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ABSTRACT

Rudy, A. 1996. The Application of a Physically Based Hydrological Model on a Semi- 
Arid Watershed in Northern Ghana. MSc. (Forestry) Thesis. Faculty of Forestry, 
Lakehead University, Thunder Bay, Ontario, Canada. 94 pp. (Advisor U.T. 
Runesson, PhD.)

Keywords: geographic information system, Ghana, landuse, physically distributed 
watershed modelling, remote sensing, semi-arid environment

Land degradation in semi-arid environments is increasing due to rapid population 
growth, poor landuse practices and variable climate conditions. Landuse planners 
require a better understanding of the impact that proposed changes in landuse practices 
have on a watershed’s hydrologic response when implementing policies and programs 
designed to decrease the detrimental effects of land degradation. A physically based 
hydrological model, r.hydro.CASC2D, was used to illustrate the impact changes in 
landuse practices have on the hydrologic response of a semi-arid watershed located in 
northern Ghana. The development of the required model input parameters using 
geographical information systems and remote sensing technologies is described. A 
sensitivity analysis on selected model inputs was conducted. The models output was 
sensitive to all model input parameter tested, such as grid cell size, Green and Ampt soil 
infiltration parameters and Manning’s n values. Two landuse scenarios were then 
developed to illustrate the impact of implementing landuse practices that increase 
vegetative ground cover. With increasing vegetative cover, peak discharges decreased 
with an associated delayed time to peak discharge. In addition, total runoff volume 
decreased as the level of vegetation increased, resulting in total volume of water 
infiltrating.
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CHAPTER 1: OBJECTIVES AND SCOPE

The negative impact of poor landuse practices on a watershed's hydrology has 

long been recognized. Empirical studies have shown that poor landuse practices (i.e., 

reduction of vegetation cover) affects both evapotranspiration and infiltration rates, and 

alters the quantity and distribution of surface runoff and stream discharge (Wu and 

Haith, 1993). This increases the potential for soil erosion, nutrient loss, stream channel 

modification and flooding (Sutherland, 1994). The impact of landuse on these 

hydrological processes may be further accentuated by climate conditions. In semi-arid 

environments this is of particular importance where a large portion of rain-fall is lost to 

surface runoff due to the short duration and high intensity of rainfall (Panda et ah, 1988). 

The impact of landuse on the magnitude and distribution of hydrological processes is 
often unknown.

For resource managers, identification and prediction o f these changes can 

provide valuable information for use in short and long-term strategies involving flood 

control planning, irrigation, water conservation efforts and erosion control measures. 

Objectives

The objectives of this study are intended to be a preliminary examination into:

1) the capabilities of a GIS integrated hydrological model, specifically 

r.hydro.CASC2D, in providing resource managers information on the 

hydrologic response of a watershed to changes in future landuse practices and 

patterns in a semi-arid environment;

2) the capabilities and limitations of remote sensing data in deriving and 

updating watershed characteristics for input into r.hydro.CASC2D; and

3) the extent to which model predictions are sensitive to changes in selected 
input parameters.

i
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The success of a hydrological model is dependent on the model’s capability to 

simulate or predict the phenomena under study and the accuracy of input parameters. In 

the case of distributed parameter models, the amount of required input is large. The 

main thrust of this study is not concerned with the soundness of the selected model 

(Julien and Saghafian, 1991; Johnson et al., 1993), but on the development of the GIS 

database required to run the model and its application in landuse planning.

The format of this document is as follows. Chapter 2 provides a review of 

literature on watershed modelling, background information on environmental 

degradation in Ghana, West Africa, and the role of geographical information systems 

(GIS) and remote sensing in watershed modelling. Chapter 3 provides a description of 

the study area located in the upper north east region of Ghana. Chapter 4 outlines the 

steps involved in compiling the model database. The results from a sensitivity analysis 

are given in Chapter 5. Chapter 6 provides general landuse scenario simulations 

followed by a discussion in Chapter 7. Conclusion and recommendations are presented 

in Chapter 8. Appendix 1 provides a listing of Green and Ampt soil infiltration 

parameters and Manning’s n Values. Appendix 2 includes a description of the 

r.hydro.CASC2D command line. Appendix 3 illustrates the methodology followed in 

estimating the Green and Ampt infiltration parameters.
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CHAPTER 2: BACKGROUND INFORMATION

This chapter includes a brief literature review on watershed modelling, the role of 

geographical information systems (GIS) and remote sensing in physically based 

watershed modelling, and background information on environmental degradation in 
Ghana.

2.1 Hydrological Modelling

A variety of deterministic hydrological models exist that are capable of 

simulating and quantifying the various hydrological processes occurring within a 

watershed. The models range in structure, from simple lumped or “black-box” models 

which examine cause and effect (i.e., relating rain-fall to surface runoff) relations within 

a watershed, to more complex distributed grid-based and physical based models that are 

based on the fundamental laws of physics, chemistry and biology (Becker and Serban, 
1990).

Lumped models are generally applicable to real-time forecasting and 

approximating watershed discharge. They have the advantage of being easier to 

understand (and operate) and require a limited amount of input data. Their range of 

application is, however, limited to only gauged watersheds and typically require long­

term historical data for calibration (Becker and Serban, 1990).

In contrast, distributed grid-based and physical-based models have a broader 

range of applications, including soil erosion, sediment transport and water quality 

studies. In addition, the impact of human activities, such as future landuse practices on 

hydrological processes, can be explored because model inputs have physical meaning 

and can be readily measured. Hydrologic responses, such as surface runoff, stream
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discharge, time to peak flow and sediment yield can be assessed under various rainfall 

events and landuse conditions. These models are also applicable to both gauged and 

ungauged watersheds. A major disadvantage is the requirement for detailed spatial data 

describing both watershed characteristics and climate data (Becker and Serban, 1990).

Distributed models allow input parameters to vary spatially over a watershed. 

The spatial variability of climate data and non-uniform watershed characteristics such as 

topography, soils, and landuse are taken into account. In comparison, lumped models 

treat the watershed as a homogenous unit in which input parameters are based on climate 

and watershed averages. Since lumped conceptual models are based on averages, the 

response of the watershed can only be evaluated at the outlet and processes occurring 

within the watershed cannot be calculated as they can be with distributed grid based 

models (Ponce, 1989).

The use of distributed grid-based and physical based models are growing in 

popularity compared to lumped models (Mazion, 1994). This change is reflected in the 

advances in computer technology (availability, capability), the integration of models 

with geographic information systems (GIS), availability of remote sensing data and 

improvements in the models themselves.

The time scale of the model is also an important factor. Time scales may be 

categorized as either single event or continuous. Single event models typically involve 

modelling the hydrologic response of a watershed based on a single rainfall event. 

Continuous models attempt to model the hydrology of the watershed over time, typically 

years (Haan et al., 1994).

An important component in hydrological models is the accurate prediction of 

surface runoff. Transportation of pollutants and sediments are controlled by the surface 

runoff process. In general terms, the runoff process for a single rain-fall event describes 

water entering the watershed in the form of precipitation. The water is then either 

intercepted and/or absorbed by vegetation, retained on the surface, evaporated, infiltrated 

into the soil or once soil saturation has occurred, excess water may be removed as 

surface runoff into stream channels and routed downstream. In the distributed approach 

to single event modelling these processes are typically modelled as evapotranspiration,
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interception, and infiltration. Surface runoff is modelled as overland flow and channel 

routing. Evapotranspiration (ET), infiltration, and surface storage are collectively 

termed precipitation losses or abstractions because they represent precipitation that is 

lost to runoff.

Evapotranspiration in terms of hydrological modelling is the combined loss of 

moisture by evaporation (the change of state from liquid to vapour) and transpiration 

(loss of moisture from vegetation). Although ET may represent a large portion of 

precipitation losses on an annual basis, the rate of ET during a single rainstorm is small. 

Evapotranspiration losses are most significant between storms and less significant during 

a single rain event For single event models, ET is often neglected (Haan et al., 1994)..

Precipitation that adheres to surface vegetation and buildings is called 

interception, and is eventually lost through evaporation. Interception storage for a dense 
forest may equal 10 mm for a single rain event Amounts vary depending on the surface 

conditions. During high intensity rain events, the amount of storage interception is low 

but may be significant over longer periods (Haan et al., 1994). For modelling purposes, 

interception is often taken into account by subtracting the total interception storage from 

the incoming precipitation at the start of a rainfall event.

The flow of water into a soil is called infiltration and constitutes one of the most 

important precipitation losses (Haan et al., 1994). The rate of infiltration is influenced 

by a variety of factors such as soil type, vegetation, antecedent moisture, slope and 

rainfall intensity. A coarse texture soil (sand) will usually have a greater infiltration rate 

than finer texture soils (clay) due to differences in pore sizes. A drier soil will have a 

higher infiltration rate compared to wetter soils. Therefore, for a given rain fall event, a 

dry soil will produce lower runoff rates than wetter soils. Generally, steeper slopes have 

a lower infiltration rate than flatter slopes. On steeper slopes, the time allowed for 

infiltration is lower because of the more rapid movement of water across the surface. 

High intensity rainfall may reduce the infiltration rate due to the impact of large 
raindrops onto the soil surface, which sometimes results in surface sealing. The effect of 

surface sealing can be reduced by adequate vegetation cover (Haan et al., 1994).

Ii
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

Water retained within surface depressions is called detention storage. The actual 

volume of water required to fill these depressions is called surface storage. Once surface 

storage capacity has been satisfied, surface runoff will occur. The determination of 

surface storage is difficult because it is dependent on slope and micro topography (Haan 

etal., 1994).
Once precipitation losses have been accounted for, overland flow occurs to 

stream channels and moves downward as stream flow to the watershed outlet In 

addition to surface runoff, stream flow includes sub-surface flow which moves laterally 

through the soil to the stream channel as groundwater or baseflow. Once within the 

stream channel, flow velocities and depths can be measured from which a hydrograph 

(graph of stream discharge over time) can be calculated.

For short intensity rain events where rainfall rates exceed the infiltration capacity 

of the soil, surface runoff is the most important component Sub-surface and baseflow 
are often neglected in single event modelling.

Prediction of surface runoff usually employs the use of balance equations, such 

as the Saint Venant equations for shallow water flow (DeVantier and Feldman, 1993). 

When modelled in two-dimensional space, the balance equations take the form of second 

order partial differential equations and need to be solved by approximation methods 

(e.g., finite difference methods or finite-element methods; DeVantier and Feldman, 

1993). The theoretical background in modelling surface runoff is well documented in 

many hydrological books (Haan et al., 1994; Bedient and Huber, 1992; and Ponce,

1989).
The Green and Ampt equation, which is based on Darcy’s law of unsaturated 

flow in a porous medium, has been used extensively to simulate the soil infiltration 

process (James and Kim, 1990). The Green and Ampt equation is widely used over 

empirical based models, such as Horton’s (1940) infiltration equation, because 

parameters are obtainable from measurable soil properties. The Green and Ampt 

equation takes the following form (from Saghafian, 1992):

Hf M.
f = K {  1+ - £ — £) _  „F GEqn. 1)

I
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where f  = infiltration rate

K = saturated hydraulic conductivity

Hf = capillary pressure head at the wetting front

Md = soil moisture deficit (0e - 0j)

0e = effective porosity equal to ($ - 0r)

<j> = total porosity

0r = residual saturation

0-, = initial soil moisture content

F = total infiltrated depth

From Equation 1, three parameters are required to calculate the infiltration rate: 

K, Hfand Md. Based on soil texture, Rawls et al. (1983a) have derived average values 

for K, Hf , 0e and <j> (see Appendix 1, Table Al .1). These values are commonly used 

when detailed soil infiltration data are unavailable. From Table A l.l, all of the required 

values can be obtained except for Md = (6e " ®i) which varies according to rainfall 
conditions and moisture conditions. Total porosity is a measure of the proportion of 

pore space within a volume of soil and effective porosity accounts for the amount of air 

trapped within a volume of soil. Effective porosity is usually used in the Green and 

Ampt equation since it is a more reasonable value than total porosity. Hydraulic 

conductivity or permeability, is the rate at which water flows through soil under a unit 
potential energy gradient (Bedient and Huber, 1992).

Green and Ampt parameters have also been developed for soils under different 

soil tillage practices (Rawls et a l , 1983b). Based on known or estimated soil properties 

of percent sand and clay, organic matter and porosity change, Green and Ampt 

parameters, including soil moisture at field capacity (1/3 bar suction) and wilting point 

(15 bar suction), can be estimated from soil texture graphs. An additional correction 

factor may also be applied by reducing the saturated hydraulic conductivity for soils with 

an established surface crust (Brakensiek and Rawls, 1983).
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2.2 Geographic Information Systems

A geographic information system (GIS) is a digital system for managing, 

manipulating, analysing, displaying and mapping spatial data compiled or derived from 

existing maps, tables and reports, ground surveys, or remote sensing (e.g., aerial 

photography or satellite imagery). Data can be stored in a raster (grid) or vector (point, 

arcs or polygons) format as maps (layers or coverage) containing specific geographic 

information.

GIS’s use in hydrologic analysis have included: 1) deriving input parameters for 

existing hydrologic models; 2) displaying and mapping o f hydrologic variables; 3) 

representing watershed surfaces; and 4) identifying hydrologic response units (Greene 

and Cruise, 1985).

Various lumped and physical-based hydrological models have been linked to 

different GIS platforms. The application of a GIS in conjunction with the U.S Army 

Corps of Engineer hydrologic model HEC-1 has been reported by Cline et al. (1989), 

and Suwanwerakamtom (1994) who used various GIS software to derive HEC-1 model 

input parameters. Warwick and Haness (1994) tested the efficacy of a vector GIS 

(ARC/INFO) in deriving HEC-1 input parameters for a hypothetical watershed.

For raster based distributed modelling, Vieux and Gauer (1994) simulated storm 

water runoff using the Geographic Resource Analysis Support System (GRASS). 

GRASS is a public domain software package developed by the United States Army 

Corps of Engineers Construction Engineering Research Laboratory (CERL) as a general 

purpose grid-based geographic modelling and analysis package. Overland flow and 

channel routing was simulated using a finite-element and finite difference solution to the 

kinematic wave equation (a simplification of the Saint Venant equation). Data are 

entered manually or as raster maps describing each watershed’s surface topography, 

infiltration, and soil hydraulic characteristics. Outputs consist of 1) hydrograph, which 

provide a continuous account of stream discharge over time; and 2) a set of distributed 

maps of flow rates which provide information on the source and magnitudes of surface
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runoff. A major limitation is its application to areas that have sufficient surface and 

channel relief (Vieux and Gauer, 1994).

GRASS has become a powerful public domain GIS system because source code 

and programming documentation is readily available which allows for the integration of 

programs for specific applications, including hydrological models developed in a non- 

GRASS environment (Wolfe and Neale, 1988)

Rewerts and Engel (1991) integrated GRASS and the Areal Nonpoint Source 

Watershed Environmental Response Simulation model (ANSWERS) developed by 

Beasley and Huggins (1981). The main application of ANSWERS is for erosion and 

sediment studies on lands used for agriculture. The ANSWERS program is a distributed 

model which simulates single event rainstorms. Engel et al. (1992) have integrated 
GRASS with the AGriculture NonPoint Source pollution model (AGNPS) developed by 

Young et al. (1987). The AGNPS program is a single event rainstorm model that is also 

appropriate for erosion and sediment studies. Savabi et al. (1995) discusses the 

application of deriving the needed input parameters using GRASS for the USDA-Water 

Erosion Prediction Project (WEPP).

2.2.1 r.hvdro.CASC2D

Ogden and Saghafian (1996) developed a distributed hydrologic model fully 

integrated within GRASS capable of simulating the hydrologic response of a watershed 

for a given rainfall event called rhydro.CASC2D. The major components of 

r.hydro.CASC2D include interception, infiltration and surface runoff routing.

Infiltration is modelled using the Green and Ampt equation. Overland flow is modelled 

using a two dimensional finite difference technique while channel flow routing is 

modelled using one-dimensional explicit or implicit finite difference schemes.

A raster or grid format is utilized by rhydro.CASC2D to represent the watershed 

spatial characteristics. Each raster consist of square grids which are assigned attributes 

describing a watershed characteristics {e.g., infiltration parameter). Attributes are 

assumed to be homogenous across a grid element but may change from grid to grid. The 

grid cell resolution is controlled by the user and is dependent on the desired simulation
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accuracy, data accuracy and length of time required to run a simulation. Where detailed 

data are available, the selection of small grid sizes may be appropriate. For modelling of 

large watersheds, watersheds with a lack of detailed characteristics, or when simulation 

run times are high, larger grid sizes may be more appropriate (Julien, et al., 1995).

Single event or multi-event rain storms using spatially uniform or spatially varied 
rainfall intensities may be modelled. Rainfall data may include rain gauge data from 

which rainfall intensities are spatially interpolated (i.e., Thiessen polygon or inverse- 

distance square) or a time series of rainfall intensity maps. Time series maps may 

include radar maps or can be created from rain gauge data collected over time and 

interpolated into a time series of rainfall intensity maps.

Simulation of a single rainfall-runoff event is performed on each grid cell at each 

user defined computational time step. For each time step, rainfall is added to any 

existing surface water depth of a grid cell. The infiltration rate is calculated based on the 

soil characteristics. Any remaining surface water is then routed to the next grid cell 
according to the surface slope of surrounding grid cells. Excess water from overland 

grid cells that reach the channel are then routed through the channel network to the 

watershed outlet. Additional options allow for the accounting of baseflow, surface 

interception and storage by vegetation, soil moisture distribution for multi-storm events 

and depression storage. An earlier version of the model, known as CASC2D is 

documented in Julien and Saghafian (1991) and Saghafian (1992) and provide a 

description on some of the algorithms used in r.hydro.CASC2D. Subsurface flow and 

evapotranspiration are not considered in r Jiydro.CASC2D.

The rJiydro.CASC2D model was specifically designed to utilize raster based 
input files, such as digital elevation models (DEM), landuse and land cover data, soil 

texture data and drainage networks.

Model outputs include: 1) discharge hydrographs at the watershed outlet and at 
specified internal watershed locations; and 2) raster maps at user defined time 

increments showing water surface depth, cumulative infiltration depth, surface soil 

moisture, infiltration rate and distributed rainfall intensity.
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The effects of large scale mechanized military maneuvers on the hydrologic 

response of a semi-arid watershed was examined by Doe (1992) using CASC2D and 

GRASS. Three hypothetical army maneuvers scenarios were simulated according to 

three different land management practices. Based on the level of maneuvers intensity, 

three levels of land disturbances (i.e., none, medium, low) were derived. For each 

landuse disturbance, changes in soil hydrologic properties were also calculated. Each 

scenario was simulated and the temporal and spatial effects on discharge, infiltration 

depth and overland flow depths were examined.

2-3 Satellite Remote Sensing

The collection and analysis of data of a specific object or area, collected at a 

distance from a satellite or other methods is referred to as remote sensing. Remotely 
sensed data may be in the form of: 1) satellite imagery; 2) aerial photography; or 3) 

aerial imagery (ERDAS, 1991).

Two major sources of satellite data are supplied by the commercial Landsat and 

SPOT programs. Each satellite consists of a scanner with sensors made up of detectors 

calibrated to record reflected electromagnetic radiation as brightness values within 

specific regions of the electromagnetic spectrum. Within different regions of the 

electromagnetic spectrum, objects or features on the Earth’s surface (e.g., vegetation, 

soil and water) reflect electromagnetic radiation differently. This provides unique 

spectral signatures that allow for the identification of different features on an image.

The current Landsat 5 satellite contains a multispectral scanner (MSS) and a 

thematic scanner (TM). The SPOT satellite operates in a multispectral (XS) and 

panchromatic (PAN) mode. Both Landsat MSS and TM, and SPOT XS and PAN data 

contain different spectral and spatial characteristics. For example, Landsat TM data 

contains six reflective bands at a spatial resolution of 30 x 30 metres and one thermal 
band (6) with a spatial resolution of 120 x 120 metres. SPOT XS data have three 

spectral bands with a spatial resolution of20 x 20 metres (Table 2.1).
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Table 2.1. Spectral and spatial image characteristics for Landsat Thematic Mapper 
(TM) and SPOT multisensor (XS) and panchromatic (PAN) data 
(adapted from ERDAS, 1991).

Sensor Band Spectral Resolution (p) Spatial Resolution (m)

Landsat TM 1 0.45 - 0.52 (blue) 30x30

Landsat TM 2 0.52 - 0.62 (green) 30x30

Landsat TM 3 0.63 - 0.69 (red) 30x30

Landsat TM 4 0.76 - 0.90 (near-infrared) 30x30

Landsat TM 5 1.55 - 1.75 (middle-infrared) 30x30

Landsat TM 6 10.4 - 12.5 (thermal) 120 x 120

Landsat TM 7 2.08 to 2.35 (middle-infrared) 30x30

SPOT XS 1 0.5 - 0.59 (green) 20x20

SPOT XS2 0.61 - 0.68 (red) 20x20

SPOT XS 3 0.79 - .89 (near-infrared) 20x20

SPOT Pan 0.51 - 0.73 (visible) 10x10

Remote sensing has been recognized as an important method for acquiring spatial 

input data required for hydrological models (Rango, 1985) and provides an effective 

means for up-dating existing resource information. For watersheds that are inaccessible, 

expand beyond international boundaries, or cover large geographic regions, remote 

sensing may be the only method for acquiring input data (Rango, 1985).

An extensive review of remote sensing techniques and its role in hydrology is 

presented by Kuittinen (1992). Uses and limitations of deriving information for 

hydrological studies on precipitation, soil moisture and groundwater, evapotranspiration, 

snow, ice and frost, surface water and watershed characteristics are discussed.

Watershed characteristics mapped from remote sensing data include, topography, water 

courses, landuse/land cover, soil types and bedrock (Kuittinen, 1992).

!
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A common use of remote sensing data has been for deriving landuse/land cover 

maps for hydrological models. The majority of use has been directed at estim ating the 

curve number utilizing Ianduse and land cover information for use in the Soil 

Conservation Service runoff Curve Number model (SCSCN) (Hill et al. 1987; White, 

1988; and Stuebe and Johnston, 1990). The SCSCN model predicts potential surface 

runoff for use in stream flow and flood studies. Curve numbers are a function of 

Ianduse, soil characteristics and antecedent soil moisture.

In the distributed approach to surface flow, AGNPS, ANSWERS and 

r.hydro.CASC2D requires an input value describing a surface’s resistance to surface 

flow, known as Manning’s n roughness coefficient Manning’s n values have been 

derived for a variety of surfaces as shown in Table A. 1.2 in Appendix 1. Information 

obtained from landuse/land class maps or from classified satellite imagery can be used to 

derive the appropriate value for the area under study.

A common list of landuse/land cover classes useful in hydrologic modelling 

derived from remote sensing data include: vegetation cover and types, cultivated areas, 

drainage, swamps and urban areas (Kuittinen, 1992).

Connors et al. (1985) used simulated SPOT data to discriminate areas of different 

hydrologic properties in semi-arid and humid regions by means of a variety of image 

analysis techniques. Hydrologic properties investigated included, infiltration rate, runoff 
rate, landscape stability, and wind and water erosion. For the semi-arid site, three 

surface classes based on infiltration rate, vegetation cover, soil texture, topography, and 

antecedent moisture were separated. The separated classes where as follows:

1) low infiltration rates (9.7 cm/hr), well vegetated, fine grained soil, level 
topography with wet surface areas;

2) moderate infiltration rate, moderately vegetated, medium grained soil, 
hummocky, dry and intermediate surface areas; and

3) high infiltration (27 cm/hr), moderately well vegetated, coarse grained soil 
with relatively smooth, dry upland surface areas.

Based on vegetation cover, soil texture, salt content and micro topography 

obtained from remotely sensed data and additional information of general topography,
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landscape position and geomorphology areas of relative runoff rates {i.e., low, moderate 
on high) were also identified.

2.4 Environmental Degradation in Ghana

Socio-economic and physical conditions are two factors linked to the continuing 

problem of environmental degradation in developing countries, such as Ghana. Rapid 

population growth (estimated at 3% per annum for 1987-2000 time period; UN, 1991), 

poor Ianduse practices {i.e., reduced fallow periods, over-grazing, indiscriminate fuel 

wood harvesting, bush burning), and erratic climate conditions have contributed to the 

problem of environmental degradation in Ghana. Within the Upper North East Sudan 

Savanna region in Ghana, environmental degradation has reduced vegetation, increased 

soil erosion, lowered biodiversity and reduced soil fertility.

Environmental degradation increases the susceptibility of a region to drought and 

desertification and threatens long term environmental sustainability. In 1983, crop 

failure due to severe climatic conditions and improper Ianduse practices caused food 

shortages and famine throughout Ghana (Ofori-Sarpong, 1986). Desertification occurs 

when a land's biological productive capacity is destroyed. Although there are no areas 

of Ghana classified as desertified, 35% of the country is at risk of desertification (Dept, 

of Geography, 1992). Desertification is increasing within the savanna regions of Ghana 

(UN, 1991). The total cost of environmental degradation in Ghana for 1988 was 

estimated at four percent (US $128.3 million) of Ghana's gross domestic product. Cost 

of environmental degradation in 1988 from both agriculture and forestry activities was 
estimated at US $121.9 million (UN, 1991).

Loss of vegetation is one of the more important forms of environmental 

degradation in Ghana because it predisposes arable lands to further degradation, such as 

soil erosion. Adequate vegetation cover helps reduce soil erosion by intercepting and 

dissipating the energy in raindrops before it reaches the soil. Vegetation cover also helps 

to dissipate the energy of surface runoff and helps to encourage water infiltration into the 
soil (Pimentel, 1993).
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The primary effect of soil erosion is the reduction of on-site soil water storage 

within the plant rooting zone, which results from the gradual removal of organic matter, 

clay and soil colloids (Pimentel, 1993). In northern Ghana, eroded sites lose a 

substantial amount of water to surface runoff because of soil compaction and crusting, 

and from the short duration and high intensity rainfall in this region (Pimentel, 1993).

Bonsu and Obeng (1979) investigated the effect of various agriculture practices 

on soil degradation at the Manga Agriculture Station located in the Upper North East 

Region of Ghana. Ten rainfall runoff plots, each treated with a different cultivation 

method were measured for runoff, growth rates, crop yield, soil water losses, nutrient 

losses and the effect of grazing (Table 2.2). Grazing was found to increase soil loss by a 

factor of 1.8 compared to the ungrazed plot They concluded that ridging across the 

slope, mulching and compound farming were the best cultivation practices for 
m inim ising soil erosion.
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Table 2.2. Cultivation treatment assigned to runoff plots (from Bonsu and Obeng,1979).

Plot Cultivation Treatment

1 Ridging across the slope: early millet and guinea com interplanted with 
ground nuts and Bambara with no application of fertilizer.

2 Ridging across the slope: early millet and guinea com interplanted with 
ground nuts and Bambara with an application of farm yard manure.

3 Mechanical tillage (band operated rotators): early millet and guinea com 
rotated with groundnuts and an application of fertilizer.

4 Ridging across the slope: early millet and guinea com rotated with 
groundnuts and fertilized.

5 Mechanical tillage with straw mulching: early millet and guinea com rotated 
with groundnuts and fertilized

6 Mechanical tillage: early millet and guinea com rotated with groundnuts and 
fertilized

7 Mechanical tillage: guinea com interplanted with early millet and fertilized.

8 Bare plot: control

9 Grazed: grass (Andropogon govanus)/legume (Styloxanthes humilis) mixture 
with application of fertilizer.

10 No grazing: grass (Andropogon gaycmus)l\zgpme (,Styloxanthes humilis) 
mixture with application of fertilizer.
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2.4.1 Environmental Policy

The government of Ghana has recognized the need to adopt and implement 

policies and programs which will move Ghana in the direction of sustainable 

development that will satisfy the present and future needs of the population and yet 

maintain sound environmental management of natural resources (Kendie, 1995).

Principles adopted by the government of Ghana to help secure sustainable 

development are outlined in the Environmental Action Plan (EAP). Approximately fifty 

projects are planned to be implemented by various national agencies through the EAP 

between 1991 and 2000. The Land Research Management Project for example, was 

proposed to identify methods for improving land resource management in the Upper 

East Region (Dept of Geography, 1992). In addition, the National Environmental 

Policy (NEP) was adopted as a framework for the implementation of the EAP (UN, 

1991).

Specific aims of the NEP (UN, 1991) are to:

1) maintain ecosystems and ecological processes which are essential for the 
functioning of the biosphere;

2) ensure the sound management of natural resources and the environment; 
adequately protect humans, animals and plants, their biological communities 
and habitats, against harmful impacts and destructive practices, and preserve 
biological diversity;

3) guide development in accordance with quality requirements to prevent, 
reduce, and as far as possible, eliminate pollution and nuisances;

4) integrate environmental consideration in sectoral structures variable climate 
and socio-economic planning at the national, regional, district, and grassroots 
levels;

5) seek common solutions to environmental problems in West Africa, Africa, and 
the world at large.

The EAP clearly defines the need for sound environmental information.

However, accurate, complete and up-to-date information is often lacking, which has
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hindered resource planning and decision making in Ghana (Issaka, 1992). In the case of 

implementing erosion control measures, which may involve alteration of Ianduse 

patterns for example, information on the hydrologic response of a watershed to control 

measures is often absent or not clearly understood.

2.4.2 GIS and Remote Sensing Activities in Ghana

A variety of GIS and remote sensing activities have been implemented in Ghana. 

Activities include developing suitability databases and maps for agriculture, water 

quality, and fish sensitivity assessment maps (Amoyaw-Osei, 1992), assessing land 

degradation in northern Ghana (Gyamfi-Aidoo 1987) and mapping airborne pollution 

(Danso, 1992).

Satellite imagery has been used to:

1) develop Ianduse and land cover maps for the Upper East Region (Department 

of Geography, 1992);

2) evaluate Ianduse change and hydrologic response of the Tamne watershed 

(Bulley, 1996);

3) identify and classify inland valleys (Amamoo-Otchere, 1990); and

4) produce forest inventory within Ghana’s High Forest zone (Agurgo, 1992)

Image analysis, GIS and Global Positioning System (GPS) technologies have

been used to develop Ianduse maps for selected pilot areas in northern Ghana under the 

Ghana Environmental Management Literacy Project (GEMLP) funded by the Canadian 

International Development Agency (CIDA). In addition the GEMLP program has setup 

workshops for training resource managers and faculty members in GIS, GPS and remote 

sensing technologies at the University of Science and Technology, Institute of 
Renewable Natural Resources in Kumasi.

Two country wide database building projects are currently being conducted. The 

first is based on Landsat TM data which will be used to produce 1:250,000 scale Ianduse 

maps. The second effort’s aim is to convert the 1:50,000 Ghana Survey map sheets into 

a standardized digital database. Additionally, new digital databases are being developed
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from current aerial photography covering all major urban areas (Runesson, pers. comm., 
1996).
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CHAPTER 3: STUDY AREA

The watershed selected for this study is located within the Upper East region of 

Ghana stretching between the latitudes of 0° 14’ W and 0° 12’ W and longitudes of 11° 

01’ N and 11° 07’ N (Figure 3.1). The study watershed falls within the larger Nahau- 
Kulupielegu drainage basin. The main river within the study watershed flows northward 

into the east flowing Kulupielegu river. During the dry season months, flow within the 

watershed’s main river ceases. No stream gauges exist within die watershed. 

Topography is of relatively low relief with an average slope of 1.5%. The watershed 

selected for this study was based on conversation with experienced field personnel 

working within the area who identified this area as being highly degraded.

Soils within the area are derived primarily from Granites with some alluvial 

based soil complexes in areas surrounding the Kulupielegu river. Based on a formal soil 

survey conducted by the Soil Research Institute of Ghana for the Navrongo-Bawku Area 

by Adu (1969), four soil associations and one soil complex were defined (Figure 3.2). 

Soil quality ranges from moderately deep, well drained fertile soils to very shallow, 

easily erodable soils of low fertility with low infiltration rates and high surface runoff 

(Figure 3.3).

Total annual rainfall amounts within the area are highly variable. Meteorological 

data from the Bawku-Manga Agriculture station shows total annual rainfall fluctuates 

from 1,311 mm/yr in 1973 to 598 mm/yr in 1983. Mean annual rainfall for the 1960 to 

1993 time period was 915 mm/yr. Mean monthly rainfall and temperature data from the 

Bawku-Manga meteorological recording station are shown in Figure 3.4. A distinct dry 

season occurs between November and February where average monthly rainfalls are less 

than 9 mm with a monthly maximum of450 mm occurring in August Rainfalls are 

typically of short duration and of high intensity. For short time periods, rainfall
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intensities o f203 mm/hr are not uncommon (Adu, 1969). Mean monthly temperatures 

for the 1960-1993 time period shows minimal monthly temperature variation, with 

annual temperatures ranging from 27 to 32 °C (Figure 3.4).
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Figure 3.4. Average monthly rainfall and temperature data from the Bawku-Manga 
meteorological station for the 1960-1993 time period (Ghana Meteorological Services 
Department).

The timing and length of the rainy season is controlled by the location of the 

Inter-Tropical Discontinuity (ITD) boundary which separates the warm dry air mass 

(harmattan) originating from the Sahara desert and the moist warmer air mass (monsoon) 

originating from the South Atlantic Ocean. In January, one of the area’s driest months, 

the area is influenced by the harmattan winds when the location of the ITD is between 5° 

and 7° N. In contrast, during the wetter summer months, the ITD moves northward (/. e., 

to 20° N) and the study area becomes influenced by moist monsoon winds (Ofori- 

Sarpong, 1986).

The watershed falls within the Sudan savanna physiographic region which is 

characterized by low grass with scattered acacia (Acacia albida Del.), baobab trees 

(.Adansonia digitata L.) and sheabutter trees (Vitellariaparadoxa Gaertn. f.).

1
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Landuse in the region is primarily directed towards agriculture which is 

dependent on the arrival and duration of the annual rains. Delay in the onset of the rains 

or if early rains are followed by dry periods, total or partial crop failure may result 
(Ofori-Sarpong, 1985).

A reconnaissance visit was made to the study area in August, 1995 with the 

purpose of gathering qualitative data on general landuse conditions and watershed 

characteristics. Observations made during the site visit with regards to landuse 

conditions and hydrologic conditions are summarized below.

1) Principal agriculture and cash crops grown in the area, without irrigation, are 

millet (.Pennisetum spp.), maize {Zea mays L.), guinea-com (Sorghum bicolor 

Moench), yam (Dioscorea rotimdata Poir), groundnuts (Arachis hypogaea L.) 

and beans (various species).

2) Agriculture fields were intensively weeded and mainly cultivated by hand and 

hoe.

3) Open grazing of cattle was observed throughout the area. Overgrazing of 

cattle is a major problem within the area and contributes to the problem of 

land degradation through the removal of surface ground cover and compaction 

of soil.

4) Areas outside the cultivated fields are generally crusted, eroded soils with 

little vegetative cover. The boundary between the eroded and cultivated soils 
are very distinct.

5) Many of the streams are narrow but deeply incised with severe stream bank 
erosion occurring.

6) Rainfall events that occurred during the visit were typically of short duration, 

(less than two hours) but with high rainfall intensity. Surface runoff was rapid 

after each rainfall despite the low relief of the area.

7) Crusted soil surface conditions are a major factor controlling soil infiltration 

and surface runoff.
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CHAPTER 4: DATABASE

4.1 Purpose

This chapter outlines the procedures used in the generation, organization, 

manipulation and merging of the required model inputs. All relevant input data was 

compiled from existing soil and topographical maps, meteorological records, published 

data, limited field observations and satellite imagery.

Input data maps required for this study are presented in Table 4.1. Additional 

input parameters include location and slope of watershed outlet, rainfall duration, 

rainfall intensity and computational time step. Generation and formatting of inputs are 

discussed in detail in later sections. Saghafian and Ogden (1996) provide a complete 

description on data input, options and format requirements.

Table 4.1. Required r.hydro.CASC2D parameter input maps for this study.

Model Input Parameters (raster maps)

Topography Digital elevation model

Infiltration Saturated hydraulic conductivity
Capillary pressure head at the wetting front
Effective porosity
Initial moisture soil moisture

Overland Flow Manning’s n roughness values
Watershed boundary mask
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The r.hydro.CASC2D model is executed within GRASS. Model inputs are 

entered at the command level or in an interactive mode which prompts the user for 

model inputs. To activate a specific model component (i.e., Green and Ampt infiltration 

and/or channel routing) the required input files are specified as input into 

r.hydro.CASC2D. The complete command line structure is presented in Appendix 2.

For the model, raster input maps are required to be in an integer format (non­

decimal values); therefore, a fixed scaling factor is applied to all floating point values. 

All values presented are un-scaled values.

4.2 General Database Compilation

Topographical features, such as streams, roads, contours (15.24 m intervals), 

political boundaries, and major town locations were digitized from a 1:50,000 scale 
Survey of Ghana Topographical map sheet. Each feature (e.g., roads) was stored as a 

separate coverage and attribute data was then assigned to each feature and stored in a 

relational database (Figure 4.1).

Map
Sheet

Figure 4.1. GIS coverages generated from the 1:50,000 scale Ghana topographic map 
sheet

Ghana Survey maps use a Transverse Mercator projection system measured in 

feet. During the digitizing process, the x, y coverage coordinates were stored in 

digitizing units (i.e., inches). A transformation was required which converted each 

coverage from digitizing units (inches) to the Transverse Mercator’s projection 

coordinate system (feet). The accuracy of the transformation is expressed by the root

Coverages
Contours

Streams

Roads

Towns
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mean square error (RMS) that describes the error between the original and new 

transformed coordinate location (ESRI, 1992). High RMS errors may result from 

digitizing errors, errors inherent in the source data or distortion in paper map sheets due 

to shrinking and stretching. The calculated transformation RMS error was 1.2 m.

4.3 Digital Elevation Model

One of the most important inputs into a distributed hydrological model is the 

Digital Elevation Model (DEM). A DEM is a regular array of numbers, usually 

representing elevation heights of the Earth’s surface. Digital elevation model’s generally 

take the form as either: a) contour based networks; b) triangular irregular networks; or c) 

regular square or grid networks. Due to their computational efficiency and compatibility 

with satellite imagery, regular grid networks are the most common DEM’s in use 

(Moore et al., 1991). Since contour based networks represent an irregular network of 

elevation data, interpolation is required to produce a continuous or regular grid of 

elevations (Mackey et al., 1994).

A DEM of regular square grid cells was produced from contour and stream data 

using ARC/INFO’s TOPOGRID program. The TOPOGRID program was specifically 

designed to produce hydrologically correct DEM’s from point and/or contour data and 

stream data, and is based on Hutchinson’s (1988) ANUDEM program.

The TOPOGRID program requires all streams to be represented by a single arc 

(line) and stream arcs must be orientated in a downstream direction and connected. 

During the digitizing process, the Kulupielegu river was digitized as a braided stream 

comprising of two arcs which define the outer boundary of the channel. Editing 

consisted of re-digitizing a single arc down the center of the channel, extending all 

branching streams to connect with the new channel arc and removing the channel 

boundary arcs. In order to ensure continuity in the stream coverage, polygons 

representing dam impoundments were removed and an arc was added connecting the 

beginning and end of the impounded area. All arcs orientated upstream were identified 

and re-orientated in a downstream direction (Figure 4.2).
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Figure 4.2. TOPOGRID input coverages a) streams b) contours (elevations in 
feet).
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Initially, numerous DEM’s were produced at a 75 m grid cell resolution using 

various sets of three user-supplied elevation tolerances required during the drainage 

enforcement process. Tolerances selected were based on the level of surface 

generalization required and the resolution of input data (Hutchinson, 1989). Drainage 

enforcement, coupled with stream data, attempted to remove all unwanted sinks 

(depressions) and allowed for a more realistic drainage pattern within the fitted surface.

For each DEM generated, several diagnostic files were created to help evaluate 

the quality of the DEM’s and input data. Diagnostic outputs included a point coverage 

showing remaining sinks not resolved by TOPOGRID. A line coverage of stream and 

ridge lines (localized surface maximums) which described the general morphology of the 

surface and an ASCII diagnostic file listed all specified input data and parameters, and 

listed the number of sinks removed.

Each DEM was evaluated in several ways:

1) A new contour coverage at half the original contour interval (12.5 m) was 

created from the DEM and overlaid onto the original contour data and visually 

compared;
2) The diagnostic drainage coverage was overlaid onto the original stream data 

and visually compared, and;

3) The diagnostic sink coverage was overlaid onto the original contour and 

stream data to determine the locations of remaining sinks.

A DEM that best matched the contour and stream data was then selected (Figure

4.3).
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Figure 4.3. a) gray shaded DEM generated with TOPOGRID b) gray shaded 
DEM of watershed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NOTE TO USERS

Page(s) missing in number only; text follows. Page(s) 
microfilmed as received.

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

4.4 Watershed Mask Grid

The watershed mask is a binary raster map consisting of one's and zero’s which 

identify the area falling inside (1) and outside of the watershed (0). The sequence of 

steps required to delineate the watershed boundary is shown in Figure 4.4.

Digital Elevation Model |

Calculate Flow Accumulation
Calculate Flow direction | r = l

t
Select Pour Point |

r
Calculate All Upslope Cells 1
Contributing to Pour Point |

Figure 4.4. Flow chart of steps required to delineate watershed boundary.

A flow direction map was first derived from the DEM. The direction of flow 

from each cell (x) was based on the direction of steepest descent in relation to its eight 

surrounding cells (Figure 4.5). Cell x was assigned a numeric code of either 

1,2,4,8,16,32,64 or 128 to indicate the direction of flow. For example, if the direction of 

steepest descent of cell x is directly downward, the cell would receive a flow direction 

code of 4.

32 64 128
16 X 1
8 4 2

Figure 4.5. Possible flow direction codes assigned to cell x.

Based on the flow direction map layer, a flow accumulation grid was produced 

which calculated all cells that flowed into each cell. From the flow accumulation grid, a 

general drainage network can be extracted by selecting cells that exceeded a specified
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value. High cell values indicate areas of concentrated flow. Following this, the location 

of the pour point of the watershed outlet can be determined. The stream network grid 

was essential when selecting the pour point If the selected outlet is not located on a 

stream network cell, incorrect delineation would result A pour point was selected at the 

mouth of the watersheds main river channel where it flowed into the Kulupielegu river. 

Finally, the watershed was delineated using the flow direction grid by calculating all 

cells which flowed into the selected pour point

Results from the delineation showed some minor discrepancies between adjacent 

watersheds. Many of the major roads in this area were constructed through relatively 

flat dry areas where few stream crossings were required. Roads were elevated to prevent 

road washouts which created an artificial boundary between adjacent watersheds (Figure 

4.6). The delineated watershed is shown with the two roads that should define a portion 

of the east and south edges of the watershed. In several sections it can be seen that the 

boundary either falls short of or extends beyond the road. This incorrect delineation is 

due to the resolution of the original contour elevation of 15.24 m which does not capture 

the slight changes in elevation. Streams and topography of the watershed are shown in 

Figure 4.7a and 4.7b.

The selected DEM elevation values were converted from feet to centimetres to 

maintain the DEM vertical resolution. A conversion factor (values were divided by 100) 

was then be applied in r.hydro.CASC2D to convert the elevation values from 

centimetres to meters. Using the standard export routine in ARC/INFO, the DEM was 

exported to GRASS. The grid coordinates were in feet due the TM projections system. 

Therefore, a conversion factor (values were divided by 3.281) was specified in 

r.hydro.CASC2D to convert the horizontal grid resolution from feet to metres.

The final delineated watershed consisted of 12,485 grid cells with a watershed 
area of 16.8 km2.
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Figure 4.6. Main roads.
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Figure 4.7. Watershed: a) streams and b) contours (elevations in feet).
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4.5 Infiltration Parameters Grid

Since detailed soils information was not available for the study area, soil 

information was obtained from a 1:250,000 scale soil quality map prepared by the Soil 

Research Institute of Ghana by Adu (1969). The soil quality map delineated arable and 

non-arable lands and provided a general description on soil texture, fertility, slope, 

erosion hazard and suitable agriculture activities for the area. Polygons representing the 

various soil qualities were digitized and attribute data was assigned to each polygon. In 

addition, stream data was digitized and stored as a separate coverage. Both coverages 

were then transformed to the Transverse Mercator projection system. The calculated 

RMS error was 28 m.

With the integration of data compiled from different sources and map scales, a 

problem often encountered was the misalignment of similar map features when overlaid. 

To ensure that the soils quality data was properly co-registered with the 1:50,000 scale 

maps, the 1:250,000 scale stream coverage was overlaid with the 1:50,000 scale stream 

coverage. By overlaying the stream coverages, the spatial accuracy of the two map 

sources was evaluated. The stream coverages were used since this feature was present 

on both 1:50,000 and 1:250,000 scale maps. The overlay revealed a systematic shift of 

approximately 300 m in the east-west (x-coordinate) direction between the two stream 

coverages. Although it was uncertain which maps contained the error, the Ghana Survey 

1:50,000 scale map was considered to be correct for this study. The error was corrected 

by shifting the x-coordinates on the 1:250,000 scale coverage 300 m to the west. This 

resulted in a better match between the coverages. The same shift was also applied to the 

soil quality coverage. The corrected 1:250,000 streams coverage was not used in any 

further analysis.

The corrected soils coverage was converted to a 75 m grid and the watershed 

mask grid was used to mask the soils falling within the watershed. The masked soils 

grid consisted of three soil quality classifications (Figure 4.8a). A soil texture class was 

assigned to each soil quality class based on their drainage properties. The final soil grid 

consisted of two soil textures, clay and sandy loam (Figure 4.8b).
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m n Very good arable n ib  with moderately d en , well domed, 
sandy loams. Soili have moderately permeable eubeoile end 
moderately good water-retaining capacity but suffer from dry 
season drought. Fertility i* low to mndaiate and can be oiaed 
by the application of fertilizer*. Slope* very between 2-3% and 
mechanical tillage i* eaay. Soils axe suitable for dry land 
cuhivatian of cereals, bean*, nuts, oflenerii, tobacco and hibiscus.

Very poor arable soils; veiy shallow, eery severely eroded or 
gullied. Occupy 2-3% dope*. Heavy textures and alow infiltration 
ate induce high surface tun-off. Soils paddle whan wet bat in dry 
period*, soils harden and ndbit airfare crusts. Fertility is very low.
Areas may be developed for improved grazing «  utilrad for forestry 
or tree crop production

Good, very deep arable aoils occurring an alluvial flats (elopes 2% 
or less) Heavy textures induce poor drainage and waterlogging
or flooding but water holding capacity is good, h i dry periods, sods harden 
and exflrit surface etaefcs Soils are locally lime or m im ii
Fertility is fair, erosion hazard is slight nod mechanical tillage is easy.
Sails are suitable for intensive mechanized irrigstioa farming of nee, other 
cereals, sugarcane, vegetables, tobacco, fonts, and Wgatnrt unproved pasture.
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Figure 4.8. a) soil quality b) reclass of soil quality classes to soil texture 
based on drainage properties.
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Initial soil moisture is dependent on rainfall history and should be based on 

collected field data when available. Acheampong (1988) reports that between the 

months of August and September soils in northern Ghana are generally at field moisture 
capacity. Field moisture capacity defines the point where water within the soils larger 

pores (macropores) have been completely drained due to gravity and have been replaced 

with air. Since no soil field data was available, the initial soil moisture content for all 

soils were assumed to be equal to the soil water stored at the 1/3 bar atmosphere (field 

capacity) condition.

Four separate grids were created containing the required Green and Ampt 

infiltration parameters. Effective porosity (Gg), wetting front capillary pressure (Hf ), 
saturated hydraulic conductivity (K) and soil moisture at 1/3 bar (field capacity) values 

were estimated using the procedure outlined by Rawls et al. (1983b) and are summarized 

in Table 4.2 (see Appendix 3 for procedure). Each grid contained one infiltration 

parameter and varied according to the soil texture. The required fixed scale factor for 

each parameter was applied to each raster map and exported to GRASS.

Table 4.2. Estimated Green and Ampt soil infiltration parameters.

Soil Initial Moisture Effective Wetting Front Saturated Hydraulic
Texture Content at 1/3 Porosity Capillary Conductivity K.

bar (volume) 0e Pressure Hf (cm) (cm/hr)

Sandy Loam 0.18 0.45 11.00 3.0

Clay 0.38 0.40 100.00 0.01

4.6 Manning’s n Value Grid

Landuse data was derived from SPOT multi spectral (XS) satellite imagery 

acquired during the dry season in January 1991. Dry season data was selected due to the 

difficulty in acquiring cloud free data during the rainy season. The use of dry season
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data however, is advantageous because it increases the variability between major 

landuses, allowing for easier Ianduse identification. All image processing was carried 

out using ERDAS software. The image classification procedure consisted of two general 

steps: 1) image rectification; and 2) image classification.

4.6.1 Image Rectification

The process of projecting an image onto a flat plane that conforms to a specified 

map projection system is known as image rectification (ERDAS, 1991).

Image rectification involves locating ground control points (GCP) with known 

real world coordinate (reference) values from a map or image and their corresponding 
GCP locations (source) on an un-rectified image. Rectified coordinates are extrapolated 

from the GCP’s with two polynomial equations (linear or non-linear) onto a rectified 

output image. The required transformation matrix of coefficients for each polynomial is 

calculated through least-squares regression analysis. The choice of a linear or non-linear 

polynomial is dependent on the complexity of the image being rectified. Images of hilly 

terrain typically have greater distortion requiring the use of non-linear polynomials. In 

comparison, less complex images, (e.g., flat terrain), may only require a linear 

transformation.
The accuracy of the transformation is expressed as a Root Mean Square (RMS) 

error. Unlike the RMS error discussed earlier, this RMS error is calculated by re­

transforming the map or image GCPs coordinates hack to the un-rectified GCPs 

coordinate system. The distance between the un-rectified GCP and the re-transformed 

GCP is the RMS error, measured in the unit elements (pixels) of the image (ERDAS, 

1991).
During the rectification process, pixel brightness values from the un-rectified 

image are assigned to pixels on an output image containing the rectified GCPs at a 

specified output pixel size. The un-rectified image GCPs are matched and overlaid onto 

the output image containing the rectified GCPs. Since the two grids are rarely aligned 

correctly, a resampling method is required to assign the un-rectified pixel values to the 

output image (ERDAS, 1991).
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Prior to image rectification, the general study area was subset from the frill SPOT 

XS image. The SPOT subset covered approximately five Ghana Survey map sheets.

Seventy GCPs were initially located on both maps and SPOT XS image. 

Identifiable points included road intersections, stream intersections and dam 

impoundments. A linear transformation matrix and a RMS error was calculated using 

these points. Due to the relative flat terrain of the study area, a linear transformation was 

considered to be sufficient The GCPs which contributed to the highest RMS error were 

removed and a new transformation matrix and RMS error was calculated. The above 

steps were repeated until the specified RMS error of 1 pixel or 20 m was reached. The 

final linear transformation matrix, using thirty nine GCPs, was used in the rectification 

process. Pixels were resampled to 25 m using a cubic convolution resampling method. 

The SPOT XS satellite image for the watershed is shown in Figure 4.9.

4.6.2 Landuse Classification

An unsupervised classification procedure was used to derive general landuse 

categories from the rectified satellite image. The first step involved submitting the 

image to a clustering algorithm that defined natural groupings or clusters within the 

image. The clustering algorithm relies on the assumption that brightness values 

representing a specific land covers are located closer together in spectral space, whereas, 

different land cover are separate. This assumption is also based on the fact that surface 

materials have different spectral reflectance in the visible and near-infrared bands. This 

can be illustrated by producing a simple 2 band scatterplot of brightness values which 

define their location in spectral space (Figure 4.10). Brightness values for water in the 

visible and near-infrared bands are typically very low. In contrast brightness values for 

vegetation are typically found to be much higher in the near-infrared band compared to 

the visible band.
Once the clusters have been defined, each pixel is examined and assigned to a 

class based on the criteria established by a decision rule, such as the Maximum 

Likelihood decision rule (ERDAS, 1991). Classes are identified and merged into 
meaningful categories.
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Band 2 (near infra-red) brightness values

Figure 4.10. Two band scatterplot in spectral space showing two possible clusters: water 
(•) and vegetation (o). Adapted from Lillesand and Kiefer ( 1994).

Two hundred and fifty-five clusters for this study were defined using the Iterative 

Self-Organising Data Analysis (ISODATA) technique and classified using a Maximum 
Likelihood decision rule.

The 255 classified groupings were re-classed into landuse classes. The landuse 

classes were based on available GPS (Global Positioning System) ground truth data 

collected in August 1994 around the Pusiga village, located approximately 10 km east of 

the study area (Runesson, pers. comm., 1996). The ground truth data fell within an area 

approximately 10 x 10 km in size. Ground truth data were collected along selected 

transects throughout sections of the 10 x 10 km area. Transects were selected that best 

captured the various landuse classes and was based on visual inspection of raw satellite 

data and field experience within the area.

While traversing a transect line, a Garmin GPS field unit was used to record the 

Longitude and Latitude transect location. Whenever a change in cultivation or 

vegetation occurred, the location was recorded and field notes were taken describing the 

general vegetation type and cultivation practices. In addition, roads and culverts were 

also mapped out with the GPS unit

The GPS data was then differentially corrected using data collected at a 

temporary base station in Bawku. The data was then exported to ARC/INFO,
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transformed to the Transverse Mercator system and then exported as a vector file (DIG 

file) to ERDAS.
This data was used in lieu of no available ground truth data within the study area 

and was assumed to be acceptable since landuse within this area is similar to conditions 

occurring within the watershed under study.

Once in an ERDAS vector file format, the transect lines and roads were overlaid 

onto the classified image to verify proper registration. It was at this stage that the GPS 

data was found to be systematically shifted approximately 100 m north of the features on 

the satellite image. Since the SPOT image was rectified to the 1:50,000 Ghana survey 

maps from which all other data was based, the satellite image coordinates were assumed 

to be correct The error was corrected by applying a positive systematic shift of 100 m 

to all the y-coordinates of the GPS data.

Based on the GPS transects, field notes and using photo interpretation skills, the 

255 classes were classified into four landuse classes (Table 4.3.).

Table 4.3. Landuse class codes and description.

Landuse Class Class Description

1 Non-Agriculture: dense brush

2 Non-Agriculture: brushland / range with short grasses and low brush

3 Agriculture: com and millet with some short grasses.

4 Agriculture: groundnuts and beans, and bare soil

To match the DEM grid cell size of 75 m, the landuse map was resampled from 

25 m to 75 m using a 3x3 majority rule filter. The filter merged the 9 cells falling within 

the 3x3 filter and assigned a value to the new cell based on the majority landuse class. 

The landuse map was exported to ARC/INFO as a grid and reclassified to Manning’s n 

values based on published values and general knowledge of the area (see Table A. 1.2 in
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Appendix 1). Since the M anning’s n values are expressed as floating point values and 

all grid values must be in a non-decimal format, a scaling factor was applied by 

multiplying all values with 1000. Thus, a scaled value o f400 would represent a 

M anning’s n value of 0.40. The watershed boundary grid was used to m ask the final 

landuse grid as shown in Figure 4.11. Manning’s n values assigned to each landuse class 

and an area summary of each class is listed in Table 4.4. The final landuse map was 

exported to GRASS.

Table 4.4. Summary of assigned Manning’s n values and percentage of area for each 
landuse class.

Landuse Class Code Assigned M anning’s n value Area of watershed (%)

1 0.40 3

2 0.15 8

3 0.10 35

4 0.05 54

4.7 Rainfall Event

Currently, only daily rainfall data are collected at the Bawku meteorological 

monitoring station, the nearest station to the study area. This data unfortunately does not 

provide any information on rainfall duration or rainfall intensity. Therefore, a 

hypothetical uniform rainfall event of 1 hour with a rainfall intensity of 30 mm/hr was 

selected as the rainfall event for this study.

i
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Figure 4.11. Landuse classes derived from dry season SPOT XS satellite image.
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4.8 Watershed Outlet Location and Slope and Computational Time Step

The location of the watershed outlet was located by:

1) displaying the flow accumulation grid in ARC/INFO;

2) selecting the cell location at the watershed outlet; and

3) recording the displayed x and y cell location.

The outlet slope was calculated as the elevation difference from the next 

upstream cell flowing in the x-direction and the outlet cell divided by the cell size. The 

calculated outlet slope was 0.004 (/.e., 0.4%). A computational time step of 10 seconds 

was fixed for all landuse scenario simulations.
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CHAPTERS: PARAMETER SENSITIVITY ANALYSIS

5.1 Purpose

A sensitivity analysis was performed to test selected model input parameters for 

the greatest influence on the watershed hydrological response. Watershed parameters 

investigated included: 1) grid cell size; 2) soil infiltration parameters based on soil 

texture; 3) initial soil moisture at 1/3 bar (field capacity); and 4) soil moisture at 15 bar 

(wilting point).

Due to the large number of possible parameter combinations and the difficulty in 

interpolating them, uniform parameter values were investigated instead of spatially 

varying parameters. In addition, due to difficulties in implementing the channel routing 

option, no channel routing was performed, Therefore, all surface flow was routed as 

overland flow.

A spatial and temporally uniform rain event of 1 hour with a 30 mm/hr rainfall 
intensity was run for a total rainfall-runoff event time of 24 hrs.

5.2 Sensitivity Analysis for Grid Cell Size

To test the model sensitivity to various grid cell sizes, two more DEM and 

watershed masks were generated at 100 m and 200 m grid cell sizes following the 

procedure outlined in section 4.3 and 4.4.

To check for potential errors in the DEM, a rainfall event was first simulated for 

each grid cell size using a spatially uniform Manning’s n value of 0.05 without soil 

infiltration. A computational time step of 30 seconds was used for the 100 m and 200 m 

grid cell size and a 10 second time step for the 75 m grid cell size. A lower time step for 

the 75 m grid cell size was required to maintain numerical stability. The watershed 
outlet location was determined and the bed slope recalculated as 0.002 and 0.007 for the
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100 m and 200 m DEM, respectively. Infiltration was neglected in an effort to separate 

the effect of infiltration from grid cell size on the watersheds hydrologic response (Table 

5.1).

Table 5.1 Summary of r.hydro.CASC2D input parameters required for grid cell 
sensitivity simulations

Grid cell size

Input 75 m 100 m 200 m

watershed_mask1 basin_75 basin_100 basin_200

elevation1 dtm75 dtmlOO dtm200

outlet
x-coordinate
y-coordinate
slope

1,180,455
2,344,838
0.004

1,180,483
2,344,731
0.002

1,181,154
2,344,241
0.007

Manning n 0.05 0.05 0.05

unif_rain_int 30 30 30

time_step 10 30 30
rain_duration 3,600 3,600 3,600

totjdme 86,000 86,000 86,000
unit_el_conv 100 100 100

unit_space 3.281 3.281 3.281
write_time_step 1200 1200 1200

Raster map

During each simulation, surface water depth maps were generated at twenty 

m inute intervals and examined for areas containing unrealistic amounts of surface water 

accumulation. Examination of the surface water depth maps revealed that all three DEM 

contained several internal sinks. These internal sinks are a result of flow directions
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between adjacent grid cells being restricted to the horizontal and vertical directions in 

r.hydro.CASC2D. Each DEM was manually edited by adjusting the elevation values to 

ensure drainage would flow to an adjacent grid cell in either the horizontal or vertical 

flow direction. The above simulation procedure was repeated to ensure all sinks were 

corrected.

Comparisons were made between the three grid cell sizes and assessed for the 

number of grid cells, total area, length of perimeter and average slope. Watershed area, 

perimeter and average slope were similar (Figure 5.1). However, with regards to the 

spatial extent of the watershed, a noticeable error can been seen with the 200 m grid cell 

size where portions of several streams extended beyond the border of the watershed. In 

addition, due to the low relief surrounding the watershed outlet, a portion of the main 

channel ran along the edge of the watershed boundary. There was a large difference 

between the number of cells required to represent the watershed, with the number of 

cells decreasing as cell size increased.

Results of the models sensitivity to grid size is shown in the form of an outlet 

hydrograph in Figure 5.2. As grid cell size decreased, it can be seen that a substantial 

increase in peak discharge occurred. Only a minimal change in time to peak occurred 

with a total difference of 30 minutes between the 75 m and 200 m grid cell size. Since 

no infiltration was computed, all rainfall appeared as surface runoff.
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Grid cell size: 75 m
Number of Cells: 2,485 
Watershed Area (square km): 16.8 
Watershed Perimeter (m): 23,500 
Avenge Slope (%): 1.4

Grid cell size: 100 m
Number of Cells: 1,621 
Watershed Area (square km): 16.2 
Watershed Perimeter (m): 21,800 
Avenge Slope (%): 1.4

Grid cell size: 200 m
Number of Cells: 388 
Watershed Area (square km): 16.5 
Watershed Perimeter (m): 22,800 
Avenge Slope (%): 1.3

N

+
Kilometres

Figure 5.1. Summary of changes to watershed area, watershed perimeter, 
average slope, number of cells and spatial extent for three different cell 
sizes: 75 m, 100 m and 200 m.
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Figure 5.2. Hydrographs illustrating sensitivity to 75 m, 100 m and 200 m grid cell 
sizes.

5.3 Sensitivity Analysis for Green and Ampt Infiltration Parameter

In an effort to simplify the possible combinations of the Green and Ampt soil 

infiltration parameters, infiltration parameters were not examined individually but were 

assessed according to their values based on soil texture using values from Rawls et al. 

(1983b). In addition, initial soil moisture at 1/3 bar and 15 bar tension were examined 

for each soil texture. A uniform Manning’s n value of 0.05 was used for all simulations. 

Model inputs for the Green and Ampt infiltration sensitivity analysis are summarized in 
Table 5.2.

For each soil texture, the required Green and Ampt soil infiltration parameter 

grid maps were prepared following the same procedure outlined in section 4.5 with the 

exception that spatially uniform values were used for the whole watershed (Table 5.3).

Results of the soil infiltration parameters sensitivity analysis are summarized in 

Table 5.4. Hydrographs for soils that contributed the three highest runoff volumes are 

shown in Figure 5.3.
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Table 5.2. Summary of r.hydro.CASC2D input parameters required for Green and Ampt 
soil infiltration sensitivity simulations.

Soil Texture

Input Clay Silty Clay Sandy Clay Silty Clay 

Loam

Clay Loam

w atershedm ask1 mask_75 mask_75 mask_75 mask_75 mask_75

elevation1 dtm75 dtm75 dtm75 dtm75 dtm75

outlet
x-coordinate
y-coordinate
slope

1,180,455
2,344,838
0.004

1,180,455
2,344,838
.0.004

1,180,455
2344,838
0.004

1,180,455
2,344,838
0.004

1,180,455
2,344,838
0.004

conductivity1 cond cond cond cond cond

capillary1 cap cap cap cap cap

porosity1 pore pore pore pore pore

moisture1 moist moist moist moist moist

M anningn 0.05 0.05 0.05 0.05 0.05

unif_rain_int 30 30 30 30 30

time_step 10 10 10 10 10

rain_duration 3,600 3,600 3,600 3,600 3,600

tot_time 86,000 86,000 86,000 86,000 86,000

unit_el_conv 100 100 100 100 100

unitspace 3.281 3.281 3.281 3.281 3381

1 Raster map
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Table 5.2. (continued) Summary of r.hydro.CASC2D input parameters required for 
Green and Ampt soil infiltration sensitivity simulations.

Soil texture

Input Sandy Clay 

Loam

Silt Loam Loam Sandy loam Loamy

Sand

watershedmask1 mask_75 mask_75 mask_75 mask_75 mask_75

elevation* dtm75 dtm75 dtm75 dtm75 dtm75

outlet
x-coordinate
y-coordinate
slope

1,180,455
2,344,838
0.004

1,180,455
2^44,838
0.004

1,180,455
2344,838
0.004

1,180,455
2,344,838
0.004

1,180,455
2,344,838
0.004

conductivity* cond cond cond cond cond

capillary* cap cap cap cap cap

porosity' pore pore pore pore pore

moisture* moist moist moist moist moist

Manning n 0.05 0.05 0.05 0.05 0.05

unif_rain_int 30 30 30 30 30

time_step 10 10 10 10 10

rain_duration 3,600 3,600 3,600 3,600 3,600

tot_time 86,000 86,000 86,000 86,000 86,000

unit_el_conv 100 100 100 100 100

unit_space 3.281 3.281 3.281 3.281 3.281

1 Raster map
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Table 5.3. Estimated Green and Ampt soil infiltration parameters based on soil texture.

Soil Texture Initial Moisture 
Content at 

1/3 bar 
(volume)

Initial Moisture 
Content at 

15 bar 
(volume)

Effective
Porosity

9e

Wetting Front 
Capillary 

Pressure Hr 
(cm)

Saturated 
Hydraulic 

Conductivity K. 
(cm/hr)

Loamy Sand 0.125 0.060 0.375 6.00 10.00

Sandy Loam 0.18 0.070 0.45 11.0 3.00

Loam 025 0.120 0.40 20.0 0.80

Silt Loam 0275 0.125 0.475 29.0 0.60

Sandy Clay Loam 025 0.16 0.32 10.0 1.00

Clay Loam 0.35 020 0.36 35.0 0.15

Silty Clay Loam 0.37 0.28 0.40 60.0 0.06

Sandy Clay 0.325 0225 0.325 28.0 0.18

Silty Clay 0.425 0275 0.475 100.0 0.07

Clay 0.38 028 0.40 100.0 0.01
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Table 5.4. Summary of model sensitivity to soil infiltration using various Green and Ampt 
parameters based on soil texture and initial soil moisture at 1/3 and 15 bar. 
Volume outflow and volume infiltrated represent the percentage of total rainfall 
volume.

Time Initial Soil Moisture at 1/3 bar Initial soil moisture at 15 bar

Time to Peak 
peak discharge 
(min) (cms)

Volume
outflow

(%)

Volume
infiltrated

(%)

Time to 
peak 
(min)

Peak
discharge

(cms)

Volume
outflow

(%)

Volume
infiltrated

(%)

Loamy Sand n/a 0.00 0.0 100 n/a 0.00 0.0 100

Sandy Loam n/a 0.00 0.0 100 n/a 0.00 0.0 100

Loam n/a 0.00 0.0 100 n/a 0.00 0.0 100

Silt Loam n/a 0.00 0.0 100 n/a 0.00 0.0 100

Sandy Clay 

Loam

148 0.11 0.1 100 n/a 0.00 0.0 100

Clay Loam n/a 0.00 0.0 100 n/a 0.00 0.0 100

Silty Clay 

Loam

n/a 0.00 0.0 100 n/a 0.00 0.0 100

Sandy Clay 167 38.48 73.0 27 208 14.00 29.0 71

Silty Clay 194 20.50 42.0 58 279 3.37 9.0 91

Clay 168 39.43 80.0 18 179 31.16 63.5 36.5
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Figure 5.3. Hydrographs illustrating sensitivity to Green and Ampt soil infiltration 
parameters based on soil texture and initial soil moisture at 1/3 bar and 15 bar.
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Only three soil textures, clay, silty clay and sandy clay produced any substantial 

runoff with the remaining soil textures producing no runoff due to complete or near 

complete infiltration under a 1 hr, 30 mm/hr uniform rainfall event (Table 5.4). 

Comparisons between initial soil moisture showed no difference with the coarser 

textured soils. With reference to the hydrographs in Figure 5.3, a large effect on peak 

discharge was shown with regards to changes in initial moisture content between 1/3 bar 

and 15 bar for clay, silty clay and sandy clay with peak discharges decreasing with the 

finer texture soils.

5.4 Sensitivity Analysis for Manning's n Overland Roughness Coefficient

Four Manning’s n overland roughness coefficient values were selected for 

analysis. Values were selected that reflected current conditions found within the 

watershed. Values tested were 0.05, 0.10, 0.15 and 0.40. All simulations were 

performed using spatially uniform Manning’s n values with no infiltration. Again, 

infiltration was neglected in order to separate the effects of infiltration from changes in 

Manning’s n values with respect to the watersheds hydrologic response. Model inputs 

for the Manning’s n value sensitivity analysis are summarized in Table 5.5. Results are 

shown in Figure 5.4.

Changes in Manning’s n values have a large effect on peak discharge and time to 

peak. As values increased, peak discharge decreased and time to peak was further 

delayed. A reduction in the Manning’s value reduced surface friction and enabled 

surface runoff to reach the outlet faster, so the hydrographs rise and recession is rapid. 

An increase in Manning’s value from 0.05 to 0.10, for example, resulted in a 48% 

decrease in peak discharge with a 123 minutes difference in peak times.
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Table 5.5. Summary of rJiydro.CASC2D input parameters required for Manning's n 
sensitivity simulations.

Input 0.05

Manning’s n 

0.10 0.15 0.40

watershed_maskI mask_75 mask_75 mask_75 mask_75

elevation1 dtm75 dtm75 dtm75 dtm75

outlet
x-coordinate 1,180,455 1,180,455 1,180,455 1,180,455
y-coordinate 2,344,838 2,344,838 2,344,838 2,344,838
slope 0.004 0.004 0.004 0.004

Manning_n 0.05 0.05 0.05 0.05

unifrain_int 30 30 30 30

time_step 10 30 30 30

rain_duration 3,600 3,600 3,600 3,600

tot_dme 86,000 86,000 86,000 86,000

unit_el_conv 100 100 100 100

unit_space 3.281 3.281 3.281 3.281

1 Raster map
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Figure 5.4. Hydrographs illustrating sensitivity of Manning’s n overland flow 
parameter.
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CHAPTER 6: LANDUSE SCENARIOS

6.1 Purpose

To demonstrate the application of r.hydro.CASC2D and its use in evaluating the 

hydrologic response to changes in landuse practices, two hypothetical future landuse 

scenarios were simulated and evaluated for changes in surface runoff and infiltration 

volume, peak discharge and time to peak discharge at the watershed outlet. Results were 

evaluated to determine if proposed landuse practices effectively reduced runoff. The 

selected scenarios were based on situations which were believed to be realistically 

achievable within the watershed with some effort from landuse planners and land 

owners.

For evaluation purposes a baseline was required for comparisons with proposed 

landuse scenarios. A baseline was selected based on landuse derived from a classified 

1991 SPOT XS satellite imagery as described in Chapter 4. Two hypothetical future 

landuse scenarios were developed from the baseline landuse map which are reflected 

within the model as a change in the Manning's n values. It can be expected that a 

change of landuse may alter other input parameters, such as soil hydraulic properties. 

However, for this study, only changes to Manning's n values were adjusted while all 

other input parameters remained fixed. In addition, changes were concentrated within 

specific contiguous regions since rehabilitation efforts would normally be implemented 

within specific areas and not randomly distributed throughout the watershed.

6.2 Landuse Scenarios

Crops, such as, groundnuts and beans provide sparse vegetative cover and leave 

little crop residue after harvest. Collection of remaining crop residue for fodder and fuel, 

and grazing of animals on plant stalks during the dry season removes any remaining 

ground cover. These bare areas experience excessive runoff at the start
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of the rainy season. Soil losses ranging from 2.2 tonnes ha'1 yr*1 for bare soils and 0.1 

tonnes ha'1 y r1 for grass and legumes mixtures have been reported from experimental 
runoff plots at Manga (Dept of Geography, 1992). Landuse scenarios selected were 

directed towards area rehabilitation by increasing vegetation cover in an effort to reduce 

soil erosion by reducing the erosive effects of surface runoff.

The first landuse scenario, Case 1, was selected to investigate the impact of 

shifting agriculture production from groundnuts and beans to maize and millet crops, 

which provide increased ground cover. The second landuse scenario selected, Case 2, 

was directed towards investigating the impact of converting areas identified as poor 

arable and severely eroded soils under groundnut and bean agriculture to range land and 

crop tree production. The three landuse scenarios are summarized as follows:

Baseline: Landuse conditions as classified from 1991 SPOT XS satellite
imagery.

Case 1: Change of agriculture from groundnuts and beans to maize and
millet agriculture.

Case 2: Conversion of beans and groundnuts agriculture to range land and
crop tree production on poor arable soils.

For Case 1, a 2.4 km2, contiguous area under groundnuts and beans production 

was selected in the southern portion of the watershed and reclassed to maize and millet 

agriculture (Figure 6.1). For Case 2, all agriculture areas under groundnut and bean 

production on poor arable soils was identified and reclassed to range land (Figure 6.2). 

Manning’s n values were then assigned to both new landuse grids as outlined in section 

4.6 and exported to GRASS. The percentage of area for each landuse and its associated 

change for each landuse scenario is summarized in Table 6.1.
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Figure 6.1. Landuse class distribution for Case 1.
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Figure 6.2. Landuse class distribution for Case 2. 
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Table 6.1. Percentage of watershed area of each landuse class and its associated change 
for each landuse scenario (shown in brackets).

Landuse Baseline Case 1 Case 2

Non-Agriculture: dense brush 3 3(0) 3(0)
Non-Agriculture: brushland / range with short 8 8(0) 35 (-27)
grasses and some low brush
Agriculture: com and millet, some short grasses. 35 52(+17) 35(0)
Agriculture: groundnuts and beans, with bare soil. 54 37 (-17) 27 (-27)

Simulation events were run using the prepared data files described in Chapter 4 

and the appropriate Manning’s n value grid. A one hour rainfall event with a uniform 

rainfall intensity of 30 mm/hr for a total rainfall-runoff simulation event time of 15 hours 

was used for all three simulations. A 10 second computational time step was also used 

for all three simulations. No channel routing was performed. All surface runoff was 

routed as overland flow and channels were assumed wide (equal to cell size) with 

infiltration occurring within the stream channels. Model inputs required for the landuse 

scenarios are summarized in Table 6.2. Landuse scenario simulation results are 

graphically shown in Figure 6.1 and summarized in Table 6.3.
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Table 6.2. Summary of rJiydro.CASC2D input parameters required for landuse 
scenarios.

Landuse scenarios 

Input Baseline Case 1 Case 2

watershedmask1 mask_75 mask_75 mask_75

elevation1 dtm75 dtm75 dtm75

outlet
x-coordinate
y-coordinate
slope

1,180,455
2,344,838
0.004

1,180,455
2,344,838
0.004

1,180,455
2,344,838
0.004

conductivity1 cond cond cond

capillary1 cap cap cap

porosity1 pore pore pore

moisture1 moist moist moist

roughness_map1 baseline easel case2

unif_rain_int 30 30 30

time_step 10 10 10

rain_duration 3,600 3,600 3,600

tot_time 86,000 86,000 86,000

unit_el_conv 100 100 100

unit_space 3.281 3.281 3.281

1 Raster map
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Figure 6.3. Hydrographs illustrating effect of different landuse scenarios.

Table 6.3. Summary results of landuse scenarios. Volume outflow and volume 
infiltrated represents the percentage of total rainfall volume.

Landuse
Scenario

lime to peak 
(min)

Peak discharge 
(cms)

Volume 
outflow (%)

Volume
infiltrated

(%)

Baseline 275 7.04 9.30 90

Case 1 306 4.41 7.11 92

Case 2 444 1.76 3.18 96
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As shown in Figure 6.3, a minor peak occurs at the beginning of the storm for all 

three landuse scenarios which results from surface runoff due to the low infiltrating clay 

soils adjacent to the watershed outlet The minor peak is identical for all three 

simulations since no landuse changes occurred in this portion of the watershed. Sim ilar 

to the first peak, the second peak comes from surface runoff from the low infiltrating 

clay soils found within the south west portion the watershed. Since no runoff occurs on 

the sandy loam soils, a time delay occurs until surface runoff from the low infiltrating 

areas reach the watershed outlet. Because all surface runoff is being routed as overland 

flow, re-infiltration from surface runoff from the low infiltrating soils occurs when 

runoff reaches the high infiltrating sandy loam soils. Since the DEM was constructed 

with stream data, overland flow concentrates along stream flow paths as it moves 

towards the watershed outlet. As a result, soils along concentrated flow paths eventually 

become saturated and produce overland flow. Although there may be some loss due to 

re-infiltration, the effect on the overall hydrograph is minimal.

The effect of the two proposed landuse scenarios on peak discharge decreased 

relative to the baseline simulation. Peak discharges were decreased by 37% and 75% for 

Case 1 and Case 2, respectively, compared to the baseline simulation. A smaller but 

noticeable delay in time to peak also occurred. The percentage of runoff to total rainfall 

volume decreased for Case 1 and Case 2 with an associated increase in infiltration 

volume.

63 Model Calibration and Verification

Before any model results become useful, it is important to ensure the model 

provides accurate and reliable results. The accuracy and reliability of a model is usually 

tested in two stages, calibration and verification. Calibration is performed to ensure the 

model inputs are reasonable and requires a past event where rainfall and stream 

discharge data are available. The hydrologic response is simulated for the known 

rainfall-runoff event and compared to the observed data to determine if the estimated 
results are within a predetermined range (e.g., 2% - 3%). If they are not within the 

predetermined range, parameter values are adjusted until an acceptable match is made at
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which time, the model is then considered to be calibrated (Bedient and Huber, 1992; 

Morgan, 1988; Parker etcd., 1995).

Verification is performed to ensure the models outputs are reasonable. Similar to 

model calibration, verification requires rainfall and stream discharge data from a past 

event that is independent from the calibration data. The hydrologic response is 

simulated for the known verification rainfall-runoff event and compared to the observed 

data. If the estimated and observed data are within a predetermined range, the model is 

considered to be verified. Model verification should be conducted for several storms. If 
further adjustments to the model parameters are required it is important to note that the 

verification data becomes part of the calibration dataset and a new dataset is required for 

the verification (Bedient and Huber, 1992; Morgan, 1988; Parker et al., 1995).

For this study, no model calibration or verification was performed due to 

inadequate rainfall data and the lack of stream discharge data.
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CHAPTER 7: DISCUSSION

7.1 Database

The integration of data from a variety of sources resulted in problems with proper 

co-registration of spatial features when the data was merged into one database. Both the 

soil quality map and GPS data coordinates were found to be systematically shifted (by 

various amounts) when compared to the topographic map sheet data. As it is 

difficult to ascertain where the error exists (topographic map sheets, soils quality map or 

GPS data), the topographic base map was assumed to be correct and all data was 

adjusted to match the Ghana survey map sheet The Ghana survey map sheets were 

selected because of its larger scale.

Historical meteorological data at the Bawku-Manga station was collected on a 

daily basis. For single event modelling purposes this data was inadequate since it did 

not provide information on rainfall duration or rainfall intensity. Since the watershed 

selected for this study was ungauged, no stream discharge data was available and model 

calibration could be not performed. Daily stream discharge data are currently available 

from the Tamne watershed adjacent to the study area, but was inadequate for single 

event hydrological modelling.

To delineate correctly the watershed from the DEM, supplementary elevation 

data along roads is required. Due to the relatively low relief of the area, the roads 

created an artificial watershed boundary. Such small changes in elevation were not 

captured on the Ghana Survey maps at the 1:50,000 scale and resulted in minor errors in 

the delineation of the watershed boundary. For modelling of larger watersheds, the 

15.24 m (50 ft) contour data used to generate the DEM would be sufficient.

The Ghana Survey map sheet and soil quality maps represented conditions at the 

time they were produced. Updating obvious features, such as roads and streams, was not
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difficult due to the availability of satellite imagery. A more difficult task was evaluating 

changes to the soils quality map. As discussed earlier, the increase in land degradation 

within the area has been well documented. Thus, it can be expected that the soils quality 

map may not properly reflect current conditions and soil properties, such as infiltration, 
may have changed since the map was produced.

7.2 Model Sensitivity

The model’s output was sensitive to all parameters tested. Although an increase 

in grid cell size from 75 m to 100 m and 200 m did not substantially alter the general 

morphological characteristics of the watershed (i.e., area, perimeter, slope), a 

considerable decrease in peak discharges occurred as the grid cell size decreased. Since 

the study area’s topography is not very complex, the increase in grid cell size did not 

have a large impact on watershed morphology. This may not be the case for more 

complex watersheds where grid cell size may have a greater impact. It can be expected 

that smaller grid cell sizes provide better representation of watershed characteristics. 

Furthermore, it is important to note that the data accuracy will not increase if the grid 

cell size decreases below the original resolution of the original data. The differences in 

peak discharge indicated that care should be taken when selecting the correct grid cell 

size. However, for this study, an optimal grid cell size was not determined in this study 

because calibration data was not available.

Under the 30 mm/hr rain intensity rainfall event, clay, sandy clay and silty clay 

all produced variable rates of surface runoff. There was no substantial runoff that 

occurred with regards to the other soil textures examined. The Green and Ampt 

infiltration parameters were estimated using the soil texture approach by Rawls et al. 

(1983b). Detailed field studies will be required to validate these values or values should 

be adjusted to account for changes in soil porosity, organic matter, rock content and 

surface soil crusting. Infiltration rates may be significantly reduced by surface crusting 

which may develop from the impact of rain drops onto the soil surface. In Mali, for 

example, the infiltration capacity of a sandy soil ranges from 100 mm to 200 mm but 

may be reduced to 10 mm when a surface crust has developed (Morgan, 1988). In
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addition, with the alternating wet and dry season, soils in the study area experience 

intense leaching of the top soils which results in hardening of the soils and the formation 

of hardpans, which reduce infiltration rates (Dept of Geography, 1992).

Manning’s n values provided a measure of surface friction that controlled the 

flow velocity of the surface runoff. With increasing Manning’s n values, peak 

discharges decreased with corresponding delayed peak times. Even though infiltration 

was neglected in the sensitivity analysis, the Manning’s n values also determined the 

length of the time the surface runoff remains on the surface which influences the volume 

of water that can be infiltrated into the soil. Classified satellite imagery provided a 

current description of landuse within the area but the Manning n value selected to 

represent the landuse requires careful consideration. Further research would be required 

to establish appropriate values for the region which better reflect landuse and soil 

conditions, such as cross contour furrow formation used in cultivation.

73  Landuse Scenarios

The impact of two proposed landuse scenarios on the watersheds hydrologic 

response illustrated the application of r.hydro.CASC2D for landuse planning. The 

impact of alternative landuse strategies directed at increasing the vegetative cover was 

found to decrease the peak discharges and delayed peak times relative to the baseline 

condition. Further studies will be required to determine if the differences reported here 

are significant.

Agriculture is the primary landuse within the study area with crops grown on a 

subsistence level. Traditional fanning systems, involving shifting cultivation and long 

fallow periods, has been replaced by continuous cropping involving shorter fallow 

periods due to food pressures from the rapid growth in population within the area. 

Agriculture is considered to be the major factor contributing to the problem of land 

degradation in the Upper North East region (Dept, of Geography, 1992).

The proposed landuse scenarios selected for this study illustrated two possible 

rehabilitation strategies for improving the poor environmental conditions found within 

the study area. Low residue crops, such as groundnuts and beans are extensively grown
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in the area. For Case 1, a shift in agriculture crops from groundnuts and beans to com 

and millet was proposed. This would help to increase ground cover but still maintain the 

area under agriculture production. Removal of crop residue after harvest for fodder and 

fuel, and free range grazing of cattle should be discouraged in an effort to maintain a 

surface cover after harvest (Quashie-Sam, pers. com m ., 1996).

The impact of shifting areas under groundnuts and bean production on soils 

classified as non-arable to range land and crop tree production was demonstrated in Case 

2. This scenario provides a multi-purpose approach to land rehabilitation by providing 

grazing areas for cattle and a means for generating income for farmers from the cash 

crop trees.

The proposed landuse scenarios illustrate two possible options available in an 

effort to increase ground vegetation. A variety of other options may be explored. For 

example, utilizing the channel routing option in r.hydro.CASC2D, the impact of channel 

rehabilitation efforts may be examined. Past programs designed to eradicate the tse-tse 

fly breeding grounds resulted in the removal of vegetation along stream banks and 

caused severe stream bank erosion along many of the stream channels (Quashie-Sam, 

pers. comm., 1996). Scenarios may be investigated that involve establishment of grasses 
and trees along waterways in an effort to provide tree cover and reduce stream bank 

erosion.

With continued pressure on agriculture lands from a growing population, a 

sustainable agriculture system is required. Another proposed landuse scenario may be 

directed at introducing an agroforestry system within the watershed. Due to continuous 

cropping and reduced fallow periods, soil fertility levels within the Upper North East 

region have declined. Agroforestry is a system that incorporates agriculture and tree 

crops, animals and/or forest plants which increases overall production per unit land. A 

successful agroforestry system ensures soil conservation, micro-climate and water 

conservation and provides economic and socio-economic benefits (Agyeman and 
Brookman-Amissah, 1987).

Possible agroforestry systems that may be explored include the establishment of:
1) woodlots for poles and firewood production;
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2) field boundaries comprised of tree and herbaceous legumes; or

3) trees and herbaceous legumes to improve soil fertility and to provide livestock 

fodder.

7.4 Study Limitations

The major limitation to this study was lack of data and was an important issue 

that must be addressed if further research is to be conducted. Although satellite imagery 

provided an excellent means of updating some features on outdated maps, the lack of 

current material for this project was considerable. Lack of appropriate meteorological 

data was also a major problem.

One of the difficulties of utilizing satellite imagery is acquiring cloud free 

imagery. For this study, dry season imagery was used because cloud free imagery was 

not available during the rainy season. Radar imagery may be useful since clouds are 

transparent to microwave radiation and images can therefore be collected during the 

rainy months and incorporated with the dry season data. Using a variety of image 

merging techniques landuse classifications from satellite imagery can be improved. In 

addition to landuse classification, remote sensing offers a method to collect rainfall, soil 

moisture and evapotranspiration information used by r.hydro.CASC2D.

Furthermore, the lack of calibration and model verification due to inadequate 

rainfall data and the lack of stream discharge data prevents any meaningful measure of 

the model’s performance.
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

This study was initiated to investigate the use of a physical based hydrological 

model in a semi-arid environment and illustrated its application to landuse planning.

The generation of the required database utilizing GIS, remote sensing and GPS 

technologies was demonstrated and was found to be an efficient method in the data 

capture and management of the model inputs. Problems associated with merging data 

from different sources and scales were discussed. Areas where data were inadequate 

were identified: 1) outdated maps; and 2) inadequate meteorological data.

An important component in this study was the compilation of the database used 

to describe the required spatial and non-spatial watershed characteristics. The initial 

database based on 1:50,000 scale Survey of Ghana topographical map sheet (1964) 

provided the initial topography and drainage data used to generate the DEM and for 

rectification of the SPOT satellite image. Supplementary information such as roads and 

villages were also obtained from the map sheet. Soils data were obtained from soil 

quality maps produced at a 1:250,000 scale by Adu (1969). A classified SPOT XS 

satellite imagery provided a current description of landuse practices. In addition to 

providing landuse data, the satellite image was important in updating the topographical 

map sheets (e.g., correct shifting streams) and in verifying the accuracy of all spatial 
information (e.g., GPS data) to insure all data was co-registered.

The GIS was an important tool for the preparation of the required database for 

the model used in this study. The advantage of a GIS-based model was illustrated with 

the production of output maps describing the spatial distribution of surface flow depths 

which was helpful in assessing the accuracy of the DEM. In addition to the surface flow
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depth maps, cumulative infiltration depth maps and infiltration rate maps may also be 

generated and compared to examine the spatial effects of various landuse scenarios 

which may help to identify areas requiring further attention.

The sensitivity analysis illustrated the model’s ability to reflect changes in 

selected model parameters. Careful consideration was required when selecting the grid 

cell size, soil infiltration parameters and M anning’s n values.

Increasing land degradation within the study area required a better understanding 

of the impact proposed changes in landuse have on the watershed’s hydrologic response. 

Simulation of two proposed landuse scenarios demonstrated the impact proposed 

changes would have on the hydrologic response of the area.

8.2 Recommendations for Future Research

The following is a summary of the areas that require further research with 

regards to watershed modelling in Ghana.

1) Collection of rainfall and stream discharge data recorded at an appropriate 

temporal resolution (i.e., minutes);

2) Verification of published values (i.e., Green and Ampt soil hydraulic parameters 

and Manning’s n values) to determine if values are appropriate for conditions 

found in Ghana;

3) Investigate the potential of remote sensing technologies in determining some of 

the required input parameters. This may include the use of radar imagery for 

collecting rainfall data or determining soil moisture conditions; and

4) Model calibration and verification will be required. This step is essential and can 

only be carried out when the appropriate rainfall and discharge data have been 

collected.
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APPENDIX 1

Average Green and Ampt parameters and Manning's n values
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Table A1.1. Average Green and Ampt parameters for various soil textures (from Rawls 
eta l, 1983).

Soil Texture Total
Porosity

♦

Effective
Porosity

Be

Wetting Front 
Capillary 

Pressure Hf (cm)

Hydraulic 
Conductivity 

K (cm/hr)

Sand 0.437 0.417 4.05 11.78

Loamy Sand 0.437 0.401 6.13 2.99

Sandy Loam 0.453 0.412 11.01 1.09

Loam 0.463 0.434 8.89 0.34

Silt Loam 0.501 0.486 16.68 0.65

Sandy Clay Loam 0.398 0.330 21.85 0.15

Clay Loam 0.464 0.309 20.88 0.10

Silty Clay Loam 0.471 0.432 27.30 0.10

Sandy Clay 0.430 0.321 23.90 0.06

Silty Clay 0.479 0.423 29.22 0.05

Clay 0.475 0.385 31.63 0.03
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Table A. 1.2. Manning's n values for overland flow (from Haan et al., 1994).

Surface type n Value

Smooth surfaces (concrete, asphalt, or bare soil) 0.011

Fallow (no residue) 0.05

Cultivated soils

Residue cover <20% 0.06

Residue cover >20% 0.17

Grass

Short grass prairie 0.15

Dense grasses 0.24

Range (natural) 0.13

Woods
Light underbrush 0.40

Dense underbrush 0.80
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APPENDIX 2

Command Line Description for r.hydro.CASC2D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

Command line syntax for the r.hydro.CASC2D model (from Saghafxan and Ogden, 
1996):

SYNOPSIS: r.hydro.CASC2D, r.hydro.CASC2D help, r.hydro.CASC2D [-toepidbuq] 
elevation=mapname time_step=value tot_time=value discharge=mapname 
outlet_east&north&sIope=eastnorth,bedslope rain_duration=value 
[watershed_mask=mapname] [initial_depth=mapname] [storage_capacity=mapname] 
[intercepti on_coef5cient=Tnapname] [roughness_map=mapname] [Manning n=value] 
[conduct!vity=mapname] [capillary=mapname] [porosity=mapname] 
[moisture=mapname] tpore_index=mapnamel [residual_sat=mapname] 
[lake_map=mapname] [lake_elev=mapname] [radar_intensity_map=mapname] 
[links_map=mapname] [nodes_map=mapname] [channel_input=mapname] 
[table_input=mapname] [dis_profile=mapname] [wat_surf_profile=mapname] 
[hyd_location=mapname] [r gage file=mapname] [unif_rain_int=value] 
[num_ofraingages=value] [gage_time_step=value] [radar_time_step=value] 
[write_time_step=value] [unit_eI_conv=value] [unit_lake=value]
[unit_space=value] [d_thresh=value] [dis_hyd_location=mapname] 
[depth_map=mapname] [inf_depth_map=mapname] [surf_moist_map=mapname] 
[rate_of_infil_map=mapname] [dis_rain_map=mapname]

PARAMETERS/OPTIONS: The following input/output parameters/options control 
complexity of the simulation. Map and file names in square brackets [| are 
optional. Some maps are mutually exclusive ( logical -or- ), while some maps 
require other maps to enable proper function ( logical -and-).

INPUT

Topography

elevation=mapname map of elevation (DEM).

outlet_east&north&sIope=value, easting, northing, and bed slope at the outlet
value,value (comma delimited)

Time

tot time=value

time_step=value computational time step duration in seconds (1 to 
30 seconds)
total simulation time in sec.
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Overland Flow

[Manning_n=value]

-or-

[roughness_map=mapname]

[watershed_mask=mapname]

[d_thresh=value]

[initial_depth=mapname]

RainM

rain_duration=value

[unif_rain_int=value]

-or-

[r gage file=filenamel 

-and-

[num_of_raingages=value]

-and-

[gage_time_step=value]

-or-

[radar_intensity_map=mapname]

-and-

spatially uniform Manning's n roughness value for 
overland flow.

spatially varied map o f  Manning’s n roughness 
coefficient (values in 1000*Manning's n).

map of watershed boundary (or mask). This option 
is recommended, as it speeds execution greatly.

threshold overland depth, in meters, below which 
overland routing will not be performed (i.e. average 
depression storage).

map of initial overland (not lakes) depth in mm.

total rainfall duration in sec.

spatially uniform rainfall intensity in mm/hr.

raingage rainfall input file name (ASCII).

number of recording raingages.

time step (temporal resolution) of recorded raingage 
data in sec.

prefix of time series of maps of radar- (or 
otherwise-) generated rainfall intensities in mm/hr.
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[radar_time_step=value]

Interception

[storage_capacity==mapname]

-and-

[interception_coefficient]

Infiltration

[conductivity=mapname]

[capillary=mapname]

[porosity=mapname]

[moisture=mapname]

[pore_index=mapname]

[residual_sat=mapname]

Lakes

[lake_map=mapname]

[lake_elev=mapname]

Channel Routing 

[channel_input=filename]

time increment between radar- (or otherwise-) 
generated rainfall maps in sec.

map of vegetation storage capacity in tenths of mm.

map of interception coefficient (values in 
1000*actual coefficient).

map of soil saturated hydraulic conductivity in 
tenths of mm/hr (Req'd for G&A and Redist).

map of soil capillary pressure head at the wetting 
front in tenths of mm (Req’d for G&A and Redist).

map of soil effective porosity (values in 
1000*porosity) (Req’d for G&A and Redist).

map of initial soil moisture (values in 
1000*moisture) (Req’d for G&A and Redist).

map of soil pore-size distribution index (Brooks & 
Corey lambda) in 1000*index (Req’d for Redist).

map of soil residual saturation (values in 
1000*residual saturation) (Req’d for Redist).

map of lakes categories.

map of lakes initial water surface elevation (also 
see unit_lake).

channel input data file name (ASCII), required for 
explicit (EX) and implicit (IM) channel routing 
methods.
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[links_map=mapname]

[nodes_map=mapname]

[table_input=filename]

[dis_profiIe=fiIename]

[watjsurf_profile=filename]

[hyd_location=fiIename]

Units

[unit_el_conv=value]

[unit_lake=value]

[unit_space=value]

Output

discharge=filename

[dis_hyd_location=fiIename]

[write_time_step=value]

-and-

map of channel network link numbers. (EX & IM)

map of channel network node numbers. (EX & IM)

look-up table file for links with breakpoint cross 
section, link type 8, (ASCII) (IM)

channel initial discharge profile file name (ASCII)- 
(IM)

channel initial water surface profile file name 
(ASCII). (IM)

file name containing link and node numbers of 
internal locations where discharge hydrographs are 
to be saved (ASCII).

unit conversion factor by which the values in 
elevation must be DIVIDED to convert them into 
meters.

unit conversion factor by which the values in lake 
surface elevation map must be DIVIDED to 
convert them into meters.

unit conversion factor by which all region easting 
and northing values must be DIVIDED to convert 
them into meters.

outlet hydrograph file name (ASCII).

output file name for discharge hydrograph at 
internal locations (ASCII)

time increment for writing output raster maps in 
seconds.
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[depth_map=mapname] output maps of surface depth in mm.

[inf_depth_map==mapname] output maps of cumulative infiltration depth in
tenths of mm.

[surf_moist_map=mapname] output maps of surface soil moisture in number of
fractions of a thousand.

[rate_of_infil_map=mapname] output maps of infiltration rate in mm/hr.

[dis_rain_map=mapname] output maps of distributed rainfall intensity in mm.

FLAGS: There are several flags whose utility is driven by data availability
and/or user's choice.

-t spatially interpolates raingage rainfall intensities using Thiessen polygon technique. 
The default technique uses inverse-distance-squared proportionality for interpolation 
of rainfall intensity over space.

-o routes edge-accumulated overland flow out of active region (ONLY when no mask is 
specified). Often the surface water accumulated at the edges of the current region 
creates severe backwater effects and may limit the use of longer computational time 
steps.

-e performs one-dimensional explicit finite difference channel routing. May be suitable 
for low- to medium-intensity rainstorms over small arid and semi-arid watersheds 
with no base flow discharge. This option often limits the computational time step to 
small values (<10 seconds). Channel bed smoothing is recommended to eliminate 
adverse slopes. No hydraulic structures, except reservoir spillways, can be simulated.

-p assumes uniform channel geometry in each link (requires -e option). If this option is 
chosen, the channel input file (channel_input) must have only one line per fluvial link 
rather than the default of one line per node.

-I performs Preissmann double sweep implicit channel routing. Particularly suitable for 
watersheds with some base flow to avoid dry-bed condition with channel slopes less 
than 1%. Supercritical slopes cannot be handled; a warning message will be printed if 
supercritical flow is encountered.

-b initializes the channel depth and discharge files (similar to -d, requires -i option) 
using the standard step backwater method. This option must be used with -i flag and 
replaces -d option to write "dis_profile" and "wat_surf_profile" files. At present, only 
link types 1,2, and 8 may exist in the channel network.
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-d performs channel initialization for implicit routing (similar to -b, requires -i option) 
by flooding the entire channel network with a horizontal water surface and draining 
down to normal depth using a  y(t) outlet boundary condition (similar to -b). It is 
essential for implicit channel routing technique that a minimum initial base flow 
discharge exist in the channels and also the corresponding initial water surface profile 
at each node in the channel network have a realistic value. When the depth at the 
outlet reaches normal depth, the values of depth and discharge at each node is written 
to "dis_profile" and "wat_surf_profile" files for use in start up o f actual simulations. 
With this option no other component of the model is executed; only the implicit 
channel routing is performed to create initial depth and discharge files necessary for 
start up of actual simulations.

-u writes discharges in cubic feet per second (cfs) and volumes in cubic feet in 
"discharge" file. The internal calculations are all in SI units regardless of this flag. 
The default SI unit prints the discharges in cubic meters per second (cms) and 
volumes in cubic meters (m3).

-q quietly skips printing iteration, time, and discharge values to the screen. No status 
report is printed.
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APPENDIX 3 

Green and Ampt Soil Texture Graphs
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Based on soil texture, organic matter and porosity, the Green and Ampt soil 

infiltration parameters were estimated from soil texture charts defined by Rawls et al. 

(1983). Soil texture charts for soils with a base porosity condition (0% porosity change) 

and 0.5% organic matter content are presented in Figure A.3.1 and A.3.2. Although not 

shown, additional charts have been defined for increased changes in soil porosity (+10%, 

20% and +30% over the base porosity) which results from soil modification from 

cultivation.

The estimated soil infiltration parameters for a sandy loam soil is illustrated in 

Figures A.3.1 and A.3.2. Since no soil texture data was available, the centroid of the soil 

texture class was used.
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Figure A.3.1. Green and Ampt infiltration parameters for a sandy loam soil a) saturated 
hydraulic conductivity b) wetting front capillary pressure soil.
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porosity b) soil moisture at 1/3 bar c) soil moisture at 15 bar.
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