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Abstract

This thesis examines three interval based uncertain reasoning approaches: reason­

ing under interval constraints, reasoning using necessity and possibility functions, and 

reasoning with rough set theory. In all these approaches, intervals are used to charac­

terize the uncertainty involved in a reasoning process when the available information 

is insufficient for single-valued tru th  evaluation functions. Approaches using interval 

constraints can be applied to both interval fuzzy sets and interval probabilities. The 

notion of interval triangular norms, or interval t-norms for short, is introduced and 

studied in both numeric and non-numeric settings. Algorithm s for computing interval 

t-norms are proposed. Basic issues on the use of t-norms for approximate reasoning 

with interval fuzzy sets are studied. Inference rules for reasoning under interval con­

straints are investigated. In the second approach, a pair of necessity and possibility 

functions is used to bound the fuzzy tru th  values of propositions. Inference in this 

case is to  narrow the gap between the pair of the functions. Inference rules are derived 

from the properties of necessity and possibility functions. The theory of rough sets 

is used to  approximate truth values of propositions and to explore modal structures 

in many-valued logic. It offers an uncertain reasoning method complementary to the 

other two.
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C hapter 1

INTRODUCTION

Uncertain reasoning seems to be a characteristic of human thinking and is there­

fore an essential subject of artificial intelligence. In many situations, uncertainty is 

inevitable due to a lack of knowledge, or incompleteness and unreliability of the avail­

able information. There are two fundamental issues involved in uncertain reasoning, 

representation of uncertain information and inference with such information.

Traditionally, single-valued measures, such as probability functions, are used to 

handle uncertain information where the uncertainty of a proposition is expressed 

with a single number. These approaches have a number of practical problems [32]. 

It may be unrealistic to expect an expert to provide precise and reliable probability 

functions. The maintenance of consistency using single-valued measures may be a 

difficult task. To resolve these problems, various proposals have been suggested using 

the notion of numeric and non-numeric intervals [2,3,8, 23, 30,46,44, 47]. The results 

of these studies have resulted in many interval-based tools for uncertain reasoning, 

such as incidence calculus [5, 44], belief and plausibility functions [35], necessity and 

possibility functions [14], interval fuzzy sets [31], interval probabilities [32, 44], and 

rough sets [29].

In interval-based approaches, the uncertainty of a proposition is not represented 

by a single number but by an interval. Instead of providing the exact value, one gives

1
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a range within which lies the actual value. Based on the interpretations of such an 

interval representation of uncertainly, the main objective of this thesis is to analyze 

three different interval-based uncertain reasoning approaches. They are uncertain 

reasoning using interval constraints, necessity and possibility functions, and rough 

sets, respectively.

In reasoning under interval constraints, an interval is interpreted as confining a 

family of uncertainty measures. That is, the degree of uncertainty, or the truth, of a 

proposition is bounded by intervals. An inference process is formulated as constraint 

propagation [30]. The main tasks are to derives, from the given interval constraints 

on certain propositions, the intervals for propositions whose truth values are not 

provided, and to tighten the initial intervals. An advantage of this approach is that 

no ad hac assumption is introduced. This view of interval-based inference provides a 

unified framework for reasoning with several types of uncertainties, such as interval 

fuzzy sets and interval probabilities.

A fuzzy set is defined in terms of a function from a universe to the unit interval 

[0,1]. That is, the membership of each element belonging to a fuzzy set is a single 

value between 0 and 1. The intersection and union of fuzzy sets are defined in terms 

of max-min system, probabilistic-like system, and more generally triangular norms 

and conorms (t-norms and t-conorms for short). Such a single-value-based system 

is commonly known as the type-1 fuzzy set system. In practical applications, there 

is also a need to represent the membership of an element by using a fuzzy set in 

[0,1], instead of a single value. This system is known as the type-2 fuzzy set systems. 

Operations on type-2 fuzzy sets are defined by extending the operations on the type- 

1 fuzzy sets. Studies on operations of type-2 fuzzy sets have been concentrated 

mainly on the max-min system [9, 25]. In addition, inference with type-2 fuzzy sets 

is computationally expensive. In order to overcome this difficulty, special cases of 

type-2 fuzzy sets have been considered [14, 31]. For example, membership function

2
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of fuzzy sets may be restricted to fuzzy intervals of [0,1]. If ordinary subintervals of 

[0,1] are used to represent membership, one obtains the interval fuzzy sets commonly 

known as the <&-fuzzy sets [31].

Although it is important to study type-2 fuzzy sets in general case based on the 

calculus of fuzzy quantities [14], it is equally important to study some special cases. 

The particular characteristics of each special case may offer more efficient algorithms 

and more insights that may not be obtainable in the general case. For example, one 

can derive closed-form solutions of fuzzy set operations for fuzzy intervals [4, 14]. 

Kenevan and Neapolitan studied interval fuzzy sets based on the usual max-min 

system [20]. Dubois and Prade [14], and Goodman et al. [18] studied the same problem 

of extending max-min system to interval fuzzy sets, in connection to Lukasiewicz 

many-valued logic and interval analysis. Turksen discussed the notion of interval­

valued fuzzy sets constructed from the disjunctive and conjunctive normal forms, 

DNF and CNF, in which certain types of t-norms can be used [38]. Operations on 

interval-valued fuzzy sets are defined by considering all possible combinations of DNF 

and CNF [39]. On the other hand, in $-fuzzy sets, an interval is merely regarded as 

the range within which lies the true membership [20, 31]. The computation of fuzzy 

set operations may be simplified. Dubois and Prade introduced the notion of twofold 

fuzzy sets, which is a special kind of <£-fuzzy secs such that the lower bound of a 

twofold fuzzy set is included in the core of the upper bound [13]. More specifically, 

the lower and upper bounds are interpreted as bounds of necessity and possibility. 

Consequently, the max-min system is used to define operations on twofold fuzzy sets. 

Bonissone proposed an approximate reasoning model with interval representation of 

uncertainty, in which four operations are defined using t-norms [2, 3, 4].

In order to perform interval fuzzy set operation, the notion of t-norms is extended 

to interval t-norms. Interval t-norms are defined as two-place functions on the closed 

subintervals of [0,1] by drawing results from interval computation. Using interval

3
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t-norms, operations on interval fuzzy sets can be efficiently computed, i.e., by com­

puting only values of two extreme points of intervals. Inference with interval fuzzy 

set is based on the computation of interval-valued membership function. Intersection 

and union of two interval fuzzy sets are obtained by interval t-norms and t-conorms 

of their membership intervals. A set of inference rules is presented based on interval 

t-norms. Inference using interval L-fuzzy sets is also considered.

The use of interval probabilities is another example of reasoning under interval 

constraints. In practice, the exact probability of a proposition may not be available, 

and an interval may be adopted. Quinlan proposed a set of inference axioms to 

tighten the bound of the probabilities of propositions [32]. The inference axioms used 

by Quinlan do not necessarily produce the tightest probability bounds. By refining 

these axioms, it is possible to infer tighter probability bounds [44].

In the approach with necessity and possibility functions, the truth value of a 

proposition is bounded by a pair of necessity and possibility functions. The necessity 

function provides sure threshold for the truth value while the possibility gives the 

maximal possible point. A practical problem with this approach is that an expert 

may have difficulties in supplying precise and consistent necessity and possibility 

functions. That is, the bound provided by experts may not necessarily be necessity 

and possibility functions. In this case, inference may be formulated by updating the 

existing bounds so that they will be as close as possible to  a pair of necessity and 

possibility functions.

The theory of rough sets offers m other interval-based method. The interval ap­

proximations stem from a lack of sufficient information or incomplete information. 

A set is assumed to be precisely defined. However, the available information, given 

in terms of equivalence classes, does not allow us to describe the set exactly. In 

other words, it may be impossible to describe a precisely defined set with equivalence 

classes. In this case, a pair of lower and upper approximations is obtained. The

4
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lower approximation contains all elements necessarily belonging to the set, while the 

upper approximation contains all elements possibly belonging to the set. The theory 

of rough sets is closely related to modal logic. Inference with rough sets can be done 

in a similar manner as in modal logic [45]. More specifically, the theory of rough sets 

is extended in this thesis to investigate the approximation of one many-valued logic 

by another many-valued logic with fewer truth values.

The rest of the thesis is organized as follows. In Chapter 2, basic notions, such 

as lattice, fuzzy sets, rough sets, uncertainty measures, and logics, are introduced. 

In Chapter 3, a framework of interval computations is presented. It is applied to 

the study of interval t-norms. In Chapter 4, three interval-based uncertain reasoning 

approaches are examined. Finally, a summary of the thesis and future work are 

presented in Chapter 5.

5
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Chapter 2

BASIC NOTIONS

In this chapter, some elementary concepts involved in uncertain reasoning are 

briefly reviewed. A summary of various uncertainty measures is presented.

2.1 L attice

A binary relation 72. in a set L  is called a partial order relation on L if 72 is 

reflexive, antisymmetric, and transitive. The ordering is denoted by <  and the pair 

(L, <) is called a partially ordered set or poset.

Let (L , <) be a poset and let A C L .  An element x  E L  is an upper bound for 

A  if for all a E A, a < x. An element x  E L  is a least upper bound for A  if x  is an 

upper bound for A  and x  < y for any upper bound y for A. Similarly, any element 

x  E L  is a lower bound for A  if for all a E A, x  <  a. An element x  E L  is a greatest 

lower bound for A  if x  is a lower bound for .4 and y < x  for any lower bound y for 

A. In a poset (L , < ), for x, y E L, if their greatest lower bound exists, it is called the 

meet of x  and y  and denoted by x  ® y; if their least upper bound exists, it is called 

the join  of x  and y  and denoted by x  © y.

D efin itio n  2.1 I f  (L, <) is a partially ordered set such that a,b E L implies there 

exists a <2) b in L, (L, <) is a called a meet semi-lattice (lower semi-lattice). I f  there

6

with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



exists a © 6 fo r  every pair a,b 6  L, L  is called a join semi-lattice (upper semi-lattice). 

I f  there exist both a 0  6 and a © b 6 L, L is called a lattice.

In the following discussion, it is assumed that there exist a universal least element 

and a universal greatest element, represented by 0 and 1, respectively. In this case, 

a lattice may also be denoted by (L , ©, 0 ,0 ,1 ). Any lattice possesses the following 

properties: for any a, 6, c 6 L,

LI. Commutative laws

a 0 6  =  6 ® a, a © 6 =  6 © a;

L2. Associative laws

a 0  (6 0  c) =  (a 0  6) 0  c, a © (6 © c) =  (a © b) © c;

L3. Idempotent laws 

a0a = a©a = a;

L4. Absorption laws

a © (a 0  b) = a 0  (a © b).

For an element x  €  L, if there exists an element x! satisfying x© x' =  1 and x® x ' =  0, 

x! is called a complement (denoted by ©) of x. A lattice is called complemented if 

every i G i  has a complement. A lattice L  is called distributive if, for a, b, c e  L. it 

satisfies the distributive law:

L5. a 0  (b © c) =  (a 0  b) © (a 0  c), a  © (6 0  c) =  (a © 6) 0  (a © c).

A complemented and distributive lattice is called a Boolean algebra, denoted by 

(L, © ,0 ,© ,0 ,1).

7
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2.2 Fuzzy Sets

The notion of fuzzy sets was introduced by Zadeh [48]. It is a natural extension 

of classical set when membership is no longer all-or-nothing. Let U be a classical set 

called the universe. A fuzzy set A  on U is defined by a membership function, which 

is a mapping from U to the unit interval, namely,

t i A 'U — ►[0,1]. (2.1)

Fuzzy set inclusion (C) is defined point-wise as:

A  C B  iff for any x  € U, #a(x) <  Pb (x)- (2-2)

Fuzzy set union (U), intersection (n), and complement (~) may be defined by the 

max-min system proposed by Zadeh:

Va<j b (z ) = max(fj.A(x), n B(x)),

^Ans(z) =  min(fj.A(x),fiB(x)),

V ~ a (z ) =  l - n A [ x ) .

Many other proposals have been made for fuzzy set intersection and union. An 

important class of such operations can be formulated by t-norms and t-conorms, 

including the max-min and product operations.

The concept of fuzzy sets can be extended to L-fuzzy sets if the special lattice 

([0,1], max, min, 0,1) is replaced by an arbitrary lattice (L, ©, ®, 0,1). The intersec­

tion and union in L-fuzzy sets are given by:

M a u b (z )  =  M a (s )  ©  H b ( x ) ,

( * A n B ( x )  =  (ma {x ) ®

These operations can also be defined by lattice t-norms and t-conorms.

8
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A concept closely related to L-fuzzy sets is m-flou set, which was first introduced 

by Gentilhomme [16]. An m-flou set can be denoted by an m-tuple A = (Ey, . . . ,  E m) 

of ordinary subsets of U such that:

E i C . . . C E m. (2.3)

Operations .on m-flou sets are defined as follows: for A  =  ( E y , . . . , E m) and B  =  

(Fy, . . . ,  Fm),

Union A U B = (Ey U Fy, . . . ,  Em U Fm) 

Intersection A D B  =  (Ey fl Fy, . . . ,  Em H Fm)

Complement A =  (Ey, . . . ,  Em)

Inclusion A C S  iff E iC .F i, i =  1 , . . . , m.

An m-flou set is a particular case of L-fuzzy set where L  is a finite linearly ordered 

set of m elements. There is a structural isomorphism between them [10].

When the membership of a fuzzy set itself is a fuzzy set, it is called type-2 fuzzy 

set. Following the same argument, one can define type-m fuzzy sets recursively from 

type-(m — 1) fuzzy sets. A special type-2 fuzzy sets is <£-fuzzy sets [34], or called 

interval valued fuzzy sets, whose memberships are closed subintervals of [0,1].

2.3 R ou gh  S ets

Let U denote a finite and non-empty set called the universe, and let TZ C U x U

denote an equivalence relation on U. The pair apr =  (U, 1Z) is called an approximation

space. The equivalence relation TZ partitions the set U into disjoint equivalence 

classes. Such a partition of the universe is denoted by U/1Z. If two elements x ,y  E. U 

belong to the same equivalence class, x  and y are indistinguishable. The equivalence
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classes of TZ and the empty set 0 are called the elementary or atomic sets in the 

approximation space apr =  (U,TZ).

Given an arbitrary set A C U , i t  may not always be possible to describe A  precisely 

using the equivalence classes of 1Z. In this case, one may characterize A by a pair of 

lower and upper approximations:

apr(A) = |J
[ i ] h C  A

W r{A) =  p | [x]n ,
[x]RnA^0

where

N r  =  (V I xK y}  (2.4)

is the equivalence class containing a;. The pair (apr (A), apr (A)) is called the rough set 

with respect to A. The lower approximation apr (A) is the union of all the elementary 

sets which are subsets of A, and the upper approximation apr(A) is the union of 

all the elementary sets which have a non-empty intersection with A. An element 

in the lower approximation necessarily belongs to A, while an element in the upper 

approximation possibly belongs to A.

2.4 U n certa in ty  M easures

There are many kinds of uncertainty measures such as fuzzy measures, probability 

functions, belief and plausibility functions, and necessity and possibility functions. 

Each class is governed by a set of axioms. A brief summary of uncertainty measures, 

adopted from Yao, Wong, and Wang [47], is presented next.

A frame is a finite set 0  =  {9i, . . . ,  0n} containing all possible answers to a given 

question [35]. A proposition can be seen as a subset of 0 , and all possible propositions 

form the power set 2®. The uncertainty of a proposition is defined by a measure 

satisfying certain axioms.

10
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2.4.1 Fuzzy m easures

A fuzzy measure /  satisfies the following axioms [-37]:

(F i) m = o,

(F2) / ( 0 )  =  1,

(F3) A  D B  ==* /(A ) > f(B ) .

where A  and B  are subsets of 0 .

2.4 .2  B elief and p lausib ility  functions

A belief function /  is defined by axioms (F l), (F2) and the superadditivity axiom:

(F4) For every positive integer n  and every collection A u . . . ,  An C 0 , 

f (A i  U A2 . . .  U A n) >  ^  f(A i) -  Z  f ( * i  n  Aj)
i i<j

±  • • • +  ( - i ) n+1/(^ .i n . 4 2- n  An). (2.5)

The dual of a belief function is called plausibility function / ':

/ '(A ) =  1 -  /(~ A ), (2.6)

It can be equivalently defined by axioms (Fl), (F2) and the subadditivity axiom:

(F5) For every positive integer n  and every collection Al}. . . ,  A n C 0 ,

/ ' ( A! n  A2 . . .  n  An) <  £  / '(A t) -  S  /'(A t U Ay)
i i<j

±  . . .  +  ( - l ) n+1/'(A ! U A2 . . .  U An). (2.7)

The interval [/(A ),/'(A )] indicates the range of the tru th  value of proposition A.

11
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2.4.3 P robab ility  functions

A probability function /  is defined by axioms (F l), (F2) and the additivity axiom:

(F6) A n  B  =  0 =► f ( A  U B) = f(A )  + / (B ) .

Belief and plausibility functions are closely related to probability functions as ex­

plained in the following theorem proved by Dempster [8].

T h eo rem  2.1 Let /  be a belief function on 0  and f  be the corresponding plausibility 

function . Then for all A  C 0 ,

1(A ) =  inf/(A),

/(A ) =  sup/(A),
/ex

where T  is the family of probability functions defined by T  =  {P  | / (A) <  P (A ) <

7(A)}.

From this theorem, it is clear that if /(A ) =  /(A ) for all A C 0 , they become 

probability functions. In other words, probability functions are special cases of belief 

and plausibility functions.

2.4 .4  N ecessity  and p ossib ility  functions

A necessity function /  is determined by axioms (Fl), (F2) and

(F7) f ( A  H B ) =  m in{/(A), /(£}} . (2.8)

The dual / '  is a possibility function defined by axioms (Fl), (F2) and

(F8) / '(A  U B) =  m ax{/'(A), f '(B )} . (2.9)

They are special belief and plausibility functions commonly known as consonant belief 

functions.
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2.4.5  R elationsh ips betw een  uncertainty m easures

In summary, necessity and possibility functions are consonant belief and plausibil­

ity functions. Probability functions are both belief and plausibility functions. Belief 

and plausibility functions are fuzzy measures.

2.5 Logic

The basic items of logic are propositions. Propositions communicate judgements 

or beliefs. Logic is the study of formal methods of manipulating propositions.

2.5.1 C lassical propositional logic

Let $  be a set of propositional variables. In propositional logic, a sentence based 

on 4  is derived by elements of $  connected by logic connectives, such as negation (->), 

conjunction (A), disjunction (V), and implication (— >■). Any sentence is considered to 

be either true or false, i.e., it is associated with a truth value. A propositional language 

formed from <$, denoted by //(<$), is the smallest set containing the truth values 

(true and false) and elements of <£, and being closed under negation, conjunction, 

disjunction and implication.

An important part of logic is the study of arguments. It deals with conclusions 

that can be said to follow from given premises. In classical propositional logic, the 

validity of an argument can be decided by truth table. An assignment of truth val­

ues to propositional variables is called a valuation, which can be represented by an 

evaluation function v, mapping from L(<&) to true or false. A formula that is true 

in every valuation is said to be valid. Valid formulas in propositional logic are called 

tautologies.

Propositional logic is truth-functional. The truth value of a compound sentence 

in propositional logic can be calculated solely from the truth values of its constituent

13
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sentences. The rules for using the connectives in truth value calculation can be 

conveniently expressed in the form of tru th  tables. A truth table can be constructed 

for any given sentence by listing all the ways in which truth values can be assigned to 

its constituent propositional variables, and using the truth tables for the connectives, 

calculating the value of the sentence in each case. A set of sentences G entails a 

sentence <f>, if every valuation that makes all the sentences in G  true also makes (j> 

true. If no valuation makes all the sentences in G true then G is said to be inconsistent.

A formal system enables the validity of arguments in a language to be decided 

without reference to the notion of true and false. A formal system has alphabets and 

grammar of the language, as well as axioms and rules of inference. A proof in such 

a system is a sequence of sentences, each of which is either an axiom or is derived 

from earlier members of the sequence by the rules of inference. The final sentence of 

such a sequence is said to be a theorem of the system. The formal system for classical 

propositional logic is sound and complete because all its theorems are tautologies and 

all tautologies are among its theorems.

2.5.2 N on-classical propositional logic

Based on classical propositional logic, various non-classical logics have been pro­

posed. Non-classical logics play a very important role in the field of artificial intel­

ligence. Examples of non-classical propositional logics are modal logic, many-valued 

logic, fuzzy logic, probabilistic logic, and possibilistic logic.

• Modal logic

Modal propositional logic is an extension of classical propositional logic that deals 

with necessity and possibility. In addition to the standard logic connectives, nega­

tion, conjunction, disjunction, and implication, modal logic introduces two additional

14
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unary connectives, the necessity (denoted by □) and its dual -«□->, the possibility (de­

noted by O).

A modal logic system L($) contains all the theorems of classical propositional 

logic and all instances of the schema of distribution, i.e., for (p and ip in L(<S).

D(<p — ► ip) — ► (□<£ — ► Di p) .  (2.10)

It is complete for the inference rule of modus ponens and necessitation [36].

• Many-valued and fuzzy logics
Many-valued logic extends the valuation set from {false, true} to a set of more 

than two elements. The simplest many-valued logic is the three-valued logic, where 

the valuation set is {fa lse, uncertain, true} or {0, u, 1}. Following is the truth table 

for a three-valued logic proposed by Lukasiewicz: for <f>, ip € L(<£),

<p/ \ i p < p v  ip <p — ► ip

<t> -i (p ip

<t>

1 u 0 1 u 0 1 u 0

1 0 1 1 u 0 1 1 1 1 u 0

u u u u u 0 1 u u 1 1 u

0 1 0 0 0 0 1 u 0 1 1 1

The set {0, u, 1} equipped with an order relation 0 <  u < 1 is a lattice. The conjunc­

tion and disjunction in Lukasiewicz logic can in fact be characterized by the meet and 

join of lattice operators. Such a three-valued logic can be easily extended to a re­

valued logic which uses the lattice {0, . . . ,  1} with the usual < relation. The

conjunction and disjunction are defined by min and max. If the unit interval [0,1] 

is used, one obtains the fuzzy logic system, commonly known as max-min system, 

proposed by Zadeh [48].

15
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• Probabilistic and possibilistic logics

When the evaluation function becomes a probability function P  : L($) — > [0,1], 

the logic is called probabilistic logic. The logic calculation is governed by the laws 

of probability. The tru th  value of conjunction and disjunction of two propositions, 

being probabilities, cannot be computed from the truth values of the two propositions 

involved. For example, given the probabilities of two propositions, P{4>) and P[ip), in 

general one cannot get the probabilities P(^A ^) and P(0V^>). Similar to probabilistic 

logic, possibilistic logic can be obtained when the evaluation function becomes a 

possibility function. Possibilistic logic is truth functional with respect to disjunction, 

but is not truth functional with respect to conjunction. The property of non-truth- 

functional of probabilistic and possibilistic logics makes them a very important class 

of non-classical many-valued logics.

16

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



C hapter 3

INTERVAL COMPUTATIONS AND  

T-NORMS

This chapter examines some basic concepts of interval computations and their ap­

plications in defining interval t-norms. Interval computations provide a mathematical 

basis for interval-based reasoning. The special class of interval computations based 

on interval t-norms plays a key role in reasoning with interval fuzzy sets.

3.1 Interval Com putations

Let A  and B  be two subsets of universe U. A function f  on U can be extended 

to a function F  on 2U by the following extension rule :

F(A, B) =  {f{x, y ) \a : e  A ,y  e  B}. (3.11)

The extension rule forms the basis of set-based computations [46]. This framework 

may be set in a wider context of universal algebra, in which the arguments and value 

of a function are not single points but subsets [7]. In the study of power structures, 

Brink lifted any function /  over a set A  to an extended function F  over subsets of A  

by employing the same extension rule [1]. The algebraic properties of the extended 

function F  can be studied based on the properties of / .
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A subclass of set-based computations are interval computations. In this special 

case, one considers intervals of U  tha t are defined by an order relation on U .  More 

specifically, function /  is extended to F  such that both domain and range of F  are 

intervals in U  [28]. Interval computations are applicable to both numeric and non­

numeric cases.

3.1.1 N um eric interval com putations

Numbers have been widely adopted because of their richness of arithmetic prop­

erties and operations. Some of these properties and operations can be naturally 

extended to interval numbers. An interval number [a, a] with a < a is a closed set on 

real numbers

[fl,o] =  {x  | a < x  <  a}. (3.12)

The set of all interval numbers is denoted by /(5R). Degenerate intervals of the form 

[a, a] are equivalent to real numbers. The notion of interval numbers provides a tool 

for representing a real number by specifying its lower and upper endpoints. This 

representation scheme is very useful in situations where a precise measurement of a 

physical quantity is impossible (i.e., inexact experimental measurements), or where 

a real number can not be stored with sufficient precision in a computer due to space 

limitation (i.e., insufficient representation). Arithmetic operations can be performed 

with interval numbers through the arithmetic operations on their members [26, 27]. 

Let A  and B  be two interval numbers, and let * denote an arithmetic operation +, 

—, • or /  on pairs of real numbers. An arithmetic operation * may be extended to 

pairs of interval numbers A ,  B :

A * B  =  { x * y \ x e  A ,  y e  B } .  (3.13)

The result A * B  is again a closed and bounded interval unless 0 6 B  and the operation 

* is division (in which case, A *  B  is undefined). In fact, the following formulas can
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be used: for A =  [a, a] and B  =  [6 , 6 ].

A  4- B  — [ci -F 6 , u 4 ~ 6),

A — B  =  [a — 6 ,a  — 6],

A • B  = [min(a6 , ab, ab, ab), max(a6 , ab, ab, a6 )],

A /  B  =  [a, a] • [1 / 6 , 1 / 6] for 0 £  [6 . 6]. (3.14)

In the special case where both A  and B  are positive intervals, the multiplication can 

be simplified to:

Many properties of the arithmetic operations on pairs of real numbers can be carried 

over to the new arithmetic operations on pairs of interval numbers. For example, the 

addition operation 4- on interval numbers is also associative and commutative.

The arithmetic of interval numbers can be easily extended to any function. Let 

/  be a function from 3ft x 3ft to 3ft. Using the extension rule (3.11), the correspond­

ing function F  of interval numbers can be obtained. Operations such as addition, 

subtraction, multiplication, and division are only special cases. However, in general, 

there is no guarantee that the extended function F  is an interval-valued function. 

The following theorem provides a sufficient condition for F  to be interval-valued.

T h eo re m  3.1 Suppose f  is a continuous function from 3ft x 3? to 3ft. Given any pair 

of closed and bounded intervals A  and B  in 3ft, F(A, B) is a closed interval, namely,

P ro o f. By definition, for all a: 6  A and y 6  B, f ( x , y ) € F {A ,B ) .  In order to 

prove the sufficiency of the theorem, it is necessary to show that for any number m  in 

F {A , B), there exist two numbers, say hi €  A and 6 2  € B, such that / (h i ,  h2) =  m.

A • B  = [ab,aE\, 0  <  a <  a, 0 <  6 <  6 . (3.15)

(3.16)
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Suppose function /  attains its least value in A  x  B  at x =  a and y  =  b, and its 

greatest a t x =  c and y = d. The value m must be within /(a , 6) and /(c , d), i.e..

/ (a , b) < m  < f(c , d).

Apparently, f(c,b) lies between f(a,b)  and /(c , d). Furthermore, /(c , b) is either 

greater than  or equal to m or less than m. Assume /(c , b) < m, it follows:

f(a , b) < /(c , b) < m <  f(c , d).

Function /  can be regarded as a one place function when its first variable is fixed in 

point c. Recall that /  is a continuous function. According to Bolzano’s intermediate 

value theorem, f(c,b) < m  < f(c ,d )  implies there must exist a point h such that 

h €  [6, d] and /(c , h) =  m.

The case of /(c , b) > m  can be similarly proven. Combining both cases, one can 

conclude th a t for an arbitrary number m  in F (A ,B ) .  there must exist two numbers 

hi 6 A  and hi E B  such that f (h i ,  hi) = m .  □

Theorem 3.1 suggests that the extended interval-valued function corresponding

to a continuous function can be easily computed. It is sufficient to find only the

maximum and minimum values. If it is further assumed that the function is isotonic, 

the computation reduces to only endpoints of intervals as shown in the following 

corollary [14].

C o ro lla ry  3.1 Suppose f  is a continuous isotonic function from 5R x 5R to 5R, that 

is, for all x , x ' , y , i /  6

(x < x ' , y <  y') =► f ( x ,  y) < f{x ', y'). (3.17)

Then,

F ( A , B )  = [tta,b),f(a,b)}- (3.18)

This corollary trivially follows from the fact that a continuous isotonic function 

reaches its minimum and maximum values at ending points of an interval.
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3.1.2 N on-num eric interval com putations

The argument used in numeric interval computations may be applied to non­

numeric cases [46]. Let L  be a lattice. A closed interval A  =  [a, a] of L, with a <  a, 

is the set of elements bounded by a and a. That is,

A  =  [a,a] =  {rz: 6 L  | a A x  < a}. (3.19)

Let I{L) denote the set of all intervals formed from L. Operations ® and © may be 

extended to elements of I ( L ) as follows:

[a,3] 0(6,6] =  { s ®  y  | x  e  [a,a].?/ 6 [6.6]},

[a, a] © [6,6] =  {x  © y | x  6 [a, a], y 6 [6.6]}. (3.20)

For simplicity, the same set of symbols has been used for operations on both L  and 

I(L). In general, these operations may not be closed on I{L).

Example 3.1 Interval computations in a non-distributive lattice. Consider a non­

distributive lattice given in Figure 3.1. For two intervals [a, 1] and [6,1],

[a, 1] ® [6,1] =  {0, a, 6,1},

which is not an interval. Similarly, for two intervals [0,a] and [0, c],

[0,a] © [0, c] =  {0, a, c, 1},

is also not an interval. □

Operations ® and © on L  have isotonicity properties similar to equation (3.17),

namely,

(a < a ' ,b <  b') =>■ a ® 6 <  a' <8> 6',

(a < a ! ,b <  b') ==>- a © 6 <  a' © 6'. (3-21)
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0

Figure 3.1: A non-distributive lattice

It is expected that a simple computation method can be used if extended operations 

are closed on I{L). As shown by the following theorem, a sufficient condition for these 

operations to be closed is that the lattice L  is distributive. In addition, the extended 

operations can be easily computed by considering only ending points of intervals.

Theorem 3.2 Suppose L  is a distributive lattice. Then,

[a, a] 0  [6. 6] = [a 0  6, a®  6],

[a, a] ©[6. 6) =  [a ©6, a©  6]. (3.22)

Moreover, I{L), with operations ® and ©, forms a distributive lattice.

P roo f. The inclusion [a, a] ® [6,6] C [a® 6, a 06] follows trivially from the properties

of lattice, namely, a < x  < a and 6 <  y  <  6 imply a ® 6 <  x  ® y  <  a 0  6. Now 

suppose z  6  [a 0 6 , a ® 6). It is necessary to show there exists a pair x  6  [a, a] and 

V €  [6.6] such that x  ® y  = z. Let x  — a©  z  and y =  6 © z. By the assumption of 2
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and properties of lattices, it can be verified that x  6 [a, a] and y  6  [6. &]• Moreover,

x ® y  =  (a©z)<2)(bQ z)

=  (a <8> b) © z

~  Z.

Therefore, [a, a] <2) [6,6] =  [a ® b.a ® 6]. Similarly, it can be shown that the operation 

© is also closed- The fact that if L  is a distributive lattice, I(L)  is a distributive 

lattice can be easily checked. In particular, the order relation on intervals is given by 

[a, S] ;< [6,6] if and only if a < b and a < b. □

To differentiate it from the original lattice L, we call I(L)  an interval lattice. If 

L  is a Boolean algebra, the complement operation © may be extended as follows:

©[a, a] =  {©a: | x  6 [a,a]}

=  [©a, ©a], (3.23)

I(L )  is not a Boolean lattice but a complete distributive lattice.

One may extend functions on a lattice to functions on an interval lattice in the 

same way that meet and join are extended. Using the extension rule (3.11), for any 

function /  on a lattice, the corresponding extended function F  can be derived from 

/ .  The extended function F  may not form an interval in L. For instance, as showed 

in Example 3.1, the lattice operations join and meet are usually not closed when 

extended from L  to I{L). It may be difficult to find the conditions under which 

function F  is closed in I(L). For the lattice join and meet. Theorem 3.2 states a 

sufficient condition for extended operations to be closed.
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3.2 T -norm s and Interval T-norm s

Using the results from interval computations, the notion of t-norms can be ex­

tended to interval t-norms and interval lattice t-norms.

3.2 .1  N um eric t-norm s

The concept of t-norms first appeared in the study of probability metric space, and 

was later adopted for the investigations of fuzzy set operations. A t-norm is a function 

from [0,1] x  [0,1] to [0,1] and satisfies the following conditions: for a, b, c 6  [0.1],

(i). Boundary conditions

£(0,0) =  0, £(1, a) =  £(a, 1) =  a;

(ii). Monotonicity

(a < c,b < d) ==$> £(a, b) < £(c, d);

(iii). Symmetry 

£(a, b) = t(b,a);

(iv). Associativity

£(a,£(6,c)) =  £(£(a, 6), c)).

Some commonly used t-norms are tb(a, b) =  max(0, a -1- 6 — 1), £ m i n ( a ,  b) = min(a. 6). 

the product operator £p(a, b) = a ■ b, and £w defined by boundary conditions and 

£w(a, 6) =  0, for (a, 6) 6 [0,1) x [0,1). These t-norms are related by inequality [11]:

*w(a > b) < tb(a, 6) <  tp(a, 6) <  £mm(a, 6). (3.24)

Moreover, any t-norm is bounded by £w and £mim i.e.,

^w(o, b) ^  £(a, b) ^  £min(®> b). (3.2o)
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Suppose n  : [0,1] — > [0,1] is an operation called negation. The dual of a t-norm is 

called a t-conorm, which is a function s mapping [0,1] x [0,1] to [0,1] and satisfying 

the boundary conditions:

(i'). Boundary conditions

s(l, 1) =  1, s(a, 0) =  s(0, a) =  a,

and conditions (ii)-(iv). Suppose the negation operation is defined by n(a) =  1 — a. 

The t-conorm s corresponding to a t-norm t  is given by:

s(a,b) = n(t(n(a),n(b)))

= 1 — t( l  — a, 1 — b). (3.26)

The t-conorms of £mia, t p and £b are smax(a> b) =  max(a, b), sp(a, b) =  a + b — ab, and 

Sb(a, b) =  m in(l, a 4- 6), respectively.

Based on the results from interval computations, the notion of t-norms on single 

values in [0,1] can be extended to subintervals of [0,1]. Let 7([0,1]) denote the set of 

all closed subintervals of [0,1]. For a given t-norm t, an extended t-norm is defined 

by:

T(A, B ) =  {t(x, y ) \ z e A , y e B } .  (3.27)

Similarly, an extended t-conorm is defined by:

S(A, B)  =  {s(a;, y ) \ x e A , y e B } .  (3.28)

In general, T (A , B)  and S’(A, B)  may not necessarily be subintervals of [0,1]. Accord­

ing to Corollary 3.1, they are indeed intervals for the class of continuous t-norms. In 

this case, the results of interval t-norms can be easily computed by considering only 

extreme points of intervals. They are referred to as interval t-norms and t-conorms.
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Theorem 3.3 Suppose t  is a continuous t-norm. For any two intervals A  =  [a, a] 

and B  = [b,b], the interval t-norm produces the following interval:

T ( A , B ) = [ t ( a , b ) , t ( a , b ) \ -  (3-29)

The interval t-conorm of a continuous t-conorm s produces the interval:

S ( A , B )  =  [ s ( a J b ) , s ( a , b ) \ -  (3-30)

P ro o f. This theorem trivially follows from the property of t-norms and Corol­

lary 3.1. 1=1

For the negation operation n(a) =  1 — a. an extended negation on intervals of

[0,1] is defined by:

iV([a,a]) =  {n(x) \ x  E [a, a]}

=  {1 — x  | x  €  [a, a]}

= [1,1] -  [a,a]

=  [1 — a, 1 — a]. (3.31)

An interval t-conorm is related to an interval t-norm in terms of extended negation 

by:

S ( A ,B ) =  N (T (N (A ) ,N (B )) )

=  [1,1] -  T ([l, 1] -  A, [1,1] -  B ). (3.32)

When degenerated intervals of the form [a, a] are used, interval t-norms reduce

to t-norms. Interval t-norms are interval extension of t-norms [27]. Interval t-norms
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corresponding to min(a, 6), a • b, and max(0, a + b — 1) can be computed by: 

Tmia{A ,B ) =  [min(a,fi),min(ff,5)], 

r p(A,JB) =  [a&,a6],

Tb( A, B)  =  [max(0, a + b — 1), max(0, a + b — 1)]. 

The corresponding interval t-conorms are: 

SmAX(A ,B)  =  [max(a, b), max(a, 6)],

SP(A, B)  =  [(a +  b — ab), (a + b — a&)],

Sb(A,B)  =  [m in(l,a +  6 ),m in(l,a  +  6)].

Properties of interval t-norms can be obtained from t-norms. Consider the follow­

ing relation defined on intervals [14, 27]:

A ^  B •$=> (a < b, a < b). (3.33)

W ith this relation, the counterpart of equation (3.24) can be expressed as:

r b(A, B) < Tp(A, B) < Tmin(A, B). (3.34)

W ith this relation, properties of an interval t-norm can be formally stated in parallel 

to that of a t-norm.

T h eo rem  3.4 An interval t-norm T  has the following properties: for any closed 

intervals A, B, C  C [0,1],

(I). Boundary conditions

T([0,0], [0,0]) =  [0,0], T([l, 1], A) =  T(A, [1,1]) =  A;

(II). Monotonicity

(A  ■< C ,B  ■< D) =+  T(A, B ) ^  T(C, D);
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(III). Symmetry 

T { A ,B ) = T (B ,A ) :

(IV). Associativity 

T (A ,T { B ,C ) )= T (T (A ,B ) ,C ) .

P roo f. From Corollary 3.1 and the definition of t-norms, properties of interval t- 

T  can be verified as follows: for A, B ,C ,D  C [0,1],

Boundary conditions:

r([o, o], [o, o]) =  [*(o, o), t (  o, o)] =  [o, o],

T(A )[l,l]) =  [ t (o ,l) ,t ( a ,l ) ]= A .

Monotonicity:

(.4 - < C , B ^ D )  =>■ (a <  c , a  < c , b <  d , b  <  d)

==> ( t ( a ,  b) <  t ( c , d ) , t ( a , b )  <  t ( c ,  d ) )

==> [ t(a, b ) , t ( a ,  &)] ^  [t(c, d ), t ( c ,  d)}

= »  T (A ,B )  -<T{C,D).

Symmetry:

( t (a, b) =  t ( b ,  a), t ( a ,  b) =  t (b ,  H) ) = >  [ t ( a , b ) ,  t ( a ,  6)] =  [t(6. a), t ( b ,  a)]

T(A , B) =  T(B , A).

Associativity:

(t(o, t ( b ,  c ) ) =  t(t(o, b ) , c ) ,  ( t ( a ,  t ( b ,  c ) ) =  t ( t ( a ,  b ) , Z))

= *  T(A, T (B , C)) =  T(T(A , B), C).
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□

An interval t-conorm S  can be defined by the boundary conditions

(I'). Boundary conditions

S([l, 1], [1,1]) =  [1,1], S([0,0], A )  =  S ( A ,  [0,0]) =  A .

and properties (II)-(IV). These properties are counterparts of properties of t-norms. 

The intervals [0,0] and [1,1] play an important role in the characterization of interval 

t-norms.

In the above discussion, interval t-norms are defined as interval extension of t- 

norms. Conversely, an interval t-norm may regarded as an interval-valued function 

from I([0 ,1]) x I([0 ,1]) to /([0,.l]), satisfying properties (I)-(IV). Moreover, for each 

interval t-norm, a t-norm can be defined.

Theorem 3.5 Let T  : /([0,1]) x /([0,1]) — >■ /([0 ,1]) be an interval-valued, function 

satisfying properties (I)-(IV). The function t : [0,1] x [0,1] — > [0,1],

t(a, b) =  T([a, a], [6,6]), (3.35)

is a t-norm.

The t-norm t may be considered as the projection of the interval t-norm T  on 

[0,1], which is the set of all degenerated intervals of the form [a, a], a E [0,1].

3.2 .2  N on-num eric t-norm s

Let L  be a lattice. A lattice t-norm is a function t  : L  x L  — > L, satisfying the 

same conditions (i)-(iv) as ordinary t-norms, except that elements a, b and c are now 

in L. Lattice t-conorm is a function s : L  x L  — > L  and satisfies the same conditions

(ii)-(iv) and (i') as ordinary t-conorm except tha t the domain and range are L  x L
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and L, respectively [41]. The monotonicity conditions are stated with respect to the 

order relation of a lattice.

A negation operation on a lattice L  is a function n : L  — > L  such that, for all 

a E L  [41],

1. n(0) =  1, n (l)  =  0;

2. n  is strict decreasing;

3. n(n(a)) =  a.

W ith respect to a negation operation, a lattice t-norm uniquly defines a t-conorm, 

and vice versa.

T h eo rem  3.6 Suppose L is a lattice with a negation n . For each t-norm t  on L, 

there is a dual t-conorm with respect to n : for any a,b E L,

s(a,b) =  n(t(n(a),n(6))),

and f o r  each t-cono rm  s on L, there  is  a dua l t-n o rm  w ith  respect to  n; fo r  any  

a ,b  E L,

t(a ,b ) =  n(s(n(a),n(b))).

P ro o f. It is easy to verify that the above expression satisfies the conditions of symme­

try and associativity. Boundary and monotonicity conditions are verified as follows: 

Boundary conditions:

n ( t(n ( l) ,n ( l) ) )  =  n(t(0 ,0))

=  n (0)

= 1,
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n(t(n(0),n(a))) =  n ( t( l,n (a )))

=  n(n(a))

=  a.

Monotonicity:

(a < c,b < d ) =>  (n(c) <  n(a),n(c£) <  n(6))

=>- (t(n(c), n(d)) <  t(n (a), n(6)))

=► (n(t(n(a), n(6))) <  n(t(n(c), n(d)))).

Therefore, n(t(n(a), n (&))) is a t-conorm. It can aslo be verified that n(s(n(a), n (&))) 

is a t-norm. □

As shown in the following theorem, lattice t-norms and t-conorms may be consid­

ered as a generalization of the standard lattice operators of meet and join.

T h eo rem  3.7 Suppose (L, ©, 0,1) is a lattice. The meet operation <g> is a lattice

t-norm, and the join operation © is a lattice t-conorm.

P roo f. By properties LI and L2 of a lattice, ® satisfies the conditions of symmetry 

and associativity. It also satisfies the boundary and monotonicity conditions, for 

a, b ,c ,d €  L,

Boundary conditions: 0 ® 0  =  0, a<g>l =  l ® a  =  a;

Monotonicity : { a < c,b < d )  ==> a ® 6 < c ® 6 < c ® d .

Similarly, © satisfies lattice t-conorm conditions. □

The lattice counterpart of t-norm tw is defined by: for any a,b 6 L, t w(a, b) are 

the boundary conditions if one of a and b is 1; otherwise, t w(a, b) =  0. The lattice
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counterpart of t-conorm sw is defined by: for any a, 6 6  L, sw(a, 6) are the boundary 

conditions if one of a and b is 0; otherwise, sw(a, 6) =  1 . Any lattice t-norm is 

bounded by t w and the lattice meet operation, and a t-conorm is bounded by sw and 

join.

T h eo rem  3.8 A lattice t-norm t (a,b) is bounded by

P ro o f. According to boundary conditions and monotonicity conditions,

(t(a, b) <  a, t(a, b) < b) = >  t(a, b) < a <g> 6.

Thus, the right inequality holds. It can also be proven that the left inequality holds.

If one of a, b 6  L  is 1, t(a, b) =  tw(a, b). Otherwise, the following holds,

tw(a, b) = 0 =>- tw(a, b) < t (a, b).

Therefore inequality (3.36) holds for t-norms. Similarly, inequality (3.37) holds for 

t-conorms. □

Lattice t-norms in a three element lattice and a four element lattice are presented 

below. They are connected to many-valued logic.

E xam ple  3.2 Lattice t-norms in a three element lattice. Consider a three element

lattice L  = (0, u, 1}, in which the order relation is given by:

0 <  u < 1.

The following two tables define lattice t-norms in the three element lattice.

t w(a, b) < t(a, b) < a <g> b. (3.36)

and a lattice t-conorm s (a,b) is bounded by

a © b < s(a, b) < sw(a, b). (3.37)
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X 1 u  0

y

lattice t-norm £2 :

1 1 u 0

l£ u u 0

0 0 0 0

X 1 u 0

y

1 1 u 0

u u 0 0

0 0 0 0

The elements in the lattice may be interpreted as representing three tru th  values. 

The above two t-norms may be regarded as the truth tables of logical conjunction in 

three-valued logic proposed by Lukasiewicz, Kleene, Heyting and Rrechenbach [33]. 

The first t-norm is the min function. The second t-norm which only gives the other 

value for (u, u) is in agreement with Lukasiewicz’s interpretation of three-valued logic. 

□

The three element lattice in the above example is a linear lattice. In general, 

based on the notion of directed algebra, Mayor and Torrens has studied all possible 

t-norms on a finite linear lattice [24].

E x am p le  3.3 Lattice t-norms in a four element lattice. Consider a four element lat­

tice L  =  {0, a, 6,1} characterized by the order relation:

a
0 <  < 1, 

b

where two elements a and b are not comparable. All acceptable lattice t-norms are 

given below:

33

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



lattice t-norm £L:

X 1 a b 0

y

1 1 a b 0

a a a 0 0

b b 0 b 0

0 0 0 0 0

lattice t-norm £2 :

X 1 a b 0

y

1 1 a b 0

a a 0 0 0

b b 0 b 0

0 0 0 0 0

lattice t-norm t3:

X 1 a 6 0

y

1 1 a b 0

a a a 0 0

b b 0 0 0

0 0 0 0 0

lattice t-norm £4:

X 1 a b 0

y

1 1 a b 0

a a 0 0 0

b b 0 0 0

0 0 0 0 0
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The four elements can be interpreted as four truth values in a four-valued logic. 

The above four lattice t-norms may be regarded as tru th  tables for conjunction in 

four-valued logics. The incomparability of a and b enables the logics to handle more 

general situations where two propositions are not comparable. The first lattice t-norm 

is the min function, and the last t w. □

Using the extension rule (3.11), interval lattice t-norms or t-conorms can be de­

fined based on lattice t-norms or t-conorms. Let L  be a lattice and I(L)  the corre­

sponding interval lattice. For a given t-norm t  on L,  it can be extended by: for any 

A , B e I ( L ) ,

T{A , B) =  { t(r, y) \ x  € A ,y  € B }.  (3.38)

Similarly, an extended t-conorm is defined by:

<S(A, B) =  (s(2r, y) | x  e  A, y e  B }. (3.39)

In general, T ( A , B )  and S (A ,B )  may not necessarily be intervals of L. If T  and S  

are closed in I(L),  they are called interval lattice t-norms and t-conorms. Although it 

is difficult to state the conditions for such functions in general cases, one can deduce 

from Theorem 3.2 that the extended meet and join functions on interval lattice are 

interval lattice t-norm and t-conorm if the lattice is distributive. Interval lattice t- 

norm has the same properties (I)-(IV) as its numeric counterpart. Similarly, interval 

lattice t-conorm has the same properties as numeric interval t-conorms.
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Chapter 4

INTERVAL-BASED UNCERTAIN  

REASONING

This chapter analyzes three different interval-based uncertain reasoning methods. 

One is based on the interpretation that intervals are constraints on a family of truth 

evaluation functions. Any member of the family can be the actual, but perhaps 

unknown, evaluation function. Examples of this class are reasoning with interval 

fuzzy sets and interval probabilities. Alternatively, when it is difficult to specify a 

particular class of tru th  evaluation functions, one can specify the properties that must 

be satisfied by the lower and upper bounds of intervals. For example, the lower bound 

is a necessity function, while the upper bound is a possibility function. Finally, when 

inferencing with two sets of truth values, it may be necessary to represent the truth 

values in one set by the truth values in the other. The theory of rough sets provides 

a systematic tool for solving this problem.

4.1 U ncerta in  R easoning under Interval C onstraints

Given a prepositional language L(<£), a truth evaluation function can be defined 

as a mapping v : L(<&) — > V, where V  is the set of tru th  values, such as the unit
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interval [0,1] or a lattice. This is an extension of classical prepositional logic, in 

which the tru th  value of a proposition is not only true or false, but can be any value 

in V. In an inference system, one may choose different classes of evaluation functions 

satisfying certain axioms, such as different uncertainty measures. For example, if the 

evaluation is a probability function, a probabilistic inference system is obtained. If 

evaluation function satisfies the max-min rule of fuzzy sets, one obtains the max-min 

fuzzy logic system. In general, each pair of t-norms and t-conorms defines a fuzzy 

logic system. In practice, it may be difficult to specify precisely and consistently 

the actual evaluation function. One may only be able to provide a pair of lower and 

upper bounds which state the range of the actual evaluation function. In other words, 

intervals are provided instead of single points. In the absence of any information, the 

trivial interval [0,1] may be used.

The assignment of intervals can be formally described by two mappings v, : 

L($) — »• V  and v* : L(<&) — > V. They specify an interval [u,(<£), u*(<£)] within 

which lies the actual tru th  value of the proposition <p [42]. A set of lower and upper 

bounds is said to be consistent if there exists an evaluation function v such that for 

all <j> e  L($),

V*(<f>) < v((i>) < (4.40)

On the other hand, if an evaluation function v satisfies condition (4.40), it is is said to 

be bounded by (vM, v *) [40]. A consistent set of lower and upper bounds (vm, v*) can 

be interpreted as constraints on the evaluation function v. In fact, they determine 

the following maximal family of evaluation functions:

V =  {v | vm{(f>) < v{<f>) < v*((j>) fo r  every (f> e  £ ($ )} . (4-41)

For the set T ($), a pair of bounds u0, : L ($) — > V  and : L ($) — > V  is called 

the tightest bounds if every v 6  V is bounded by (u0«, Vq) and there does not exist 

another pair of bounds inside (vq*,Vq) having this property. If a pair of lower and
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upper bounds is consistent, the tightest bounds are unique [44].

When the available information is insufficient, unavailable, or inconsistent, the 

mappings (u,,u*) may not be the tightest bounds. In order to carry out inference, it 

is necessary to tighten the given bounds, to infer the information of the propositions 

which is initially not available, and to resolve inconsistency [44]. The interval-based 

inference may be formulated as a process of constraint of propagation. Two examples 

are given in the rest of this section to illustrate the usefulness of such a framework.

4.1.1 Inference w ith  interval fuzzy sets

In their book, Klir and Yuan [22] briefly discussed the problem of approximate 

reasoning using interval fuzzy sets. They suggested that t-norms can be used to carry 

out this task by directly applying them to the lower and upper bounds of interval 

fuzzy sets and relations. In the light of interval t-norms, a systematic analysis of 

basic issues is provided, such as interpretations of set-theoretic operations on interval 

fuzzy sets.

An important feature of this formulation is that the interpretation, “an inter­

val fuzzy set is a set of fuzzy sets” , is used as a basic notion. This is similar to 

the study of conditional events by Goodman [17]. Under certain conditions, oper­

ations on interval fuzzy sets are derived automatically using techniques of interval 

computation. In contrast, many studies use interval fuzzy set operations as basic 

notions, which are typically defined by the component-wise application of fuzzy set 

operations [13, 22, 31]. Although both approaches produce the same mathematical 

results, the reformulation may enhance the understanding of interval fuzzy reasoning 

by providing a concrete interpretation of interval fuzzy sets.

A $-fuzzy or an interval fuzzy set F  can be described by a membership function:

Pa  : U — > /( [0 ,1]), (4.42)
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where U  is called a universe [13. 22]. The membership interval /^ (u ) =  [y.A{u),JLA{u)\ 

of element u  may be interpreted as the range of the true membership. Any value in the 

interval may actually be the true membership. An interval fuzzy set can be described 

equivalently by a set of fuzzy sets bounded by two fuzzy sets A and A, namely,

A  =  [A, A]

= {X \ AC  X  CA}

=  {X | Vu € U{^a{u) < fj.x {u) < ^(u))}- (4-43)

Any fuzzy set inside [A, A] may be the true fuzzy set. This offers a slightly new 

interpretation of interval fuzzy sets as compared to the traditional views that focus 

mainly on memberships. Interval fuzzy sets can be considered as a generalization of 

crisp interval sets [43].

By interpreting an interval fuzzy set as a family of fuzzy sets bounded by two 

fuzzy sets, one may immediately apply the technique from interval computation to 

define interval fuzzy set operations: for A = [A, A) and B =

~  A = {~ X |X  6  [A, A]},

A n B  =  {ATnri.Ye [A,A],r e [&B]},

A u B  = { X U Y \ X  e [ A l \ , Y  e  [B,!]}. (4.44)

Typically, t-norms and t-conorms are used to define fuzzy set intersection and union [4, 

1 1 , 22]. Suppose t  and s are a pair of continuous t-norm and t-conorm. According

to Theorem 3.3, operations on interval fuzzy sets defined by equation (4.44) can be

expressed component-wise as:

39

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



y~Au) = (i -  x Ix £ y-Au)}

=  [l, l] -  /u (u),

AUnn(u) =  {t(ar,y) | x  e  y A{u), y e  y B{u)}

=  T(nAu), y8{u)),

yAuB(u) =  {s(z, y ) \ x e  y A(u), v £  ys{u )}

=  S(fiA(u),^iB(u)). (4.45)

That is, the definition of interval fuzzy set operations by interval t-norms and t- 

conorms is a natural consequence of the interpretation given by equation (4.43) and 

the use of continuous t-norms and t-conorms for fuzzy set operations.

In parallel to the study of the degree of membership in fuzzy sets, one may con­

sider the degree of truth in fuzzy logic. Given a proposition 0 , let an interval [a. a] 

denote the range of its truth value, written 0 : [a, a]. Inference with interval truth 

value involves the derivation of tru th  values and tightening of the derived intervals. 

Suppose t  and s  are a pair of continuous t-norm and t-conorm, and T  and S  are 

the corresponding interval t-norm and t-conorm. One can use the following set of 

inference rules:

(RI) 0: [a, a] ==> -<0: [1  — a, 1  — a];

(R2) (0: [a, a], i(r. [6 , 6]) =S> 0 A ip: T([a, a], [6 , 6]);

(R3) (0: [a, a], -0: [6 , 6]) 0 V 0: S([a, a], [b, 6 ]);

(R4) (0 : [a, 5], <fr. [6 , 6]) = »  0: [max(a, b), min(a, 6 )];

(R5) (0: [a, a], 0  A ifr. [6 ,5]) =>  0: [max(a, b),a];
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(R6 ) {fa [a, a], <j) V fa. [6 , 6]) =>• fa. [a, min(a, 6 )].

Inference rules (R1)-(R3) can be used to derive bounds of truth values for composite 

propositions, while rules (R4)-(R6) can be used to tighten the bounds. Similar rules 

have been used in a number of studies [5, 20, 44].

Let L  be a distributive lattice and I{L) can be the induced interval lattice. An 

interval L-fuzzy set A  can be described by a membership function:

I*a : U - +  I{L). (4.46)

Corresponding to interval L-fuzzy sets, one may develop interval-valued fuzzy logic 

in which the tru th  value of a proposition is an interval of a lattice. In this case, the 

following rules may be used:

(R2') {fa. [a, a], fa  [6 , 6)) =>• <f> A fa. [a, a] 0  [6 ,5];

(R3') {fa [a, a], fa  [6 , 6)) =S> (j> V fa. [a, a] © [b, b\;

(R4') {(jr. [a, a], fa. [b, 6]) = >  fa [a © b, a <g> 5];

(R5') {fa [a, a], <j> A fa. [6 , b]) =>• fa. [a © 6 , a];

(R6 ') {fa. [a,a] ,^ V fa  [6,5]) =► fa. ( a ,a ® 6],

They may be considered as counterparts of rules (R2)-(R3). The definition of negation 

depends on the choice of a negation operation in a lattice.

E x am p le  4.1 Kleene’s three-valued logic. In this example, we show that Kleene’s 

three-valued logic can be easily interpreted as an interval generalization of two-valued 

logic, based merely on the semantics of two-valued logic and interval computation. 

Consider the standard two-valued logic with the Boolean lattice L =  {T, F }. In this 

case, I{L) =  {[L1, L1], [L1, T], [T, T]}. The interval [F, L1] indicates that the proposition 

is false, while the interval [T, T ] indicates that the proposition is true. On the other
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hand, the interval [F ,T ] indicates, although the proposition must in fact be either 

true or false, the available information is insufficient to determine what its specific 

tru th  status may be. Similar interpretation of three-valued logic has been explored 

by Goodman et al. in the study of conditional events [18]. According to Theorem 3.2, 

such an interval-valued logic is characterized by the following tru th  tables:

<t> -*4> if;

$

[T,T]

<f> A ip

(F .r j [T, T]

( p V ' t p

[F,T]

[T,T] [F,F] [T,T\ [T,T] [F,T] t-F’.-P’] [T,T] [T,T] [T,T]

[F,T] [F,T] [.F ,T] [F,T\ [F,T] IF,F] [T,T\ [F,T] [F,T\

[F,F] [T,T] f t * ] [F,F] [F,F] [T,T] [F,T] {■F ,F ]

ip [T,T]

<p —u p  

[p,r] [-F’.-P'l pr.r]
4> *-np 

[F,r] [f.fl

[T,T\ [T,T] [f,T] [ ^ ] [t ,t i [F,r]
[F,T] [T,T] [F.T] [F,r] [F,T] [F,T] [F,T\

[F,F\ [T,T] [T,T] [T,r] [F,T\ [T,T\

Each entry in the above tables is computed based on equation (3.22). For example, 

[F, T] A [T,T] =  [F A F, T  A T] =  [F, T\. These truth tables coincide with that of 

Kleene’s three-valued logic [2 1 , 33]. The interval-valued logic therefore provides an 

interpretation of three-valued logic in terms of standard two-valued logic. □

4 .1 .2  Inference w ith  interval probabilities

In probabilistic logic, the evaluation function v : L($) — > V  is chosen to be 

a probability function P  : L($) — > [0,1]. When it is difficult to provide a single 

probability function, a pair of bounds (P., P*) are associated with propositions. They
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are consistent if there exists a probability function P  bounded by P. and P*. A pair 

of consistent bounds define a maximal family of the probability functions bounded 

by the bounds.

Quinlan proposed a method of interval-based probabilistic inference [32]. A subset 

of the inference rules related to the primitive connectives negation (- 1) and conjunction 

(A) is summarized below:

(PI) P,(<£) <—  max{P,(<p), 1 -  0*(->0)};

(P2) P*(0) min{P*(0 ), 1 -  <*.(-<*)};

(P3) P,((j> A ip) i—  max{P,(<£ A ip), P„(<£) +  Pm(ip) -  1 };

(P4) P*{<f> A ip) <—  min{P*(0 A ip), P*(0) +  P*(tf) -  1 };

(P5) P,{<p) <—  max{P„(0), P*{<f> A ip)};

(P6 ) P ’ (<j>) <—  min{P*(<£), P * ( 0  A tf) +  (1 -  P.(iP))}-

The symbol <—  represents assignment operation. Quinlan’s inference rules can in­

crease the lower bound and decrease the upper bound, therefore tighten the bounds. 

However, they may not necessarily produce the tightest bounds, because they are 

based on the following inequality:

P(<p) +  P(ip) -  1 <  P(<p A ip) < min{P{(j>), P{ip)},

which is derived from the following probability axiom by replacing P(<pVip) with the 

trivial bound [0 , 1 ]:

P(<p A ip) = P((f>) +  P(ip) — P ( 0 V ip). (4.47)

If information is available for probability of (f> V ip and <p Aip, Yao [44] showed that 

Quinlan’s rules can be improved. That is, P{(p V ip) and P{<p A ip) can be assigned
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tighter bounds. Using interval computation, the right hand of equality (4.47) in terms 

of intervals becomes

[P. (*), p- (*)] + [P. (0 , p- (*)] -  [P. (* v i,), p- {4, v tf)]

= [P.W + P.(i/>) -  v v>), P'(o) + P'W) -P.(ii>v 4>)\

This may tighten the bound of P{<p A  xp) further than Quinlan’s method. More 

specifically, the following improved inference rules are obtained [44]:

(P3') P ,(0  A xp) i—  m ax{P,(<p A  xp), P,(0) +  P m(xp) -  P * { ( p  V i p ) } ;

(P4') P'(<PAiP) <—  mm{P'(<PAxP),P'(<P),P'(xP),P*(<P)+P'(xP)-Pm(<pVxP)};

(P5;) P ,(0) <—  max{P,(0), P.{<P A xP), P,(<£ A xP) +  P.(* V ) -  P*(tf)};

(P6 ') P*(0) <—  min{P*(0), P*{<p A  xp) + P *  ((p V  xp) —  P.(tf)}.

However, it should be pointed out that they still do not necessarily produce the

tightest bounds.

E x am p le  4.2 An inference network with four propositions. Consider an inference 

network consisting of propositions <p,xp,(p A  xp and (p V  xp. The probabilities of <p, xp 

and ( p A x p  are [0 .5 ,0 .6 ], [0 .6 ,0 .7] and [0 .4 ,0 .45]. According to Quinlan’s rules, the 

probability of <p V xp lies in [0 .6 ,1 ], while Yao’s rules result in an interval [0 .65 ,0 .9 ], 

which is tighter than Quinlan’s result. □

4.2  Inference w ith  N ecessity  and P ossib ility  Functions

In their semantic approach to the computation of truth, Dubois and Prade put 

forth that the fuzzy truth value of a proposition can be constrained by a pair of neces­

sity and possibility functions [1 2 , 36]. Given a proposition (p and available knowledge
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B referring to  the same universe U, the tru th  value of 0 depends on the information 

B, and can be represented by the valuation set t((f>\B). 0 and B  can be translated 

into M (0) and M(B)  by means of meaning computation such as PRUF proposed by 

Zadeh [49], where M{(f>) and M(B)  are subsets of U. The valuation set t{cb\B) is 

determined by the matching process between M (0 ) and M(B).  When proposition 0 

and information B  are vague and fuzzy, both M (0 ) and M(B)  are fuzzy sets. In this 

case, the valuation set t(<f>\B) is a fuzzy set of [0,1] which can be interpreted as a 

fuzzy tru th  value with membership function:

« « * * ( » > = • ■  (4.48) 
supu{7r(u) | Mm(0)(w) = v } otherwise,

where 7r(u) is the possibility distributed in u 6  U and /z^ib)(v) can be regarded as

the grade of possibility that the tru th  value of 0  is v. The fuzzy truth value can be

constrained by the possibility function 11(0) and necessity function iV(0 ) defined by

11(0 ) =  sup
U

iv(0) = 1-II(-10) = infmax(/iiv/(̂ )(u), l-7r(u)).

It can be proved that the truth value v with degree of possibility 1 is in between :V(0 ) 

and 11(0 ) [1 2 ].

Dubois and Prade’s approach provides an interval representation of the truth 

values of propositions through a pair of necessity and possibility functions. The 

narrower the bound, the more precise the tru th  value. In practice, the initial bounds 

assigned to propositions may not necessarily be necessity and possibility functions. 

In this case, the inference is to infer lower and upper bounds that are as close as 

possible to necessity and possibility functions.

A pair of necessity and possibility functions, N  and II, have the following proper­

ties:

(PN1) N(4>) = 1 -  n(-0);
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(PN2) 11(0) =  1 — iV(->0);

(PN3) 11(0) >  iV(0 );

(PN4) N{< p) > N(< p A 0);

(PN5) N(<{> A r p )  = min(iV(0 ), N ( r p ) ) ;

(PN6 ) N(<f> V 0) >  max(iV(0 ), N ( r p ) ) ;

(PN7) 11(0 A r p )  < min(II(0), 11(0));

(PN8 ) 11(0 V 0) =  max(II(0), 11(0)).

From these properties, one can see that iV(0 A 0) and N (< p  V 0) are always less than 

11(0 A 0 ) and 11(0 V 0 ). Both N  and II are monotonic with respect to set inclusion. 

Therefore, they satisfy the additional properties:

(PN9) N((f> A  0) <  11(0 A 0) <  min(0 A 0) < 11(0);

(PN10) iV(0 A 0) <  iV(0) <  max(iV(0)iY(0)) <  ]V(0 V 0) <  11(0 A 0).

Let iV and II be initial bounds that may not be necessity and possibility functions. 

The following inference rules can be used to update these bounds:

(11) 11(0) inf(11(0); I -  iV(—>0), 11(0 V 0)};

(12) N{4) <—  sup{jV(0), 1  -  ri(-0 ), iV( 0  A 0)};

(13) 11(0 A r p )  <—  inf{11(0 A 0 ) ) ,min(II(0), 11(0))};

(14) JV(0 A 0) <—  sup{JV(0 A 0)), min(iV(0). ]V(0))};

(15) n(0 V r p )  <—  inf{II(0 V 0)), max(II(0), 11(0))};

(16) iV(0 V 0) <—  sup{iV(0v 0)),max(iV(0),iV(0))}.

Using the above rules, one can increase the lower bound and decrease the upper
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bound. The soundness of these inference rules can be seen from properties (PN1 )- 

(PN10). For example, (PN1) and (PN10) gives rule (II).

The necessity and possibility functions are a special class of belief and plausibility 

functions. The argument may be applied to inference with belief and plausibility 

functions in general.

4.3  Inference w ith  R ough  Sets

Let (B , ©, ®, ©, 0 ,1 ) be a finite Boolean algebra, and (Bo, ©, ®, ©, 0 ,1 ) be a sub- 

Boolean algebra of B. That is, B q contains both elements 0 and 1, and is closed 

under ©, ®, and ©. Assume that the available information is only sufficient for us to 

consider elements of Bo. If an element not in B0 is encountered, one must represent 

it in terms of elements of B q. The theory of rough sets provides a  systematic method 

to perform this task.

Consider an element a € B. One can associate two elements of Bo with a as 

follows:

apr(q) =  \ /{ b  | b e  B0, b < a},

opr (a) =  / \{b  | b 6  B0, a < 6 }. (4.49)

The pair ap r(q) and qpr(a) is referred to as the lower and upper approximations 

of a. By definition, they are the best approximations of a in the sense that apr(a) 

is the largest element in B o satisfying b < a, while apr(a) is the smallest element

in B q satisfying a < b. Such a formulation is taken from Gehrke and Walker [15],

in which they use completely distributive lattice by generalizing Pawlak’s original 

proposal [29]. Since the Boolean algebra B is finite, B0 is an atomic Boolean algebra. 

Let A t ( B o )  denote the set of atoms of B o , the lower and upper approximations can
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be equivalently defined by:

apr(a) = \/{b  | b 6  At(B0), b < a},

apr(a) =  \J{b | b e  A t(B 0), a A fi^ O } . (4.50)

This definition is originally used by Pawlak, in which the Boolean algebra is the power

set of the universe, and the atoms of the sub-Boolean algebra are the equivalence

classes [29].

It can be easily verified that the following properties hold: for a, 6 E B,

(LI) apr(a) =  ©3pr(©a);

(L2) apr(l) =  1 ;

(L3) apr(a ® b) = apr(a) ® apr(b);

(L4) apr(a) © apr(b) < apr(a © b);

(L5) a < b =► apr(a) <  apr(b);

(L6 ) apr( 0 ) =  0 ;

(L7) apr(a) < a;

(L8 ) a < apr(apf(a));

(L9) apr(a) <  apr(apr(a));

(L10) apr(a) < apr(apf(a));

(U l) Spr(a) =  ©apr(©a);

(U2) apr(0 ) =  0 ;

(U3) opr (a © b) = Spf(a) © apr(6 );

(U4) apr(a ® 6 ) <  apr(a) <g> apf(6 );

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



(U5) a < b apr(a) <  apr(b);

(U6 ) opf(l) =  1 ;

(U7) a <  apf(a);

(U8 ) apr[apr(a)) <  a;

(U9) apr(apr(a)) <  apr(a);

(U10) apr(apr(a)) < apr(a);

(K) apr(©a © b) < © apr(a) © apr(6 );

(LU) apr(a) <  apf(a).

Properties (LI) and (Ul) state that two approximations are dual to each other. Prop­

erties with the same number may therefore be regarded as dual properties.

Inference with rough sets deals with the lower and upper approximations of truth 

values in different systems or with respect to different experts. Suppose a Boolean 

algebra B  is used by one system, say Si, and any proposition in this system has an 

exact tru th  value taken from B. On the other hand, another system, say S2, may 

only use a sub-Boolean algebra B q to represent its truth values. When statements 

from Si are considered in system S2, it may not always be possible to specify their 

tru th  exactly. One has to consider approximations of the truth values in B  by truth 

values in Bo.

Given a proposition <f>, let a denote its tru th  value in B , which is represented by a 

pair of lower and upper approximations (apr(a),apr(a)) in B q. Based on the property 

of rough sets, we can obtain the following inference rules:

(R l") <f>: (ap r(q), opr(q)) =>• -«£: (Qapr(a), Qapr(a));

(R2") (<$>: (apr(a),apr(a)),Tp: (apr(b),apr(b))) =>
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<j> A ijr. (apr(a) 0  apr(b), apr(a 0  6 ));

(R3") (<fr. (apr(a),apr(a)),ip: (apr(b),apr(b))) =>

<t>V ir. (apr(a © b),apr(a) © apr(b)).

These rules are much weaker than their counterparts in interval fuzzy sets. In both

rules (R2") and (R3"), only one of the lower and upper approximations may be

derived from the lower and upper approximations of the two propositions involved. 

Since rough sets provide the best lower and upper approximations, other rules are no 

longer needed.

Based on the approximation of truth values, we may introduce modal structure in 

many-valued logic [33]. More specifically, a necessity operator is defined in terms lower 

approximations and a possibility operator defined in terms of upper approximations. 

That is, for any elements a € B , Da = apr(a) and Oa =  qpf(q). Consequently, the 

truth value of modal propositions are defined by:

□$: npr(q) (jr. a,

Ocjy. qpr(q) •£=>• (jr. a. (4.51)

If the maximum element 1 is chosen to be the designated truth value, following modal 

expressions are tautologies:

(i) □  (0  —> ij}) —̂  (D(f> —»• Dij))-,

(H) D(j> —y O <j>\

(iii) D<f> —* 0 ;

(iv) 4> —y m o 0 ;

(v) D(j> —►

(vi) O (f) —> DO(j>,
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11

01 10

00

Figure 4.1: A four elements Boolean algebra

where <f> —¥ tp is defined by -><j> V ^  as in standard two-valued logic. In other words, 

each of the above formulas takes the designated tru th  value 1 for every assignment of 

values to the variables in it. The modal logic system S5 also obeys these axioms [6.19]. 

One may say that this many-valued logic captures the theorems of modal logic system 

S5  in the sense that every theorem of S5  is a tautology of the many-valued system [33].

E xam ple  4.3 A four-valued modal logic. Consider a four-valued logic system in 

which the truth values are drawn from a Boolean algebra given in Figure 4.1. It 

can be interpreted as the product of two classical two-valued logic systems, namely, 

the system C 2 x C 2 as referred to by Rescher [33]. The truth value 11 can be in­

terpreted as complete truth, 00 as complete falsity. They are complements of each 

other. Both 01 and 10, complement to each other, are regarded as partial tru th  or 

falsity.

If only complete tru th  or falsity can be used, we may consider the approximations 

of the partial truth. In other words, we want to approximate elements of Boolean 

algebra B  =  {00,01,10,11} by elements of the sub-Boolean algebra B q =  (00,11}. 

In this case, we have:

qpr(OO) =  qpr(Ql) =  qpr(lO) =  0 0 , q p r(ll)  =  1 1 ,
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apr(Ol) =  apr(lO) =  apr( 11) =  11, apr(00) =  00. (4-52)

Although a proposition may take a partial truth as its value, the lower and upper 

approximations take either complete tru th  or complete falsity. □

4 .4  Sum m ary

In this chapter, three interval-based inference approaches have been developed. 

They can be applied to different situations depending on the interpretation of the 

intervals involved. In the inference with interval constraints, the properties of the 

tru th  evaluation function are known and therefore may be used to narrow the bounds. 

Inference with interval fuzzy sets and interval probabilities are carried out in this 

framework. In the approach with necessity and possibility, the properties of the 

evaluation function are not available, but the properties of bounds are known. That 

is, the evaluation function is bounded by a pair of necessity and possibility functions. 

If the initial bounds are not such functions, one can update these bounds based on 

properties that must be satisfied. Rough sets offer a different approach for interval- 

based uncertain reasoning. The truth value of a proposition is known but cannot be 

exactly described by tru th  values in another related logic with fewer truth values. It 

is therefore approximated by an interval. Inference with rough set theory is similar 

to inference using modal logic.
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Chapter 5

CONCLUSION

In this thesis, we have studied some fundamental issues related to interval-based 

uncertain reasoning. A framework of interval computations is presented, which is 

a special case of set-based computations. Algorithms for interval computations are 

examined. Their applications in uncertain reasoning are explored.

One of the fundamental assumption of interval-based uncertain reasoning is that 

the tru th  values of propositions are intervals. They reflect the uncertainty that is 

inevitable in human reasoning, and hence in any intelligent systems attempting to 

model such a reasoning process. There are at least three interpretations of intervals 

involved. They lead to different uncertain reasoning methods.

In reasoning under interval constraints, intervals are interpreted as constraints 

tha t define a family of tru th  evaluation functions. Any member the family may in 

fact be the actual tru th  evaluation function. In other words, the available information 

is insufficient for us to give one evaluation function. Intervals are used to define the 

family of all evaluation functions compatible with the given information. The infer­

ence is formulated as a process of constraint propagation. Reasoning using interval 

fuzzy sets and interval probabilities are example of this class. Uncertain reasoning 

with interval fuzzy sets can be understood as an extension of single-value-based many­

valued logic to interval-value-based many-valued logic. A basic concept used is the
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notion of interval t-norms. They can either be derived from continuous t-norms or 

be defined by using a set of axioms similar to that of t-norms. The standard L-fuzzy 

sets can also be extended to interval L-fuzzy sets. Interval t-norms can be computed 

by simply applying the corresponding t-norms on both lower and upper bounds of 

interval fuzzy sets. Inference with both numeric and lattice based interval fuzzy sets 

has been examined. Inference with interval probabilities can be regarded as the con­

straint of upper and lower bounds of the actual probabilities of various propositions. 

Quinlan’s inference rules have been refined to get tighter bounds based on the results 

of interval computations.

In some situations, it may be difficult to identify the properties of the evaluation 

function. However, one may, instead, use intervals and define properties of the bounds. 

The interval representation reflects our inability to define precisely an evaluation 

function. For this class, we have discussed reasoning with necessity and possibility 

functions. It is assumed that the fuzzy tru th  values of propositions are bounded by a 

pair of necessity and possibility functions. The necessity function indicates the sure 

threshold of the tru th  value while the possibility function gives the maximal possible 

tru th  value. One of the main tasks of inference in this class is to derive the tightest 

bounds that obey the required properties. Inference rules can be obtained based on 

the properties of necessity and possibility functions.

Finally, there may also be cases where a precisely known truth value must be 

approximated. This may happen in the combination of opinions from many experts, 

where different experts use different many-valued logic systems. The theory of rough 

sets provides a solution to this problem. In this case, intervals are interpreted as 

approximations. Inference with rough sets explores modal structures in many-valued 

logic. Lower and upper approximations can be used to introduce necessity and possi­

bility operations. In other words, inference based on rough sets can be understood in 

terms of many-valued modal logic. More specifically, interval-based inference using
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rough sets is related to modal logic system S5 .

In this thesis, we have only considered the extension of t-norms to interval t- 

norms in a numeric framework and the extension of standard lattice operations. It 

is useful to study the notion of t-norms and their interval extensions using other 

mathematical structures. Some initial results along this line have been reported by 

Mayor and" Torrens using totally ordered sets [24], and by Wu [41] using complete 

lattices. The formulation of rough sets using Boolean algebras corresponds to the 

original proposal of Pawlak. It would be interesting to examine other generalized 

rough set models discussed by Yao and Lin [45].
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