
INFORMATION TO USERS

This manuscript has been reproduced from the microfihn master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in ^rpewiiter 6ce, while others may be 

from any type o f computer printer.

The quality o f this reproduction is dependent upon the quality o f the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversety affect reproduction.

In the unlikely event that the author did not send UMI a complete 

manuscript and there ^  missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back o f the book.

Photographs included in the original manuscript have been reproduced 

xerogr^hically in this copy. Ifrgher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order.

UMI
A Bell & Howell donnation Company 

300 North Zedb Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Effects o f Neuromuscular Electrical Stimulation o f Various Frequencies and 
Intensities on Energy Expenditure

In partial fulfillment of the requirements for the Degree 
Master of Science in 

Applied Sport Science and Coaching

Ron Wilson 
August 1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



National Library 
of Canada

Acquisitions and 
Bibliographic Services
395 Wellington Street 
Ottawa ON K1A0N4 
Canada

Bibliothèque nationale 
du Canada

Acquisitions et 
services bibliographiques
395, me Wellington 
Ottawa ON K1A0N4 
Canada

Your Se  Votre référance

Our Se  Notre référence

The author has granted a non­
exclusive hcence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author’s 
permission.

L’auteur a accordé une hcence non 
exclusive permettant à la 
Bibhothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la forme de microfîche/fîlm, de 
reproduction sur papier ou sur format 
électronique.

L’auteur conserve la propriété du 
droit d’auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou autrement reproduits sans son 
autorisation.

0-612-33465-1

Canadâ
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

TITLE OF THESIS: Effects o f Neuromuscular Electrical Stimulation of
Various Frequencies and Intensities on Energy 
Expenditure.

AUTHOR: Ron M. Wilson

THESIS ADVISOR: Dr. Thomas M.K. Song
Professor
Lakehead University 

The purpose o f this study was to determine the effects o f neuromuscular 

electrical stimulation (NMES) o f various intensities (25, 50,75, and 100 mA) and 

frequencies (8, 12,20, 50 Hz) on energy expenditure o f the knee extensor muscles 

(KEM). Fourteen male university students between 20 and 24 years o f age were 

submitted to 5 min of each intensity at each frequency during NMES on different 

days with the use of a portable stimulator (Respond H, EMPI; impulse width of 

300 microseconds; duty cycle: 55s on and 2s off) and adhesive electrodes 

(Pals Plus™, EMPI). Oxygen uptake was measured in the supine position at rest 

and during NMES o f both KEM. Energy expenditures (kcal. hr 'V kg o f KEM ') 

o f the four frequencies o f each intensity (mean : 25 mA= 1.8; 50 mA= 7.8; 75 

mA= 21.6; 100 mA= 26.3) were not significantly different (p>0.05) and that of 

the different intensities o f each frequency were significantly different (p<0.05- 

p<0.001) except in 50 Hz between 75 and 100 mA (p>0.05). The highest energy
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expenditure (28.1 kcal. hr*. kg of KEM^) was observed at a stimulation 

frequency o f 8 Hz (p>0.05) at an intensity of 100 mA.

u
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Chapter 1 

INTRODUCTION

Purpose

The purpose of this study was to quantify the oxygen uptake and energy 

expenditure induced by various frequencies (8,12,20, and 50 Hz) and intensities 

(25, 50, 75,100 mA) of neuromuscular electrical stimulation o f the human knee 

extensor muscles.

Significance

Neuromuscular electrical stimulation (NMES) has been in practice since the 

18th century for treating paralyzed patients and restoring muscle function after 

injury (Hainaut & Duchateau, 1992). Neuromuscular electrical stimulation of 

healthy skeletal muscle directly affects the metabolic activity o f stimulated 

muscle (Currier, 1991) and can play an important role in physical conditioning 

because it appears to complement voluntary training (Siff, 1990). Increases in 

local blood flow (Currier, Petrilli, & Threlkeld, 1986), serum enzyme levels 

(Song, Hodgkinson, Stoot, & Porter, 1990), oxygen uptake and energy 

expenditure (Néron & Simoneau, 1994; Simoneau, 1989; Song, Guthrie, 

Newhouse, & Newhouse, 1991) have been reported during NMES of skeletal 

muscle. It has also been reported that functional electrical stimulation improves 

cardiovascular and musculoskeletal fitness for individuals with spinal cord injury
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(Arnold, Mcvey, Farrell, Deurloo, & Grasso, 1992; Faghri, Glaser, & Figoni,

1992).

The way in which NMES is capable o f eliciting these physiological 

adaptations relies mainly on how the wave form, frequency, pulse width, intensity 

and current modulation are modified (Alon, 1991; Windsor, Lester, & Herring,

1993). There have been numerous studies which have examined how the 

manipulation o f the frequency of NMES has affected muscular strength 

(Balogun, Onilari, Akeju, & Marzouk, 1993), blood flow (Currier et al., 1986), 

and force output o f stimulated muscle (Binder-Macleod & Guerin, 1991).

Research regarding the effects of various frequencies and intensities of NMES on 

oxygen uptake and energy expenditure o f human skeletal muscle is limited. Both 

Simoneau (1989) and Song et al. (1991) have reported high oxygen uptakes per kg 

of knee muscle mass induced by an 8 Hz current frequency during NMES at high 

intensities in untrained male subjects. Presently, there are no studies which have 

examined the effects of various frequencies and intensities o f NMES on energy 

expenditure. Quantifying the frequency and intensity o f NMES which yields the 

greatest oxygen consumption and energy expenditure is o f great importance to 

individuals interested in establishing NMES training programs for able bodied 

and physically challenged individuals.
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Limitations

1. The assumption that subjects faithfully followed instructions and cooperated in 

all aspects o f the study.

2. The assumption that the subjects were at complete rest when the initial 

baseline values for oxygen consumption were obtained.

3. The assumption that all subjects were fully hydrated during the testing 

sessions.

4. The assumption that the electrodes were accurately placed over the femoral 

nerve and the motor end point o f the vastus lateralis.

5. The assumption that all subjects had similar muscle fiber type profiles.

6. The muscle mass o f the knee extensor muscles was estimated via 

anthropometric measurements and arithmetic calculations.

7. The assumption that not all of the muscle fibers of the KEM were fully 

activated during stimulation.

8. An alpha level of 0.05 was established as the level o f significance for the 

statistical tests.

Delimitations

1. Only four frequencies (8,12,20, 50 Hz) and four intensities 

(25,50, 75, 100 mA) were used for the study.

2. Electrical stimulation o f the muscle was delimited to a specific pulse width
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(300 micro seconds) and a specific duty cycle (55 seconds o n /2 seconds o ^ .

3. Only healthy males between the ages of 20 to 24 participated in the study.

4. Stimulus intensities were applied in a progressive fashion (25, 50,75, 100 mA) 

in each frequency (8, 12,20 and 50 Hz).

Definitions

Binhasic/bipolar: The flow of electronic current alternating in both directions 

from the isoelectric point (Nelson & Currier, 1991).

Energy expenditure: The amount of energy (kilocalories) liberated by a metabolic 

system (McArdle, Katch, & Katch, 1991).

Kilocalorie: A unit of energy, being the amount o f heat necessary to raise the 

temperature o f a liter o f water 1° C, from 14.5 to 15.5° C (McArdle et al., 1991). 

Knee extensor muscles: The muscles which extend the lower leg (Tortora, 1989). 

Isoelectric point: Represents the point where the electrons are flowing. This 

point is used as reference point when describing electron flow (Nelson & Currier,

1991).

Isometric contraction: A muscular contraction in which force is generated with no 

noticeable shortening of the muscle fibers (McArdle et al., 1991). 

Monophasic/monopolar: The flow o f electrons in one direction from the 

isoelectric point (Nelson & Currier, 1991).
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Neuromuscular electrical stimulation (NMESL The transmission of electrical 

current through electrodes placed on the skin surface in order to stimulate 

muscular contraction (Nelson & Currier, 1991).

Oxygen uptake: The amount o f oxygen that is transported and utilized by active 

muscle (McArdle et al., 1991).

Period: The length o f time from the onset o f the waveform to the onset o f the 

next waveform. The interpulse interval is included in this time period. As the 

frequency increases the period decreases (Nelson & Currier, 1991).

Pulse duration: The time o f current flow of one wave form. The terms pulse 

width and period are also used (Nelson & Currier, 1991).

Pulse width: A term used to describe the time period o f stimulation depending 

on the type o f electrotherapeutic device used (Nelson & Currier, 1991).

Stimulus frequency : The number of electrical wave forms delivered per second, 

measured in hertz (Hz) (Nelson & Currier, 1991).

Stimulus intensity: The vertical distance from the highest to the lowest peak of 

one electrical wave, measured in millamperes (mA) (Nelson & Currier, 1991). 

Tetanic contraction: A continous contraction of a muscle without distinct 

twitching (Miller & Keane, 1987).

Twitch contraction: A contractile réponse of a skeletal muscle elicited by a single 

maximal volley of impulses in the neurons supplying it (Miller & Keane, 1987).
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Wave form: The direction o f current flow. Uni-directional currents are referred to 

as monophasic currents and bi-directional wave forms are also referred to as 

alternating currents (Nelson & Currier, 1991).
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Chapter 2

REVIEW OF RELATED LITERATURE 

Electrical Stimulation of Mriscle

The practice o f inducing a muscular contraction via electrical stimulation was 

first reported by Galvani in 1791 (Hainaut & Duchateau, 1992). Galvani 

observed that, with the introduction o f two dissimilar metals to a frog’s muscle, 

a muscular contraction occurred. Interest in the use o f electrical stimulation as a 

method o f training increased when the Russian researcher Kots reported that 

Russian athletes were using NMES as a training modality to enhance muscular 

strength (Kots, 1977).

Electrostimulation involves delivering electrical impulses to the muscles via 

electrode pads placed firmly on the skin (Siff, 1990). The effectiveness, comfort 

and excitation o f the muscle depends on the stimulus parameters o f NMES. They 

are: pulse shape, frequency, duration, intensity and modulation pattern o f the 

electrical current (Alon, 1991; Windsor etal., 1993). In healthy muscle NMES 

appears to be a complement to voluntary training (Hainaut & Duchateau, 1992). 

However, Houston (1983) cautions that although electrical stimulation is useful, it 

may be abused if used by individuals unfamiliar with the physiological principals 

of its use.
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Oxygen Uptake and Energy Expenditure

The most convenient method to measure energy expenditure in the laboratory 

is by the collection and analysis o f respiratory gases and their conversion to the 

caloric equivalents o f oxygen (Guyton, 1991). When energy expenditure is 

measured at any other time of the day under resting conditions, it is normally 

termed resting energy expenditure and may or may not include the increase in 

energy expenditure associated with an individual’s food ingestion or physical 

activity (Poehlman, 1989).

The factor that causes by far the most dramatic effect on the metabolic rate is 

exercise (Bray, 1985). The ingestion of food has a stimulating effect on energy 

metabolism due to the energy requiring processes o f digesting, absorbing and 

assimilating the various nutrients (Belko, Van Loan, Barbbieri, & Mayclin, 1987). 

The magnitude of dietary induced thermogenesis can vary between 10 and 35 

percent of the ingested food energy depending on the quantity and type of food 

eaten (McArdle et al., 1991).

A number of researchers have examined the effects o f NMES on energy 

expenditure. A study conducted by Simoneau (1989) investigated the oxygen 

uptake and energy expenditure of eight male subjects following one session of 

NMES of the quadriceps muscles at 8 Hz. The mean energy expenditure o f both 

legs induced by the stimulation was 74 kcal. hour
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Similarly, Song et al. (1991) measured oxygen uptake and energy expenditure 

of various frequencies o f NMES of the human knee extensor muscles (KEM) in 

twelve university male subjects. The range o f intensities was 60 to 100 mA. The 

results o f the study illustrated that NMES at 8 Hz induced the highest energy 

expenditure ( 64 kcal. hour '*) followed by 12 Hz ( 48 kcal. hour '*), 20 Hz 

(18 kcal. hour *̂ ), and 4 Hz (12 kcal. hour '̂ ), respectively.

An animal study conducted by Hoppeler, Hudlicka and Uhlmann (1987) 

examined the oxygen consumption in cat gracilis muscle during various 

frequencies o f electrical stimulation. The gracilis muscle was under contraction 

for 120 s and oxygen consumption was measured at the frequencies o f 8 ,10 ,12 , 

15, and 18 Hz. The mean oxygen consumption o f the stimulated gracilis muscle 

(8 Hz) was 1 1 .6 m l.g " \m in '\

Frequency o f Electrical Stimulation

The effectiveness o f NMES depends on the frequency of the waveforms used 

(Alon, 1991; Siff, 1990; Windsor et al., 1993), particularly since there is a distinct 

difference in the recruitment patterns and functional characteristics o f slow and 

fast twitch muscle fibers (Trimble & Enoka, 1991).

DeVahl (1992) states that different frequencies have different functions. 

Frequencies between 8 Hz and 20 Hz cause twitch contractions which cause a 

vibrational or facilitating contraction and can be described as incomplete tetany.
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Randall, Imig, and Hines (1953) observed greater blood flow with lower 

frequencies o f 7 to 14 Hz than with the higher frequencies that produced tetanic 

contractions. Generally, the faster the frequency o f NMES, the lower the 

percentage o f increase in blood flow (Randall et al., 1953).

However, at higher frequencies 30 - 50 Hz the contractions become fused and 

tetanization occurs (Guyton, 1991). It is reported that a frequency o f more than 

20 Hz is required to produce a smooth tetanic contraction (Hainaut & Duchateau,

1992). However, maximum muscular contraction is produced only at higher 

frequencies o f 60 to 100 Hz (Binder-Macleod & Guerin, 1990).

Sjoholm, Sahlin, Edstrom, and Hultman (1983), while stimulating the KEM of 

male subjects, demonstrated that 10 Hz produced 30 percent o f quadricep femoris 

max force, 20 Hz produced 70 percent of quadricep femoris max force, and 50 

Hz yielded 90-95% of the quadricep femoris maximum force.

Oxygen Uptake and Energy Expenditure

A study conducted by Simoneau (1989) investigated the oxygen uptake and 

energy expenditure o f eight male subjects following one session of NMES of the 

quadriceps muscles at 8 Hz. Mean oxygen uptake was 128 and 248 ml 

0% . min for the right quadricep muscle and for both quadriceps muscles, 

respectively. When expressed per kg of estimated muscle mass, the mean oxygen 

uptake was 70 ml kg . min for both legs. The mean energy expenditure of
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both legs induced by the stimulation was 74 kcal. hour The author states that 

oxygen uptake per kg o f muscle mass was relatively high. However, the author 

states that approximately three hours of NMES of both quadriceps would have to 

be used to generate an energy expenditure similar to that induced by 30 min o f 

cycling at the intensity o f about 50% of VO2  max.

Song et al. (1991) measured oxygen uptake and energy expenditure o f various

frequencies o f NMES of the human knee extensor muscles (KEM) in twelve

university male subjects. The range of intensities was 60 to 100 mA. The mean 

VO2  of the estimated quadriceps muscle mass at 4, 8,12, and 20 Hz were 2.4,

12.8, 9.6, and 3.5 L . hour respectively. The results o f the study illustrated that

NMES at 8 Hz induced the highest energy expenditure ( 64 kcal. hr ** ) followed

by 12 Hz ( 48 kcal. hr *‘), 20 Hz (18 kcal. hr \  and 4 Hz (12 kcal. hr '̂ ),

respectively.

Néron and Simoneau (1994) examined the effects of NMES at 8 Hz on the 

oxygen uptake of the KEM in 11 subjects (2 female, 9 male). Oxygen uptake was 

measured during electrical stimulation of both KEM at various intensities (25, 50 

75, and 100 mA). The stimulation-induced increases in VO2  of the KEM were 11, 

151,326,399 m l. min for intensities o f25, 50,75, and 100 mA, respectively. 

Expressed per kg of KEM (3.14 kg) the VO2  were 4 ,50,107 and 131 m l. min 

. kg for the same intensities.
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A study conducted by Boulay, Theriault, Barbeau, Giroux, Boulay, 

Prud’Homme, and Simoneau (1992) compared the maximal oxygen uptake and 

stimulation-induced oxygen consumption o f the knee extensor muscles in 

sedentary (N=9) and physically active (N=13) subjects. Oxygen uptake was 

determined at rest during 8 Hz of NMES of both knee extensor muscles, and again 

following a maximal ergocycle exercise test Maximal oxygen uptake expressed 

per kg of fat free mass and expressed per kg o f quadricep muscle mass was 

significantly (p<0.05) higher in active subjects than in sedentary subjects. The 

study indicated that maximal oxygen uptake per kg of quadricep muscle mass was 

significantly greater than that per kg o f fat free mass for both sedentary (63.5 vs 

45.9 ; p<0.02) and active (77.1 vs 65.4 m l. kg . min p<0.002) subjects.

A recent study by Kim, Strange, Bangsbo, and Saltin (1995a) also examined 

the oxygen uptake of the knee extensor muscles during electrically induced 

muscle contractions at various exercise loads. The exercise loads were 0, 10,20, 

30, and 40 Watts (W), respectively. Electrically induced muscle contractions 

were performed at a frequency of 50 Hz in six male subjects. Mean peak oxygen 

uptake for the entire leg was 0.15 L . min during no load exercise and increased 

to 0.71 L . min at 40 W. Mean peak oxygen uptake of the quadricep muscle 

mass was 230 m l. min' * at a work load o f 40 W. Subjects also voluntarily 

performed the one-legged extension tests at the same workloads at a rate o f 60
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contractions . min \  Pulmonary ojtygen uptake was the same in both exercise 

modes. The study suggests that electrically induced dynamic exercise is 

associated with cardiovascular responses similar to voluntarily performed 

exercise.

The metabolic response o f prolonged electrically induced dynamic exercise 

was investigated by Kim, Bangsbo, Strange, Karpakka, and Saltin (1995b). It was 

demonstrated in the study that electrically induced contractions could be sustained 

for prolonged periods o f time resulting in increased rates o f oxygen consumption 

and energy expenditure. The subjects (N=7) performed one-legged extension 

exercises while in a seated position. On separate days, knee extensions were 

performed both voluntarily and via electrical stimulation (50 Hz) for sixty minutes 

at a work rate of 30 W. Pulmonary oxygen uptake in the last minute of exercise 

was 0.81 L . min during voluntary exercise and 1.01 L . min ** during the 

electrically induced exercise. The authors concluded that the electrically induced 

muscle contractions engaged the entire quadricep muscle and recruited all muscle 

fiber types. Thus, energy expenditure was more pronounced in the group who 

performed the electrically induced muscle contractions.

Hoppeler et al. (1987) conducted a study which examined the oxygen 

consumption in cat gracilis muscle during various frequencies of electrical
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stimulation. The gracilis muscle was under contraction for 120 s and oxygen 

consumption was measured at the frequencies o f 8, 10,12,15, and 18 Hz.

The interval between each individual bouts o f stimulation was 20 minutes, by 

which time blood flow was reported to have returned to pre-stimulation levels. 

The authors reported that oxygen consumption was highest during stimulation at 8 

H z. The mean oxygen consumption o f the stimulated gracilis muscle (8 Hz) was 

11.6 m l. g \  min At the higher stimulation frequencies (10, 12, 15, and 

18 Hz) oxygen consumption values remained relatively unchanged.

Adenosine Triphosphate Turnover Rate

The rate o f adenosine triphosphate (ATP) utilization determines the rate of 

respiration in skeletal muscle tissue (Wilson, 1995). As a result, a number of 

researchers have used the turnover rate o f ATP during electrical stimulation 

in order to determine the energy expended during NMES exercise (Bergstrom & 

Hultman, 1988; Hultman & Spriet, 1986; Spriet, Soderlund, Bergstrom, & 

Hultman, 1987).

Hultman and Sjoholm (1983) stimulated the quadricep femoris muscles of nine 

subjects via intramuscular electrodes for 50 s. The stimulation frequency was 20 

Hz and the intensity was adjusted to produce an initial tension o f 50 to 75% o f the 

subjects maximum voluntary contraction force. The concentration o f ATP was
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initially 5.6 mm ol. kg (dry weight) and decreased during the later stages of 

contraction to 4.0 mmol. kg (dry weight). The authors stated that during the

50 s contraction there was a continuous breakdown o f phosphocreatine (PCr) and 

almost the whole supply was utilized within 50 s.

Bergstrom and Hultman (1988) electrically stimulated the quadricep femoris 

muscles o f six volunteers. Electrical stimulation (20 Hz) was used to produce 

contractions with a duration of 0.8 s in one leg and contractions with a duration of 

3.2 s in the other leg. The same number o f stimulation pulses were delivered to 

each leg and the total contraction time for both legs was 51s. The mean ATP 

utilization rate for the leg which had a contraction duration of 0.8 s after 22 and

51 s o f work was 6.6 and 4.3 mmol .kg'^ .s respectively. The ATP utilization 

rate o f the leg which had a 3.2 s contraction duration was 5.5 and 3.9

m m ol. kg *̂ . s after 22 and 51 s of work, respectively. The authors concluded 

that contractions of shorter duration (0.8 s) caused the muscle to fatigue faster and 

utilized more energy than the longer contraction durations (3.2 s) because of the 

repeated intermittent type of work performed during the stimulation period.

Hultman and Spriet (1986) also examined the turnover rate o f ATP following 

45 minutes o f intermittent electrical stimulation. The frequency o f NMES was 

20 Hz and the contraction duration was 1.6 s, separated by pauses of 1.6 s. The 

rate o f ATP turnover was recorded at various times during the stimulation period

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

(80s, 15,30, and 45 min). The ATP turnover rate was 1.86 mmol. kg . s 

during the stimulation session. The authors concluded that after the first 80s o f 

the NMES period, aerobic pathways provided an increasing finction o f the energy 

supply. This change occurred in the absence of input firom the central nervous 

system.

A study by Spriet et al. (1987) also examined the energy release in muscle 

following NMES of the quadricep muscles under anaerobic conditions. Seven 

male subjects were stimulated (20 Hz) while leg blood flow was occluded. Sixty 

four contractions were delivered each lasting 1.6 s followed by 1.6 s o f rest. The 

total contraction time was 102.4 s. The turnover rate o f ATP was examined at rest 

and following 16, 32,48, and 64 contractions. The ATP turnover rates during the 

four contraction periods were 6.12,2.56,2.17, and 0.64 mmol per kg o f dry 

muscle .s  respectively. The authors reported that glycolysis was responsible 

for 90% of the total ATP production beyond contraction 16. Glycolysis was 

reported to produce 195 mmol ATP per kg o f dry muscle during the initial 48 

contractions (76.8 s) and 15 mmol ATP . kg dry muscle during the final 16 

contractions.

Sjoholm et al. (1983) examined oxidative energy metabolism in response to 

electrical stimulation in 15 healthy subjects. The KEM were stimulated at 30 Hz 

with gradually increasing voltage until 30% of maximum voluntary contraction
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was reached. This stimulating voltage was used for the rest o f the test. A cuff 

that was placed around the quadriceps muscle was inflated to 240 mmHg. 

Stimulation at 20 Hz began 30 s later with the cuff inflated. The various 

stimulation times were 12,25, 50 and 75 s, respectively. Phosphocreatine 

decreased during the 75 s contraction from 76 mmol per kg dry muscle down to a 

mean value o f 9 mmol. Lactate increased during the same time period from 5 

mmol per kg dry muscle to 100 mmol. There was a rapid resynthesis o f PCr 

following the stimulation period. The authors concluded that the relationship 

between PCr and lactate of contracting muscle can be used as an index of 

glycolytic capacity. Furthermore, the authors suggest that the rate o f resynthesis 

of PCr after contraction can be used as a non-invasive estimation of the oxidative 

capacity o f skeletal muscle.

Blood Flow

The effects o f electrical stimulation on blood flow has been examined by a 

number of researchers (Barclay, 1988; Currier et al., 1986; Kim et al., 1995a). It 

has been recognized that blood flow to skeletal muscle is correlated with the 

capacity o f oxidative metabolism (Maxwell, Barclay, Mohrman, & Faulkner, 

1977). Kim et al. (1995a) reported that peak muscle blood flow was similar at 

various exercise intensities (0, 10,20,30, and 40 W) during voluntary and
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electrically induced (50 Hz) dynamic exercise. The authors reported individual 

values for peak muscle blood flow (40 W) to be between 165-220 

m l.100 g m in'\

The majority of research in this area has been performed on animals. Aitman, 

Hudlicka, and Tyler (1979) examined the effects of electrically induced tetanic 

contractions on blood flow in rabbits. The tibialis anterior muscles o f rabbits 

were stimulated via the peroneal nerve at supramaximal intensities either at 10 Hz 

continuously or with three 5 trains . min at 40 Hz. After 30 minutes o f isotonic 

contractions both patterns o f electrical stimulation produced similar increases in 

blood flow. Brechue, Barclay, O’Drobinak, and Stainsby (1991) demonstrated 

that maximal blood flow and oxygen uptake relies mainly in the peak blood flow  

through the muscle rather than the oxygen uptake capacity o f the muscle during 

electrically stimulated contractions. Two forms of isotonic contraction, tetanic 

and twitch, were delivered to dog gastrocnemius-plantaris muscle. The tetanic 

contractions were induced with a firequency o f 50 Hz once per second and the 

twitch contractions were delivered at the same firequency but were delivered four 

times per second. Peak blood flow was 37% greater and decreased at a slower 

rate during tetanic than twitch contractions. The authors concluded that the main 

difference in blood flow between the two forms of contraction were due to the
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mechanical hindrance o f blood flow. The authors suggest that there was more 

time for unhindered blood flow in the tetanic contractions.

Saltin (1985) investigated the blood flow and oxygen uptake per kg o f the 

KEM during dynamic work performed at a rate of 60 contractions per minute at 

various workloads (0 to 60 watts). Pulmonary oxygen uptake increased linearly 

with the work intensity. Heart rate also increased linearly with the increased 

workload to a peak value of 144 beats per minute. Blood flow was also measured 

in the femoral vein and was 0.15 to 0.40 liters per min at rest and increased 

linearly during the exercise protocol. Mean maximal blood flow reached 6 liters 

per minute at a workload o f 60 watts. Oxygen uptake o f the KEM during rest was 

between 6 and 12 m l. min and increased linearly with the increased workloads. 

Intensity o f Electrical Stimulation

An exhaustive review of literature has revealed only one study which has 

examined the effects of various intensities on oxygen consumption. It is, however, 

generally accepted that metabolic processes of the body increase in direct relation 

to the intensity of the electrical stimulus (Currier, 1991).

Néron and Simoneau (1994) examined the effects of various intensities o f 

NMES on the oxygen uptake of the KEM (3.14 kg) in 11 subjects (2 female, 9 

male) using a stimulation frequency o f 8 Hz. The oxygen uptake of both the 

KEM were 11, 151, 326, 399 m l. min for the intensities o f25, 50, 75, and 100
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mA, respectively. Expressed per kg of KEM the values at each intensity were 4, 

50,107 ,and 131 ml .min'* .kg'*.

The majority o f studies related to human metabolism report stimulus 

intensities as a percentage of an individual’s maximal voluntary contraction 

(Currier et d ., 1986; Spriet et al., 1987) or the subjects are required to sustain as 

high an intensity as possible. The lack o f information regarding the effects o f 

stimulus intensity on oxygen consumption and energy expenditure warrants 

further investigation.
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Chapter 3 

METHODOLOGY

Subjects

Fourteen healthy male university students participated in the study 

(see Table 1). The basic premise o f the study and the risks associated with the 

study were explained to the subjects. Subjects gave written consent to participate 

in the study (see Appendix A) which was approved by the Medical Ethics 

Committee o f Lakehead University.

Testing Schedule

Each subject underwent four sessions o f electrical stimulation and one session 

of anthropometric measurements over two consecutive weekends. The subjects 

were tested at the same time o f the day for each o f the testing sessions.

Testing Procedure

Subjects reported to the Human Performance Laboratory in the C.J. Sanders 

Fieldhouse wearing shorts and a shirt. The subjects were instructed to avoid 

strenuous activity for at least 24 hours prior to the testing sessions and the 

subjects were advised not to eat anything for two hours prior to the testing.
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Table 1. Characteristics o f subjects

Subject Age
(yrs)

Weight
(kg)

Height
(cm)

1 22 67.1 178.1

2 23 99.4 180.5

3 27 85.0 175.3

4 21 77.4 183.1

5 24 80.9 182.0

6 22 77.2 176.0

7 21 84.8 177.6

8 21 66.9 180.8

9 23 91.6 180.0

10 22 106.1 176.6

11 23 101.4 182.5

12 21 80.4 189.2

13 21 87.3 188.2

14 22 68.7 173.0

Mean 22.4 83.9 180.2

S.D. 1.7 12.4 4.6
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Anthropometric Measures

Weight, height, skinfolds, and girths o f the thigh were measured following the 

procedures of the International Biological Program (Lohman, Roche, Martorell, 

1988). The cross-sectional area o f the thigh muscle and thigh volume (muscle 

plus bone) w ^  determined from anthropometric measurement as described by 

Jones and Pearson (1969). The equation by Saltin (1985) was used to calculate 

the total mass of the knee extensor muscles (see Appendix B).

Neuromuscular Electrical Stimulation

A portable battery-powered stimulator (Respond H, EMPl) which produces a 

rectangular, asymmetrical-balanced biphasic pulse shape was used. Each o f the 

four intensities ( 25, 50, 75, and 100 mA) were applied progressively for five 

minutes in each session of the four frequencies ( 8,12,20, and 50 Hz ) during 

NMES. The electrical stimulations were delivered transcutaneously to the 

extensor muscles (impulse width of 300 microseconds and a duty cycle of 55 

seconds on and 2 seconds off). Two 7.6 cm diameter round adhesive bipolar 

electrodes (PALS PLUS ™ , EMPl) were placed over the proximal part of the 

knee extensor muscles (KEM) and over the motor point located on the vastus 

lateralis approximately 10 cm proximal to the upper border of the patella on each 

leg. The origin of the vastus lateralis muscle was determined by palpation o f the 

contracted muscle.
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One week test-retest correlations between oxygen consumption and NMES 

protocol (foiu: intensities o f 8 Hz) ranged from 0.89 to 0.94.

Energy Expenditure

Oxygen uptake was measured by SensorMedics MMC Horizon System in the 

supine position at rest (after 10 min rest) and during the NMES o f both KEM. 

Oxygen uptake per min and per kg o f thigh muscle mass and energy expenditure 

for the two knee extensor muscles was presented in kcal. hour '*. kg o f KEM 

The energy expenditure o f the knee extensors was calculated using the oxygen 

uptake differences between resting and NMES and was calculated by one litre of 

oxygen multiplied by 4.9 kcal.

Data Analysis

Descriptive statistics (mean and standard deviation) were computed. The 

effect of each test was assessed with a repeated-measures two way ANOVA and 

the Tukey test was used to identify specific mean differences when a significant F 

ratio was observed. The level o f significance was set at 0.05.
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Chapter 4 

RESULTS

The results o f the anthropometrical characteristics of subjects are shown in 

Table 2. The height and weight o f the subjects were in the 60 and 80 percentile o f 

Canadian norms, respectively (Canadian Standardized Test of Fitness, 1986). The 

estimated knee extensor muscle mass of both legs was 4.04 kg.

The oxygen uptake values for the four different frequencies and intensities o f 

NMES are shown in Table 3. Significant differences were found between 

intensities (F=586.0, p<0.001 ; Tukey value = 12.2, p<0.05) and the F ratio for the 

frequency and the interaction between intensity and frequency were not 

significant. The results from the present study demonstrate that the higher the 

intensity, the greater the oxygen uptake (p<0.05 - p<0.001) was found in all 

frequencies except in 50 Hz between 75 and 100 mA (p>0.05). The oxygen 

uptake at 100 mA o f 8 Hz was the highest (95.7 m l. min '*. kg o f KEM '* ; 

p>0.05). The average oxygen uptake for the various frequencies o f the intensities 

o f 25, 50, 75, and 100 mA were 6.1,26.5,73.3, and 89.5 ml min'* kg of 

KEM '*, respectively. There were no significant differences among frequencies in 

the same intensity.

The energy expenditures of various frequencies and intensities o f NMES are 

shown in Table 4. The F ratio was similar to that of oxygen uptake and the Tukey
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value was 3.63 (p<0.05). The average energy expenditures o f25, 50, 75, and 100 

mA of four frequencies were 1.79, 7.78,21.55,26.30, kcal. hr '*. kg o f KEM '*, 

respectively.
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Table 2. Anthropometrical characteristics of subjects

Age Weight Height Sum of Muscle
(yr) (kg) (cm) Skinfolds* Mass**

(mm) (kg)

Mean 22.4 83.9 180.2 38.6 4.04

S.D. 1.7 12.4 4.6 12.6 0.38

SJD.: Standard deviation.

* : Sum of the skinfolds o f the gluteal furrow, the third of the subischial height,
and the minimum circumference above the knee.

** : Knee extensor muscles o f both legs.
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Table 3. Oxygen uptake o f various intensities and frequencies o f neuromuscular 
electrical stimulation.

Frequency

Intensity 8H z 12 Hz 20 Hz 50 Hz

25 mA 6.2 ±  5.2 5.6 ±  4.3 6.7 ±  4.2 5.9 ±  3.3

50 mA 25.8 ±10.3 21.0 ±  8.3 26.7 ±  7.2 32.3 ±  15.8

75 mA 78.5 ±  13.2 68.4 ±12.5 70.8 ±  14.5 75.5 ±11.3

100 mA 95.7 + 24.2 87.8 ±23.7 90.7 ±21.4 83.9 ±19.5

Values are means ±  SD. Units: m l. min '*. kg of KEM ’*.
Hz: Hertz. mA: Milliampre.
Frequency: No significant difference among frequencies in each intensity. 
Intensity: 100 mA > 25, 50, and 75 mA (p<0.05-p<0.001) ; 75 mA > 25, and 
50 mA (p<0.05-p<0.001) ; and 50 mA > 25 mA (p<0.05) in each frequency 
except 100 mA > 75 mA (p>0.05) in 50 Hz.
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Table 4. Energy expenditures o f various intensities and frequencies of 
neuromuscular electrical stimulation.

Frequency

Intensity 8H z 12 Hz 20 Hz 50 Hz

25 mA 1.82 ±1.53 1.65 ±1.26 1.97 ±1.23 1.73 ±0.97

50 mA 7.59 ±3.03 6.17 ±2.44 7.85 ±2.12 9.50 ±4.65

75 mA 23.08 ±3.88 20.11 ±3.68 20.82 ±4.26 22.20 ±3.32

100 mA 28.14±7.11 25.73 ±  6.97 26.67 ±6.29 24.67 ±  5.73

Values are means ±  SD. Units: kcal. hr '*. kg o f KEM **.
Hz: Hertz. mA: Milliampre.
Frequency: No significant difference among frequencies in each intensity. 
Intensity: 100 mA > 25, 50, and 75 mA (p<0.05-p<0.001) ; 75 mA > 25, and 
50 mA (p<0.05-p<0.001) ; and 50 mA > 25 mA (p<0.05) in each frequency 
except 100 mA > 75 mA (p>0.05) in 50 Hz.
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Chapter 5 

DISCUSSION

The purpose o f this study was to quantify the oxygen uptake and energy 

expenditure induced by various frequencies and intensities of NMES of the 

human KEM. As of today, little research has been conducted on this subject. In 

the present study it was demonstrated that the higher the intensity the greater the 

oxygen uptake and energy expenditure. Furthermore, similar energy expenditures 

were observed for the four various frequencies in each o f the four intensities o f 

stimulation. However, the energy expenditure of 100 mA at 50 Hz in the present 

study was lower (p>0.05) than that of the other three frequencies at the maximal 

intensity. Furthermore, no significant difference (p>0.05) in energy expenditure 

was observed between 75 and 100 mA in 50 Hz which indicates that fatigue may 

have occurred during the 50 Hz stimulation.

Intensitv o f Electrical Stimulation

It is known that oxygen uptake increases in an almost linear manner with work 

load (Saltin, 1985), and the maximal rate o f oxygen consumption of muscle is 

limited by the supply o f oxidizable substrates, the supply o f oxygen, and the 

respiratory enzyme capacity (Wilson, 1995). The tension of muscular contraction 

is directly related to the intensity of the stimulation (Ferguson, Blackley, Knight, 

& Sultive, 1989; Gamhammer, 1983; Houston, 1983; Underwood, Kremser,
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Finstuen, & Greathouse, 1990) and accordingly, the oxygen uptake increases as 

the increment o f intensity during NMES.

Duchateau (1991) reported that during the stimulation o f the KEM the degree 

of force increase is mainly related to the intensity o f stimulation that is accepted 

by the subject. Duchateau (1991) further states that the higher the intensity of 

stimulation the greater the number of muscle fibres that will be recruited. The 

present study did not measure force output however, it could be postulated the 

production of force to be closer to the maximum at high intensities

Increasing the force output in specific muscles can be done by increasing the 

number of motor units recruited and/or by increasing their firing firequency 

(Deluka, 1985; McArdle et al., 1991). In the present study, there were no 

significant differences between the different frequencies in each o f the four 

intensities and it has been demonstrated that electrically induced muscle 

contractions are capable of recruiting all muscle fibres (Kim et al., 1995b). 

Therefore, it can be postulated that the change in oxygen uptake and energy 

expenditure is a result of the number of motor units which were recruited.

During NMES fast twitch muscle fibres are recruited before the highly 

oxidative slow twitch muscle fibres because they have large motor nerves and 

their decreased threshold for excitation (DeVahl, 1992; Solomonow,1984; 

Trimble & Enoka, 1990). Only at higher intensities would the small, slow twitch
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fatigue resistant motor units be activated (DeVahl, 1992). As a result, only at 

higher stimulation intensities would all muscle fibres be active resulting in greater 

energy expenditure and oxygen uptake.

In the present study, there were no significant changes (p>0.05) in energy 

expenditure between the muscles resting state and 25 mA of electrical stimulation 

at each o f the four frequencies. A possible explanation for the similarity between 

the resting oxygen consumption and the oxygen consumption at 25 mA may be 

due to the small number of motor units involved.

The results o f the present study illustrate that oxygen uptake and energy 

expenditure increased as a result o f increased stimulus intensity in each frequency 

(p<0.05-p<0.001). The mean peak oxygen uptake and energy expenditure o f the 

KEM was 361.6 m l. min '* and 106.3 kcal. hour '*. Although the muscular 

activity in the present study was limited to the KEM, the energy expenditure for 

one hour o f NMES using 100 mA at 8 Hz (95.7 + 24.2 m l. kg . min o f KEM ** ) 

will be similar to about 10 minutes o f bicycle ergometer riding at an intensity of 

approximately 70 % of the V0% max for the male university students in the present 

study.

Néron and Simoneau (1994) examined the effects o f various intensities o f 

NMES on the oxygen uptake of the KEM (3.14 kg) in 11 subjects (2 female, 9 

male) using a constant stimulation frequency of 8 Hz. The oxygen uptake for
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the intensities o f25,50,75, and 100 mA were 4, 50,107 and 131 m l. min '*. 

kg '* of KEM ** and were greater than that o f the present study at the same 

intensities. The higher values for oxygen consumption per kg of KEM ** may be 

due to the fact that the KEM mass was only 3.14 kg compared to the 4.04 kg 

KEM mass in the present study. Thus, the metabolic demands placed per kg of 

KEM would be greater in Néron and Simoneau’s (1994) experiment. Similarly, 

when oxygen uptake was expressed for both KEM, the results of Néron and 

Simoneau (1994) were slightly greater than that in the present study. The higher 

values may be due to the constant electrical stimulus that was used in comparison 

with the present study which used a duty cycle o f 55 s on 2 s off. It is also 

possible that the fitness level o f the subjects who participated in the present study 

may not have been as high as the subjects who participated in Néron and 

Simoneau’s (1994) study. Thus, leading to lower values for oxygen uptake. In 

the present study, it is also possible that not all o f the muscle fibers o f the KEM 

were fully activated during stimulation.

Simoneau (1989) indicated that the mean oxygen uptake was 70 m l. kg ’*. 

min ** and the mean energy expenditure o f both legs induced by the 

stimulation was 74 kcal. hour ’*. This would be similar to 30 min of cycle 

ergometer riding at an intensity of about 50% of VO2  max. The energy 

expenditure is lower than that o f the present study. A possible reason for the
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difference may be due to the fact that not all o f the subjects in Simoneau’s study 

were stimulated at 100 mA. This explanation supports the hypothesis that the 

higher the intensity o f stimulation the greater the oxygen uptake and energy 

expenditure.

The oxygen uptake values reported by Song et al. (1991) were lower than that 

o f the present study and it may be due to the range of iutensities which were used 

(60 - 100 mA). This study supports the results o f the present study in which the 

greater the intensity o f stimulation the greater the oxygen uptake and energy 

expenditure.

Boulay et al. (1992) also reported a lower mean oxygen uptake value when 

compared to the present study. This study did not indicate stimulus intensity.

The subjects in Boulay et al. (1992) may not have been stimulated at maximal 

intensities. Thus, leading to the lower values for oxygen uptake when compared 

to the present study.

A recent study by Kim et al. (1995a) demonstrated similar values for oxygen 

uptake of the KEM when compared to the present study. Oxygen uptake of the 

knee extensor muscles during electrical induced muscle contractions (50 Hz) were 

measured at various exercise loads while subjects performed a cycle ergometer 

task. The exercise loads were 0 ,10 ,20 ,30 , and 40 Watts (W), respectively.

When expressed per kg of KEM mass the oxygen uptake was 92 m l. kg '*. min "*.
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In the present study the greatest oxygen uptake per kg o f KEM mass was induced 

by an intensity o f 100 mA at 8 Hz (95.7 m i. kg **. min '* ; p>0.05). Therefore, it 

could be presumed that the metabolic demand placed on the KEM during dynamic 

knee extension at 40 W would be similar to that of the NMES o f the KEM at an 

intensity of 100 mA at 8 Hz in the present study.

Frequency o f Electrical Stimulation

In the present study no significant differences (p>0.05) were found in oxygen 

uptake and energy expenditure for the four various firequencies in each of the four 

intensities o f stimulation. These findings possibly suggest that the rate o f energy 

expenditure is dependent on the intensity but not the firequency. However, the 

greatest energy expenditure in the present study was induced at a stimulation 

firequency of 8 Hz (p>0.05) at an intensity of 100 mA.

Song et al. (1991) observed that 8 Hz induced the highest energy expenditure 

(p>0.05) during the NMES of the KEM at various frequencies. The result for 

peak energy expenditure is lower than the results obtained in the present study at 

the same stimulation frequency. This may be a result o f the lower intensities 

which were used in their experiment These findings possibly suggest that the 

rate o f energy expenditure is dependent on the intensity but not the frequency. 

Simoneau (1989) also demonstrated high oxygen consumption and energy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

expenditure values at a stimulation frequency o f 8 Hz in eight male subjects 

following one session of NMES o f the quadriceps muscles.

Similar findings were demonstrated in an animal study (Hoppler et al., 1987). 

Hoppler et al. (1987) reported that oxygen consumption was the greatest at 8 Hz 

and that there was a sharp drop in oxygen uptake at frequencies lower than 8 Hz 

while stimulating cat gracilis muscle. Further support for the present study in 

relation to lower frequency stimulation producing a greater energy expenditure 

was demonstrated by Loiselle and Wallsley (1982). The authors observed that the 

energy cost o f tension development was reported to be 4 times as great when the 

tension was developed with unfiised twitches instead o f fully fused tetanus 

achieved by asynchronous activation o f motor units. The authors also indicated 

that the energy cost o f tension development was greater with unfused twitches 

instead o f fully fused tetanus due to the lower rate o f cross bridge formation 

during the plateau phase of a tetanus when compared to that o f the twitch 

contractions.

The change in blood flow due to NMES has not been done in the present study. 

However, the change of blood flow has been discussed due to the close 

relationship between blood flow and energy expenditure.

The effect o f NMES on blood flow has been examined (Barclay, 1988; Currier 

et al., 1986; Kim et al., 1995a) and it has been recognized that blood flow to
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skeletal muscle is correlated with the capacity o f oxidative metabolism (Maxwell 

et al., 1977; Wilson, 1995). Furthermore, Brechue et al. (1991) demonstrated that 

maximal blood flow and oxygen uptake relies mainly in the peak blood flow 

through the muscle rather than the oxygen uptake capacity of the muscle during 

electrically stimulated contractions.

Kim et al. (1995a) reported that the peak muscle blood flow was similar at 

various exercise intensities during voluntary (10,20,30, and 40 W) and 

electrically induced dynamic knee extension exercise (50 Hz). It could be 

presumed that the frequency required to activate the KEM would vary according 

to the force the KEM exerted (Sjoholm et al., 1983). Thus, the similar peak blood 

flow values between the two forms of exercise suggest that the local metabolism 

may be dependent on the intensity not on the frequency.

Randall et al. (1953) found greater blood flow with lower frequencies o f 7 to 

14 Hz than with the higher frequencies that produced tetanic contractions. 

Generally, the faster the frequency of NMES, the lower the percentage o f increase 

in blood flow (Randall et al., 1953). The results o f Randell et al. (1953) support 

the highest energy expenditure of the 8 Hz (p>0.05) at the intensity o f 100 mA in 

the present study. Further support o f the highest energy expenditure at 8 Hz was 

demonstrated by Zicot and Rigaux (1995). The authors reported that NMES of
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the leg muscles at 9 Hz (31 mA) increased femoral blood flow by 276% vdien 

compared to the blood flow at rest

Perhaps the reason why 8 Hz at an intensity o f 100 mA yielded the greatest 

energy expenditure (p>0.05) in the present study may be due to the fact that this 

stimulation frequency produces a more rhythmical or facilitating contraction to 

occur in the muscle. DeVahl (1992) states that different frequencies have 

different functions. Frequencies between 8 Hz and 20 Hz cause twitch 

contractions which cause a vibrational or facilitating contraction and can be 

described as incomplete tetany.

The decrease of energy expenditure (p>0.05) of 50 Hz at the intensity o f 100 

mA in the present study may be due to fatique. It could be assumed that there 

would have been a decrease in ATP resythesis and an increase in the metabolites 

associated with the hydrolysis of ATP, thus, a decrease in energy expenditure 

(Hultman & Sjoholm, 1983). High frequency fatigue could only occur due to the 

impairment of neuromuscular transmission or failure of membrane excitation 

(Edwards, 1984; Sjoholm et al., 1983).

Currier et al. (1986) reported that stimulating skeletal muscle at 50 Hz did not 

cause a significant increase in blood flow (p>0.05) when the stimulus intensity 

increased from 10 % to 30 % of MVC. It has been demonstrated that blood flow 

to skeletal muscle is correlated with the capacity o f oxidative metabolism
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(Maxwell et al., 1977; Wilson, 1995). Therefore, the results o f Currier et al. 

(1986) support the findings o f the present study. A possible reason why blood 

flow did not increase significantly in Currier et al. (1986) may be due to the fused 

tetanic contractions which are produced at a firequency o f 50 Hz (Guyton, 1991). 

Although blood flow was not measured in the presented study, it could be 

postulated that the blood flow to the KEM muscles may have been mechanically 

occluded as a result of the 50 Hz stimulation at 100 mA. Thus, leading to lower 

energy expenditure values.

Sjohohn et al. (1983) observed that when the KEM underwent stimulation 

firequencies o f 10, 20, 30,40, and 50 H z, the greatest increase in tension occurred 

in the firequency range o f 10 to 20 Hz. Tension increased gradually as the 

firequency o f stimulation was further increased. This study supports the findings 

o f the present study in which no significant differences in energy expenditure 

(p>0.05) between 20 and 50 Hz at an intensity o f 100 mA were observed.
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CHAPTER 6

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

The purpose of this study was to determine the effects of neuromuscular 

electrical stimulation (NMES) o f various intensities (25, 50, 75, and 100 mA) and 

frequencies (8 ,12 ,20 ,50  Hz) on energy expenditure of the KBM. Fourteen male 

university students underwent 5 min o f each intensity o f each frequency during 

NMES of both KEM on different days with the use o f a portable stimulator 

(Respond H, EMPI; impulse width o f 300 microseconds; duty cycle: 55s on and 

2s off) and adhesive electrodes (Pals Plus™, EMPI). Oxygen uptake was 

measured in the supine position at rest and during NMES. The results demonstrate 

the higher the intensity, the greater the oxygen uptake and energy expenditure 

(p<0.05 - p<0.001) in all frequencies except in 50 Hz between 75 and 100 mA 

(p>0.05). The average oxygen uptake for the various frequencies of the intensities 

o f 25, 50, 75, and 100 mA were 6.1, 26.5,73.3, and 89.5 ml m i n k g  of 

KEM respectively. Similarly, the average energy expenditures of the four 

frequencies at the various intensities were 1.79, 7.78,21.55 and 26.30 kcal .hr 

kg o f KEM There were no significant differences among the frequencies in the

same intensity for either oxygen uptake or energy expenditure. The highest 

oxygen uptake (95.7 m l. min . kg o f KEM '*) and energy expenditure (28.1 kcal
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. hr kg of KEM **) was induced at a stimulation frequency of 8 Hz (p>0.05) at 

an intensity o f 100 mA.

Conclusions

The results o f this study indicated that higher stimulation intensities induce 

greater oxygen uptakes and energy expenditures. As well, the stimulation 

frequencies in each intensity yielded similar values for oxygen uptake and energy 

expenditure. However, the greatest energy expenditure was observed at a 

stimulation frequency of 8 Hz (p>0.05) at an intensity o f 100 mA. 

Recommendations

The application of NMES training programs has tremendous potential for 

improving the function of patients with musculoskeletal conditions, as well as for 

enhancing athletic performance. Future studies should examine the physiological 

effects of long term NMES training programs on athletes as well as individuals 

who are unable to produce voluntary muscle contractions.

Future studies examining the effects o f NMES on energy expenditure should 

use an intensity of 100 mA and a frequency of 8 Hz due to the fact that these 

stimulation parameters induced the greatest energy expenditure (p>0.05) in the 

present study. Further studies should examine the optimal number o f hours that 

NMES should be applied for an effective training session. More specifically, to 

verify whether a greater number of hours per day (i.e., 6, 5 ,4 ,3  hrs) o f NMES
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would lead to a significant differences between the various hours o f stimulation. 

Such information would be useful for designing NMES training programs for 

individuals who are unable to voluntarily contract the KEM.

Further studies should investigate the effects of NMES on muscular endurance 

of the KEM using an intensity of 100 mA and a frequency o f 8 Hz. It is already 

known that the aerobic-oxidative potential of the KEM can be improved via 

NMES (Gauthier et al., 1992). However, both the optimal number o f hours per 

day and the number o f weeks using the above mentioned stimulus parameters 

should be examined. Theriault, Theriault, and Simoneau (1994) illustrated that 

there were significant differences in the total work output (TWO), and the 

metabolic profile o f the KEM following 4 weeks of NMES at 8 Hz for 

8 h . day However, 4 additional weeks did not significantly alter the metabolic 

profile of the KEM nor did it alter the TWO of the KEM. Similarly, Gauthier et 

al. (1992) reported that stimulation of the KEM at 8 Hz for 8 hrs . day appeared 

to produce no further metabolic changes in the KEM when compared to 

3 hrs . day Thus, studies verifying the optimal number o f weeks o f training 

and hours each session should be further investigated.

Another study related with the present study which should be examined is the 

effects of NMES training programs on muscular strength. The results o f the
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present study demonstrated that 100 mA induced the greatest energy expenditure 

and that these stimulation parameters lead to fatiguing conditions in the KEM.

It would be of great value to establish the optimal number of training sessions per 

week and the number of weeks o f training needed to increase the strength o f the 

KEM. More specifically, to verify whether or not a greater number of training 

sessions per week (i.e., 3 vs 4) and number o f weeks o f training (4 vs 6) o f NMES 

can lead to increases in KEM strength. The results o f such studies further advance 

the knowledge of individuals interested in establishing NMES training programs 

for able bodied and physically challenged individuals.
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APPENDIX A  

CONSENT FORM

1. Effects o f Neuromuscular Electrical Stimulation o f Various Frequencies and 
Intensities on Energy Expenditure.

2. I __________________________consent to take part in a study which will examine
the effects o f Neuromuscular Electrical Stimulation o f Various Frequencies and 
Intensities on Energy Expenditure.

1) measurements o f height, weight, girth, and thickness o f skinfolds.

2) neuromuscular stimulation on the quadriceps muscles at intensities of 25, 
50, 75, and 100 mA and frequencies o f 8 ,12 ,20  and 50 Hz.

3. I understand that I will take the above tests and that I have the option to stop 
the test(s) at any time and/or omit any part o f any test. I also understand that I 
may experience localized discomfort in the quadricep muscles as a result o f the 
tests. In agreeing to these tests, I accept all responsibility and waive my legal 
recourse against Lakehead University and members o f their staff from any and all 
claims resulting from personal injuries sustained from these tests. I understand 
that any data resulting which might be o f a personal nature will be confidential. I 
further consent to the use o f information obtained from these tests by Lakehead 
University.

I have read and understand the above.

Name (print) Signature Date

Witness (print) Signature Date

I have explained the nature of the study to the subject and believe he has 
understood it.

Name (print) Signature Date
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Al’PENDIXB

ESTIMATED MUSCLE VOLUM E AND MUSCLE MASS OF THE KNEE
EXTENSOR MUSCLES
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ELECTRODE PLACEMENT
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