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Abstract 

A graph G is perfectly orderable if it admits an order < on its vertices such that the 

sequential coloring algorithm delivers an optimum coloring on each induced subgraph 

(H, <) of (G, <). A graph is a threshold graph if it contains no P4 , 21\2 • or C4 as 

induced subgraph. A theorem of Chvatal, Hoang, Mahadev and de \VetTa states 

that a graph is perfectly orderable if it can be written as the union of two threshold 

graphs. In this thesis, we investigate possible generalizations of the abo\·e theorem. 

We conjecture that if G is the union of two graphs G1 and G2 then G is perfectly 

orderable whenever (i) G1 and G2 are both P4-free and 2/{2-free, or (ii) G1 is P4-free, 

2K2-free and G2 is P4-free, C4 -free. We show that the complement of the chordless 

cycle with at least five vertices cannot be a counter-example to our conjecture and 

we prove, jointly with Hoang, a special case of (i): if G1 and G2 are two edge-

disjoint graphs that are P4-free and 2K2-free then the union of G1 and G2 is perfectly 

orderable. 
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Chapter 1 

INTRODUCTION 

In this chapter, a brief introduction to the graph coloring problem and its appli-

cation is given, followed by an overview of the thesis. 

1.1 Graph Coloring Problem 

Graph coloring problem is to color the vertices of a graph using a minimum number 

of colors, subject to the restriction that no two adjacent vertices get the same color. 

Ever since it was originally formulated in the last century, finding an efficient way 

to optimally color a graph has attracted the interests of mathematicians. Although 

many significant results have been derived in this field, it is still left to be one of the 

most intractable problems in discrete mathematics. 

We now give the definition of the graph coloring problem in the term of graph 

theory: 

Definition 1.1 A graph G is said to be r-colorable if its vertices can be colored with 

r colors in such a way so that no two adjacent vertices are of the same color. The 

smallest number r for which the graph is r-colorable is called the chromatic number 

x( G) of the graph and finding this number is referred to as the coloring problem. 

1 
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Here, G is assumed to be a simple graph, that is. an undirected graph with neither 

loops nor multiple edges. 

1.2 Applications 

The earliest application of graph coloring can be traced back to the last century 

when it was originally formulated. The cartographers asked for a minimum number 

of colors to color a political map in such a way that no two neighbouring countries 

get the same color. In this ~ different countries can be regarded as the set of 

vertices V in G, and the two vertices of V are adjacent if and only if the two countries 

they represent are neighbours. They predicted that four colors always suffice. This 

is known as the Four Colo1· Problem, which was solved by 1\ppel and Haken ([1], [2]) 

in 1977. 

A contemporary application of the coloring problem is the scheduling and loading 

problem, as illustrated in the following example. 

A computer program stores the values of its variables in memory. For arithmetic 

computations, the values must be entered in "registers11• Registers are expensive, so 

we want to use them efficiently. If two variables are not used at the same time, we 

can allocate them to the same register. For each variable, we compute the first and 

last time it is used. A variable is active during the interval between these times. We 

define a graph with the variables as vertices, in which two vertices are adjacent if 

they are active at a common time. The number of registers needed is the optimum 

coloring of the corresponding graph. Such a graph is called an interval graph: 

Definition 1.2 Given any family of intervals, we can define a graph whose vertices 

are the intervals, with vertices adjacent when the intervals intersect. A graph formed 

in this way is an interval graph, and the family of intervals is an interval representa-

tion of the graph. 

2 
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Interval graphs belong to the class of triangulated graphs, the optimum coloring of 

which can be obtained in polynomial time ((9]). We will discuss triangulated graphs 

in more detail later. 

1.3 Overview of the Thesis 

This thesis is concerned with the perfect orderability of the union of two graphs. 

The concept of perfectly orderable graph was developed with the motivation to soh·e 

the graph coloring problem. After a brief introduction to the graph coloring problem 

and its application, in chapter 2, we shall give a brief survey of two graph coloring 

techniques: maximal independent set and sequential approaches. We shall introduce 

"perfectly ordered graphs" which are the ordered graphs !or which the sequential 

algorithm delivers an optimum coloring. Chvatal, Hoang, Mahadev and de vVerra 

proved that a graph is perfectly orderable if it is the union of two threshold graphs. In 

chapter 3, we shall investigate possible generalizations of this theorem. In particular, 

we conjecture that if G is the union of two graphs G1 and G2 then G is perfectly 

orderable whenever (i) G1 and G2 are both P4-free and 2K2-free, or (ii) G1 is P4-free, 

2I<2-free and G2 is P4-free, C4-free. We show that the complement of the chordless 

cycle with at least five vertices cannot be a counter-example to our conjecture and 

we prove, jointly with Hoang, a special case of (i): if G1 and G2 are two edge-

disjoint graphs that are P4-free and 2I<2-free then the union of G1 and G2 is perfectly 

orderable. 

3 
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Chapter 2 

GRAPH COLORING TECHNIQUES 

AND PERFECTLY ORDERABLE 

GRAPHS 

In this chapter, a further discussion of the graph coloring is given. Despite the NP-

complete property of this problem, we introduce two basic approaches to color a graph: 

maximal independent set and sequential, followed by a more detailed addressing on 

the concept and study of perfectly orderable graphs. 

2.1 NP-Completeness 

The coloring problem was proved to belong to the class of NP-complete problems 

([7]), and worse than that, a polynomial approximation algorithm with a constant 

error ratio cannot exist unless P = N P ([16]). 

As a result of its complexity, although the number of papers on the coloring 

problem exceeds that on any other graph problem, no formula has been found for the 

chromatic number of an arbitrary graph and we must thus be satisfied with bound 

estimates. Here, we are going to introduce only two simple bounds: 

4 
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i)lower bound: < ••• :(G) ~ x(G) (2.1) 

w(G) is the number of vertices in the largest clique of G. Since all vertices of any 

clique of G must have different colors, this lower bound is obvious. 

ii)upper bound: x(G) ~ u(G) + 1 (2.2) 

~  denotes the maximum degree of a vertex of G. This inequality follows from 

the observation that if ~  + 1 colors are available, then at each vertex v of the 

graph G at least one of the colors can be used, since at most ~  colors are used to 

color the neighbours of v. Brooks {[18]) proved further that there are only two classes 

of graphs for which the upper-bound holds with equality: odd cycles and complete 

graphs. 

Despite the great difficulty, many efforts have been given to tackle the coloring 

problem. There are basicly two approaches: independent set and sequentiaL 

2.2 Maximal Independent Set Approach 

A k-coloring of G is a partition of the set of vertices of G into k independent 

sets Vi, \12, ... , Vk such that Vi n V; = 0 for i =1-j, i,j = 1, 2, ... , k, and Uf=1 Vi = v. 
Such a partition is called a k-coloring partition of V. Thus, the coloring problem is 

equivalent to finding a minimum k in a k-coloring partition of G. 

Let Vi, \12, ... , Vk be a k-coloring partition of a k-colorable graph G. Then we can 

construct a /-coloring partition v;' v;' ... , VI' of G such that v; is a maximal {in the 
sense of set-inclusion) independent set of G, and l ~ kin the following way: First set 

l{ = Vi, and for each vertex x in V2 U \13 ... U Vk. we put x in v;' if and only if x has 

5 
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no neighbour in v;. Then we set Vr' = Vi-{ xlx E V;} for 2 :::; i:::; k. It follows that 
there exists a maximal independent subset U of the vertices of G such that 

x(G) = x(Gv-u) + 1 . (2.3) 

( Gv -U is the subgraph of G induced by \1 -U.) 

There is a finite number of maximal independent sets ltV in G. minimizing m·er 

all such subsets, we obtain 

x(G) =min x(Gv-w) + 1 
~  . 

( 2.-1) 

Equation 2.4 is the basis for the following algorithm (Maximal Independent Set 

approach, or MIS) for computing the chromatic number: 

Procedure MIS( G, k); 

Input: a non-empty graph G. 

output: chromatic number k of G. 

begin {procedure} 

if G = 0 then k := 0 

else 

begin 

k := IV(G)I; 

for each maximal independent set S of G do 

begin 

MIS( G-S, l); 

if (l + 1) < k then k := l + 1; 

end; 

end; 

end; {procedure} 

6 
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It is easy to see that procedure MIS can be modified to produce a k-coloring of a 

k-chromatic graph. The complexity of this method is 0( mn2.445n) (see [19] ~ as 11sual 

n and m denote the number of vertices and edges respectively). 

2.3 Sequential Approach 

Coloring function is often used when discussing the sequential approach for col-

oring a graph. 

Definition 2.1 A function f determines a k-coloring of G. if 

f : v -+ { 1, 2, ... , k} (2.5) 

with f(i) # f(j) for all (i,j) E E. A function that defines a k-coloring is called 

the k-coloring function. 

A sequential approach can be stated as the following greedy algorithm: 

Algorithm (Greedy coloring) The greedy coloring with respect to a vertex order-

ing V17 ... , Vn of V(G) is obtained by coloring vertices in the order v17 •.. , Vn, assigning 

to Vi the smallest-indexed color not already used on its lower-indexed neighbours. 

From the above sequential approach, it is easy to determine an upper bound 

u.s( G; ~  v2, ... , vn) for the number of colors Xs( G) used by the sequential algorithm 

applied to G and the ordering of its vertices v17 v2, ... , Vn· Every vertex Vi can be 

colored by color i, therefore f( vi) ~ i. On the other hand, at least one of the first 

deg( vi) + 1 colors can be assigned to Vi. Hence, 

f(vi) < min{i,deg(vi) + 1} (2.6) 

7 
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for every i = 1, 2, ... , n, and thus 

x.,(G) S u.,(G;vl,v2,--.,vn) = Ql<axmin{i,deg(vi) + 1} 
z_n 

(2.7) 

This inequality is obtained without any assumption about the ordering of vertices 

of G. 

It is obvious that in a sequential approach, the key point is to order the vertices 

of G, because it exclusively decides the behaviour of the greedy algorithm. 

Welsh and Powell ([6]) gave the first version of sequential method by ordering the 

vertices according to nonincreasing degree, deg(vi) ~ deg(v2) ~ ••• ~ deg(vn)-Such 

an ordering is called the largest-first ordering, or LF. 

A closer inspection of the algorithm and the proof of the inequality(2.7) reveals 

that for a given ordering vh v2, ... , Vn of the vertices of a graph G, instead of !(vi) S 

1 + deg(vi) we have in fact f(vi) S 1 + degi(vi), where degi(vi) denotes the degree 

of vertex Vi in the subgraph of G induced by Vt, v2, •.• , Vi- Therefore, the algorithm 

never requires more than max{ 1 + degi( vi) : 1 S i S n} colors; hence 

x.,(G) S u:(G;vl,v2,---,vn) = 1 + 1~ ~ degi(vi) 

The following procedure finds a vertex ordering which minimizes 

L Vn is a minimum degree vertex of G. 

(2.8) 

2. For i = n -1, n -2, ... , 2, 1, Vi is a minimum degree vertex in the subgraph of 

G induced by V-{vn, Vn-b ... , Vi+t}-

Such an ordering is called smallest-last SL. 

Both LF and SL algorithms may improve the upper bound (2.2) substantially. 

But neither of them can guarantee an optimum coloring of an arbitrary graph G. It 

8 
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is natural for one to ask such a question: for which kind of ordered graphs does the 

greedy algorithm produce an optimum coloring? (An ordered graph is a graph with 

a given total order < on its vertices.) This is what motivated V.Chvatal to propose 

the concept of perfectly orderable graph. 

2.4 Perfectly Orderable Graph 

In this section, we introduce the concept of perfectly orderable graph, and the 

well-known theorem developed by Chvatal that reveals the equivalent nature of per-

fectly orderability and admissi,·e order. Knowing that to recognize perfectly orderable 

graphs is N P-complete, we introduce some subclasses of perfectly orderable graphs, 

many of which can be recognized in polynomial time. 

2.5 Definition and Theorem 

Definition 2.2 (Chvatal {3]} .4.n obstruction in an ordered graph (G, <) is a set of 

four vertices a, b, c, d with edges ab, be, cd (and no other edges) and a < b, d < 
c. A linear order on the set of vertices of a graph will be called i) admissible if it 

creates no obstruction and ii) perfect if, for each induced ordered subgraph H, the 

greedy algorithm produces an optimum coloring of H. A graph will be called perfectly 

orderable if it admits a perfect order. 

Chvatal also revealed the nature between perfect order and admissible order by 

proving the following theorem, which becomes the criterion for identifying perfectly 

orderable graphs: 

Theorem 2.1 (Chvatal {3]} A linear order of the set of vertices of a graph is perfect 

if and only if it is admissible. 

9 
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Proof: Since the class of graphs having obstruction-free orderings is hereditary 

(the inherited ordering for an induced subgraph is obstruction-free), it suffices to show 

that an obstruction-free ordering L gives a greedy coloring of G that is optimum. [f 

the greedy coloring us·es k colors for the ordering L, then optimality can be established 

by showing that G has a k-clique (a clique on k vertices). To show that such a clique 

does exist, we introduce the following lemma: 

Lemma 2.1 Suppose that G has a clique Q and a stable set S disjoint from Q, and 

suppose that for each vertex w E Q there is a vertex p( w) E S such that p( w) and 

w are adjacent. If L is an obstruction-free ordering of G such that p( w) < w for all 

w E Q 1 then some p( w) E S is adjacent to all of Q. 

Proof: By induction on IQI. The lemma holds trivially for IQI = 1, so we may 

assume IQI > 1. For each wE Q, the graph Q- w satisfies the hypotheses using the 

clique Q- w and the stable set {p( u) : u E Q- w}. By the induction hypothesis there 

is a vertex w• E Q- w such that p( w•) is adjacent to all Q- w. We may assume that 

p(w•) is not adjacent tow for every wE Q (for otherwise, p(w•) is adjacent to all of 

Q and we are done). This assigns a unique w• to every w, since p( w•) is nonadjacent 

only to w among Q. So setting u( w) = w• defines a bijection u on the vertices of Q. 

Let v be the least vertex of Q in L. Let b, c E Q be the vertices such that b• = v 

and c· = b. Let a = p(b) and d = p(v). Because p(w•) is not adjacent to w and 

p( w) < w, we have that d is not adjacent to b, a is not adjacent to c, and d < v and 

a < b. Since a, d belong to the stable set S, a is not adjacent to d either (see the 

Figure 2.1 bellow. An oriented edge of the form x-+ y means x < y and xy E E.) 

Because d = p( b• ), the only vertex of Q nonadjacent to d is b, which implies that 

cis adjacent to d. Since d = p(v) < v < c in L, the edge de is oriented as d- c, 

which implies that a, b, c and d induce an obstruction, a contradiction. 0 

Now we continue to prove the Theorem 2.1. 

10 
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Figure 2.1 

Let f: li(G)--+ {l,2, ... ,A·} be the coloring ~ by the greedy algorithm 

with this ordering. Let i be the smallest integer such that G has a clique consisting of 

vertices Wi+l, ... , wk such that f( Wj) = j. Since f uses k on some vertex, such a clique 

exists. If i = 0, then G has a k-clique. Suppose i > 0. For each w; there is a vertex 

p( w;) such that p( w;) < w; in L and f(p( w;)) = i; otherwise the greedy coloring 

would have used a lower color on w;. Since the vertices inS= {p(wi+I), ... ,p(wk)} all 

have color i, S is a stable set. Hence, the conditions of the Lemma 2.1 are satisfied, 

and there is a vertex of S that can be added to the clique and called Wi, which 

contradicts the minimality of i. D 

Perfectly orderable graphs generalize many well-known classes of graphs, such as 

comparability graphs, triangulated graphs and their complements. We shall discuss 

this fact later. 

2.6 Recognizing Perfectly Orderable Graphs is NP-Complete 

When Chvatal introduced the notion of perfectly orderable graphs, he also posed 

the question: how difficult is it to recognize perfectly orderable graphs? Middendorf 

11 
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and Pfeiffer answered this question by proving the following theorem: 

Theorem 2.2 (Middendorf, Pfeiffer {17]} To decide whether a graph admits a perfect 

order is N P -complete. 0 

They proved the theorem by giving a reduction of 3SAT to the problem of deciding 

whether a graph admits a perfect order. 

2. 7 Orientations and Perfect Orderability 

When studying perfectly orderable graphs, sometimes it is convenient to work 

with orientations instead of orders. 

Definition 2.3 An orientation U of a graph G is a directed graph obtained from G 

by assigning a direction to each edge of G. 

To an ordered graph (G, <L there corresponds an orientation D(G, <) of G such 

that ab E D(G, <) if and only if ab E E(G) and a < b. So a graph is perfectly 

orderable if and only if it admits an acyclic orientation that does not contain an 

induced subgraph isomorphic to the Figure 2.2: 

4 :' 

bf .,___ --+---31 ___.l e 

Figure 2.2: An obstruction. 

Equivalently: a graph is perfectly orderable if and only if it admits an acyclic 

orientation in which each induced path of length three is one of the three types in 

Figure 2.3: 

12 
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Type 1 

Type 2 

Type 3 

Figure 2.3 

Although the class of perfectly orderable graphs has very nice properties in the 

sense of optimization, there is no known polynomial-time algorithm to recognize it. 

However, many subclasses of perfectly orderable graphs with special characteristics 

have been studied, many of which can be recognized in polynomial time. Next, we 

are going to introduce some of the known classes of perfectly orderable graphs. 

2.8 Some Known Subclasses of Perfectly Orderable Graphs 

2.8.1 Comparability Graphs 

Definition 2.4 A simple graph G is a comparability graph if it has a transitive orien-

tation, which is an acyclic orientation such that if xy,.yz E E(G), x --t y andy --t z, 

then xz E E(G) and x --t z. 

From Definition 2.4, a transitive orientation implies that each induced P3 in a 

comparability graph is of the types in Figure 2 ~ and it is clear there is no obstruction. 

So comparability graphs are perfectly orderable. 

13 
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or 

Figure 2.4: Transitive orientation. 

The following theorem of Ghouila-Houri ([8]) is the key to a polynomial-time 

algorithm to recognize comparability graphs. 

Theorem 2.3 A graph is a comparability graph if and only if il admits an orientation 

that contains no induced subgraph isomorphic to the graph in FigUT·e 2.5 (a se rni-

transitive orientation). 0 

Note that in the above theorem, the orientation may contain directed cycles. 

Figure 2.5: Semi-transitive orientation. 

2.8.2 Triangulated Graphs and Cotriangulated Graphs 

Definition 2.5 A triangulated graph G is a graph such that every cycle of length ~ 4 

in G has a chord, that is, an edge joining two non-consecutive vertices of the cycle. 

It is also called chordal, rigid-circuit, monotone transitive, and perfect elimination 

graph. 

A triangulated graph G has the property that every induced subgraph contains 

a vertex whose neighbourhood induces a clique (a simplicial vertex). It follows that 

it admits an order <, such that Vi is simplicial in the subgraph induced by H = 

14 
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{xlx < vi} U{ vi}. Such an order is called a simplicial order. In a simplicial order, 

each P3 is of the types shown in Figure 2.6. So it is obvious that a simplicial order 

is a perfect order. Testing whether a graph is triangulated is polynomially equivalent 

to testing whether a graph contains a simplicial vertex which can be obviously solved 

in polynomial time. 

or 

Figure 2.6: Simplicial orientation. 

Definition 2.6 A cotriangulated graph is the complement of a triangulated graph. 

In a triangulated graph G, the simplicial order implies that each P4 is of the Type 

1 or 2 in Figure 2.3. In the complement G of G, define an order <a such that x <a y 

if and only if y <ax. We shall show that the order <a contains no obstruction. 

By abed, we denote the P4 with vertices a, b, c, d, edges ab, be, cd (and no other 

edges). If abed is a P4 of G, then its complement in G is bdac. Suppose abed is a 

P4 of Type 1 in G (see Figure 2.7 (a)). Without loss of generality, we may assume 

that b <a a, b <a c, c <a d. The last two relations imply that b <a d, and therefore 

d <a b. Thus bdac is not an obstruction in G. A similar argument shows that the 

complement of a P4 of Type 2 in G cannot be an obstruction (Figure 2. 7 (b)). 

By restricting the orientation on P4 to each of the three types in Figure 2.3, Hoang 

and Reed ([15]) introduced the following six subclasses of perfectly orderable graphs, 

four of which can be recognized in polynomial time. 

15 
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a ---------....... ,/ ---------....... 
,/ a a ....... ,/ 

....... ,/ tf ....... ....... ,/ ,/ 

....... ~  
....... ,/ 

~ ....... / 
,/ ....... or ~ 
,/ ....... 
,/ ....... ,/ ....... 
,/ / ....... 

6 ,/ ....... / ....... c / 
....... 

6 / 
.. ......,_ 

(a) ~ (Type 1) 
....... 

(b) ~ (Type 2) 

Figure 2.7 

P4 allowed in G ~  Recognition 
Type 1 Type 2 Type :3 Complexity 

1 v v' ?4-simplicial Polynomial 

2 v v' Generalized CR NP-Complcte 

3 v' v One-in-one-out Unknown 

4 v Rasp ail PQlynomial 

5 v P4-indifference Polynomial 

6 v P4-comparability Polynomial 

Table 2.1: Six Possible Subclasses of Perfectly Orderable Graphs. 

2.8.3 P4-Indifference Graphs 

Definition 2.7 A graph G is P4 -indifference if there is an acyclic orientation of G 

in which every P4 is of Type 2. 

2.8.4 P4-Comparability Graphs 

Definition 2.8 A graph G is ?4-comparability if it admits an acyclic orientation in 

which each P4 is of Type 3. 

c 

In a transitive orientation, every P4 is of Type 3. Thus the class of ?4-comparability 

graphs contains all comparability graphs. 

16 
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, _____ ... d 

Figure 2.8: A house. 

2.8.5 P4-Simplicial Graphs 

Definition 2.9 A graph G is P4 -simplicial if there is an acyclic orientation of G in 

which every P4 of G is of Type 1 or 2. 

In a simplicial order, every .P4 is of Type 1 or 2. Thus the class of P4-simplicial 

graphs contains all triangulated graphs. 

2.8.6 Raspail Graphs 

Definition 2.10 A graph is Raspail if it admits an acyclic orientation in which every 

P4 is of Type 1. 

Hertz and de Werra ([11]) gave a characterization of Raspail graphs by forbidding 

induced subgraphs, among which is the house, as illustrated in Figure 2.8. 

It is easy to see that in a house abcde, the two P4 s abed and cdea cannot be both 

of Type 1. We shall refer to this property of the house later in the thesis. 

Hoang and Reed ([15]) also developed polynomial-time algorithms to recognize 

the above four classes of perfectly orderable graphs. 

Hoang ([13]) also showed that recognizing"generalized CR" graphs is NP-complete. 

It is not known whether "one-in-one-out" graphs can be recognized in polynomial 

time. 

17 
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2.8. 7 Welsh-Powell Perfect Graphs and Matula Perfect Graphs 

We consider graphs G with linear orders < on the vertices. Welsh and Powell 

choose < in such a way that, 

da( x) > da(Y) whenever x < y 

with da(x) standing for the degree of x in G; 

while Matula chooses < in such a way that, 

dH(x) > dH(Y) whenever x < y 

and His the subgraph of G induced by all z with z < y . 
• 

(2.9) 

(2.10) 

Definition 2.11 G is called Welsh-Powell perfect if the linear orde1· < satisfying 

(2.9) is perfect (the greedy algorithm produces an optimum coloring for each induced 

subgraph of G), and Matula perfect if the linear order< satisfying (2.10} is perfect. 

Chvatal, Hoang, Mahadev and de Werra ([5]) proved theorems to characterize 

Welsh-Powell perfect and Matula perfect graphs by forbidding certain induced sub-

graphs. Again a house is such a forbidden subgraph for both Welsh-Powell and Mat-

ula perfect graphs. They also showed that these two classes of perfectly orderable 

graphs can be recognized in polynomial time, and presented an algorithm to prove 

the following theorem: 

Theorem 2.4 Given any graph G that is Welsh-powell perfect or Matula perfect, one 

can find in time 0( m + n) a minimum coloring and a largest clique in G. Given any 

graph G whose complement is Welsh-Powell perfect or Matula perfect, one can find 

in time 0( m + n) a minimum clique cover and a largest stable set in G. 0 

18 
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2.8.8 Graphs with Dilworth Number at Most Three 

Definition 2.12 Let N(x) stand for the set of all the neighbours of a vertex x in G; 

we say that a vertex y dominates x if N ( x) ~ N (y) U{y}. x and y are com parable 

if x dominates y or y dominates x, and incomparable if neither of them dominates 

the other. The Dilworth number of G is the largest number of pairwise incomparable 

vertices in G. 

It is obvious that the class of graphs with Dilworth number at most three is 

recognizable in polynomial time. In (5], it is proved that these graphs are perfectly 

orderable. 

2.8.9 The Union of Two Threshold Graphs 

Threshold graphs were introduced to study the stable set polytope of a graph. 

Definition 2.13 Let G = (V, E) be a graph on n vertices. Then G is a threshold 

graph if there exists a linear inequality 

n 
"a-x·< a L.J••-
i=l 

(2.11) 

with a, ai E ~ and n = lVI such that the following holds: S C V is a stable set of 

G if and only if (2.11} is satisfied by the characteristic vector Xs = (x17 x2, ... , Xn) of 

S where for all i 

Xi= { 1 ifi E S 
0 if i ft s (2.12) 

Theorem 2.5 (Chvatal, Hammer [4]) A necessary and sufficient condition for G to 

be threshold is that G does not contain 2K2 , P4 or C4 as an induced subgraph (Figure 

2.9.) 
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Figure 2.9 

Chvatal, Hoang, Mahadev and De \¥erra proved the following theorem: 

Theorem 2.6 If G is the union of two threshold graphs then G is perfectly orderable. 

'vVe are going to give a new proof of the Theorem 2.6. But before that, let us 

first give some definitions about ?4 : Let abed denote the P4 with vertices a, b, c, d and 

edges ab, be, cd, the edges ab and cd are called wings of P4 • 

Proof: Let G be the union of two threshold graphs G1 and G2 • Consider any P.1 

v0v1 v2v3 in G (if it exists). It is dear that the two wings v0v1 and v2v3 cannot be in 

the same Gi (i = 1, 2), otherwise there will be either a 2!{2 or a P4 in Gi. 

'V P4 E G, we now impose a partial orientation on the edges of G: 

1. direct v1 -+ vo if and only if vov1 E Gi and v1v2 E Gi, 

It is obvious that such a partial orientation does not create an obstruction in G. 

Claim 2.1 Such an orientation is unique on each edge. 

Proof: Suppose there is an edge cd that receives two directions by the above 

orientation. 

Let us assume cd E G1 • We must have a P4 abed with ab E G2 , be E G1 and 

another P4 cde f with de E G1 , e f E G2 • Since bd rt G1 and ce rt Gt, { b, c, d, e} form 

either a P4 or C4 in G1 , a contradiction (see Figure 2.10.) o 
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(In all of the following figures in this thesis, we use solid lines to represent G 1 and 

dashed lines to represent G2 .) 

--- --· a !J d ( I 

Figure 2.10 

Claim 2.2 There are no two directed edges ab, be (Figure 2.11} such that ab E G1 

{respectively G2) and be E G2 (respectively G1). 

Figure 2.11 

Proof: Suppose there are directed edges ab, be with ab E G 1 and be E G2 • 

d 
t--
1 ------ ( -]f 

I ""'I 
I ""' 
I ,""'""' ~ 
I ""' 
I ,""' 
I ""' I,""' 

c a 

...... ...... 

Figure 2.12 

...... 
...... 

......... ----· g(e) I 

Since a--+ bin Gh there must be a P4 deab with deE G2 , and ea,ab E G 1 (cis 

not identical to either d or e); similarly, since b--+ c in G2 , there must be a P4 gfbc 
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with g f E G1 and fb, be E  G2 (g may be identical to e, but f cannot be identical to 

either d or e). Since G2 is a threshold graph, to have both edges ed and be belonging 

to G2, there must be ce E G2 and cd E G2• Now consider the subgraph consisting of 

the three edges de, cb and· bf in G2. We have db rt E( G) and cf rt E( G). ~ will 

be either an induced P4 (if df rt E(G2)) or C4 (if df E E(G2)) in G2, a contradiction 

(see Figure· 2.12.) 0 

Claim 2.3 The partial orientation creates no directed cycle in G. 

Proof: We note that for any directed edge ab E Gi, a strictly dominates b in G, 

(a dominates b, but b does not dominate a). Therefore, there will be no directed cycle 

in the same Gi. Furthermore, Claim 2.2 guarantees that .there is no directed cycle 

consisting of edges in both G1 ·and G2• 0 

Now we can easily extend this acyclic partial orientation to a linear order < on G 

by the following procedure: 

1. i +-1, H +-G; 

2. Find a vertex v with indegree (the number of directed edges pointing to v) 0 

in H, assign to it the number i. If no such vertex v exists, order the remaining 

vertices in H randomly and then STOP. 

3. H +-H-v, i +-i + 1, if His not empty, goto step 2. 

Such an order < is obstruction-free and thus is perfect. Therefore, G is perfectly 

orderable. 0 

2.8.10 Intersection of Two Threshold Graphs 

Definition 2.14 A graph G is the intersection of two threshold graphs if there are 

two threshold graphs G1 and G2 such that e E E(G) ~ e E E(GI) and e E E(G2). 
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Hammer and Mahadev proved [10] that intersections of two threshold graphs are 

perfectly orderable. 

2.8.11 D-Graphs 

Definition 2.15 A vertex X is ad-vertex if for any edge yz with {y, z} n N(x) = 0~ 

y and z are comparable. A graph G is a D-graph if each of its induced subgraphs 

contains a d-verte:r. 

Hoang ([12]) showed that the class of D-graphs contains all graphs with the Dil-

worth number at most three and all cotriangulated graphs. He also proved that 

every D-graph is perfectly orderable, and used this result to prove the the following 
• 

theorem: 

Theorem 2.7 Let G1 be a threshold graph and let G2 be a graph containing no in-

duced p4 and no induced c4- Then the union of GI and G2 is perfectly orderable. 

0 

A polynomial algorithm with the complexity of 0( nm) has been developed to 

recognizeD-graphs ([12]). 

2.8.12 Brittle Graphs 

Definition 2.16 Let abed be a P4 of a graph G. The vertices a, dare called endpoints 

of the P4 and the vertices b, c are called midpoints of the P4 • G is called brittle if each 

induced subgraph H of G contains a vertex which is not an endpoint or a midpoint of 

a P4 in H. 

Chvatal introduced brittle graphs and pointed out that they are perfectly order-

able. For more information on brittle graphs, see ([14]). The class of brittle graphs 
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contains all P4-simplicial graphs, all P4-indifference graphs, all triangulated graphs 

and their complements, all Raspail graphs, all \Velsh-Powell perfect graphs, all Matula 

perfect graphs and all graphs with Dilworth number at most three. 
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Chapter 3 

INVESTIGATION OF THE PERFECT 

ORDERABILITY OF THE UNION OF 

T"WO GRAPHS 

With the motivation to generalize Theorem 2.6 (that the union of two threshold 

graphs is perfectly orderable), we study the perfect orderability of the unions of the 

two graphs, in which some or all of the three induced subgraphs P4 , C4 and 2K2 are 

forbidden. For three of the all 28 possible cases of the unions, we pose the conjecture 

that they form a new subclass of perfectly orderable graphs. Two theorems are proved 

to support our conjecture. 

3.1 Motivation 

In the last chapter, we introduced a subclass of perfectly orderable class, the union 

of the two threshold graphs, and also mentioned that by allowing a 2K2 in one of 

the graphs, Hoang used the property of D-graph to prove the Theorem 2.7, which 

generalizes the Theorem 2.6. 

We know that a threshold graph is a graph that contains no P4, 2I<2 or C4 as 

an induced subgraph. Given two graphs Gt and G2, Theorem 2. 7 implies that the 
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restriction that both G1 and G2 be threshold in Theorem 2.6 is stronger than necessary 

for the union G = G1 U G2 to be perfectly orderable. If we somehow weaken the 
restriction on G1 and (or) G2, will the union G still be perfectly orderable? vVith this 

question in mind, we are going to list all the ~ ~  unions of G1 and G2, in which 

we forbid 1-3 of these three structures (P4, 2K2 and C4) as induced subgraphs, and 

study in each. case the perfect orderability of G. 

3.1.1 The List of Problems 

Vl/e use Table 3.1 to list our problems: 

3.1.2 Explanation of the List 

Although there are 28 different cases of two graphs G1 and G2 in the list, many of 

them can be easily eliminated by finding a counter-example showing that the union 

G is not necessarily perfectly orderable. 

• Counter-example 1: 

k f e 
~ ~ 

I I 
I I 

t : 
I I 

~~ .... 
a 6 c d 

Figure 3.1 

The graph in Figure 3.1 is not perfectly orderable. (If we direct a -+ h, then two 

edges 9c and 9! are forced to be directed from 9 -+ c and 9 -+ j, resulting in an 

26 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Case NO. G1 G2 G1UG2 Reason 
contains no contains no perfectly orderable? 

1 P4 , C4 , 21\2 P .. NO Figure 3.1 
2 P4 , C4 , 21\2 c .. NO Cs 
3 P4 , c .. , 2K2 21\2 NO Cs 
4 P4 , C4 , 2]{2 P .. ,c .. YES Theorem 2.7 
5 P4 , c .. , 2K2 P .. , 21\2 ? 

6 P4 , C4 , 2K2 c .. , 21\2 NO Cs 
7 P4 , C4 , 21\2 P4 , c .. , 21\2 YES Theorem 2.6 
8 P4 , C4 P .. NO case 1 
9 P4 , C4 c .. NO case2 
10 P4 , C4 2[{2 NO . case3 
11 P4 , C4 P .. ,c .. NO Cs 
12 P4 , C4 P .. , 21\2 ? 

13 P4 , C4 c .. , 2[{2 NO case6 
14 P .. , 2]{2 P .. NO case 1 
15 P .. , 2K2 c .. NO case 2 
16 P .. , 21<2 2]{2 NO case 3 
17 P .. , 21<2 P .. , 2K2 ? 
18 P .. , 2]{2 c .. , 21<2 NO case6 
19 c .. , 2]{2 P .. NO case 1 
20 c .. , 21<2 c4 NO case 2 
21 c4, 21<2 21<2 NO case 3 
22 c4, 2I<2 c4, 21<2 NO case 6 
23 p4 p4 NO case 1 
24 p4 c4 NO case2 
25 p4 2I<2 NO case3 
26 c4 c .. NO case2 
27 c4 21<2 NO case3 
28 21<2 21<2 NO case3 

Table 3.1: The List of the Union of Two Graphs. 
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impossible orientation on edge de without obstruction.) 

In this Figure 3.1, we see that G1 is a threshold graph, and G2 is P4 -free, so it is 

a counter-example to case 1 in the list. Since restrictions on G1 are weaker in cases 

8, 14, 19 and 23 than in case 1, we must say "NO" to all these cases. 

• Counter-example 2 : C5 

Figure 3.2: Cs. 

C5 is a well-known simple graph that is not perfectly orderable. If any of these 

unions in the list contains a C5 as induced subgraph, then they are also not perfectly 

orderable. 

In Figure 3.3, C5 is written as the union of G1 and G2 such that G1 is threshold 

and G2 is 2](2-free and C4-free. So it is a counter-example to cases 2, 3 and 6 in the 

list. It follows that the answers to cases 9, 10, 13, 15, 16, 18, 20-22, 24-28 are "NO". 

In Figure 3.4, C5 is written as the union of G1 and G2 such that G1 and G2 are 

both P4-free and C4-free. So it is a counter-example to cases 11 in the list. 

Up to this point, we have given a definitive answer "YES" or "NO" to 25 out of 

28 cases in the list, yet there are still3 cases labeled with "?" that we cannot so easily 

answer. 

Let us list again these three cases for clarity: 
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\ I 
\ I 
\ I 
\ I 
\ I 

~
Figure 3.3: Cs. 

,.... 
/ ' 

/ ' 
/ ' 

/ ' 
/ ' 

/ ' 
' 

Figure 3.4: C5• 

1. Case 5: G1 is threshold, G2 is P4-free and 2I<rfree; 

It is obvious that the union Gin case 5 is a subclass of the unions in both cases 

12 and 17. 
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3.2 The Perfect Orderability of the Union of Two Graphs 

in Three Cases 

In this section, we shall· investigate in more detail the perfect orderability of the 

union of two graphs in the cases 5, 12, 17. First, we verify that no known minimally 

non-perfectly orderable graphs can be written as the union of two graphs with the 

properties in these three cases. Second, we verify that no known class of perfectly 

orderable graphs can contain such unions. Third, we pose the conjecture that such 

three kinds of unions are new classes of perfectly orderable graphs, and with an extra 

restriction that G1 and G2 are edge disjoint, we prove the union in case 1 T. hence 

case 5, is perfectly orderable. 

3.2.1 Some Minimally Non-perfectly Orderable Graphs 

In this subsection, we introduce some known minimally non-perfectly orderable 

graphs and show that they cannot be the unions of two graphs with the properties in 

case 5, 12 and 17. 

• Odd Hole 

Definition 3.1 An odd hole is a chordless cycle with odd length at least 5, namely 

c2k+I (k ~ 2). 

C5 is the simplest odd hole, which we used as a counter-example to many cases 

in the list, as explained in the last subsection. To show that the odd hole is not a 

counter-example to the three unanswered cases, we prove the following observation: 

Observation 3.1 Let G1 be a graph containing no P4 , no 2[{2 as ind7Lced subgraphs, 

and G2 be a graph containing no P4 as an induced subgraph, then the union G = 

Gt U G2 contains neither Ck (k ~ 5) nor Pk (k ~ 8). 
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Proof: Suppose that G contains a Ck (k ~ 5) or a Pk (k 2:: 8). Since G1 contains 

no P4 and 2/{2 as induced subgraphs, it is easy to see that Gt can be of only two 

forms, P2 and P3 (Figure 3.5) in C,. (k ~ 5) or P,. (k ~ S) (not considering the 

isolated vertices of G1 ). 

or 

Figure 3.5: Possible G1 • 

But in either case, C,.- G1 or Pk- G1 contains a P4 and is a subgraph of G2 • a 

contradiction. D 

• Anti-hole 

Recall that G is the complement of a graph G. 

Definition 3.2 An anti-hole Ck is the complement of the cycle Ck· 

Theorem 3.1 Anti-hole C,. (k ~ 5) is not perfectly orderable. 

Proof: By contradiction. Suppose there is an admissible acyclic orientation on 

c,. (k ~ 5). 

Let the vertices of an anti-hole C,. (k ~ 5) be denoted as vo, v1 , ••• , Vk-t, such 

that ViVi+I is not an edge (subscript is taken modulo k). 

Obsei-vation 3.2 For every edge ViVi+2 E C,., if Vi -+ Vi+2, then Vi-I -+ Vi+I; if 

Vi+2 -+ Vi 1 then Vi+3 -+ Vi +I. 

Proof: 

assumption, there is no obstruction in C,.. So if Vi -+ Vi+2• there is a forcing Vi-I -+ 
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Figure 3.6 

Vi+2ViVi+3Vi+I (See Figure 3.6.) 0 

'We continue the proof of the theorem. vVithout loss of generality. let us assume 

v0v2 is directed from v0 to v2 • 

Observation 3.2 implies that _if k is even, Ck will have a directed cycle l'or2l:-t---Vk-2Vo: 

if k is odd, Ck will have a directed cycle VoV2V4---Vk-1VIVJ •.• Vk-2VO (Figure 3./), a COn-

tradiction. 

k is even k is odd 
/ ' / 

v2 ( ' v. ) 2 
v2 

/ 

' ' / 

Figure 3.7: An anti-hole. 

To show that an anti-hole is also not a counter-example to cases 5, 12, and 1/. we 

shall prove the following theorem: 

Theorem 3.2 Let G1 be a graph containing no P4 , no 2/{2 as induced subgraphs, 

and G2 be a graph containing no P4 as induced subgraph, then the union G = G1 U G2 
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contains no C,. (k :::: 5). 

The proof of Theorem 3.2 will be presented in section 3.3 of this chapter. 

• Other Examples 

Here, we give some more specific examples of minimally non-perfectly orderable 

graphs: 

i) 

2 5 6 

Figure 3.8: Example 1. 

In Figure 3.8, without loss of generality, we may assume that 6 -+ 7. There is 

a chain reaction forcing 8 -+ 4, 3 -+ 9, 10 -+ 1 and 2 -+ 3, whereupon the vertices 

2, 3, 4 and 8 constitute an obstruction. 

It is clear that the graph Gin Figure 3.8 contains a Ps, namely 678439(10)1. and 

using the Observation 3.1, we know that G cannot be the union of two graphs in case 

5, 12 and 17. 

ii) 

The graph G in Figure 3.9 is the union of a P7 1234567 and and a P4 3895. 

Without loss of generality, we may assume 8 -+ 9. Then there is a chain reaction 

forcing 5 -+ 7, 4 -+ 6, 3 -+ 5, 2-+ 4, 1 -+ 3 and 5 -+ 1 (by 8 -+ 9), whereupon there 

is a directed cycle 1351 in G. 
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8 .._---7------4 9 

Figure :3.9: Example 2. 

To show that G cannot be the union of G1 and G2 in cases 5, 12 and 1/. we shall 

prove the following two obsen·ations: 

Observation 3.3 G cannot be _the union of two graphs ~1 and G2 in case 17. 

Proof: By contradiction. Suppose G is the union of G1 and G2 in case 1/, that 

is Gt and G2 are both P4-free and 2K2-free. 

We notice that there is a P6 , namely 895746, in G. Since G1 and G2 are both 

P4-free and 2Krfree, they can be of only two forms, P2 or P3 , in P6 (not considering 

the isolated vertices). In either case, G2 (or Gt) = G- G1 (or G2) contains a P4 , a 

contradiction. D 

Observation 3.4 G cannot be the union of G1 and G2 in case 12. 

Proof: By contradiction. Suppose G1 and G2 are in case 12, that is G1 is P4-free 

and C4-free, G2 is P4-free and 2K2-free. 

Consider the P6 895746 induced in G. We must have two outside edges 89 and 46 

belonging to G1 only and the middle edge 57 belonging to G2 only. (We say that an 

edge e belongs to Gi only if e E E(Gi)- E(Gi) with i =/= j.) In the C4 8953, since 89 

is in G1 and G1 contains no P4 and C4 , we can see that either i) 35, 38 E G2 only, and 

59 E G1 only, or ii) 35,95 E G2 only, and 38 E G1 only. Without loss of generality, 
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we may assume the first case occurs. Now, if 25 E Gb then there is a P4 2598 in G1; 

if 25 E G2, then there is a P4 2538 in G2, a contradiction. 0 

Since the classes of unions described in cases 12 and 17 contain all unions in case 

5, the above two observations are sufficient to show G cannot be the union of two 

graphs in cases 5. 

iii) 

9 5 

G 

Figure 3.10: Example 3. 

The graph G in Figure 3.10 is a minimally non-perfectly orderable graph (the 

forcing on the edges of G creates a directed cycle 1471). 

Suppose G = G1 U G2 as in any of cases 5, 12, or 17. If both edges 34 and 45 

belong ~  then consider the P5 23456 of G. Since G1 contains no P4, the edges 

23 and 56 must belong to G2 and they form a 2I<2 in G2, a contradiction. Otherwise, 

at least one of the edges 34 or 45 must be from G2, so by symmetry assume 34 is in 

G2• Similarly, at least one of the edges 67, or 78 is in G2• In each case, the set {3, 4, 

6, 7} (or {3, 4, 7, 8}) induces a 2K2 or P4 in G2, a contradiction. 
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3.2.2 Comparison with Known Classes of Perfectly Order-

able Graphs 

In this subsection, we will show that the union of two graphs in cases 5, 12 and 

17 does not belong to any known class of perfectly orderable graphs introduced in 

Chapter 1. 

Since ~ union in case .j has more strict restrictions on Ct. it is sufficient to show 

that such a union does not belong to any class of perfectly orderable graphs. Next. 

we are going to give some examples to illustrate our conclusion. 

• Example I 

I 
I 
I 

6*-- - - - - - -... c 

Figure 3.11: Example 1. 

In figure 3.11, the graph G is the union in case 5 (G1 consists of the solid lines, 

G2 consists of the dashed lines). 

i) G is not a comparability graph. 

It cannot be directed without constructing a semi-transitive orientation in Figure 

2.5. (If we direct b --7 c, then d --7 e. Comparability orientations imply f --7 e, a --7 e 

and a --7 b, then we have a directed P3 a --7 b, b --7 c that is not a comparability 

orientation.) 

ii) G is not a triangulated graph. 
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It contains a C4• 

iii) G is not a co-triangulated graph. 

The two edges ef and be form a 21\2 in G, so there is a C4 beef in G, which is 

not a triangulated graph. 

iv) G is not a P4-comparability graph. 

Suppose that G is a P4-comparability graph. Without loss of generality, we may 

assume b--+ c. This implies d--+ € and € --+a. But then one of the P4's feab or fedc 

is not of Type 3, a contradiction. 

v) G is not a P4-indifference graph. 

In Figure 3.11, if P4 eabc is of Type 2, P4 bcde cannot be of Type 2, otherwise 

there will be a directed cycle bcdeab. 

vi) G is not a Raspail graph.· 

G contains a a house which is a forbidden subgraph in Raspail graphs. 

vii) G is not a \Velsh-Powell perfect nor a Matula perfect graph. 

A house is also a forbidden structure in both Welsh-Powell and Matula perfect 

graphs. 

viii) G is not a union of two threshold graphs. 

This is obvious. 

• Example 2 

The graph Gin Figure 3.12 (a) is the union of two threshold graphs G1 and G2, 

with G1 consisting of the edges ab, ac, be and G2 consisting of the remaining edges. 

Claim 3.1 G is not an intersection of two threshold graphs. 

Proof: Suppose G is the intersection of two threshold graphs G1, G2• 

Observation ~ 5 Let e11 e2 be two edges that induce a 2]{2 in G. Then some edge 

ei (i = 1, 2) must have one of its endpoints being adjacent to the two endpoints of ei 
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Figure 3.12 

6 
(b) 

(j =/= i) in G1 and the other endpoint being adjacent to the two endpoints of ei in G2 

(Fig1tre 3.13). 0 

.. 
(In Figures 3.13 and 3.12 (b), the thick lines denote edges in both G1 and G2 , the 

solid lines denote edges in G1 , and the dashed lines denote edges in G2.) 

Figure 3.13 

Consider the 2I<2 formed by {a', c', a, c}. By Observation 3.5, we may assume that 

aa',ac' E E(GI) and ca',cc' E E(G2). Now consider the 21<2 formed by {a,b,a',c'}, 

Observation 3.5 implies that ba',bc' E E(G2 • But the set {a',c',b,c} induces a 21<2 

in G1 , a contradiction. 0 

We conclude that there exists a union in cases 5, 12, and 17 that does not belong 

to the class of intersections of two threshold graphs. 

• Example 3 
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8 8' 

2 

1 

Figure 3.14: A nan-D-graph. 

The graph G in Figure 3.14 is a union of G1 (in solid line) and G2 (in dashed 

line). It is easy to verify that G1 is threshold, and G2 is P4-free and 2K2-free. 

The graph G 

i) has Dilworth number greater than 3. 

Let S = { 5, 6, 3, 1}. It is easy to verify that the vertices in S are pairwise incom-

parable, so the Dilworth number of G is at least 4. 

ii) is not a D-graph. 

Recall that ad-vertex w is such a vertex that for every edge ab with {a, b} n N( w) = 

0, a and b are comparable. There is no d-vertex in G (for vertices 1, 2, 3 and 4, we 

have that 5 and 6 are incomparable; for vertices 3' and 4', we have that 5' and 6' are 

incomparable; for vertices 5, 6, 7 and 8 (respectively 5', 6', 7', and s'), we have that 3 

(3') and 1 are incomparable). 
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• Example 4 

/: 
./ /1 
./ / I 
./ / 

...,...:;;;..._ ______ ___,. ./ / I 

I' / I 
I '/ I /' 1/ , I 

-------..1(. ' I ---........ 
--- ',',1 

-- ........ ,I - ........ 
~  

Figure 3.15 

The graph G shown in Figure 3.15 is a union of two threshold graphs. The reader 

may easily check that each vertex is the endpoint of some P4 and the midpoint of 

some other P4• Thus G is not brittle (and therefore not P4-simplicial). 

The above four examples show that no known class of perfectly orderable graphs 

contains all unions of two graphs in case 5, or 12, or 17. 

3.2.3 Conjectures 

Since we are unable to find a non perfectly orderable graph that can be written as 

the union of two graphs in case 5, or 12, or 17, we would like to propose the following 

conjecture: 

Conjecture 1 If G is the union of two graphs G1 and G2 satisfying any of the 

following conditions: 

1. G1 is threshold, G2 is P4 -free and 2I<2-free; 
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then G is perfectly orderable. 

If Conjecture 1 is true, then the three classes of graphs described by it would form 

new classes of perfectly orderable graphs (by the results in subsection 3.2.2). 

Although we have not found a way to prove this conjecture, we do prove. jointly 

with Hoang, the following theorem by adding the extra constraint that G1 and G2 

are edge-disjoint for case 3. 

Theorem 3.3 If G1 and G2 are both P4 -free and 2K2-free, and G1 and G2 are edgt 

disjoint, then G = G1 U G2 is perfectly orderable. 

The proof of this theorem is given in the next section. 

3.3 Proof of the Theorems 

Theorem 3.4 Let G1 be a graph containing no P4 , no 2!(2 as induced subgraphs, 

and G2 be a graph containing no P4 as induced subgraph, then G = G1 U G2 contains 

no ck (k 2: 5). 

Proof: By contradiction. Suppose G contains Ck (k > 5). Number the vertices 

of Ck as Vo, Vt ••. Vk-1, SUCh that ViVi+I is not an edge (subscript is taken modulo 

k ). Since it is easy to verify that the Theorem is true for k = 5, we may assume that 

k > 5. 

Before making any further argument, we are going to introduce the following 

observation, which is frequently used in the proof (whenever we say an edge e is in 

G1 (l = 1, 2) only, we mean e E E(Gi)- E(Gt), t # 1): 

Observation 3.6 In any induced C4 ofCk (k > 5), namely abed, if ab is in G1 only, 

and be is in G2 only, then ad is in G1 only, and cd is in G2 only {Figure 3.16}. 0 
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d -------------,c 

a 

Figure 3.16 

I 
I 
I 
I 
I 

b 

Claim 3.2 Fo1· any four consecutive vertices u;. Vi+I· v;+2 , t'i+3 (i = 0. L ... l..-- 1). 

the two edges v;v;+2 and Vi +I Vi+3 cannot be in the same Gt (I = 1. 2). 

Pl"oof: Suppose t:;v;+2 and Vi+I v;+3 are in the s·ame Gt. we need to consider only 

four cases: 

1. They are both in G1 only; 

:2. They are both in G2 only; 

3. One is in both G1 and G2 , the other one is in Gt (l = 1, 2) only; 

4. They are both in G1 and G2 • 

Since G1 contains no P4 and 2[(2 , it is obvious that case 1 and case 4 are not 

possible. We are now going to show that case 2 and case 3 are not possible either. 

case 2: Suppose v;v;+2 and v;+I Vi+3 are in G2 only. Since v;+l Vi+JViVi+2 is a P-1 

of G, V;Vi+3 must be in Gt only. Consider the c4 Vi-I Vi+2ViVi+3: using Observation 

3.6, we have v;_1 v;+2 belonging to G2 only and v;+3v;_1 belonging to G1 only. Now 

v;_ 1v;+l cannot belong to either G1 or G2 (if v;_1 v;+l is in Gt then Vi+ I Vi-I Vi+JVi is 

a P4 in G1 ; if v;_1v;+l is in G2 then v;+1v;_1v;+2Vi is a P4 in G2), a contradiction (see 

Figure 3.17.) 

case 3: Suppose v;v;+2 is in both G1 and G2, Vi+JVi+3 is in Gt (l = 1, 2) only. 
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Figure 3.17 

Since G1 contains no P4 and 2/\2 , vi+IVi+J cannot be in G1 (othen,·ise, the set 

{vi,Vi+I,Vi+2,vi+J} induces a P.t.or 2/{2 in GI), and must be in G2 only, and t'iL'i+J is 

in G 1 only. 

v. 

' ' ' ' ' 

Figure 3.18 

' 

Consider the C.t ViVi+3Vi+I ViH: Observation 3.6 implies that ViHVi+I is in G2 only, 

and ViVi+4 is in G1 only. For j = i + 4, i + 5, ... , k- I, 0, 1, ... , i- 3, by considering the 

C4 ViVjVi+l vi +I, we see that every edge vivi+I is in G1 only and every edge vi+I vi+l 

is in G2 only. Consider the P4 ViVi- 2Vi+IVi-l: with Vi+lVi-2 belonging to G2 only and 
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Vi-2Vi belonging to G1 only, it is obvious that Vi+IVi-l is in G2 only. So all the edges 

going out from Vi (except for vrui+2) are in G1 only, and all the edges going out from 

Vi+I are in G2 only (see Figure 3.18.) 

Figure 3.19 

Consider the P .. Vi+JVi+I Vi+-tVi+2: with both edges Vi+I Vi+J and Vi+I Vi+4 belonging 

to G2 only, it is clear that Vi+2vi+4 is in G1 only. For j = i + 4, ... , k-1, 0, 1, ... , i-2, 

consider the C4 Vi+IVjVi+2vi+h where Vi+IVi and Vi+IVi+I are in G2 only and Vi+2'l.'j is 

in G1 only, we have that every edge Vi+2Vi+I is in G1 only. For j = i, i-1, ... , 0. k-

1, ... , i + 4  , by considering the C4 Vi+JVjVi+2vi-b where Vi+3Vj, VjVi+2 and Vi+2vi-1 

are in ~  we see that Vi+3vi-I is in G1• Now consider the P .. Vi+3Vi+sVi+2vi+4: we see 

that all three edges belong to G1, a contradiction. This completes the proof of Claim 

3.2 (see Figure 3.19.) 

Observation 3.7 In any induced C4 abed ofCk, if ab is in G1 only, and ad and be 

are in G2, then ad and be must belong to G1• 

Proof: It is clear that if ad and be are both in G2 only, we either have a 2K2 ab 

and ed in G1, or a P4 adcb in G2, a contradiction. Without loss of generality, assume 

ad belongs to G1 and be does not. Then either adcb is a P4 in G2 or bade is a P4 in 

G1• o 
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~  

------

Figure 3.20 

Now, we continue the proof of the theorem. 

By Claim 3.2 we may assume, without loss of generality, that v0v2 is in G1 only 

(if v0v2 is in G2 then v1v3 is in G1 only, by renumbering the vertices of Ck, we could 

arrive at the same conclusion). Again, Claim 3.2 implies that v1vk-I and v1v3 are in 

G2 only. Consider the c4 VoV2Vk-IV3 in G. By Observation 3.7, one of the following 
two cases must occur: (i) either vov3 belongs to G1 only or v2vk-l belongs to G1 only, 

or (ii) both vov3 and v2vk-I belong to G1 and G2• Suppose that case (ii) occurs. Then 

we have V3Vk-1 belonging to G1 only; for otherwise v0v3vk_1v2 is a P4 in G2• But now 

v3v1vk_1v2 is a P4 in G2. Thus we know that case (i) must occur. Without loss of 

generality, we may assume that vov3 is in G1 only (see Figure 3.20). 

For j = 3, 4, ... , k-3, consider the c4 VoVjVIVj+I: with VoVj belonging to Gt only 
and v1vi belonging to G2 only, by Observation 3.6 we have v0vi+I belonging to G1 

only and v1vi+I belonging to G2 only (see Figure 3.21.) 

Consider the P4 v3v1 v4v2: with two edges v3v1 and v1 v4 belonging to G2 only, we 

must have V2V4 belonging to Gl only. For j = 4, 5, ... , k -2, by considering the c4 
v1vjv2vi+b with both edges VjV1 and v1vj+I belonging to G2 only, and v2vi belonging 

to G1 only, we have v2vi+I belonging to G1 only (see Figure 3.22.) 
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' ' ' ' ' ' 

Figure 3.21 

Consider the c4 VoV2Vk-1 VJ: with VJVQ, VoV2, and V2Vk-l belonging to Gt, we have 

VJVk-l belonging to G1• For j = ~ 2, k-3, ... , 5, considering the C.t v2viv3vi-l: with 

three edges VJVj-b Vj_1v2 and v2vi belonging to G1, we must have v3vi belonging 

to G1 as well. Now, look at the P4 v3v5v2v4, all three edges of P4 are in G1, a 

contradiction to the definition of G1 (see Figure 3.23.) 0 

Before we start the proof of Theorem 3.3, we restate it: 

Theorem 3.3 If G1 and G2 are both P4-free and 2K2-free, and G1 and G2 are 

edge disjoint, then G = G1 U G2 is perfectly orderable. 

Proof: Let G1, G2 and G be as specified in the statement of the Theorem. 

Claim 3.3 For every edge abE E(GI) (respectively abE E(G2)), the two vertices a, 

b must be comparable in G2 (respectively G1). 

Proof: Suppose ab E E( G1) and a, b are not comparable in G2• It follows that 

there exist two edges ad E E(G2), beE E(G2), such that ac rt E(G2) and bd rt E(G2)-
Then there will be either a 2K2 or P4 in G2, which is a contradiction (see Figure 3.24.) 

0 
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Figure 3.22 

Now define a partial orientation on G (we say that a strictly dominates b if a 

dominates b but b does not dominate a). 

I. 'Vab E E(GI), direct ~ b if and only if a strictly dominates bin G2 ; 

2. 'Vcd E E(G2), direct c ~ d if and only if c strictly dominates din G1 • 

Claim 3.4 G has no obstruction under the partial orientation. 

Proof: Since G1 and G2 are P4-free and 2K2-free, the P4 abed in G, if there is 

any, must be of the following two forms (see Figure 3.25): 

I. ab,bcE E(Gt),cd E E(G2), 

2. abE E(GI),bc,cd E E(G2). 

By definition of the partial orientation, we have c ~  I) and b ~  in 2). In 

either case, there is no obstruction. 0 

Claim 3.5 The partial orientation creates no cycle in G. 
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Figure 3.24 
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Proof: Clearly, there are no cycles in the same G1 (l = 1, 2) since the domination 

relation is transitive. 

Now we are going to show there is no mixed cycle, the cycle made up of directed 

edges in G1 and G2 • 

- -Observation 3.8 If abE E(Gt) (respectively, abE E(G2 )) and beE E(G2) {respec-

tively, /;;; E E(GI)), then there must be acE E(G2 ) (respectively, acE E(Gt)). 

Proof: ab E E( GI) implies a strictly dominates b in G2 • Since be E E( G2), we 

have acE E(G2 ), and by Claim 3.3, a and care comparable in G1 • Since abE E(Gt) 

and cb ri E( Gt), a strictly dominates c and there is an orientation from a to c ( see 

Figure 3.26.) 0 
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Figure 3.25: Two possible P4• 
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Figure 3.26 

Observation 3.8 implies that there is no mixed cycle on three vertices. 

Suppose there is a cycle in G, then it must be a mixed cycle. Let C be a cycle 

vov1 ••• VL-1 with smallest length l. Select Vi (i E {0, 1, ... ,I-1} ), such that Vi-::; Vi E 

E(GI), and ~1 E E(G2). By the Observation 3.8, we have Vi-1Vi+1 E E(G2). 

Then there is a new cycle v0v1 ••• Vi-IVi+I···VI-1 of length I-1, contradicting with the 

assumption that C is the smallest cycle. 0 

Based on this acyclic partial orientation, we can easily construct a linear order < 

on G by the following procedure: 

1. i +--1, H +--G; 

2. Find a vertex v in H with indegree 0 and assign the order i to v; 

if no such a v exists, order the remaining vertices in H randomly and then exit; 

3. i +--i + 1, H +--H-v, if H =J: 0 goto step 2. 
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Such an order < is sure to be obstruction-free, therefore, G is perfectly orderable. 

0 

3.4 Discussion of the Proof of Theorem 3.3 

In the proof of Theorem 3.3, we first impose a partial orientation on the edges 

of G according to a certain rule, which guarantees the orientation to be unique on 

each edge, obstruction-free and acyclic, later construct a perfect linear order < on 

the vertices of G based on this partial orientation, thus get the conclusion that G is 

perfectly orderable. The key point is how to find such an effective rule for orienting 

edges. We found it because we noticed the fact that in the two possible P4s in Figure 

3.25, if we direct the edges in G.1 (respectively G2) ~  to the strict domination 

in G2 (respectively Gt), it guarantees there is at least one wing of P4 going out 

from the joint to the tip, preventing an obstruction. With the conditions provided 

in Theorem 3.3, we are able to show that such a rule is good in the since it can 

produce a perfect order on G. Here, the constraint that G1 and 02 are edge-disjoint 

is important, otherwise such a rule will not work, even for the union of two threshold 

graphs. In the graph of Figure 3.27, a union of two threshold graphs (one in solid 

lines and one in dashed lines), this strict domination rule causes a directed cycle. 

Realizing the effect of such a constraint on the rule, we naturally ask this ques-

tion: can a union G of two threshold graphs G1 and G2 be decomposed into two 

edge-disjoint graphs ~ and c;, such that ~ and G; are Pot-free and 2K2-free? Un-
fortunately, a counter-example is found in Figure 3.28 to give a "NO" answer to the 

question above. 

The graph in Figure 3.28 is a union of two threshold graphs with a common edge 

in both G1 and G2• Since both ~ and c; are Pot-free and 2Krfree, if we put edge 
ef in ~  all the edges in G2 except ab must be put in G;; similarly, if e' J' is in a;, 
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Figure 3.27: A counter-example to the rule. 

all the edges in G1 except ab must be in ~  If ab is not in a;, there will be a P4 
ac' ba in G'2; if ab is not in ~  there will be a P4 dacb in ~  a contradiction. 
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I 

Figure 3.28: A counter-example to the question. 
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