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ABSTRACT

The purpose of this investigation was to compare the effectiveness of two types of 

mountain bike front fork suspension systems for controlling ground reaction vibration at 

the handlebar upon impacting a raised surface. A second purpose was to investigate the 

effectiveness of these two suspension systems at maintaining ground-wheel contact 

following impact

This investigation provided a direct measurement of handlebar vibration and 

ground reaction forces at the front wheel. A rigid front end was compared to an elastomer 

and a hydraulic suspension system each tested at their stiffest and softest settings. A 

single subject was chosen to perform repeated trials over an AMTI force platform 

modified with a 3 cm raised surface. Velocity and riding technique were controlled for 

reliability and rider weight displacement was measured using strain gauges mounted on 

the handlebar.

A shear quartz mode piezoelectronic accelerometer mounted to the handlebar 

provided vibration measurements and the AMTI force platform measured ground reaction 

forces. Mean curves for acceleration and ground reaction force were recorded and 

calculated from repeated trials and used system comparison.

Results from the mean curve comparison of the suspension systems showed 

reduced amplitude and frequency of vibration at the handlebar and improved 

ground/wheel contact time for both elastomer and hydraulic systems when compared to 

the mean curves for the rigid front end. Statistical analyses supported the mean curve 

results indicating significant differences between the rigid and the suspension systems on

ii
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all variables analysed at the .05 alpha level.

It was concluded that the hydraulic and elastomer systems reduced handlebar 

vibration and improved ground-wheel contact when compared to the rigid systems for 

this particular subject and bike combination. This investigation supports claims made by 

manufacturers of suspension systems, that front suspension improves ground/wheel 

contact and reduces transmission of impact energy to the rider at the handlebar.

m
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CHAPTER ONE 

Introduction

The sport of mountain biking is quite possibly one of the fastest growing 

recreational and professional sporting activities in the world today. As the sport develops 

so too must the equipment required in order to meet the ever increasing demands of the 

athletes involved. Mountain bikes are no longer considered to be a heavier version of the 

sleek road and track racing cycles but are hybrid, technologically developed vehicles 

which are constantly undergoing refinement, redesign, and development. The most 

significant technological modification to the mountain bike has been the development of 

a suspension system modelled after those developed for motorbikes, or more specifically 

moto-cross bikes.

The first mountain bike suspension systems appeared at the elite racing level in 

response to the overwhelming performance demands placed on the bike and rider. 

Mountain bikes have undergone a significant metamorphosis in the past decade and the 

main change has been the implementation of the front suspension system. There are 

numerous manufacturers of front suspension systems each with their own performance 

standards. The underlying objective for an efiScient front suspension is to decrease the 

amount of shock transmitted to the rider while maintaining ground/wheel contact 

(Orendorff & Smith, 1995). The objective is to improve bike handling and conserve 

impact energy transfer to the rider while reducing the effort required to keep the bike on 

course. With the appearance of at least five types of suspension system designs and at 

least ten different manufacturers, comparative assessments of the performance benefits

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

are quite complicated. There are numerous engineering criteria for system evaluation but 

little biomechanical research has been completed to assess the effects of front suspension 

systems designed for the reduction of shock vibration. Vibration transmitted to the hands 

and upper body during the use of vibrating tools creating specific levels of vibration 

exposure, has been cited as the cause of numerous hand and upper limb disorders 

(National Institute of Occupational Safety and Health [NIOSH], 1989). It is reasonable to 

consider that the vibration exposure to the hands and upper extremity during mountain 

bike riding may also be of a sufScient level to present a safety risk. Vibration can lead to 

the development of any one of the many disorders related to hand transmitted vibration 

such as: white finger, Renauds phenomenon, carpal tunnel syndrome, or repetitive strain 

disorder to name a few (hitemational Organization for Standardization [ISO], 1986). 

Measuring the effectiveness of suspension systems in terms of their edacity to reduce the 

transmission of impact vibration to the upper body is one method of evaluating 

suspension systems. The results of this study will provide an evaluation of the 

effectiveness of two types of mountain bike suspension systems currently available to the 

consumer.

Other than private commercial testing, there is relatively little published research 

available that provides for the comparison of different suspension systems. This research 

will provide information on the effectiveness of two suspension systems to reduce 

vibration at the handlebar, and improve ground-wheel contact. In addition, the 

measurement techniques provide an effective methodology for future investigations. 

Much of the research available on suspension systems is based on engineering concepts
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and deals with the mechanical nature of the bicycle system without taking into 

consideration the resulting effects on the rider operating the vehicle (Orendorff & Smith, 

1995). An investigation focussing on the interaction between the vehicle and the operator 

requires consideration of two separate systems: the mechanical system (the bike) and the 

human system (the rider). This investigation attempts to evaluate the interaction between 

these two interdependent systems. In this particular study, the rider will be included for 

specificity but will be controlled as much as possible using monitoring methods to 

measure the operators consistency. This investigation addresses an isolated impact event 

that could occur while riding a mountain bike and attempts to provide a better 

understanding of the interaction between human and machine. The study also gives 

insight into the hand/bike interface to provide information for design efhciency for 

control of vibration transmission to the hands and upper body. One objective was to 

substantiate or refute the manufacturers claim s that suspension does significantly reduce 

the amount of shock transmitted to the hands. This factor seems to be one of the more 

common advertising tools or sales pitches used to target the recreational rider market for 

mountain bike suspension systems.

The evaluation of vibration transmitted to the handlebar is also useful for making 

comparisons between the levels of vibration known to cause detrimental effects in the 

hand and upper limb in industry. Critical vibration exposure levels may also be 

experienced by mountain bike riders (Gerr, Letz, & Landrigan, 1991, Mishoe & Suggs, 

1977; Ranny, 1993; and Wasserman & Taylor, 1991).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

Mountain Bike Suspension Systems 

Mountain bike suspension systems are an evolutionary product transferred from 

moto-cross racing technology. Front suspension systems were initially developed to 

improve bike handling and performance with respect to steering and keeping the front 

wheel on the ground for improved traction and maintenance of forward velocity. Without 

the damping effect of suspension, when a wheel hits a bump of considerable size, the 

wheel bounces off the bump and loses contact with the ground. Each time the wheel is off 

the ground, the rider has less control and loses angular momentum which is normally 

conserved when the wheel is rolling on the surface. While in the air the wheel slows its 

rate of revolution or stops turning all together depending on how long it is suspended. 

Maintaining ground contact allows for improved bike handling on rough terrain.

When suspension systems were first developed for mountain hiking (Poole,

1991), less consideration was given to the rider's physical comfort than to the bike’s 

performance. The effect of decreasing the level of shock transmitted to the rider is a 

convenient by-product of the shock absorber development, rather than a design objective. 

In mountain biking, because the source of locomotive power is the rider, the quality of 

the ride must be closely evaluated to minimize fatigue. Unnecessary energy expenditure, 

such as absorbing impact shock, will have a negative performance effect on the rider. 

Mountain bike suspension manufacturer’s were quite aware of potential problems and 

exploited this theory as an advertising tool to sell suspension systems. The sales pitch is 

that suspension systems reduce the reaction force at impact. Less force is absorbed by the 

arms, legs, and body, leaving more energy available for pedalling faster or riding longer.
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Purpose

The purpose of this research is to investigate the effectiveness of front fork 

suspension systems for controlling ground reaction vibration in the handlebar of a 

mountain bike when impacting a raised surface. A second purpose is to investigate the 

effectiveness of the suspension systems in maintaining ground-wheel contact following 

impact

Vibration

Oscillation

Frequency

Spring rate

Damping

Definitions

The oscillation or periodic motion of a rigid or elastic body from a 

position of equilibrium.

The variation in position of an object over time in reference to its 

starting position.

The rate of oscillation; number of oscillations per unit time; the 

number of complete cycles per unit of time. One Hertz (Hz) is one 

cycle/second.

The measure of a spring's stifBiess, expressed by how much weight 

is required to compress a given spring one inch, for example; a 

"100 lb spring" will compress 1 inch under a 100 lb weight.

The process of controlling energy loss from a compressed 

suspension following an impact which initially compressed the 

system, storing energy in it. The process by which the amplitude of 

the crest of a vibration is decreased.
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Preload

Travel

Elastomer

Recoil

Stiffiiess

Acceleration

G’s

Accelerometer 

Hertz (Hz)

A form of spring tension loaded into a suspension system. It puts 

the suspension in equilibrium with the rider's weight so it can 

support the rider's weight without compressing and causing a loss 

in available travel. If preload is too high the suspension will be stiff 

and unresponsive, if too little preload the suspension will bounce 

with the rider's movements.

The amount of distance the shock can move from minimum to 

maximum compression to absorb impact; in general the more 

travel the better absorption.

The material used to store energy in suspension system, usually 

urethane, may be solid or foam and can be designed to stiffen with 

compression.

The release of energy from the compressed system, allowing it to 

return to it's resting length.

The ratio of force or torque to the resulting change in displacement 

of an elastic body.

The time rate of change in velocity (m/sec  ̂or gravity). The second 

derivative of displacement with respect to time.

The acceleration produced by the force of gravity/(lg=9.81m/s^).

A transducer used to measure acceleration or time rate of change in 

velocity.

A unit of frequency (cycles/second).
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Spectrum, vibration The distribution of frequencies that describes the frequencies that

are present in a vibrating system.

Limitations

This research was conducted recognizing the following limitations:

1. The effect of only one impact on the suspension system was measured and not 

the effects of multiple impacts as might occur in the natural environment

2. The impact effect of only one size of bump rather than variable sized bumps 

which may influence the performance of the suspension system was assessed.

3. The effects of the suspension were only measured at one velocity.

4. The use of a single subject limits the degree to which inferences may be made to 

other riders.

5. The findings are not representative of all suspension system designs available on 

the market.

6. The laboratory conditions do not allow for consideration of natural surface ie: 

gravel, sand, mud, etc..

7. One bike was used in order to adopt the system to fit one somatotype.

8. The accelerometer and force platform were both factory calibrated outside of the 

laboratory and were assumed to be accurate..
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CHAPTER TWO 

Literature Review

The purpose of this research was to investigate the effectiveness of vibration 

control at the handle bar and maintenance of ground/wheel contact for selected mountain 

bike front suspension systems. Much of the research regarding suspension systems is 

deemed to be of a proprietary nature and was not available for this investigation, however 

there is a considerable amount of research regarding hand-arm vibration and the use of 

vibrating tools/devices that provided valuable information with respect to the testing and 

measuring procedures for this study. As the sport is still in its infancy, research is 

currently in progress on many aspects of mountain biking.

Development of Suspension Svstems 

Bicycle suspension has been utilized since the late 1880's (Poole, 1991) but has 

not been in common use until recent adaptation by mountain bike racers. After the 

introduction of suspension in 1880 there were no significant developments until the 

1950's and 1960's. At this point in time, Alex Moulton designed a system which was sold 

to the Raleigh Bicycle Company. Raleigh owned the patent but ceased production of the 

suspended bicycles in 1967 (Poole, 1991). It was not until 1983 that Moulton began to 

design another suspension system. During the 1970's suspension systems were introduced 

to the sport of bicycle moto-cross (BMX). The BMX bikes resembled scaled down 

versions of motorcycles but the suspension systems proved to be too heavy and unreliable 

(Poole, 1991).

8
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With the development of mountain bikes in the late 1970's, popularity for the 

sport has grown so that mountain bike sales now dominate bicycle sales worldwide. With 

this boom, manufacturers have developed methods for differentiating their products from 

the competition. One way of achieving this was to produce a technically superior 

bike."The hottest trends in the mountain bike industry are lighter bikes and suspension" 

(Poole, 1991, p. 11). Today's suspension systems are due almost entirely to the influence 

of mountain bike racing, a sport still in its infancy. According to frame builder and 

designer, Keith Bontrager, "the book is still being written on mountain bike design 

because off-road riding creates so many conflicting demands on both the rider and the 

bike" (Roosa, 1990, p. 82).

The development of mountain bike suspensions in the early 1980's resulted in 

response to the ever increasing demands for a better handling bike. At this point 

motorcycle technology crossed into the mountain biking industry in the form of front 

suspension systems (Roosa, 1988). Mtially, suspension was not about increasing or 

improving rider comfort, it was about performance. The focus was not on transforming a 

bumpy ride into a glide, but to keep the tire on the ground.

Bicycles have always had suspension to a certain degree. There has always been a 

I'passive" suspension which includes the tires, the spokes, the rims, the padded gloves, 

and seats. The shock from impact will travel through a bicycle deflecting everything in its 

path including the wheels, forks, frmne tubing, handlebar, and stem. These small 

deflections attenuate the shock a small amount before it is transmitted to the rider. "Every
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frame member interconnects and different materials react to shock in different ways” 

(Roosa, 1990, p. 75).

The new "active" suspension being added to today’s mountain bike is thought to 

improve rider comfort by reducing the shock transmitted to the rider (Olsen, 1993; Poole, 

1991; & Roosa, 1990). Another advantage thought to be gained by using suspension is 

the ability to ride faster. The rider gains increased control and will not have to work the 

arms and upper body to absorb shock as much. 'Tt is the fine corrections that one does 

with hands and arms that prevents the rider from being able to absorb bumps and make 

steering corrections simultaneously” (Roosa, 1990, p. 82).

The greatest benefit of riding with front suspension is thought to be experienced 

when riding over rough terrain which should be less punishing to the body because less 

shock should be transmitted to the rider, leaving more energy for pedalling ^urice, 1994). 

The wrist and upper body will take much less abuse and the wheel will stay on the ground 

(Price, 1989). It is vital that the wheel remain in contact with the ground for the rider to 

maintain velocity. If the wheel leaves the ground at any point there are losses in forward 

momentum. A wheel coming into contact with the leading edge of a bump experiences 

an upwards force. If the force is great enough to lift the wheel or even just to reduce the 

force between the wheel and the ground then a portion of the forward momentum is lost 

(Roosa, 1990). The result is that the bike slows down. On rough terrain, momentum 

losses can be severe. Loss of ground contact also causes diminished rider control and off- 

road riders are continually wrestling with the handlebar to keep the front wheel on the 

chosen line, thereby expending muscular energy that could be used for pedalling.
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Mechanics of Suspension

Suspension acts to smooth the ride as well as add a more controllable compliance 

by introducing a spring and a mechanism to control its motion via damping (Langley, 

1992a). Suspension has been designed to keep the wheels in contact with uneven 

surfaces, smoothing die ride to decrease fatigue in the rider, and in the vehicle structure 

(Price, 1989).

Springs support the weight of the vehicle (bicycle) but once set in motion, the 

springs may oscillate for many cycles before arresting OEfrice, 1989). Springs are 

constantly excited when the vehicle is moving. Shock absorbers or dampers are 

associated with a suspension unit to eliminate or decrease the oscillation to within a few 

cycles.

In the design of motor vehicles, suspension systems are considered with respect to 

sprung and unsprung weight (Price, 1989). Sprung weight consists of all parts of the 

vehicle including passengers that sit above the springs. The wheels and their support 

structures that attach to the underside of the spring comprise the unsprung weight "The 

springs serve to isolate the sprung weight from road vibration and shock as well as 

minimize extraneous vehicular motions like swaying, bobbing and pitching." (Price,

1989, p. 21). In contrast to stabilizing the sprung weight the springs allow the wheels to 

move freely, rising and falling to follow the contours of the ground. Since the unsprung 

weight is usually small compared to the sprung weight, the wheels can move quickly to 

maintain traction and directional control. In a bicycle without suspension the situation is 

quite different. The rider is the vehicle and the entire bicycle becomes the unsprung mass.
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The arms and legs serve as suspension members working as shock absorbing levers 

(Roosa, 1988).

Springs make the bicycle wheels more responsive to a host of vertical and lateral 

forces. The wheels are therefore able to trace the contours of the ground more precisely 

and maintain better traction. Suspension systems are commonly referred to as springs and 

these springs are commonly constructed of one of three materials:

1. Steel-coil springs, a simple reliable wire wound into a coil often designed to 

stiffen as it becomes compressed.

2. Gas, trapped in a cylinder, is compressed by a piston offering steeply increasing 

stifGiess as full travel is approached.

3. Fluid-hydraulics, usually oil is forced to flow through small holes or 'ports'. 

Viscous fluids resist movement and mechanical energy is converted to heat.

The mechanics of the active suspension are as follows; when the wheel encounters 

a bump, the impact causes an increase in the kinetic energy through the system. The 

springs of the system are compressed to absorb the shock energy of the impact. The 

compressed spring is essentially storing this kinetic energy from the impact. Damping 

refers specifically to the process of controlling the energy absorption and rebound 

damping refers to the energy loss from the compressed suspension system.

There are three methods by which damping is achieved, they are:

1. Friction This occurs in all types of suspension systems (springs) to some

degree however, energy losses due to friction are difiScult to 

control.
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2. Hysteresis This is found to occur in elastomer or rubber bumper systems.

Elastomers have an inherent energy loss due to mechanical 

deformation of material. Energy is lost as heat. Different materials 

offer varying amounts of damping.

3. Hydraulic This occurs when a viscous fluid resists flow and mechanical

energy is converted to heat The size and number of ports may be 

varied as may the viscosity of the fluid to alter the degree of 

damping.

Front Fork Suspension Designs 

Active front suspension systems may be found anywhere between the front axle 

and the hand grips. There are many motorcycle style telescoping forks, some using steel 

coil springs and friction, some using elastomers for both spring action and damping, some 

hydraulic (see Figure I), and some systems combine hydraulic with elastomers. There are 

also an increasing number of linkage forks available on the market.

The most common mountain bike suspensions are the telescoping forks. The bike 

designers believe that "suspension ideally belongs at the front wheel to create the most 

favourable ratio between sprung and unsprung mass" (Roosa, 1990, p. 79). Not as 

common in elite racing, but gaining popularity with recreational riders, is the stem 

suspension unit which supports the argument that suspension is not as much about bike 

handling but rather, rider comfort.
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Figure 1. Diagram illustrating two types of front suspension being tested. The left leg 
represents an elastomer bumper system which compresses to cushion bumps and the right 
leg shows a hydraulic system where oil is forced upward in the stanchion tube to reduce 
shock.
Note: Adapted form “Suspension Comprehension: A Guide to this Year’s Shocking Array 
of Forks and Swing Arms.” by J. Olsen, 1993, Bicycling. 34. 60-65.

The telescoping forks to be evaluated in this research include an elastomer 

bumper style fork and a hydraulic fork (see Figure 1) each being tested at its stillest and 

softest settings which will be compared to a rigid fork being tested as the control. Each
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system has inherent weaknesses but each is thought to be effective in improving the 

quality of the ride. Travel, preload, spring stiffiiess, type and strength of damping, and 

handling factors must be considered when discussing different types of suspension. 

(Olsen, 1993).

Elastomer Svstems

Elastomer systems rely on urethane bumpers for the spring action that produces 

the damping effect on impact The degree of preload of an elastomer system depends on 

the material characteristics of the bumper itself. The bumpers are available in varying 

densities, some designed to stiffen with compression. The softness or stifhess of the 

elastomer is referred to as the durometer (Zinn & Nicol, 1992). Friction damping is 

achieved with the sliders, wipers and legs slowing down the recoil, or bounce back of the 

elastomer bumpers. Some friction damping is built into the elastomer itself to counter 

their tendency to behave like springs. However, elastomers are ‘location sensitive’ which 

means that the harder the system is compressed, the harder it will push back until it 

reaches its original position. This makes recoil difGcult to control in elastomer systems 

(Nicol, 1992).

In an elastomer bumper suspension system, a limitation is spring travel. With the 

elastomer system being evaluated in this study, the amount of travel is limited to 3 cm. 

However, in light of this fact it must be considered that the travel is limited because the 

fork has been designed to have the same length as the bikes originally designed rigid 

forks. This characteristic limits any geometry changes that may occur when an after 

market suspension system is installed which may affect bike handling.
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Hydraulic Svstems

The mechanical action damping characteristics of a hydraulic system offer greater 

control over compression and recoil of the suspension system. The hydraulic recoil is 

speed sensitive therefore the system will always return to its resting position at a constant 

rate of speed no matter how much force had been applied to compress it. The rate of 

damping and recoil can be finely tuned to the riders preference however, hydraulic 

systems do have higher stiction than elastomer systems meaning that they have a greater 

resistance to initial movement or a higher preload.

The hydraulic system being tested in this investigation provides up to 5 cm. of 

travel but this causes changes in the bicycle head angle, of up to 2 degrees altering the 

bikes handling and responsiveness ÇPoole, 1991). After market suspension systems 

placed on a frame not designed for the extra length will slow steering by causing changes 

in the bikes handling (Roosa, 1990).

The preload contributes to performance variations in different types of telescoping 

forks. Increasing the preload will cause an increase in the amount of force necessary to 

activate the compression of the system. If there is too much preload the system will not 

absorb smaller impacts and/or washboard type surfaces and only significant impacts will 

activate the system. Too little preload will cause the system to behave like a pogo as the 

weight of the rider alone would be enough to compress the system and any additional 

impact would start the system bouncing.

Controlling preload in elastomer systems is achieved by changing the density or 

the shape of the elastomer bumper. The bumper is similar to a plug that fits inside the
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fork leg as shown in Figure 1. However, the rider is limited to a small selection of 

different bumpers. With a hydraulic system the preload setting may be finely tuned. 

Adjusting the size or the number of the ports or changing the viscosity of the oil in the 

system acts to control the rate at which the compressed system rebounds. As well, the 

amount of air pressure in the pneumatic chamber may be adjusted to suit the rider’s 

weight, style, and preference. One of the problems often encountered with hydraulic 

systems is that the damping may be too strong to allow the wheel to react to a series of 

smaller impacts. The strong damping prevents the wheel from moving fast enough as the 

hydraulic fluid can only move so quickly. If this happens the suspension will behave as a 

solid/rigid fork without any absorption.

The main argument between using hydraulic or elastomer systems is dependent 

upon the type of terrain over which the bike will travel. For terrain with frequent small 

bumps, washboards, gravel, roots, and rocks the better system would be the one which is 

easily activated and responds quickly, such as the elastomer systems. However, if the ride 

will be mainly on smooth surface with occasional fallen trees, boulders, big ruts or rocks, 

a more suppressed system response like that of a hydraulic system is required to manage 

the greater impact forces without running out of travel.

The pros and cons for each system must be considered with the type of terrain and 

style of riding for which the bike will be used. The hydraulic systems may require more 

maintenance woric and are heavier, adding additional weight to the bike than the 

elastomer system. However, hydraulic systems do have the advantage of allowing for a 

customized preload and damping for the rider. Each system is claimed to be the most
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effective at decreasing the amount of shock vibration transmitted to the rider but there has 

been little biomechanical research published to support this contention.

Previous Research

The theoretical advantages of suspension systems have been considered to be 

concerned with improving vehicle handling and the quality of the ride. Actual data to 

support these advantages is limited, however, research is ongoing and some interesting 

investigations have been published to support the advantages of using front suspension.

In a 1994 article Burke reported that physiologist. Dr. M. Berry (1994) attempted to 

quantify the physiological advantages of using suspension in a project that required the 

subject to ride a bike with and without suspension on a treadmill with 2 x 4  inch boards 

attached, set at a 2% grade, running at 6.5 mph. The purpose of this investigation was to 

compare energy expenditure and physical stresses between riding suspended versus rigid 

(unsuspended) bikes (Burke, 1994).

The findings reported that under suspended conditions the ener^  expenditure was 

significantly lower than when riding with a rigid bike (Burke, 1994). The rigid trial 

resulted in an energy expenditure that was 13% higher than the front suspension trial. It 

was also reported that 1.8 calories/minute could be saved in energy cost using suspension 

which adds up to over 100 calories/hour. Ratings of perceived exertion were also reported 

as being significantly higher for the rigid versus the suspended trial.

Other physiological research performed to support the theory that suspension 

reduces fatigue in the rider has been performed at the University of Utah. Investigators 

had 12 trained cyclists ride on an outdoor single track course with an average velocity of
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10 mph for one hour under three different bike conditions including a front suspended 

bike, a fully suspended bike, and a rigid bike. The results indicated the average heart rate 

for the two suspension bikes was 146 heart beats per minute (bpm) while the average 

heart rate for the rigid bike was 154 bpm. Perceived exertion was also reported to be 

lower for the suspended bike trials than the rigid trial. One of the most interesting 

measure taken in this study examined the serum creatine kinase in blood samples taken 

from the subjects 24 hours aflCT they performed the exercise. Creatine kinase is the 

enzyme found in the muscle tissue tibat will increase in the blood when muscle damage 

occurs (Seiffert, Leutkemeier, Spencer, Miller, & Burke, 1994). An increase in the serum 

creatine kinase is indicative of muscular cell trauma, and exposure to repeated high 

amplitude shock or vibration as occurs during mountain biking is great enough to cause 

damage to the musculature of the upper extremity resulting in measurable changes in post 

riding creatine kinase levels. Attenuating the shock or vibration that the upper extremity 

is exposed to during mountain bike riding is one method of decreasing the amount of 

muscular damage sustained to the upper extremity of the rider. Riding a suspended 

mountain bike has been shown to reduce the amount of muscle cell damage as measured 

using serum creatine kinase levels as an index for the amount of damage that has 

occurred.

Seiffert et al. 1994, reported that when the athletes rode the suspended bike the 

amount of serum creatine kinase was nearly ten times lower than when the athletes rode a 

rigid bike. Conclusions from these results were that the body will receive much less 

muscle damage and trauma if one selects a suspension bike while riding a tough course.
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Further observations made on these systems indicated that riding front suspension 

bicycles resulted in faster finishing times in cross country time trials and also accounted 

for lower average heart rate and creatine kinase levels. These findings lend support to the 

theory that trail shock detracts from speed and endurance (Seiffert et al., 1994).

These two physiological studies provide evidence that suspension systems are an 

effective component in improving the rider’s performance but they do not offer any 

advice on how to select the most effective system firom the overwhelming selection of 

suspension systems available for the consumer. Although annual reports on various 

suspension systems appear in numerous mountain biking/cycling magazines there is little 

scientific data presented to support the decision to purchase one particular system over 

another.

Bicycling magazine in its October 1994 issue produced a listing of numerous 

suspension systems evaluated on their exclusive fork tester known as ‘the Monster’. 

Initially this testing device was called the mobile on bike suspension tester because it was 

originally designed to be carried on the bike and measure the g-forces that the rider 

experienced when encountering terrain variations such as bumps, dips, or washboards. 

The monster used to evaluate front suspension systems for the article in the October 1994 

issue was a stationary system modelled from the mobile on bike suspension tester to 

create a controlled environment that would allow for comparisons of different systems. 

The testing device had a pivoting arm loaded with 68 lbs. of force (the approximate 

weight of a 150 lb. person distributed over the front wheel), a rotating drum with various
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sized bumps attached, and a pair of accelerometers mounted at the handlebar. The results 

were reported in G’s measured for 1,2, and 3 inch bumps (Dr. Z, 1994).

The most relevant scientific data to this current investigation was reported by 

Orendurff, Fujimoto, and Smith (1994) from Oregon State University. OrendurfPs first 

investigation suggested that acceleration on the firame increased with fork stif&ess. This 

single subject design lacked a control condition so comparison between suspended and 

rigid was not possible. In a subsequent investigation Orendurff and Smith (1995), 

examined the effect of rigid fork and suspended foric stifbess on impact acceleration with 

three different size bumps. Using two accelerometers, one mounted at the axle and the 

other on the firame, the results were reported for initial peak and landing peak 

acceleration, and the slope of the initial peak. The findings indicated that the suspension 

forks reduce large impacts transmitted to the rider through the front wheel (Orendurff & 

Smith, 1995). However, the acceleration at the bike-rider interface of the handlebar was 

not measured so the degree to which shock absorption effects the amount of shock being 

transmitted to the rider was not assessed. By placing the measuring device on the 

handlebar it is possible to measure the amount of vibration that is potentially being 

transmitted to the riders upper body.

Measurement Techniques 

In order to evaluate the amount of vibration transmitted to the rider from the bike 

it is necessary to interpret the characteristics of vibration. Vibration is an oscillatory 

motion which means that the motion is not constant but alternatively more and less than 

an average value. The degree of the oscillation determines the magnitude of the vibration
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and the rate of the repetition (cycles of oscillation) determines the frequency of the 

vibration. Vibratory motion may be defined as being either deterministic or stochastic. 

Deterministic motion is characterized by a constant periodic wave form following a 

sinusoidal wave pattern. Stochastic motion is best described as random characterized by 

non-periodic wave forms when plotted as may be seen with shock or impact (GrifBn, 

1990).

The majority of research performed on vibration focuses on sinusoidal or 

deterministic vibration while less research has examined responses to non-periodic or 

shock motion, hi performing vibration measurement one must take into account the fact 

that vibration conditions vary from one moment to the next. Vibration that is sampled 

over a period of time is independent of the period of time over which it was sampled 

(Griffin, 1990). Therefore, it is incorrect to assume the motion is stationary and that a 

representative average value can be used to indicate severity over the full sampling 

period. For this reason one must consider maximum values and ranges when assessing 

vibratory motion, particularly so when the nature of the vibration is non-deterministic and 

does not follow a sinusoidal pattern.

Hand Vibration

The investigation proposed in this study is concerned with evaluation of the 

vibration at the handlebar that may be transmitted to the bike rider's upper body. Hand- 

transmitted vibration is a term commonly used to denote vibration entering the body at 

the hand. The principle causes of hand transmitted vibration involve situations where the
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hands and fingers grasp or push some type of vibrating object such as motorcycle 

handlebars (Griffin, 1990).

Hand transmitted vibration by definition may be concerned with effects that occur 

only in the fingers or hand but this vibration may be transmitted further into the body and 

the effects it produces there may also be of interest in vibration measurement research. 

Measurement of hand-transmitted vibration has traditionally been done in an attempt to 

better understand the adverse effects on the hand and upper limb firom various vibration 

exposures. The principal causes of severe hand vibration are identified in the literature 

(Wasserman 1987; NIOSH 1989; ISO 1986; and Burstrum & Lundstrom, 1994) as being 

the tools and processes in agriculture, mining, and construction where the hand and 

fingers grasp or push vibrating objects (Griffin, 1990). The quantification of the extent of 

the adverse effects of hand transmitted vibration has been ill-defined and incomplete 

(Griffin,1990). A wide range of disorders caused by vibration exposure may be classified 

into five separate types of disorders. The diagnosis of each of the five types requires 

different procedures and some types are associated with specific sorts of vibration. The 

five possible disorders include, vascular disorders, bone and joint disorders, peripheral 

neurologic disorders, muscle disorders, and other disorders including; whole body and 

central nervous system (Taylor 1989; Taylor & Brammer 1982; Pykko & Stark 1986; 

Wasserman 1987; NIOSH 1989).

In assessing hand transmitted vibration one must be aware of the complex 

interactions between the relevant variables making it very difficult to discern a simple 

cause-effect relationship between vibration and detrimental effects to the hand (see
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Appendix A). The relative importance of shock and continuous vibration in the 

production of various vibration induced injuries is not well understood however, there has 

been some evidence that injury to bone and joints is partially associated with low 

frequency shock (NIOSH, 1989; Brammer, 1986).

When assessing factors that affect hand transmitted vibration the type of tool or 

device used is not as important as the characteristic of the vibration exposure and those 

factors which affect its transmission to the hand or the susceptibilify of the hand to 

adverse affects (Griffin, 1990). Exposure to hand-transmitted vibration is very complex 

and is difficult to quantify. Vibration entering the hand will often occur in three 

translational axes and even then the amount of vibration may vary between the hands or 

along the length o f the handle. The magnitude of vibration will likely change from one 

instant to the next and may contain both low magnitude vibration and high magnitude 

shock. The vibration may extend over a wide frequency range and is also dependent on 

the condition and usage of the device being held (Griffin, 1990).

Measurement Units

Components of vibration that have been measured in previous research include 

acceleration reported in m/secf or g's, frequency reported in Hertz ( Hz), and duration of 

exposure reported as min/day or hours/day (NIOSH, 1989). Vibration acceleration is 

commonly measured in three orthogonal basicentric axes at the point on the handle as 

close as possible to where vibration enters the hands (see Figure 2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

Biodynamic Coordinate Axes 
Basicentric Coordinate Axes

Figure 2. Basicentric Axes (x, y, z) for the hand (h).

NOTE: Adapted from the Handbook of Human Vibration (p. 16), by M.J. Griffin, 1990, 
London, Academic Press.

The basicentric axis of greatest acceleration may be used to calculate acceleration 

levels. In order to understand the relevance of a vibration measurement one must be aware 

of the three components of a vibrating system. These are mass, elasticity, and damping 

(Griffin, 1990).

The kinetic energy of a system is a function of the mass and motion of the system. 

The potential energy of the system is a function of the mass and elasticity of the
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back and forth between kinetic and potential energy. In the absence of any 

mechanism to take energy out of the system, a system will theoretically vibrate 

forever once it begins to oscillate. Damping is the mechanism that transforms the 

kinetic and potential energy into heat and thereby takes energy out of the vibrating 

system. Thus if no energy is directed into a system to keep it vibrating, the 

damping will dissipate the initial energy in the system and all motion will stop 

(NIOSH, 1989, p. 12).

Shock absorbers provide a means for taking energy out of the system via a 

damping mechanism that absorbs kinetic energy and stores it as potential energy. The 

damping is achieved through deformation of elastomer bumpers or by fluid being forced 

to flow through ports in the hydraulic suspension system. Following the impact the 

elastomers decompress and the fluid moves back through the ports thereby releasing the 

stored potential energy.

Acceleration. Measurement of acceleration is most commonly used to assess 

vibration. The three parameters which describe the amplitude of vibration as a functioh of 

the frequency are; displacement, velocity, and acceleration. Acceleration is used to 

specify vibration as both velocity and displacement can be calculated by integrating the 

acceleration signal over time. As well, accelerometers are commercially available and 

allow for ease of measurement. A third reason for using acceleration as a measure of 

vibration is that the amplitude of acceleration at higher frequencies is considerably higher 

than either displacement or velocity making it easier to take an accurate measure.
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Commercially available accelerometers are capable of measuring the amplitude of 

vibration associated with hand-transmitted vibration. Piezoelectric accelerometers can be 

designed to measure vibration within a frequency range of 1 to 50,000 Hz 

(NIOSH,1989). The accelerometer reacts to vibration with a small mass that moves 

across the face of a crystal element When vibration imp inges on a piezoelectric 

accelerometer, the movement of the mass across the crystal creates an electrical voltage 

proportional to compression of the mass against the crystal. The resulting voltage is 

proportional to the acceleration. The voltage signal is often amplified to overcome signal 

loss problems by measuring changes in the electrical charge of the crystal caused by 

vibration.

As vibration is a vector quantity it is often necessary to make measurements in 

each of the three orthogonal axes. These three measurements can be obtained by use of a 

triaxial accelerometer or by three regular accelerometers that are oriented along three 

orthogonal basicentric axes attached to a small metal cubic block (Hempstock and 

O'Conner, 1977; Reynolds & Angevine,1977; Wasserman &Taylor, 1991; Wasserman 

1987).

Of the three orthogonal basicentric axes, the dominant single axes vibration 

directed into the hand is used in assessing the vibration measured (ISO, 1986). In other 

words, the basicentric axis of greatest acceleration may be used to calculate acceleration 

levels (NIOSH, 1989)

The vibration levels that are measured at the handle do not necessarily represent a 

true measure of the energy that is directed into the hand and upper body. Consideration
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must be given to the effects of coupling between the hand and handle as the degree of 

vibration energy transmitted to the hand from the handle may be influenced by any 

combination of these factors: grip force exerted by the hand around the handle, axial or 

static force exerted by the hand on the handle, size of vibrating surface in contact with the 

hand, body position associated with respect to handle

The most important of these are the axial force and the grip force exerted by the hand on 

the handle (Griffin, Macfarlane, & Norman, 1982).

If one were to attempt to obtain a true measure of the energy that is directed into 

the hand, the coupling that occurs between the hand and the handle must be evaluated by 

measuring grip force as well as acceleration. This can be accomplished by breaking the 

vibration that is directed into the hand into its harmonic components. One can also 

determine the amount of energy that is stored in the hand as kinetic and potential energy 

and is consequently transferred back and forth between the hand and vibrating handle 

(Brammer & Taylor, 1982; Wasserman &Taylor, 1991).

Mathematical models of the hand and arm that have been developed generally 

imply that the vibration energy directed into the hand at frequencies below 80 Hz is 

transmitted to and can be perceived by the arm. From these models it was also determined 

that vibration energy directed into the hand at frequencies above 100 Hz is more local to 

the area of the hand in contact with the vibrating surface. Radwin, Armstrong, and 

Chaffin (1987) reported that vibration can affect the operators hold and use of the 

vibrating device which is then reflected in altered work performance and risk of injury.
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With increased vibration, grip force on the handle is increased and tactile sensitivity is 

decreased (NIOSH, 1989).

Force Measuring the ground reaction forces of the front wheel as it crosses over 

the force platform allows one to evaluate how effectively the suspension systems behaves 

to maintain wheel contact with the ground following impact with a bump. The force 

platform measures the amount of force imparted in the vertical axis. As the wheel crosses 

the plate and rolls over the bump it gains potential energy, some of this energy may be 

absorbed into the tire, the front foric, and the fimne of the bicycle. Some of this energy 

will be expended as kinetic energy, expressed by a period of flight or decreased pressure 

contact with the ground. One of the primary functions of a front suspension system is to 

maximize ground/wheel contact so that the rider may maintain steering control as well as 

being able to maintain forward propulsion. Once the wheel loses ground contact, any 

energy being imparted via pedalling is lost as there is no way for the energy to get to the 

ground. Once airborne, the wheel will lose angular momentum and stop spinning which 

translates into a loss of energy that could have been directed at propelling the bike 

forward. The magnitude of this energy loss is even greater if one considers that the rider 

must recover from this loss by exerting an even greater pedalling effort to compensate for 

this reduction in forward momentum.

Having a front suspension system should decrease or eliminate the degree to 

which ground/wheel contact may be compromised because the systems are designed to 

absorb the kinetic energy imparted on impact. Some of the absorbed energy is dissipated 

as heat while the remainder is stored via compression of the system. For example die
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compressed elastomer, or the movement of fluid through the ports in a hydraulic system. 

It is this stored potential energy that allows for maintained ground /wheel contact. As the 

system releases this stored energy (decompresses) it exerts a downward force, pushing the 

wheel back against the groimd and thus avoiding decreasing levels of contact with the 

surface.
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CHAPTER THREE 

Methodology

The main purpose of this research was to evaluate the effectiveness of two types 

of mountain bike front suspension designs for reducing the levels of vibration transmitted 

to the handlebar when impacting a bump. A secondary purpose to this investigation was 

to evaluate how effectively these same front suspension systems maintain ground/wheel 

contact when impacting the bump.

Vibration reduction and improved bike handling are considered to be the two 

benefits achieved through a jfront suspension system. There is however, little published 

scientific data available to support the degree of suspension effectiveness. Two 

suspension systems will be compared to a rigid control system utilising variables 

indicative of the level of vibration at the handlebar and the amount of ground reaction 

force created while riding over a 3 cm. bump.

Apparatus

The testing will be performed in a gymnasium. A ramp measuring 1 m in height 

with an angle of descent of 60 degrees was placed 2.7 m in front of an AMTT force 

platform as illustrated in Figure 3. The size of the test space limited the size of the ramp 

and testing velocity. The force platform was mounted into the gymnasium floor according 

to factory specifications. A 1/4 inch plate of aluminum measuring 33 x 38 cm. was 

mounted directly on top of the force platform and to this plate is mounted the bump that

31
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Figure 3. Photograph of apparatus set up for Accelerometry and Ground Reaction Force 
measures.

that was 3 cm. in diameter but was cut longitudinally and mounted at right angles to the 

subject/riders direction of travel across the plate. The leading edge of the plate was 

bevelled to 60 degrees so as not to create an impact response when the bike wheel rolls 

onto the plate.

Vibration measures was recorded using a triaxial accelerometer mounted at the 

stem of the handlebar. The accelerometer is mounted in the Fx plane according to the 

basicentric axis system illustrated in Figure 2. A shielded cable connected the accelerometer
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basicentric axis system illustrated in Figure 2. A shielded cable connected the 

accelerometer to an amplification system and a personal computer. Data was acquired and 

processed using the Global Lab data acquisition software (Data Translation, Inc., 1993).

Strain gauge measurements are recorded from eight strain gauges. Four strain 

gauges are mounted orthogonally about the handlebar at 2.5 cm to the left and the right of 

the centre of the handlebar. The strain gauge output is amplified and linked to a personal 

computer using a shielded cable and all data is computed through the data acquisition 

software. Data collection for both the accelerometer and the strain gauge was initiated 

using a light beam mechanism .25 m in front of the force platform at the base of the ramp.

Force plate data was collected on a second computer using the AMTI force 

platform software (Advanced Mechanical Technology, Inc., 1993). Only data in the Fz 

plane was used for analysis of the ground reaction forces created when riding over the 

platform. The Fz plane was the only plane of interest considering that this is the plane 

where vertical forces are measured and would best indicate any loss of ground contact.

Technical Development 

The development of the measurement instrumentation is the result of a series of 

experimental trials resulting in the adoption of three simultaneous measures; strain 

gauges for the rider’s weight distribution, accelerometry for handlebar vibration, and the 

force plate for groimd reaction forces. Initially the strain gauges were used as a tool to 

evaluate the vibration at the handlebar. The force/time output from the strain gauges was 

applied to the relationship F = Ma. However, determining the proportion of the rider’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

mass that was acting on the handlebar presented difficulties. The use of an accelerometer 

to measure vibration then became an option. With the accelerometer to measure vibration 

the strain gauges were then incorporated as a control to record the consistency of the 

riders weight transfer onto the handlebars. The control measure was necessary to provide 

a reliability measure of the rider’s mass force displacement over multiple trials.

Strain Gauge Control Measurement

Eight strain gauges were mounted orthogonally about the handlebar at 2.5 cm to 

Üie left and right of the centre of the handlebar. The strain gauges were used to measure 

the total bending forces applied to the handlebar using a sum m ed resultant force output. 

Attachment of the strain gauges was performed according to manufacturers instructions.

A Wheatstone bridge connected each set of four strain gauges linked by a shielded cable 

to a custom built power supply unit. The power supply provided 12 Volts DC to drive the 

Wheatstone bridge and the power supply unit was also equipped with two amplifiers with 

gain o f52.25 to manipulate the signal. The amplified signal was processed through an 

analog to digital converter. The digital signal is processed by the Global Lab program 

which converts the signal from volts (V) to Newtons (N) using an established calibration 

factor. This measure was recorded by hanging a 16 kg load off the handlebar. The 

calibration factor is expressed by the relationship; 16 kg x 9.8 N = .243 V/channel. 

Acceleration Vibration Measurement

The accelerometer utilized in this investigation was manufactured by Piezotronics 

Inc., it is a quartz shear mode ICP accelerometers designed for high precision shock and 

vibration measurements. Mounting of the accelerometer was achieved following the
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manufactures instructions. Initially three accelerometers were mounted at the centre of 

the handlebar to record vibration activity in each of the three orthogonal axes. The 

accelerometers were connected to the same power supply unit as the strain gauges via a 

shielded cable. The signal from the accelerometer was amplified as was the signal from 

the strain gauges. The amplified software signal was processed through an A/D  converter 

and then processed by the Global Lab data acquisition software. The computer output was 

graphically presented as a millivolts/time curve. Using manufacturer calibration data, the 

millivolts (mv) signal was converted to units of g-forces/time (10.41 mv/g) which was 

subsequently converted to an acceleration value of m/s  ̂by applying the calibration factor 

of 0.102 g/m/s  ̂(Appendix C).

Pilot study data revealed that the magnitude of the signals obtained in the Z and Y 

planes was negligible compared to the magnitude of the signal obtained in the X plane. 

Therefore data obtained in the X plane was utilized for this investigation.

Analysis of the accelerometer data required manipulation of the original signal in 

order to determine the frequency range of the vibration occurring in the handlebar itself. 

The raw signal was processed using a Fast Forward Fourier Transformation (FFT). The 

FFT is a smoothing technique used for reducing random noise in signals and produced a 

power spectrum of the signal. The power spectrum depicted the wave frequencies and 

corresponding amplitudes on the x and y axis respectively. The power spectrum signal 

was run through a magnitude analysis on the Global Lab signal analysis software which 

allowed for the determination of the cut off frequency for the type of vibration being 

analysed. From this magnitude analysis it was ^parent that all of the vibration activity
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being recorded by the accelerometer was occurring below 50 Hz. Determination of this 

cut off frequency provided an index for the level at which the raw signal could be filtered 

to remove any extraneous noise. A cut off frequency of 50 Hz was selected and signals 

were processed through a Butterworth low pass filter. This frequency was selected as the 

cut off to remove any low level noise that may have contaminated the original signal. 

Gmiind Reaction Force Measurement

The suspension system should absorb a portion of the impact energy and store it 

within the damping mechanism, resulting in lower impact forces than the rigid system. A 

similar difference between systems was also expected to be seen on examination of 

landing force values because of the absorption capability of the suspension systems. The 

degree of energy absorption responsible for the variation in impact and landing forces 

may be represented by the impulse value calculated as the area under the force/time 

curve. Impulse was calculated for the point of maximum impact force to the maximum 

landing force. The suspension system that is best able to absorb and store the initial 

impact energy by converting kinetic to potential energy and subsequently releasing this 

stored energy on landing will show a higher impulse value. It is the release of the stored 

potential energy in the system that is responsible for creating the greater impulse values. 

The kinetic energy imparted to the rigid system is dissipated through a flight phase when 

the front wheel actually loses contact with the ground. This same energy is stored, to 

some degree, in the suspension mechanisms and upon a controlled release of this energy, 

force is exerted downward onto the platform, eliminating the flight phase and maintaining
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pressure on the force platfijrm so that there will be a greater area under the curve 

indicating a greater impulse and a greater degree of ground/wheel contact

The rate at which stored energy from the impact is dissipated from the 

compressed suspension system can be measured using the slope from the peak impact 

force to the following minimum. The steeper the slope the more quickly the energy is 

being dissipated and the greater the rate of change of force being applied to the floor. The 

suspension system should produce a flatter slope as the rate of change of force being 

tq>plied to the floor will be decreased due to the decompression or releasing of energy in 

an attempt to maintain ground/wheel contact. The rigid system should show a much 

steeper slope as there will have been very little energy absorbed and the wheel will 

quickly be entering a flight phase to dissipate the kinetic energy of impact. The slope will 

also be measured for the landing impact, from the point of maxim um  impact to the 

following minimum.

Control Variables

Control measures were recorded to limit the variance between and within trials. 

The measures included the subject’s velocity while crossing the force platform and the 

subject’s riding technique. The control measures were taken to account for subject/rider 

skill level, riding technique, and velocity. The variance attributed to riding style and rider 

skill level was controlled by using a single subject. The single subject ensured that the 

bike dimensions and specifications were appropriate to the riders somatotype as the bike 

was set up to fit one particular rider. Rider weight also affected velocity as gravity was 

the major force acting on the bike and rider down the ramp. Subject velocity control was
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addressed by rolling down the ramp without applying any external force through 

pedalling or pushing off. The assumption was that there would be a negligible effect on 

velocity due to rolling resistance. The potential energy of the bike and rider at the top of 

the ramp was considered to be equivalent to the kinetic energy of the bike and rider at the 

bottom of the ramp over all trials.

Velocity of the bike was measured using reflective light beams to calculate time 

over a standard displacement Tire pressure was maintained at 60 pounds per square inch 

and checked after every fifteen trials. Subject weight was consistently measured at 81 kg.

Riding technique was controlled for consistency through pre test practice prior to 

pilot data collection. The consistency of the subjects weight force displacement was 

measured using the strain gauges mounted on the handlebar.

Test Measures 

Accelerometrv

The level of vibration at the handlebar resulting firom the impact with the bump 

was measured by an accelerometer mounted at the handlebar. The accelerometer was 

calibrated for compliance with national standards using the mounting and recommended 

operating instructions.

The accelerometer data was acquired using Global Lab software which presents 

the signal in millivolts. The signal was filtered using a Butterworth low pass filter with a 

cut off firequency of 50 Hz and a Nyquist fraction of 0.25 to allow for the removal of any 

low level noise that may have contaminated the original signal. The raw signal was
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converted using the factory calibration quotient (10.41 mv/lg) to produce an output 

expressed in m/s .̂ The standard value at sea level is 9.80665 m/s .̂ The output was then 

converted using the relationship 0.102 g/m/s  ̂to produce an output expressed in units of 

acceleration, m/s .̂ These conversions may be performed directly in the global lab 

environment.

The data collection for the accelerometer was initiated when the rider broke the 

light beam located 2.5 m in front of the fr)tce platform. Data collection time was set for 

one second and sampling frequency at 200 Hz.

Ground Reaction Forces 

Ground reaction forces for the front wheel rolling over the bump were collected 

on the fijrce platfonn. The collection of force data was initiated as the rider contacted the 

edge of the force platform and collection time was set for one second. The AMTI 

software package for gait analysis (Advanced Mechanical Technology, Inc., 1993), was 

used for force data collection. The vertical axis was analysed to determine the ground 

reaction forces created as the bike rides over the force plate and bump. Raw data was 

acquired through the AMTI software and was expressed in Newtons (N). The platform 

had been factory calibrated prior to installation and zeros taken before each set of data 

collection trials. Data from the AMTI gait program was exported to the Hz software 

(Lakehead University, Biomechanics Lab, 1993) for analysis and computation for a mean 

curve over fourteen trials.
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Test Procedures 

Subject

The subject who performed all trials for this investigation was an accomplished 

cyclist with ten years experience riding mountain bikes. The subject weight remained 

consistent through the testing at 81 kg. The bike used fi>r testing was fitted to the subject 

to ensure a proper riding position. The subject was encouraged to perform numerous pre­

trial sessions on the bike with each of the suspension systems to enable a learning 

response to occur prior to actual data collection.

Two types of firont suspensions systems were selected for this investigation with 

the rigid foric serving as the control system. An elastomer system and a hydraulic system 

were be tested at their stififest and softest settings and compared to the rigid system.

The subject rode the bike down the ramp and over the force plate and bump. The 

rider had been instructed to perform all trials as consistently as possible. The rider was 

provided with a tape marking to indicate exactly where on the ramp the firont tire must be 

prior to rolling down the ramp.

Prior to data collection, the subject performed numerous trials with each 

suspension systems and setting to become familiar with the different set ups and the 

response each has on impact with the bump. Once the rider was comfortable testing 

began. The subject/rider began each trial with the left foot on the pedal and right foot on 

the floor and both front and back brakes applied. Once given a go ahead signal from the 

tester, the subject/rider moimted the bike and released the brakes. Data collection for the 

accelerometer and strain gauges began once the light beam was broken and for the force
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platfonn on initial contact with the plate. As the rider descended down the ramp, the feet 

remained in the three o’clock and nine o’clock position with the right foot always in 

front. During the descent, the shielded cable from the accelerometer and strain gauges 

was guided by an assistant to ensure that it did not become damaged during testing. The 

cable attached to the bike measured 12 m in length, requiring that the subject/rider to 

begin braking as soon as the platform was crossed. A braking marker placed just after the 

force platfr)rm indicated where the subject/rider was to begin braking. Data collection was 

carried out over three consecutive days. The first system tested was the rigid front end, 

and fifteen trials were collected. The following day the elastomer suspension system was 

installed by a certified bicycle mechanic and set at its softest setting following completion 

of fifteen trials the system was reset to the stififest setting by exchanging the elastomer 

plugs and fifteen more trials performed. After all trials were completed with the elastomer 

folks, the bicycle mechanic installed the hydraulic system and fifteen trials were 

performed at the softest setting followed by fifteen trials at the stififest setting. All front 

end system changes were performed according to manufacturer installation instructions 

by a certified bicycle mechanic to ensure that the bike and shocks were set up correctly.

Data was saved to a diskette at the end of each trial for subsequent analysis. A 

graphical display of each trial was checked prior to saving the data to ensure that all the 

data collection systems were working correctly.
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Data Analysis

Control Measures

Rider Weight Displacement. The strain gauge data output for each set of four 

strain gauges were recorded on two separate channels and siunmed using the Global Lab 

software to produce a millivolts/time output This electronic output was converted to a 

force /time curve using a calibration factor of .243 mv/N for each channel (Appendix B). 

The force/time curve was then integrated to produce an impulse/time cmve to allow for 

comparison of areas under the force/time curve at specific instances during trials. Each 

system was tested for ten trials and analysed at the 100 ms. interval indicative of the 

instance just prior to impact. The 100ms. time interval represents the impulse just prior to 

impacting the bump on the platform and provides the pre-impact rider weight 

displacement on the handlebar. Consistency at the 100 ms. point is an indication that the 

rider was approaching the bump with the same weight displacement and therefore the 

same technique for each trial (see Figure 4).
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Figure 4 Sample Impulse versus Time curve from strain gauge data during rigid bike trials 
illustrating the 100ms. instance used for data analysis.

The weight displacement control system data collected during the pilot study shov\  ̂

consistency and indicates reliable rider technique as the bike approaches the bump. 

Accelerometrv.

Analysis of accelerometer data required some manipulation of the original signal 

collected from the pilot testing in order to determine the frequency range of the vibration 

occurring in the handlebar itself. The pilot accelerometer data was initially run through a 

Fast Forward Fourier Transformation (FFT) analysis, a smoothing technique for reducing
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random noise in signals. The FFT yielded a power spectrum of the signal which had been 

originally recorded. From this analysis, it was apparent that all of the activity being 

recorded by the accelerometer was occurring below 50 Hz. Determination of this cutoff 

frequency provided an index for filtering the raw signal. Subsequently, all raw data was 

processed through a Butterworth low pass filter, with a cutoff frequency of 50 Hz and a 

Nyquist fraction of 0.25, to remove any low level noise that may have contaminated the 

original signal.

The filtered signals for each set of trials were summed and averaged using the 

Global Lab software to produce a mean output of the trials performed for each particular 

system being tested. The mean output was in units of volts but was converted to 

millivolts. The millivolts signal was converted to an acceleration unit of m/s  ̂to produce 

an acceleration/time curve. From the acceleration curves for each of the systems tested, 

comparisons were made on the following variables: peak impact and peak landing 

acceleration, the frequencies at which each of these occur, the range of the peak impact 

and peak landing acceleration and the slope of each of these peaks.

The Peak Acceleration values for impact and landing were obtained directly from 

the Global lab output using the statistics option. The acceleration curves were used to 

compare the amplitude of vibration occurring in each of the systems tested (see Figure 5). 

The frequency at which these amplitudes or peak accelerations occur must also be 

considered when comparing systems. The greater amplitude and the higher the frequency 

at impact indicates greater vibration at the handlebar.
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Figure 5. Sample curve of mean acceleration data indicating event variables.

The slope on the acceleration/time curve at peak impact and landing amplitudes is p. 

measure of the rate of change of the acceleration. The slope indicates how quickly the 

acceleration is changing from one instant to the next. The suspension system is designed to 

absorb impact energy so that one would expect that the rate of change in acceleration 

would be less depending on the effectiveness of the suspension system. The rigid system 

should respond instantly to the impact and the rate of change of acceleration would 

therefore be higher than when energy is being absorbed through the suspension.
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Comparing the slopes of the peak landing and impact acceleration indicates how much 

influence the suspension systems, at various settings, have on the rate of change in 

acceleration. The more the suspension is able to absorb the impact energy the less the 

slope.

The range of peak acceleration values for impact and landing provide information 

on the amplitude of the vibration associated with striking the bump and the subsequent 

landing. The range indicates to what extent the impact and landing vibration amplitudes 

vary from the normal vibration associated with riding the bike over the flat ground just 

prior to impact. One would expect that the suspension systems would act to reduce the 

level of vibration not only at impact but also at landing. The ranges of the peak 

acceleration values demonstrate the variation between systems. The range is measured as 

the difference between the maximum positive peak acceleration value and the subsequent 

minimum value on the mean acceleration/time curve.

Ground Reaction Forces

Measuring the ground reaction forces created as the bike travels across the force 

plate and bump provides insight into what is occurring at the wheel with respect to 

ground reaction forces. The force platform provides a method of measuring the amount of 

force generated between the wheel and the ground and is therefore a tool for evaluating 

how each system behaves in order to maintain ground contact following impact. Ground 

reaction data was collected using the AMTI “gaif ’ software program. Vertical ground 

reaction forces were analysed to provide graphical force/time curves of the front wheel 

crossing the platform and bump. The area under the force/time curve represents the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

impulse of the system at any given instant Integration of the force/time curve produces 

impulse measures for comparison of mean trial curves (see Figure 6).
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Figure 6. Sample curve of ground reaction forces produced using AMTI force platform 
and software package.

Each suspension system was tested to provide the mean force/time curve using a 

Meangait program. This program allowed for a maximum of fourteen trials to be averaged, 

producing a single mean force/time curve. The Meangait output also included a listing of 

the cumulative impulse at each of the maximums and minimums measured in the curve. 

This measure allowed for comparisons of impulse at particular points during the front
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the front wheel’s course across the bump on the platform. Force platform ground reaction 

force variables that will be used for comparing the various systems include:

1. The peak impact and peak landing force.

2. The slope of the peak impact force to the following minimum value.

3. The slope from the peak landing force from the previous minimum value.

4. Loss of ground contact

5. The impulse measured from the peak impact to the final minimum 

following landing.

Research Design 

Mean Curves - Descriptive Analvsis

Mean curves were produced for the accelerometry and ground reaction 

measurements taken on each of the five systems tested. From these mean curves the 

values for each of the independent variables were obtained allowing for comparison 

between the five conditions tested.

Statistical Analvsis

A one by five analysis of variance (ANOVA) was performed for each of the 

variables except for frequency of vibration and loss of ground contact. The raw data was 

obtained by visually marking the appropriate value from each of the ground reaction and 

accelerometry curves. A one by five ANOVA was generated for each of the relevant test 

variables and a Tukey’s HSD post hoc test was performed to determine where any 

significant differences did exist at the .05 alpha level.
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CHAPTER FOUR 

Results

The results for the control data and each of the variables of interest are presented 

in the following sections. The control variables, velocity and impulse are summarized in 

the first section and the test variable data are summarized in sections concerned with 

accelerometry measures taken at impact and landing and with ground reaction force 

measures at impact and landing.

Control Data

Velocity

To ensure the velocity of the bike and rider had been effectively controlled, 

velocity was measured under three testing conditions; 30 pre-testing trials were 

performed for the rigid bike, and for each of the suspension systems at the soft setting. 

The soft setting was chosen because it presents the greatest mechanical difference from 

the rigid system and would have more of an effect on the bike and the rider’s 

performance and reaction to the impact. If the different front ends on the bike were to 

afifect velocity it would be most apparent by comparing the velocity of the bike and rider 

under these three conditions. The results of the velocity data, summarized in Table 1, 

demonstrate that the velocity was controlled. The raw data are presented in Appendix D.

49
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Table 1

Summary o f  velocity data from timing trials

Rigid Elastomer-soft Hydraulic-soft

Mean velocity m/s 9.13 9.07 9.01

S.D. 0.79 0.68 0.62

Rider Technique

Strain gauges measuring weight force transfer were utilized to evaluate the 

consistency of the rider’s technique. For each of the five test conditions 10 trials were 

recorded and the impulse was calculated up to the 100 ms point representing impact. The 

impulse values allowed for a comparison of the total amount of force the rider had placed 

on the handle bar approaching the bump. The results of the mean strain gauge measures 

taken for each of the test conditions are summarized in Table 2. The raw data is presented 

in Appendix B.
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Table 2

Sum m ary of mean Impulse calculated at 100ms. for each test condition (Nsl.

Rigid Elastomer
Stiff

Elastomer
Soft

Hydraniic
Stiff

Hydraulic
Soft

Mean
Impulse

25.43 23.68 12.81 17.38 10.81

Standard
Deviation

1.95 2.52 2.96 2.85 2.36

Range 6.75 8.70 9.64 9.30 9.46

The greatest impulse at 100 ms was measured for the mean curve of the rigid 

trials which also demonstrated the least deviation about the mean and the lowest range of 

values over the ten trials. The elastomer system at the stiff setting produced the second 

greatest impulse value at 100 ms with the second lowest standard deviation and range of 

values over the ten trials. The mean impulse at 100 ms was third highest for the stiff 

hydraulic system followed by the soft elastomer system and finally the soft hydraulic 

system. The standard deviations for each mean impulse follow this same trend except for 

the hydraulic system at the soft setting which was observed to have the third lowest 

standard deviation about the mean. These values are all within a reasonable range for 

each system indicating that weight transfer was consistent prior to impact in all trials.
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The mean curves produced from the strain gauge data for each of the five test 

conditions are presented in Figure 7.
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Figure 7. Mean impulse curves from strain gauge data illustrating the 100ms. instant used
for comparisons between rigid, elastomer and hydraulic at the stiff and soft setting.
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Mean Curve Results

The test variables for accelerometry and ground reaction forces are presented in 

the following sections; peak acceleration, frequency, range and slope of peak acceleration 

are presented as impact and landing acceleration.

The ground reaction variables for peak impact and peak landing forces and the 

respective slopes and impulses generated are presented with the mean curves from which 

these values were obtained.

Accelerometrv

Acceleration measures taken at the handle bar upon impact are reported in ms'̂  

and are representative of the acceleration measured in the x-axis of the basicentric axis of 

the hand (Figure 2). M addition to the mean acceleration values determined for peak 

impact and landing, frequencies, slopes, and ranges at each of these peaks are reported for 

comparison of the five test conditions. The values obtained from the mean curves 

presented in Figure 8 allowed for comparison between systems for; mean peak impact 

and peak landing acceleration, the mean frequencies, slopes and ranges of these peaks.
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m ecn acceleration  curves for all 5 conditions
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Figure 8. Mean Acceleration vs. Time curves for each test condition

Impact. The mean curve values recorded for the peak impact acceleration are 

summarized in Table 3. The raw data is presented in Appendix E. The mean acceleration 

curves are presented in Figure 8.
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Table 3

Summary of impact accelerometrv data firom mean curves of each test condition.

Rigid Elastomer
Stiff

Elastomer
Soft

Hydraulic
Stiff

Hydraulic
Soft

Peak AccL 
(ms-^

51.42 33.51 31.74 33.81 29.43

Frequency
(Hz)

22.00 11.10 12.50 12.50 12.50

Range
(ms*)

137.31 96.53 95.59 115.94 92.20

Slope
fms'Vms)

4577.00 1930.60 1917.85 2318.00 1844.04

Results of the mean curve accelerometry measures taken at the peak impact of the 

wheel on the bump indicate that the greatest impact acceleration occurred with the rigid 

system. The mean acceleration measured for the rigid front end was 51.42 ms'̂  which is 

17.6 ms'^ greater than the next highest impact acceleration observed for the hydraulic 

suspension system at the stiff setting. The elastomer system at the stiff setting had a peak 

impact acceleration within 0.3 ms'^of the hydraulic stiff setting. The elastomer soft 

setting had a mean impact acceleration slightly lower than the elastomer stiff setting and 

the hydraulic system at the soft setting produced the lowest peak impact acceleration.

The mean curve peak impact acceleration values for all of the suspension trials 

were within a range of 4.38 ms'̂ . When evaluating vibration at the handle bar the 

frequency at which the mean curve peak acceleration occurs must also be taken into 

accoimt. A more thorough examination of the mean curve peak impact acceleration data
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indicates that the rigid system not only produced an impact acceleration approximately 

35% greater than the suspended trials (51 ms'̂  to 33 ms'̂ ) but that this greater 

acceleration occurred at nearly twice the frequency of the suspension trials.

The range of the mean curve acceleration from peak impact to the following 

minimum value for each test condition corresponds with the trend seen when comparing 

peak acceleration values. The greatest maximum to minimum range was observed for the 

rigid trial with the stiff hydraulic system producing the second greatest range. The stiff 

elastomer setting had a slightly greater maximum-minimum range than the soft elastomer 

setting and the soft hydraulic setting exhibited the lowest range from peak impact 

acceleration to subsequent minimum.

In comparing mean curve values of the slope from the peak impact acceleration to 

the following minimum value, a similar trend to that seen when comparing the 

frequencies was observed. The slope of the acceleration measured for the rigid system 

was found to be almost twice that of the slope measured for the suspension conditions. 

This difference in slope values is not surprising if  one takes into consideration the 

frequency values observed. In order for the rigid system to have a greater amplitude of 

oscillation at twice the frequency of the suspension systems the slope of the amplitude 

must be much greater.

Landing. The mean values for the landing acceleration variables are summarized 

in Table 4 and raw data are presented in Appendix E.
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Table 4

Summary of mean landing accelerometrv variables

Rigid Elastomer
Stiff

Elastomer
Soft

Hydraulic
Stiff

Hydraulic
Soft

Peak AccL 
(ms*)

46,06 29.90 20,47 22.91 20.44

Frequency
(Hz)

20,00 12.50 12,50 12.50 11.10

Range
(ms*)

51,42 45.95 30,23 34.49 25.45

Slope
fms'Vms)

2571,00 1531.99 1007,70 699.62 635.71

The mean curves generated by the Global Lab (see Figure 8) also provided the 

landing acceleration data for the five test conditions. Peak landing acceleration, the 

firequency, range, and slope that occurred at this peak were recorded to allow for 

comparison of each system’s response to landing following impact. The results indicate 

that the greatest peak landing acceleration was observed for the rigid system mean curve; 

this peak acceleration was 35% greater than the next closest peak landing acceleration 

(46.06 ms'̂  to 29ms'̂ ) which occurred with the elastomer system at the stiff setting. The 

hydraulic system at the stiff setting produced the third greatest landing acceleration 

followed by the elastomer soft setting and finally the hydraulic soft setting. The two soft 

setting trials produced peak landing acceleration values that were within .03 ms'̂  of each 

other.
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The rigid system oscillated at a frequency of 20Hz which was almost double that 

of the other four test conditions. The elastomer system exhibited an oscillation frequency 

of 12.5Hz for both the soft and stiff setting while the hydraulic system had a frequency of 

1 l.lEEz for the soft setting and 12.5Hz for the stiff setting.

The rigid system demonstrated a slope value from peak landing acceleration to a 

subsequent minimum at almost twice the value of the slope measured for the elastomer 

system at the stiff setting. The elastomer system at the soft setting exhibited the third 

greatest slope value followed by the hydraulic system at the stiff setting and finally the 

hydraulic system at the soft setting.

The greatest mean range (amphtude of oscillation) occurred with the rigid system 

followed by the elastomer stiffs the hydraulic stiff̂  the elastomer soft, and then the 

hydraulic soft system settings.

Ground Reaction Forces

The force platform measurements allowed for comparison of mean values for 

peak impact and landing forces as well as a comparison of the slopes occurring at these 

peaks. The Meangait software program produced mean force/time curves for each of the 

five test conditions, presented in Figure 9. The mean curve values for peak impact and 

landing forces are summarized in Table 5. The raw data collected from the force platform 

is presented in Appendix F.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

900

900

TOO

900

500

300

200

tco

3 «  7 s  9  10 II 12 13 M IS la  17 H  19 30 21 3  23 24 3  2S 2t 1b S  »  31 32 33 3« 35 36 37 3 # V « ' - n  « « ■ M 4 S 4  47 4 S -S

-100

[msec]

Figure 9. Mean Force vs. Time curves from AMTI force platform software package.
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Table 5

Summary of Ground Reaction Force variables.

Rigid Elastomer
Stiff

Elastomer
Soft

Hydraulic
Stiff

Hydraulic
Soft

Peak
Impact (N)

874.55 871.07 811.26 920.65 764.86

Slope Imp. 
(N/s)

15475.83 15837.64 14750.18 15344.17 13906.55

Peak Land 
(N)

283.81 526.63 626.04 518.19 617.40

Slope Land
(N/s)

1957.31 3631.93 4637.33 3838.44 4410.01

Impulse
(Ns)

35.94 37.20 46.40 42.44 48.30

Im part. The results in Table 5 indicate that the greatest mean curve peak impact 

force was measured for the hydraulic system at the stiff setting. The second greatest 

impact force was observed for the rigid system followed by the elastomer system at the 

stiff setting and then the elastomer at the soft setting. The lowest peak impact force was 

measured for the hydraulic system at the soft setting.

The slopes measured from the peak impact force to the following minimum value 

reflect the rate of unweighting of the front wheel in response to the impact. The greatest 

slope was measured on the mean curve for the elastomer system at the stiff setting. The 

next highest slope value was measured for the rigid trial and then the hydraulic system at 

the stiff setting. These three slope values were within a range of 493 N/ms while the next 

slope value for the elastomer system at the soft setting was approximately 594 N/ms
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lower then the next greatest slope value. The lowest slope value was observed for the 

hydraulic system at the soft setting, 790 N/ms lower than the slope for elastomer system 

at the soft setting.

Landing. The peak landing force values indicated that the greatest ground 

reaction force occurred for the elastomer system at the soft setting. The next greatest 

mean landing force was measured for the hydraulic system at the soft setting followed by 

the elastomer and then the hydraulic system at the stiff .settings. The lowest landing force 

was measured for the rigid system which was less than half the magnitude of the greatest 

landing force observed.

The rigid system also demonstrated the lowest slope value measured from the 

minimum force following impact to the maximum ground reaction force of landing. The 

hydraulic and elastomer systems at the soft settings produced the greatest slope values 

followed by the hydraulic and then the elastomer at the stiff setting. The slope values 

observed from these mean curves reflect the differences observed when comparing the 

landing forces themselves. The slope measured for the rigid system was less then half that 

of the slopes measured for the hydraulic and elastomer systems at the soft setting.

Loss of ground contact following the impact with the bump occurred for the rigid 

system and for the elastomer system at the stiff setting. There was no loss of ground 

contact observed for the mean curves of the other three conditions (see Figure 9).

Impulse measured from the peak impact force to the peak landing force was 

determined by calculating the area under the force/time curve produced by the AMTI 

software. The impulse measured for the hydraulic system at the soft setting was greater
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than that measured for the elastomer system at the soft setting. The third greatest impulse 

was observed for the hydraulic system at the stiff setting followed by the elastomer at the 

stiff setting. The lowest impulse was measured for the rigid system.

Statistical Analvsis

The results of the one by five ANOVA performed on each o f the independent 

variables except for frequency of oscillation and loss of ground contact are presented in 

Table 6. The Tukey’s Honestly Significant Difference ÇHSD) post hoc analysis with the 

alpha level set at p<.05, was run subsequent to the ANOVA to determine exactly where 

any significant differences between systems tested did occur.

Table 6
Summarv one bv five ANOVA results for Dependent variables

Independent Variable F Ratio Probability

Peak Impact Acceleration (PIA) F(4,56)=134.726 p<.05

PIA Slope F(4,56)=28.I45 p<.05

PIA Range F(4,56)=16.483 p<.05

Peak Landing Acceleration (PLA) F(4,56)=181.311 p<.05

PLA Slope F(4,56)=15.367 p<.05

PLA Range F(4,56)=8.432 p<.05

Peak Impact Force (PIF) F(4,63)=l 8.837 p<.05

PIF Slope F(4,63)=25.408 p<.05

Peak Landing Force (PLF) F(4,63)=25.257 p<.05

PLF Slope F(4,63)=30.506 p<.05

Impulse F(4,63)=7.322 p<.05
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Accelerometrv

Statistical analysis of the raw data collected indicated that there were significant 

difierences for each of the accelerometry variables tested. Post hoc analysis for peak 

impact acceleration indicates significant differences between the rigid system and all of 

the four suspension conditions as well as between the stiff hydraulic system and the soft 

elastomer system (p<.05). Peak impact acceleration slope and range for each suspension 

condition tested were significantly different to the slope and range of the rigid system 

(p<.05).

Post-hoc analysis of the peak landing acceleration data indicated significant 

differences between the rigid system and each of the suspension conditions tested 

(p<.05). As with the impact results, the slopes for each of the suspension conditions on 

landing, were also found to be significantly different firom the slope for the rigid system, 

(p<.05). Range values for peak landing acceleration indicated the significant differences 

occurred between the rigid system and the soft elastomer, soft and stiff hydraulic system. 

Significant differences were also found between the stiff elastomer and the soft hydraulic 

system (p<.05). In summarizing these acceleration results a generalized statement may 

be made that in light of the significant differences between the suspended and the rigid 

systems tested, the suspension systems did act to effectively reduce handlebar vibration 

for this particular subject under these specific testing conditions.

Ground Reaction Forces

The Tukey’s HSD post hoc analyses were also run for each of the ground reaction 

force variables to determine where significant differences occurred. Analysis of the peak
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impact ground reaction forces indicated significant differences between the stiff hydraulic 

system and each of the other systems as well as between the soft hydraulic system and all 

other systems (p<.05). Analysis of the slope values corresponding to the peak impact 

forces, indicated that significant differences occurred between the two soft suspension 

conditions and the stiff suspension and rigid system.

The results of the post hoc analysis for landing indicated significant differences in 

peak landing force between the rigid system and the four suspension conditions tested as 

well as between the soft suspension conditions with the two stiff suspension conditions 

(p.<05). Analysis of the slope values for the peak landing forces indicated significant 

differences occurred between the rigid and the stiffî soft hydraulic as well as the soft 

elastomer. Significant differences were also found between the stiff elastomer system and 

the other three suspension conditions, and finally, the slope value for the soft hydraulic 

system was found to be significantly different from all other conditions (p.<05). The 

significant differences between the rigid and the suspended conditions on these ground 

reaction variables indicate that the suspension systems do effectively act to reduce the 

force of impact and that the softer suspension systems do improve ground wheel contact 

to a rigid system for this particular subject under these test conditions.
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CHAPTER FIVE 

Discussion

Mountain bike front suspension has become standard equipment for most high 

end mountain bikes available on the market today. Initial development of suspension 

systems occurred in response to the demands placed on the equipment by elite mountain 

bike racers. The technology has developed to the level that front suspension products are 

now available for all mountain bikers who wish to experience the benefits of a front 

suspension fork. Manufacturer’s of front suspension systems have claimed that 

suspension systems improve the quality of any ride by decreasing the amount of impact 

shock energy transmitted to the rider as well as enhancing the bikes handling over rough 

terrain. The physiological benefits that have been linked to the improved quality of ride 

with suspension include a decrease in perceived exertion and fatigue (Burke, 1994), a 

decrease in energy expenditure, and a decrease in muscular damage due to the trauma of 

repeated impacts (Seiffert et al.,1994). These benefits are due to the mechanical 

properties of the suspension unit that absorb a portion of the shock energy of impact 

acting not only to decrease the amount of shock energy transmitted to the rider but also 

acting to improve ground/wheel contact on impact.

One purpose of this investigation was to evaluate the effectiveness of two types of 

front suspension systems at reducing handlebar vibration when compared to a rigid 

system on impacting the same bump under controlled conditions. The second purpose 

was to compare the effectiveness of the two front suspensions systems with the rigid
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system at maintaining ground/wheel contact following impact with the same bump under 

controlled conditions.

Control Variables

Velocity

Controlling for the subject/bike approach velocity is imperative as the suspension 

systems response to the impact are directly affected by the velocity of travel. Velocity 

was effectively controlled for by removing the application of any external forces on the 

bike and rider other than gravity. The results of the pre-test timing trials performed on 

three different test conditions demonstrate the affectiveness of using the ramp to control 

for velocity. Trials were compared between the rigid system and the soft settings on both 

the elastomer and hydraulic system. These two suspension conditions were chosen for 

comparison as they so mechanically different from the rigid system. Any variation in 

velocity that may be due to the different front ends on the bike would be most apparent 

when comparing a very soft suspension system with the rigid system. As the mean 

velocities for the two systems evaluated are within .12 ms ' with similar standard 

deviations and ranges of values one can assume that velocity during actual testing was 

controlled (Table 1).

Strain Gauges

Results from the handlebar strain gauge measures demonstrate the degree of 

consistency of riding technique as the subject approached the bump for each of the five 

test conditions. From each set of test trials, 10 trials of strain gauge data were recorded.
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the mean value of the impulse calculated at 100 ms. from the start of data collection was 

used for comparisons among test conditions (see Table 2 and Figure 7).

Examination of the raw data (Appendix B) for the ten trials under each of the five 

conditions demonstrates the consistency of riding technique for each condition. Variation 

in impulse values seen in Table 2, may be in part due to the nature of the suspension 

system itself. The suspension systems have pre-load response to the force the rider places 

on the handlebar by leaning on it to support the upper body. Some of the force being 

placed on the handlebar by the rider may be absorbed by the suspension as the system 

becomes compressed. This is most evident at the soft suspension settings. The soft setting 

for the elastomer and hydraulic system demonstrate the lowest values for impulse at 100 

ms. The more rigid the system becomes the less force is absorbed into the system. The 

stiff setting on the hydraulic system demonstrates that there is some force being absorbed 

by the system but this is less evident for the stiff elastomer setting. This difference in pre­

compression on the suspension unit is due to the mechanical difference between the 

hydraulic and elastomer system. The elastomer system becomes stiffer by changing the 

elastomer bumpers within the fork to a much denser material with a higher threshold for 

compression. The hydraulic system has a pneumatic chamber that resists movement with 

a threshold of air pressure that must be overcome to allow the hydraulics to become 

activated and absorb energy being placed on the system. The air pressure in this particular 

system was set to suit the subject’s weight and allowed some initial compression of the 

suspension unit under the weight of the rider’s upper body alone. The stiff elastomer
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system allowed less compression under the weight of the rider than the hydraulic system 

for both the soft and the stiff settings.

The increase in variability of the mean impulse values as the system is set softer is 

probably due to the inherent variability in response of each system. The softer the system 

is set, the less likely it is to respond to loading in a consistent manner. The soft setting 

alters how the rider respond to the system itself. If the system has a greater degree of 

response variability load this wül be reflected in how consistently the rider can perform 

repeated trials. The greater the variability in the system at the softer settings results in a 

greater variance about the mean and a slightly greater range of values over the ten trials. 

From each set of trials, ten trials were used to evaluate impulse values. Only ten were 

used because of technical difficulties during data collection. Each set of trials 

demonstrates a consistent curve shape although the impulse values at any instance 

following impact show an increased variability. Curves for each set of trials are presented 

in Appendix B. Although there is some variance in the impulse values for each of the 

mean curves the within trial variability did remain consistent across trials as indicated by 

the range of values about each mean. The similar values seen for the range of values 

about each mean demonstrates that the subject rode with a similar degree of consistency 

for each test condition indicating the riding technique was reliably controlled for.

Test Variables

Accelerometrv

One purpose of this investigation was to evaluate the effects of mountain bike 

suspension on handlebar vibration following impact. The accelerometer provided the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

measurements required to compare handlebar vibration between the suspension systems 

tested. The mean curve results summarized in Table 3 and Table 4 and the significant 

differences foxmd between the rigid and suspension trials on post hoc tests support the 

theory that suspension systems reduce the amount of vibration at the hand-bike interface.

In comparing the five systems it is important to consider the peak acceleration 

values together with the ranges and firequencies of these peak values. The rigid system 

not only demonstrated the greatest peak impact acceleration as well as the greatest range 

from peak to minimum but, more importantly, peak values occurred at twice the 

frequency of the peak impact acceleration measured for the four suspension systems 

tested (see Table 3 and Figure 8).

The fact that the frequency of vibration measured for the rigid system was almost 

twice the frequency measured for any of the suspension systems provides evidence that 

the suspension systems tested, did act to reduce the amount of impact energy transmitted 

through the bike to the handlebar. The slope values measured from the peak impact 

acceleration also support the findings from the comparison of the frequency measures and 

vice versa. The slope, indicating rate of change of the acceleration displays how quickly 

the acceleration is changing from one instant to the next. The suspension units are 

designed to absorb impact energy and would affect the rate of change o f acceleration by 

decreasing it compared to the rate of change of acceleration seen with a rigid system. The 

slope for the rigid trial mean curve was found to be nearly twice the value of the slope for 

the next greatest peak impact acceleration measured on the mean curves generated. One­

way ANOVA and post-hoc analysis of the raw data collected also indicated that the rigid
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system produced a significantly different slope at the .05 alpha level compared to the 

other four test conditions.

A trend for the mean curves indicated that the stiff settings exhibit responses more 

like the rigid system (see Figure 8). Stiffer suspension settings behave more like a rigid 

system as demonstrated by the results for the ranges from maximum acceleration to the 

following minimum. The greatest mean curve range was observed with the rigid system 

followed by the hydraulic stif^ elastomer stif^ elastomer soft then hydraulic soft system. 

Similar trends are observed through the statistical analysis.

The greater range and impact acceleration observed for the rigid system on both 

the mean curve and raw data analysis are due to the fact that the energy from the impact 

is not able to be dissipated to the extent that it is with the suspension systems. The 

suspension units dissipate the impact energy by absorbing a portion through the 

deformation of the elastomer bumper or by forcing the oil to flow through the ports in the 

hydraulic system. Any energy that is not absorbed by the suspension system is transferred 

to kinetic energy creating the vibration at the handle bar as well as an unweighting or 

flight phase of the front wheel. The rigid system does absorb some of the impact energy 

by passive damping through the materials of the bike. However, there is no active 

damping to absorb impact energy, resulting in more of this energy being transferred to 

kinetic energy, creating greater acceleration amplitudes and frequencies. This is not only 

tme for the impact acceleration values observed but also for the landing acceleration 

values recorded. The order of the mean curve landing acceleration results indicate that the 

suspension systems actively damp the landing energy as well as that of impact. The mean
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curve values for landing acceleration demonstrate that the suspension systems can 

respond to a second impact, as the landing is a subsequent impact. If the suspension 

system is to be an effective modification to the mountain bike, it must prove to be 

effective at responding to a series of sequential impacts without becoming locked up and 

responding as a rigid system. The two suspension systems tested in this investigation had 

the capability to respond effectively to the landing or second impact. However, this may 

not be the case for all suspension systems. It is possible that when some systems become 

compressed in response to the initial impact they may not be able to decompress quickly 

enough to be able to respond to subsequent impacts. The velocity of the bike and the size 

and shape of the bump would also affect how the system responds to impact.

Benefits of Suspension. One of the benefits of reducing the amount of vibration 

energy at the handlebar is that less impact energy will be transmitted to the rider’s hands. 

This may decrease the risk of sustaining hand-arm vibration induced injury and may 

decrease the fatigue of the musculature of the upper extremity.

Vibration induced injmies to the hand and upper extremity have been well 

documented in industry, specifically mining and forestry. The International Standards 

Organization has published a set of guidelines pertaining to vibration exposure and the 

potential hazardous effects to the hand-arm (ISO, 1986). Vibration exposure is known to 

have detrimental effects not only to the musculature of the hand and arm but also to the 

vasculature, the bones and joints as well as specific neurological effects (Griffui, 1990). 

The assessment of risk of injury requires more detailed measures not included in this 

investigation. Consideration of factors altering the transmissibility of vibration into the
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hand must also be given. These factors include; grip force, hand size, musculature, 

somatotype, wrist, elbow and shoulder angle, ambient temperature, airflow, and 

physiological effort (GrifiBn, 1990).

The detrimental effects to the hand-arm system are, in part, dependent upon the 

vibration energy that is absorbed by the hand-arm which is not equivalent to the amount 

of vibration energy transmitted to the hand. The hand and arm are elastic systems enable 

of storing potential and kinetic energy. Potential energy is stored as the result of the 

relative compression or extension of tissues. Kinetic energy results from the motion of 

tissues in the hand and arm. The hand-arm system has been found to be a highly damped 

system having the effect that much of the vibration energy transmitted is absorbed 

(Reynolds & Angevine, 1977).

The results of this study indicate that the impact energy that is transmitted to the 

rider’s hand through the handlebar can be reduced when a suspension system, as opposed 

to a rigid front end, is in place. This may in turn reduce the risk of the rider developing 

vibration induced injmies.

Ground Reaction Force

A second purpose to this investigation was to evaluate how well the suspension 

systems tested would function to maintain ground/wheel contact following impact.

Values of peak impact from the mean curves generated on the AMTI software package 

for each of the five test conditions indicate that the greatest ground reaction force 

occurred with the hydraulic system at the stiff setting (Table 5). This peak force value is 

approximately 15% greater than the peak impact forces measured for the rigid or the
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elastomer system at the stiff setting which were within 3 Newtons of each other (Table 5). 

Post-hoc analysis at the .05 alpha level between the stiff hydraulic and all other systems 

confirms that this system did produce the greatest ground reaction force on impact (Table 

6). It is not surprising that the stiff elastomer and the rigid system had such similar mean 

values, as the elastomer system is designed to behave more as a rigid system when stiffer 

elastomer bumpers are used. The greater value observed for the stiff hydraulic system 

may be explained by the fact that the hydraulic system has a greater initial resistance to 

movement This resistance is known as stiction. This property of the hydraulic system 

requires that a greater initial force must be applied before the system responds. By 

overcoming the static friction of the pneumatic chamber and allowing the hydraulic fluid 

to move through the ports absorbing and storing impact energy the system responds to the 

force of impact. The elastomer system does not have any initial pressure to overcome 

before the system can begin absorbing energy. The elastomer bumper simply begins to 

compress under the load of impact. Due to the fact that the stiff hydraulic system requires 

a greater initial force to begin absorbing energy, a greater peak ground reaction force is 

observed. This greater ground reaction force (see Table 5), represents the greater amount 

of force applied against the hydraulic suspension forks before absorption and 

unweighting occur. The rigid system responds to impact with a minimal amount of 

passive damping via the tires, spokes, rims, frame, etc. until there is no further absorption 

at which point the energy from the impact is transferred to the kinetic energy of the flight 

phase or an unweighting (see Figure 9).
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The soft setting for the elastomer and hydraulic systems produces much lower 

peak impact values than the stiff settings on the mean curves (see Table 5). These lower 

values indicate that each system is actively absorbing energy on initial contact with the 

bump. The stiffer the setting the more force required by the system to begin absorbing 

impact energy. The lower impact value for the soft hydraulic than the soft elastomer 

system may indicate that the soft hydraulic setting is more effective at absorbing impact 

energy than the soft elastomer setting under the conditions of this investigation. The 

hydraulic system at the soft setting required a lower activation force to begin absorbing 

impact energy resulting in the significantly lower ground reaction force indicated through 

the ANOVA and post hoc analysis (Table 6) and measured firom the mean curve (see 

Table 5).

The storing of potential energy in either of the suspension systems may be 

evaluated by examining the values for the slope of the peak impact force to the following 

minimum force value (see Figure 9). The greater the slope the greater the rate of change 

of force being applied to the platform. A very steep slope indicated that the wheel is 

quickly reducing contact pressure with the force platform. The greatest slope value was 

recorded for the elastomer system at the stiff setting, followed by the rigid system and 

then the stiff hydraulic system. These three mean curve slope values are within 3% of 

each other, and are significantly different firom the soft settings when looking at the raw 

data. This lends support to the finding that, stiffer settings behave more like the rigid.

The soft settings for the hydraulic and elastomer system produced lower mean 

curve slope values which were found to be significantly different on post-hoc analysis
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than the other three systems. This finding is probably due to the compression of the 

system to store the energy from impact (kinetic energy). As the systems compress, they 

resist losing contact with the ground by allowing the wheel to trace the surface. The 

compression of the system causes the suspension fork to move, allowing the wheel to 

remain on the ground. The softer the system the more energy that will be absorbed and 

the greater the compression resulting in a lower rate of un weighting on the force platform 

represented by a lower slope value. The effectiveness of the suspension systems at 

maintaining ground/wheel contact is best observed by evaluating whether or not there 

was an actual loss of ground contact nieasured following impact (see Figure 9). Loss of 

ground contact was recorded for the rigid and the stiff elastomer systems but not for the 

other three suspension systems (see Table 5). This supports the claim that suspension 

systems do act to maintain ground/wheel contact and allows for improved bike handling.

The peak landing forces measured produced a very different order of results than 

the peak impact forces (see Table 5). The soft suspension settings produced significantly 

greater ground reaction forces on landing than the stiff systems which were still much 

greater than the peak landing force for the rigid system. A significant one-way ANOVA 

followed by subsequent post hoc analyses indicated that there are significant differenced 

between the soft systems and the stiff and rigid systems as well as between the stiff 

systems and the rigid system (Table 6). The higher landing forces are due to the force of 

decompression of the suspension unit. The softer the system is set, the greater the 

compression of the system and the more potential energy stored in it. This energy is 

released as the kinetic energy of decompression resulting in greater ground reaction force
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values. The peak landing values for the soft elastomer system are greater than for the soft 

hydraulic indicating that more energy was absorbed and subsequently released on 

decompression of the elastomer system. The same is true of these two systems at the stiff 

settings. The slope values for the peak landing are indicative of the rate of change of force 

on the platform, in this case a weighting of the platform. The systems demonstrated a . 

similar rate of decompression with the soft settings producing a significantly greater 

slope value than the rigid system. The decompression of the suspension unit is referred to 

as rebound and is controlled for in some suspension units by rebound-damping. The 

suspension systems tested in this investigation demonstrated similar rates of 

decompression or rebound.

The peak impact to peak landing impulse was determined to allow for 

comparisons of the amount of ground reaction force generated. The greater the total 

ground reaction force between these two points the greater the ground/wheel contact. The 

mean curve results indicated that the soft hydraulic and soft elastomer systems produced 

the greatest impulse values (see Table 5). This may be attributed to the fact that these two 

soft settings were able to absorb greater amounts of impact energy and release this energy 

through decompression of the suspension unit to maintain ground/wheel contact. The stiff 

hydraulic system produced the third greatest impulse value which was significantly 

greater than the impulse values for the stiff elastomer and the rigid system. These two 

systems with the lowest impulse values were the only two systems to have a loss of 

ground contact following impact with the bump. Statistically significant differences were 

found to occur on post hoc analysis between the rigid system and the two hydraulic
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conditions as well as the soft elastomer system. Significant differences were also found 

between the stiff elastomer and the two hydraulic and soft elastomer system (Table 6).
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CHAPTER SIX 

Conclusions

The controlled laboratory conditions under which this investigation was 

performed allowed for the consistency and reliability of the results recorded but, the 

controlled conditions also limit the extent to which conclusions regarding these results 

may be generalized. The purpose of this investigation was to compare the effectiveness of 

front suspension systems at reducing handlebar vibration and at improving ground/wheel 

contact following impact with a bump. In drawing conclusions from the results one must 

keep in mind that the results are specific to the conditions imder which the testing was 

performed, in particular; controlled velocity, one rider, one size bump, one bike.

Vibration Control

Shock energy is partially transmitted to the rider through vibration at the 

handlebar. One purpose of this investigation was to evaluate the effectiveness of two 

types of front suspension compared to a rigid front end at reducing the amount of 

vibration at the handlebar following impact with a bump. From the results of this 

investigation we can conclude that the two systems tested did reduce handlebar vibration 

following impact with a standardized bump at a controlled velocity for this particular 

rider compared to the rigid system. The amplitude of oscillation from the mean curve data 

for the rigid system was found to be approximately 30% greater than the suspension 

trials. Another finding was that the frequency of vibration was reduced by almost 50% 

with the suspension systems in place compared to the rigid system. These results support 

the marketing claims made by manufacturers of front suspension systems that suspension
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does decrease the amount of impact shock energy transmitted to the rider. The results 

from this investigation also provide support to the findings of the physiological studies 

that evaluated the effects of suspension on energy expenditure and muscle cell damage. 

Muscular damage due to vibration exposure would be reduced with suspension, as lower 

amplitudes at lower frequencies would be transmitted to the rider’s hands. Decreased 

energy expenditure may be accounted for in part by the fact that as the level of vibration 

increases the grip strength about the vibrating handle also may increase in an attempt to 

control the vibration. The lower the vibration the lower grip strength required and less 

energy is expended. The softer settings for both systems tested produced the lower 

amplitudes of oscillation but the frequency remained relatively constant for all four 

suspension conditions.

Even though the two suspension systems tested did prove to effectively reduce 

handle bar vibration compared to the rigid, it has not yet been established whether or not 

the level of vibration with or without suspension presents a hazardous risk of inducing 

hand-arm vibration injury. Further investigation to evaluate this level of risk is required.

Ground Control

The impetus for designing a suspension system for the mountain bike was to 

improve bike handling. A rigid system that has no active damping often loses contact 

with the ground as the shock energy of impact is transferred to the kinetic energy creating 

a flight phase where the front wheel losses contact with the ground. Through absorption 

of impact energy, suspension systems convert some of this energy into potential energy 

through a ‘compression’ of the system. The system compresses as the wheel moves up
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the bump and decompresses as the wheel rolls off the bump. The decompression or 

rebound is the release of the potential energy stored in the system. This rebound creates a 

downward force to keep the wheel against the ground maintaining ground/wheel contact 

and counteracting the flight phase seen with the rigid system.

A second purpose to this study was to evaluate the effects of front suspension on 

maintaining ground/wheel contact compared to a rigid front end following impact with a 

bump. As loss of ground contact occurred with only the rigid and the stiff elastomer 

system we can conclude that the suspension systems are effective at improving 

ground/wheel contact following impact with the particular bump at the specific velocity 

set for this investigation. The ground reaction forces measured indicated that the two 

suspension settings at the soft settings produced lower impact force values than the rigid 

system. Lower forces were due to compression of the suspension unit, and much greater 

landing force values due to decompression of the suspension unit. -

Increasing the ground/wheel contact would partially account for the decreased 

energy expenditure reported by Berry in an investigation that compared the energy cost of 

riding rigid versus suspended bikes(Burke,1994). The increased ground contact following 

impact provides the rider with greater steering control and less wrestling with the handle 

bar to keep the bike on the chosen line of travel. Less wrestling with the handle bar would 

decrease the energy expenditure required to continue travelling on the chosen path at a 

specific velocity. This would also account for the faster time trial results for the 

suspension trials (Seiffert et al., 1994) in combination with the fact that less momentum is

j
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lost when the wheel remains in contact with the ground, conserving momentum requiring 

less pedalling energy to maintain velocity.

Recommendations

To further validate the benefits of mountain bike suspension observed in this 

investigation it is recommended that:

“1. A larger sample size be used in order to attempt to generalize findings.

2. Testing be performed at various velocities to measure the effect that velocity has 

on suspension system performance.

3. Testing be performed with various size and shaped bumps to evaluate to response 

of different systems to different types of impact.

4. 2-D video analysis be incorporated as a control measure to determine consistency 

of riding technique.

5. The summed acceleration value for triaxial measures taken in each of the axis of 

the hand be used for comparison of systems rather than only one accelerometer..

Recommendation for further study include addressing the following questions:

1. Does the level of vibration exposure firom mountain bike riding present a risk of 

developing hand-arm vibration injuries?

2. What are the typical vibration exposure levels associated with an average 

mountain bike race?
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3. Are certain types of suspension units more effective than others at decreasing 

handlebar vibration and at maintaining ground/wheel contact?
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APPENDICES

Note: Inconsistancies between mean curve data and raw data presented in the 
appendices are due to variations in computer generated mean curves as 
opposed to raw data generated means which may be less accurate due to the 
fact that maximum and minimum values were chosen from curves for each 
trial which introduces human error into the selection of these values.
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Appendix A 

Factors affecting hand-transmitted vibration.
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Strain gauge raw data
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Table 7 Impulse values from strain gauge data collected at 100ms (Ns)

trial # Rigid Blast. Stiff Blast. Soft Hyd. Soft Hyd. Stiff

1 23.82 21.69 9.29 13.21 22.21

2 25.99 24.04 12.76 7.43 15.87

3 28.77 23.77 12.74 9.34 14.30

4 23.31 23.12 13.18 11.87 12.91

5 25.51 25.19 15.79 8.89 16.55

6 27.09 23.93 18.11 12.62 16.26

7 25.92 27.21 14.81 11.85 17.21

8 26.29 18.51 12.66 6.13 19.03

9 22.02 22.51 8.47 11.20 18.59

10 24.72 26.85 10.24 15.59 20.86

mean 25.34 23.68 12.81 10.84 17.38

S.D. 1.95 2.52 2.96 2.86 2.85

range 6.75 8.70 9.64 9.46 9.3
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Accelerometer Calibration Certificate
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Velocity Raw Data
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Table 8 Velocity trials raw data (m/s).
trial # Rigid Blast Soft Hyd.Soft
1 9.46 9.14 9.46

2 7.97 8.49 7.97

3 10.8 8.82 9.01

4 10.23 7.92 9.23

5 8.26 831 836

6 9.07 836 937

7 8.97 8.97 8.97

8 9.99 9.14 9.99

9 9.0 9.75 9.00

10 8.66 9.02 8.66

II 938 937 9.83

12 8.48 . 8.95 8.48

13 10.1 8.67 9.43

14 10.67 10.27 10.1

15 8.62 10.1 1037

16 8.95 933 8.67

17 7.77 8.48 8.95

18 9.02 938 9.27

19 9.75 9.46 9.07

20 9.84 10.01 9.75

21 8.97 7.97 9.14

22 8.51 10.23 8.97

23 9.07 8.26 8.26

24 7.92 8.66 8.51

25 8.82 8.97 7.92

26 8.99 9.00 8.82

27 9.14 9.99 8.49

28 9.85 9.07 9.54

Mean 9.13 9.07 9.01

S.D. .79 .68 .62
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Appendix E

Accelerometry Raw Data

NOTE: Difference between mean curve values and mean values are due to the fact
that the Global Lab produces a mean curve by sum m ing points for each 
sampling period and not by summing the maximum or m inim um  values 
for each trial. This variation between mean curve and mean values occurs 
for all test conditions.
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Table 9 Accelerometry impact values for rigid system

Max. (mv.) time
(ms)

Range (mv.) Slope (mv/ms)

mean curve .0457 .15 .1458 4.86

trial 1 .1575 .235 .2081 11.63

trial 2 .1337 .24 .2550 9.55

trail 3 .1281 .24 .1672 8.44

trial 4 .9227 .2 .1898 7.08

trials .1740 .25 .1794 9.11

trail6 .1868 .23 .2111 10.35

trial 7 .1208 .23 .2323 6.69

trial 8 .1708 .145 .1818 4.24

trial 9 .2271 .225 .2509 14.21

trial 10 .0567 .15 .2148 4.69

trial 11 .1251 .23 .2563 7.94

trial 12 .1757 .14 .1949 5.16

trial 13 .1971 .23 .1624 10.46

trial 14 .1671 .145 .1824 5.47

mean .1652 .206 .2080 8.216

SD .0308 .042 .0326 2.891
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Table 10 Accelerometry impact values for stiff elastomer system

Max. (mv) time
(ms)

Range (mv) Slope (mv/ms)

mean curve .0356 .19 .1025 2.05

trial 1 .0415 .19 .1408 2.81

trial 2 .0409 .18 .1477 2.95

trial 3 .0519 .145 .1831 4.57

trial 4 .0488 .195 .1593 3.19

trial 5 .0439 .185 .1495 3.32

trial 6 .0439 .195 .1641 3.65

trial 7 .047 .19 .1532 2.79

trial 8 .0464 .185 .1495 2.49

trial 9 .0586 .195 .1532 2.55

trial 10 .0452 .18 .1434 2.39

trial 11 .0433 .185 .1147 2.29

trial 12 .0409 .19 .1459 2.92

trial 13 .0446 .195 .1624 3.25

Mean .046 .185 .151 3.013

S.D. .005 .013 .016 .613
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Table 11 Accelerometry impact values for soft elastomer system

Max. (mv) Time
(ms)

Range (mv) Slope (mv/ms)

mean curve .0337 .195 .1015 2.03

trial 1 .0391 .190 .1514 3.03

trial 2 .0336 .195 .1428 3.57

trial 3 .0391 .205 .1483 3.71

trial 4 .0446 .210 .1709 3.8

trial 5 .0403 .190 .1465 3.26

trial 6 ..0464 .200 .1678 3.73

trial? .0476 .200 .1495 2.99

trial 8 .0500 .190 .1471 2.94

trial 9 .0415 .185 .1528 3.82

trial 10 .0439 .200 .1752 3.89

trial 11 .037 .190 .1447 2.89

trial 12 .0542 .195 .1624 3.25

trial 13 .0433 .205 .1575 3.50

Mean .043 .197 .155 3.144

S.D. .006 .007 .011 .369
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Table 12 Accelerometry impact values for stiff hydraulic system

Max. (mv) Time
(ms)

Range (mv) Slope (mv/ms)

mean curve .0359 .185 .1231 2.46

trial I .0769 .165 .1408 3.47

trial 2 .0861 .170 .1477 4.25

trials .0562 .185 .1831 3.72

trial 4 .0482 .170 .1593 3.16

trials .0671 .170 .1495 2.99

trial 6 .0677 .185 .1641 3.84

trial 7 .0604 .190 .1592 4.41

trial 8 .0653 .155 .1495 3.31

trial 9 .0568 .190 .1532 4.18

trial 10 .0525 .185 .1434 4.3

trial 11 .0623 .185 .1147 4.66

Mean .064 .177 .1513 3.845

S.D. .011 .012 .0618 .558
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Table 13 Accelerometry impact values for soft hydraulic system

Max. (mv) time
(ms)

Range (mv) Slope (mv/ms)

mean curve .0313 .180 .0979 2.18

trial 1 .044 .185 .1459 4.73

trial 2 .0397 .185 .1624 4.1

trial 3 .0519 .170 .1367 3.03

trial 4 .0433 .180 .1677 4.2

trials .0477 .180 .1965 4.37

trial 6 .0562 .160 .1385 2.31

trial 7 .072 .1950 .1697 3.77

trial 8 .0586 .185 .1825 4.06

trial 9 .0452 .180 .1831 3.66

trial 10 .0579 .180 .1247 4.09

Mean .052 .180 .1610 3.932

SD. .01 .009 .0236 .70
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Table 14 Accelerometry landing values for rigid system

Max. (mv) time
(ms)

Range (mv) Slope (mv/ms)

mean curve .0489 .575 .0546 2.73

trial 1 .1220 .575 .0903 3.6

trial 2 .1677 .580 .0783 3.37

trial 3 .1710 .575 .0879 2.62

trial 4 .1832 .575 .0880 3.52

trial 5 .1653 .575 .0953 4.4

trial 6 .1289 .570 .0958 4.27

trial 7 .1953 .580 .0969 3.83

trial 8 .1957 .565 .0897 3.45

trial 9 .1556 .575 .0714 3.59

trial 10 .1676 .580 .0677 4.86

trial 11 .1321 .570 .0915 4.71

trial 12 .1556 .550 .0690 4.22

trial 13 .1492 .565 .0739 5.3

trial 14 .1208 .580 .0842 3.96

Mean .1578 .572 .843 4.009

S.D. .0250 .008 .0103 .5539
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Table 15 Accelerometry landing values for stiff elastomer system

Max. (mv) time
(ms)

Range (mv) Slope (mv/ms)

mean curve .0173 .55 .0488 1.63

trial 1 .0378 .540 .0610 2.40

trial 2 .0507 .545 .0958 3.19

trials .0403 .540 .1117 3.72

trial 4 .0348 .555 .0818 2.73

trials .0378 .540 .0689 2.30

trial 6 .0244 .555 .0677 2.26

trial 7 .0323 .560 .0781 3.12

trial 8 .0330 .560 .0732 2.44

trial 9 .0372 .565 .0633 3.73

trial 10 .0378 .550 .0313 2.16

trial 11 .0415 .575 .0824 2.12

trial 12 .0293 .535 .0665 1.9

trial 13 .0348 .55 .0806 3.22

Mean .036 .552 .0668 2.7371

S.D. .006 .012 .0228 .5984
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Table 16 Accelerometry landing values for soft elastomer system

Max. (mv) time(ms) Range (mv) Slope (mv/ms)

mean curve .0217 .575 .0321 1.07

trial 1 .0195 .57 .0427 1.71

trial 2 .0244 .58 .0537 1.53

trial 3 .0275 .58 .0555 1.59

trial 4 .0958 .595 .01251 3.57

trial 5 .0452 .565 .0891 4.46

trial 6 .0372 .575 .0696 2.32

trial 7 .0464 .585 .0598 2.99

trial 8 .0467 .575 .0824 3.29

trial 9 .0476 .56 .0745 2.98

trial 10 .0616 .47 .0751 3.76

trial 11 .0629 .575 .0897 3.59

trial 12 .0403 .585 .0684 2.28

trial 13 .0299 .59 .0514 1.71

Mean .045 .57 .063 2.752

S.D. .02 .031 .021 .963
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Table 17 Accelerometry landing values for stiff hydraulic system

Max. (mv) time
(ms)

Range (mv) Slope (mv/ms)

mean curve .0217 .575 .026 .743

trial I .0427 .550 .0653 1.18

trial 2 .0579 .560 .0397 2.18

trial 3 .0374 .565 .0470 1.59

trial 4 .0421 .560 .0586 2.59

trial 5 .0397 .550 .0598 2.93

trial 6 .0391 .570 .0647 2.39

trial 7 .0305 .530 .0610 2.59

trial 8 .0360 .545 .0641 4.07

trial 9 .0347 .560 .0830 3.21

trial 10 .0342 .580 .0574 3.32

trial 11 .026 .565 .0470 2.3

Mean .038 .558 .059 2.577

S.D. .008 .013 .012 .806
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Table 18 Accelerometry landing values for soft hydraulic system

Max. (mv) time
(ms)

Range (mv) Slope (mv/ms)

mean curve .0217 .56 .026 .74

trial 1 .021 .56 .0452 1.92

trial 2 .0256 .57 .0543 2.17

trial 3 .0226 .55 .0378 1.51

trial 4 .0287 .56 .0482 1.93

trial 5 .0256 .555 .0464 2.32

trial 6 .0311 .545 .0494 1.98

trial 7 .0366 .57 .0574 1.91

trial 8 .0256 .55 .0372 1.49

trial 9 .022 .565 .0366 1.46

trial 10 .0354 .565 .0568 2.27

Mean .027 .559 .047 1.896

S.D. .005 .009 .008 .318
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Appendix F 

Ground Reaction Force Raw Data

NOTE: Differences between mean curve values and calculated mean values are
attributable to the fact that the Meangait program produces mean curves 
by summing points for each sampling period rather that sum m ing specific 
maximum and minimum points as for the calculated mean values.
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Table 19 Ground reaction force values for rigid system

I Impact Landing Impulse
Trial
#

Peak
(N)

Tim
e
(s)

Slope
(N/s)

Peak
(N)

Tim
e
(s)

Slope
(N/s)

Pk-Pk
(Ns)

1 978.19 .06 11031.1 398.98 .14 5336.5 38.73

2 872.45 .06 9429.11 449.12 .14 6590 35.33

3 1128.17 .06 8053.21 353.14 .14 4620.13 32.69

4 1103.82 .06 12320.33 351.7 .16 4122.67 37.71

5 1036.49 .06 8011.54 278.36 .15 3506.38 41.19

6 990.64 .05 10529.7 251.42 .16 3312.88 32.59

7 1043.65 .06 8440.42 271.48 .16 3056.22 39.50

8 949.1 .06 7480.21 523.62 .14 6319.44 29.51

9 1039.35 .07 7974.83 212.74 .14 3172.14 33.61

10 972.02 .05 13072.51 242.54 .15 3672.64 39.87

11 966.29 .06 8141.92 366.03 .14 3561.75 39.81

12 1073.73 .06 13855.29 275.63 .14 4469.7 37.83

13 941.93 .06 11970.11 423.33 .14 4589.9 35.7

14 1033.62 .06 13773.43 432.49 .16 3577.43 31.75

mean 1028.70 .059 10291.69 345.04 .147 4279.06 36.13

S.D. 57.91 .005 2359.36 92.57 .009 1127.25 3.63

mean
curve

874.55 .06 15475.83 283.81 .14 1957.31 35.94
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Table 20 Ground reaction force values for stiff elastomer system

Impact Landing Impuls
e

Trial
#

Peak
(N)

Time
(s)

Slope
(N/s)

Peak
(N)

Time
(s)

Slope
(N/s)

Pk-Pk
(Ns)

1 976.67 .06 7581.69 671.53 .13 2977 45.41

2 856.34 .06 9709.89 614.23 .13 5503.58 34.65

3 863.5 .05 9860.67 559.79 .14 3406.39 31.74

4 879.26 .05 5959.6 910.78 .15 3260.41 36.22

5 935.13 .05 7907.08 598.9 .14 2105.93 35.08

6 856.34 .05 6711.23 714.51 .14 4114.72 40.33

7 959.48 .05 6079.56 1167.21 .13 4972.29 53.4

8 824.82 .06 . 5996.43 598.47 .13 3732.72 33.58

9 849.17 .05 7198.75 470.97 .14 3025.35 31.56

10 879.26 .05 6853.77 731.7 .14 6315.33 40.05

11 949.46 .06 9641.4 588.44 .13 3648.91 34.49

12 905.04 .05 7063.77 737.43 .13 4550.59 35.29

13 979.86 .05 5258.47 412.23 .13 4312.11 28.9

14 844.78 .05 5720.87 565.52 .13 3691.18 37.37

mean 889.9 .053 7253.67 667.34 .135 3974.06 37.04

S.D. 188.99 .005 1522.98 47.56 .007 1099.07 6.31

mean
curve

871.07 .05 15837.6 526.63 .14 3631.93 37.2
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Table 21 Ground reaction force values for soft elastomer system

Impact Landing Impulse

Trial
#

Peak
(N)

Tim
e
(s)

Slope
(N/s)

Peak
(N)

Tim
e
(s)

Slope
(N/s)

Pk-Pk
Ns

1 839.15 .05 5615.8 751.76 .13 7006.73 44.28

2 892.12 .06 5578.19 721.67 .12 8436.44 44.82

3 899.31 .06 5696.13 889.29 .13 10537.55 51.09

4 919.37 .05 6569.5 776.12 .13 10081.13 46.82

5 912.21 .05 6036.07 940.86 .14 8738.82 53.96

6 874.96 .06 6730.74 597.04 .13 6796.88 35.31

7 940.86 .06 5334.35 1018.22 .12 11906.44 61.0

8 932.26 .05 - 5855.75 853.47 .12 8781.8 47.99

9 842.01 .06 6016.93 781.84 .13 6038.92 42.33

10 814.79 .05 5121.56 777.54 .14 8165.8 39.2

11 870.66 .06 6221.57 842.01 .15 8481.0 41.77

12 925.1 .05 6169.73 655.17 .14 6160.18 41.49

13 886.42 .05 6832.39 849.07 .12 7996.46 49.36

mean 888.4 .055 6003.98 804.21 .131 8394.48 46.13

S.D. 38.92 .005 515.79 113.32 .01 1714.71 7.72

mean
curve

811.26 .05 14750.18 626.04 .13 4637.33 46.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

Table 22 Ground reaction values for stiff hydraulic system

Impact Landing Impulse

Trial
#

Peak
(N)

Tim
e
(s)

Slope
(N/s)

Peak
(N)

Tim
e
(s)

Slope
(N/s)

Pk-Pk
(Ns)

1 1101.67 .06 7979.29 737.79 .13 9455.13 49.18

2 1091.79 .06 8408.85 739.68 .14 8343.56 44.49

3 988.81 .06 8250.85 718.2 .13 7320.1 35.19

4 987.57 .06 8260.25 596.68 .14 6705.22 34.84

5 1118.79 .05 8616.77 732.83 .13 8262.78 46.39

6 998.16 .05 8321 730:27 .13 7506.8 44.82

7 1078.39 .06 7725.79 783.27 .13 7936.6 48.23

8 1052.6 .06 . 9585.36 450.91 .13 9311.82 35.44

9 975.24 .06 7559.69 417.4 .14 8469.3 38.09

10 998.16 .05 8356.83 544.03 .15 6930.25 34.05

11 978.26 .05 8927.46 572.78 .14 6496.78 34.76

12 1128.53 .05 7531.93 771.81 .13 8722.89 48.98

13 946.59 .06 6322.54 842.01 .13 6119.24 44.62

mean 1034.2 .056 8142.21 664.44 .135 7813.92 41.47

S.D. 62.8 .005 781.18 133.62 .007 1066.73 6.10

mean
curve

920.65 .06 15344.17 518.19 .13 3838.44 42.44
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Table 23 Ground reaction force values for soft hydraulic system

Impact Landing Impulse

Trial
#

Peak
(N)

Tim
e
(s)

Slope
(N/s)

Peak
(N)

Tim
e
(s)

Slope
(N/s)

Pk-Pk
(Ns)

1 1018.22 .05 12982.75 690.15 .14 7177.3 37.56

2 956.82 .06 13855.29 863.28 .14 14688.5 39.53

3 943.73 .06 11999.25 897.88 .14 10155.56 44.34

4 1094.15 .05 10959.4 897.08 .13 8191.82 52.48

5 999.6 .06 14326.0 723.1 .14 7334.9 39.47

6 1021.09 .05 12839.77 512.51 .14 7981.57 38.41

7 1018.22 .06 14612.57 1042.57 .14 11667.67 36.56

8 1016.79 .06 12781.13 1108.47 .13 10158.36 57.12

9 955.19 .05 18129.0 607.06 .14 10314.66 38.62

10 950.89 .05 8712.82 1135.69 .13 16788.82 49.85

11 920.8 .06 11621.88 969.15 .14 8992.88 44.06

12 900.75 .06 9011.1 917.94 .14 10298.77 47.06

13 1002.46 .06 9090.46 925.1 .14 11711.5 48.93

14 1028.25 .06 9311.91 1076.96 .13 12224.89 51.3

mean 991.92 .056 11444.89 883.41 .137 9135.66 44.66

S.D. 56.0 .005 2241.14 189.16 .005 4362.16 5.54

range 193.5 .01 6483.57 623.18 .01 8754.16 20.56

mean
curve

764.86 .05 13906.55 617.4 .14 4410.0 48.3
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