250K |
T |ICHARGE L3 1.49 CPY TIME 0ON,00.25 AFGION REAUESTFAN N250K STA!

DISK READER DPRINTER PUNCH

1/0 COUNTS 33 53 60 0

T INOe OF DD CARDS 3 1 1 1

XXLKED EXSC PGM=IFWNL«REGINNZO6< JPARM=(MAD JLET LIST) sCOND=(4,L.T,5NET)
XXSYSLIR DD DSN=SYS1FORTLUTIRsDISP=SHR

XX DD DSN=FNRTSURDISP=SHR

XXSYSPRINT DD SYSNUT=A,SPACE=(CYL4(1,1))

XXSYSUT1 DD SPACF={CYL,(2+5))4,UNIT=2314

XXSYSLMOD DD NSN=AGDSETIMAIN) o DTSP=( sPASS) yUNTIT=2314,

X X SPACE=(CYL+(2+s91))
_  |XXSYSLIN OD DSN=ELOADSET,DISP=(NLD,DELETF)
X X DD DONAME=SYSIN

I1FF2361 ALLOC, FOR RMAPNOOS LKFD

IEF2371 131 ALLNCATED TO SYSLIA

IEF2371 132 ALLOCATED YO

TFF2371 167 Al LODCATFD TN SYSPRINT

IFF2371 125 ALLNCATED TO SYSUTI

TEF237Y 136 ALLDCATED TO SYSLMDD

TEF2371 135 ALLOCATED TO SYSLIN

IFF142Y - STEP WAS FXECUTED - COND €£0ODE 000N

IFF2RS1 SYS1FORTL IR KeEnT

1EF 2851 VOL SER NOS= MVT21A,

IEF2ASY FORrTSUB KERT

IEF2857Y VOL SFR NNS= MVTRIP,

TEFPRSY SYS740A42, TORAZPAA JRVODODRMARNNDNS 4RONDL14NDE DFLFETED

1EF2887Y VOL SFR NOS= ADMPO2,.

TEFPRRY SYST7ANA2,TNRA2A4 RVIDN RMARNONS 4GOSET SASSED

1EF2RSY VOL SFR NNS= SOLUN?2,

IFF2RS Y SYSTA0A2,TNAAP R4 42VNDN,PMARNONSGLNANSET DFLFETED

TEF28S8Y VOL SFR NNS= ADMP) 2,

TIEF3731 S8TEP /LKEN /7 STARY 74N43,N0434

TFFAR741 STFP /JLKFD /7 STNd 74NnA43,0435 CPY OMIN N, ARSEC MATN  9AK
EHARGE L Oeg70 CPY TIMF NNgNN 09 PFGION REQUFSTFED 0ONOAK QT

‘‘‘‘‘
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IBS LAKEHEAD UNIVERSITY COMPUTER CENTREAPPEMDIX 1 A 2

(- Y v
PISK  READER PRINTER

1/D COUNTS 143 0 39

NNe OF DD FABDS 5 1 1

XXGO EXEC PGM=%oLKENSYSLMID, COND=((44LToFORT)Io (84 _T,LKED))

XXFYOSFOO1 DD DDNAME=SYSIN

XXFTOGFQO1 DD SYSNUT=A,SPACE=(CYLs(1,1))
XXFTO7FONY DD SYSOUT=R,SPACE=(CYL+(D,5))

7/

1IEF2361 ALLNC. FOR RMARNDOS GO

IFF2371 136 ALLOCATED TN PGM=%eNN

T1EF2371 362 ALLOCATEDY TN FTNHKFOO01

IEF2371 331 ALLOCATED TO FTO?FN01

TEF1421 ~ STEP WAS EXECUTED -~ COND CODE 0000

IEF2RST SYS74042,TNBA244,3V000.RMARNDOS, GOSET PASSED

1IEF2851 VOL SFR NOS= SPLUD 2.

TEF3731 STEP /GO / START 74043.0435

IEF3741 STED /GO 7/ STO® 74043,0457 CPU 14MIN 4N.925FC MAIN

CHARGE % 2719 CPU TIME 00e.14.41 REGION REQUESTED NNA2K
NISK READER PRINTER PUNCH

1/0 COUNTS 0 o 11 0

ND. OF DD CARDS 1 1 1 1y

1EF2R8ST SYS74042,TNBA2A44.3VNONRMARNDNS e GNSET NELFTED

TEF2851 VOL SER NNS= SPLUD?2,

IEF3751 JOB /RMARNOOS5/ START 740430431

IEF3761 JOB /RMARNOOS/ STNP 740N483,0857 CPU 1SMIN 14,34SEC
RMARNOOS J0OB CHARGF $ 3N.90
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I==LAKEHEAD UNIVERSITY COMPUTER CENTRE
(TEVEL 217 € NOV 7i7) ‘

COMPILER NPTINNS = NAME= MAINGNPT=I2,L INSCNT=ADP,S1Z25=00NNK,

TSN 00N2
ISN 0003
ISN 0004
1SN 00NnS
ISN 0006
ISN 0007
TSN 00NRA
TSN 0000
ISN ON1O 2
1SN 0011
ISN 0012
TSN 0013
ISN 0Nt a
ISN 0015
1SN 0ON16
ISN NO17
ISN 0018
ISN 0019
ISN 0020
ISN Nn21
ISN 0022
TSN 0023
ISN On?2A
TSN no2s
ISN 0026
1SN 0027
ISN 0N02A
ISN nO20
1SN 0030
ISN 0031
ISN no032
TSN 0N33
1SN 0034
ISN NN3S
1SN 0N36
ISN 0ONn37
ISN 0n3g
1SN 0039
ISN 0040
1SN 0nay
1SN 004A2
1SN NO4R
ISN 004a
TSN 0045
1SN 0Onac
1SN 0047
1SN N0aR
1SN 0nao 1
1SN 0050 3
1SN N0S1
ISN 00K?

*OPTIONS IN EFFECT®

«OPTIONS IN FFFECT*®

| N SO

APPENDIX 1 R

DS/7360 CSNRTYRAN H

SOURCE+EBCDICNOLIST (NONTCK,,LNAN, NOMAP, NOFD

IMPL ICIT REAL*B(A-H,0-2)
PI=3,141592653589793238460D0
FR=1D0O/6DO

X1=1

v1=0

PXIDT=0

DYLIDT=1
WRITE(A+2) X1 Y1 ,DXIDT,,DY1IDT
FORMAT(® * ,4F30.16)

STP=PI %4D-4

NN=5D3

DN3M=1,10

D01 N=1,NN

A1=STPX*DXIDT

R1=STPANYIDT
XY==STPE(XIXX14+Y1 XY )2%{=1,5)
C1=X1%XY

DI=Y1%XY
A2=STP*(DX1DT+s5DN*C1)
A2=STP*(DYIDT4+,5D0%N1)
XX=X14+e5DD%AY

YY=Y14,5D0%RA1

XY= =STOX{XXEXXEYYRYYI&&(=145)
CA=XXkXY

D2=VYY%kXY
A3Z=STPX(DX1DT4+,5D0%C2)
33=STPX(NDYIDT+.5D0%D2)
XX=X1+e5D0%A2

YY=Y1+443D0%RA2

XY= STPR{ XXX XX+YYRYY)Ik&k(~145)
CI=XX%XY

D3=YY%XY

A4=STPA(NXINT+C3)
Ba=STPX(DY1DT+D3)

XX=X14+A3

YY=Y14R3

XY==STPE{XXkXX+YYRYY )k%{=~1,5)
Ca=XXkXY ‘
Da=YYRXY ,
X2=X14+(A1+A2¢AP+AZ+A3+AL) ¥FR
Y2=Y14(314R24B2+B3¢B3+B4) *FR
DX2DT=DXIDT+(C14+C24C2+CI+CI+CA) %FR
DY2)T=0YIDTH(NDL+D24N2+4D3I+D3I+NG ) %FD
X1=X2

Yi=Y2

NXIDT=NX2DT

AY1IDT=NY2DT

CONT INUF

WRITE(642) X2,Y2,DX2DT,DY2DT
sTNP

END

NAME= MAINOPT=02,LINECNT=6N,SIZF=0DDOK,

gnJRCF'Fch'CQ NOL ISToNODFCC s _NADGNIMAD  NNTOHTTLTD.
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APPENPIX 2 A,

April 8, 1974

Professor T. E. Hull
Chairman, Dept. of Computer Science
University of Toronto
Toronto 181, Ontario

Dear Professor Hull:

Thank you for your letter dated July 27, 1973, 1 would
appreciate the opportunity of applying the Fortran version
praprocessor (Ref. 1), especially to the software of Ref. 2

in order to study the effact of roundoff on my ll-body Newtonian
graviational problem.

Please use the following mailineg address exactly as shown:
Mr. Roy D. North

c/o Professor John Griffith

Depatrtment of Mathematical Sciences

Lakehead University

Thunder Bay, 'P', Ontario

P¥B SF1

Youra sincerely,

Roy D. North
References:

1: H#M1, T. E. & Hofbauer, J. J. (1974): Technical Report No. 63,
Dept. of Computer Science, University of Toronto, page 1ii.

2: Ripe, John R. (Editor) (1971): Mathematical Software, ACM
Monograph Seryiges, Academic Press, New York and London,
Chapter 9.
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I3

January 2, 1973

Dr. W, Black

Department of Astronomy
university of Glasgow
GAASGOW h
SCOTLAND

Dear Dr. slack:

Your recentfpéggr (Ref. 1) is of interest as I am work-
ing for my M.Sc. under Professor John S. Griffith in numerical
iutegration of Solar‘5y§€em orbits.f;l,would appreciate a copy of
the Fortran source for ''the equations of motion expressed rela-
tive to a dominant mass in the group of N bodies' (Ref. 2), as
well as that for the program outlined in the paper (Ref. 3).
Papers describing comparisons of methods (Ref. 3) would be of
special value. 1 am aware of Refs. 4 and 5.

I have implemented the software (Ref. 6) for the solu-
tions of the ll-body heliocentric problem, and could supply the
source. I have atteapted to apply the software (Ref. 7) to the
same problem: I wonder if you have any experience with this pro-
gram.

We thank you for program Victor. The last two decimal
places for PI (enclosure #1, at interval statement number 0060)
should bLe 64, instead of 52 (Ref. 8). This is mentioned only in
passing and would be of importance only if Victor were run with
extended-precision arithmetic. Further information on "a diff-
erential corrections method', especially with regard to speed of
execution compared with other methods, would be welcome.

The last two initial conditions do not seem to be cor-
rect (Ref. 9). Using formulae (4.72) and (4.67) (Ref. 10)

Vel = 2% V1 + e.

A possible solution is to make
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REPERENCES

Black, W. (1973): Celestial Mechanics, Vol. 8, No. 3, Page 357.
Ibid., Page 358,
Ibid., Page 359.

Hull, F.E., et al (1972): SIAM J. Numer. Anal., Vol. 9, No. 4,
Page 603,

Rice, John R. (Editor)(1971): Mathematical Software, ACM Mono-
graph Series, Academic Press, New York and London, Page 369.

Ibid., Chapter 9.’
Norman, Arthur C. (1972): Proceedings of the ACM, Annual Confer-

ence, Vol. 2, Page 826.

|
Knuth, Donald E. (1969): Volume 1, Pundamental Algorithms, The
Art of Computer Programming, Addison-Wesley Publishing Company,
Reading, Mass., Second Printing, Page 613,

Roy,.A.E., et al (1972): Celestial Mechanics, Vol. 6, Page 472,

Roy, A.E., (1967): The Foundations Of Astrodynamics, The Macmil-
lan Company, New York, Second Printing, Page 90.
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_THE UNIVERSITY
Glasgow G12 8QQ
TeL: 339 885S

DEPARTMENT OF ASTRONOMY

Professor P. A. Sweet

1lth February, 1974

Mr. Roy D. North,

Graduate Student,

Department of Mathematical Sciences,
Lakehead University,

Thunder Bay 'P',

ONTARIO, Canada.

PTB S5E1

Dear Mr. North,

Thank you for your letter of 2nd January, and for your interest
in our work. I shall try to deal in turn with each point you raised.

T enclose a FORTRAN listing of a program which integrates the
motion of 4 bodies relative to a fifth. This was in actual fact
generated by a general purpose macro processor which myself and two
colleagues developed in Glasgow. I described this in the paper, &
reprint of which I enclose. It allows one to generate a program
for any number of bodies up to 10 {this 'limit could be extended by slight
reprogramming) from the one common text by simply changing one card.

As you will see the program usés essentially singly subscripted variables.
The result of this is that the program length becomes enormous for

large numbers of bodies. Although the use of singly subscripted
variables certainly speeds up the program, the saving in cost might be
offset by the expense of extra core usage. If you have any ideas on
this I would be interested.

Unfortunately I seem to be unable to lay my hands on a copy of the
program which integrates the motion with respect to some fixed reference
frame as described in the enclosed paper. This was written several
vears ago and I think I revised it to remove some inefficiencies.
Although it is the correct formulation for star cluster type problems
where no particular dominant mass can be singled out, it is my experience
that the relative equations should be used in Solar System problems
where the Sun dominates, and it would seem essential to.use it in the
case of Rarth-Moon—Sun, with Earth being the dominant mass.

I append a list of references which you may already know. The
first 3 describe the use of high order (12th) Cowell predictor-corrector
methods and give quite interesting applications of Solar System integration
programs. Williams and Benson's paper uses a smoothing technique on
Lagrange's Planetary equations and allows long term integrations to be
made. Perhape the smoothing technique "throws out the baby with the
bathwater" since it gay be the small interactions which drive changes in
the system over '\:lO8 years.

In fact the papers by Ovenden might interest you as an application
of long term integration programs. His numerical work, however, is too
crude to be definitive at this stage. Merson's report comes down in
favour of multistep methods, especially the Gauss-Jackson one and mere T agrex
with the use of these high order multistep algorithms when step changing
need not be done too often. Rosser's paper describes a method which
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B LAKEHEAD UNIVERSITY COMPUTER CENIRE
(77EMIFNOOB JOB YTIBYI0125,0200+3ss+1 40
// CLASS=UeMEGLEVEL=(1,1)
/7 EXEC FURTRC WFPARNGFORT=YECO,CFT=2"

ooy

XXFORT £ XeC POM=IFEFKAAGO s REGION=250K

XXEYSFRINT DU SYSOUT=A,SPACE=(CYL»(2+5))

XXSYSFEFUNCH DD SYSOLT=8,,SPACE=(CYL+(0+5))

XXEYSLT1 oo UNIT=2314 yDCE={RECFM=F 4BLKSIZE=105) 3 SPACE=(CYL 4 (1 43))
XXSYELTS o UNIT=2314,LCRB=(RECFVMEF BLKSTZE=1024 ) e SHACE = (CYL e (1))
XXSYSULIN Lo DEN=LLOADSET o UNIT=2314sLISES(MODePASSE) 4SRPALT = (Y Ly (2y0))

//FCFT.S
IEF22€1
IEF2371
IF2371
1IEF 2371
1EF2371
[EF23271
IFF2271
1IEF1421
IEFP2 851
1I+F2ES]
1IEF2851
IEF2ES]
IEF2ES]
1IEF2851
1EF3731
1IEF3741
CHARGE

I,0 CCUN
NCe CF D
77 EXzC

YSIN CO o*

ALLCCe FCR NIMARNOO3 FORT
360 ALLOCATED T SYSPRINT
331 ALLOCATED TO SYSHPUNCH
1320 ALLOCCATED TO SYSULTI
1322 ALLICATED TO SYSUT?
13¢ ALLCTCATLL TO SYSLIN
410 ALLOQCATED TN SYSIN

- STER WAS FXECUTED = COND CODE COCQO
SYS740544TCYIR1ISKVO00 « FMARNUO3 e RO00ONDHR0
VOL ST ONCE= SPLUOH.

SYS 74054 e TOITB15eRVOGUICMARNCCSe KOVOOSE]
VOL SER NUGS= MVTKIF,
CYST40CE4eTCIIA15eRPVO0NHRMARNCO G LODAUSET

VOL SEE RNUST SELUOE,
STEP /FCKT 7/ START 7405442231
STEP /FURT 7/ STUE 740842233 CPU OMIN
$ 323 CPU TIME (Da00eS9 REGION
DISK REALDEK +OINTER  FUNCH
RS 47 157 165 0
D CAFRDS 3 1 1 1

FORTHCLGPARNSFORT=LPT=20

DELT TE .

DLLT L w

P ASSED

58, 79GEC MALIN 250k
QUESTED 0280K

S Th

XXECRT £ Xk C FEMz TERAAOQO oI+ GION= 250K

XXEYEFRKINT DD SYSCUT=A+5PACE=(CYL(205))

XXSYERPUNCH DD SYSOLT={3 s SRPACE=(CYL+(0.,3))

XXS5YSLTI LD UNIT=2214CCR=(HECHFM=F yULKS IZE=108) s ERPACKE=(OYL v (15%))
XXSYSLTP D0 UNIT=23140UCU=(RECEFMEF ¢ ELKS 12021024 ) 50ACY = (UYL o (165}

XXS5YSLIN (DR USNTLELUADSET sUNTT=2314,L19P=(MODPAYL) o HSPACE ={tiviiea (270
Z/7FORT«EYSIN LD *

IFF22E€LI ALLLC. FOR KFNARNQO3 FOQRT

IFF2 271 300 FLLOCATED T SYSIPEINT

IEF2371 231 ALLOCATEL TU SYSHUNCH

{EF2371 130 ALLOCATED TO SYSLTI

IFF2371 1232 ALLODCATED T0 SYSUTR?

TEF2371 1 40 ALLUCATID T SYSLIN

IEF2371 211 ALLOCATED TO SYSIN

coy

IFFPES]
IEF2EE]
IEF28851
IEFQEE!T
IEFR2HSI
[FF2EC]
leF3721

XXGVYSLI

IEF142] - STERP wWAS BEXECUTED = CONL CuDE

CYST400546 TCRIB1SG4RVO00 RMARNQOZ ROCO0OS5RS
VOL Skiv NOIS= SPLUCCG
SYS74054 1091 315«aRVUVGO aMARNUOZ2eOCUNDSHE
VGL SER NCSE= MVTRIP.
SYS740S4aT7CO1315eRVOCOeHMARNOO3LLULADEET
VEL SER MNUS= BHELUGCL .

STER ZFQIRT / START 7405442233

DELE T

DELD T

PAZSED

IEFI7?74T STER /FURT / STOPR T408 46234 CU CMIN 18624SEC MAIN 200K
I CHARGE L 1.23 CPU TIME 00400618 REGIUN 2FQUESTHN O2450K STA
| DISK FRLEALER FRINT S FUNCH
[/70C CLUNTS D4 4 O3 0O
NCe CF DD CaARDS 3 1 1 1
"X XLKEDR EXEC POEM=ITEWL ¢ PEGIONSQEK ¢ PARMEIMAR g LE T L IST) sCUNNE (0 1T o+ 1RT)
td i LERNTEYSL ] o FIIRTL 1t DT GP= S



:

B LAKE

X
XXSYSFRI
XXSYsLT1
XXSYSLMC
XX
XXSYSELIN
XX
[EF23€1
IEF2371
IEF2371
IEF2371

CIEF22371

IEF2 371

L IEF2371

IEF1a21
[eFr28s]
1CF2esl
l1EF24851
IEF2Ea1
1EF 2861
1eFee ]
TEF28%81
IEF?EC]
IEF28es ]
IEF2851
IEF2731
1EF3741
CHAPGE

I1/C CCUN
NQe CF D
XXCC
XXFTQOSFQ
XXFTCeFO
XXFTC7FC
/7
1IEF23¢€1
1eF2371
IEF2371
ILF2371
IEF1421
[EF2e81
IFF2¢eeT
ILF3731
{Er3741
CHARCGE

1/C CCUN
NCe CF [
LEFP8S]
IFF2821
IEF37S 1

CIEF3761

RMAKENQQODR

HEAD UNIVERSITY COMPUTER CINIRE

b peneresysoenyseesnAECENDIX 4 A 2

NT DL SYSOUT=A,SPACE=C(CYLs (151))
LD SPFACE=(CYLL{245))UNIT=2214

D LU DSNTLGUSETIMAIN) wDISHEZ (W FASS) JUNITZZ31 4,

SPACE=(CYLs{2s91))

DO DSNSELOADSET 4 OISP={GLD JDELETE)
DC  DDNAME=SYSIN

ALLELCe FCGH ENAPRNOOR LKED

121 ALLOCATED TO SYSLI3

132 ALLOCATED TO

360 ALLCCATED TU SYSPRINT

1 .30 ALLOCATED T SYSUTI

142 ALLOCATED TO SYSLMOD

120 ALLECATLL TO SYSLIN

- STF2 WAS EXECUTED -« COND CODE C0O0D

SEY S 1ol GRTLIF KLY
VOEL SERR NCS= NVT21A.
FOKTSUR KERT
VEGE GER NCS= MVTRIE .
SY5724054e 1CS1B150RVOUU e IPMARNCOS « FOGGNHIO DELLTEHD
VUL SEKR NCS= SPLUOG,
SYET74058 4 TOPLHISeRVOUO e KMARNOOI & CUGET BASSED
VoL SER NUST MVTRIP.
SYS2405% 4 TCUIR1HaRVOICD o WMARMNCO S LUALSL T DL T
VUL SER NCS= SFLUOG
STER /JLKED / STAKRT 740%4.2234
STER ZLKED 7/ STOP  74094,2235 CPU OMIN 1013530C MAIN
% Dt CHU TIME 00eQ0el0 FEGIUN REQUESTIL O009ek
DISK READER  PRINTER
TS 274 Q 42
N CARDS & 1 1

EXEC FGM=% o L KED o SYSLMUOD s CONDZ( (4 oL ToFCRTIy (Aol T oLKETD))
01 0O DENANE=SYSIN

o1 DO SYSOLT=ASPACE=(CYL,{(1,41))

01 €£r SYSOUT=RWSPACE=(CYL, (0,5))

ALLOCS +UR WMARNQOS3 GO

132 ALLRDCATLD TO RPGOM=Xx4LD
360 ALLOCCATED TO FTOLFEDOL
331 ALLOICATID TO FTIS7H001
- HTEF wAS EXECUTEL - CONC CUvE COCO
SYS74054eTCUIHLDoaRVOQ0 e FMARNOQJ3 o« GUSET RASSED
VIOIL S NOCS= MVYTPRTI P,
STEY /60 /OSTART 7400060225
STL R /GG /ST UR (409 e0134 CFPU 145MIN TuelodbeEC MALN
B 26710 CPU TIME 0Z2e2%e16 REGICN RE QUL STELR Q06 K
NIsK REEADER PRINTER PUNCH
L) G 0 1¢ o
C Ccares 1 1 1 1l X
SYSP40544TCIIBIS¢PVOIC o RMARNCOI3 ¢ GQOSET DELETHD

VIIL SER NUS= MVTRiPR.

JCH ZEMARNCO I/ STARTY 740%4,5231

JUOB ZRMARNGO S/ STOH 7405560134 CHRU 1406MIN 434 33560C
JOB CHARGE % 2866032

[T N

STA

RIS

STA



(EHEAD UNIVERSITY COMPUTER CENIRE

T 1ROV 71 3 e APPENDIX 4 B L

COVP TLER CPTIONS - NAME= MAINS»CPT=02, L ITHNECNT=6H0 51 20 =0C000K,
GOURCE s BCLoCL IST o NODECK o LITAL y Ml MalT O T gl fe g N ¢t

cooz SUBRUUTINE DREKGSZPRMT o Yo DERY o NDIM, THLF 9T 4 TUTF, ALJX
C
C
o003 DIMENSTUN Y%4<oaDEFRY%4< 0 AUXAB 04< s 2% 4 < o n A e L RO o P IMT 45<
c004 DOURLE PRECISICN FRMT oY s DERY s AUX s A si3 ot s Xy XM gty Aol SoC el 1 silly
1DELT
0005 DI 1 IAHLNDIM
OG0 1 LUAAR 3 1< # e QOEBLOLOLBEEHOLHLELEHTRO XDERNY 41
0GO7 X#MT %1 <
neos8 XENDH¥PRMT%2<
0N09Y HABRMT %3<
0010 PHRMT4S<HDa DO
0011 CALL FCT#AXsY e DERYL
C
C FRROR TEST
o012 IF 4AHA ZXEND - X<<38 937, 2
C
C PREPARATIONS FOR RUNCE=KUTTA METHOD
0013 D2 OANI<CHLBDO
col14 A%< Re2%28622168132485243D0
0015 A%ICAL « 707106781 1E0L5475D0
0016 AROK K 16EEEEECOOEELHOEOTDO
co17 B3%1<#? D0
col1s B3%2<H1 a0
0019 B43<#1400
0020 B%4<H2 DO
0021 CRLCHHDO
0022 Ch2CHe2I2BG3210H1 34524800
0023 CHhI3KH] « 707106781 1868654750D0
noz2a C%h4<#45DC
C
C PREPAFCATICONYD OF FIRST RUNCE=-KUTTA STt
ooes DU 3 1#1NDINV
0026 AUX%Le ISAY%1<
0027 AUXX2, ICHDERYSRIC
Cco248 AUX%I 1<#DLOC
0029 3 AUXK6, I<#0 4D0
0030 IRECHO
o031 A
0032 [HLF #=-1
0033 ISTEPHO
0034 IEND#0
C
C START UOF A KUNGE~RUTTA STLP
003% 4 ITFLRXEH=XENDKERHS 7 4645
0038 SO - X
0017 v TEND#]
-
C RECOREING NF INITIAL VALUES OF THIS STREP
IRV IREEY ? IFRPRMTASC<4 QB4 40
G vOTTESTHO
Coan YU OISTEPHLIGTERPEL
C
C

C CTART OF INNERMOST RUNGL=KUTTA 10U




(EHEAD UMNIVERSITY COMPUTER CEMNTRE

ST T T APPENDIX Yy R 2

0041 J#1
D042 16 A IHAXLIL
0043 BJAB%I<
0044 CJH#C%IL
004s DO 1Y 141 ,NDIM
0046 RIFHXDERY%IL
0047. R2H#AI% 4RY =B JRAUX%S s 1K<
0048 Y%ICHYSBIKER?2
0C49 R2HRZ2ER2ER2
.0C50 1l AUX%6 s I<HAUXSD s IKELRR2=CJ®ik]
0051 IF%J=6<124 15415
0082 12 JwJé1
00¢3 IF%J=3<13,14413
00S4 13 X#XEaHDOXH
0055 14 CALL FCT%X.Y.DERY(
0056 GOTO 10
C FND OF INNlFMOaT RUNGE=-KUTTA LODP
C
C
C TEST OF ACCUKACY
0057 15 IF%ITEST<I 6,164,20
C
C IN CASE ITEST#0 THERE IS NO POSSIWILITY FUK TESTING OF ACCURALY
0058 16 DO 17 I#1,NDIM
0059 17 AUX%44 1<HY%IL
0C60 [TESTH]
0061 ISTEP#ISTEPLISTEP-2
0062 18 THLFH#IHLFEL '
00¢3 XH#X=H
0064 HH o500 %H
00KS DU 1Y 1#T4NDIN
0066 Y%4LSKHAUXKL o 1<
067 DERYRICHAIX%Z 1<
O0C68 19 AUXNE T <HAUXASEBIKC
0069 GUTO 9
C
¢ IN CASE ITESTH#YI TFSTING OF ACCURALY 15 BMNSLIBLF
0070 20 IMDDHLSTIERZZ
0071 IFAISTEP=IMLL=-IMODRK21 4230k
oc72 Z1 CALL FCT4AX e YWsDERYC
0073 0 22 IN1LNDIWV
00?4 AUXLS o I<HY %] <
0075 P2 BAUXKRT I<K#OERY XL L
0076 GRITO 9
C
C COMPUTYATION OF TEST VALUE: DOLT
0077 23 LELTH#OLDO
o078 DU 26 1H#14NDIM
0079 PO DELTHDELTEAUXSE , I CHDABSHAUXK G, [<=-Y XL
0080 IFYDEL Y=t RMTHACCEH 428025
<
C CRROR IH TUOO GREAT
SQRAY 25 IEEIMLT=10<28 4636 436
(WA RS PN dG L0 27 I#1eNDIM
008 ST AUXKA s ISKAUXKS o I<
o084 ISTER#ISTEREISTERP=-4
0eas X #X -

cceEn TENDW#HO



\EMECAU UINIVERDHLY COUMPFUNILK CEINIRKE

APPENDIX 4 R 3 _

oe7 GCCTC 18
C
C RESULT VALUES ARE GULUD
0C8y 28 CALL FCT%XesYsDERYKL
o089 20 29 THLNDIM
cog0 A X%l o IKHY%IKL
c091 AUX%E 2y IKHDERYRIKL
co92 AUX %3¢ IKHAUXKE, [<
0C93 Y% T<HAUXYS o 1<
0094 29 LUERYAICKHAUXLT 1K
(G095 IFAPKMT 45<K<40+30440
CC9eé 30 N0 31 1#1NDIM
cce7 YAZIK#HAUX%L ¢ T<
ccss 31 RCERY%I<AAUX%2,1<
cgs3 TRECHIHLKF
0100 IFZIFND<CIZ29 72,439
C
C INCHEMEINT GETS DOUBELED
0101 32 ITHLrATHUE=1
0102 ISTEPHISTERP/Z2
c1073 HAHE M
104 IF4T1.tCa, 15423
V1GE 43 IMUOKRLSTLRP /R
0106 IEAISTEP-IMUD=-IMULI<4 34,4
107 34 IF%OFLT=e02D0 %P RMT %4<<35+35¢ 4
0108 o ITHLE#AIHLE=-1]
01093 [STEIPRISTEPZZ2
0110 1A#HEH
0111 GUTO 4
C
C
C RETURNS T CALLING FROGRAM
0112 I ITHLF#11
0113 CALL FCTuEX Y DERYL
Qll4 GUTLY 398
0115 37 IHLF#12
0116 T RS
0117 3 THLFE#L 3
0118 39 CALL UULTRPXX oY sLULKY o IhLb ¢ NDINoFEMT
oli1q 40 RF TUKN
0120 FINL)
S IN BFFECT* NAME = MAINGCRT=OZ2oLINECNT=O0 o312 wOODUE
S IN CFFFECT* SUURCE ¢ RCRyNOL IST o NUDECK s LOCAD o NIAAT o NOFE O T o NU T e 7 X0 0 E
TICS* SCURCI. STATEMENTS = 119 +PRPKROGKRAM S 28 = 2280

TICS* N DIAGNOSTICS GENERATED

END U COMRILATYILN ok koK ST BTN



BER LAKEHEAD UNIVERSITY COMPUTER CENTRE

(LEVEL 21 ( NOV 7Y Y T T —‘"ﬁ'“mﬁ‘&p*lhx'“"""Dég_]?éf‘l{mﬁ’m%'—FWWM

COwPRILER CPTICNS - NAME= MAINSCPT=042sLINECNT=HD, G120 2000010,
SOURCE yEBCOTICes NOLIST oNUCDECK 4L CADy MNOVAR N TT o

1SN 0002 IMELICIT REAL#*8(A-F,0-2)

ISN 0003 CIMENSICN PRMT(S5),Y{4), AUX(844),DERY(4)

1SN 0004 CXTERNAL FCTSOUTP

ISN C005 PRMT(1)=0D0

1SN 0006 PI=3.14159265358979323846D0

1SN 0007 PRMT(2)=2D0*P]

TSN 00CH PRMT(3)=PIXx 10-4

ISN CCC9Q PEMT(4)=10-14%

ISN 0010 Y{1)=100

1SN 0011 Y(2)=0DU

ISN Q012 Y(3)=(Da

TSN Q013 Y(4)=100

ISN COl4 DERY(1)=e2500

1SN 0015 UERY(2)=425D0

ISN 0016 DERY (3)=e2500

[SN 0017 DERY(4)=a2500

1SN 0018 ND IM=4

IEN 0019 DOINZ1 410

ISN 0020 CALL DRKGS(FRMT oY 4CERY oNDIM s IHLF s FCTy TR, AUX)

ISN 0021 STOR

1SN 0022 2 ND
¥CPTIONS IN FFFLCT® NAME =  MAIN,UPTE02,LINLCNTTOA,312E=0000K,
xCPTIGNS IN EFFECTx% SOURCE s ERCDICNCL ISTNODECK o LIJAD « NOMAP ¢ RCE D1 T yiNi3 1D 4.
*STATISTICS® SCURCE STATEMENTS = 21 JPKOGRAM SIZE = H06

¥ETATISTICS* NU DIAGNUSLBTICS GENERATHED

wkx k& ENO OF COCVMPTLATION #xdkk¥xk 117K 4©Y

O



TEVELD

[

RS LAKEHEAD UMIVERSITY COMPUTER CENTRE

NV 71 )y~ T ”&PE’&N’QJ—X“'DM “"gﬁi’"ﬁ?"‘r T T

21

COMPILERE CPTIONS - NAMES= MAINSCPT=02s LINFONTEAH0 L1706 =0 007wy
STURCE »UHCODICo NOLIST oy MNiZDe CR oL CAD s MUNAR g N [T

TSN 0002 SUBKRCUTINE FCTIXs Yy CERY)

TEN Q004 IMPLICIT REAL*B(A-HC~2Z)

I8N 0004 DIMENS TN DERY(4),Y(4)

I SN COQQw LF Y (1))=Y (3)

ISN Q0GCH DERY(2)=Y(4)

ISN 0007 XYz (Y{L)AY (1) 4Y(2)¥Y(2) )3 x{~1.4)

1SN 0008 DERY(3)Y=Y(1)&XY

ISN GO oY (a)=Y(2) %Xy

1SN OO0 T URN

ISN €011 END
#CPTIGNS I8 FEPLECY#* NAMIEZ  MAINGIPTEC2 L INLCNT= 00, 51 TF 20 "0Un,
®CFTICNS IN EFFLCTX SCURCEWEECDICoNOL IST s NODECK s L CAD W NOMAPL ¢ NOEG T Ty NG T o w0
*¥ETATISTICS* SOURCL STATLIMENTS = 1C +PRUOUOGHKAM ST 27 LS

*STATISTICSX NU DIAGNGSTICS GENERATED

gk %k

END

OF COMPILATION ok 5ekokk

1L én

iy



B ‘ANCOCAU UINITVY LRI LUIMMUILi v

ACEVELTZT70 NOVT 717

ﬂ/’/’ENDI)(U b B 6 S

S/7500  FUKRTWANTH

CCMPILER CPTIONS = NAMESZ MAIN,OPT=024L INFCNT=60,4 817 =000C0K,
SOURCE o FECUICy NOL IST o NOODECIK e L UA o PO MA P ¢ N7 D 1T 50808

ISN 0002 SUBRUOUTINE QUTR (X oY o CERY o IHLF 4 NDIMPRMT)
ISN 0003 IMPLICIT REAL¥B(A=-H,C=2)
ISN 0004 CIMERNRSTION YU(4) DERY(4),PRVT(S)
1SN 0005 WRITE(Es1)IY(I)eI=144)
ISN 0006 FURMAT (Y %,4F30416)
ISN 0007 RE TURN
ISN 0008 END
*CPTICNS IN EFFECTX* NAME=  MAINSOPT=02+L INECNT=A0 5 TZE=0000K,
*CPTIONS IN EFFECT* SOUNRCE dERCDIC s NUOLISToNODECK oL CAL ¢ NDMAIR  NCE T T o M0 110y N
*STATISTICS* SCURCE STATEMENTS = 7 +PROGRAM $1Ze¢ = 294

X*ETATISTICS NG DIAGMOSTICS GENERATED
FAkkkk END UF COMPTILATICN %% k% ik 1Y 7K (3

¥ STATISTICS*  NO CIAGNCSTICS THIS STEP

—

| A
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s A 4

L1015 4001U0 s Jaeele 0y "Ry

APPENDIX

JOCL Le

/7 CLASS=DWMEGLUVLLE(1 41)
/7 EXEC FOFTHCLGs PAKMFURT=ICPT=2,10°9

XXFEURTY

XXSYSPRINT
XXSYSRPUNCH DD
XXEYSLTI
XXSysuTte
XXSYSLIN

IEF3741
CHARGE

t. Xt- C
L

pGN:IHNAAuo.nhptouzaﬁok"
CSYSULTZA s SPACE 2(C YL (245))
SYSOUT 21 3PACE ={CYL,(0e5))

NUORTH® » TYRICUNSHULLD

DO UNIT=2314,0CH=(RECFNEF, BLKS1ZE2105)SPACE=(CYL s (145))
UD  UNIT=23144DCB=(RECEMEF sBLKSIZE 1024 ) s SPACES(CYL s (1 6%5))
DD  LSR=LLOADSET,UNIT=2314,DISP=(MODPASS) s SPACF=(CYLy (245))

STEP /LKED /7 STOP 7406C6e2214 CPU OMIN 07425SEC MAIN
% 07 CPU TIME 00600e4C7 REGICN KRuQUESTEL N090K

/7EURTSSYSIN DD &

IEF23€6T ALLUOCS FuUk FMARNOOS FORT

IEF23271 365 ALLCCATED TO SYSPRINT

IEF2371 230 ALLOCATED TO SYSPUNCH

1IEF2371 130 ALLDCATED T SYSUTI

IEF2271 135  ALLCCATEDL TO SYSUT?2

1IEF2371 136 ALLOCATED TO SYSLIN

IEF2271 210 ALLOCATED TO SYSIN

1IEF1421 - STEP wAS EXECUTED - CONE CODE 0000

IEF2Ees] SYS74060eTOI0I2SeRVUU0e RMARNCCS 2 ROU01193 DELFTED

ILF2851] VOL Stk NCS= SPLUCGK.

IFF2ES] EYS740606eTOIOB24eRVOCO e RMARNOOS « KOO0 1194 DELETED

1EF2e51 VOL Stie NUS= AUMFO3a T - -

IFF28%1 SYS7a060e TUILA24 eRVUOD e KMARNOOS oL BADSET PASLED

IEF2EST VUL SE NUS= SOLUO S

IEF3731 STLP /ZENRT /O STAET 7406he2211

IEF37a41 STEF /ZFORT / STUF 740k €ex213 CPU OMIN 33.455%£C MAIN 248K

CHAF CE 5 2439 CPU TIME 00400433 REGION Ri QUESTED 0250k STA
DISK REALUR  PRINTER  PUNCH cT ‘

170 COUNTS 42 78 8% 0

NGe C(F UL CAKLS 3 1 1 1

XXLKED FXELC TOMIIEWL sHEGICNZUHK s PARMZ(MAP sLET o LIST )9 COND= (45 LT +FORT)

XX3YEL IR DL DSN=SY31 4 FORTLIB WO 1 5P=SHR

XX DL LSNEFCRTSUB.DISESSHR

XXSYSPRINT DD SYSOULT=ASPACE=(CYL s {112}

XXSYSULTL DL SPACEZ(CYL(2+5)),UNIT=2314

XXSYSLMOD DD DSNz=&GUSETI(MAIN) wDISP=(FASS) UNIT=2314,

X X SPACE=(CYL (209 1))

XXSY SLIN LD GER=ELUADSLT «DISP=(CLLyDELETE)

XX VO CDNAME=SYSIN

TEF2 361 ALLUCe FUR KMAKRNOOS LKED

IEF2371 121 ALLOCATED TO SYSLIS

IEF2371 132 ALLOCATED TO

IEF2271 36% ALLCCATED Tu SYSPRINT

IEF2471 130 ALLODCATED TO SYSUTIL

1EF2371 135 ALLOCATED TO SYSLMUD

IEE2371 136 ALLOCATED TU SYSLIN

IEF1421 - STER WAS oXeCUTED - COND CODE CO0O

lEF2E5 1 EYEl o LRTL LY KEPT

IEF2E8T VUL St NES= MVT21 7e

IEF2€ES1 FORTSUL KITOT

IEFREST VOL Stz NCS= MVTRIF.

[EF285] S5YS740h6e TOS( 3244 VOO0« RMARNGCSe ROCGO1197 DECETED

IEF2RST VOL SEH NUS= SPLUOG,

1EF 26851 SYS74066e TOI0324eRVO0OD«RMARNOOS o GOSET DASSED

IEF2851 VUL SER NOS= ADMPO3.

IEF2851 SYST74066eTCA0324 eRVO00 ¢ KMARNC G5 o LOADSET DELETED

IEF2e8T VOL StR NCS= SPLUO3.

"IEF3731 STEP /LKED / STAKT 7406642213 T

oK
STA

1
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APPENDIX S A 2

CIsK READER  PRINTER
I/0 COUNTS 156 0 39
NCe CF UD CARLS 5 1 1
XXGC EXEC PGM=* e LKEFDeSYSLMUDS CONO=( (4 sl T o FORT )y (4,1 ToLKED) )

XXFTCSFOCL DU DIONANME =SYSIN
XXFTC6FOO1 LU SYSQUT=A+SPACE =(CYLs(141))
XXETC7TFCOCL D2 SYSLUUT =35 FACE=(CYLs (095))

77/
IEF2361 ALLOC. FOR RMARNOOS GU
IEF2371 135  ALLCCATED TO PGM=%4D0

IEF2371 365 ALLOCATLY TUO FTO6GFOOL
IEF2271 330 ALLCCATeD TO FTO7FO0O01
[EF 1421 - STEEF WAS X CUTEERL - CONC CODE 0000

IEF2851 SYS74CH6aTO90324eRVIQOQeRMAKNODS, GOSET PASSED

IEF2ESTI VUL SLR NCS= ADMPO 3 ,

IEF3731 STER /G0 / START 7406662214

[EF3741 STEP /GO / STOP 7406642224 CPU 2MIN 14e9085C MAIN 28K

CHAKGE $ 44305 CPU TIME 00402415 REGIUN REQUESTED 000, K STA
DISK READER PRINTER PUNChH

I/C CCUNTS 0 0 11 o)

NQe CF DD CARLS 1 1 1 1

IEF2851 SYS74CHEe TOIOI244RVOU00 e KMARNGCOS e GOSE T DELETED

IEF285] VOL SER NUCS= ALMPO 3.

IEF3751 JOB /RNARNOCG/Z START 7406662211

IEF37061 JOB /RMARNOQOS/ HTOR 740€€e2224 CFU ZMIN 59546 05EC
RVNARNOOS JOE C(HARGE % 7 839



LEVEL

2147

00G2
cuo3
0004
Qo005
0006
ceev
0008
0009
0010
0011}

0014
Q015
0016
0017
GOl
0019
c20
0021
0022
eocz3
0024
0025
0026
o027
cecaas
Q02w
QN30
0031
NNa3z
0033
0034
0035
036
GO37
0038
CC39
o040
0041

0042

0043
CCush
CC4s
0046
0na4a7

0c48

0049
0Cs0
0ocsl
cos52
0053

Q0S4

2055
CChe
ces7

APPENDIX &S B 1

( JAN 7.3

COMPILLK

o122
00n13

) US /7360 FURTHKAN
LRTICND ~ NAME= MAINSOPT=02sLINLUNT=600,s 51 Z2E=0000K .

S50OURCE +EBCDICo NOL ISToNODUCK L TAD e NOMAR ¢ NOE 1) ]

IMPLICIT REAL#B(A=H,0=2Z)
FI=3.14159265358679323840010
x1=1
Y1=0
LX1=0
DY1=1
WRITE(H2) X1sY14DX1,DY1
FORMAT (* ¢  ,4F30416)
H  =PI*x32D-4
NN=625
H2=HkH

|~100/3

=200/ 3

Aazx
Gl0=100/18
6G21=200/9
330=100/3
C32=1D0/6
340=13D0/120
G41=4300
G42=3D0/740
G43=1DO0/60
CO=1300/120
C1z=4300
C2=300/40
C3=1D0 /60
CLO=1DO/Y
CD1=3D0/8
CD2=3D0/ 8
CD3=100/s8
H2G10= H2%*G10
HR2G21=H2%G21
H2G30=H2%G30
F2G322H2%G32
AlH=Al %H
A2H=A 2 *H
DCIM=1,10
DOIN=1 4NN
va~—(xx*x1+Y1*Y1)#*(-x.5)
F=X1%FXY
G=Y1RF XY
FO=F
GO=G
ALI=X1+DX1 %A1 H+HZ2 Gl0%F0
Y1I=Y1+LY1#A1l H++2 G1C %GO
FXYS={ X1 I%RX1I+Y1I%xY1I)%%({=145)
F=xX1I%F XY
G=Y1I%FXY
£1=F
G1=6G
X1I=X1+DX1%A2 H+H2 G21%F1
Y11=Y140Y1%A2 H+KH2 C21 %G1
FXY°—(X1I*XII+YII*YII)**(—1.J)
F=X1I1%FXY
G=Y1 I*F XY
F2=F



I SN
I1EN
SN
I&EN
IEN

CISN

#*CFTIONS IN EFFECTX

*CPTICNS

SN
RSN
1SN
TSN
1SN

TSN

.0058

0059
0060
0061
gcez
0063

0064

006S
¢oo6
0067
0068
0064
0c70

0071

ne72
0C73
onv74a
Q075
cC76
0077

IN EFFECT*

APPENDIXx S £ 2

62=6
X1I=X140X1 %A3%H+ M2  G30%F Q4H2G32%F 2
YII=Y14DY1 %A3XH+HZ  C30%GO+H2G 32462
FXY==(X1I%X114Y1I%Y1I)%%(~145)
F=X11%FXY

G=Y 1 IRFXY

0 3=G .
X2=X 140X 1%H+H2%(COXFO+C1%F 1 +C2%F 24+ C3%xF 3)
Y2=Y1+DY1XxH+H2%(COXGO+C1 *C1 +C2%G2+C3%G3)
DX2=DX1 +H*{CDO%FO+CDI1%F1+CO2% 2+CL3%F3)
UYZ2=DY 1 +HE{CDO*GO+CD1*C1+CDO2%G2+C3*G3)
X1=X2
vyi=v2 =
OX1=DXx2
DY1=DY2
CONTINUE
WRITE(O6:2)X2:,Y29CX2eDY2
STOR
END

NAME = MAINsOFT=02+LINECNT=60+SIZE=C000K

SOURCE » EBCDIC s NOL IST s NODECK o LUAD s NOMAP s NCEDITHID

«STATISTICS* SOURCE STATEMENTS = 76 «PROGRAM SIZE = 2074
«STATISTICS* DIAGNUSTICS GENERATED
Xkkkdk END OF CCMPILATICN #%k&kk 8
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- O e APPENDIX ( H 1

re G/RMAQNCEI JOB '16101250020;49:019960' 3% Re Do NOQTH' on‘PRUN'—‘HOLDv

s /7 CLASS=C MSCLEVEL={1,1)

/77 EXEC FCRTHCLG.FARNJFCRT=*CPT=2,1C"*

XXFORT EXEC PGM=IEKAADOREGION=250K

XXSYSFRINT OC SYSOUT=A,SPACE=(CYL,+(2,5))

XXSYEPUNCH DD SYSOULT=8sSPACE={CYL (0 ,+5))

XXSYSUTI1 DD UNIT=2314,DCB=(RECFN=F yBLKSIZE=105) ySPACE=(CYLs{(1+5))

- |XXSYELT2 DC UNIT=2314,CCE=(RECFM=F,BLKSIZE=1024)sSPACE=(CYLs(155))
XXSYSLIN OD DSN=ELCADSET+UNIT=23143DISP={MODPASS) SPACE={CYLs (2+5))

SZEGRT «SYSIN DD ¥ Sow T ’ '

~ |IEF22€1 ALLOCe FCR RNARNO31 FORT

IEF2371 262 ALLOCATED TO SYSPRINT

1IEF2371 331 ALLOCATED TO SYSPUNCH

~ |IEF2371 136 ALLOCA1ED TO SYSUTI

IEF2371 132 ALLOCATED TO SYSuUT2

1EF2371 136 ALLCCATED TO SYSLIN

-~ |IEF2371 310 ALLCCATED TO SYSIN

1EF1421 - STEP WAS EXECUTED - COND CDDE 0000

1EF28S5] SYS74176.T090841eRV0O00 «RMARNO31 «RO000665 DELETED
« |IEF28s]1 VOL SER NCS= SPLUO3.
1€F2851 SYS74176,TC90841 R VOO0 RMARNO31.R0000666 DELETED
IEF28SY VOL SER NCS= MVTRIP. i
- |1EF2e&51 SYS7417€¢ TCS0841eRVOO0RMARNO31 ¢ LOADSET PASSED
IEF2851 VOL SER NOS= SPLUO3.
IEF3731 STEP /FOR1 7 START 74176.1849
~ |YEF3741 STEP /FORT / STOP 7417641854 CPU 2MIN 16454SEC MAIN 248K
CHARCE $ 799 CPU TIME 00402¢17 REGIGN REQUESTED 0250K STA
DISK READER PRINTER PUNCH
~ |I/0 CCUNTS 283 3gl 426 0
NGes CF DD CARDS 3 1 1 1

XXLKED EXEC PGOGV=IEWL+REGICN=96KsPARM=(MAP +LET +LIST ) »CCND=(44+LT+FORT)
~ XXSYSL 18 CC CSN=SYS1+FORTL IByDISP=SHR

XX DD DSAN=FLRTSUBSDISP=SHR

XXSYSEPRINT DD EYSOUT=A s SPACE=(CYLs(141))

N XXSYSUT! DD SPACE=(CYL+{2+5))UNIT=2314

XXSYSLMOD CD DSKN=E£GCSET(MAIN)+DISF=(4 FASS) +UNIT=2314,

XX SPACE=(CYLs{20¢41))
« |XXSYSLIN DD DSMN=ELOADSET.DISP= (0L D, DELETE)
XX OO0 ODNANE=SYSIN

IEF2361 ALLOCe FOK RMARNOZ1 LKED
- |TEF2371 131 ALLCCATED TO SYSLIB

IEF 2371 132 ALLCCATED TO

IEF2371 362 ALLOCATED TO SYSPRINT

- |IEF2371 135 ALLGCAIED TC SYSUTI1

1EF2371 132 ALLOCATED TO SYSLMOD

1EF2371 136 ALLOCATED TO SYSLIN

w |IEF1421 - STEP WAS EXECUTED - COND CUDE 0000

IEF2851 SYS1.FORTLIB KEPT
1EF2851 VOL SER NCS= MVT 217
L IEF2E5] FORTSUB KEPT
IEF2+H5 1 VCL SER NGS= MVTRIP.
LEF28%1 EYS74176eT09044%1 «RVOODO e RMARND 31 «RO000669 DELETED
o~ TEF28981 VOL SER NOS= ADMPOZ2.
1EF2891 SYS74176eT090841 4RVO00 s RMARNO31GOSET P ASSED
IEF2EE1 VOL SER NCE= MVTRIF.
1EF2E8] SYS7417€eTCG0841eRVOO0O+RMARNOI1eLOADSET DELETED
IEF2E5 VOL SER NCS= SPLUO3.
JEFI?AT STEP /LKED /7 START 7417641854
e IEF3741 STEP /LKED s/ STOP 7417641856 CPU OMIN 11+55SEC MAIN 68K
@HARGE % 0489 CPU TIME 004004612 REGION RECUESTED 0096K STA



0

b

BEE LAKEHEAD UNIVERSIIY COUMPUIEK CUNIKD

DISK READER PRINTER

176G CCUNTS 410 0O 57
NOe. CF DD CARDS S 1 1
XXCO EXEC DPGM=24LKEDeSYSLMODCOND=( (4oL T+FORTI (4oL TLKEDD)

XXFTCS5F001 CGC DCOMANE=SYSIN

XXFTCEFQOQL DD. SYSCLT=A»SPACE=(CYL+{(1+1)})
XXFTC7FCC1 DOC SYSOUT=HB,SPACE=(CYL+(0+5))

4

IEF2361 ALLOCs FOR RMARNO31 GC

TEF2371 132 ALLOCATED TO PGM=%,DD

IEF2371 362 ALLCCATED TC FT06F001

IeF2271 221 ALLOCATIED TO FYC?7FCO1

IEF1421 - STEP WAS EXECUTED - COND CODE €000

1EF2€Ec] SYS74176¢ 1090841 ¢RVOO0 « RMARNO31 ¢ GOSET P ASSED

1EF28E 1 VOL SER NOS= MVTRIP.

1EF3731 STEP /GG / START 7417€.1856

1IEF3741 STEP ,GO / STOP 7417641859 CPU IMIN 15¢59SEC MAIN

CHARCE $ 2058 CPU TIME 00s01e16 REGION REQUESTED 0062K
DISK REACER PRINTER PUNCH

1/0 COUNTS 0 0 23 )

NDes CF DOC CARDS 1 1 1 1

1EF2E51 SYS74176.T090841¢RVO00 e RMARNCZ1 ¢ GOSET DELETED

IEF2€EE] vOL SER NCS= MVTRIF.

IEF3751 JCH /RMARNQOZ1/ START 7417€418465

IEF3761 JOB /RNARNO31l/ STOP. 7417641859 CPU BMIN 43¢68SEC
RMARNO3I1 JOB CHARGE % 12,66

APPENPIX ¢ A 2

36K
STA




EHEAD UNIVERSITY COMPUIER CENIRE
e T " APPENDIX (L B 4 .

17 ( JAN 72 ) - 09S/7360 FORTRAN H

CCWRILER CPTICNS ~ NAME= MAINyCPT=02+L INECNT=604 STZE=0C00K
SOURCE +EBCDIC +NCLISTWNCDECKLOAC,NONAP»NCQEDIT» 1Dy NOXREF

002 IMPLICIT REALX8(A=rs0-2)
Q03 DIMENSIGN YSTART(4)
004 CUJMMON NOF NS
005 FXTERNAL FCT,COEQUT
006 NOFNS=0
07 PI=24141592€5358979323846D0
CCE Sp=pP] %2
CC9 N=4
010 YSTART(1)=1
011 YSTART(2)=0
012 YSTART(3)=0
013 YSTART (4)=1
014 XSTART=0
0185 XEND=SP %10
016 H=1
017 EPS=3.€D=-11
018 CALL DDESP{SP+FCT Ny YSTARTI XSTART s XEND sHEP S, DDEQUT)
019 WRITE (6 +97 ) NCFNS
020 c7 FORMAT(IHO +SX+36HTCTAL NC OF FUNCTICN EVALUATICANS IS ,16)
021 STOP
€22 END
IN EFFECT*% NAME= MAINJOPT=C2,LINECNT=60,SIZE=0000K,
IN EFFECTx SCURCE., EECCICs NOL ISToNODECK LOADsNOMAP NOEDI T, ID sNOXREF
ICS* SOULRCE STATEMENTS = 21 +PROGRAM SIZE = 592

1CS* NC DIAGNOSTICS GENERATED

NU CF COMFILATICN % xdk&kk 93K BYTES OF COF




EHEAD UNIVERSITY COMPUIEFR CENTRE
T " APPENPIX 6 B 2
'1o7 ( JAN 73 ) 0s/7 360 FORTRAN #
COMPILER CRPTIUIONS = NAME= MAINOPT=D2,LINECNT=60,S5172E=CO0Q0K.,
SOURCE ERCDICyNOUL IST NODECK +LOAND s NONAP JNOEDIT 210D« NUOXREF

02 SUBROUTINE FCT(Y +XsDERY)

003 IMPLICIT REAL¥*B(A-H,0-2)

004 CIMENS ICN DERY(4)sY(4)

00S COMMCN NOF NS

006 NOFNS=NOFNS+1

007 DERY (1 )=Y(3)

08 DERY(2)=Y(4)

Q09 XYz (YC1)*Y (1) +Y(2)%Y(2))**%(=1EDO)

1¢10 DERY{(3)=Y(1)%XY

011 DERY(4)=Y{2)*XY

012 FETURN

1013 END

 IN EFFECT* NAME= MAIN,OPT=02,LINECNT=60,SIZE=0000K.,

v IN EFFECTX SCURCEsEECCICoNOL ISTsNODECKsLOADIyNOMAP ¢NOEDI Ty 1D +NOXREF
"1CS* SOURCE STATEMENTS = 12 +PROGRAM SIZ2E = 456

1CS% NC CIAGNOST ICS CGENERATED

ND OF CCMFILATICN dkdxdoki¥x 93K BYTES OF COF




EHEAD UNIVERSITY COMPUTER CENTRE
- HAPPENDIX (L £ 3

147 ( JAN 73 ) 0S/360 FORTRAN K

CCMPILER CPTIONS = NAME= MAINLsOPT=02+sLINECNT=60+SIZE=0000K>
SOURCEWEBCCICs NOLIST +NODECK +LL GADs NOMAP s NOEDIT» I0 s NOXREF

002 SUBROUTINE DDESP(SP ¢FCT oN Y o XTI sXFeHILEFS CCEOUT)
003 IMPL ICIT REAL *8({ A=Hs 0~-2)

0C4 DIMENSICN Y (4)

005 EXTERNAL FCT, DDEOUT

006 COMMCN/CDESPC/NPKQUNT

007 NP=1

008 KOUNT=0

CC9 IF (SF*(XF=X1))2+4,10

010 2 SP=DSIGN(SP ¢ XF~X1)

011 GOTO10

012 4 IF({SP«NE ODO)GOTC10

N14 NP=Q

015 10 CALL XCDE(SPsFCTeNyYeXI s XFyHIsEPS, DDEOUT)

016 RE TURN ‘ ‘ '

017 END

. IN EFFECTx NAME= MAIN,OPT=02,L INECNT=€E0,SIZE=00C0K,

. IN EFFECT* SCURCE yEECCICoNCGLIST+NODECK yLOACsNCMAP,NCEDIT, ID ,NOXREF
ICS* SOURCE STATEMENTS = 16 +PROGRAM SIZE = 568

TCsS*® NC CIAGNCSTICS GENERATEL

ND OF CCMP ILATION #xk*&kx* 93K BYTES OF COf




EHEAD UNIVERSITY COMPUTER CENTRE

R APPENDIX 4 B 4

1e7 ( JAN 72 ) 0S/360 FORTRAN H

CCMP ILER OPTICNS = NAME= MAIN,OPT=02,L INECNT=60,SIZE=CO000K,
SOURCEEBCDICsNOLIST+«NCDECKsL OADsNOMAP 4 NOED [T, ID«s NN XREF

o2 SUBROUTINE XDDE{ SPsFCTeNs YsXI o XF oHI sEPS, DDECUT)
003 IMPLICIT REAL*B(A=k,0=2)

004 DIMENSICN Y(4)sDY(4 )4S{4 ) 4sR(84 )yYR(4 )
00S COMMON /D0F SPC/NP 3 KOUNT

006 CCMMCN/IFARAM/ My NMAX

07 COMMON/DOPARAN/DZCTsDP2+DEMAX4DEMINSDHDIV+DZCTUPR
rosg CCVNMCN/DINFO/EXs ERe EFy NEoNERR

cCoH COCNMCN/DCTPLT/SPPRTy FIPRT oX IPRT o XFFRT o EPSFRTsNRPPRT TITLE
010 LOGICAL STYPE KONVF,TITLE

011 EXTERNAL FCT, CCEOQUT

12 DZIT=2e77D-17

013 DP2=327¢€¢€

C14 DEMAX=1

015 DEMIN=1D=~-18

nN1é6 LD IV=1024

017 DZ2CTUP=3.60D16

1018 M=6

019 NMAX=60

020 TITLE=4TRUE,

021 STYPE= ¢ TRUE o

022 NPPRR T=NP

023 SPPRT=S5P

024 HIPRT=HI

025 XIPRT= XI

026 XEPRT=XF

c27 EPSPRT=EPS

028 IF{{NeLEe0) eORa (NeGT«NMAX))GATOBG

030 IF((EPS LT ¢ DEMIN ) eOR ¢ (EPS «GT DEMAX ) )GOTO8S
032 TTL=XF=X1

033 k=H1

034 IF(TTL2H)IB6 87,412

0nas | IF(((H/ZTTL)®DP2eLTele) e ORe ({H/TTL) e GTel4))GOTOBE
037 DO14aI=14N

€38 S(I)=DABS(Y(1))

0329 14 CONTINUE

040 KCNVF= o TRUE o

041 HMIN=H/DHDIV

042 HMAX=TTL

ca3 HP =0

Naa X = X]

048 X=X 1

046 20 IF((NPeEGs0) e ANDe (o NCT «STYPE))GOTOSO

c4g XPMX= XP= X

049 FE=XPMX/H

050 IF(FHeGT eDZCTIGCTES0

0sa 20 IF(DABS(FH) «GT«DZOT)IGOTO34

0s4 NC321I=1sN

085 YRO1)=Y(T)

056 2z CONTINUE

N7 HC=HP

nNEH XR= X

LY cOTA36

0€é0 34 HQ=XPMX+HP

061 HR=HQ

€62 XR=XT

€63 CALL DREDIF(NyXRsYRsDYsHR4HQIEFSsMeSeF s KONVF 4FCT)




EHEAD UNIVERSITY COMPUTER CENIRE

0€4
cES
C66
NET
cé6e8
CES
071
073
C74
076
0?77
078
80
081
083
084
QBE
NB7
cg9
091
093
CGa
095
S6
cs8
099
1100
101
102
103
108
106
1107
108
109
110
111
112
113
114
115
116
118
116G
120
121
122
123
124
125
126
127
128
i
130
131
132

133

30

40

€0

€C

70
¢

33

ga
as
b6
€7

g
9¢C

APPEND! X (& B &

HQ=XR=XT

CALL FCT(YR.XRsDY)
STYPE=eTRUE .

CALL DDEGUTIYRIDY oeN9+XRsSTYPE)
STY PE= oF ALSE »

IF(KCNVF)GOTC40
IF(KCNVF)GQOTO70

GcotTo82

IF((XF=XR) /7TTLeLE«O»)}GOTO70
KOUNT=KOUNT+1

XP=XI+ {KCUNT)*SF
IF{{ XP=XF) /HeGTe 0o ) XP=XF
GCT020

IF((DAEBS{(X~XR)/H))eLEe«DZOT)GOT (060
CALL FCT(YeXeDY)

CALL DCEOQUT (YsDYsNy XeSTYPE)
IF((XF=X)/TTLelLEe0e)GOTO70
IFIDABS(H) LT eHMIN)H=DSIGN{HMINyH)

TF(CABS(H) e CT e HMAX ) H=DS IGN(HMAX s H)

IF((XF=X=iH) /TTLelLTe Qo) H=XF=X

XT=X

CALL DDESUB(NsX oY oCY sHs HMINsEPSsMsSeRIKONVF)
HP=X=XT

IF(KCNVF)GCTC20

GOTO8O

RETURN

NERR=1

ER=0

DCB1I=14N

IF(ER®S(I)«GTR(I)IGCTO8]
ER=R(I)/S(I)

NE=1I

CCNTINLE

EH=HP

E X=X

CALL FCTIYsXsDY)

CALL UDEDUT(Y DY sNyXeSTYPE)

GCTLO2

NERR =1

ER=0

DUBII=1 4N

IF(ER*S(T) eCELR(INIGCTUBS
ER=R(I)/ZS(D)
NE =1
CONT INUE
EHSMG

E X=XR
cCOTCo2
NERR=2
GOTOSO
NERR=3
GOTO90
NERR=4
CCT 190
NERR=S
GOTOSO0
NERR =6
CALL FCT(YsXILDY)




EHEAD UNIVERSIIY COMPUIEK CENIKE

e _APPENPIX 6 B &

'] 34 CALL DDECGUT(YsDYsNoXI+STYPE)

1395 32 CALL DERROR

1136 RETURN

137 END

, IN EFFECT* NAME= MAIN, OPT=02sL INECNT=60+SIZE=000CK,

, IN EFFECT% SOURCE 4 EBCDIC ¢+ NCLIST «NCOECKsLOAC» NOMARP+NOECITs ICsNOXREF
ICS% SOURCE STATEMENTS = 1326 +PROGRAM SIZE = 2356

‘1CS%  NC DIAGNOSTICS GENERATED

ND OF COMPILATICN #*%¥xx%xx 77K BYTES OF COt




HEAD UNIVERSITY COMPUTER CENTRE
o APPEAMD! X e B 7 . —

1e7 ( JAN 73 ) 0s/7360 FORTRAN H

COMPILER CPTIONS = NAME= MAIN,OPT=02,LINECNT=60+SI1ZE=0000K,
SOURCEEBCDICINOLIST NODECK L CADNONMAP s NOEDIT s ID s NOXREF

coz SUBRCUTINE CDESUE(N#XsY sDY s HeaHMINS EPSs UMy Sy Ry KONVF )
c03 IMPLICIT REALXB{A-H,,(~2)
004 LOGICAL KONVF
coS DIMERNSICN Y(4)sS(4)sYA(SL )eSA(4 DeLCZ(4 DNsDY(4)sR(4)
006 COMMON/DDERCM/YA 1SA$DZ 9 UJMAX
0C7 EXTERNAL FCT
cce JMAX=JNt+ G
o ake) DULI00I=1esN
010 YA(L)=Y(])
011 SA(TI)=¢C(1)
D12 100 CONT INUE
013 CALL FCTA(Y o+X +0D2)
014 CALL DDERSBIN s XsYsDYsHsHMINGEPSs JMySs R KONVFLFCT)
015 RETURN
c16 END
IN EFFECT* NAME = MAINSOPT=02,LINECNT=60+SIZE=0000K,
IN EFFECT % SCURCEs EECOICsNOL ISTeNODECK oL OAD +NOMAP ¢ NCEDI ToI U s NOXREF
ICS*% SCURCE, STATEMENTS = 15 oPROCGCRAM S1Z7ZE = 686

1CS* NUO CIAGNUSTICS CENERATED

ND OF COMPILATION #o¥kdekk 93K BYTES OF COR
)




EHEAD UNIVERSITY COMPUIER CENTRE

APPENDIX {( B ¥

"te? ( JAN 73 ) 0s/360 FORTRAN H

CCVPILEK CPTIONS = NAME= MAINL.OPT=0Z2sLINECNT=60,SIZE=C000K,
SOURCE+EBCDICINOLIST NODECKsLOADs NOMARP+NOEDIT S ID +NOXREF

co2 SUBRCUTINE DREDIF(NsXsY sDY s HeHNINIEFSes IJMS,R4KONVF 4 FCT)
(eXolc IMPLICIT REAL*8(A~Hs0~2)

CcCa LCGICAL KONVF

CQOS DIMENSION Y(4) s YA(4 )y SA(4G ) +DZU4 ) +DY(4)+sS(4)sF(4)
006 CCMMCN/CCERCM/YASAsDZy JMAX

007 EXTERNAL FCT

[eXe R 3! DO300CI=1eN

cCs Y(i1)=vya{1)

10 3¢0 CONTINLE

011 CALL DDERSBINsXs YsDYsHsHMINJEPSs UMy S+ R«KONVF +FCT)

Gl2 RETURN

n13 END

, IN EFFECT * NAME= MAINsOPT=02,L INECNT=604 SIZE=000CK »

, IN EFFECTX SCURCE oEECCICINCLISTs NCOECK yLOAD+NCMAP,NCEDIT, ID+NOXREF
ICS* SOURCE STATEMENTS = 12 +PROGRAM SIZE = 654

I1Cs* NC ODIAGNCSTICS GENERATED

ND OF CCMPILATICN. ¥ kaxiok 93K BYTES CF COf




"HEAD UNIVERSITY COMPUTER CENTRE
MR NS apPENDIX ¢4 B 9 _
1.7 ( JAN 73 ) 6S/360 FORTRAN H
CCMP ILER CPTINONS = NAME= MAINZOPT=0Z2,L INECNT=60,SIZE=0000K,
SOURCE +EBCDICsNOGLIST s NODECK L OAD, NOMAP 4 NOED IT s 1D+ NOXREF
oc?2 SUBROUTINE DDERSBIN¢XeYsDYsHsHNINIEPS s+ JM9sS+R+KCNVF 4 FCT)
003 IMELICIT REALX8(A=Hs0=-2)
coa DIVMENSICN  Y{(4) o0V (4),S(4)sR{4)4YA(4 DeYL(4 )o¥YM{4 )oDZ(4 ),
1SA{4G YaD(7)s0TL4 o7)sY¥G(4 +8)sYH{ G 58)+5G(4 +8)
€05 CONMMON/UCDERCN/YASSADZe IMAX
006 COMMCN/DPARAM/D ZOT +DP2 4 DEMA X JDEMINSDHDIV,DZCTUPR
co7 LCGICAL KONVF+KONV,s EOs BH
oca EXTERNAL FCT
009 DATA DTrs28 %0DO/
010 10 BH=oF ALSE.
G11 KONVF =e TRUE o
012 2¢ A=H+ X
013 BC==eFALSE
014 1= 1
015 JR=2
016 Ja=3
017 JJ=0
018 DIN200J=1+IJMAX
c19 IF («NCT+EC)CQOTO201
021 D(2)=1£D0/SDO
022 D(4)=64D0/9D0
022 D(H)=25600/900
024 GOTOZ02
025 201 D(2)=9L0/400
n26 0(4)=900
027 D(6)=3€D0
ces8 202 KONV =4 TRUE o
029 IF(JeLEe(JIN/2))KUONV=eFALSES
031 IF(JeLEo(JIM+1))IGOTO203
€33 L=JdN#1
034 DL=4DO*D(L.=2)
035 FCze?071068D0%FC
036 GOT0204
ca7 2C3 L=J
c38 D(L)Y=Mx%N
03g FC=1D0+ (JM+Y1 =J) /BLC0
04 204 M=M+M
N4l G=H/WN
042 B3=G+G6
N3 IF(( oNUT oBH) sORe (Je CEL (JMAX-1)))IGOTO2CS
cas DC2101I=14N
0adb YM(I)=YH(TIsJ)
Cav YLOIY)=YG(ILY)
na8 S(I)=SG(I+J)
0aY 210 CUONT INUE
050 GCT G206
091 2¢Ce NN220I=1 4N
052 YL(I)=YA(T)
rs 3 YM(TI)=YA(CI)+G*DZ2(T)
neEa S(I)=SA(1)
Yty D20 CONT INUE
B Kit=Ms2
087 Xy=X
058 D0230K=2,M
0% G XU=XU#*G

06O

CALL FCT(YM, XUsDY)
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061
062
063
064
0€S
066
068
€69
071
072
073
074
075
c76
or7?
078
079
080
081
082
083
cgs
086

088
089
0s0
0951
092
Csa
€95
096
cs?
098
ss
100
101
1¢2
103
108
106
108
109
110
111
112
113
114
118
116
118
119
121
182
123
124
128
126

APPENDIX 4 R 10

231

PR
230

€
N

243

241

242

200

50
a0

DO221I=14N
U=YL (T )+E*CY (1)
YL(I)=¥YM(1)

YM( I)=U

L=CAES (V)
IF(UeGTeS(I))S(I)=U
CONT INUE

IF((K.NE.KH).GR.(K-EG.S))GQT0239w~

JJ=14J4
DC232I=14N

YH 1+ JJ)=YM(1)
YG{ I+JJ¥=YL(I)
SG(IsJdII=S(I)
CONTINUE

CONT INUVE

CALL FCT{(YMeALDY)
00240I=1N

V=0T (Is1)

DT(IZ1)=(YNC(II+YLII)+4GXDY (I))*+500

C=DT{Is 1)
TA=C
IF(LeLTe2)GCTC242

IF((DABS(V)*DZOTUP L TsDABS(C)) e AND e (HoNEoHMIN) ¢ ANDo (JeGT o IM/2¢1)})

1G0T 030

DO241K=2,L

B1=D(K )*V

B8=81«C

U:V
IF(B+EQe0)GAOTO243
B=(C=-Vv)/sB

U=C*3

C=81 %8B

V=DT(] ¢K)

DT( IsK )=V

TA=U+TA

CUONTINUE
REI)=DABS(Y(I)=TA)
Y(l1)=TA
IF{R(I)eGTEPS
CONT INUE
IF{KCNV)IGOTC4O
D(3)=4D0

C(5)=16
BO={+NOTeBO)

M=JR

JR=JS

JS=MeM

CCNT INUE
BH=( s NQOTeBH)
IF(DABS(F) eLE JHMIN)GOTOS0
H=H/2
IF(DABS(H) s GE.HMIN)GOTO20
+=DS IGN(HMINsH)
Garvotlo
KONVF=eFALSE e

HaF Ok

X=A

RE TURN

) KONV=¢FALSE
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'127 END
 IN EFFECTx NAME= MAINsOPT=02+L INECNT=€EQ0sSIZE=000CK
IN EFFECT* SCURCE +EBCOIC, NCLISTsNODECK 4L OACs NCMAP, NOEDITs ID+NOXREF

ICS% SOURCE STATEMENTS = 126 »PROGRAM SIZE = 3490

1 CS* NO OIAGNCSTICS GENERATED

'ND OF CCMP ILATION k¥oekkk

73K BYTES OF

Cof
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APPENDIX . (. B 12 e

1s7 C.JAN 73 ) DS/360 FORTRAN H

CCMPILER CPTICNS = NAME= MAINJCPT=02sL INECNT=604sSIZE=0000K>»
SOURCE +EBCDIC +NOLIST +NODECKsLOACsNCNVARPs NCECIT s 10+ NOXREF

o002 SUBROUTINE CCEOUT{YsDYsNs Xs STYPE)

003 IMPLICIT REAL*8(A+HoGC~2Z)

004 DIMENSION Y{(4)+DY(4)

00S LCGICAL STYPESTITLE

006 COMMCN/DOTPUT/SP sH s X1 o XF sEPS sNPSTITLE

007 " COMMON/UNITS/ARFBC

co8 IF(.NOTTITLE)GCTC10

010 TITLE=.FALSE,

011 10 IF{(NP ¢ EGe1) ¢AND ¢ STYPE)GOTO 20

1013 ' RE TURN :

1014 20 WRITE(E48S) Xe(Y(I)sI=1sN)

015 RETURN

1016 €5 FORMAT (1H +4XelH%3SXs4(D25e16°  )/7(36Xs 3(D25416 IER)
017 END ‘

; IN EFFECT* NAME= MAIN,OPT=02,L INECNT=60,SIZE=0000K,

i IN EFFECT* SOURCE +EBCDIC o NOLIST + NODECK»LOADs NOMAP+ NOECIT» I Ds NOXREF
"1CS* SCURCE STATEMENTS = 16 +PROGRAM SIZE = 466

‘fCe* NO DIAGNOSTICS GENERATED

ND OF CCOMPILATION #%3kk% 93K BYTES OF cCaOt

Y
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217 4 JAN 72 ) 0E/7360 FORTRAN H

CCNPRILEFR CPTICNS ~ NAME= MAIN,OPT=02+L INECNT=60,SIZE=0000K,
SOURCEEBCDICsNOLIST oNODECK+LCADs NOMAPSNOELCITs IDy NUXREF

1002 SUBROUT INE DERROR

*003 IMFLICIT REAL#*8B (A=ty0=2)

D04 CCMMON/DINFO/EX ERsEHsNE s NERR

)0 0S5 GOTO(10+204+ 309405509 €0)s NERR

2C06 10 WRITE(6 4,91 )EXsEHWERs NE

Y007 91 FORMAT (SHO**¥% 45X 3S5HNO CONVERGENCE IN ABOVE STEP TC X =+D12,5,

1H WITH H=3D12e5s 1lHo oS Xy GHB XX ¥ /T0Xe22HTHE LIMITING ERROR IS
2D12¢5¢13H IN EQUATICN s12/77)

008 RE TURN
009 20 WRITE(6,92)
)0 10 9z FORMAT(
1 CEHOX X 4% 35X 9 19HNGLTeO o0Re NeGTe20e5XedHik k%)
011 RE TURN
Y012 30 WRITE(E493)
013 Q3 FORMAT (SHO%X%%% 3 SXs 29HEP oL Te 1¢eD=18 +0OR e EPCGTOIOD-Z‘SXOQH****y
1014 RE TURN
1015 40 - WRITE(6,94) 5
1016 94 FCRMAT {(SHO*%*%%,5Xs 22HHK{ XEND=XSTART)elL.Te Oy SXs 4H%xkkk)
017 RE TURN
1018 50 WRITE(6,65)
101 9 95 FORMAT (SHO#%%%,5Xs21HH=06e ¢ORe XEND=XSTARTe SX, 4H*&¥%k) '
)0 20 RE TURN
021 60 WRITE(64+96)
) 022 S6 FORMAT (S5HO*%&% 45X ¢4 8HHeLT o (XEND=XSTART )/ 2%%15 «ORe HeGT ol XEND=XS'
1ART ) s S Xo GH ke k) )
023 FETURN
024 END
5 IN EFFECT® NAME= MAIN,OPT=02+LINECNT=60,S]ZE=0000K,
, IN EFFECTX SCUKRCEWEECDICsNCLIST+ NODECKsLOAC+NOMAPNCEDIT, IDNOXREF
"1CS% SOURCE STATEMENTS = 23 +PROGRAM S1ZE = 796

"ICS*  NU L IAGNOSTICS GENERATED

ND OF CCMPILATION *%x&kxx 93K BYYES OF COFf

"1cS%® NU DIAGNOSTICS THIS STEP
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"1e7 { JAN 73 ) 057360 FORTRAN H

CONVMPILER CPTIONS = NAME= MAINyOPT=02)L INECNT=6C»SIZE=CO00K,

SOURCE + EBCDICHsNOLIST s NODECK L CALy NOMAP s NOEDIT s TOsNOXRIEF

ne2 IMPLICIT REAL *8(A-H.0~2)

003 DIMENSIGN YSTART (4)

1004 COMMON NOF NS

1005 EXTERNAL FCT,DDIOUT

1006 NOF NS=0

1007 P1=3.1415926535897932384600

co8 E= ¢8DO0O P

o9 A=1D0O/(1D0O~=F)

010 SP=2D0%PI%A%x% 14 5D0

AR | N=4

‘012 YSTART(1)=1

1013 YSTART(2)=0

101 4 YSTART(3)=0

015 YSTART(4)=({ I1DO+E ) %%+ 5D 0

1016 XSTART=0

1017 XEND=5PXx]10

018 H=1

1019 EPS=1D-13

)020 CALL DDESPR(SPsFCT Ny YSTART ¢ XSTART W XENDsHHyERS, DOEQOUT)
021 WRITE(6ySG7INUENS

022 97 FORMAT (1 HO +SX+36HTOTAL NO OF FUNCTION EVALUATIUONS 1S +16)
1023 sTOP ‘

024 END

> IN EFFECTX NAME= MAIN,OPT=02,LINECNT=60,SIZE=0000K,

, IN EFFECT % $DURCEqEBCDIC.NOLIST.NODECK;LOADgNOMAP.NOECIT.leNDXREF
"1 CS*k SOURCE STATEMENTS = 23 'PRGGRAM S1Z€ = 712

"ICS* NO DIAGNOSTICS GENERATED

ND QF COMP ILAT ION #xkskkx 93K BYTES QF CO
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//RMARNOQT7 JOW
/7 CLASS=(+MSG
/7 FXEC PGM=TA
/7/7STEFLIR DD D
//SYSPRINT DD
//SYSPNCH D O
/7 OCCE=(RECFM=
//7SYSIDUMF DO
P/SYSIN DD *
IEF236T1 AMLOC.
IFE2371 1432

|IEF2371 360

1EF2371 132
IEF2271 361
1EF2371 710
IEF1421 - STEP
1EF 2851 JosL
1EF2851 vOL
IEF288] SYS7
1EF2851 VoL
1EF3731 STEP 7/
IEF3741 STER /
CHAR CE &

f/s0 COUNTS

NOe OF DD CARD
// EXEC PGM=IE
//SYSPRINT DD

Z78YS'IN DD DUM
/7/78YSUTY Ch *
//78YSUT2 DD 0T
/7 £CB= (RECFM=
IEF2261. ALLOC,

11EF2371 260

1EF2371 311
IEF2371 132
TEF1421 =~ STEP
1EF2851 SYS7
IEF2EST VoL
TEF3731 STEP /
IEF3741 STEP /
CHAR GE %

/0 CCUNTS

/7 EXEC FCRTHC
XXFORT F X C
XXSYSPRINT DD
XXSY SPUNCH DD
XXSYELT) Do
XXSYSUT? 0D
XXSYSLIN DD
ZIFORTSYSIN D
[EF6anl INVALL
IEF223¢T ALLOC,
IEF2371 360
TEF2371 330

1IEF2371 122

LIEF2371 134

11610125,00104343910+H50'3%Re Do NORTH® y TYPRUN=HOLD 4
LEVEL=(1,1)
YLORTVIREGICN=350K 4PARM=* $0BLISTY
SN=JOBLIB.DISP=SHR ,
SYSCUT=AWDCBR=(RECFM=FEA, LRECL=121,83LKSIZE=847)
SNZEETAYLURSUNIT=231445PACE=(CYL (1 +1))DISE=(MOD, FASS),
FEsLRECL=30,BLKSIZE=800)
SYSOULT=AWOCEB=(RECFM=FEA, LRECL=121+BLKSIZE=847)

FOR NMARNOOQ 7
ALLOCCATED TO STEPLIEG
ALLOCATED TO SYSPRINT
ALLCCATED TO SYSPNCH

ALLCCATED TO SYSIDUNME
ALLQCATED TO SYSIN

WAS EXIZCUTED - CONC CODE 06GQO

s KEPT
SER NOS= MVTRIP.
41F34TOINNGH sRVNADO ¢ FMARNOO7 ¢ TAYL CR P ASSED

SER NOS= MVTRIP,
/ START 74164,0159

/ STOP 7416440200 CPU OMIN 15420SEC MA IN 277K

1«03 CPU TIME 00,00s195 REGIUN REQUESTED 0350K STA
DISK READER PRINTER
21 14 17
s 2 1 2
BGENEFR
SYSOUT=A
My

N=£ETAYLOR yDISP=(MOD 4PASS) »
FByLRECL=80,BLKSIZE=800)
FOF RMARNOOTY ’
ALLOCATED TO SYSPRINT
ALLOCATED TO SYSUT1
ALLCCATED TO SYSuUT2
WAS EXECUTED = COND CODE 00G0
4163¢T090046 RVOND ¢ RMARNOG7 e TAYLOR PASSED
SER NCS= MVTRIP,
/ START 741640200
/ STOP 74164.0200 CPU OMIN 02.92SEC MAIN 34K
Ne 33 CPU TIME CO0e00403 REGION KRFQUESTELC 0062K STA
CISK READER PRINTER
2 12 3

NOe OF OD CARDS 1 2 1

LCsPARVY.FCRT=*CPT=2, ID?*
PGN=I3KAAQQ yREGICN=250K

SYSOUT=A s SPACE={C YL+ (24 5))

"SYSOUT=B,SPACE= (CYL,y (0, 5))

UNIT=2314.DCR=(RECFNM=F yBLKSIZE=105),SPACE=(CYLy (1,5))
UNIT=2314,0CB=(RECFM=F 4BLKSIZE=10724) ¢ SPACE=(CYL (1 4%))
DSAN=LLOADSETUNIT=2314,DI3P=( MUDsPASS )sSPACE=(CYLy(245))

D DSN=6L£TAYLORD1SF=0LD

D DISKP FIELD= PASS SUBSTITUTED

FOR RMARNOO7 FQORT

ALLOCATED TO SYSPRINT

ALLCCATED TO SYSPUNCH

ALLOCATED TO SYSUT)

ALLDCATED TN SYSUT2

fEr2371 135

(o)

ACCCCATED T SYSCIN
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r;EF237I 132 ALILOCATED TO SYSIN

IEF1421 - STEF WAS EXECUTED = CONC CODE €000

IEF285] SYS74162410900454RV000«RMARNCQ7 e FOO01303 DELETED

IEF2851 VOL SER NOS= MVTRIP,.

LEF2851 SYS741634TNF0046 «RVO0O0 e RMARNCO7 «RO00 1304 DELETED

IEF28c] VOL SER NDS= ADMPO4.

TEF28%1 SYST741E23eTCS0C04/RVIQN dPRMARNOQO7« LUADSET PASSED

1EF2851 VOL SER NCS= SPLUO3.

AEF2881 SYS74163,T0900464RV0OC0Oe RMARNOO7e TAYLOR PASSED

1IEF2as1 VOL 5FER MOS= MVTRIF. ‘

IEF3731 STEP /FORT / START 7416440200

YEF3741 STEP /FORT / STOP 74164.0202 CPU IMIN 294 7SSEC MAIN 250K |

CHARGE $ 4444 CPU TIME 00401430 REGICN REQUESTEC 0250K STA

NiskK PRINTER  PUNCH

170 CCUNTS 163 264 0

Nge CF DD CARDS 4 1 1 _

AXLKED EXEC PGOGM=IEWLREGICNTO6K 4yPARM=(MAP JLET s LIST) +sCOEND=(4,LToF02T)

XXSYSL IR DO DSN=SYS1 e FORTL IB¢DISP=SHR

X X DO DSEN=FURTSUBWDISP=SHR A

XXSYEPRINT DD SYSOULT=A,S5PACE=(CYL,(1,1))

XXEVYELTL DD SPACE=(CYL»(24+5))UNIT=2314

XXSYSLMOD DU DSN=EGOSET(MAIN) +DISP=( +FASS) yUNIT=2314,

X X SPACE=(CYLs(24s1))

XXSYSLIN DD DSN=6LOADSET.DISP=(0LD, CELETE)

X X DD DDNAME=SYSIN

TEF2361 ALLOC. FOR RMARNOND7? LKED

1IEF23271 131 ALLCCATED TO SYSLIR

IEF2371 132 ALLOCATED TO

1EF2371 360 ALLOCATED TO SYSPRINT

IEF2371 132 ALLCCATED TO SYSUTI!

IEF2371 134 ALLLNCATED TO SYSLMOD

IBF2371 135 ALLCCATED TO SYSLIN

IEF 1421 « STEP WAS EXECUTED = CCNC CODE 0000

IEF2851 3YS1eFORTL I KEPT

IEF 2851 VOL SER NLS= NVT217e

IEF 2851 FORTSUB KEFT

1EF2851 VOL SER NOS= MVTRIP,.

IEF2€ST SYS741634 TO9004A ¢RVOO0 « RMARNCC7 o ROUO 1306 CELETED

1FF2851 VOL SER NOE&= MVTRIP.

1EF2851 SYS74163.T090046 ¢RVODO ¢RMARNOO7eGOSET PASSED

FEF2EST VOL SER NCS= ADMPO4.

TEFREST SYS741624TNIN0G6eRVIN0RMARNCCT7oLODADSET DELETED

IFF2851 VOL SCR ANCS= SPLUQ 3.

y
IEF Q361
IEF2371
LEF2371
[Era2271

IEF1421

o

XXFTOHFANY
XXFTCeFrCQ1 DO
XXFTC?FGO

IEF3731 STEP /LKED

(RIR

DO

ALLOC.
134
360
230

- QTEP

\TTﬂ?HET“"“SVS?WTEBT'

/ START 741564,,0202

IEF3741 STEP /LKED / STOP 74164.,0203 CPU OMIN 104 15SFEC MAIN

CHARGE 63 0v830 CPU TIME 00e00410 REGICN REQUESTEL 009&K
DISK READER  PRINTER

I/7C CGUNTS 255 o 44

NQe CF DD CARDS 5 1 1

X XGU EXFC PUM=X o LEFD« SYSLMOD s COND=( (4 oLToFURT ) o (4 LT 4LKED))

CLHAMIE=3Y S IN
SYSCULT =AW SPACE=(CYLe(141))
SYSNOLT= s SPACE=(CYL2(045))

O TMAYNDOT7 GO

ALLOCATED TO PuoM=%x4DD
ALILCCATED TO FTO06F001
ALLCCATED TO FTC7F001

WAS EXECUTED = CAOND CODE 0000

TUAGIRVOOOTRMARRUO7SGUSET - CUPASSEDT -

HBK |
STAI
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1EF2851 VOL SER NOS= ADMPO4.

IEF3731 STEP /GO 7/ START 7416440203

IEF3741 STEP /GO / STOP 741€4.,0203 CPU OMIN O7e44SEC MAIN

‘CHARGE $ 0s47 CPU TIME CCe00e07 REGION REQUESTED 0062K
DISK REACER PRINTER FUNCH

1/0 COUNTS 0 0 10 0

NCe CF DD CARLS 1 1 1 1

IEF2€E51 SYS741634 TOV0046eRVO00 ¢ FMARNDO7 « TAYLCR DELETED

“teF2est VOL SER NOS= MVTRIP,

1EF2851 SYST4163TNO0046 ¢PVOO0 e PMARNG 7 « COSET DELE TED

IEF2EST VOL SER NCS= ADMPO4. :

LEF3781 JOB /RMARNOO7/ START 741€4,015¢

|TEF3761 U408 /RMARNCO7/ STOP 7416440203 CPU  2MIN 05.S50SEC

KRMARNCC7 J0OB CHARGE $ 7648

34K
STA

t



m LAKEHEAD UNIVERSITY COMPUTER CENTRE

Fl1- ¢

- —
¥k TAYLOR SFRIFS SYSTEM¥xk
- pouBLE
EFSILON=1D-6
INIT SETUP
- (YXxto)=1
¥yt0=0
XX C)=0
- fYY'tOI=1"
ACVANCE VALUES(XsYXsYYsYX ¢, YY)
EQUATICNS
o [ XY=m= (Y XEYX+YYAYY I (~145D0)
YX8® =YXaXY
YYS b=y vxXY
» FND
CCMPILED wITH DOUELEFRECISICN CPTICKS
~ STORE=1289/188236
TAME=6 014 SECS
—-
S
o™
it
"N
LN




 HEAD UNIVERSITY COMPUIER CERIFR

SUTY SLWMPURR GMY ppPEMDIX. 8 € 4 .

167 ( JAN 73 ) UE/7260 FORTRAN H
CCVPILER CPTICNS - NAME= MAIN, CPT=02,LINECNT=600, SIZF=C00DK,
SOURCE»EBCDICsNOLISTINCDECKyLCADYNUNMAPy NOEDIT » I8y WO XS
oc2 SUARROQUT INE XTAYO02(J1sJ2.L 1)
ce3 DOUBLEPRECTISICN R1,R24sA1,C1
c04a LOGICAL L2
00S CCMMOCN/TAYLOR/RZ2sR19CleAL{ 374)sL.2
006 DOUBLEPRECISICN F1l,V1,V2,F2
o007 LOGICAL L1
ooy DIMENSICN F1{18),F2(18)
009 NDATA F2(1) 4F2(2) +sF2(3) sF2(4) +F2(S) +F2{6)sF2(TIsF2(8)+sF2(9)eF2(101),

CF2(11)3F2012)sF2(12)4F2014) oF2(15)+F2{16)F2(17),F2(18)/14D0,2.00.
C3e00 348003560036 e00 97c¢D0 s8a0049eD0+10e0D0+11 4003126009 1360001400D0,°
C5eDV 91 €EaD0Ww176D0918eDC/

0)0' DATA FLU1)9F1(2)eF1{33sF1(4)sF1(S)sF1{(HB)/1eD01SeD=193e 3IB3333333333°_
C33323D=14265D0=152eD=141+6665666666666667D0~17
011 DATA F1{7)sF1(B)sF1(S)sF1(1C)sFL{11)4F1(12)/1e¢42857142857142360=1,

Cle250>191e11111111111121110=1416D=149e090G0G0G09090909H=2, Be 333335
CIFZZEZA:333D-2/

012 CATA FL1U13),F1(14)sF1(15)sF1(16)sF1(17)eF1(18)/7e69230769230765231
Cm2,7e14285714285714290-2+6e666665666666566TD=24 602502256 8827152G4% ]

013 GOTO 1 .
014 2 V2=(A1(J1+1)=A1(J2+1))

015 Al(J1+18)=0.D0

016 AL (J1435)=0eC0

c17? Al{Jd1+52)=CeDO

018 AL(J1+469)=04D0

c19 Kl=J2+N]

020 N 3 K2=1,N1

021 AL{JI+18)=A1(J1+18)*V2+A1(K1+17)

022 Al1(J1+35)=A1(J1+35)*%Vv2+A1 (K1+34)

023 AL{J1+452)=A1(J1+52)%V2+4A1(K1+51)

024 AL(JL+69)= AL (J1+6D) *V2+A1(K1+68)

028 3 K1=K1l=1

026 N1l=J41+1

027 ALINL#119)=(CAL(NL+34)*A1(N1+34)+A1(N1+17)%AL1(NL1+17))
028 IF(AL(J1+120))5,544 ‘

029 4 ALINI4102)=A1(J1+120)%%(—1e5D0)

030 AL{NL+170)=((=1e5D0)/7A1(N1+119))

n31 DO & N2=1416

03> AL(NI+18)=(AL(NL+51)*F1(N2))

033 AL(NI+35)=(A1 (N1+68) %F1(N2))

034 ALINL1+8E)=(=AL(N1+102))

035 AL(N1+52)=0.00

036 AT(NI+EQ)Y=0.,DO0

037 ALINI+120)=(A1(N1+35)%A1(J1435)+A1(NL+18)XAL(J1+18))
038 N3 =NE

039 NA=J)

060 K2z=J1+N2

N4 ALINL+E2)=A1 (N1 +S2 )+ (A1 (N4+18) %A1 (K2+85))

NG 2 ALINI+69)=A1(NL+69)+(AL(NA+35)%AL(K2+85))

nai AL(NL#120)=21(N1+120)+(A1(N4+3S)*%A1(K2+3S)+A1(N&4+18)%A1(K2+18))
Nk NA=N4+1

G 4% K2=K2-1

046 N3=N3=1

047 IF{N3I) 7+8,7

Na8 ) ALINI+52)=(AL(NLI+52) % J(N2))

Lacs TRTUNTFEII= AT TN HET Y *F1 tN2 ) = 2
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APPENDPIX _ % C

cs0 AL(NI+153)=(A1(N14+120)%F2(N2))
051 Al1(N1I+13€)=0,D0
052 AL{N1#+171)=040C0
C53 N3=N2
054 Na=J41
055 K2=J1 +N2
056 9 AT(N1+136)=A1(N1+136)+ (A1 (N4+154)*A1(K2+170))
087 AT(N1I+171)=A1(N1I+171)4+(A1(K24120)%A1{N4+171))
58 N4 =N4+1
089 K2=K2=1
0 &0 N3=N3=-1
061 IF(N3)9,10,9
C62 10 AT(NI+171)=(~A1(N1I+171)/A1(J1+4120))
063 A1 (N1+103)=0.00
OE4 N3=N2
065 N4=J1
066 K2=J1 +N2 _
ee7? 11 AL(NI+1903)=A1(NI1+103)+ (A1 {N4+103)%AL(K2+13€6))
068 N4g=N4g+1
ce9 K2=K2=1
070 N3=N3-1
D71 IF(N3)11,12,11
cv2 12 A1(NI+103)=(A1(N1+103)%F1IN2))
073 & NI=N1+1
D74 L1=eFALSES.
C75 RE TURN
76" 5 Ll=e TRUE
077 RETURN
078 1 N1=16
D79 GcoTn 2
c80 END
IN FFFECTx* NAMF = MATIN s OPT=C2LINECNT=604SIZE=QA0C0K
IN EFFECT % SCUKCE . EECCT CoNOL ISTsNODECK s LOAD «NOMAP s NOEDI T+ ID » NUXREF

1CS* SOURCE STATEMENTS = 79 LPROGRAM SIZE = 1532

ICS% NO UDIAGNQOSTICS GENERATED

NOD QF CONVREILATION ®%sokoksk 7K HYTES OF

COR
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S APPEND(X 2 ¢ 3

147 { JAN 73 ) 0S/260 FORTRAN H

COMPILER (PTIUNS =~ NAME= MAIN,CPT=C2,L INECNT=60+sSIZE=0000K

SOURCE »EBCDICsNOLIST yNODECK $LGAD ¢y NCNAP s NCEDIT » 1Dy NOXREF

002 SUBROUTINE VALUES{Xs YXsYYsA2,A3)
003 DOUSLEPRECISION F1,R25A14C1
CC4a LOGICAL L2
005 COMMON/TAYLCR/R2+R1+,C15A1(374),L2
006 DUUBLEPRECISICN X14X2sXs¥XeYYsA2yA3
007 10 IF(X=121)1,242
cos 2 IF(R2=X)4 43,3
009 4 IF(AL1(1)=AL1(188))E+5,5
010 1 IF(X=-R2)7+3+3
011 7 IF{(AL (1) =A1(188))9,8,8
n12 6 CALL XTAYD1(1874,0eeFALSE W)
013 L2=eTRUE «
014 GOTO10
015 CALL XTAYO1({0,187, eFALSE )
016 L2=eFALSE
017 GOTO10
018 : 9 CALL XTAYN1(0,187, ¢ TRUE W)
019 L2=eFALSE.
020 GOTO 10
021 8 CALL XTAY01 (187,05 eTRUES)
v22 L2=e TRUE o ‘
023 GOTO10
24 NS =0
nazs IF(L2)NS=187
027 YX=0 DO
028 YY=0eDO
029 A2=0,D0
030 A3=0eD0
031 X2=( X=Al (NS+1))
032 NS=NS+16
033 NC 11 N4=1,16
034 YX=YXRX24AL{NS+ 34)
035 YY=SYYHX2+A1(NS+17)
036 A2=A2%X2+Al (NS5+68)
037 AF=AZEX24AL(NGS+51)
038 1t NS= NS |
¢i9 RE TURN
040 END
IN EFFECT* NAME=  MAINsOPT=024L INECNT=604SI1ZE=0000K,
ri .
IN EFFECTX SOURCE +SRBCDIC +NOLIST sNODECK +LOAR NOMAPR, NOEDIT, IDJNUXREF
1csx. SOURCE STATEMENTS = 39 +PROGRAM SIZE = 762

[CS®  NO OIAGNOSTICS GENERATED

NO OF COMPTLATION %ak&aok 93K BYTHES

JF COR
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fe7 (

no2
M3
0Q4
005
106
noz
M08
009

010
211

012
013
D14
D15
316
o017
cio
D20
021
023
J24

025 °

)26
Y27

028"

Y29
30
131
)32

D33

134
)35
036
)37
73 A
239
140
nal
Va2
14 3
14 4
)45
4.6
4 7
48
49
50

52
)63
54
155

JAN T3

CCMP ILER

10
11

)

56

TR SO - - OO A

) OsS/7360 FCHT RAN H

OPTIUNS - NAME= MAINSOPT=02,LINECNT=€0+S1ZE=0000K,

SOURCEJEECBDICy, NCGLISTJNUDECK sLUADs NOMARP s NOEDIT s 11D +NOXRZF

SUBROUTINE XTAYD1(Jlsd2s271)

ODAUBLEPRECISION R1.,R2sA1,C1

LAGICAL L2

COMMCN/TAYLCR/R29R19C19A1(374),L2

DOUBLEFRECISION CABSsDMAX1, DEXPsDLOGsZ2+s7Z 3+ 1+E 298 342449254 T1 T2

LOGICAL 21 ,L1

DIMENSION T2{186)

DATA T2(1)oT2(2)9T2(3)sT2(4)eT2(B) s T2(6) 2y T2(7 ) T2(B)s T20G)sT2(1D)
CT2011)+T2012)oT2(13)sT72(14) oT2C(15)4T2(10)/1 4004360047 DD 156004 310
COOIHBTaDD 9 127600y 2550009511603 1023006204760 44CA9eD0,8314G)1 00,1638
C3000 4332767600 403535 402017/

22=1eD=8%1,D=€

K2=J1+31

DO 6 Na=1.+4

Z2=DMAXLIEZ2:sDALSIAI(R2)) sLDARS(AL(K2+1)),LAS(AL(K2+2)))

K2=K2+17

Z3=DEXP(C1+0 053823 CO0% (DLCG(1 #D=-6)-DLOG(Z2)))

R1I=Z0e%DOX(AL(JLI+1I+ALI(J2+1))

IF(21) 23==(3

AL(J2+1)=A1(J141)+23

CALL XTAYD2{(J2,J1,L1)

IF(L1)GCTC 5

27 1e0D=€EX1aD~-8

K2=J14+17

J3=Jd2+17

DO 7 Na=1.4

E3=0.D0

N3I=1S

Z25=95 o= 1%2 3

Z4==1a0D0

NE=1 &+ K2

N7=16443

El1=£3

FA3ZHYL(AL(NE)RT2(NII+ Z4%A1 (N7))+E3)

lhz==24

N3=N3-1

N6=N6H-1

N7 =N7 -1

FIN3)3+6,89

Z4z=DABS(EI+E 1 %] ¢D=C%14D~-16)

2ax32670MAXY1 (1 eDD 2 Z4+CABS (AL (K241 ) )y CABS(AY(J3413))

IF(E2=24)10,11,11

F2=24

K2=K2+17

J3=J3+17

T1=) ,05882300%(DLOC(ZeD=1)+DLOG(1D=6)-DLOG(LZ2))

IF(I2«1eD=6)8 4442

Z3=Z3DEXP (T}

Ci=C1+T1

GOTO3

CI=C1e T

RE2=AT(JR+1)

GNE TURM

2320 ¢BDOXZT

C1=Ci-1e0D=1
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_ACPENPIX % € S ..

057 £ND
IN EFFECTX NAME= MAINsOPT=02,LINECNT=604,SIZE=000CK,
IN EFFECTx SOURCE s EECDICoNCLIST ¢ NCDECK s L OACsNOMAP 4 NOED 1T+ ID o NOXREF
ICS* SOURCE STATEMENTS = 56 ,PROGRAM SIZE = 1514
1CS* NC CIAGNOSTICS GENERATED

ND OF COMPILATION el M e sie BSK BYTES OF COR




HEAD UNIVERSITY COMPUTER CENTRE
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. — oo RPPENDIX B

1e7 { JAN 73 ) 0S/3¢0 FCRTRAN H
CCVPILER CRTICNS - NAME= NAING CPT=02yL INECNT =60, S 120 =CN000K,
SOURCE +EBCDICsNOLIST sNODECK L CADs NOMAP 4NOECIT 4 Iy NOXREF
oo SUBRUUT INE SETUP
co3 DOUBLEFRECISICN R1,R2, A1,C1
004 LOGICAL L2
005 CCVMCN/TAYLOR/R2sR1,C1sAL(374)40L2
0086 LOGICAL L1
0o 7 DO 1 NB=1, 274
c08 Al (N8) =D 4DO
009 A1(205)=0eDC
N 10 A1{239)=1.,D0
N1l A1(222)=1eDC
N12 A1(2S€)=0eDC
013 AL(1)=0 D0
014 A1(188)=0.D0
1S A1(2)=1.D0
N16 A1(189)=140D0
017 CALL XTAYO2(0,187,0L1)
018 IFCeNOTLLIGOTO 3
020 WRITE(6 +4)
021 4 FORMAT(36H1TAYC N3 = TLLEGAL INITIAL CCNDITICONS)
022 STOP 3
023 3 DN 2 NA=1,187
024 2 AL(NB+137)=A1(NR)
025 R2=A1{(1)
026 CR1=R2
D27 L2=¢ TRUE .
n28 C1=0.0L0
029 RE TURN
030 END
IN EFFECT* NAME = MATNGOPT=02,LINECNT=60,SIZE=000NK,
IN EFFECT* SOURCE » EBCOIC s NUILISToNODECK+LOAD yNOMAP JNCOEDIT s TDJNOXREF
ICS* SCURCE STATEMENTS = 29 +PROGRAM SIZE = 502

ICS%x  NO DIAGNOSTICE GENERKATED

ND 0O COMB TLAT TON ko sk G3K BYTES QF

[ERUE N
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APPENPIX B _ ¢ 7

17 { JAN 72 ) QE/360 FORTRAN H

CCNVPILER CPTICNS = NAME= MAINLOPT=02,L INECNT=604sSIZE=CO00K,
SOURCE +EBCDICoNOLIST sNODECK L CADW NOVMAP s NOEDCIT» IDyNOXREF

no 2 IMPLICIT REAL %8(A=Hs0Q=Z)
cC3 PI=34141592653589733238462642383279502880DC
004 SP=Px2
005 CALL SETUPR
006 DO1I=1,10
o7 X=]%SP
008 CALL VALUES (XesYXeYY, YXPs YYP)
009 1 WRITE(E+2) YXsYYsYXFoYYP
D10 2 FORMAT(1IH ,4F26416)
011 sSTOP
012 FND
IN EFFECT* NAME= MAINJOPT=02,LINECNT=60+SIZE=Q000K,
IN EFFECTx% SCUNCF.'(.-‘.ECDICoNCLIST.NCDECK.LDAD.NOMAP-NDEDIT.ID.NOXH'E'F
1ICSx ‘SOURCE STATEMENTS = 11 +PROGRAM SIZE = 480

ICS* NO DIAGNCSTICS GENERATED

ND OF COMPILATION % k&kiok 93K BYTES OF CaR

ICS% NO CYAGNOSTICS THIS ST:=EP

A
ot

S e
]
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APPENDIX @ A

July 23, 1973

Dr. Arthur C, Norman ‘ ‘
University of Cambridge Computer Laboratory
Corn Exchange Street

Cambridge, England

CB2 3Q6

Dear Dr. Norman

As I am presently working for my M.Sc. under Professor John S,
Griffith related to the numerical integration of the orbits of

the principal hodies of our Solar System, I would sincerely
appreciate having the opportunity to implement the software
described [Norman (1972): TProceedings of the ACM, Annual Con-
ference, 1. 826]. Comprehensive information, including, possibly,.
a minireel (9 track, 800 bpi) containing source programs would,
therefore, be required. 1 could send you a minireel, The
computing facility here is an IBM System /360 Model 50, vunning
under 08/360,

My research noals involve surveying the availahle numerical
integration alporithms for systems of ordinary differential
equations, utilizing the most "efficient" available, and, if
possible, advancing the state of the art.

Please use the Follqying mailing address exactly as shown:

Mr. Roy D. North

Graduate Student

Department of Mathematical Sciences
Lakehead University

Thunder Bay 'P', Ontario, Canada:
P7B SEl

Yours most sinceretlty

Roy D. North
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September 19, 1973

Dr. Arthur C. Norman

c/o IBM Thomas J. Watson Research Centre
P.0. Box 218

Yorktown Heights, New York 10598

U. S. A,

Dear Dr. Norman:

‘Thank you for your letter dated August 15, 1973 and the
accompanying Taylor User's Manual, in response to mine dated
July 23, 1973, a pseudq_copy of which is enclosed.

I have available a mini_reel of length 600 feet and
would sincerely appreciate the BCPL files and your program (250 K
and 200 K versions) recorded thereon. Additional relevant litera-
ture, especially pertaining to BCPL (I could contact Dr. Richards
therefor) required to get all the software on the air would also
be appreciated. :

Version identifications (Taylor User's Manual, page 18)
would be required as I would hope to be able to correspond with
you and Dr. D. Barton [Barton, et al (1971): The Computer Journal,
Vol. 14, No. 3, Page 243].

The mini_reel eagerly awaits your mailing request!
Please use the address per my letter dated July 23, 1973.

Yours sincerely

Roy D. North
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January 16, 1974

Dr. Arthur C. Norman

c/o IBM Thomas J. Watson Research Center
P. 0. Box 218

YORKTOWN HBIGHTS, New York 10598

U. 8. A,

Dear Arthur:

Thank you for your letters dated Oct. 23, 1973 and
Oct. 31, 1973, and the tape. Please find enclosed 9 listings and
the tape. I am having difficulties with the system (only DSNAMES
= MCLIB and TEXT have been employed), and would appreciate your
expert assistance. In response to your request in your second
letter, it took me about a week (only about 1 run/day due to the
high core requirement) to get output approximating that of List-
ing #3. This delay was entirely my fault, due to JCL errors,
etc.

Please refer to Listing #3. A few words about the JCL
are in order, as it is similar to that supplied in some of the
other listings. Tape NORMAN was copied on LUT065. File 7 con-
tained the F Level Assembler object module created by [SNAME =
MCLIB. The F Level Linkage Editor was emplpyed in the first pro-
cstep (LKBD) to create the load module. The subsequent procstep
(GO) executed that module. I have omitted your DD statement with
ddname = SYSIDUMP: please advise if that be all right. The rest
of the JCL is self explanatory. The Taylor.output is highiy en-
couraging: the system of differential equations solved arises
from the circular planar 2-body problem, and the load module exe-
cuted about 3 times faster, for a comparable accuracy, then the
%or;espgnding module croetod by my 1mplomentation of the software

Ref. 1

With this success behind me, I then proceeded to attack
the three dimensional 1il-body problem. Please see Listing #1:
unfortunately Taylor's LIST option (which 1listed all input) is
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followed by an "insufficient storage' error message. I have been
unsuccessful in overcoming that condition. Please note that
Taylor had 600K, and an initial substring which caused the default
algorithm (see Listing #4) to be used. Please refer to Listing
#2: the initial substring consisted of $004K$, but this did not
seem to help.

Allow me to summarize several runs, which were done to
experiment with the initial substring: a stugy of the Assembler
listing (from which Listing #4 originates) has certainly not re-
vealed the function of the initial substring to me. Listing #5 is
representative of part of the JCL: 4in the runs, only the value
in the initial substring was varied; the Taylor input was similar
to that in Listing #7. The values 500, 400, 300 and 200 resulted
in a System Completion Code = 60A (see Listing #5), with no
Taylor input printed. Values 100, 80 and 40.gave the pemennial
error message (see Listing #1), with part of the input printed.
Values 20 and 10 g#fe the error message (see Listing #1), with all
of the input printed. I decided not to attempt to debug this
problem because of its seemingly complex naturn. and because the
turnaround would be too slow. oot

You might be -interested in the folloﬁnng tidbit. Please
see Listing #4, STMT sas, B and C underlined in pencil. I would
be interested 1n knowing the significance of.. those letters, as a
study of the Assembler processing the initia& substring revealed
that, upon encountering the B, the default algerithm would be
used. This perplexed me 3reat1yl I went sb: fir as to list STMT
865 (using IEBPTPCH) in hexadecimal, and the.B was reallyX'42',
while C was X'43', instead of the expected X'Gﬁ) and X'C3', res-
pectively. C

The following possible inconsistency 4in Taylor's input
processing might be of interest. Listing #6 gave only the very
beginning of the input supplied (which was similar to that supp-
lied in Listing #1), followed by an error mgssage. The first
initial condition in Listing #3 occupied twh. eards (as in Listing
#6) and was accepted. . i

Please explain what I have done w%ong in Listing #7,

I would certainly like to continue using Taylor, but I,
obviously, require some assistance. The Taylor input and the
Fortran program of Listing #1 were intended to reconcile Listing
#8. The latter listing was created by my implementation of the
software (Ref. 1) using initial conditions (Ref. 2). Listing #8
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values are correct to at least 8 significagt digits and should be
readily reconcilable with the successful Taylor - Fortran run of
Listing #1. There is a minor difference in format, however.
Listing #8 (excluding the titles) shows the value of the time on
‘the extreme LHS pertaining to the relevant set of coordinates to
the right and below, delimited by the next value of the time.

The distance coordinates are followed immediately below by their
corresponding velocity coordinates. The lines of distance coor-
dinates have been connected by red lines. A successful run of
Listing #1 should print the set of red line values, followed by
the set of intervening velocity coordinates. This should be obvi-
ous from a brief perusal of the Fortran program in Listing #1 (Y1,
etc. are distance coordinates, while Y1P, etc. are velocity coor-
dinates). Listing #9 supplies pertinent information for attempting
a successful run: I would be most grateful if you tested it.

Also a run with EPSILON = ]D-14 would be interesting for compari-
son later here, while one employing extended-pgecision (about 30
significant digits throughout) would prove emlightening.

, I hope to apply RSN = BVTEXT to sgis of boundary values
from Ref. 2.

I would appreciate your comments comparing execution
times of TAYLOR's output and that resulting from a meticulous
human programmed effort (in Fortran): a perusal of Listing #3
leads me to suspect that the latter would run. faster.

Please use the address per my lat;;;&&ited July 23, 1973.

Yours sincerely

Roy D. North

RDN/sb
Bncl.
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