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Abstract

The purpose of this study was to examine the effects of fire on mycorrhizal fungi 

in a Pinus bcmksiana stand. It was hypothesized that an optimal fire intensity leads to 

an increase in ectomycorrhizal colonization of crop species and to a decrease in 

vesicular-arbuscular mycorrhizal colonization of competition species.

Pinus resinosa seedlings grown in the greenhouse on soil from burned plots had 

significantly higher ectomycorrhizal colonization. There was no significant correlation 

between fire intensity and ectomycorrhizal colonization of the greenhouse P. resinosa 

or Pinus strobus.

The P. strobus out-planted on the Clearcut and scarification and the Scarified 

and Prescribe Burned Treatments had significantly higher colonization than both the P. 

strobus out-planted in the Clearcut Treatment and the P. resinosa at all Treatment 

levels. There were significant levels of interactions in all of the ectomycorrhizal studies. 

Neither the field planted P. resinosa nor the P. strobus had a significant correlation 

with fire intensity.

The relationship between fire intensity and vesicular-arbuscular mycorrhizal 

(VAM) colonization in Trifolium repens and Agrostis palustris grown and germinated 

on soil from a P. banksiana stand was inconclusive because the seeds from the four 

non-bumed plots failed to germinate. There was no significant relationship between fire
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intensity and VAM colonization.

Burned and non-bumed field plots were examined for fungal carpophores one 

year after the prescribed fires. Thirty-seven fungi species were found: of these, 11 

mycorrhizal fungi, nine saprophytic fungi, and two pathogenic fungi were identified. 

All of the pathogenic and saprophytic fungi were found on the burned plots while only 

two of them occurred on the non-bumed plots. Five of the mycorrhizal fungi occurred 

on both the burned and non-bumed plots, and two of them occurred exclusively on the 

non-bumed plots.
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Chapter 1:

A literature review o f the effects of fire on soil fungi 

Introduction

Before settlement by Europeans, fire was a dominant feature of most Canadian 

landscapes, with a recurrent passage every 10 to 10 000 years depending on soil, 

climate, topography, and fuel type (Anonymous 1987). The shortest fire frequencies 

were typical of the prairie, boreal and Great Lakes-St. Lawrence forest regions (Burgess 

and Methven 1977; Cwynar 1977; Frissell 1973; Heinselman 1981; Jones and DeByle 

1985; Maissurow 1935; 1941; Methven and Murray 1974; Van Wagner 1970), whereas 

long frequencies were found in the coastal forests of British Columbia and in the arctic 

tundra (Payette et al. 1989; Wilton and Evans 1974). Clearly, most Canadian forests 

have evolved under the selective pressure of fire, leading to fire-adapted ecosystems. 

Recent fire suppression and silvicultural practices have modified these fire cycles which 

in turn have greatly affected ecosystem dynamics (Duchesne and Rigal 1995). To 

manage the forest in a sustainable manner it is imperative to examine these practices 

and changes in the ecosystem.

In recent years forest management, based on holistic or ecosystem approaches, 

has been emphasized as a measure to promote biodiversity conservation. One important

1
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premise of this approach is that managed forests should maintain their biodiversity and 

their health even under repeated use. Fire, because of its regulatory role on pre­

settlement biodiversity, should be used as a guide for forest management. Further, it is 

proposed that management of Canadian temperate and boreal forests could be conducted 

in a manner that emulates natural disturbance caused by fire. This approach stems from 

the widely accepted observation that wildfire was responsible for the maintenance of 

biodiversity in Canadian forests at the microsite, ecosystem, and landscape levels 

(Duchesne and Rigal 1995).

Recently, the impact of wildfire on soil microorganisms, such as algae, bacteria, 

and fungi has gained recognition (Herr et al. 1994; Widden and Parkinson 1975). These 

organisms are essential to ecosystem health, vigour, and productivity (Diaz-Ravina et 

al. 1993a; Wells et al. 1979). Ahlgren and Ahlgren (1965) suggested that intense fires, 

which may sterilize the soil, allowed for decreased competition and, therefore, resulted 

in an increase in subsequent microbial activity.

Whereas past research into this field provided some valuable insights into the 

effect of fire on soil microorganisms, the widespread use of Byram's formula, as 

described by Alexander (1982), offers an ideal tool to quantify fire behaviour. Byram's 

formula (1959), I = Hwr, describes fire intensity in terms of the heat of combustion (H) 

in kilojoules per kilogram, the weight of fuel consumed per unit area (w) in kilograms 

per square metre, and the rate at which fire spreads (r) in metres per second (Alexander 

1982; Byram 1959). Intensity (I) is expressed in kilowatts per metre (kW m'1).

Although fire intensity cannot be directly compared to temperature, temperature in
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combination with fire duration is accounted for in terms o f energy released in Byram's 

formula.

The objective o f this chapter is to review the impact of fire on soil fungi.

Fire and soil processes

In the absence of fire, soil microorganisms are the dominant decomposers (Diaz- 

Ravina et al. 1993b), however, fire is a rapid catalyst for this breakdown and nutrient 

release in forest soil. Fire is also considered to be one o f the most important rock 

weathering processes (Wright and Heinselman 1973), and therefore aids in enriching the 

soil with essential mineral and nutrients that may not otherwise be available. Highly 

organic soils may have greater microbial densities in their deeper horizons than at the 

surface (Acea and Carballas 1990); thus the effect of fire o d  the soil profile would 

depend on fire severity, or depth o f bum.

A surface or ground fire causes a succession o f events; the organic layer is 

reduced to ash, soil pH is raised, and the concentration o f soluble elements increases 

(Raison 1979). Fire may also initiate erosion since ash is easily removed from the site 

through water regimes and flow (Wells et al. 1979). Surface fires consume organic 

matter, increase the pH of the residual litter (Amaranthus and Trappe 1993; Bisset and 

Parkinson 1980; Feller 1982; Widden and Parkinson 1975), and increase the 

concentration of soluble elements in the soil (Amaranthus and Trappe 1993; Feller 

1982; Petersen 1970). This change in both pH and element concentration in the soil 

may result in increased growth o f soil microflora and microfauna. The amplitude of
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these phenomena depends greatly on fire intensity (Herr et al. 1994). Fires with the 

greatest fertilization effect tend to be those with an intensity of approximately 10 000 

kW-m'1 (Duchesne and Rigal 1995).

Although a myriad of nutrients are lost, from the site, through volatization and 

ash erosion (Wein and MacLean 1983), after fire, there is an immediate rise in soil 

fertility (Smith 1973; Springer 1988; Wade 1989). The increase in nutrients may 

initiate a delayed microflora flush. The effect of fire intensity on the extent of the 

nutrient flush is not entirely understood. Herr et al. (199) speculated that high fire 

intensities led to a smaller nutrient flush than fires of low intensity and Wein and 

MacLean (1983) suggested that nutrient loss correlated positively with fire intensity.

Fire severity, defined as the depth of the bum into the substrate, affects soil 

processes by the mere removal of biomass (Raison 1979). Among the volatilized 

organic matter is nitrogen, phosphorus, nitrogen fixing organisms, minerals, and other 

nutrients (Raison 1979). Harvey et al. (1979) suggested that organic matter aids in 

stabilizing pH, moisture, and temperature levels. Therefore, organic matter may play a 

key role in achieving optimum growth conditions for microorganisms by providing 

adequate microsites (Lucarotti et al. 1978).

Soil microbial biomass and species number decrease immediately following fire 

(Ahlgren and Ahlgren 1965; Deka and Mishra 1983; Jalaluddin 1969; Jorgensen and 

Hodges 1970; Meiklejohn 1955; Theodorou and Bowen 1982; Wright and Bollen 

1961). This, in part, may be due to the actual combustion of the organic soil combined 

with heat sterilizing effects on non-charred area and subsequent moisture loss (Dunn et
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al. 1985). The number of soil microbes decreases and increases at various rates over 

time depending on taxa. It has been speculated that the eventual rise in densities, over 

original values for all soil microorganisms, may be due to the inactivation of growth 

inhibitory substances by heat (Petersen 1970; Seaver and Clark 1910). It was 

hypothesised that the variation in microorganism population response is related to bum 

and post-bum litter and soil moisture levels (Ahlgren and Ahlgren 1965; Widden and 

Parkinson 1975).

The effects of fire on soil fungal populations

The response of fungal populations to fire depends on the nature of the fungi and 

the fire (Wright and Tarrant 1958). Fire behaviour is influenced by past and present 

weather conditions (Bisset and Parkinson 1980; Ahlgren and Ahlgren 1965; Harvey et 

al. 1979). In general, soil fungal populations decrease immediately after a bum 

(Meiklejohn 1955). Depending on the site, and its accompanying idiosyncrasies, fungal 

composition may also change following fire. For example, subsequent to bush-fires in 

Kenya, Meiklejohn (1955) observed that in two out of three sites sampled, the plate 

counts of Penicillium spores remained the same. In contrast, Widden and Parkinson 

(1975), found the count of Penicillium decreased with fire in a Pinus contorta stand in 

Alberta.

Tiwari and Rai (1977) observed a reduction of species of microfungi in India 

after a prescribed bum in May. They also found that fire influences microfungal species
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richness and assemblages (Tiwari and Rai 1977) which was probably a consequence of 

differing heat tolerance levels. After a surface slash bum in India, the density of 

bacteria took only 20 days to return to their original level while fungal populations took 

one month (Deka and Mishra 1983). Similar results were found in both a Guinea 

savanna (Adedeji 1983) and an East Mediterranean ecosystem (Arianoutsou-Faraggitaki 

and Margaris 1982) where fungal populations required more time to return to their 

previous densities than did bacteria.

Following fire, there is a myriad of ways fungi repopulate a site. In the case of 

an incomplete bum, viable on-site spores can germinate. Fungi from areas adjacent to 

the fire can invade through the soil and spores from outside the burned area can be 

carried in by the wind or by animals (Widden and Parkinson 1975). In the case of 

volcanic disturbance, fungi can grow up through the tephra from underlying soil 

(Carpenter et al. 1987).

Burning can predispose a site to infection by certain fungi. Under natural 

conditions, phoenicoid, or fireplace fungi, have been found exclusively on beat treated 

substrates including burned forest ground (Petersen 1970), soil heated by steam 

(Warcup 1990), and fresh volcanic tephra mixed with organic material (Carpenter et al. 

1987). There are several documentations of unique fungi appearing on site after both 

prescribed fire and wildfire (Warcup 1990; Carpenter and Trappe 1985; Widden and 

Parkinson 1975).

Following wildfire in South Australia, a new ectomycorrhizal fungal species, 

Muciturbo reticulatus, appeared in a eucalypt forest (Warcup 1990). New
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ectomycoirhizai species were also observed in the Mount St. Helens volcano 

devastation zone (Carpenter et al. 1987). Fungal species were also found on the 

volcanic tephra which habitually appear after prairie or forest fires (Carpenter et al. 

1987). Although many phoenicoid fungi do not interfere with tree growth, some are 

pathogenic. In a Pinus contorta stand in Alberta, fire was observed to promote 

favourable growth conditions for the pathogen Cylindrocarpon destructans (Widden 

and Parkinson 1975). The stimulation of the growth of Rhizina undulata is also 

observed to occur after fire (Callan 1993).

The phoenicoid fungus Morchella conica has received particular attention, 

presumably due to its economic value. In general, morels are widely distributed 

(McCubbin 1913; Buscot 1989), and are frequently found in a variety o f forested sites 

in the absence of fire. However, after fire there is a prolific occurrence of morels. In a 

P. banksiana stand, M. conica fruited in May following a prescribed bum during the 

previous September (Duchesne and Webber 1993).

There are two main hypotheses explaining this unique fungal colonization after 

fire. Fungi such as Rhizina undulata and Anthracobia melaloma may depend on the 

heat generated during a fire to stimulate ascospore germination (Wicklow 1975; 

Carpenter and Trappe 1985). After fire the most numerous of the fungi may be from the 

order Ascomycotina because the ascospores tend to be more resistant to environmental 

factors than the conidia of the Fungi Imperfecti (Widden and Parkinson 1975). The 

second hypothesis is that fire may reduce competition, thus enabling carbonicolous 

fungi to pioneer (Carpenter and Trappe 1985; Wicklow and Hirschfield 1979).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8

Wicklow and Hirschfield (1979) hypothesized that early soil colonists exhibit a low 

tolerance to other soil microorganisms and would be short-lived. These fire adapted 

fungi presumably do not grow on site prior to the next natural fire (Wicklow and 

Hirschfield 1979).

Included in the phoenicoid fungi are various mycorrhizal fungi. The population 

and diversity of these types of fungi can be greatly influenced by fire (Herr et al. 1994; 

Visser 1995).

Vesicular-arbuscular mycorrhizal fungi

In the literature, vesicular-arbuscular mycorrhizal (VAM) fungi are the least 

abundant of the mycorrhizal fungi examined in context with fire. This may be due, in 

part, to the physical difficulties associated with the examination of VAM. Since 

outwardly, a VAM root looks the same as a non-mycorrhizal root, microscopic 

examination is necessary. Nonetheless, VAM fungi in the subdivision Zygomycotina 

are recognized as being important contributors to herbaceous plant growth.

After wildfire, in Spain, soils of adjacent non-bumed plots were observed to 

have higher spore counts of VAM fungi than that o f burned plots (Vilarino and Arines 

1991). However, on the burned plots spore density o f certain species increased only 

slightly. According to Widden and Parkinson (1975) and Wicklow and Hirschfield 

(1979), measuring fungal activity as a function of spore numbers on a site may be 

misleading, because, after a fire, fungal populations may be in an active mycelial stage;
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thus spore counts would be low. Spores collected from non-bumed plots had higher 

germination rates than those from the burned plots. In light of Widden and Parkinsons' 

(1975) hypothesis, one can conclude that the spores left on the non-bumed site were the 

least viable. Similar to studies on algae and bacteria (Vazquez et al. 1993; White 1986) 

VAM infectivity was lower immediately after burning but then rose steadily (Vilarino 

and Arines 1991).

Ectomycorrhizal fungi

Although ectomycorrhizal fungi are recognized as important components o f the 

temperate forest, very little is known about their response to fire (Browning and 

Whitney 1991; Herr et al. 1994; Villeneuve et al. 1989; Vogt et al. 1983). 

Ectomycorrhizae aid in water and nutrient uptake (Wright and Tarrant 1958) by roots 

and may even increase root resistance to pathogens (Harley and Smith 1983; Marx 

1969; Zak and Wicklow 1980). Mycorrhizae, ectomycorrhizae in particular, may 

enhance root heat and cold tolerance (Hendrickson and Robinson 1982). 

Ectomycorrhizal fungi also play an essential role in nutrient cycling in the litter layer 

(Perry et al. 1989), and are therefore thought to reduce nutrient leaching (Parke et al. 

1983).

Ectomycorrhizae continue to colonize roots throughout a tree's life (Visser 

1995). Although colonization does not decrease with stand age, species composition 

does decrease. From the early-stage phoenicoid fungi to the late-stage fungi,
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colonization remains constant (Danielson 1984a; Visser 1995). These fungi form 

intercellular networks of fungal hyphae in the cortex and epidermis o f feeder roots of 

woody plants to form ectomycorrhizae. They live symbiotically with the feeder roots of 

the families: Pinaceae, Fagaceae, Betulaceae, Salicaeae, Juglandaceae, and Myrtaceae 

(Allen 1991; Marx 1991; Malloch and Malloch 1981) (Table 1). They are classified in 

the subdivisions Basidiomycotina and Ascomycotina (Perry et al. 1989). 

Ectomycorrhizae play a crucial role in the nutrient acquisition of their host plants (Read 

1991; Soderstrom 1991) which in turn aids in competition between plants and 

microorganisms (Brundrett et al. 1990; Le Tacon et al. 1987; St. John and Coleman 

1983). Hormonal relationships incurred by these fungal symbionts cause 

ectomycorrhizal roots to be physiologically active for longer periods than non- 

mycorrhizal roots (Ek et al. 1983; Ng et al. 1982; Slankis 1973). Under suitable 

environmental conditions, ectomycorrhizal trees benefit from enhanced water and 

nutrient uptake, increased resistance to root pathogens (Marx 1969; Sinclair et al. 1982), 

increased tolerance to water and temperature stress (Browning and Whitney 1991), and 

increased growth as compared to their non-mycorrhizal counterparts (Harley and Smith 

1983; Herr et al. 1994; Trofymow and van den Driessche 1991).

There are several hypotheses explaining how the changes in soil chemical and 

physical properties after fire influence ectomycorrhizal growth. Similar to bacteria, soil 

ectomycorrhizal fungi may be favoured after a bum due to a hypothesized reduction of 

growth inhibitory substances (Herr et al. 1994; Widden and Parkinson 1975). It is also 

speculated that fire initiates a chemical alteration that may inhibit the growth of some
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Table I . Mycorrhizal status of plant species common to Ontario's boreal and St.
Lawrence-Great Lakes forest types.

Species Ectomycorrhizal fungi Vesicular-arbuscular 
mycorrhizal fungi

Abies balsamea ✓

Acer rubrum y

A. saccharum y

A. spicatum y

Agrostis spp. y

Alnusrugosa ✓ y

Amelcmchier sanguined y

Aralia nud.ica.ulis y

Betula papyrifera ✓ y

B. alleghaniensis ✓

Carpinus caroliniana ✓

Cary a ovata ✓

Clintonia borealis y

Comptonia peregrina* y

Coptis trifoliata y

Cornus canadensis y

Diervilla lonicera y

Fagus grandifolia S

Fraxinus americana y

Juglans nigra S y

Larix laricina y y

Linnaea borealis y
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Table 1 continued.

Species Ectomycorrhizal fungi Vesicular-arbuscular 
mycorrhizal fungi

Maianthemum canadense* ✓

Oryzopisis asperifolia /

Ostrya virginiana ✓

Picea glauca ✓

P. mariana S

Pinus banksiana* /

P. resinosa* ✓

P. strobus* /

Populus balsamifera S S

P. tremuloides y S

Prunus pensylvanica s

P. serotina s

Pteridium aquilinum* s

Quercus alba s

Salix humilis / y

S. nigra /

Sorbus decora y

Thuja occidentalis y

Tilia americana s

Trientalis borealis y

Trifolium repens y

Ulmus americana y
♦Species found on The Frontier Lake Experimental Plots (Brundrett et al. 1990; Herr et 
al. 1994; Malloch and Malloch 1981).
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fungi (Widden and Parkinson 1975) . The decrease in total soil nitrogen and 

phosphorus following fire may correlate with ectomycorrhizal formation since increased 

ectomycorrhizal formation is associated with low nitrogen and phosphorus 

concentrations (Trofymow and van den Driessche 1991).

Although fire increases soil pH and fungi tend to be favoured by more acidic 

soils (Widden and Parkinson 1975; Richards 1961), research found that ectomycorrhizal 

activity in the mineral soil increased slightly on a broadcast-bum clearcut in western 

Montana (Harvey et al. 1980). They also found that some ectomycorrhizae have the 

tenacity to survive up to 10 months after a clearcut despite the fact that root systems 

lose the ability to sustain ectomycorrhizal growth after their stems and tops are 

removed. In this case, the ectomycorrhizae were not numerous enough to inoculate 

introduced trees (Harvey et al. 1980). By the same token, other researchers suggest that 

fire may decrease soil ectomycorrhizal inoculum potential (Pliz and Perry 1983; Wright 

and Tarrant 1958). However, Pliz and Perry (1983) found more Cenococcum 

ectomycorrhizae per Pseudotsuga menziesii seedling on the clearcut and burned sites 

than in control plots.

It has been found that by manipulating the amount of organic layer on a site, the 

number of ectomycorrhizal species remained the same but richness and inoculum 

potential changed (Baar et al. 1993). It was also concluded that increased organic 

matter inhibits ectomycorrhizal fungi infectivity (Baar et al. 1993). Because fire 

decreases the amount of organic material on a site, it could be hypothesized that fire 

would not inhibit ectomycorrhizal fungal growth.
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Soil attributes and fire intensity should be examined in context with soil 

microorganism response to fire, however, Herr et al. (1994) believed that fungi may 

have a host preference. In the Great Lakes-St. Lawrence forest region, on humo-ferric 

podzol, ectomycorrhizal infectivity correlated positively with fire intensity for P. 

strobus (Herr et al. 1994). In contrast, ectomycorrhizal infectivity failed to correlate 

with fire intensity for P. resinosa thereby suggesting host preference by ectomycorrhizal 

fungi (Herr et al. 1994).

Soil fungi as indicators of stand diversity

There has been limited research on soil fungi as indicators of stand diversity 

even though fungal diversity and numbers may be crucial indicators of overall stand 

health. The fungi present on the site may tell a story of the events, such as fire and 

disturbance, which lead up to the present stand composition and health. Fungal activity 

influences stand pH (Raubuch and Beese 1995) which in turn affects stand health. For 

example, stands with a plethora of root rot pathogens such as Rhizina undulata and/or 

Armillaria mellea would not be as healthy as stands with the ectomycorrhizal fungi 

Laccaria laccata and/or Cantharellus cibarius.

The kinds of interactions, balanced versus unbalanced, among saprophytes and 

symbiotic fungi are important in tree stand health and vigour. Fire and other 

disturbances undoubtedly play an important role in establishing the soil microorganism 

dynamic.
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Microfangi assessment techniques

There are various techniques employed to examine soil algal, bacterial, and 

fungal populations. Due to the size and nature of some o f these microorganisms, 

accurate observations can be difficult to make. Quantifying microorganisms in soil can 

be accomplished in terms of physiological activity (specifically respiratory) (Jorgensen 

and Wells 1971; Rippka 1988), biomass, richness, density, and numbers (Harvey et al. 

1980). Changes in microsite environmental conditions may affect the nature of the 

microorganisms, and so upon sampling, steps must be taken to avoid drying, heating, 

and microbial contamination (Diaz-Ravina et al. 1993b).

There are many approaches used in assessing soil fungal populations. These 

include measuring the number, mass, and density of propagules, propagule viability 

(Vilarino and Arines 1991), observing the presence/absence o f fruiting bodies 

(Carpenter et al. 1987; Mayfield and Wade 1993), and determining species richness and 

diversity. Usually, soil cores are used to assess soil fungi (Lucarotti et al. 1978; Acea 

and Carballas 1990; Tiwari and Rai 1977; Morrall and Vanterpool 1968; Vazquez et al. 

1993). However, to determine mycorrhizal status the removal of plant roots provides a 

convenient assessment technique (Herr et al. 1994).

The extent of ectomycorrhizal root formation is assessed by determining, with a 

dissecting microscope, the proportion of ectomycorrhizal root tips in a given distance of 

root (Danielson 1984a; Herr et al. 1994; Marx 1969). VAM assessment requires the 

clearing and staining of the roots prior to examination (Brundrett et al. 1984;
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McGonigle et al. 1990). Chlorazol black E is an ideal stain for showing details of 

internal hyphae, vesicles, and arbuscules (Bnmdrett et al. 1984). Since vesicles and 

hyphae can be produced in roots by non-mycorrhizal fungi, arbuscular colonization is 

the most reliable reflection of the root mycorrhizal status (McGonigle et al. 1990). To 

maintain objectivity, the line-intersect method is used to quantify mycorrhizal 

colonization (Brundrett 1984; Johansson 1994; McGonigle et al. 1990).

Conclusion

Forest researchers should recognize the importance of all aspects o f a forest 

ecosystem. Soil microorganisms and fire are essential components of the temperate 

forest and, in comparison to their importance, have seldom been studied collectively in 

Canada's forests. The continuation of research that better defines fire and mycorrhizal 

fungi interactions is critical to aid in ensuring sustainable forest management.

In the future, with the use of Byram's forest fire intensity formula, achieving a 

better characterization o f the effect of fire on soil diversity and soil processes is possible 

and highly desirable (Duchesne and Rigal 1995). With this further research, insights 

may be provided into the effects of fire control practices on soil microorganisms.
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Chapter 2:

The effects of prescribed burning on ectomycorrhizal colonization in a

Pinus banksiana stand 

Introduction

In Canada, prescribed burning is a widely accepted silvicultural tool that is used 

for post-harvest site preparation (Kayll 1963; Weber and Taylor 1992). Between 1990 

and 1993, 171 554 ha were prescribed burned for silvicultural purposes across Canada 

(Haddon pers. com. 1995). Alternate uses of fire include preparation of suitable 

seedbeds for natural or broadcast seeding, reduction of wild fire hazards (Weber and 

Taylor 1992), reduction of soil pathogens (Weber and Taylor 1992), management of 

competing vegetation (Buckman 1964; Weber 1990), facilitating post-harvest access 

for planters and machinery, and providing suitable habitat for a variety of wildlife 

species (Stein et al. 1992). Prior to the advent of organized fire suppression, after the 

turn of the 19th century, wildfire played a critical role in the Canadian forest landscape 

(Van Wagner 1990). Therefore, from an ecological perspective, fire plays a unique and 

necessary role in forest management.

Whereas considerable research has emphasized the effects of fire intensity on the 

regeneration of crop trees (e.g. Weber et al. 1987), the effects of fire on other groups of 

organisms, particularly soil microflora and microfauna, are not well understood

17
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(Ahlgren and Ahlgren 1960; Visser 1995). It is critical to study soil microfauna and 

microflora in association with fire because they are the rudimentary control agents in the 

decomposition of organic matter and nutrient turnover rates that influence ecosystem 

stability and recovery following disturbance (Atlas and Bartha 1981; Herr et al. 1994; 

Paul and Clark 1989; Perry et al. 1989).

Phoenicoid fungi are pioneer colonizers of forest sites following disturbance by 

fire and comprise a large number of species from different taxonomic groups (Carpenter 

and Trappe 1985). These fungi play an important role in nutrient cycling and 

mobilization in fire-disturbed ecosystems (Carpenter and Trappe 1985; Carpenter et al. 

1987). Moreover, they may contribute to plant growth and survival through 

mycorrhizal symbioses (Carpenter et al. 1987; Danielson 1984b). Ectomycorrhizal 

colonization, seedling health, and seedling survival increased with prescribed fire for P. 

strobus and seedling survival increased for P. resinosa in a  P. banksiana ecosystem 

(Herr et al. 1994). Regardless o f type o f disturbance, young pines are colonized by 

ectomycorrhizae three to four months after germination (Allen 1991). When 

ectomycorrhizal colonization was compared between P. banksiana stands of 6,41, 65, 

and 122 years, it was found that ectomycorrhizal colonization did not decrease with 

stand age, and that the number o f mycorrhizal morphotypes increased with stand age 

(Visser 1995). Thus ectomycorrhizal fungi are an integral component of stands of any 

age, including the stand-initiation phase. The objectives o f this study were: 1) to 

determine the effects of prescribed burning, scarification, and clearcutting on 

ectomycorrhizal root colonization o f P. resinosa and P. strobus seedlings; and 2) to
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examine the relationship between fire intensity and ectomycorrhizal colonization of 

these pine species.
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Materials and Methods

Study site

The study area is located five kilometres east of the Petawawa National Forestry 

Institute at latitude 46°00' N and longitude 77°33' W in a P. banksiana stand within the 

Middle Ottawa section (L.4c) of the Great Lakes-St. Lawrence Forest region (Herr et al. 

1994; McAlpine 1995; Rowe 1972). The site is relatively flat, with a difference in 

elevation of approximately four metres over one kilometre (Herr et al. 1994; McAlpine 

1995). The overstory at the study site consisted of P. banksiana with 505 stems per 

hectare (ha1), P. resinosa with 50 stems ha*1, and P. strobus with 100 stems ha*1 (Herr et 

al. 1994). The understorey had a density o f40 000 seedlings ha*1 of P. strobus (Herr et 

al. 1994). Herr et al. (1994) have given a detailed description of stand composition and 

soil attributes.

In the summer of 1990, an area of 150 metres by 1000 metres was clearcut and 

the residual slash (limbs and treetops) left in place (Figure 1). The cut-over area and the 

standing timber area was then divided into 40 plots, each measuring 35 metres by 70 

metres, and each plot was divided by eight metre wide roads which served as fuel- 

breaks (Herr et al. 1994). Ten of the clearcut plots were burned-over in 1991 under five 

different levels (Herr et al. 1994) of the Canadian Forest Fire Weather Index (FWI) 

System (Table 2) (Van Wagner and Pickett 1985; Van Wagner 1987) (Figure 2).

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 1

Figure 1. Aerial photograph of the Frontier Lake Experimental Site.
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Figure 2. Diagram of the Frontier Lake Experimental Research Site.
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Table 2. FWI* and Fire Intensity for each 35 metre by 70 metre, burned-over 
clearcut plot at Frontier Lake Experimental Site.

Date
(1991)

FWI Fire Intensity 
(kW -nr1)

14 June 18 10,143

14 June 18 19,854

24 June 22 2,097

24 June 22 11,077

10 July 7 4,132

10 July 7 11,176

12 July 14 5,565

12 July 14 17,259

8 August 6 446

8 August 6 1,063
*FWI: Fire Weather Index
(Herr et al. 1994)
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Weber et al. (1987) indicate that the range of fire intensities optimal for the regeneration 

of P. banksiana can be up to 20 000 kW/m. Intensities experienced in this study are 

within this broad range. McAlpine (1995) has given full documentation on prescribed 

fire methods, burning conditions, and fuel consumption. Half of the remaining non- 

bumed plots were scarified. In the present study ten clearcut and burned plots, three 

clearcut and scarified, and three clearcut plots were examined.

To examine the effects of fire within standing timber, 16 three metre by three 

metre plots were established with a quatre metre wide fire guard. In 1993,13 of these 

plots were burned under different fire intensities (Table 3). These fires were ignited by 

gasoline line ignition. After the sites were cleared o f any fuel they were then loaded 

with a predetermined fuel load. Slash consumption was determined as the difference 

between the pre-bum and the post-bum fuel load. Depth-of-bum pins (McRae 1979) 

were used to determine organic material consumption. On-site weather conditions 

during prescribed bums were monitored with an automatic fire weather station to 

determine the component codes and indices of the FWI System (Anonymous 1987; Van 

Wagner 1987). Wind was closely monitored on a minute-by-minute basis to correlate 

with the resultant fire behaviour. The rate of spread of the fire was measured with a pin 

grid network on each plot; fire arrival time at each pin was recorded to provide distance 

and time information. Fire intensity was calculated using Byram's formula (1959).

All of the clearcut plots were planted with two-year-old, container-grown, non- 

mycorrhizal seedlings of P. resinosa and P. strobus in the first week of May 1992 (Herr
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Table 3. FWI*, fire intensity, and species for each standing timber, three metre by 
three metre, burned-over plot at Frontier Lake Experimental Site.

Date
(1993)

FWI Fire Intensity 
(kW-m*1)

Species
Examined

24 June 19 544 P. strobus

25 June 18 126 P. strobus

30 June 16 127 P. resinosa

5 July 16 10 P. resinosa 
P. strobus

5 July 16 96 P. resinosa

6 July 12 241 P. resinosa

6 July 13 432 P. strobus 
P. resinosa

9 July 22 55 P. strobus

13 July 14 175 P. resinosa 
P. strobus

• 21 July 26 186 P. strobus

23 July 11 796 P. resinosa 
P. strobus

28 July 4 100 P. resinosa 
P. strobus

*FWI: Fire Weather Index
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et al. 1994). Half of each plot was planted with P. resinosa and the other half was 

planted with P. strobus. The seedlings were spaced at two metre by two metre intervals. 

The root systems of five seedlings o f each species were examined at the time o f out- 

planting to ensure that no ectomycorrhizae were present (Herr et al. 1994). 

Ectomycorrhizae assessment 

Field study

To assess root colonization by ectomycorrhizal fungi, seedlings from the 

clearcut area were harvested, in July 1994, two years following planting. Three 

seedlings of each species were harvested from each of the ten burned-over plots, from 

three of the non-bumed clearcut plots, and from three of the non-bumed clearcut 

scarified plots. At harvest, healthy seedlings showing leader growth with no signs of 

browning were randomly selected within the plots and lifted from the ground with a tree 

planting spade (Herr et al. 1994). Care was taken not to break off small roots during 

harvesting. The seedlings were stored in glass jars containing 50 percent (v/v) ethanol 

and water and refrigerated at approximately two degrees Celsius until analyses were 

conducted in April and May 1995.

Colonization by ectomycorrhizal fungi was assessed using a modification of the 

method of Marx (1969) as shown in Herr et al. (1994). Fifty, three centimetre, root 

segments from each seedling were randomly selected and were assessed for colonization 

with a Zeiss DR photodissecting microscope. However, where there were not enough 

root sections, as many as possible were taken with a minimum of 30. The total number 

o f lateral roots of each segment was determined and classified as ectomycorrhizal and
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non-ectomycoirhizal. Monopodial, single dichotomies, and two or more dichotomies 

were also counted as ectomycorrhizal root tips (Figure 3 and 4). If root ectomycorrhizal 

status was questionable, the sample was hand sectioned (Figure 5). The results for each 

seedling were expressed as the percentage of mycorrhizal root tips (number of 

ectomycorrhizal root tips / total number of laterals).

Greenhouse study

To assess ectomycorrhizal formation on germinating seedlings, two 20 

centimetre diameter soil cores, from the three metre by three metre bums were planted 

with ten P. resinosa and ten P. strobus seeds on June 24, 1994. The soil cores were 

placed in fifteen centimetre diameter plastic pots. The P. resinosa seeds were from 

Algonquin Park and Cedar Lake (Appendix A). The P. strobus seeds were from the 

Petawawa National Forestry Institute (Appendix A). Soil cores were also taken from 

four plots that did not receive bum treatment. The P. strobus seeds were stratified for 

thirty days, from May 27 to June 24 1994. P. resinosa required no stratification and the 

seeds were therefore planted directly, by hand, in the soil cores for germination 

(Creasey and Myland 1993). Seedlings grew for 135 days before they were harvested 

on November 15, 1994. Standard greenhouse conditions consisted of a 14 hour 

photoperiod with an ambient temperature of 22 degrees Celsius and 75 percent relative 

humidity. The soil cores were maintained at 22 degrees Celsius and had 27 percent 

average moisture content. The seedlings were watered once every three days. 

Ectomycorrhizal colonization was assessed in the same manner as in the field study.
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Fungal mantle Fungal hypha

Figure 3. An example of a monopodial ectomycorrhizal root tip.
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Fungal m antle Fungal hypha

Figure 4. An example of a dichotomized ectomycorrhizal root tip.
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Cortical c e lls H artig netFungal m antle

Figure 5. An example o f a hand sectioned ectomycorrhizal root tip.
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Statistical analyses

Analyses of the field and greenhouse study were performed separately 

(Equations 1,2, and 3). For correlation and regression analyses all of the data were 

transformed. The log(x+l) transformation, where x is percent ectomycorrhizal 

colonization, resulted in the residuals having the lowest variance and a symmetric 

distribution. Correlation of ectomycorrhiza formation with fire intensity and pre-fire 

fine fuel moisture content was investigated using Pearson's matrix. Mixed analysis of 

variance was performed using Type III sums of squares. This analysis was followed by 

post hoc multiple comparisons using Scheffe’s test. Scheffe's is the most conservative 

of the post hoc tests and was chosen because of the large number of tests conducted. 

Scheffe multiple comparisons test was used to examine differences in means in 

colonization between scarified plots, burned-over plots, and non-bumed plots. 

Differences in colonization of seedlings grown in a burned-over substrate and a non- 

bumed substrate were determined using the same process. The alpha-level for rejecting 

null hypotheses was set at a=0.01 due to the extensive testing, the large sample size, 

and to attempt to avoid a Type I error. All analyses were conducted using SPSS 6.1 

(1994) and SAS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

Y j j k i m n n  ~  U + T,- + 5) -̂ + + P* + TP/ifc + ft)P^ + 8 +  S( j j U ) m  + ^ ( i jk im ) n

i l= ix 3 y(1): 1,2,..,10 kr. 1,2 /: 1 m: 1,2,3 n: 1,2,...,50
7(2): U2,3 
7(3): 1>2,3

where:

Y =  1 ijklmm the ratio of the number of ectomycorrhizal root tips divided by
the total number of root tips of the rih root section from the mth
seedling of the kth species of the jth  plot of the ith treatment

u the overall mean
T/ the fixed effect of the ith treatment

= the random effect of the jth  plot within the ith treatment
restriction error*

p* = the fixed effect of the kth species
Tpi* = the interaction of the ith treatment with the kth species
^Pfr!/* = the interaction of the kth species with the jth  plot within the ith

treatment
&0jk)l = sub-plot error

ijkl)m the random effect of the mth seedling within the kth species
within the jth  plot within the ith treatment

t(ijkJm)n the random effect of the nth root section within the mth seedling
within the kth species within the jth  plot within the ith treatment

(* Anderson 1970).

Equation 1. Linear model for P. resinosa and P. strobus field study.
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Linear model for P. resinosa laboratory study:

YiJk = u + T, + Pw + xm
i: 1,2 / (1): 1 ,2 kr. 1,2,...,50

Jay 1,2,..8

Linear model for P. strobus laboratory study:

-  u + T, + P(i)J + tm
i: 1,2 y(I): 1 1,2,...,50

Jay 1,2,.., 10

where:
ijk

u
T,
^0)j
X(ij)k

the ratio of the nrnnber o f ectomycorrhizal root tips divided by 
the total number of root tips o f the kth root section from the jth  
pot from the ith treatment 
the overall mean
the fixed effect of the ith treatment
the random effect of the jth pot within the ith treatment
the random effect o f the kth root section within the jth  pot within
the ith treatment

Equation 2 and 3. Linear models for P. resinosa and P. strobus laboratory studies.
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Results

Field study

The P. strobus out planted on the Clearcut and Scarified and the Clearcut and 

Prescribe Burned Treatments had significantly higher colonization than both the P. 

strobus out-planted in the Clearcut Treatment and the P. resinosa at all Treatment levels 

(Table 5). There were significant levels of interactions in all of the ectomycorrhizal 

studies (Table 4). Neither the field planted P. resinosa ectomycorrhizal colonization 

nor the P. strobus ectomycorrhizal colonization had a significant correlation with fire 

intensity. No significant correlation was found between fire intensity and P. resinosa 

and P. strobus percent ectomycorrhizae (Figures 6 and 7).

Greenhouse study

P. resinosa germinated in only ten of the 17 pots, containing soil cores, from 

the experimental plots and P. strobus germinated in only 11 pots from the experimental 

plots. The two species were analysed separately because survival overlapped in only 

five of the pots.

P. resinosa ectomycorrhizal colonization was significantly affected by fire 

(Table 6), but there was no significant difference for P. strobus (Tables 7 and 8). 

However, neither P. resinosa nor P. strobus percent ectomycorrhizae correlated 

significantly with fire intensity (Figures 8 and 9).

34
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Table 4. Analysis of variance of percentage of mycorrhizal root tips by site
preparation treatment and species.

Source df SS MS MS-ratio Conclusion
re:

site prep, treatment 2 24.27 12.14 3.37 n.s.

whole plot error 13 46.79 3.6 no test

restriction error 0 no est. no est. no test

species 1 9.52 9.52 5.80 *

site prep, x species 2 24.02 12.01 7.32 **

whole plot error x 
species

13 21.36 1.64 no test

subplot error 0 no est. no est. no test

between seedlings within 
subplots

57 57.03 1.00 13.37 **

between roots within 
seedlings within subplots

4116 307.94 0.075 no test

corrected total 4204

mean 1

missing data 89

raw total 4294

"Interpret the symbols in this column as follows: n.s. means “not significant - accept the null hypothesis” 
♦means significant at the * = 0.05 level, ♦♦means significant at the « = 0.01 level.
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Table 5. The means for percent ectomycorrhizl colonization of four year old P.
resinosa and P. strobus seedlings in prescribed burned, clearcut, and 
scarified sites.

mycorrhizal colonization (%)

Species Clearcut Clearcut & Clearcut &
Scarification Prescribe Burned

P. resinosa 48.0a 44.6a 52.4a
n*=400 n=398 n=1332

P. strobus 35.0b 67.9c 74.2c
n=439 n=422 n=1312

*n=the number of root sections.
Note: means with the same letter are not significantly different.
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Figure 6:
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The relationship between fire intensity and percent ectomycorrhizal root 
formation in field P. resinosa.. The correlation between % ectomycorrhizal 
colonization and fire intensity is not significantly different from zero.
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Figure 7. The relationship between fire intensity and percent ectomycorrhizal root 
formation in field P. strobus. The correlation between % ectomycorrhizal 
colonization and fire intensity is not significantly different from zero.
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Figure 8.
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The relationship between fire intensity and percent ectomycorrhizal root 
formation in P. resinosa seedlings germinated and grown on burned 
substrate. The correlation between % ectomycorrhizal colonization and fire 
intensity is not significantly different from zero.
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Figure 9. The relationship between fire intensity and percent ectomycorrhizal root 
formations in P. strobus seedlings germinated and grown on burned 
substrate. The correlation between % ectomycorrhizal colonization and fire 
intensity is not significantly different from zero.
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Table 6. Analysis o f variance of percentage of mycorrhizal root tips for P. 
resinosa by site preparation treatment.

Source df SS MS MS-ratio Conclusion 
re: H,,

Treatment 1 22.39 22.3 9.60 *

Pot 8 18.63 2.33 35.99 *

Roots 448 28.99 0.065 no test

Total 557
♦significant at the = 0.01 level.

Table 7. Analysis of variance of percentage of mycorrhizal root tips for P. strobus 
by site preparation treatment.

Source df SS MS MS-ratio Conclusion 
re: H0a

Treatments 1 10.00 10.00 6.99 n.s.

Pots 9 12.87 1.43 15.76 *

Roots 501 45.47 0.90 no test

Total 592
'Interpret the symbols in this column as follows: n.s. means “not significant - accept the null hypothesis”, 
"significant at the <* = 0.01 level.
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Table 8. Means for percent ectomycorrhizal colonization for seedlings o f P.
resinosa and P. strobus grown on burned substrate and non-bumed 
substrate.

Species Bumed-over
substrate

Non-bumed
substrate

P. resinosa 71.8a 13.1b
n*=598 n=112

P. strobus 64.5A 23.5 A
n=612 n=62

*n=the number of root sections
Note: means with a different lowercase letter are significantly different for P. resinosa at a probability 
level o f  o=0.05. Means with the same capital letter are not significantly different for P. strobus at a 
probability level of <*=0.05. There are no between species comparisons in the greenhouse study.
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Discussion

In the greenhouse study with the 135 day old seedlings P. resinosa colonized 

more quickly than the P. strobus and in the field study with the four year old seedlings 

P. strobus had greater colonization than P. resinosa except on the clearcut site (Tables 5 

and 8). Herr et al. (1994) also found that P. resinosa was colonized more rapidly, and 

to a greater extent, than P. strobus. This difference may be due to the variation in actual 

growth conditions, in growth requirements for P. resinosa and P. strobus (Bums and 

Honkala 1990; Nadelhoffer et al. 1983) and the site idiosyncrasies. Both groups of 

seedlings for the field and the greenhouse study were grown in zero percent cover, or 

100 percent light. P. strobus is more shade tolerant than P. resinosa (Bums and 

Honkala 1990). Whereas P. resinosa requires fire for natural regeneration, P. strobus 

germination can be ameliorated by a shaded seedbed (Bums and Honkala 1990). The 

Frontier Lake experimental research site was initially dominated by P. banksiana 

(Figure 1); thus the area may not provide optimal growing conditions for either of the 

two tree species nor the ectomycorrhizal species.

Further, ectomycorrhizal colonization depends on both tree and fungal species 

(Browning and Whitney 1993). Although ectomycorrhizal fungi of the pines are 

similar, some are better suited for one species than others (Browning and 

Whitneyl993). For example, Laccariaproximo mycorrhizae enhance the drought
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tolerance of P. banksiana to a greater extent than do either Thelephora terrestris or 

Laccaria bicolor (Browning and Whitney 1993). Since the results o f this study are 

derived from a stand that is predominantly P. banksiana, the ectomycorrhizal fungi 

present in the soil for that species may dominate (Table 1).

The literature supports the finding that, for the greenhouse P. resinosa and the 

out-planted P.strobus, ectomycorrhizal root colonization increases in post-fire 

communities (Herr et al. 1994; Visser 1995). The lack of significance for the field P. 

resinosa and the greenhouse P. strobus in the level of ectomycorrhizal colonization 

after fire, as observed in this study (Tables 5 and 8) may be related to the depth of 

organic matter. Ectomycorrhizal fungi do not flourish in thick, nitrogen-rich organic 

layers (Baar and Kuyper 1993). This observation supports the low level of colonization 

in the P. strobus out-planted in the Clearcut (Table 5). One year after a reduction in 

humus layer, species richness of ectomycorrhizal fungi and fruiting bodies can increase 

significantly (De Vries et al. 1995). However, this effect can decrease in subsequent 

years to minimal values (De Vries et al. 1995). An allelopathic response of seedling 

ectomycorrhizae to forest litter has also been reported (Alvarez et al. 1979). The 

reduction in organic matter associated with fire may also facilitate contact between the 

roots and the ectomycorrhizal fungi by reducing competition (Herr et al. 1994; Petersen 

1970). This field study was conducted three years after the prescribed fires. These 

affects may have abated as the humus layer had several seasons to redevelop.

There was no significant correlation between fire intensity and ectomycorrhizal 

colonization of P. resinosa nor P. strobus in either study. Fire consumes organic matter
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and total nitrogen and phosphorus decrease after fire whereas available nitrogen and 

phosphorus increase (Raison 1979). Ectomycorrhizae are more abundant in soils with 

relatively low amounts o f available N and/or P (Allen 1991; Bjorkman 1949; 

Hacskaylo 1957; Hacskaylo and Snow 1959; Marx et al. 1977; Menge et al. 1977). 

Bioassays of the soil were not performed so the amount of available N and P was not 

determined.

Although it is not well documented in temperate forests, the loss o f mineral 

nutrients is related to fire intensity (Evans and Allen 1971; Wein and Maclean 1983). 

Thus, it is speculated that ectomycorrhizal colonization increases with fire intensity and 

the accompanying volatilization of soil minerals. However, the absence of a significant 

correlation between fire intensity and both species in both studies may be due to time 

since the fire. The ectomycorrhizal fungi associated with P. strobus and P. resinosa 

may be particularly sensitive to the changes in the humus layer in this stand which was 

dominated by P.banksiana (Figure 7).

Although all o f the greenhouse seedlings’ roots were ectomycorrhizal, the eight 

week duration of the greenhouse study may not have been adequate for a significant 

relationship between fire intensity and colonization to become apparent. Usually 

seedlings are ectomycorrhizal by three months (Allen 1991). However, each species is 

different in their growth requirements and tolerances (Bums and Honkala 1990). For 

example, P. strobus commonly germinates and grows in partial shade (Bums and 

Honkala 1990) but there was no shade to relieve the seedlings in the greenhouse.

The curvilinear patterns observed in all four correlations may be due to various
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site parameters and thresholds. The fires were done on different days with different 

weather conditions and soil moisture contents. Fire may cause an initial fungal flush 

which abates at intermediate intensities and then rises.

In general, fungal colonization after fire has been found to depend on pre-fire 

soil moisture content (Dunn et al. 1985). Heat acts as a catalyst in the denaturing 

process (Dunn et al. 1985). Therefore, an increase in soil moisture content results in a 

decrease of fungi with heating (Dunn et al. 1985). In previous studies, it has been 

hypothesized that fire reduces germination of ectomycorrhizal fungal propagules and/or 

mycelium (Petersen 1970; Wicklow and Hirschfield 1979; Carpenter et al. 1987). 

Because this study was performed three years after burning, the effects of the pre-fire 

moisture content will have abated.

Two months after the out-planting of the seedlings in their study, Herr et al. 

(1994), at PNFI, assessed both P. strobus and P. resinosa for ectomycorrhizal 

colonization in the same manner as this study. In comparison with their results, it 

appears that ectomycorrhizal colonization increased slightly over the two years for all of 

the treatments. An increase in colonization with stand age may be due to the reduction, 

over time, of the disturbance induced nutrient flush and the subsequent decrease of 

nutrient availability in the rooting zone. With fewer resources, the seedlings may form 

greater numbers of feeder roots with higher ectomycorrhizal colonization to compete for 

the dwindling resources. Degree of ectomycorrhizal infection tends to be highest when 

plants are grown in soils with moderately low or unbalanced nutrient status (Vogt et al.

1983). However, Vogt et al. (1983) found that mycorrhizal colonization was only
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significantly different when stands of Pseudotsuga menziesii reached the ages of 45 and 

46 years. The results of this study and Herr et al. (1994) may provide support for the 

hypothesis that after fire there is higher colonization with stand age (Vogt et al. 1983). 

However, the two years difference in seedling age, in this case, many not be sufficient 

to yield significant findings.

The significance of the higher level interactions for the field study and the 

greenhouse study can not easily be explained (Tables 4, 6, &7). Even within a 

controlled environment experiment, certain parameters can not be monitored. The 

attempt to account for confounding parameters in an ecological setting is an immense, 

and often unattainable task. Variations in the microsite can be affected by a plethora of 

factors ranging from biological to climatic. These factors not only remain unregulated 

but are not unaccounted for as experimental parameters. Thus, an explanation of the 

significant higher level interactions may be due to the large number of samples and the 

ecological setting of this experiment.

The effects of prescribed burning on ectomycorrhizal colonization are of 

particular importance because of the benefits of ectomycorrhizal symbiosis (Herr et al. 

1994). A large number of these fungi act as pioneer species and play an important role 

in nutrient cycling and immobilization in fire-disturbed ecosystems (Carpenter and 

Trappe 1985; Carpenter et al. 1987). Preparation of a suitable seedbed/planting-bed 

after harvesting is a critical step in silviculture. In order to promote sustainability, it is 

important to understand natural forest processes. In Canada, where a great deal of forest 

regeneration and nutrient cycling is dependent on fire (Bonan and Shugart 1989; Van
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Wagner 1990), prescribed burning is an effective component o f silvicultural planning 

Prescribed tire is ideal as it reduces growth inhibiting humus layers and increases the 

availability of soil nutrients. Silvicultural prescriptions, which include burning, 

promote sustainable and diverse ecosystems. The continuation of this study, and others 

like it, is required to provide a basis for educated silvicultural decisions and practices.
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Chapter 3:

The effect of prescribed burning on vesicular-arbuscular mycorrhizal colonization o f 

Trifolium repens and Agrostis palustris in a Pinus banksiana stand

Introduction

Fire is a fundamental and potent force in shaping the boreal and Great Lakes-St. 

Lawrence forest regions. Periodic wildfires and prescribed burning have many affects 

on soil microfauna and microflora (Ahlgren and Ahlgren 1965). Although the effects o f 

fire have been examined in many different kinds of ecosystems (Ahlgren and Ahlgren 

1960; Ahlgren 1976; Engstrom and Mann 1991; Kozlowski and Ahlgren 1974; Methven 

and Murray 1974), there remains a paucity of information on the effects of fire on soil 

fungal populations so far as VAM are concerned (Dunn et al. 1985). Perhaps the most 

time consuming and technically involved microfimgi to examine are VAM.

VAM fungi are the least understood of the mycorrhizal fungi examined in 

association with fire. This may be due, in part, to the physical difficulties associated 

with the examination of VAM and to the fact that, typically, fire-driven forest 

ecosystems in Canada are mainly colonized by ectomycorrhizal fungi (Allen 1991). 

Nonetheless VAM fungi are recognized as being important contributors to herbaceous 

plant growth (St. John and Coleman 1983).
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As severity of many disturbances increases, there is a loss of VAM propagules 

and a decrease in VAM colonization (Daft and Nicholson 1974; Janos 1980; Reeves et 

al. 1979). However, other relevant literature has shown that colonization increases, 

decreases, or remains constant after fire (Ahlgren and Ahlgren 1965; Dunn et at. 1985; 

Widden and Parkinson 1975; Wright and Bollen 1961). The effects of fire on VAM 

colonization is variable and may depend on pre-fire conditions (Dunn et al. 1985).

Colonization of roots by VAM after fire may depend on fire intensity, soil and 

litter moisture content, soil type, litter depth, season\time of year o f burning (Dunn et al. 

1985) and soil temperature (Klopatek et al. 1988). In general, steam heat kills a greater 

number of microbes than does dry heat (Baker 1970). However, in a pinyon-juniper 

woodland, plants grown in soil with dry pre-fire conditions had lower VAM 

colonization than in soil with wet pre-fire conditions (Klopatek et al. 1988). Klopatek 

et al. (1988) also observed a positive correlation between decreasing VAM colonization 

and increasing soil temperature. Regardless of pre-fire conditions, there is a decrease in 

enable propagule densities with fire (Vilarino and Arines 1991). Several researchers 

have observed that burning tends to reduce the VAM infectivity of soil (Dhillion et al. 

1988; Gibson and Hetrick 1988; Klopatek et al. 1988; Vilarino and Arines 1991).

In the boreal and Great Lakes-St. Lawrence forest regions, the plant species 

colonized by VAM provide competition for Canada's major crop species. In order to 

use fire as an effective silvicultural tool, it is important to understand the effects of fire 

at each ecological level. The objective o f this study was to examine the relationship 

between fire intensity and pre-fire fine fuel moisture content and VAM colonization of
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Trifolium repens (white clover) and Agrostis palustris (creeping bentgrass) in a standing 

jack pine {P. banksiana) Stand-
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Methods and Materials

Study site

The same study area was used as described in Chapter 2.

Vesicuiar-arbuscular mycorrhizae (VAM) assessment

Soil from the three metre by three metre standing timber plots was used. Two 

soil cores from thirty-one bums and four non-bums were sown with ten Agrostis 

palustris seeds and ten Trifolium repens seeds respectively on June 3, 1994. The soil 

cores were 20 centimetres in diameter and were placed in 15 centimetre diameter plastic 

pots. A. palustris and T. repens were used as bait species because they are both 

common species that are known to be VAM (Table 1). The plants were grown for 75 

days and were harvested on August 10, 1994.

The roots from each pot were cleared with a 5 percent potassium hydroxide 

solution (Brundrett et al. 1993). Specimens were autoclaved for eight minutes at 121 

degrees Celsius on slow exhaust cycle. Roots were then rinsed in distilled water and 

stained with a 0.03 percent (w\v) chlorazol black E (CBE) solution (Brundrett et al.

1984). The roots were heated in the CBE solution at 90 degrees Celsius for one hour 

and then drained (Brundett et al. 1993; Brundett et al. 1984). The roots were stored in a 

25 percent glycerol solution until assessed.

The roots were assessed for VAM according to the magnified intersections
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method (McGonigle et al. 1990). Roots were mounted in glycerin on microscope slides 

and covered with 40 by 22 millimetre coverslips. Five slides were used for each 

subsample, but all slides for a subsample were treated as a single unit, and not as sub­

subsamples (McGonigle et al. 1990). However, in cases where there were not enough 

roots, a minimum of three and a half slides were used. Roots were aligned parallel to 

the long axis of the slides and observed at magnification x200 with a Zeiss Universal 

microscope. The field of view of the microscope was moved with the mechanical stage 

graticule to make passes across each slide perpendicular to its long axis and the roots 

(McGonigle et al. 1990). This was done until 150 intersections for each slide were 

examined. All intersections between roots and the vertical eyepiece crosshair were 

considered except where the cortex was missing or severely damaged (McGonigle et al.

1990).

The plane of focus was moved through the entire root and a note was made of 

whether the vertical crosshair intersected any arbuscules or not (McGonigle et al. 1990). 

Colonization was quantified as proportion o f arbuscules divided by total number of 

intersections examined.

Statistical Analyses

All data were transformed. With log(x+l) transformation, where x is percent 

VAM colonization, the data had the lowest variance and a symmetric distribution, t- 

tests were used to determine the difference in colonization between the two species. 

Correlation of VAM formation with fire intensity and pre-fire fine fuel moisture content 

was investigated by determining Spearman's correlation matrix. The alpha level for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

rejecting the null hypothesis was set at a=0.01 due to the extensive testing, the large 

sample size and to attempt to avoid a Type I error. All analyses were conducted using 

SPSS 6.1 (1994).
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Results

VAM root colonization of T. repens had a mean of 1.4 percent which was 

significantly lower than that found in A. palustris with a mean of 17 percent. Neither 

T. repens nor A. palustris correlated with either fire intensity or moisture content 

(Figures 10,11,12, and 13).

The majority of both the A. palustris and T. repens seeds planted on non-bumed 

substrate failed to germinate. Those seeds planted on the non-bumed substrate which 

did grow into plants were poorly established and lacked sufficient roots for analysis.
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Figure 10.
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The relationship between fire intensity and percent vesicular-arbuscular mycorrhizal 
colonization in T. repens. The correlation between % VAM colonization and fire 
intensity is not significantly different from zero.
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Figure 11. The relationship between fire intensity and percent vesicular-arbuscular 
mycorrhizal colonization in A. palustris. The correlation between %
VAM colonization and fire intensity is not significantly different from zero.
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Figure 12. The relationship between prefire fine fuel moisture content and percent
vesicular-arbuscular mycorrhizal colonization in T. repens. The correlation 
between % VAM colonization and fine fuel moisture content is not significantly 
different from zero.
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The relationship between prefire fine fuel moisture content and percent 
vesicular-arbuscular mycorrhizal colonization in A. palustris. The correlation 
between % VAM colonization and fine fuel moisture content is not significantly 
different from zero.
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Discussion

Since many of the Frontier Lake experimental plot understorey species are VAM 

(Table 1), colonization of T. repens and A. palustris by VAM fungi was expected. The 

lack of growth and seed germination failure on the non-bumed substrate may indicate 

that these species do not germinate in the presence of profuse organic matter, and do 

indeed require fire or duff removing disturbance to germinate. As is the case with early 

stage colonizers, T. repens and A. palustris are shade intolerant. Studies have found that 

VAM colonization and propagules are greater on non-bumed substrate (Allsopp and 

Stock 1994; Dhillion et al. 1988; Klopatek et al. 1988). It can be speculated that the 

seeds on the non-bumed plots would germinate with a reduction in organic matter, and 

that these plants would have higher colonization than the plants grown on the burned 

substrate. However, this study was executed one year subsequent to burning; there may 

now be no significant decrease in colonization as they may have risen to their pre-fire 

levels (Allsopp and Stock 1994; Dhillion et al. 1988).

Since the severity of disturbance has been seen to correlate with a reduction in 

VAM colonization (Daft and Nicholson 1974; Janos 1980; Reeves et al. 1979), it can 

also be speculated that had the plants been on site prior to burning, and thus been 

permitted to repopulate vegetatively, the plants on the non-bumed substrate would have 

greater colonization compared to those of the burned substrate.
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Although colonization has been observed to decrease with increasing 

temperature (Klopatek et al. 1988), there was no relationship with fire intensity for 

either species. The fire intensities in this study may have been so high as to not show a 

relationship. However, it is likely that in this ecosystem type, fire has deleterious 

affects on VAM colonization.

The T. repens and A. palustris were planted on soils which had been burned the 

previous year. It has been found that the initial increase in VAM colonization decreases 

with time since the fire (Bentivenga and Hetrick 1991). However, this has been 

reported in a tallgrass prairie ecosystem where the dominant species are VAM, unlike P. 

banksiana stands where the dominant species are colonized by ectomycorrhizae (Allen

1991).

In the boreal and Great Lakes-St. Lawrence the species colonized by VAM 

provide competition for Canada’s major crop species. In order to use fire as an effective 

silvicultural tool it is important to understand the effects of fire at each ecological level. 

The ultimate goal is to use research such as this in context with silvicultural planning 

and to find, for each stand/forest, an optimum set o f fire intensities to promote crop 

species growth and inhibit that of the competition. VAM colonization is dependent on 

several factors. Additional research is required to better understand the dynamics of 

fungi in non-bumed soils.
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Chapter 4:

The effect of fire intensity on soil fungi carpophore production

Introduction

In many of Canada's temperate forests, fire is a natural recurrent disturbance that 

dramatically influences short- and long-term forest dynamics. A major group of 

organisms affected by fire are the forest fungi in the Ascomycotina and 

Basidiomycotina sub-divisions. Fire undoubtedly influences the species richness and 

assemblages of these macrofimgi. Burning can predispose a site to infection of certain 

fungi such as Rhizina undulata. Under natural conditions, phoenicoid, or fireplace 

fungi, have thus far been found exclusively on heat treated substrates including burned 

forest ground (Petersen 1970), soil heated by steam (Warcup 1990), and fresh volcanic 

tephra mixed with organic material (Carpenter et al. 1987). There are several 

documentations of unique fungi appearing on site following a fire (Warcup 1990; 

Carpenter et al. 1987; Widden and Parkinson 1975).

New ectomycorrhizal fungal species, such as Muciturbo reticulatus, appeared in 

a eucalypt forest in South Australia (Warcup 1990). New ectomycorrhizal fungi were 

also observed in the Mount St. Helens volcano devastation zone (Carpenter et al. 1987). 

Fungal species were found on the volcanic tephra which habitually appear after prairie 

or forest fires (Carpenter et al. 1987). Although many phoenicoid fungi do not interfere
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with tree growth, some are pathogenic. In a Pinus contorta stand in Alberta, fire was 

observed to promote favourable growth conditions for the pathogen 

Cylindrocarpon destructans (Widden and Parkinson 1975).

There are two main hypotheses explaining selective fungal colonization after 

fire. Fungi such as Rhizina undulata and Anthracobia melaloma may depend on the 

heat generated during a fire, termed the heat pulse, to stimulate ascospore germination 

(Carpenter et al. 1987; Petersen 1970; Wicklow 1975). After fire the most numerous o f 

the fungi are from the sub-division Ascomycotina because the ascospores tend to be 

more resistant to environmental factors than the conidia of the Fungi Imperfecti 

(Widden and Parkinson 1975). The second hypothesis speculates that fire may reduce 

competition thus enabling carbonicolous fungi to pioneer (Carpenter and Trappe 1985; 

Wicklow and Hirschfield 1979). Wicklow and Hirschfield (1979) thought that early 

soil colonists exhibit a low tolerance to other soil microorganism and would, therefore, 

be short-lived. These fungi would presumably not grow on site prior to the next natural 

fire (Wicklow and Hirschfield 1979).

The purpose of this study was to provide the rudimentary information for an 

intensive examination of the effects o f fire on fruiting of mycorrhizal and other 

macrofungi. The objective o f this study was to determine the effects of fire on fungal 

carpophore production in a P. banksiana stand.
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Methods and Materials

Study site and carpophore production analyses

The study area is described in Chapter 2.

The 31 three metre by three metre burned plots and nine non-bumed plots, as 

described in McAlpine (1995) and Herr et al. (1994), were examined between June 13 

and October 18,1994. The plots were surveyed weekly for fungal fruiting bodies. All 

of the mushrooms that formed each week were removed from the site for identification. 

Identification of the fungi was verified by Agriculture Canada in Ottawa (Redhead pers. 

comm.; Dalpe pers. comm.)
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Results

Sixteen fungal specimens were identified to species, fourteen to genus, and 

seven unidentified specimens (Species 1-7) that were different from the other 30 

specimens were present (Table 9). Thirty-one fungi types were found on the burned 

plots, nine were found on the non-bumed plots, and seven were found on both the non- 

bumed plots and the burned plots.

In June Aleuria aurantia, Laccaria laccata, Pholiota spp., and Xermaphalina 

comuii were present. A. aurantia was observed up until September while the latter 

three species were found up until October 18. Species 2, Cantharellus cibarius, Mycena 

sp., Russula spp., Rhizina undulata, and Tylopilus felleus were found in July: C. 

cibarius, Rhizina undulata, and T. felleus were also found in August, the Mycena sp. 

was present in September, and the Russula spp. were present up to the completion of the 

sampling in October. Species 5, Suillus pictus, and Lyophyllum sp. appeared in August. 

The Lyophyllum sp. was also observed in September. Species 6 and 7, Clavicorona 

pyxidata, Coltricia sp., Cortinarius sp., Lycoperdon perlatum, Dermocybe sp., Inocybe 

sp., Psathyrella sp., Pholiota highlandensis, and Lactarius vinaceorufescens appeared 

in September. Cortinarius sp., Inocybe sp., Psathyrella sp.,

Pholiota highlandensis, and Lycoperdon perlatum were also present in October. An 

Armillaria sp. appeared in October along with Clavulinopsis fusiformis, Cystoderma
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amianthium, Suillus americanus, Gymnopolis sp., Rickenella fibula, and Species 1,2,3, 

and 4. The number of fungal groups appeared to increase with time (Figure 14).

Several species occurred only on the burned sites. These were A. aurantia, S. 

pictus, C. pyxidata, L. perlatum, R. undulata, Mycena, L. vinaceorufescens, Armillaria 

sp., C. amianthium, Lyophyllum sp., Gymnopilus sp., S. americanus, R. fibula, C. 

fusiformis, Coltricia sp., Inocybe sp., Psathyrella sp., and Species 1-7. C. cibarius and 

the Dermocybe sp. were the only species to occur exclusively on the non-bumed sites.
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Table 9. Fungal species found on the burned and non-bumed plots at the Frontier 
____________ Lake Experimental Site.________________________________________

Fungal Species Non-bumed
Plots

Burned
Plots

Mycorrhizal (M) 
Saprophytic (S) or 

Pathogenic (P)1

Aleuria aurantia (Fr.) Fuckel2 y P

Amanitaporhyria (A. & S.: Fr.) Seer. ✓ S M

Armillaria (1 species)2 s P

Cantkarellus cibarius Fr. S M

Clavicoronapyxidata (Pers.: Fr.) 
Doty

s S

Clavulinopsis Jusiformis(So'w.: Fr.) 
Comer

s S

Coltricia (1 species)2 s S

Cortinarius (2 species) 

Cystoderma2 amianthium

S s

s

M

Dermocybe (1 species) 

Gymnopilus1̂  1 species)

y

s

M

Inocybe (1 species) y M

Laccaria laccata1(Scop.: Fr.) Cke y y M

Lactarius vinaceorufescens Smith y M

Lycoperdorfperlatum Pers. 

Lyophyllum (2 species)

y
y

S

Mycenal{ 1 species) y S

Pholiota1 highlandensis (Pk. Smith & 
Hesler) (+ 1 species)

y y S
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Table 9 continued.

Fungi Species non-bumed
plots

burned
plots

Mycorrhizal(M) 
Saprophytic (S) or 
Pathogenetic (P)

Psathyrella2 (1 species) S S

RickenellcP fibula (Bull.: Fr.) Raith S S

Rhizina undulatcr s P

Russula (3 species) S s M

Suillus americanus (Pk.) Snell: Siipp 
& Snell

s M

Suillus pictus (Pk.) Smith & Thiers s M

Tylopilus fellius (Bull.: Fr.) S s M

Xeromphalina cornuii s s S

Species 1-7 s
'Fungi were categorized using Pera and Alvarez 1995; Treu and Miller 1993; and Waller and Agerer 
1993.
2Fungi found on burned over areas in the literature (all are not necessarily phoenicoid)(Petersen 1970; 
Phillips 1991; Carpenter et al. 1987).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

14

12

10

8

6

4

2

0
0 10 155 20

Week # (June 6, to October 18, 1994)

4. Bum 
^  Non-bum

I

Figure 14. Seasonal variation in number of fungal species fruiting on the burned and 
non-bumed plots at the Frontier Lake Experimental Site.
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Discussion

Many of the fungi present on both the burned plots and non-bumed plots are 

mycorrhizal (Table 9). These fungi benefit trees via enhanced growth, health, and root 

resistance to pathogens (Allen 1991; Mikola 1973; Petersen 1970). For example, 

species from the genus Amanita have been observed to naturally detoxify mine spoils 

for cadmium in a P. resinosa stand (Medve and Sayre 1994). Another well known 

ectomycorrhizal phoenicoid fungus, found in this study, was L. laccata. L. laccata has 

been observed to suppress the root pathogen Fusarium oxysporum and promote growth 

in Pseudostuga menzesii seedlings (Sinclair et al. 1982). Fire, even at low intensities, 

stimulates the growth o f these beneficial fungi. However, the growth of potentially 

pathogenic fungi in the genera Pholiota, Armillaria, and Mycena are also stimulated by 

fire (Jung et al. 1992). For example, the root pathogen, Rhizina undulata, was credited 

with seedling mortality after a lightning fire in a P. patula plantation in the south 

eastern Transvaal, South Africa (Lundquist 1993). Saprophytic fungi are expected on a 

burned site due to the dead wood and debris associated with the fire. These fungi are 

not competitors with mycorrhizal fungi since they rely on different resources.

Phoenicoid fungi, such as some Psathyrella species, occur exclusively on the 

burned plots, but, some fungal species may occur on both the binned and non-bumed 

plots due to the vegetation mosaic left by the fire (Hansen et al. 1991). Fire bums an

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

area heterogeneously and therefore increases species diversity over the stand (Hansen et 

al. 1991). Often there are species which fail to grow after fire. For example, species 

such as C. cibarius may not appear because of soil moisture loss (Grochowski and 

Ostalski 1993). Thus the fungi found on the burned site are not all necessarily 

phoenicoid but are disturbance originating species such as A. aurantia (Petersen 1970).

Although the number of fungi found on the bum and the non-bum sites was 

different, the seasonal variation in fungal numbers was similar (Figure 14). The mosaic 

left by the fire will encourage the growth of a larger array of fungi (Hansen et al. 1991) 

than the forest floor of the non-bumed sites. This pattern, where there is an increase in 

fiuitification and number of fungi in late summer and fall is supported by Petersen's 

1970 study.

Another unique pattern in colonization after fire is characterized, over several 

years, by early colonization by certain discomycetes and pyrenomycetes 

(Ascomycotina) followed by secondary colonization of basidiomycetes and other 

ascomycetes (Bartoli eta l. 1991; Carpenter et al. 1987; Petersen 1970). Because there 

was only one season of sampling since the fire, no such pattern was discerned in this 

study. However, because o f the nature of this study an exhaustive species list is 

unattainable; therefore some species may have gone uncollected (Redhead pers. 

comm.). Nonetheless many o f the same species found by Carpenter et al. (1987) one to 

three years subsequent to the eruption of Mount St. Helens, are o f the same genus 

and/or species observed in this study; R. undulata, Pholiota carbonaria, Psathyrella 

carbonicola, Aleuria aurantia, Psathyrella sp., and Rickenella sp. were found by

* i
i!

i
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Carpenter et al. (1987).

There tends to be a distinct pattern of succession of ectomycorrhizal fungi 

according to plant age (Shaw et al. 1992). For example, Cortinarius species are 

observed to be Iate-stage mycorrhizal fungi under P. sylvestris (Shaw et al. 1992). 

However, the literature is scant with respect to P. banksiana stands and fungal 

succession.

Many of the mycorrhizal fungi show host specificity (Browning and Whitney 

1992; Kendrick 1985; Martinez-Amores et al. 1990/1991). Fungi benefit some trees 

more than others but are rarely observed to grow exclusively with one tree species 

(Molina and Trappe 1982). For example, P. patula and P. radiata had better growth 

with L. perlatum than with R. brevipes (Marinez-Amores et al. 1990/1991). Molina and 

Trappe (1982) found that Suillus brevipes grew best and almost exclusively with Pinus 

species. Since the forest at the Frontier Lake study site is comprised of P. resinosa, P. 

banksiana, and P. strobus, it can be assumed that S. brevipes formed ectomycorrhizal 

associations with all three tree species.

Further studies should be done distinguishing fungi grown at different fire 

intensities. Studies of such calibre may allow for the manipulation of the forest floor to 

yield beneficial mycorrhizal fungi. The promotion of these fungi would result in 

increased tree and stand health which would bring the forestry industry closer to the 

goal of sustainability.
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Chapter 5: 

Conclusion

One goal in fire ecology research is to use studies such as this in context with 

silvicultural planning, and to find for each stand/forest, an optimum set of fire 

intensities to promote crop species growth and inhibit that of the competition. The ideal 

intensity would result in: a) an increase in ectomycorrhizal colonization which in turn 

would enhance the health of the crop species; and b) a decrease in VAM colonization 

thus decreasing the overall health of the competition (Herr et al. 1994).

In this study each Pinus species had different levels of ectomycorrhizal 

colonization of which both increased slightly with fire. Studies have found that 

increased mycorrhiae colonization was accompanied by an increase in seedling survival 

and health (Herr et al. 1994). Therefore, fire as a silvicultural tool, indirectly, increases 

crop health, resilience, and survival.

Neither T. repens nor A. palustris VAM colonization correlated strongly with 

fire intensity. They had very low average colonization, and it can therefore be 

hypothesised that there would be greater colonization in plants in an area that was not 

burned and that fire, of any intensity, impedes VAM colonization (Allsopp and Stock 

1994; Dhillion et al. 1988; Klopatek et al. 1988). Since it has been one year since the 

fire, the VAM colonization rate may be increasing and these values may be higher than
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those found at the end o f the last season. The next step in VAM research is to 

determine how fire affects VAM colonization over time. It is important to note if 

colonization exceeds that of pre-fire VAM over an extended period of time.

Eleven fungal species surveyed in this study are known to be mycorrhizal, nine 

are saprophytic, and two are pathogenic (Table 9). All of the saprophytic and 

pathogenic fungal species occurred on the burned plots. In future studies it is important 

to quantify and compare the potentially negative growth and survival effects of these 

fungi to the effects o f the mycorrhizal fungi.

Research into the aforesaid areas, along with assessment o f pre-fire conditions 

affecting soil dynamics, may provide stronger reasons for using prescribed fire as a 

silvicultural tool. Future forestry studies need to compare the ecological dynamics 

following wildfire and prescribed fire with an emphasis on the factors affecting crop 

tree health. In conducting research such as this, a stronger basis is provided to manage 

the Canadian temperate and boreal forests in a manner that emulates natural disturbance 

caused by fire.

A new forest resource management paradigm is evolving. This new standard 

encompasses decisions based on sustainability, species diversity, habitat protection, and 

natural regeneration and emphasises alternative methods of harvesting, site preparation, 

and regeneration (Anonymous 1995; Perrin 1993). Prescribed fire is site specific. It is 

also a costly and dangerous endeavour. Therefore, it is imperative that fire be an 

ecologically safe and sound alternative and that it be suited for the ecosystem/stand for 

which it is intended. Studies such as this one contribute by adding to the knowledge
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base for these crucial silvicultural decisions.
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Germination data for P. strobus seeds: Seedlot number, viability, and year tested for 
seeds from the Petawawa National Forestry Institute.

Seedlot Number Percent Viability Year Tested
(%)

8930576 98 1990

8930577 97 1990

9230120 96 1990

9230121 98 1992

9230122 98 1993

9230123 98 1993

Germination data for P. resinosa seeds: Seedlot number, viability, and year tested for 
seeds from Algonquin Park and Cedar Lake.

Seedlot Number Percent Viability Year Tested
(%)

9230449 97 1993

9230450 100 1993
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