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Abstract 

Since the mid 19th tientury it has been known that every 

Desarguean projective’’plane is coordinatizable over a division 

ring. This coordinatization procedure was used by von Neumann 

[9] to show that every complemented modular lattice with spanning 

n-frame (n > 4) is isomorphic to the lattice of finitely generated 

submodules of a regular ring. In 1958, Jdnsson introduced the 

Arguesian identity and extended von Neumann’s result to every com- 

plemented Arguesian lattice with spanning 3-frame. It was further 

noted by Freese [s] and Artmann [l] that to obtain the ring, 

von Neumann’s proof did not require complementation., In this thesis 

we follow the method of von.Neumann to show: 

Theorem. If L is an Arguesian lattice with spanning 3-frame, 

(a^, a^j a^, ;c^2» ^12 ^ ''' ^2 

a + a , X • a =. 0} ■, then L,' . is an- associative ring with unit 

with respect to the von Staudt operations of addition and multipli- 

cation. 
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inspiration provided by my supervisor Professor Alan Day. I 

would also like to thank the Department of Mathematical Sciences 
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Chapter 1 

Introduction 

The classical theorem concerning the relationship between 

projective planes, lattices and rings is that every Desarguean 

projective plane is isomorphic to - the lattice of subspaces 

q 
of the vector space K over a division ring K . Projective planes 

are a special class of projective spaces of dimension n , a pro- 

jective plane being just a projective space of projective dimension 

2. For projective spaces of dimension n > 3 , the Desarguean 

condition is automatically fulfilled and For any projective space 

of dimension n > 3 , P is isomorphic to L( . 
Jx 

In his lectures on continuous geometry, von Neumann [9] proved 

that every complemented modular lattice with spanning n-frame n > 4 , 

is isomorphic to the lattice of finitely generated submodules of a 

regular ring. Because of the existence of non-Desarguean projective 

planes, this result cannot hold for n = 3 . Jonsson, in [5], 

introduced the Arguesian identity, a lattice theoretic equivalent 

of Desargues Law in geometry, and later, in [7], extended von 

Neumann's result to every complemented Arguesian lattice with 

spanning 3-frame. 

Independently Freese [3], and in a geometric way Artmann have 

shown [1]. that to obtain the ring for n ^ 4 , only modularity 

and the existence of an n-frame are required. Complementation need 

not be assumed. Our goal in this thesis is to show that an auxiliary 
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ring can be obtained from any Arguesian lattice with spanning 

3“fi^aniej or that in the case n = 3 , complementation is not 

required. 

The method we follow is close to that of von Neumann [9] where the 

"points" on a "line" are used as ring elements. Given an Arguesian 

lattice with spanning 3-frame, we define D to be all complements 

of 3.^ in the interval [o, a^ .+ a2] where a^ , a^ are members 

of the spanning frame. Binary operations (on D) of multiplication 

and addition are then defined following which we prove the properties 

necessary to make D an associative ring with unit. Several dif- 

ferent definitions of addition and multiplication have previously 

been used, those of von Staudt [lo], von Neumann, and Young [11]. 

In fact, as we will show later, these are equivalent and will be 

used interchangeably. 

Throughout this paper the following notations will be used 

unless otherwise indicated. 

L will represent a lattice with spanning 3-diamond. 

+ will be the lattice join symbol. 

• will indicate lattice meet and will be omitted where 

convenient. 

The order of operations will be • followed by + so that 

a + b • c means a + (b • c) . If L is a lattice then [a, b] = 

(x e L: a < X < b} . 
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For* the remainder of this chapter we consider the coordinati- 

zation of two examples of Arguesian lattices with spanning 3-frames. 

fi^st is the lattice arising from any non-degenerate Desarguean 

projective plane, and the second comes from any associative ring with unit. 

As is well known, a projective plane can be considered as a 

modular lattice where the join of two distinct points is the (unique) 

line containing the points and the meet of two lines is their unique 

intefsection point, all other meets and joins being trivial. If the 

plane is non-degenerate, then ther& exist four points in general 

position, i.e. no three of which are on the same line. Lattice theoret- 

ically, this corresponds precisely to the idea of a 3-diamond (to 

be defined in the next chapter). 

One possible way to coordinatize a projective plane is accom- 

plished by fixing three distinct lines and defining operations of 

addition and multiplication on all points on one line distinct from 

the intersection point of two of the given lines. These operations 

are then extended to the entire plane. Looking at the affine plane 

IR X for a moment we have an x-axis, y axis, the points (0,0), 

(1, 1) and the diagonal y = x . Any point in the plane is 

determined uniquely by some (a, a) and (b, b) on the line y = x . 
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By adding the "line at infinity" we produce 

where (if we call CO, 0) = z and (1, 1)= t ) 

Zj t, X, y are four points in general position. 

Now any point not on the line at infinity of 

plane is given by (x + b)(y + a) for some a, b 

z + t •. [a, b are distinct from the point Cz t 

-> 

X 

i projective plane 

the points 

the projective 

on the line 

t)(x + y)]. 
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Back in the affine plane, we can define addition of points on 

the diagonal according to the following construction. 

Translating this into the projective plane we obtain: 

The point t is not used in the construction of a ® b . It 

is rather obvious though that it is needed in the following possible 

definitions of multiplication. 
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Writing out the expressions for the constructions above we 

obtain the following two definitions for addition and multiplication 

(of points on the line z + t distinct from w = (z +t)(x +y) where 

(z, t, X, y) is a chosen quadrangle). 
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a ® b = Cz + t)Cx + Cy + a)Cw + Cz + y)Cx + b))) 

a ® b = (z + t)(x + Cy + a)Cz + Cy + t)Cx + b))) . 

These definitions are those used by von Staudt [lo] , and are 

the ones chosen to coordinatize an arbitrary Arguesian lattice in 

the subsequent chapters. 

It is also possible to combine both addition and multiplication 

into a single operation as is done in the ternary ring operator 

TCa, b, c) described below. 

In the affine plane: 
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Looking closely at the above diagram, one might notice that 

T(a, t, b) is just a © b and T(a, b, z) is a ® b . In fact, 

in an Arguesian lattice, T(a, b, c) is (a®b)^c. 

Since the late 19th century, it has been known that if P 

is a Desarguean projective plane and (z., t, x, y) are four points 

in general position, then D -the set of all points on the line 

z + t , [excluding (z+t)(x+y)] , together with the operations 

® , ® , forms an associative ring with unit. Historically, the 

method of proof is similar to the proofs given in the later chapters 

of this paper. However one need only consider the following cases, 

making many results easier to obtain. 

(1) aeD=>a + z = z + t or a = z 

(2) aeD=c>a + t = z + t or a'=t 

Because of the way addition and multiplication are defined, when 

z = a or t = a , properties of addition and multiplication 

become simple to calculate, so one is left with the case z + a = 

z + t = a + t . 

We now turn our attention to an example of an Arguesian lattice 

with spanning 3-frame obtainable from any associative ring with unit 

R . 

The lattice of left sub-modules of , L(j^R^) , is Arguesian. 

The proof follows closely the proof that the lattice of subspaces of 

q 
a vector space is Arguesian. We know also that R has the usual 

basis = (1, 0, 0) e^ = (0, 1, 0) and e^ = (0, 0, 1) . If 

we then define z, t, x, y submodules of R as 
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z = » the submodule generated by e^ 

t = ~ submodule generated by e^ - e^ 

X = <e2~e2> 9 the submodule generated by e^ - e^ 

y = ’ the submodule generated by e 

then (z, tjXjy) is a spanning 3-diamond in L(j^R^) . 

As in the case of a projective plane, we wish to coordinatize 

all complements of (z + t)(x + y) on the "line" z + t . If a 

is a complement of (z+t)(x+y) in the interval [o, z + t] 

then the submodule a is <6^^ - re^^ for some r e R . 

Addition and multiplication defined on D must somehow reflect 

addition and multiplication in the original ring R , so that the 

corresponding properties carry through into the "new" ring. By 

using the same definitions of multiplication and addition as in the 

projective plane example, we see that that is what indeed happens. 

If a, b £ D and a = <e, - re„> b = <e, - se„> then a ® b 
12 12 

is <e^ - (r + s)e2> • Similarly, a ® b is <e^ - rse2> • It is 

then clear why any properties of addition [multiplication] that 

hold in R also hold in (D, ®) . In D , commutativity, 

associativity, inverses and distributivity follow from the corre- 

sponding properties in R . Thus (D, ®) is an associative 

ring with unit isomorphic to R . 



Chapter 2 

Preliminaries 

In this chapter we formally introduce the basic definitions 

and the most frequently used preliminary results. The first half 

covers the ideas of spanning 3-diamond and ternary ring operator. 

The second part is devoted to the Arguesian identity and its 

equivalent, the Desarguean implication. 

Definition 2.1 Suppose L is a {0,1} modular lattice. A 

spanning 3-diamond in L is a quadruple (a^ , a2, a^ , a^^) of 

elements in L such that the following conditions are satisfied 

for i ^ ^ k ^ i ,{i,j,k}£{l,2,3, 4} . 

(1) a. (a. + a, ) = 0 
1 J K 

(2) a.+a.+a, = 1. 
1 ] k 

Throughout the remainder of this text we will use (z, t,x, y) 

to represent a spanning 3-diamond. Let w = (z + t)(x + y) and 

D={aeL:w*a=0 ,w+a=z+t} so that D is the set of 

complements of w in the interval [o, z + t] . Furthermore, let 

V = (z + y)(x + t) and u= (z+x)(y+t) . Under the projective 

isomorphism [O, z + t] = [O, z + y] , w is mapped to y and so 
A 

the image (under the isomorphism) of any complement of w in the 

5 ^ t t] is a complement of y in the interval 

[0, z + y] . That is: if a e D and we define a^ = (z + y)(x + a) 

then y+ap=z+y and y • a^ = 0 . In a similar way, for any 

a c: D we define: 

10- 
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a = (z+x)(y+a), the image under [O, z + t] i [O, z + x] of a . 
^ A 

a^ = (x + y)(z + (y + t)(x + a)), the image of a under the projectivity 

[O, z + t] ^ [0, y + t] i [0, X + y] . 
A A 

(y + t)(x + a), the image of a under the projectivity 

[O, z + t] i [O, y + t] . 
A 

So by tracing w through the above projectives, we see that a^ 

is a complement of x in [o, z + x] , a^ is a complement of y 

in the interval [o, x + y] , and a^^ is a complement of y in 

the interval [0, y + t] . 

See Figure 2.4. 

Definition 2.2 For a, b, c e D define the following. 

(1) T(a, b, c) = (z + t)(x + (y + a)(cQ + b^j^)) see Figure 2.5 

(2) a ® b E T(a, b, z) = (z + t)(x + (y + a)(z + b^)) 

(3) a ^ b = T(a, t, b) = (z + t)(x + (y + a)(w + bg)) 

Our goal is to coordinatize D so we hope if a, b, c are in D 

that T(a, b, c) is also. 

Lemma 2.3. If L is modular and a, b, c eD then T(a, b, c) ^ D . 

Proof. We must calculate w + T(a, b, c) and wT(a, b, c) . 

w + T(a, b, c) = (z + t)(w + X + (y + a)(c + b )) 
0 °° 

= (z + t)(x + y + (y + a)(c« + b )) 

= (z + t)(x + (y + a)(y + c^ + b^)) 

= (z + t)(x + y + a) 

z + t 
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Figure 2,5 
X 
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w • T(a, b, c) w(x + (y + a)(C|j + b^)) 

w((y + aKc^ + b^) + (x + t)(x + y)) 

w(x + t + (x + y)(y + a)(c^ + b )) 
Q oa 

w(x + t) 

0 

Therefore T(a, b, c) e D hence a ® b e D and a ® b e D . 

■ 

The definitions of ® and ® given above are due to von Staudt 

[lO]. In [ 9] , von Neumann introduced the 0 and S defined below. 

Definition 2.6 In a lattice L with spanning 3-diamond (z, t,x,y) 

define a 0 b and a S b as (Figure 2.9) 

a 0 b = (z + t)((x + y)(v + b) + (w + v)(y + a)) 

a S b = (z + + y)(v + b)) . 

Lemma 2.7. If L is modular and a, b £ D then a 0 b e D and 

a S b e D . 

The proof of the above lemma is a straightforward calculation 

similar to those done in the proof that T(a, b, c) eD . We will 

now show some simple properties of ^ ® in a modular lattice with 

a, b e D . 

Lemma 2.8. If L is modular and a, b £ D then the following 

properties hold for ® 
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Figure 2.9 
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CD z ^ a = 

C2) z ® a = 

(3 ) t ® a = 

(4) a ® b 

(5) a + (a ^ 

a = a 9 z 

z = z ® z 

a = a ® t 

z + b 

t) = z + t and a (a © t) 0 

Proof. For Cl) we calculate 

z © a = Cz + t)(x + (y + z)(w + ^^ 

= Cz + t)Cx + a^) 

= Cz+t)Cx+a) 

= a 

a © z = Cz + t)Cx + Cy + a)Cw + z)) 

= (z + t)Cx + a) 

= a 

for C2) z ® a Cz + t)Cx + Cy + z)Cz + Cy + t)Cx + a)) 

Cz + t)Cx + z + Cz + y)Cy + t)Cx + a)) 

Cz + t)Cx + z + yCx + a) 

Cz + t)Cz + x) 

z 

a ® z = Cz + t)Cx + Cy + a)Cz + Cy + t)Cx + z)) 

= (z + t)(x + (y + a)Cz + x)) 

= Cz + t)Cz + x) 

z 
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for (3) a®t = (z+w)(x+(y+a)(z+(y+t)(x+t)) 

= (z + w)(x + (y + a)(z + t))) 

= (z+w)(y+a) 

t ® a = (z + w)(x + (y + t)(z + (y + t)Cx + a)) 

= Cz + w)(x + (y + t)(x + a)) 

= (z+w)(x+a) 

= a . 

In order to prove C4), that a ® b < z + b we show z+a®b<z+b 

z + a ® b Cz + w)(z + X + Cy + a)(z + (y + t)(x + b)) 

Cz + w)Cx + Cz + y + a)(z + (y + t)(x + b)) 

Cz + w)(x t z + (z + y + a)(y + t)Cx + b)) 

Cz + w)Cz + (x + b)(x + Cz + y + a)Cy + t)) 

z + Cz t w)Cx + b)(x + (z + y + a)(y + t)) 

z + b(x + (z + y t a)(y + t)) < z + b 

Part (3), a+(a® t) = 

to showing a, a ® t, w 

z + t and 

form an M ^ 

a • (a ® t) 0 is equivalent 

[O, z + t] . 

a+(a®t) = (z + t)(x + a+(y + a)(w + v)) 

= (z + t)(x t (w + V + a)(y + a)) 

= (z + t)Cx + y + a) 

z + t 
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a • ^ ® t) a(x + fy + a)(w + v)) 

a(w + V + x(y + a)) 

a(w + v) 

= 0 . 

So we have a®b< (z+b) and therefore (z+b)(a®b) = 

a ® b = (z + b)(x + Cy + a)(z + (y + t)(x + b))) . 

The Arguesian identity is due to Jdnsson [ 5 ], and is precisely 

what is required to coordinatize a projective plane. 

Definition 2,10 A lattice L is called Arguesian if for any set of 

elements ’ ^2’ ^0’ ^ 

c. defined as c. = (a. + a, )(b. + b. ) 
1 1 j K 3 

for {i, j, k} = {0, 1, 2} and y ~ ^ ^ following 

inequality holds. 

(a^ + b^)(a + b )(a +b) < aCy+a) + b(y+b) 
0 0 1 12 2 0'^ 1 0 1 

An easy corollary to the definition is that every Arguesian lattice 

is modular - also due to Jdnsson [B]. 

Corollary 2.11 Every Arguesian lattice is modular. 

Proof. Let L be an Arguesian lattice. We must show that for 

any s, t, u < L, s ^u implies s + (t*u)< (stt)-u 

since the reverse inequality holds in any lattice. Taking 

a^ = b^ = "t 5 b^ = Uj a^^ ~ ^2 ~ ^0 ~ ^ together with the 

assumption s < u , we have that a^^ ^i ~ 

^^0 ^ ^ ^ ^2^ ~ ^ + ■t)u = (s + t)u . 
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Similarly, C2 

c 1 

c 
0 

(a 

(a 

0 

+ )(bQ + bj) 

+ a^Kb^ + b^) 

+ a^Xbj + b^) 

(s + t)(s + u) 

(s + t)(s + t) 

s • (t + u) = 

= u(t t s) 

= s + t 

s 

so that 

hence ^ 

= t • (s + u(s + t)) + s(u + u(s + t)) 

= s*u + t(u*(s+t)) 

= a • u + t • u 

= s + (t • u) 

and it follows that L is modulan. 

Throughout this text, the Arguesian identity will be used in 

its equivalent form - the Desarguean implication. 

Definition 2,12 Given a lattice L , a triangle in, L is any 

triple <a, b, c> of elements of L . 

Definition 2.13 Given two triangles A = <aQ, a^ , 

B = ^^0’ ^1’ ^2^ ^ modular lattice L , the pair A, B will 

be called centrally perspective if (a. + b„ ) (a, + b ) < a + b 

and they are called axially perspective in case c^ < c^ + c^ 

where c. = (a. +a, )(b. +b, ) for {i, j,k} = {0, 1, 2}. 
1 3 K J K 

Desargues implication can now be stated as: 

Definition 2.14 A lattice L is Desarguean if every pair of triangles 

that are centrally perspective are axially perspective. 
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See Figure 2.15. 

We can now prove that any Arguesian lattice is Desarguean. 

Theorem 2.16 Suppose L is an Arguesian lattice and A = <a^, a^, a^> 

B = 5 5 h^> are centrally perspective in L . Then A,B are 

axially perspective in L . 

Proof. Since A, B are centrally perspective Ca^ .+ bQ)Ca^ + b^^ ) ^ 

a^ + b^ so let 

d = Ca^ + ^2^ 

c^ = (aQ + a2)(bQ + b2) 

(aQ + aj )(bQ + bj ) 

Since L is Arguesian, L is modular hence, 

C]^ + d = (a^^ + a^ + Cj^Hcj^ + c^) 

= (Cj + c^Xaj + (a^, + a^)(b^ + + a^)) 

> (Cj + c^Ha^ + (a^ + a2)(bQ + (a^ + b^Xa^ + ))) 

= (Cj + c^Ka^ + (a^, + a^)(a^ + bjj)(b^ t a^ + b^))) 

r'- (c^ + c^Xa^ + a^Cb^ + a^ + b^)) 

= (c^ + c^)(aj + a^)(b^ + + b^) 

> (Oj + c^Xa^ + a^)(b^ + b^) 

= (Cj + c^) . Cc^) 

and now in the definition of Arguesian lattice we use the following 

’ ^0’ ^0’ ’ ^1 
points so that 
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(c + d)(b + b )(a + a ) < c (y + b ) + d(y -I- b ) 
1 0 10 1 1 0 1 

where y = (cj + bQ)(d + b^)[(aQ + b^)(a^ ^ ^ ^ ^ ’ 

By our previous argument + a^)(b^ + b^) < + d 

so the above becomes: 

< Cj(bQ + y) + d(y + b^) 

We will now show that d(y + b^^) < Cg + , which implies 

c^ ^ completes the proof. 

First we show that 

y = (d + bj)(bg + ag + a2)(bg + b2)[(ag + b^Xa^ + b^ ) + 

(aj + ap(aj, + + b^Ca^ + + c^] 

< (bg + b2>[(ag + a2)(aj + a2> + (ag + bg)(a^ + b^^)] 

< (bg + b2>[(aQ + a^)(aj^ + a^) + a^ + b^] by central perspectivity. 

= (bg + ^^0 ''' ^2^^ 

= b^ + (a^ + a^Ka^ + a^)0>Q + b^) 

= b^ + c^(a^ ^2^ * 

Also d(y + b-j^) (a^ + a2)[b^ + b2 + ^2^^ 

= (a^ + a2>(bj + b^) + (a^ + a^) 

and therefore the triangles are axially perspective. Later in this 

chapter we will strengthen the statement of central perspectivity 

slightly so that the Arguesian Identity will be equivalent to a state- 

ment of the form "centrally perspective" if and only if "axially 

perspective". First however we will complete the proof that the 

Arguesian identity is equivalent to the Desarguean implication. 
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This proof is due to Gratzer, Jdnsson, Lakser [4j. We show first 

that if L is Desarguean, then L is modular. 

Lemma 2.17. If L is Desarguean, then L is modular. 

Proof. Suppose L is Desarguean and a,b,Ct.L. If a<c, 

we must show (a + b)c S a + be . Consider the triangles 

<a, c, a> and <a, b, b>. 

(a+a)(c+b ) = a(c+b) but a<c =>a(c+b) = a 

therefore these triangles are centrally perspective, and hence 

axially perspective. 

(a + c)(a + b) < (a + c)(b + b) + (a + a)(a + b) 

=> c(a + b) < be + a 

and so L is modular. g 

Lemma 2.18. If a lattice L is Desarguean, then L is Arguesian. 

Proof. Suppose that aQ,a^ja^jb^ ,b^,b^ £ L and let p = (a^ + bQ)(a^ + b^) 

•(^2 + b^) . If we assume further that (1) p + a^ = p + b^ = a^ + b^ 

for i = 0, 1, 2 then the triangles <3Q , a^^ , a2 + 

<bQ, bj , b2 + hgCa^ + b^^ )> are centrally perspective since 

(a^ + b^Xa^ + bj ) = (p + aQ)Cp + a^ ) = p + a^(p + a^ ) 

a2 + b2 + (a^a^ + b^Ka^ ''' ^ “ a^ + + (p + a^Xa^a^ + b^) 

= ^2 + (p + a^Xp + b^ + a^a^) 

= a2 + (p + aj ) (p + a^) . 
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So we have 

Therefore 

< + (a^ + a^)(b^ + (b^ + b^)(a^ + b^)) 

= + (a^ + ^2 

= Cl + CQ + aiCbp + bi) . 

= C^COQ + OJ + a^(bg + bj)) 

= C2(CQ + Cl) + 3i(bQ + bi) 

by modularity. 

Also 

^0 S a^ + ai < ai + (a^ + SI)0^Q + 

since 

^1 ^0 ^1 “ P + bg = p + b 

hence (2) SQ < Si + c^ 

(3) (aQ + bQ)(ai + biXa^ + b^) ^ b 

1 + ^0 

= ai + ^ ^ obtain 

+ a 

= bp + a„(aj + c^(c^ + c^)) 

by (2) above. 

Suppose now that a^, ai, a^, b^^, b^ , b^ are arbitrary and 

do not necessarily satisfy (1) above. We then define a| = a^Cp + b^) 

b| = (p + a^) and claim that aj, aj, a^, b^, b^, b^ satisfy (1). 

Clearly p + a| = p + b^ = (p+a£)(p+b^), and 

aj^ + b| = a^(p + b^) + b^(p + a^) 

= (a^ + bj^)(p + a^)(p + b^) 

= (p + a^)(p + b^) . 

But we also have that p’ = p where 
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p’ = (aj + ^2^ 

= (p + a^)(p + b )(p + a^)(p + b )(p + a )(p + b ) 
0 0 1 1 2 2 

s P . 

But a! < a. and b! < b. for i = 0,l,2 so we also have p’ < p . 
1111 r - tr 

By (3) p’ = p<b’ + a’(a’+c’(c’+c’)) 
0 0 1 2 0 1 

<b + a(a +c(c +c)) 
" 0 0 1 2 0 1 

since every a! < a. and b! < b. . 
11 11 

■ 

The lattice identity (3) is equivalent to the Arguesian identity, 

in Definition 2.10. 

Axially perspectivlty does not imply central perspectivity in 

an Arguesian lattice. We can take for example a^ = a^ b^ = b^ 

in a projective plane with a^ ~ ^2 ^2 = 0 - ^0 *^1 

(ag + bg)(aj t bj^ ) > ag which is not less than or equal to 

unless = a^ . We have however the following lemma, see Jonssonf 

and Monk [8], 

Lemma 2.19. If L is Desarguean and a„, a - a^, b , b , b e L 

then the triangles A = ’ ^1’ ^2^ ^ ~ "^^0’ ^1’ ^2^ 

axially perspective if and only if 

(1) (a t b )(a + b ) < (a + ^ )(a + a ) + (b + b )(b + b ) . 
00110212 02 1 2 

Proof. Define c. = (a. fa. )(b. fb,) for {i, j, k} = {0, 1, 2} 
  1 jkjk 

and suppose A, B are axially perspective. That is: 

(a^ + ap(b^ + bp ^ . 
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Then the triangles A' = <a-Q, IQ , c^> and B' = <a^^, , CQ> 

are centrally perspective and therefore axially perspective since 

L was assumed to be Desarguean. Axial perspectivity gives Cl). 

(ag + bj)(aj + b^) s (3(1 + OjKaj + c^ ) t (b^j. + o^Hb^ + ) 

< CHQ + a2)(a^ + a^) + (b^ + b^Kb^ + ) . 

To prove the converse let a^ = (a^ + a2,)(aj^ ^2 ^ 

b^ + b^ = b^ + b^ for i = 1, 2 . Then A" - s ^2^ » 

B" = ^^0* ^1* ^2^ centrally perspective by assumption, 

and for i =1, 2 , 

Cf = (a^ + a^Xb^ ^2^ ■ ^P^^i + ^P • 

Corollary 2.20 if L is an Arguesian lattice and A = <a^, a^, a^> 

B = "^bQ, bj^ , b2> are two triangles such that (^Q + ^2 ^ ~ ^2 

and (b^ + ^ ^2^ ” ^2 ^ ® centrally 

perspective if and only if A and B are axially perspective. 

The above lemma will be used extensively throughout the remainder 

of this text and so we will call a triangle A NORMAL if it satisfies 

the condition 

^2 " ^^0 ^2^ where A = <HQ , a^ , a^> . 

Throughout this text we use the following identities valid in 

a modular lattice 

(1) a • (b + c(a + d)) = a • (c + b(a + d )) 

(2) comparable complements are equal. 
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We close this chapter with two proofs that require that L be 

Arguesian. The first proof concerns the additive inverse of an 

element a e D , the second shows a ® b = a ffl b . 

Given a, b e D we perform the operation ® and obtain 

a ^ b e D . Suppose though that we are given some a e D and wish 

to find an a e D such that a ^ a = z . Assume for the moment 

that a ® a = z and calculate: 

z = a ® a 

iff z + x = X + Cy + a)Cw + aQ) 

iff Cy + a)(z + x) = (y + a)Cw + a^) 

iff w + Cy+a)Cz+x) = w+a^ 

iff Cz+y)Cw+(z+x)(y+a)) = (z+y)(x+a) 

iff (z + w)Cx + (z + y)(w + (z + x)Cy + a))) = a 

Similarly, if we suppose that a^ ® a = z for some ^ then 

we obtain ^ = (z+w)Cy+(z+x)(w+Cz+y)(x+a))). In fact 

it is easy to show that at D implies a , ^ are also in D . 

(See Figure 2.22) 

Lemma 2.21. If a e D and L is modular then 

a = (z + t)(x + Cz + y)(w + (z + x)(y + a)) and 

a^ = (z + t)(y + (z + x)(w + (z + y)(x + a)) 

are also in D . 

Proof. We will calculate w + a , the other calculations being 

similar. 



Figure 2.22 
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w + a = (z + w)(y + w + (z + x)(w + S-Q)) 

= (z + w) (y t w +• HQ ) 

= (z+w)(w+z+y) 

= z + w 

■ 
We will now show that a = ^ . 

Lemma 2.23. If L is Arguesian and a <- D then 

a = (z + t)(y + (z + x)(w + )) 

= (z + t)(x + (z + y)(w + (z + x)(y + a))) 

= a 

Proof. Consider the triangles 

A = <x, y, a> and 

B = <(z + x)(w + a^), (z + y)(w + a^), 

Central perspectivity is equivalent to 

(z+x)(z+y) ^ w+a 

which is clearly true if a e D , 

We have therefore that 

(1) (x + y)((z + x)(w + a^) + (z + y)(w + a^)) 

^ a^ + (x + a)(w + SQ) 

= ao + a^ . 

We now take the triangles A^, whose statement of central 

perspectivity is (1) above. 

A^ = <x, (z + y)(w + a^), a^> 

= <y, (z + x)(w + a^), a^> 
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Axial perspectivity of and yields the inequality 

(x + (z + y)(w + (z + x)Cy + a)))Cy + (z + x)(w + SQ)) ^ 

(z + y)((w + a^) + (z + x)Cy + a))Cz + x)Cw + + Cz + x)Cy + a)) 

+ Cx+a)Cy+a) 

which is < z+a S z+t. 

So we have 

Cx + (z + y)(w+ (z + x)Cy + a)))Cy + (z + x)(w + ^ 

(z + t)(y + (z + x)(w + a^)) 

which implies [by joining both sides with x then meeting with 

z + t'] that 

Cz+t)Cx+Cz+y)Cw+Cz+x)Cy+a))) = a 

< a = Cz + t)Cy + Cz + x)Cw t ^0^^ * 

Since both a are complements of w , they are equal. | 

Lemma 2.24. If L is Arguesian and a, b e D then a ® b = a ® b . 

(See Figure 2.25) 

Proof. Consider the triangles 

A = <x, Cy + a)Cw + b^), y> 

B = <b, w, v> . 

Central perspectivity follows from the inequalities b^ S x + b , 

wCx + b) = 0 and y + v = z + y . 

Axial perspectivity implies 

Cw + b)(x + Cy + a)(w + 1>Q)) ^ (x + y)(v.+ b) + (w + v)(y + a) . 

The left side is a ® b , and meeting both sides with z+t we 

obtain a ® b s a ffl b . 

■ 





Chapter 3 

Distributivity and the associativity 
of multiplication 

In the preceding chapters different forms of multiplication 

and addition were discussed. In this chapter we will use these 

properties to prove: the associativity of multiplication in section 

2, left and right distributivity of multiplication over addition in 

section 1. 

SECTION 1 

Our goal in this section is to show the following two equalities 

for a, b, c in D . 

(1) a ® (b 9 c) = (a ® b) ^ (a ® c) 

(2) (a®b)®c= (a®c)®(b®c) . 

The proofs given are straightforward applications of the Desarguean 

implication. Both use the ternary operator T(a, b, c) defined in 

2.2. 

Lemma 3.1. If L is Arguesian with spanning 3-diamond Cz, t, x, y) 

and a, b, c e D then T(a, b, c) = (a®b) e c . Geometrically this 

says that the ternary ring is linear. 

Proof. Following the format of most results in this paper, we take 

the triangles 

A = <y, CQ, (y + a)(cQ + b^)> 

B = <a ® b, w, x> . 

-31- 
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These triangles are normal since for A we have 

(y + (y + a)(cQ + b^))(cQ + (y + a)(cQ + b^)) < (y + + b^) 

and for B , (x+w)(x+a®b) = x . 

Their statement of central perspectivity is the following 

inequality 

(y + a ® b)(w + CQ) .-S X + (y + ^ 

which, if proven, would imply (a » b) ® c < T(a, b, c) . 

If we show axial perspectivity, then we are finished. We do the 

following calculations. 

(1) (y + CQ)(W + a ® b) = (z + y)(z + t) = z 

(2) (x + W)(CQ + (y + a)(cQ + b^)) = (x + y)(z + y + aMc^ + b^) 

= 1^00(2: + y + a) 

(3) (x + a ® b)(y + (y + aXc^ + b^)) 

= (x + (y + a)(z + b ))(y + a) 

= (y+a)(z+b ) 
00 

The join of (2) and (3) above is 

b (z + y + a) + (y + a)(z + b ) 

= (y+a+b (z+y+a))(z+b ) 
00 00 

= (z + y + a)(z + b ) 

and clearly 

z ^ (z + y + a)(z + b ) . 

So A, B are axially perspective. 

I 
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In order to prove right distributivity we must show 

(a®b) ® c = (a® c) © (b® c) which by the last lemma is 

equivalent to 

(a ® b) ® c = T(a, c, b ® c) . 

Theorem 3.2 In an Arguesian lattice with spanning 3-diamond 

(z, t, X, y) and a, b, c e D , 

(a ® b) ® c = T(a, c, b ® c) . 

Proof. By simple calculation we have 

T(a, c, b® c) ^ (a®b) ® c 

iff (z + t)(x + (y + a)((b ® C)Q + c^)) ^ (z + t)(x + (y + a © b)(z + c^)) 

iff X + (y + a)(c + (b ® c)_) ^ x + (y + a © b)(z + c )) 

iff (1) (y + a © b)(x + (y + + (b ® C)Q)) ^ Z + C^ . 

The last inequality is the one we will show. The proof of the 

theorem requires the use of two sets of triangles where the axial 

perspectivity of the first set is implied by axial perspectivity 

of the second. We will begin with those triangles which imply (1) 

above. 

Let = <x, a © b, z> 

= <(y + a)(c^ + (b ® C)Q), y, c^> . 

These triangles are normal and the central perspectivity state- 

ment is the theorem, so we must show axial perspectivity: 

(x + (a © b))(y + a) s (z + (a © b))(x + y) t (z f ^)(c^ + (b ® C)Q) 

but (x + a © b)(y + a) = (y + a)(w t bQ) 

(z +(a © b)Xx + y) = w(z + x + (y + a)(w + and 
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and therefore the above inequality becomes 

(y + a)(W + bg) ^ [z t X + (y + a)(w + bQ>][w + (z + ® c)^)] 

Now this holds iff (y + a)Cw + b^) :^ w + (z + x)(c^ + (b ® 

iff w + b^:Sw + (z + x)ic^ + (b ® 

iff bf. w + (z + x)(c + (b ® c)n) . 

Consider the triangles 

= <x, b, z> 

B2 = ® c)(,, y, c^> 

whose axial perspectivity implies our desired conclusion. 

Central perspectivity is: 

(x +(b ®c)Q)(y + b) ^ z+ c^ 

or (y + b)(x + (y + b)(z + c )) ^ z + c 

or (y + b)(z + c ) :£ z + c 

and thus multiplication is right distributive over addition. 

■ 

To prove left-distributivety we will compare the following 

two expressions: 

(1) a ® T(t, b, c ) 

which by lemma 3.1 is equal to a ® ((t ® b) ® c) = a ® (b © c) 

and (2) T(a, b, a ® c) = (a ® b) ® (a ® c) . 

Theorem 3.3 In an Arguesian lattice with spanning 3-frame and 

a, b, c e D , 

a ® T(t, b, c) = T(a, b, a ® c) . 
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Proof. We require 

(z + w)(x + Cy + a)(z + (y + t)(b^ + CQ)) = 

= (z + w)(x + (y + a)Cb^ + (a ® C)Q)) 

which will follow from the statement 

(1) (y + a)(z + (y + t)(b^ ^ ^ ~ ' 

The triangles given below are normal and the statement 

of central perspectivity is (1) above. 

= <(y + a)(x + (a ® C)Q), Z, (a ® C)Q> 

Bj = <y, (y + t)(b^ + Op), b^> 

To prove axial perspectivity let 

= (y + (y + + (y + a)(x + (a ® c)^)) 

P2 = (z + (a ® c>Q)(b^ + (y + + CQ)) 

P3 = (y t b^)((a ® C)Q + (y + a)(x + (a ® C)Q))) 

Doing some simple calculations we get 

p^ = (y + t)(z + (y + a)(x + a ® c)) 

= (y t t)(z + (y + a)(x t (y + a)(z t c^))) 

= (y + t)(z + c^)(z + y + a) 

= (z + y + a)(y + t)(x + c) = c^(z + y + a) 
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= (z + (a ® C)Q)(b^ + CQ) 

= CQ(z + (a ® C)Q ) 

= CQ(Z + y)(x + z + (y + a)(z + c^)) 

= CQ(X + (z + y + a)(z + c^)) 

Pg = (x + y)(z + y + a)(x + (a ® c)^)) 

= x(z + y + a) 

P2 P3 = x(z + y + a) + c^(x + (z + y + a)(z + )) 

= (x + c)(z + y + a)(x + (z + y + a)(z + )) 

Clearly p ^ p + p„ 
1 2 3 

over addition. 

and therefore multiplication is left distributive 

■ 

SECTION 2 

In chapter 2, we gave two definitions,of multiplication in a 

modular lattice with spanning 3-diamond, the ® of von Staudt and 

what we have called the B due to von Neumann. By definition, 

aBb = (z +t)((z +v)(x +a) + (b +v)(x +w)) and we notice that 

in the above expression, only v and x are not on the "line" z + t . 

In this section, using Theorem 3.6 of Jonsson and Monk [s], we show 

that a B b is independent of the x and v . That is, a B b = 

(z + t)((z + v)(x + a) + (b + v)(x + w)) where x is any complement 

of w in the interval [o, x + y] and v is defined by x . We then 

convert this new expression into a von Staudt form of multiplication. 

As a corollary we obtain a ® b = a B b . Our proof of the associativity 

of multiplication requires the use of both forms of multiplication. 
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The next theorein (3.6 in [8]) is really the geometric quadrangle 

property equivalent to the Desarguean implication in projective planes 

Theorem 3.4 Suppose L is an Arguesian lattice, pj, P2s pj, P25 

m, a^, , a^ are elements of L such that 

(1) a^ , a^, < m 

(2) (p^ + p^)^ = (p| + p^)m 

(3) p^m = p^m = pjm = p^m = 0 

(4) (pj + Pj')m = (p2 + Ppm = (pj + Pp(P2 + Pp - ^ 

and 

q] = (p] + a^)(p^ + a^) 

Then (q^ + q^)m (q| + qpm + k • a^ + k * a^ . We also 

note that in case k • a^ + k • a^ = 0 or k • a2 + k • a^ = 0 

that m(q^ + ^2 ^ • (See Figure 3.5) 

Proof. If we take the triangles A = <aj^ > Pj > p|> 

^ "" ^^2’ ^2’ Pp ?2^ ^ ?2^ “ Pi ■'■ P2 

by (2). So we have 

(a^ + pP(a2 + P2) = + Pp^^2 ■*“ Pp ^Pl Pp^?2 ■*■ Pp 

= q| + k . 

Similarly, the triangles A = <a_, p , p’> and B = <a , p , pp 

imply that q.2 - ^ ^ * 

m(qi + q2) - ti(p^ + a^ +^3) = ^3 

So m(q^ + q^) = (a^ + ^3)(q^ + q2^ • 
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We now take the triangles ~ » ^3 » Pi^ 

*^2’ claim that axial perspectivity implies our 

desired conclusion. 

(aj t agXqj + q2) = m(q^ + q2) 

(a^ t Pp(k + qj^) ^ + q^) = q^ + ^(a^ + Pp 

= q; + kaj 

and (a^ + pp(k + q^) ^ + qp = q^ + ^<^^3 + P] ^ 

= q' + ka^ . 
^2 3 

If we can show central perspectivity then 

m(qj + q2> ^ ^n(qj + 

By lemma 2.19, chapter 

(a^ t q^ >(33 + q2) ^ 

Now 

(a^ + q^)(a3 + q2) = 

q' + ka + ka ) = m (q ’ + q ’) + ka + ka 
^2 1 3 ^2 1 3 

2, the result follows if 

(a^ + p|)(a3 + p]) + (k + q^)(k + q2) • 

(Pl + + ap(Pj + 33) 

^1^3 ^^^2 ^2 ■'■ ^1^ 

^1^3 ■*' Pl^P2 ^2^ 

^1^3 Pi^Pi + P2^(P2 ^2^ 

^1^3 Pp^Pi P2 + ^2^ 

^1^3 + P{ + ^ 

^1^3 ^1 ■*■ ^ q/k + q^) 

(a + p’)(a^ + p’) + (k + q )(k + q ) 
113 1 1 2 

and the theorem is proven. 
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Theorem 3.6 In an Arguesian lattice L with spanning 3-diamond 

(z, t, X, y), a, b e D , 

a^b = (z + t)((z + v)(x + a) + (h + v)(x + w)) 

if X + w = X + y , X • w = 0 5 and v is defined as 

(w + v)(t + x) . 

Proof. In the previous theorem, we let 

m = z + t 

= X 

P2 = V 

pj = X 

t 
?2 = V 

a^ = a 

- z 

^3 = ^ 

= b 

Then m(p^ + p^) 

and m(p] + p^ 

(z + t)(x + v) = t 

(z+t)(t+x) = t . 

Also (p^ + pJ )ni = (z + t)(x + x) = w(x + x) 

(p^ + p2)m = (z + t)(w + v)(t + X + v) = w(t t X + x) 

= w(x + x) 

Pp “ + x)(w + v)(x + X + t) 

= w(x + x) 

and V • (z + t) = x(z + t) = v(z + t) = x(z + t) = 0 
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So by theorem 3.4, 

(z+t)((x+a)(v+z) + (x+w)(v+b)) [=aRb] 

= (z + t)((x + a)(v + z) + (x + w)(v + b)) . 

i 

Now consider the triangles 

A = <z, (z + v)(x + a), (x + a)(z + (x + t)(y + b))> 

B = <b, (x + y)(b + v), y> 

where y=(z+v)(x+y) = (x+y)(z+(w+v)(x+t)). By the 

definition of y , we have x + y = x + y ^ and w • y = 0 . 

A, B are normal triangles whose central perspectivity implies 

(z + b)(ap^ b) < (z + t)(y + (x + a)(z + (x + t)(y + b)) . But 

a R b < z + b as can be seen by calculating z + a R b , so 

the left side of the last inequality is precisely a S b . Axial 

perspectivity requires 

(z+v)(b+v)(z+x+a) < (x+y)(x+a)(y+v+b) 

• ((z+v)(z+x+a) + (x+t)(y+ b)) 

+ (y + b)(z + (x t; t)(y + b))(z + x + a) . 

Gn the left we have (v+b • z)(z+x+a) and on the right, 

x(z + V + b)(z + v(z + X + a) + (x + t)(y + b)) 

+ (z • I) + (x + t)(y + b)))(z + X + a) 

= x(z + v(z + X + a) + (x t t)(y + b)) 

+ (z*b + (x + t)(y+b))(z + x + a) 

= [(z+v(z+x+a) + (x+t)(y+b))](x+ttz*b)(z+x+a) 

which is clearly greater than or equal to (v + z * b)(z + x + a) . 
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So we have the following lemma. 

Lemma 3.7. If L is Arguesian with a, b £ D and 

y = (x + y)(z + (w + v)(x + t)) where is any complement 

of w in the interval [O, X + y] , then 

a S b = (z + t)(y + (x + a)(z + (x + t)(y + b))) . 

The next lemma shows that the y used above need not depend 

upon the x chosen. 

Lemma 3.8. If L is Arguesian and x, y are such that (w, x, y) 

form an with top x + y and bottom 0 , then (Figure 3.9) 

a Sb = (z+ t)(y +(x + a)(z + (x + t)(y + b))) . 

Proof. Using lemma 3.7, we let x - x , y = (x + y)(z + (w + v)(x + t.)) , 

and take the following triangles. 

A = <z, (x + a)(z + (x + t)(^ + b)), (x + a)(z + (x + t)(y + b))> 

B = <b, y> 

where x, y satisfy the conditions of the lemma. 

Axial perspectivity of A, B above is the inequality 



-43- 

(z + X + a)(y + b)(z + (x + t)(y + b)) < 

^ (z + X + a)(y + b)(z + (x + t)(y + b)) 

+ (y + y)(x + a)(z + (x + t)(y + b) + (x + a)(z + (x + t)(y + b))) 

or 

(z + x + a)(zb+x + t)(y + b) < 

< (z + x + a)(y + b)(zb + x + t) 

+ x(y + y)((x + t)(y + b) + (z + x + a)(z + (x + t)(y + b))) 

= (z + X + a)(y + b)(zb + x + t) 

+ x(y + y)(y + b + (z + x + a)(y + b)(x + t)) 

= (z + X + a)(zb + X + t)[y + b + x(y + y) 

(y + b + (z + X + a)(y + b)(x + t))] 

= (z+x+a)(zb+x+t)[y+b+(y+b) 

(x(y + y) + (z + X + a)(y + b)(x + t))] 

= (z + X + a)(zb + X + t)[y + b + (y + b)(y +y+b+(z+x+ a)(x + t)) 

= (z+x+a)(zb+x+t)(y+y+b) . 

But A, B are normal and therefore centrally perspective which 

implies 

(z + b)(y + (x + a)(z + (x + t)(y + b))) < y + (x + a)(z + (x + t)(y + b)) 

or equivalently 

(z + b)(a S b) < (z + t)(y + (x + a)(z + (x + t)(y + b))) 

and again the left side is equal to (z + t)(a§^b) = aHb. 

I 

To prove the following corollary, we need only let y = x 

and X = y in lemma 3.8. 
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Corollary 3,10 If L is Arguesian and a, b e D then a ® b = a 0 b 

The projectivity [0, z + t] I [0, x + yj determines a 

bijection between D and complements of w in the interval 

[0, X + y] . So any c e D determines a y (as in lemma 3.8) 

and every x determines a c’ G D . 

We now proceed to the proof that multiplication is associative. 

Theorem 3.11 If L is Arguesian and a, b,,c e D then 

(a ® b) ® c = a ® (b ® c) . 

Proof. By Corollary 3.10 , we can write (a ® b) ® c as 

(a®b)®c = (z+t)((x+y)(v+c) + (z+y)(x+ (y+a)(z+ (y+t) 

(x + b))) 

and by lemma 3.8, 

a ® (b ® c) = (z t t)(y + (x t a)(z + (x + t)(y t b ® c)) 

where y = (x + y)(v + c) and x = (x + y)(v + (c^ t)). Now 

b ® c = (z + t)((x + y)(v + c) + (z + y)(x + b)) 

= (z + t)(y t bQ) 

so y+b®c = y+bQ. 

If we show (1) (x + a)(z + (x + t)(y + bg)) < y + (z + y) 

(x t (y + a)(z + (y + t)(x + b))) then we will have associativity. 

Consider the triangles 
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A = <a, z, (z + y)(x + a ® b)> 

B = <x, (x + t)(y + bg), y> 

B is clearly normal but it is not so obvious that A is 

normal. 

Calculating 

(a + (z + y)(x + a ® b))(z + (z + y)(x + a ® b)) 

= (z t y)(z + X + a ® b)(a + (z + y)(x + a ® b)) 

= (z + X + a ® b)(z + y)(x + az + a ® b)) 

= (z t X + a ® b)(z + y)(x + az + (y + a)(z + (y + t)(x + b)) 

= (z + y)(x + a ® b) since a*z ^ y + a and 

az^ z+ (y+t)(x+b) 

and so A is normal. 

Central perspectivity of A, B is (1) above. Axial perspectivity 

is the following inequality. 

(2) (z t a)(x + t) ^ (x + y)(a + (z + y)(x + a ® b)) + 

(y + bQ)(z + y)(z + x + a ® b) . 

We now take the triangles 

A^ = <z, a, (z + y)(x + a ® b)> and 

= <(x t b)(y + t), y, x> 

which are centrally perspective directly from the definition of 

a ® b , hence axially perspective, that is: 
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(3) (y + t)(z + a) ^ (x + b)(z + y)(z + x + a®b) + 

(x + y)(a + (z + y)(x + a ® b)) 

but (y+t)(z+a) = t*(z+a) = (x+t)(z+a) and 

(x+b)(z+y)(z+xta®b) = bQ(z+x+a®b) < 

(b^ + yCz + y))(z + x + a ® b) 

and so (2) follows from (3). (1) follows from (2) and therefore 

multiplication is associative. 

I 



Chapter 4 

Addition: Commutativity and Associativity 

In this chapter we prove that the operation of addition is 

both commutative and associative. Section 1 deals with commuta- 

tivity and is required in section 2 to prove associativity. If 

one could prove that addition is associative then commutativity 

(of addition) is an easy corollary to the distributive laws, but 

as yet we cannot prove associativity of addition without first 

proving commutativity. In chapter 3, multiplication was shown to 

be defined by an expression that is independent of the x and y 

chosen so long as they satisfied certain conditions (M^Cx, y, w)) . 

If one could show that addition can be defined similarly, then the 

proof of associativity of addition is much simpler and follows 

closely that of multiplication in chapter 3, section 2. In fact, 

it is true that addition can be defined by any x, y such that 

MgCw, X, y) , but the current proof of this requires associativity 

(of addition). 

SECTION 1 

The proof of commutativity of addition is long and involves 

many semmingly unrelated results, so we give here a short outline 

of the definitions and lemmata used in the proof. 

If a ® b is the von Staudt addition defined in definition 

2.2, then one of the proofs given in geometry books (see e.g. [2]) 

is sufficient to prove that a^t =t©a in an Arguesian lattice 

-48- 
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with spanning 3-diamond (z, t, x, y) . This is the content of 

lemma 4.2. Definition 4.3 is a definition of addition that is 

similar in form to the von Staudt 9 except the frame members x 

and y have been interchanged wherever they occur. We call this 

addition A and in lemma 4.7 show that a ® t = t Aa . Lemma 

'+•8 gives us that for any a,b£D,a®b = aAb. Two techni- 

cal lemmata are then required before the proof that addition is 

commutative. 

Lemma 4.1. If L is Arguesian with spanning 3-diamond Cz, t, x, y) 

then the following inequality holds for any a e D . 

(1) (y + a)(w t (z + y)(x + a)) < [z + (y + t)(w + v)][w + (z + y)(x + a)] 

Proof. Consider the triangles 

A = <z, t, (y + t)(w + v)> B = <(z + y)(x + a), x, w> . 

We know v(z+x+a) s w+v so that 

(z + y)(z + X + a)(x + t) < w+v 

and hence A, B are centrally perspective, and therefore axially 

perspective since L is assumed to be Arguesian. Thus 

(z + t)(x + a) rS (y + t)(x + y) + [z + (y + t)(w + v)][w + (z + y)(x + a)] 

or a ^ y + [z + (y + t)(w + v)][w+(z + y)(x + a>] 

iff (y + a)(w + (z + y)(x + a)) < [z + (y + t)(w + v)][w + (z + y)(x + a)] . 

Lemma 4.2. If L is Arguesian with spanning 3-diamond (jz, t, x, y) 

and a £ D then a ® t = t © a . 
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Proof. Take the triangles given by 

A = <y, (y + a)(w + ag), w> 

B = <bo, (y + b)(w + bg), b> . 

For central perspectivity, we need 

(y + bg)[(y + b)(w + bg) + (y + a)(w + ag)] < w + b 

and by the preceding lemma, the left side of the above expression 

is less than or equal to the following. 

(z + y)[(w + bg)(z t (y + t)(w + v)) + (w + ag)(z + (w + v)(y + t))] 

= (z + y)[z + (y + t)(w + v)][w + bg + (w + ag)(z + (w + v)(y + t))] 

< z + y(z + (y + t)(w + v)) = z 

Since beD,w+b = z+w and so A, B are centrally perspec- 

tive. As a consequence we have the following inequality: 

(2) (y + a)(w + bg)(y t b + bg) < (x + y)(b + bg) + (y + b) 

(w + b + bg)(w + ag) 

X + (y + b)(w t ag) . 

If a ^ z + b then (2) becomes 

(y + a)(w + bg) < X + (y + b)(w + ag) 

which implies a ® b < b ® a and therefore a ® t = t ® a . 
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Definition 4«3 In a modular lattice L with spanning 3-diamond 

(z, 15 X, y) and a, b € D define 

aAb = (z + t)(y + (x + a)(w + (z + x)(y + b))) . 

The properties we have proven for a ® b also hold for aAb 

since (z, t, x, y) is a spanning 3-diamond if and only if 

(z, t, y, x) is also. (Figure 4.5) 

So we know the following: 

(1) a,beD^ aAbeD 

(2) aAt = tAa if a € D and L is Arguesian. 

Recall in chapter two, we denoted (z + x)(y + a) by a2 and 

noticed that x+a2 = z+x,y+a2 = y+a. We require 

some properties of a^+a^ = (z+x)(y+a) + (z+y)(x+a) 

before returning to addition. 

Lemma 4.4. In an Arguesian lattice L with spanning 3-diamond 

(z, t, X, y) and a, b e D , (Figure 4.6) 

(1) (x + y)(ag + a2) ^ V + u 

(2) (x + y)(bo + b2) = (x + y)[(y + a)(w + bQ) + (x + a)(w + b2)] . 

Proof. To prove (1) we take triangles 

Aj^ = <a, X, y> Bj = <z, v, u> 
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(z + a)(x + v) = t(z + a) 5 y + t = y + u , so 

are centrally perspective at t(z + a) . By Desargues therefore 

(x + a)(z + v) < (x + y)(v + u) + (y + a)(z + u) 

or equivalently 

aQ ^ a2 + (x + y)(v + u) , 

so that (x + y)(aQ + a2) ^ (x t y)(a2 + Cx + y)(v t u)) 

= (x+y)(vtu) . 

The proof of (2) is similar. The triangles 

A2 = <y, X, a> B2 = <ho’ ^2» 

are centrally perspective at z , and so 

(x + y)(ho a)(w + b^) . 

To obtain the reverse inequality, we note that the triangles 

A3 = <y, a, x> , B3 = <bQ, w, b2> and A^ = <a, x, y> , 

= <w, b^ 9 b^> are also centrally perspective at z . Thus 

(y + a)(w + bg) (x + y)(bo + b2) + (x + a)(w + b2) . 

Lemma 4.7. If L is Arguesian and a, b e D then t © a t + 'i a . 
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Proof. We have the following equivalences. 

(1) [x+(y+t)(w+aQ)][y+(x+t)(w+a2)] ^ z+t 

iff [x + Cy + t)(w + aQ)][y + (x + t)(w + a^)] (z + t)(y + Cx + 

iff X + (y + t) (w + UQ ) ^ X + t As 

iff (z + t)(x + (y + t)(w + ^ (z + t)(x + t A a) 

iff t ^ a ^ t A a . 

We will show (1) above. 

Consider the triangles A = <x, y, z> and 

B = <(y + t)(w + aQ), (x + t)(w + , t> Both A, B are normal 

and the statement of central perspectivity is (1). By lemma 4.4, 

(x + y)[(y + t)(w + aQ) + (x + t)(w + a2>] = (x + yKa^ + a^) 

and also by lemma 4.4, 

(x + y)(ag + a2> ^ v + u 

What we require though is that 

(x + y)(aQ + a2) ^ v(z + t + a2) t u(z + t + SQ) 

= v(z + X + a) + u(z + y + a) 

= (z + X + a)(u + v)(z + y + a) . 

But UQ ^ (z+x+a),a2 ^ z+x+a,aQ < z+y+a and 

a2 z + y + a , so the proof is complete. 

H 

We can now show that a ® b = aAb . 

t)(w + a^)) 
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Lemma 4,8. If L is Arguesian and a, b € D then a 0 b = a A b . 

Proof. The triangles =<x, y, a0t> and 

= <(y + a)(w + BQ), (X + a)(w + b^), a> are normal and therefore 

[x + (y + a)(w + bQ)][y + (x + a)(w + b2 )] ^ a + a ® t 

if and only if 

(x + y)[(y + a)(w + bg) + (x + a)(w + b^)] ^ (y + a ® t)(x + a)(z + t + b2) 

+ (x + a © t)(y + a)(z + t + b^) 

We have [x + (y + a)(w + b^ )] [y + (x + a)(w + b2)] <a+a®t = z+ t 

iff y + [x + (y + a)(w + b^ )] [y + (x + a)(w + )] - 

y + (z + t)[x + (y + a)(w + b^)] 

iff y + (x + a)(w + b2) ^ y + (z + t)[x + (y + a)(w + bQ)] 

iff (z + t)(y + (x + a)(w + b^)) ^ (z + t)(x + (y + a)(w + B^)) 

which is equivalent to the statement of the lemma. 

By lemma 4.4, the second is 

(x + y)(Bp + b^) < (w + v)(y + a)(z + t + bg) + (w + u)(x + a)(z + t + 62) 

since (y + a © t)(x + a) = (y + a + t)(x + a) = (w + u)(x + a) . 

Also notice (y + a)(z + t + b^) = (y + a)(w + a + bg) 

= a + y(z + bg) 

= a + y(z + X + b) . 

Similarly (x+a)(z+ttb2) = a +x(z+y+b). 

Now take tlie triangles - <v, u, w> and 

= <y(z + X + b), x(z+ y + b), a> 

For central perspectivity we calculate: 

[v + y(z + X + b)][u + x(z + y + b)] 

= (z + t)(z + x) [y + t + x(z + y + b)] [x + t + y(z + x + b)] 

= z [t + y + w(z + b)] [t + X + w(z + b)] 

< w + a since a e D . 
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Since L is Desarguean, we have 

(u + v)(x + y)(z + X + b)(z + y + b) < (w + u)(a + x(z + y + b)) 

+ (w + v)(a + y(z + x + b)) 

and by lemma 4,4, 

(x + y)(bg + b2) ^ (x + y)(u + v)(z + x + b)(z + y + b) . 

Thus a ® b = a /\ b . 

B 

Lemma 4.9. If L is Arguesian and a, b € D then the following 

are equal. (Figure 4.10) 

(1) (x + y)[b ® t + (x + b)(w + ^2^] 

(2) (x + y)(t + a^) 

(3) (x + y)(a t (y + t)(w + ap)) 

(4) (x + y)[(x + t)(y + a) + (y + t)(w + v)] 

(5) (x + y)[(x + b)(y + a) + (y + t)(w + bg)] 

Proof. It is easy to check that all of the above are complements 

of X in [O, X + y] so we need only show inequalities. 

To show (3) is comparable to (4), we take the triangles 

= <x, w, v> , (y + t)(w + aQ), y> . Axial perspectivity 

is precisely what is required. Central perspectivity is (x + a)(w + a^) < 

z + y which is clearly true. 
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FIgure 4.10 
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That (1) is comparable to (2) follows from the axial perspec- 

tivity of the following triangles 

A2 = <yj X, u> B2 = <b ^ t, (x + b)(w + a2), w> . 

Central perspectivity is the inequality below. 

(y + b^ t)(x + b) w + u 

and by previous results we know 

(x + b)Cy t b ® t) = (x + b)Cy + (u + w)(x + b)) 

= (w+u)(x+b) . 

We show (2) is equal to (4) by taking the triangles 

Ag = <x, w, v> Bg = <a2j t, y> . 

A3, B3 are centrally perspective at z therefore they are axially 

perspective, the desired inequality. - 

Finally, we show (5) is equal to (3) by considering the triangles 

= <x, w, bQ> Bj^ = <a, (y + t)(w + a^), y> . 

(x + a)(w + a^) = a^ < z + y = y + 

Consequently 

(x + y)(a + (y + t)(w + ~ (w + b^Ky + t) + (x + b)(y + a) 

The final result of this section is commutativity oi' addition. 



-60- 

Theorem 4.11 If L is Arguesian with spanning 3-diamond Cz, t, x, y) 

and a, b € D then a ® b = b ® a . 

I’rodf. 

(1) [x + Cy + a)(w t bQ)][y + (x + b)(w + a^)] ^ w + b © t 

<=> [x + (y + a)(w + bQ>][y + (x + b)(w + a2)] ^ (z + t)(y + (x + b)(w + a^)) 

<=> x+(y + a)(w + bQ) x t b A a 

<=> (z + t)(x + (y + a)(w + bg)) b A a 

<=> a®b ^ b^a = b®a by lemma 4.8. 

We will prove (1) above. 

Consider the triangles = <x, (x + b)(w + a2)j b ® t> and 

= <(y + a)(w + bQ), y, w> . 

Clearly is normal. 

(b ^ t + x)(b 9 t + (x + b)(w + a2)) 

= b ® t + x(w + a^ + (x + b)*(b ® t)) 

= b ® t + x(w + a^) = b ® t 

and therefore A^ is normal. 

Central perspectivity is the inequality (1), our desired result. 

So addition is commutative if and only if 

(2) (x + b)(y + a) < (x + y) [b 9 t + (x + b)(w + a2)] + (w + bQ)(x + b ® t) 

iff (x + b)(y + a) < (x + y)[b © t + (x + b)(w + a2)] + (w + bQ)(x + t © b) 

iff (x + b)(y + a) < (x + y)[b © t + (x + b)(w + a2)] + (y + t)(w + b^) 

iff (3) (x + y)[(x + b)(y + a) + (y + t)(w + b^)] ^ 

+ y)[b ® t + (x + lO(w + a^)] . 
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We have shown C3) in the previous lemma, and thus addition 

is commutative. 

SECTION 2 

In this section we will show that the operation of addition 

is associative. Surprisingly, the proof does not use the technique 

of taking two triangles and considering their central and axial 

perspectivity. Instead, the proof involves considering the two 

expressions (b 9 c) 9 a and (b ^ a) 9 c with respect to a 

different coordinate frame. We deduce associativity of addition 

in the frame (z, t, x, y) from commutativity of addition, first 

in another frame (to show (b©c)®a= (b©a)©c) , then in 

the frame (z, t,x, y) . The expression used for addition is 

the one derived from the ternary operator T(a, b, c) introduced 

in chapter 2, definition 2.2. We know from chapter 3, lemma 3.1, 

that T(a, b, c) is precisely (a ® b) © c and from chapter 2 

that t ® a = a so that T(t, a, b) is equal to a © b . 

Theorem 4.12 If L is Arguesian with spanning 3-diamond (z, t, x, y) 

and a, b, c e D then 

(b © c) © a = (b © a) © c . 

Proof. As mentioned previously, we have the following equivalent 

definition of a © b . 
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a 9 h = (z + t)(x + (y + t)(a + bn)) 
oo U 

In order to prove the theorem, we must show: 

(z + t)(x + (y + t)(aQ t (b ® c)^)) = Cz + t)(x + (y + t)(cQ + (b 9 a)^) 

or (2) (y + t)(ag + (b ^ c)^) = (y + t)(cQ + (b ® a)^) 

where (b 9 c)^ = (x + y)(z + (y + t)(x + b 9 c)) 

= (x + y)(z + (y + t)(c + b )) 

and similarly (b ® a) = (x + y)(z + (y + t)(an + b )) . 
00 U oo 

Now let a = (y+t)(a„+b) and c = (y+t)(cn+b ) 

So (2) becomes 

(y + t)(aQ + (x + y)(z + c)) = (y + 't)(cQ + (x + y)(z + a)) 

Since b^ is a complement of y in [O, x + y] , 

an = (z + y)(b + a) and c_ = (z + y)(b + c) . (2) is therefore 
U 00 u oo 

equivalent to 

(3) (y + t)((z + y)(b + a) + (b + y)(z + c)) 

= (y+ t)((z + y)(b^ + c) 

+ (b^ + y)(z + a)) 

We claim that (3) is the von Neumann addition with respect to 

the coordinate frame (z, w, y, x, t, v) defined below. (Figure 4.13) 

Let z = (y + t)(x + b) 

w = y 

y = z 

X = V 

t = (y + t)(b«, + v) 

V 
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It is clear that if a, b € D then y + a = y + t and 

y • a = .0 . 

z + w = (y + t) - z + t = t+w 

In terms of the new frame, (3) above becomes 

(z + t)((w + y)(v + a) + (w + v)(y + c)) 

= (z + t)((w + y)(v + c) + (w t v)(y + a)) 

which is precisely commutativity of addition in the frame 

(z, w, y, X, t, v) . 

So by commutativity, we have the following equality 

(b0c)^a = (b®a)^c. 

Corollary 4.14 If L is Arguesian and a, b, c € D , then 

(a®b)®c = a 9 (h 9 c) . 

Proof. By the previous theorem, we know (b ^ a) ^ c = (b ^ c) ^ a 

and therefore by commutativity of addition, a^Cb^c) = (a^b)^c 

At the beginning of this chapter we stated that the associativity 

of addition is equivalent to the equality of a ^ b and the expres- 

sion (z + t)(x + (y + a)(w + (z + y)(x + b))) for any 

y ‘ [O9 + y] ‘‘3Uch that x + w = y + w = x + y = x + y, 

X • w = y • w = X • y = 0. The proof of this follows here. 

Lemma 4.15. If L is Arguesian and a, b e D then 

(z t t)(y + (x + a)(w + (z + x)(y + b))) (Figure 4.16) 

= (z + t)(y + (w + v)(a + (x + y)(z + (w + v)(y + b)) 
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Proof. Consider the triangles 

A = <w, (w + v)Cy + b), (z + x)(y + b)> 

B = <a, (x + y)(z + Cw + v)(y + b)), x> 

Central perspectivity requires 

(w + a)(z + (w + v)(y+ b)) ^ z + x 

and since the left side of the above expression is precisely z , 

A, B are centrally perspective, hence axially perspective. 

(w + v)(a + (x + y)(z + (w + v)(y + b))) 

^ (y + b)(z + X + (w + v)(y + b))(x + y)(z + x + (w + v)(y + b)) 

+ (x + a)(w + Cz + x)(y + b)) 

^ y + (x + a)(w + (z + x)(y + b)) 

which implies 

(1) (z + t)(y + (w + v)(a + (x + y)(z + (w + v)(y + b)))) 

^ (z + t)(y + (x t a)(w + (z + x)(y t b))) 

Since both sides of the inequality (1) are complements of w in the 

interval [0, z + w] , the proof is complete. 

I 

Theorem 4.17 If L is Arguesian, a, b, c e D then addition is 

associative if and only if 

a ® b = (z + t)(y + (x + a)(w t (z + y)(x + b))) . 
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Proof. Let y = (x + y)(z + (w + v)(x + c)) and 

X = (x + y)(z + Cw + v)(x + c ® t))) 

so that X, y satisfy the conditions 

x + y = x + y = x + w = y + w, xw = yw = xy = 0 . 

We have 

(a®b)®c = (z+t)(x+(w+v)(y+a®b)) 

a ^ (b ® c) = (z + t)(x + (w + v)(a + (x + y)(z + (w + v)(y + b). 

Therefore, addition is associative if and only if 

(w + v)(a + (x + y)(z + (w + v)(y + b))) < (w + v)(y + a ® b) 

iff (z + t)(y + (w + v)(a + (x + y)(z + (w + v)(y + b)))) < a ® b 

iff a ® b = (z + t)(y + (w + v)(a + (x + y)(z + (w + v)Cy + b)))) 

= (z + t)(y + (x + a)(w + (z + x)(y + b))) 

by previous lemma. 
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Conclusion 

The results in the preceding three chapters give us the 

following theorem. 

Theorem If L is an Arguesian lattice with spanning 3-diamond 

(z, t, X, y) the (D, 0, ®) is an associative ring with unit. 
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