
SOME PROPERTIES OF EULERIAN 

FAMILY OF POLYNOMIALS 

A thesis submitted to 

Lakehead University 

in partial fulfillment of the requirements 

for the degree of 

Master of Arts 

by 

Kar-Wing Yuen 

1980 



ProQuest Number: 10611246 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

ProQuest 

ProQuest 10611246 

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author. 

All rights reserved. 
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106 - 1346 



m/ 

C 

Copyright (c) 1981 K.W. 

' ^ 
u 

‘i 
V 

Yuen^ 

288205 



ACKNOWLEDGEMENT 

I wish to thank iny supervisor. Professor William R. Allaway, for 

his advice, encouragement and patience during the preparation of this 

thesis. 



CONTENTS 

I ; PRELIMINARIES 

II ; THEORY OF POLYNOMIALS OF BINOMIAL TYPE 

III : THEORY OF EULERIAN FAMILY OF POLYNOMIALS 

IV ; EULERIAN DIFFERENTIAL OPERATOR AND EULERIAN BASIC POLYNOMIAL 
SEQUENCES 

V : THE VECTOR SPACE ISOMORPHISM DETERMINED BY AN EULERIAN 
DIFFERENTIAL OPERATOR 

VI : THE ALGEBRA ISOMORPHISM DETERMINED BY THE ORDINARY DIFFERENTIAL 
OPERATOR D 

VII : EULERIAN SHEFFER POLYNOMIALS 

VIII : APPLICATIONS 

Appendix 

References 



Chapter I 

PRELIMINARIES 

(1.1) Introduction. A large number of problems in classical 

analysis can be stated in the following form. Given a sequence 

of functions (f^(x)} and a function f(x) , find a sequence 

of constants such that, in some sense of equality, 

oo 

f (x) = y a f (x) . 

n=0 

For example, if {f^(x)} = {cos(nx)} u {sin(nx)} , then we 

have the classical Fourier analysis problem. From which we know 

that if f (x) = x^ ; 0 < X < 27T , then 

f (x) + y (a cos nx + b sin nx) 
n n 

n=l 

with a„ = -->r~ , i = —and b n 2 n 
n 

-ATT 
The a ^s and the b 's 

n n 0 3 ' n ^ n n 

are easily calculated in this example because of the orthogonality 

of {cos(nx)} u {sin(nx)} . Some of the classical work has dealt 

with the case when forms an orthogonal sequence of 

functions with respect to some inner product. Other cases might 

not require such an orthogonal property. For example, if we let 

n 00 . 
f (x) = (x - a) and f(x) £ C [(a - E, a + e)l 
n 

then the Taylor series expansion of f (x) is given by 

~ (x - a)^[D’^f(x)J 

f(x) = I   

n=0 
n: 

1.1 
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and we have uniform convergence in [a ~ e, a + e] for some 

e > 0 . 

We give one more example showing where this problem of writing 

one function as a linear combination of other functions would arise 

Let f(x) be a function given in tabular form by 

fCi) “ ^ ~ •••> ^ » 

where the are given. Using this information* we want to 

find the approximate area under f(x) for 0 < x < n . The 

classical method of solving this problem is to use one of the 

difference formulas to obtain the collation polynomial 

p (x) = a + a X + a x(x - 1) + ... + a x(x - 1) ... (x - n + 1) , 

and then use the integral of this polynomial as an approximation 

to the integral of the function. One of the ways to integrate 

p(x) is to write it in the form 

n 
p(x) = I b x 

k=0 

which again involves finding the coefficients c^^^ such that 

n 
x(x - 1) ... (x - n + 1) = J ’ 

k=0 

It is well known that Stirling numbers of the first 

kind. 



1.3 

(1.2) In this thesis, we address ourselves to the same type of 

problem, that Is, expressing one function as a linear combination 

of a sequence of functions. We reduce to a minimum the analytic 

apparatus of analysis on the line by restricting our attention to 

the special case when 

(i) f(x) is a polynomial over the reals R , 

and (ii) {f^(x)} is a sequence of polynomials, or more briefly 

polynomial sequence, with being exactly of degree 

n . 

The central problem is to find an efficient way of calculating 

n = 0, 1, 2, ...; 0 ^ k ^ n such that 

n 

n (x) = I 
k=0 

where {p^(x)} and ^q^^Cx)} are polynomial sequences. We will call 

this the connecting coefficient problem. Examples of such type of 

coefficients are: 

(i) s(n, k) , the Stirling numbers of the first kind 

mentioned in (1.1). 

(ii) S(n, k) , the Stirling numbers of the second kind, in 

x^ = ^ S(n, k)x^^^ 
k=0 

where x^^^ =x(x-l) ... (x-k+1) . 



1.4 

and (ill) (signless) Lah numbers in 

where <x> =x(x+l) ... (x+n-1) . 
n 

(1.3) Mullin and Rota in [ll] point out that sequences {x^} , 

/ \ 

{<x>n} 9 {x'" and many more have a common property: that of 

being binomial type. 

(1.3.1) Definition: (p^(x)} is called a polynomial sequence of 

binomial type iff Vn ^ 0 , 

Pn(x + y) = I (" ) Pk(x)P„_k(y) Vx, y . 
k=0 

This notion of sequences of binomial type goes back at least 

to E. T. Bell [5]. There has been a number of systematic studies 

of polynomials of binomial type. The first was due to Mullin and 

Rota [ll] in which they exploited the duality between x and . 

Their main technique was to develop a rigorous version of the so 

called "Umbral Calculus" which has been widely used in the past 

century. Later on. Rota, Kahaner and Odlyzko [is] extended the 

theory to polynomial sets other than binomial type. In chapter II, 

we will review these authors’ work and show their solution to the 

connecting coefficient problem for polynomials of binomial type. 



1.5 

Roman and Rota [14] by using the Umbral Calculus and functional 

analysis obtained many of the results in the earlier papers, [i]] and 

[15]. Roman and Rota in [14] and Sweedler in [16] have attempted to 

unify the theory of polynomial of binomial type by using different 

types of algebras. Although these authors’ works are very inter- 

esting, due to time and space limitation we will not consider their 

work in this thesis. 

(1.4) Andrews in [3] introduced a q-analogue of definition (1.3.1): 

(1.4.1) Definition: A sequence of polynom'iats {p^(x)} 

Euterzan family of polynomials iff Vn ^ 0 , 

= X [k] 
k=0 . q 

where 
(q) n 

and 

1 

FT Cl - q") 
i=l 

n = 0 

n > 0 ; q e IR 

is an 

Andrews* theory closely parallels that of Mull in and Rota CLI] . He, 

however, was not able to obtain all the results for Eulerian family 

of polynomials that are analogous to those in [Ll] , [15] and [14] . 

For example, Andrews did not solve the connecting coefficient problem 

for Eulerian family of polynomials. Adopting Andrews* theory and making 

full use of the simple sequence - characterization of Eulerian shift 

invariant operators (see prop. (3.3.1)) we are able to extend his work 
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by obtaining the algebra isomorphism theorem for Eulerian 

shift invariant operators that is analogous to the results of Rota 

(et al) [ll] , [IS] and [14] for shift invariant operators. We think 

this is an Important first step in solving completely the connecting 

coefficient problem for the Eulerian family of polynomials. 

To make our analogue more complete, we also include a chapter 

on Eulerian Sheffer polynomials and indicate where and how the theories 

diverge. 

We should also mention that Edwin C. Ihrig and Mourad E. H. 

Ismail in their paper entitled "A q-Umbral Calculus" [9] have 

devised formulas for expressing an Eulerian family of polynomials 

in terms of monomials and vice versa. They use a more abstract 

approach. The idea is briefly outlined in the appendix. 



Chapter II 

THEORY OF POLYNOMIALS OF BINOMIAL TYPE 

(2.1) Introduction. This chapter is completely devoted to the 

theory of polynomials of binomial type proposed by Rota (^t al) 

([1^ > [is] atid [14] )• We quote some of the important results as 

an introduction as well as references so that readers can draw the 

analogy when reading the later chapters. As for the proofs, they 

can either be found in the original publications ([l!fl , [l5] and 

[14]) or in Garsia’s Exposd ([6]) where they are rederived. 

(2.2) Fundamentals. A set of polynomials {p^(x)} is called a 

sequence of ipotynomials, briefly a potynomial sequence^ if 

is of degree precisely n in x . It is clear that {p^^Cx)} 

forms a basis so that any polynomial can be expressed as a linear 

combination of the elements of such a polynomial sequence. 

C2.2.1) Definition; A potynomial sequence {p^(x)} i^s said to 

be of binomial type iff Vn > 0 

P„(x + y) = 1 (k) Pk«p^_^(y) Vx. y . 
k=0 

The theory revolves around the interplay between the algebra 

of polynomials IP and the algebra of shift invariant operators 

\ . All operators considered in this thesis are assumed to be 

linear and are defined on IP , the linear space of all polynomials 

over the reals, IR . 

2.1 
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(2.2.2) Definition; An operator T is oalled a shift invariant 

operator iff Va £ |R , 

TE = E T a a 

where E p(x) = p(x + a) Vp(x) € IP . 
3 

(2.2.3) Definition: A delta operator Q is a shift invariant 

operator such that Qx is a non-zero constant. 

As the following definition will show, a delta operator is 

associated in a natural way with a particular sequence of polynomials. 

(2.2.4) Definition: A polynomial sequence {p^(x)} is called a 

sequence of basic polynomials^ briefly a basic polynomial sequencey 

for the delta operator Q if 

(i) PQCX) = 1 

(ii) pj^(O) = 0 Vn > 0 ; 

and (iii) Qp (x) = np ,(x) Vn > 0 . n n—1 

Note that the combined effort of the three requirements in the 

above definition is so strong that it guarantees: 

(2.2.5) Theorem: Every delta operator has a unique basic polynomial 

sequence. 

For example, {x^} is the basic polynomial sequence for the 

delta operator D , the ordinary differential operator. In addition. 
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{x^} is not only basic but also of binomial type. This turns out 

to be true for every basic polynomial sequence. That is: 

(2.2.6) Theorem: (Mullin and Rota [l]^ » Theorem 1) 

(a) If {p^(x)} is a basic sequence for some delta operator Q , 

then it is a sequence of polynomials of binomial type. 

(b) If {p^Cx)} is a sequence of polynomials of binomial type^ 

then it is a basic sequence for some delta operator. 

Using the above fundamental result, they proved the following 

important First Expansion Theorem, a generalization of the Taylor 

Expansion Theorem. 

(2.2.7) Theorem: (Mullin and Rota [ll] , Theorem 2) 

Let T he a shift invariant operatory and let Q he a delta 

operator with basic set {p^(x)} . Then 

where 

oo a 

T = I kTQ'^ 
k=0 

This very powerful result ensures that every shift invariant 

operator can be expressed in terms of any delta operator and its 

powers. The similarity between the expanded form and the formal 

power series suggests an isomorphism—-an idea ’’intuited by Pincherle, 

and has been tacitly - and often unrigorously - used by several authors". 

(See Rota, Kahaner and Odlyzko [15] ch. 14.) 



2.4 

(2.2.8) Theorem: (Mullin and Rota [i:0 > Theorem 3) 

Let Q be a delta operator^ and let F he the ring of formal 

power series In the variable t y over the same field. Then there 

exists an Isomorphism from F onto the ring ^ of shift Invariant 

operatorsy which carries 

oo a , 00 a , 

f (t) = I rr t into I ^ • 
k=0 k=0 

oo a 
V* Ic k. 

We use f (Q) to denote \ Q 
k=0 

k! 

By using this isomorphism theorem, many of the properties in 

the abstract operator theory can be formulated in the more thoroughly 

studied theory of formal power series. 

(2.3) The Umbral Calculus. In the past century, invariant theorists 

regarded the umbral notation, or symbolic notation, as an informal 

algorithmic device which allows one raising the index n to a power, 

and then treating the sequence a sequence of powers {a^} , 

while reserving the right to lower the index at the appropriate time. 

Computationally, the technique turned out to be very effective. 

However, the calculus could not be set on a rigorous foundation 

because no proper rules for lowering of indices were stated. Rota 

et al were the first to notice that the proper method is to consider, 

a sequence defined by a linear functional L on the space 

of polynomials: a^ = L(x^) . The description of the sequence is 

then condensed into the properties of the linear functional. If 

{a^(x)} is a polynomial sequence, then there is a unique linear 

operator L on IP such that L(x^) = . 
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(2.3.1) Definition: An umbral operator T is a lineal* operator 

which maps some basic polynomial sequence {p^Cx)} into another 

basic polynomial sequence {q^(x)} , that is^ 

Tp^Cx) = q^^Cx) . 

Using the following facts, (Mullin and Rota [Ifl , theorem 5) 

(2.3.2) if T is an umbral operator^ then T ^ exists\ 

(2.3.3) if S is shift invariant, then TST. ^ is also shift 

invariant\ and 

(2.3.4) if Q is a delta operator, then TQT ^ is also a delta operator, 

they showed that 

(2.3.5) T maps every basic sequence into another basic sequence. 

The umbral composition of two polynomial sequences {a (x)} 
n 

and {b (x)} , where 
n 

^ k k 
and b^(x) = J , 

k=0 k=0 

is another sequence of polynomials {c^(x)} defined as 

n 

n 
k=0 

Symbolically, ~ a^(^(x)) . There is a simple relation existing 

between umbral operators and the umbral composition of basic sequences: 

(2.3.6) Lemma: Let {a^(x)> and {q^(x)> be two basic polynomial 

sequences. If T is an umbral operator such that 
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Tx" = q^Cx) , 

then = Ta^(x) . 

The powerful tool that Mullin and Rota use to solve the connecting 

coefficient problem is the following Umbral Composition Theorem. 

(2.3.7) Theorem: If V = p(D) and Q = q(D) are delta operators 

with respeotively (p^Cx)} and (q^Cx)) as their corresponding 

basic sequences^ then the ymbral composition 

(.2.4) Solution to the Connecting Coefficient Problem. The connecting 

^nCx) = PnCflCx)) 

is the sequence of basic polynomials for the delta operator 

p(q(D)) • 

coefficients c 
nk 

in 

n 
a„(x) = I c^^b^(x) , 

k=0 

where {a^(x)} and (b^(x)} are basic sequences for the delta 

operator a(D) and b(D) respectively, can now be determined 

alternatively by considering the polynomials 

and the umbral operator T defined by 

Tx’^ = b (x) . 
n 



Clearly, ~ Tr^(x) = r^(b(x)), Csee C2.3.6)) so that 

{r^(x)} is basic with respect to the delta operator C = c 

a(b ^(D)) , where the last equality is obtained from 

a(D) = c(b(D)) 

by Theorem (2.3.7). 



Chapter III 

THEORY OF EULERIAN FAMILY OF POLYNOMIALS 

(3.1) Eulerian Family of Polynomials. We are interested in developing 

a theory about polynomial sequences {Pj^(x)} that have the properties: 

Vn > 0 

Ci) degree of 
n 

Vx, y . and (il) P„(xy) = (“) Pk«p^_^(y)y'‘ 

Such a polynomial set {p (x)} is said to be an EuteTtan famity of 

potynomiats. The sequence {(x - 1)^} will serve as an example 

illustrating the properties. Since 

= (xy - 1) 
n 

= (xy - y + y - 1) 

= I I") (X - D^^y - 1)"-'^ 

k=0 ' 

“ Jo > 

{(x - 1)^} is then the model polynomial sequence of the Eulerian 

family of polynomials. It will play the same role as {x^} in the 

set of polynomials of binomial type mentioned in chapter II. 

(3.2) Eulerian Shift Invariant Operators. Let p(x) be a polynomial. 

Multiply each term of p(x) by x to obtain a new polynomial xp(x) . 

Call this the muttiptioation opevatOT a.n6. denote it by x . Thus, 

x: p(x) xp(x) . 

3.1 



(3.2.1) Definition; Let a £ [R . The Euterian shift operator A_ 

is a 'linear operator defined on the linear space of all polynomials 

by 

A p(x) = p(.ax) Vp(x) e IP . 
CL 

Using this definition we now define Eulerian shift invariant 

operator. 

(3.2.2) Definition; A linear operator T on the linear space of 

all polynomials is an Eulerian shift invariant operator if Va e IR , 

TA = A T . 
a a 

/ 

An example of Eulerian shift invariant operator is xD where 

D is the ordinary differential operator. 

Also 

A (xD)x" a ' 

(xD)A^x^^ 

= A nx 
a 

= n(ax)^ . 

= xD(ax)^ 

n n-1 
= xa nx 

= n(ax)^ . 

C3.3) Characterization of Eulerian Shift Invariant Operators. Given 

a linear operator, how do we know that it is Eulerian shift invariant 

aside from the direct verification of the conditions in the definition 

A simple answer is given by the following proposition which provid|es a 

distinct characterization of Eulerian shift invariance. This charac- 

terization was proven by Andrews in his paper [3]. 
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(3.3.1) Proposition; T 'is Eulevtan shi-ft invar-iant iff there 

exists a sequenoe {t^} of constants such that 

(3.3.1a) Tx’^ = t . 
n 

Proof: Assume T is Eulerian shift invariant. Then Va £ 
m 

k 
__ Tx . Lettine Tx = ) c ^ > 

a a 
we have TA = A Tx^ . Letting Tx^ = 'l 

k=0 

c 1 X 
nk 

where for 

each n , = 0 for all but finitely many k , we get 

" I 
k ^ k k 

c , X = > c , a X 

k=o k=0 
Vx 

Va , c^^(a^^ - a^) = 0 . 

n Ic 
If c . ^ 0 , then a - a = 0 . This implies n - k since 

nk 

the equation is true for all a £ IR . 

rp n n 
Tx = c X 

nn 

. Then Tx’^ = t x’^ 
n 

Let t = c 
n nn 

Conversely, if Tx^ = 

A Tx 
a 

n 

then 

n 
= A t X 

a n 

= t (ax) 
n 
n^ n 

= a t X 
n 

n „ n 
= a Tx 

n 

= T(ax) 
n 

= TA X 
a 

n 

Thus, T is Eulerian shift invariant Q.E.D. 



3.4 

As has been done by various authors (see [l<^ and [17]) we will 

call the Fundcanental sequence of the operator T if (3.3.1a) 

is satisfied. It is easy to see that {n} is the fundamental 

sequence for the Eulerian shift invariant operator xD. 

Besides the above simple characterization for Eulerian shift 

invariant operators, we provide another method, in proposition 

(3.3.2) , which may be used for the same goal. However, the proposi- 

tion is intended for another purpose as we shall see later on. 

First, we introduce an operator which has the similar characteristic 

as a partial differential operator. By , we mean that the 

operator T , when acting on a polynomial in x and y , will 

operate on x only and treat y as a constant. 

(3.3.2) Proposition: T is Eulerian shift invariant iff 

Vp(x) e IP , 

T^p(xy) = T^p(xy) . 

Proof: Suppose T is Eulerian shift invariant and is its 

fundamental sequence such that 

rr, n n 
Tx = t X 

n 

n 
Let p(x) = \ a^x . 
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Then, 
n ] 

T P(xy) = T I a (xy) 

n 
= I 

^ k X 
k=0 

n 

I V^^k‘ 
k k 

k=0 

n n k k 
= I tj^y 

k=0 

n 
V k_ k = ) a X T y 

, « k y 
k=0 

n 

= Ty I a (xy) 
^ k=0 

= TyP(xy) . 

Conversely, since T p(xy) = T pCxy) is true for all p(x) e IP , X y 

in particular we have 

T^Cxy)^ = Ty(xy)^ . 

00 ^ 

Now suppose Tx^ = V b x ; where for each n, b . =0 for all 
- - nlc nfc 
k=0 

but finitely many k . Then 

y s n n„ n 
T,^(xy) = y T^x 

= y" I b 
k=0 

nk 
X . 

Similarly, 
rr, r n V -U 

T,(xy) = X I b y . 
k=0 

nk" 

Equating the two, we have 

b^l^ = 0 for k n , 

and therefore Tx^ = T x^ = b x^ . Hence T is Eulerian shift 
X nn 

invariant. Q.E.D. 
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(3.4) The Algebra of Eulerian Shift Invariant Operators. Proposi- 

tion (3.3.1) has some far-reaching implications. It not only provides 

a direct method in simplifying the process of determining whether an 

operator is Eulerian shift invariant or not, but also shows that every 

Eulerian shift invariant operator is associated with a sequence of 

reals in a natural way. IE , the set of all Eulerian shift invariant 

operators, is then expected to have the similar properties that 

sequences possess. One of which is that ]E forms a vector space 

with respect to some appropriately defined operations. They are:- 

addition the addition of two operators; 

multiplication the composition of two operators; and 

scalar multiplication "X", the scalar multiplication of an 

operator by a real number X . 

• ^ 

We use "0" to denote the null Eulerian shift invariant operator, i.e. 

0 + T = T = T + 0 where T e IE . 

-T represents the additive inverse of T . 

(3.4.1) Theorem: (IE , +, -, 6, <>, A) is. an aZgehra. 

Proof I From the fact that Eulerian shift invariant operators are 

linear operators and the set of all linear operators with respect 



to "o" and "A" forms a vector space, we only have to check E 

is closed under these operations. 

Let T, S € E with {t } and {s } as their fundamental n n 

sequences respectively. Now, 

™ n T o S = Ts X 
n 

= s 
n 

I' = s t X 
n n 

We have thus found the fundamental sequence, namely 

T o S . Therefore T o s e E . Furthermore, s t = t s implies 
n n n n 

that multiplication is commutative. "+" and "A" can be done 

similarly* Q.E.D. 

Re-examining the above proof, one can easily deduce: 

(3.4.2) Corollary: An Euter'ian shift invariant operator T is 

invertible iff the fundamental sequence for T is a sequence 

of nonzero numbers. 

Of course, the fundamental sequence for the inverse of T is 



Chapter IV 

EULERIAN DIFFERENTIAL OPERATOR AND EULERIAN BASIC 

POLYNOMIAL SEQUENCES 

(^•1) Eulerian Differential Operators» 

(4.1.1) Definition: An Euterian d'lfferent'iaZ operator Q is an 

operator suoh that xQ £ E and the fundamental sequence of constants 

for xQ is {0, , ...} with g^ 0 Vn > 0 . 

Obviously, D is the simplest example of an Eulerian differential 

operator since xD £ [E (see (3.2)) with {n} as its fundamental 

sequence. The next example of Eulerian differential operator that 

we are going to discuss is the q-derivative, written as , which 

is defined as 

Since 

q qx - X 

n 
xD X 

q 
X 

/ \ n n 
(qx) - X 

qx - X 

Vf (x) e [P; Vq £ IR . 

xDq is therefore a Eulerian shift invariant operator whose funda- 

2 _ 1 ^ 
mental sequence is {0, 1, , ...» , ...} . 

n - n-1 . 
q — 1 V ^ 

Note: 1 ” I ^ = n in the case q = 1. 

^ " k=0 

4.1 
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Remark; At this point, we should mention that the idea of studying 

xQ is kindly suggested by Rota, Kahaner and Odlyzko ([15] chapter 

14, problem 12 and 1). They propose that "one should begin by 

developing the theory of xD" ... " along a similar line but with 

a different invariance property than shift invariance". The invariance 

property that we are using is generally known as SCALE INVARIANCE. 

Immediately from definition (4.1.1), we can characterize an 

Eulerian differential operator in a similar fashion as in proposition 

(3.3.1) for Eulerian shift invariant operators. 

(4.1.2) Proposition; (Andrews [3], Theorem 4) Q is anEuterian 

differential operator if and only if there exists a sequence of 

constants {g^} with 

g_ = 0 and g 0 Vn > 0 such that 
°0 ®n 

/ 
0 n = 0 

C4.1.2a) Qx” = < 

For this reason, we also call the sequence ^ fundamental 

sequence for Q . Eulerian differential operators work very much the 

same as the ordinary differential operator. The following corollary, 

extracted from the preceding proposition, illustrates soine of the 

resemblances. 
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(4.1.3) Corollaryt Let p^(x), e IP . If Q is an Eulerian 

differential operator, then 

(i) Qc = 0 where c is a constant'. 

(ii) Qp^(x) = Qq^^Cx) <i=i>. Pjj(x) - qj^(x) = a constant; 

(iii) QP^+3^(X) is a polynomial of degree n ; 

(iv) Cl-integration rule: 
* • Qi 

y a.x = c + y —~ x where c is a constant and 
U -i L, n 

•'Q ^i+1 

» 82» • • • }■ is the fundamental sequence for Q ; 

and (v) a polynomial p(x) is uniquely determined by Q, 

Qp (x) and p (a) for any given a e R . 

Proof: We only briefly outline the proof. 

(i) and (iii) are direct consequences of (4.1.2a). 

(ii) can be deduced from (i). 

(iv) follows from (ii) and (iii). 

(v) is obtained from (iv). Q.E.D. 

The relationship between Q and D is actually much deeper 

than merely some coincidences of characteristic resemblances men- 

tioned above. The hidden "factor" is revealed from the following 

proposition. 



4.4 

(4.1.4) Proposition: Q is an Eulevian differential operator iff 

there exists an invertible Eulerian shift invariant operator P 

such that Q = PD . 

Proof: If P exists and is invertible, then its fundamental 

sequence the property that 0 Vn ^ 0 . (see Cor 

(3.4.2)) 

Now, PDx^ = 

UTT ,X 
n-1 

n-1 

n = 0 

n > 0 . 

Since n'n' - ^ 0 Vn > 0 , the sequence 
n—i 

{ 0, TT „ , 2TT , . . . , n-rr . , . . . } 
* 0 1 n-1’ 

is the fundamental sequence for the Eulerian differential operator 

Q . 

Conversely, if Q is an Eulerian differential operator with 

fundamental sequence {O, ...} such that g ^ 0 Vh > 0 , 

^n+1 ^ 
then construct the sequence {TT_} = . Let P be the operator 

n 

defined by the property that 

n n ^ 
Px = IT X Vn ^ 0 . 

n 

Clearly, P is Eulerian shift invariant and is invertible since 

_ ^n+1 
’^n n+1 0 Vn ^ 0 . Furthermore 

when n = 0 , 

when n > 0 , 

PDx’^ = 0 

PDx^ = Pnx’^”^ 

= n*ir ,x 
n-1 
n-1 

= 8 X n 
^ u 

= Qx 

n-1 

Thus Q = PD . Q.E.D. 
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(4.2) Eulerian Basic Polynomial Sequence. The type of polynomial 

sequence {p^(x)} which satisfies the property that 

where is independent on x , for some appropriate differential 

operator Q is of special interest. Extensive work has been done 

by Rota (et al) in the case = n (see [l!Q , [15], [14] and also 

chapter II). Andrews in [3], has found a close analog to Rota^s 

work by setting k^ = 1 - . The case where k^ = 1 is studied 

by Allaway and the author in [2]. In this thesis, we use ^ 

as Rota did but with a different type of invariance property. 

(4.2.1) Definition: A potynom-ial sequence {p^(x)} is an Eutevian 

haste potynomtaZ sequence reZattve to the EuZevtan differential 

operator Q if it satisfies the following properties: 

(i) PQ(X) = 1 

(ii) Vn > 0 

and Ciii) Qp^(x) = np^_^^ (x) Vri > 0 . 

Examples: 

(i) Direct verification will show that {(x - 1)^} is a 

sequence for the Eulerian differential operator D . 



(ii) Define 
n = 0 

P (x) 

1 

n! 
n-1. 

X ) n > 0 , 

and 
n = 0 

n > 0 . 

Q is then an Eulerian differential operator with fundamental 

sequence {0, 1, 1, 1, . Also, 

Qp^(x) = QnlCx’^ - x^ 

, . n-1 n-2v 
= n!(x - X ) 

^ n((n - l)!Cx^ ^ - x’^ ^)) 

= np (x) n—1 

and ^ ^ ^ ‘ 

Thus {p^(x)} is an Eulerian basic polynomial sequence for 

Q . 

Example (ii) shows that {(x - 1)^} which we have used repeatedly 

is not the only basic polynomial sequence in EP . However, the 

following proposition ensures that an Eulerian differential operator 

is associated with a unique Eulerian basic polynomial sequence. ^ 

(4.2.2) Proposition: (Andrews [3]; Conseq. of lemma 2) Every 

Eulerian differential operator has a unique Eulerian basic sequence. 

Proof: Let Q be an Eulerian differential operator with fundamental 

sequence • We want to construct a unique Eulerian basic poly- 

nomial sequence 'tq^(x)} for Q . By definition (3.1), we can 
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define ~ ^ * 

and let (x) = ax + b for some a, b e IR . 

Now Qp ^(x) = aQx + Qb 

= agj^ (Prop. (4.1.2) and Cor. (4.1.3(i))) . 

Also ■* i 

= 1 . (definition (4.2.1(i))) 

Equating the two, we get a = 1/g^ . 

Prom (4.2.1(ii)), we have 

Qp^(x) = 1PQ(X) (definition (4.2.1(iii))) 

rjL 
Si 

X + b = 0 . 

i.e. 

x=l 

b = -1/g^ . 

Therefore, PQ(^) (x) are uniquely defined. Suppose 

p^(x), p^(x), ... P^(x) are uniquely defined. That is, for 

j = 0, 1, 2, ... m ; Pj(x) 
k=0 

a.-x with the a., ’s are 
Jk jk 

uniquely defined. We shall show, by induction, that P_, i Cx) 
nrrl 

m+l 
is also uniquely defined. Suppose p - (x) = ^ 

k=0 
m+l ,k 

X 

m+l 
g, X 

k-1 
^ m+l,k k 

m 

= I b 
k=0 

mf 1,k+l^k+1 

m 
Also (x) - (m + l)p^(x) = I Cm + l)a^ 

k=0 * 
m+l 

=i> b 
(m + l)a 

nrfl ,k+l 
m,k 

’k+1 

Thus b . , , is uniquely determined for k = 0, 1, 2, . 
m+l 

and b 
nri-1,0 = ‘’nri-l.k = 0 • 

. . m ; 

Q.E.D. 
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Now an Eulerian differential operator Q is associated with 

two sequences, namely its Eulerian basic polynomial sequence 

{q^(x)} and its fundamental sequence of constants ^se 

the term Eulerian Triple, which is (Q, g , q (x)), to emphasize 
n n 

their distinct relationship and to avoid the trouble of describing 

them, in words, repeatedly in later sections. 

(4.3) The Calculus of Eulerian Differential Operators. For 

simplicity in further development, we introduce the following 

notations similar to the factorial sign. From the Eulerian triple 

(Q. gjj. define 

[n; Q] 
8l 

if n > 0 

if n = 0 . 

Since ^ ^ whenever n > 0 , division is possible. Thus the 

n choose k notation, i.e. |^| , in factorial terminology can 

be extended to ; Q^, known as the generalized binomial coefficient, 

such that 

i: ■«] 

IPJ .91 
[k; Q][n - k; Q] 

f Vn-1 'n-k+1 

( 1 

0 

^k\-l 
if 0 < k < n 

if k = 0 or n 

if k < 0 or k > n . 



4.9 

We isolate the following facts because they will occur quite 

frequently in some of the proofs in later sections. 

(4.3.1) Lemma; For a fixed Eulerian triple (Q, g^, , 

e E;Vk ^ 0 . Moreover, 

f 
0 

k k n 
X Q X 

Tn; Q] 

[n - k; Q] 

n 
X 

if k > n 

if k ^ n . 

Proof: It is obvious that 

x^Q^x^ = 0 when k > n 

When k < n j 
k^k n k_k-l n-1 

X Q X = X Q g^x 

k_k-2 n-2 
= ^ Q Sn^n-1^ 

^n^n-1 ®n-k+l' 

n 

==  -Q] n 
[n - k; Q] 

Hence, the fundamental sequence for 
k k 

X Q exists and is 

(0, Q> 
k z^oes 

0, [k; Q] 
[0; Q] 

showing that 
k k 

X Q e |E . 

[k + 1; Q] 
[1; Q] ’ ••• 

Q.E.D. 
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(4.3.2) Lemma: For a fixed Eulerian triple (Q, g^, q^(x)) , 

k (k) , . 
X n q^_j^(x) 

wh&Te = n(n - 1) ... (n - k + 1) . 

k k 
Moreover, [x Q q (x)] 

x=l 

k > n 

k < n , 

k = n 

k n . 

Proof: The first result is obtained by iterating property Ciii) 

of definition (4.2.1). Then, 

[X^Q\^(X)] 

x=l 

r k (k) / V -| 
Ix n q„_^(x)] 

x=l 

0 if k n 

n! if k = n see C4.2.1(i) 

and (ii)) 

Q.E.D. 

Here we shall show another resemblance of Eulerian differential 

operators to the ordinary differential operator. An Eulerian dif- 

ferential operator Q (together with its Eulerian basic polynomial 

sequence) has a property similar to the Chain Rule of differentiation. 

In differential calculus, we have 

_6_ 
dx 

f (fx) 
d 

dC6x) f (0x) 
_d_ 
dx 

(0x) . 

In Eulerian differentiation, we have: 
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(4.3.3) Proposition; Let CQ» g^> given and 0 a 

constant. Then 

Qq (0x) = nq , (6x) • 0. 
n n-1 

Proof: (xQ)q (0x) = (xQ)A.q (x) 
n u n 

= AQ(xQ)q^Cx) 

= Ag™q„_i 

= 0xnq T(0x) 
n-1 

= xnq T (0x) • 0 . 
n-1 

Cancelling x , we get 

Qq (0x) = nq . (0x) • 0 . Q.E.D. 
n n-1 

By induction on k , one can further deduce; 

(4.3.4) Corollary: Q q^(0x) = n'^ q^ ^ ~ ^ * 

In particular, if k = n , then 

Q’^q (0x) = n!0"^ . 
n 

(4.4) Characterization of Eulerian Basic Polynomial Sequence. We 

noticed that { (x - 1)’^} is not only Eulerian basic (see (4.2.1)) but 

also an Eulerian family of polynomials (see (3.1)). This turns out to 

be true for every Eulerian basic polynomial sequehce, and is a 

fundamental result in characterizing an Eulerian basic polynomial 

sequence. 
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(a) If {q^(x)> is an Eulerian basic potynomiat sequence for 

some Eulerian differential operator Q ^ then it is an 

Eulerian family of polynomials. 

(b) If {q^(x)} is an Eulerian family of polynomials, then it is 

an Eulerian basic polynomial sequence for some Eulerian dif- 

ferential operator. 

Proof: (a) Since 
n r nl n 

[x Q q„(x)]^^^ = I 
VO n 

n = k 
(lemma 4.3.2) 

k , 
we may trivially express the form 

n ^i.Cx) , , 

= J. -TT 
k=0 

By linearity, any polynomial p(x) of degree n can be written 

as 

P(x) I 
k=0 

k! 
r kA , . ^ [x Q p(x)J^^j^ . 

Now suppose p(x) is the polynomial q^(ax) . 

r k k 

k=0 

? , k„k. , ,, 
= ~kT Vn^^)]x=l 

k=0 

" <lk k k 
= I , , [A X Q q (x)] , , k! '■ a ^ - n^ -^x=l 

k=0 

? ,, k (k) 
= X -kT tv " Vk^^>Jx=i 

k=0 
n q, (x) - , 
V k n! . V 
4 ^ - V'i t 

k=0 
n 

(n - k)! ^n-k 

k 
Jo (k) ‘ik^^> Vk^^^^ • 

Then 

(lemma 4.3.1) 

(lemma 4.3.2) 
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This means that the Eulerian basic polynomial sequence {q^(x)} 

for Q is also an Eulerian family. 

(b) Suppose {q^(x)} is an Eulerian family of polynomials and 

q^(x) = c , a non zero constant. Then, Vn > 0 , Va £ R , 

(4.4.1b) q„(ax) = J I"] q^(x)q^_^(a)a'" . 

In particular, when n = 0 and x = a , we have 

qgCa^) = qQCa)q^Ca) 

. 2 i.e. c = c^ 

=> q^ Cx) = c = 1 . 

Next, we are going to show by induction that ^ ^ ^ * 

Putting n = 1 and a = 1 in (4.4.1.b), we have 

q^ (x) = qQ(x)q^(l) + q^(x)qQ(l) = q^ (1) + q^ (x) 

q^(l) = 0 . 

Assume ~ ^ true for n = 1, 2, 3, ... m . When n = m + 1 

amd a = 1 , (4.4.1b) becomes 

q^^(x) = qj,(x)q^j(l) + 0 + ... + 0 + q^j(x)qg(l) 

Hence, by induction, ^ ^ ^ • 
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Now, we define the operator Q by: 

Qq Cx) = \ 
(o 

(x) Vn > 0 

n = 0 

All we need to show is that xQ is Eulerian shift invariant. 

CxQ)Aaq^(x) = xQq„(.ax) 
n 

" Jo (k) 

= X Ijkl 
k 

n~l 

“ * Jo (k+i)^'^ + ‘ik(*>Vk-i^®> 
k+1 

n-1 

= ,L (”k1’k^^>vi-k^^)^' 
k=0 

= nax q ,(ax) 
n-1 

= Aa(xQ)qa(x) 

=o (xQ)Aa = A^CxQ) 

Hence, xQ is Eulerian shift invariant. Q.E.D 



Chapter V 

THE VECTOR SPACE ISOMORPHISM DETERMINED 

BY AN EULERIAN DIFFERENTIAL OPERATOR 

(5.1) Representation of Eulerian Shift Invariant Operators. In 

(4.3.1) , we have already seen that for an Eulerian differential 

R k 
operator Q, x Q is Eulerian shift invariant for all 0 . 

The fact that (JE, +, 6, o, A) is an algebra (see theorem 

(3.4.1) ) enables us to generalize the idea so that any linear 

k k 
combination of xQ ;k=0, 1, 2, ... is also Eulerian shift 

invariant. More precisely. 

(5.1.1) Lemma: Given an Eulerian differential operator Q, for 

any sequence (a^) e |R ^ , 

I 
k=0 

k k 
X Q £ |E . 

Note: The presence of the k! is needed in accordance to our 

later development. 

It is the converse (of the above lemma) that interests us 

the most. As a matter of fact, it turns out to be one of our 

basic results. It is also regarded as a generalization of the 

Taylor expansion theorem for the Eulerian shift invariant operators. 

5.1 
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(5.1.2) Theorem; [3; Theorem 2] (Taylor Expansion of Eulerian 

Shift invariant Operators). Let T € E ond (Q, g^, ^^^Cx)) an 

Eulerian triple. Then 

(5.1.2a) T = I 
k=0 

id ^ 

where ajj, = [Tq^.(x)]^^^ . 

Proof: Since {q^(x)} is Eulerian basic for Q , it is an Eulerian 

family of polynomials and therefore 

n 

k=0 

n Cy) 
i.e. q (xy) = J —~— x n q (x) 

^n k! n-k 
k=0 

r k k 
i.e. q„(xy) = x Q q^(x) 

k=0 
n 

(lemma (4.3.2)) 

Applying T^ to both sides, we have 

m ^ N V ^y^k^^^ k^k Tyq„(xy) = X~ 
k=0 

X Q q^(x) 

but T q (xy) = T q (xy) (proposition (3.3.2)) 
y n XU 

n T q. (y) , 
... T q (xy) = y   x Q q (x) . 

k=0 

Setting y = 1 , we get 

T^n« = tVn^^y>V=l 

n [T„qi,(y)]„_. 
kT 

4k'.y;j 1 k k 
= Z — TT;   X Q q^ (x) 

k=0 
‘n 

= I  Tl  X Q q„ (x) 
k=0 

n 
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This can be extended, by linearity to any polynomial. Hence, 

k k^k T = I x‘‘Q 

where a, = [Tq, (x)] 
x=l 

Q.E.D. 

We should also mention that the above theorem is a generalization 

of the Taylor expansion theorem. 

With minor adjustment of the , one can rewrite C5.1.2a) 

as: 

T= I 
k=0 

k k„k 
X Q 

where [Tq^Cx)]^^^ 

and [k; Q] , the generalized factorial defined in CA»3) comes 

from the Eulerian triple (Q, g^, q^(x)) . The latter version 

turns out to be more convenient to work with in some cases. 

We have just defined a mapping: 

VQ: IR ^ jE such that 

oo a. 
X y V V V n n^n 

n=0 

We are going to show that VQ is a vector space isomorphism where 

IR 
N, 

is a vector space of sequences with respect to 

(i) addition ; i.e. (a„) + (b ) = Ca + b ) ■ n n n n 

and (ii) scalar multiplication "A" i.e. ^“ ^^^n^ 



5.4 

that we are already familiar with. We break the proof of the iso- 

morphism up into individual theorems because we think some of the 

results are so important that special attention is required. 

Theorem (5.1.2) proves that Vg is sitroeative. Next, we are 

going to show that it is also 'inQeot'ive. 

C5.1.3) Theorem: (Unique Representation Theorem). Let 
oo k °° k k 

M = \ a x Q and N = b x Q he two Eulerian shift invariant 
k=0 k=0 

o-perators. M = N iff a. = b, Vk > 0 . 

Proof: To show that a^^ = bj^ Vk > 0 , it suffices to prove 

k^k 
'I ax Q = 6=>a, = 0Vk>0. 

k=0 

k^k 
First, ^ a x Q x^ = 6 x^ =:> a = 0 . 

k=0 

Assume a, = 0 for k=0, 1,2, ...,m-l . 

m 
V k^k m m r k^k m 
2^ a x Q X = 0 X => I a x Q x = 0 

k=0 ^ k=0 " 

i.e. a^g g ^ ... g.x = 0 
m m m-1 1 

This implies a^ = 0 since ^ ^ ^ x 0 in general 

By induction, we conclude that a, = 0 Vk ^ 0 . 

The converse is obvious. Q.E.D. 
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(5.1.4) Lemma: VQ preserves addition, 

oo a, 00 b 

Proof: Let T = ^ and S = \ be two elements 
k=0 k=0 

of IE where e and, from Theorem (5.1.2), 

aj^ = and = [Sq^(x)]^^^ . From Theorem (3.4.1), 
«> ‘-■U Ir 

T + S £ EQ . Thus by Theorem (5.1.2), T + S = I IT ^ ^ 
^ k=0 

where = [CT + 

= [Tq^(x) + Sq^Cx)]^^^ 

= [Tqi^(x)]^^^ + [Sq,,Cx)]^^^ 

That means. 

= ’’k • 

V^((a + b„)) 
Q n n 

00 a 4- b 

= y n! 
n n n 

X Q 
n=0 

% 

When the infinite sum acts on a polynomial of fixed degree, it becomes 

a finite Siam. Thus, 

+ b 
V, «V + (V>= 

n 

r n n n ^ r n 
= ) —r X Q + ) — X Q ^ n! ^ n! 

n n 

n n^n 

OO 

= I 
n=0 

a 
n 

n! 

n_n 
X Q + 

00 

I 
n=0 

b 
n 

n! 

n_n 
X Q (This is done by 

adding zeroes.) 

Hence addition is preserved under Q.E.D. 
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In similar manner, we can prove: 

(5.1.5) Lemma: Vg preserves scalar multiplication. 

Finally, we can conclude that: 

(5.1.6) Theorem: The mapping Vg: H ° E is a vector space 

isomorphism such that 

n=0 

Since E is an E -algebra, there exists for each Eulerian 

differential operator Q , a multiplication on E^O , O > such 

that 

VQ((a^) ® (b„» = VQ«a^)) 0 VQ((b^)) . 

The ring isomorphism problem is to determine the sequence 

(c ) = (a ) ® (b ) 
^ n n 

in terms of the sequences operator Q . 
oo a^ jjj 

We will replace E by E_ = { ^ -j-j- x Q : (a, ) £ E i.e, 
^ k=0 

its representation under Vg when we are considering this ring 

by 

isomorphism problem. 
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THE ALGEBRA ISOMORPHISM DETERMINED BY THE 

ORDINARY DIFFERENTIAL OPERATOR D 

(6.1) Vector Multiplication on E. We have seen in the last 

chapter that given an Eulerian differential operator, Q , we can 

determine a vector space isomorphism V^: |R ^ EQ . Our next goal 

is to extend this to an algebra isomorphism. To do that, we must 

devise a vector multiplication on EQ . The most natural choice 

would be the composition of operators in EQ . 

Now for any n, m ^ 0, and x^Q™ £ Eg . Their composition 

is also Eulerian shift invariant since 

oo k^k 
n.n m.m r „n,m x Q 

x Q X q = I H: ’ CQ) -TY~ '^tiere 
k=0 

H^’"^(Q) = [x’^q’^x™Q^q^(x)]^_j^ . (see theorem (5.1.2)) 

oo n^n oo m^m 
, V X Q , V . X Q 

Moreover, since the operators ) a  — and > b —^ 
’ ^ n n! m m! 

n=0 m=0 
use only finitely many summands for any particular polynomial, we 

have 

n n 
^ Q 

n=0 
n n! I b 

m=0 

m^m 

f m m! 

a b : 
n ra n^n m^m 

n=0 m=0 

= I I 
n=0 m=0 

a b 
n m 

n! m! 

k k 
X Q I X’“(Q) k, 

k=0 

OO 

= I 
k=0 

I I 
n=0 m=0 

a b 
n m 

n! ml 
.n,m 
Hk’ CQ) 

k k 
X Q 
k! 

6.1 
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It is therefore of interest to calculate the coefficients ) 

We state some general properties of ) for any Q and 

calculate their values when Q = D . 

(i) = 0 if k < m or k < n 

This follows directly from the differential properties of Q 

(ii) 

This is because 
mm n n 

X Q X Q 

Ciii) ^ 

k = m 

k m 

Proof : = [x^Q^x^Q^q^^ (x)] 

m^m 
= [x Q 

( k! 
and Civ) 

k![k; Q] 
[k-m; Q] 

0 

k = m 

k 5^ m 

if m :< k 

if m > k 

(see lemma (4.3.2)) 

Proof: H^’^(Q) 
r ra^m k^k , . 
[x Q X Q 

= [x^Q“x\»qQ(x)J^^j^ 

0 

k![k; Q1 
[k-m; Q] 

0 if m > k . 

m < k 

if m > k 

if m ^ k 
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n! mj k! ^ < 4. 

(6.1.1) Lemma; - / (k-n)! (k-m)! (m+n-k)! 5 - 

0 ; otherwise. 

Proof: When m > k or n > k, = 0 from (i) above. 

When k > m + n, = 0 because the factor (x - 1) 

still exists after the action of x^D^x^D^ and H”*^(D) will 

then be zero when x is replaced by 1. 

We are left with the case m, n ^ k < m + n . Without loss 

of generality, we can assume m ^ n , and let m = n + t and 

k = m + s . 

CD) = [x D X D (x - 1) 

r n^n m (m + s)! ^ 
= [x D X —ri ~ Cx - 1) J_ 

S ! X=1 

(m + s)! r n n n+t 

s! 
[x D X (x ~ 1) ] _ 

x-1 

(m + s)! f n 

s! k I [")(D"-jx"+b(Dj(x - 1)")]^_ 

Cm + s)! f^n 

s! 

n 

[-" ,L I <» -» S ! >-j] 
5C=1 

When we substitute x = 1 in, the only non zero term is the one 

with j = s . 

' I Cn + t)l Hk> (D) 
S ! s j(t + s)! 

= k! 
n! mi 

(n - (k - m) ) ! Ck - m) ! C(m - n) -b (k - m) ) ! 

m! k I n 

Ck - n) ! (k - m) ! (n + m - k) 
Q.E.D. 
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Thus, 

n=0 

n_n 
X D 

i  — 
n n! I b 

iin=0 
m m! 

= I k=0 

= I 
k=0 

oo oo a b 
n m n! m! k! 

n! m! (k - n) ! (k - m) ! (n + m - k)!l k! I I 
n=0 m=0 

k k 

nL m=Ln - n)! (k - m) ! (jn + n - k)! 

X D 

m k! 
k^k 

X D 
k! 

/ This is because (i) -7; -77- = 0 whenever n > k , 
(k - n)! 

(ii) (k ^ m)! ~ ^ whenever m > k , 

1 
and (iii) (m + n - k) ! 

= 0 whenever m < k 

\ 

-J 
°° I k n 

= n I I n m-n+k k! 

^ZQ \n=0 m=0 (l^^-Cm-n+k)) ! ((m-n+k)+n-k) ! 
k! 

(replacing m by m-n+k) 

= I 
k=0 

k n 

I I 
n=0 m=0 

k n 

n  m-n+k k! ^ ^ 
(k - n) ! (n - m) ! m! n! 

k k 
X D 
k! 

•J. ^0 11:11:1 
= I 

k=0 

kill n 

I ^ I b (" \ n; n m-n+k I m I 
n=0 m=0 * 

k_k 
X D 

k! 

k^k 
X D 

k! 

It should be understood from the above proof that H^*^(D) can 

be determined explicitly only because the Eulerian basic polynomials 

for D are known to be {(x - 1)’^} and the Leibnitz rule enables 

til 
us to calculate the n derivative of the product of two functions. 

Complication arises in simplifying the coefficients H^*”'^(Q) 

in the general case. However, as we shall see later on 
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our algebra isomorphism does not require the knowledge of the 

simplified form of . 

Before we go any further, we want to make a side-trip to 

study a special type of series known as Format Newton Sertes. 

(6,2) A Motivation to the Study of Formal Newton Series. Mullin 

and Rota in [lo] proved that every shift invariant operator T , 

when expanded with respect to a delta operator P i.e. 

p IT 
T = 2 a , corresponds in a natural way to the formal power 

k=0 ~ ^k 
series f(t) = (also see chapter II). Such an isomorphism 

k=0 
permits one to investigate the properties of the ring of shift invari- 

ant operators via the well explored formal power series. We are going 

to develop the similar type of isomorphism. 

Since an Eulerian shift invariant operator is expanded neither 

in powers of Eulerian differential operator Q , nor in powers of 

xQ , but in a rather peculiar form: 

k k 
X Q k = 0, 1, 2, > 

there was no reason to expect that it would have any relation with 

the formal power series again, and indeed it did not. The following 

lemma which appears in Riordan [13], explains why we choose the 

Formal Newton Series. 

(6.2.1.) Lemma: x^D^ = xD(xD - 1) ... (xD - n +1) Vn > 1. 

The structural resemblance between 

X^D’^ = xD(xD - 1) ... (xD - n + 1) and 

= sCs-1) ... (s - n + 1) 
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k_k 
X D V X D 

strongly suggests that the isomorphic image of L a, -7-r~ > if any, 
^(k) ^ 

should be of the form a^^ ~kT~ ' Such a series is known as a 

Formal Newton Series. 

(6.3) Formal Newton Series: This type of series can be justified 

by interpreting these series as functions from IN^ to IR . The 

justification is given by the following results ((6.3.1) to (6.3.5)). 

(6.3.1) Definition: A formal Newton serves funotvon is a function 

f from NQ to |R such that 

f(s) 
Ck) 

k=0 
k k! 

where Ca.j^) is CL sequence of reals and 

s 
Ck) 

sCs - 1) . . . 

1 

(s - k + 1)- k > 0 

k = 0 . 

Remark; (i) For our purpose, it is necessary for us to restrict 

the domain of f to NQ so that f remains as a 

finite sum. i.e. the sum only goes up to k = s 

because the rest of the terms are zero. 

Cii) From here on, the term Formal Newton Series is used 

while its property as function is understood. 

(iii) For more detailed description on Formal Newton 

Series, see Allaway’s "Extension of Sheffer 

Polynomial sets", £l]. 
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C6.3.2) Leinma: Two format Newton series \ a 
Ck) 

(k) k=0 
k k! and 

I Tt"~ equal if and only if a, = b, Vk ^ 0 
k=0 

Ck) (k) 
Proof; If Y ^1, ‘"V." • = " 7'T'"" » then for all integer n > ( 

k=0 k=0 
n ^Ck) n ^(k) 
I a^ n = 0 , we have a^ = b^ . 

k=0 
When n = 1 , we have a^ + a^*l = bg + b^*l 

i.e. aj^ =, b^ . 

Now assume a. = b. for i=0, 1, 2, ...m. 
11 » > » 

Then 
- \C™ + 1) 

(k) 

I 
k=0 

(m 4- 1) 
(k) 

k! 

m 
implies ^ 

(nH-1) 
(k) 

k=0 
k! 

+ a 

= I ^ 
k=0 

nrfl (m+l)! = I t, 
k=0 

k! 
+ b 

m+l 

^m+1 ^nrfl 

Hence, by induction, a^ = b^ Vk S: 0 . 

The converse is obvious. Q.E.D. 

C6.3.3) Lemma: Two formal Newton series \ a 
Cm) 

Cm) m=0 
m m! and 

Zo • 
^m ~m!— equal and only if Vn ^ 0 

m=0 

C6.3.2a) A" I 
(m)' 

m=0 
m m! 

s=0 [_ 

I b 

(m) 

m=0 
m m! 

Js=0 

where A is the advancing difference operator defined as 

(mfl) 
Cmfl) ! 

Af(s) = f(s + 1) - fCs) . 
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Proof; (6.3.3a) can be rewritten as 

y a A ^ m 
m=0 

n s 
(m) 

_ s=o L 

n s On) 1 ^ ^ , m m! 
m=0 

s=0 

C6.3.3b) 

Noting that (m-n) 

n s 
Cm) 

m! 

(m - n)! 

1 

0 

n < IQ 

n - m 

n > m 

we have, from (6.3.3b), 

I a. 
(m-n) 

i.e. 

m=0 

m=0 

m (m-n)! 

(m) 

s=0 

I b 
(m-n) 

nrhi m! 
Js=0 

m=0 

I b 
m=0 

m (m-n) ! 

s=0 

(m) 

nrKi m! 
Js=0 

When the sums are evaluated at s = 0 , the only non-zero terms are 

when m == 0 . Thus a^ = b^ ; n = 0, 1, 2, . . . , showing that the 

two Newton series are equal. The converse is obvious. Q.E.D. 

We shall use $ to denote the set of all Formal Newton series. 

Binary operations can be defined on S . Let f(s) = I % — 

„(k) k=0 

be two typical elements of 5 . Addition, and g(s) = ^ b 

k=0 

+ , is defined as: 

k k! 

fCs) + g(s) = I 
„(k) ~ (k) 

^ ’’k ~kT“ 
k=0 k=0 

= 5! + b. ) 
k=0 

.(k) 

k! 
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Multiplication, x , is defined as the product of the two series. 

i.e. 

f(s) X g(s) = 

Ck) 

\k=0 
k kl I b 

(k) 

ik=0 
k k! 

To see that S is closed under x ^ we need the following lemma. 

.... n+m - , , , (k) 
o ,N , (n) (m) V k! n! m! s ^ ^ (6.3.4) Lejsna: s s = I ° • 

K.“" U 

(n) _(m) 

Proof: 
n! m 

n \ln + m - k 
m - k ) ( m + n - k) (Ri°^dan [13]; pp. 15) 

n 

I 
k=0 

k=m 

I 
k=m+n 

m+n 

I 
k=m 

m Wn + m - k \ f s 

m / I m + n - k 
(binomial identity) 

_ r /m\|n + m- kW 

■.iotkil m )l 

I (n + m - k)( m) (kl (replacing k by n-hn-k) 

= y I , ™ 1 I (*'^1 ( fl (reversing the order of 
In + m - kl UMkJ sunmiation) 

m+n 

" . ^ hTT 
m! k! S! 

k=m 

m+n 

(n + m - k) ! (k - n) ! (k - m) !m! (s -- k) !k! 

= I k! 
(k) 

, ^ (n + m - k) ! (k - m) ! (k - n) ! k! 
k=m 

n+m 

= I k! 
(k) 

1^=0 ™ “ k) ! Ck - m) ! (k - n) ! k! 

This is done by adding m zeroes as the first m terms and this 

agrees with the general term since 

(k - m) I 
= 0 whenever k < m . 
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„ Cn) (m) r Hence, s s =2 
n+m 

k! m! nl 
(k) 

k=0 
(n + m - k) ! (k - m) ! (k - n) ! kl 

Q.E.D, 

Remark: Lemma (6.3.4) is merely another disguised formulation of the 

Pfaff-Saalschutz summation. That is, (6.3.4) is a special case of 

r |m - tWn + tus 4- t + k| fs + tu s ) 

k>0 ' ^ m + n I ■ I m )ln) 

with t = 0 . For more details, see Andrews [4; pp. 98] and 

Riordan [13; pp. 15]. 

(6.3.5) Lemma; The product of tuo formal Idewton series Is another 

formal Newton series. More precisely 

f(x) X g(s) = I 
(n)\ 

n=0 
n n! I t 

(m) 

m=0 
m m! 

I 
k=0 

I n- I ("1^ 
n=0 m=0 

m-n+k 

/k) 

k! 

Proof: f(s) X g(s) = I I IT ® 
n=0m=0 

00 a b nrtn 
—.V V n m Y 

n! m! , 
k! n! m! Ck) 

„_n ™_n    n-n CuHn-k) ! (k-n) ! (k-m) I k! n=U m=U k=U 

(lemma (6.3.4)) 

Noting that 

oo oo oo 

(nrl-n-k) ! 

oc 

fCs) X g(s) = J I I 
n=0 m=0 k=0 

OO OO CO 

= I I I 
k=0 n=0 m=0 

00 I k 

0 whenever k > m + n , we can write 

„(k) a b 
n m k! 

(k-n)! (k-m)! (m+n-k)! k! 

a b 
n m k! (k) 

■! I i ■„ I c 
k=0\n=0 m=0 * 

(k-n)! (k-m)! (irrtn-k) ! k! 

,(k) 

m I m-n+k k! 

by the same argument as in (6.1.1). Q.E.D. 
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(6.3.6) The distributive law also holds since 

(n) 

I n=0 

n=0 

n n! 

(n) 

00 (m) 

1 ^ I 
m=0 m=0 

m m! j 

n n! 
y (b + c ) 

(m) 

m=0 
m m m! 

k=0\n=0 

k 

k . 1 . n . I P" a I "](b + 
In I n \m i m-n+k 

(definition of addition) 

(k) 

m=0 
^m-n+k ^ ^ k! 

“/k,.. n ic n 

I I W I U-, + I I 
=0\n=0 " m=0 n=0 " m^O 

(lemma (6.3.5)) 

) o(k) n 

m / m-n+k / k I 

s I k ,. . n 

! I ;i ■„ I ; V 
=0\n=0 m=0 ' 

(k) 

n+k I k! 

s 

+ I 
k=0 

k 

I 
n=0 
I CU I |"1<= 4.V \nl n \ mj m-n+k 

Ck) 

(see the remark on 

' g(k) (6.3.1)) 

iol Jo m=0 
k! 

“ / k . n 

+ I I W I "k 
kU„=o'"' "m=0 

k! 

(This is done by 

adding infinitely 

many zeroes to 

(k) the Newton series.) 

I a 
n=0 

(n) 
s  

n n! I b 
(m) 

‘ m=0 
m m! 

+ 

n+k 

n=0 

k! 

(n) 

n n! I c 
m=0 

(m) 
s 

m m! 

(lemma (6.3.5)) 

Finally, we conclude that (S, +, 0, x. A) is an algebra 

since the definitions of the operations were transported via the 

interpretation as functions, and these are subalgebras (of the 

algebra of all functions from to ^). 
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(6.4) The Algebra Isomorphism Theorem. With all the preliminary 

results done, we can now state the isomorphic relationship between 

and § . 

(6.4.1) Theorem: There exists an algebra isomorphism from 

(lEj). +» 0, o, 

4'D= I 
k^k °° (k) 

X D V s ^ 

k=o k=0 

Proof: In view of theorem (5.1.6), we only have to show that (j)jj 

preserves multiplication. 
00 

Let U = \ 
k_k 00 k. k 

X D , ,, V 1- X D 
\ TT" i ‘"k TT- • 

k=0 k=0 

Then, 

u o V = y 
k=0 

00 00 a b 
n m n! I I 

n=0 m=0 

mi k! 

n! m! (k-n)! (k-m)! (n+m-k)! I k! 

= I 
k=0 

k ,, , n I n\\ x^D^ 

I (n ) \-n+k 1 “J| 
n=0 m=0 

(see (6.1.1)) 

Under the mapping. 

D 
cu o V) = I 

k=0 

= ^ 
\n=0 

I [ 1 ^ J b / ^1 \ n j n m-n+k I mj 

(m) \ 

n=0 m=0 

.(n) 

,(k) 

k! 

n n! I b 
m=0 

m m! 

= <J)j^(U) X <j)j^(v) . 

(lemma (6.3.5)) 

Q.E.D. 

In the above theorem, we have restricted ourselves in expanding 

a given Eulerian shift invariant operator in terms of the differential 

operator D only. Our next goal, of course, is to generalize the 

above version so that it is applicable when an Eulerian shift invariant 
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operator is expanded in terms of ANY given Eulerian differential 

operator. 

(6.4.2) Corollary: There exists an algebra isomorphism (|)Q 

from (IEQ, +, 6, o, X) to ($, +, 0, x, X) suoh that 

k^k oo (k) 

I b, 
Jo ^ " k=o 

k Jo (j M [j-k; Q] k! 
where 

Proof: From lemma (4.3.1) and theorem (5.1.2), we have 

I 
k=0 

k_k 00 a, oo 
X Q n k r r k _ k n-, 

a- = I ^ L [x Q (x - 1) ] k k! k» 
k=0 n=0 x=l 

nl 

“ ” k^k 

k=0 n=0 j=0 
= I I [-V I 

C"D" k X 

x=l 
k! n! 

°° °° n . r. 

■,1.L k=0 n=0 j=k 

00 00 

I I I 
n=0 k=0 j=k 

a, n^n . r . /-.I 

I Jo \ »■«> n=0 k=0 j=k 

a. n^n 

The required result follows from Theorem (6.4.1). Q.E.D. 

For simplicity in the discussion of our later works, by 

isomorphism theorem, we are referring to the one described in 

Theorem (6.4.1) rather than the more complicated version stated 

D) 
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in (6.4.2). It should, however, be understood that the theory is 

equally applicable to the generalized version with minor adjustments. 

We discuss some of the consequences of the algebra isomorphism 

theorem. 

(6.4.3) Corollary; Q is an Eulev'lan differential operator if and 

only if xQ corresponds^ under the isomorphism^ to a formal Newton 

series 

f(s) = \ a, ——— such that 
k=0 

f(0) = 0 and f(n) ^ 0 Vn > 1 . 

Proof: If Q is an Eulerian differential operator, then xQ is. 

by definition, Eulerian shift invariant with the expansion 

“ k k V X u 
I a ——— . Under the isomorphism, the corresponding formal 

k=0 
Newton series for xQ is 

f(s) = \ 
k=0 

(k) s ^ 
^k k! 

k k 
X D 

^ k V • 
k=0 

This means f(0) =0 . 

Thus 

and 

-— 1 = xQl = 0 => a I 

Q= I 
k=l 

Qx = 

k-l_k 
X D 

^k k! 

k-l^k 

X 
n V X D 

^ \ k! j 

r (k) n-k 
= I a, —r~.— n x 

lk=l 

n 

k=l 

n 

k=l 

k k! 

n 
(k) 

n-1 

k k! 

= f (n)x 
n~l 
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Also Qx^ = ^ where fundamental sequence 

for Q . Therefore g = f(n) . 

Since, by definition, ^ ^ have Vn > 1 

f(n) 0 . 

Conversely, if xQ corresponds, under the isomorphism, to 

a formal Newton series 

r s^^^ 
f(s) ~ I —r-]— with f(0) = 0 and f (n) ^ 0 Vn > 1 , 

k==0 
then xQ is an Eulerian shift invariant operator such that 

k^k 
xQ = a, • ; or equivalently Q = a 

k=l 
k k! 

k=l 

k-l„k 
X D 

k k! 

°° x^’"^D^ 
Since Qx*^ = ~"17T  1 = 0 » and 

for n ^ 1 

k=l 
k k! 

Qx"= I 
\k=l 

k-l^k 
x D 

^k k! 
n 

X 

= I 
k=l 

k-1 /I s , X (k) n-k 
a^  n^ ^x 
k k 

n (k) 

k=l 
k k! 

n-1 
X 

== f(n)x 
n-1 

there exists a sequence of constants {0, f(l), f(2), ... f(n) ...} 

for Q . In addition, f(n) 0 Vn > 1 , Q is therefore an 

Eulerian differential operator. Q.E.D. 

Remark; With the notations in the preceding corollary, one can 

- oo 
easily see that the fundamental sequence for Q is 
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EULERIAN SHEFFER POLYNOMIALS 

(7.1) Introduction. In [15], Rota, Kahaner and Odlyzko extend the 

theory of polynomials of binomial type to Sheffer polynomials. A 

Sheffer set with respect to the delta operator Q is a sequence of 

polynomials {s^(x)} such that 

(i) Qs (x) = ns (x) 
n n—i 

and (ii) (x) = c 0 . 

Comparing with the definition of basic polynomial sequence given in 

(2.2.4), one can easily see that a Sheffer set has less restriction 

than a basic polynomial sequence. A Sheffer set is therefore not 

necessarily unique with respect to a delta operator. However, a 

Sheffer set still possesses the similar type of characterization 

that a basic set has (see Theorem (2.2.6)). That is: 

(7.1.1) Theorem: (Rota, Kahaner and Odlyzko [15], section 5, 

prop. 6). A sequence {s^(x)} is a Sheffer set with respect to 

a basic set {q^(x)} if and only if 

s„(x + y) = ■ 

Proof: Refer to original paper [15]. 

We shall develop the Eulerian analog of some of these facts. 

7.1 
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(7.2) Eulerian Sheffer Sets. 

(7.2.1) Definition; A 'polynom'ial sequence {s^(x)> is an Eulerian 

Sheffer set for the Eulerian differential operator Q if 

(i) SQ (x) = c 0 

and (ii) Qs (x) = ns ,(x) . 
n n-i 

An example of an Eulerian Sheffer set is ~ (x + 1)^ for 

D because 

SQ (x) = 1 5*^ 0 , 

and Ds^(x) = D(x+ 1)^ = n(x+ 1)^ ^ = ns^ l * 

From the above definition, it is not difficult to see that an 

Eulerian Sheffer set {s (x)} should somehow be related to the n 

Eulerian basic sequence {q^(x)} for Q , One simple relation 

between the two is given in the following lemma. 

(7.2.2) Lemma: (Andrews [3]; Theorem 12) Let {s^(x)} he an 

Eulerian Sheffer set with respect to the Eulerian differential 

operator Q whose basic polynomial sequence is {q^(x)} . Then 

(7.2.2a) s^(x) = J j"js^_j^(l)qj^(x) . 
K."“ U 

Proof I Since s^(x) = c = s^(l) = SQ(l)q^(x) , (7.2.2a) is true 

for n = 0 . Assume (7.2.2a) is true for n = 0, 1, ..., m - 1 . 

Then Qs (x) = ms ,(x) 
m m-1 

m-1 _ 

m _ 

= ” J, r I 
k=l 

m 

k=l 
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CQqgCx) = 0) 

m 

m 

k=0 
c where c is a constant. 

When m = 0, SQ (x) = SQ(1) + C => c = 0 . 
m m 

- ^ Jn !“)Vk<l>‘Jk(-) • k=0 

Hence, by induction, (7.2.2a) is true Vn > 0 . Q.E.D. 

The following theorem provides an important characterization 

for the Eulerian Sheffer set. It was first quoted by Andrews [3], 

Our proof is different than his. 

(7.2.3) Theorem; (s^(x)} t-s an Euter'lan Sheffer set with respect 

to Q if and only if Sj^(x) , with SQ(1) = C 0 , satisfies 

where (q^Cx)) is the Eulerian basic set for Q . 

Proof: If satisfies (7.2.3a), we have in particular 

(7.2.3a) 

n 

k=0 ‘ ‘ 
n 

Then, 

= ns , (x) . 
n-1 
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Hence, {s^(x)} is an Eulerian Sheffer set. Conversely, if 

{s^(x)} is an Eulerian Sheffer set, then SQCI) = C 0 , and 

m 
s (xy) = I I (l)q (xy) 

n=0 ' 
(lemma (7.2.2)) 

n=0 

m n 

k=0 

“ Jo Jo 

n 
(Sj (x) =0 Vj < 0) Jo Jo(n)(k)Vn^l>Vk^*>" 

I I [n+k)rk'')Vn-k‘^^^^n^^)^''‘5k^y> Cconversion formula) 
n=0 k=0 

oo oo 

^ 1 n+k H T ] ®m-n-k > <ln =^''‘ik > 
:=0 n=0 

oo 00 

(k)l”'J)Vn-k'^^>‘ln<^^>^\<^> (binomial Identity) 
:=0 n=0 

Jo Jo rJlVn-k^l^'Jn^") 

OO ni*~lc 

J (kH\(y) I rJ)Vn-k^^)^n(^) = 0 ^ 
k=0 n=0 

0) 

c=0 ■ 

JQ |k)Vk^^>^\(y^ 

(lemma (7.2.2)) 

(sj (x) = 0 Vj < 0) 

which is the required result. Q.E.D. 
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(7.3) Properties of Eulerian Sheffer Set. Since An Eulerian Sheffer 

set has less restriction than the Eulerian basic polynomial sequence, 

one can easily see that some of the properties that a basic set has 

are equally applicable to an Eulerian Sheffer set. One example is 

Qs^(0x) = ns^_j^C0x) ‘0 V0 e |R . 

However, it is the restriction 

q^(l) =0 Vn > 1 

that makes an Eulerian basic set "unique". That is to say, given 

an Eulerian Sheffer set {s^(x)} with respect to Q , we can always 

find another, infintiely many in fact, Eulerian Sheffer set 

{s^(x)} for the same Q . This is described in the following 

proposition. 

(7.3.1) . Proposition; If {s^(x)} 'is an Euler'ian Sheffer set with 

respect to Q whose Eulerian basic set is (q^^Cx)} , then for a 

fixed real value of 9 ^ 

(7.3.1a) I^(x) = J 

is again an Eulerian Sheffer set with respect to Q . 

Proof: Clearly, SQ(x) = 3^(0) 

= c 5^ 0 by definition. 
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Also, Qs (x) 
n n-k 

(X) 

n 

I (k 
;=i ‘ ^ 

= " Ji (k I lhn-k^®>‘lk-l^^) 

= " Jo 1" k Vl-k^®)‘5k<^> 

= ns (x) 
n~i 

Thus, s (x) is also an Eulerian Sheffer set for Q . Q.E.D. 
n 

It is obvious that s (x) = s (x) when 0=1. As a simple 
n n 

illustration, we use = (x - 1)^ and ~ respec- 

tively the Eulerian basic polynomial sequence and Eulerian Sheffer 

set for D . If we put 0 = 1 + (j) in (7.3.1a), we have 

s 
n (x) 1 l"](l + - 1)*^ 

k=0 ' ' 

= (x + 4))’^ 

which, as (j) changes, generates a series of Eulerian Sheffer sets 

with respect to the same operator D . However, (7.3.1a) is not 

"powerful" enough to generate all the Eulerian Sheffer sets. For 

instance, ~ (x - 1)^ + x^ is another Eulerian Sheffer set 

for D but it cannot be generated from (x + 4>)^ ; V(f) e IR . 
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So far our theory is a close parallel to the result of Rota, 

Kahanar and Odlyzko ([is]). The following result exhibits the 

beginning of the divergence of the theories. In section 5, propo- 

sition 1, of [is]. Rota (et al) stated that there is an invertible 

shift invariant operator T relating the basic sequence {q^(x)} of 

the delta operator Q to a Sheffer set {s^(x)} with respect to the 

same delta operator by 

T~^s (x) = q„(x) . 

In our theory, we found that such an operator, if it exists, only 

generates Eulerian Sheffer sets which are constant multiples of the 

Eulerian basic set. 

(7.3.2) Proposition: Let (q^^Cx)} and {s^(x)} be^ ves'peot'tvetyy 

the Eutertan haste potynomtat sequence and Eulertan Sheffer set for 

Q . Deftne S as 

S: qj^(x) s^(x) . 

If S is Eulerian shift invarianty then S = cl where c = s^^Cx) 

and I is the identity map. 

Proof: Let ^^n^ respectively the fundamental 

sequences for S and Q . We first show that S commutes with Q , 

SQ = QS . 

QSq^(x) = Qs^(x) = ns^_^(x) = nSq^__j^(x) = SQq^(x) . 

i.e. 
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Next, we show that the are all equal. Since ^ 0 Vn > 0 , 

—-— is well defined, we can write Sx^ = SQ — x^"^^ 
’n+1 

g 

^n+1 

■i- QSx"+^ 
n+1 

1 

’n+1 
Q^n+1^ 

n+1 

— 8 
Sn+1 

^n+l"^ 

n 

But Sx^ = c by definition, 
n 

Thus Cn = c, = Co .... = c = ... . 
0 12 n 

In particular, Sq^(x) = SQ(x) 

i.e. SI = c . 

rr,. - . . r, This implies Sx = cx 

Hence, S = cl . Q.E.D. 

Remark: The above result is immediate from the fact that QS = SQ 

with S being Eulerian shift invariant while Q is not. 

The subsequent development of Rota’s (et al) work on Sheffer 

polynomials depends very much on the existence of such an invertible 

shift invariant operator. In our case, however, it is not of too 

much interest to study an operator that "creates" Eulerian Sheffer 

sets which merely are constant multiples of the original Eulerian 

basic sequence. In fact, it is the diversion of our theory that 

makes drawing further analogs Rota’s (et al) theory difficult. 
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APPLICATIONS 

(8.1) In this chapter, we provide some simple applications using 

the expansion theorem and the algebra isomorphism theorem. 

(8.1.1) According to the isomorphism theorem CTheorem C6.4.1)), the 

image of s^^^ is x^D^; n = 0, 1, 2, ... . Thus from the following 

well known relationship 

(n) 
n 

= s(n, k)s , 
k=0 

(8.1.1a) 

where s(n, k) is the Stirling numbers of the first kind, we obtain 

n 
^ s(n, k)(xD) 

k=0 

n 
Then X’^D'^XV = \ I s(n, k)(xD) 

\k=0 

m 
I s(m, j)(xD)^ 

3=0 

= I s(n, k)s(m, j)(xD) ^ 
k=0 j=0 

n nri-k 
= I I s(n, k)s(m, j - k)(xD)^ . 

k=0 j=k 

It provides an alternate rule in determining H|^’^(D) in (6.1.1). 

(8.2.1) Our second application comes from the inverse formula of 

(8.1.la), i.e. 

C8.2.1a) = I S(n, k)s^^^ , 
k=0 

where S(n, k) is the Stirling number of the second kind. Under 

the isomorphism, (8.2.1a) becomes 

8.1 
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n 
(8.2.1b) (xD)^ = S(n, k)k! 

k=0 

(xD)^ ; n = 0, 1, 2, ... , is clearly Eulerian shift invariant and 

therefore the right hand side of (8.2.1b) is its expansion, in the 

sense of Theorem (5.1.2). Thus the Stirling number of the second 

kind can be determined systematically by the following formula 

S(n, k) = ^ [(xD)^(x - • 

k! 

(8.3.1) We use denote the rising factorial sequence. 

i.e. [x] = x(x + 1)(x + 2) ... (x + n - 1) . 
n 

Similarly, [xD]^ = xD(xD +1) ... (xD + n - 1) which is understood 

to be Eulerian invariant and therefore by the expansion theorem. 

n 
[xDj = y J , —r-,— for some J , e IR . -*11 n,k k! n,k 

Riordan in [13] proved that 

[xD]^ = (-xD) ; (xD)^ - x^^ , 

(P) where (x) , the generalized Laguerre polynomial, is given by 

(p)_ ? /"■•■ P' 
n - ki k! 

Thus, 

(8.3.1a) = Jjn - k) kf • 

By the isomorphism theorem, we have 

w„ = l 
k=0 
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For reference purposes, besides (8.2.1b) and (8.3.1a), we also 

list the following identities, which appear in Riordan [13]. 

k„k n K 1 
(Dx)’^ = I k! S(n + 1, k + 1) 

k=0 

\(n) n-l^n-1 . n^n 
(Dx)^ ^ = nx D + X D 

The isomorphic image of Dx is s + 1 . This follows directly 

from the identity 

Dx = I + xD . 

(8.4.1) We extend a little further the discussion on the inverse 

of an Eulerian shift invariant operator mentioned in (3.4.2). Let 

F be an invertible Eulerian shift invariant operator with fundamental 
(k) 

sequence {f } , and f(s) = y 
n , . 

k=0 
k! 

its corresponding formal 

Newton series (under the isomorphism). Clearly, we have 

Fx^ =fx^;f ^ 0 V >0 
n n n 

and 

^-1 

-In 1 n 
F X = -Y~ X 

n 
(Corollary (3.4.2)) . 

which again is Eulerian shift invariant can therefore be expanded as 

F->. y F 2^ 

k=0 

where b, = [F ^(x - 1)^] 
rC X— J. 

k-j j 
X 

-f I J 
Lj=o'J' j 

x=l 

x=l 

-i- 
f. 

1=0 J 

But f = f(j) = I 
n . (n) 

n=0 
n! 

(see Corollary (6.4.3)). 
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Therefore, 
-1 

1 I -1—^ 

-0 3=0 ^ 

X 
kjjk 

ki 

(n) 

n=0 n! 

We have thus expressed the coefficients of the expansion of 

the inverse operator F ^ , i.e. b^’s , in terms of the 

in the expansion of F . 

(8.5) As a partial solution to the connecting coefficients problem 

mentioned in Chapter I, we give the following theorem. 

(8.5.1) Theorem: Given Eulerian triples (P, TT^, P^J(X)) and 

(Q, 8n» 

n [Q 

 in  
k=0 

a € JR . 

Proof: Given any real number a , the Eulerian shift operator A„ 
■ a 

can be written, according to the expansion theorem, as 

A = y a, c\ Lt 
k=0 

k k 
X Q 

where 

1 .e. 

(8.5.1a) 

“ \(a) k k 
A = I —— X Q and equivalently, 

k=0 

K = I ^ P • 
^ n=0 

k Ic 
Since x Q is also Eulerian shift invariant (Lemma C4.3.1)), 

it can be expanded again, in terms of P , such that 
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A, = I 
“ \Ca) 

a A. u j 
k=0 

«> [x^Q^p (x)] . 
I- xV 

n=0 
i.e. 

(8.5.lb) K = I 
n=0 

“ [Q P„W]x=i 
I 

k=0 

n„n X P 
k! ^k^^^ “nT“ ' ^k^x=I " ^x=l 

Equating (8.5.1a) and (8.5.1b), we conclude, by the unique 

representation theorem, that 

n [Q\(X)] 

Pn(a) = I  Ti  ^k^^^ Q.E.D. 
k=0 

We shall use our model sequence {(x - 1)^} , substituting 

{pn(x)} or/and (qj^(x)} in the above formula, to obtain some 

specific results. 

(8.5.2) (i) When 

then (a - l)’^ 

= I I (^)Ca- 1)’^ 
k=Oj=k'^' 

from which we deduce the well known binomial identity: 

1 k = n 

0 otherwise. 

(ii) When qj^(a) = (a - 1)^ , 

n [DS^(X)]_ . 

then ^ * 
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Since any polynomial 

Eulerian basic set {p (x)} 

for all polynomials p(x) , 

p(x) = 

p(x) is a linear combination of the 

, the above equation will also hold 

that is, 

I 
k=0 

k! 

which is precisely the Taylor series of p(x) expanded at x = 1 
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APPENDIX 

Ihrig and Ismail [9] introduced a q-umbral calculus by 

introducing * , known as the star product, on K[x] , the vector 

space of all polynomials over a field K of characteristic zero. 

* is defined by the following: 

Definition: [9; definition 2.1] *K[X] W'itt denote the atgebra 

of ‘polynomials equipped with the usual additiony the usual rmlti- 

plioation by scalars and by the star product defined on the 

given set of polynomials {p^(x)> by 

p * p = p 
^n ^m -^n+m 

They pointed out that from a given polynomial p(x) = ^c.x^ , 

* i ^ 
one can define the associated polynomial p (x) via a * multipli- 

cation such that 

p*(x) = I c^x^* 

n* 
where q means q*q*q* ... *q for all q e P 

   ^ 
n times 

From this they claimed that almost any sequence of polynomials may 

be considered the same as any other sequence as long as one is 

allowed to alter the multiplication. This is more precisely stated 

as follows: 

(9.1.1) Theorem: (The Umbral Lemma) {9: theorem 3.lJ Let 

{PnCx)} and {b^(x)} be two sequences of polynomials. Then (a) 

and (b) are equivalent. 
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(a) There is a unique multiptioation * on K[X] suoh that 

(i) p„(x) = b*(x); n = 0, 1, 2, ... 

(ii) There exists a mapping S:(K[x],«) (K[x] , *) 

such that S is an isomorphism and 

SCx) = X , SCI) =1 

(b) PQ Cx) = b^ Cx) and Cx) = b^ Cx) . 

As a result of the lemma, they illustrated that one may treat anv 

polynomial as a monomial by proving the following theorem: 

C9.1.2) Theorem: [9: theorem 3.2j Let {pj^(x)} he any polynomial 

set. Then there exists a product * such that 

Pj^ (x) = (c (x - a)) ^ 

where Pj (x) = cCx - a) . 

Theorem (9.1.2) provides the foundation for the concept of 

formally manipulating certain families of polynomials (p^^Cx)} as 

if Pj^(x) - x^ and hence less obvious results of {Pj^(x)} can be 

deduced. Thus, the main object is to develop formulas for expressing 

an Eulerian family of polynomials (throughout this section, definition 

(1.4.1) is used for the Eulerian family of polynomials) in terms of 

monomials and vice versa. To do that, they used Tensor product to 

define the product of two functionals L and M by 

<LM|X^> = <L)X^><M|X^> 

It turns out that: 



iii 

(9.1.3) Theorem; [9; theorem 4.1] A ‘polynomial set {Pj^(x)} is 

an Eulerian family iff 

<LM|PJ^(X)> = \ [n <L|PJ^CX)><M|X PJ^_J^CX)> . 

0 *■ **q 

For a given Eulerian family. {p^^Cx)} such that 

Pj^(x) — ^ c X ; n — 0/ 1/ 2, ... / 
m=0 ' 

then d in 
nm 

n 

x^ = y d p Cx) ; n = 0, 1 / 2, . . . 
n,m m 

m=0 

is given by 

1 c /c (see [9]; Theorem 4.2, 4.3). 
ml n-m,n-m nn 

■ *^q 

The inverse problem, namely expressing the p's in terms of the 

monomials, requires the generating function techniques mentioned 

in Andrews' paper [3] : 

C9.1.4) Theorem; ([3]; corollary of theorem 6) If Pj^(x) is an 

Eulerian family of polynomials, and if c^ is the leading coefficient 

of Pj^Cx) , then 

(9.1.4a) I 
n>0 

P„(x)t 
n 

(q) n 

f(t) = \ 
n>0 

f (xt) 

f Ct) 

c t 
n 

n 

where 



iv 

From (9.1.4a)/ it is not difficult to see that 

n 
(9.1.4b) ' = Y PI e (x) 

m=0 -^q 

where 

( ' 1 n = 0 
e (x) = \ 

l(x - 1) (x - q) (x - q^ ) n > 0 

is an Eulerian family. The inverse relation to (9.1.4b) is given by; 

(9.1.5) Theorem; (Gauss' Binomial Theorem) {9; theorem 4.5j The 

polynomials given explicitly by 

9n(x) = I □ q(n-m) (n-m-l)/2 _ 
m=0 ^ "^q 

The object of this appendix is to provide a brief reference to 

Ihrig and Ismail's work on Eulerian fcimily of polynomials. Some 

of their important results have not been mentioned. Interested 

readers should refer to the original publication. 
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