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Abstract

Despite advances in our understanding of the beneficial role of silicon in the 

biosphere, surprisingly little is known of the molecular mechanism by which silicon is 

absorbed, transported, accumulated and deposited by organisms. We used silicon-29 

NMR spectroscopy to investigate the interaction of the rare amino acid

2,3-rra«s-3,4-cw-3,4-dihydroxy-L-proline (DHP) with aqueous silicon. Spectral data 

revealed the structure of three organosilicate complexes that DHP spontaneously forms 

with aqueous silicon at pH =  7.9, making DHP the first ever known Si-binding amino 

acid. Such a discovery has potential significance in accounting for silicon’s biological 

role in hydroxyproline-rich structural glycoproteins found in both mammals and plants.

The cell wall morphology of wheat, Triticum aestivum L., grown in either -Si 

or +Si media was examined by optical and scanning electron microscopy. The 

preliminary results indicate that Si-deficiency causes swelling of the parenchyma cell 

walls, supporting the hypothesis that silicon may enhance cell wall integrity by 

cross-linking pectic polysaccharide molecules via complexation at the apiofuranose 

binding sites. Silicon-29 and '^C NMR spectroscopy were used to test this theory at the 

molecular level.

Blood and urine were collected periodically from a human subject following 

ingestion of ̂ ^Si-enriched silicic acid and analyzed by ICP-OES and NMR spectroscopy. 

In addition to studying the kinetics of Si uptake and excretion, we obtained the first
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reliable spéciation of Si-containing molecules in human biofluids, and demonstrated that 

mono- and disilicic acid are the predominant species.
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Chapter 1 -  Introduction

1.1 Silicon in Biology

Silicon is the second most abundant element in the Earth’s crust after oxygen, 

usually occurring in the form of silica and silicate minerals and almost invariably with 

tetrahedral coordination to oxygen. Elemental silicon, although rare in nature, is 

sometimes found in fulgurites, which are fused tubules of sandy soil created by lightening 

strikes. Minerals containing SiOe octahedra {e.g., stishovite) are associated with meteor 

impact events [1]. Although silicon is thus readily accessible in the biosphere [2], the 

true extent of its biological impact has only recently been recognized [3],

Silicon is known to be an essential element in the classical sense for only a 

small number of primitive organisms such as diatoms, radiolarians, horsetails and some 

sponges. Silicon is needed for these organisms to complete their respective life cycle 

[2]. However, many higher plant species {e.g., vascular plants including grasses and 

cereals) require silicon to protect against a host of abiotic and biotic stresses (wilting, 

lodging, metal toxicity, salinity, temperature extremes, fungal diseases, insect damage) 

and to enhance the efficiency of photosynthesis [4], For these plants, Si-deficiency
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causes demonstrable abnormalities in growth, development, reproduction and overall 

viability. Epstein [4] argues that silicon should at the very least be recognized as 

“quasi-essential” in such cases. In animals, Si-deficiency has been linked to bone and 

connective tissue abnormalities [5], heart disease [6], cancers [7] and neurodegenerative 

disorders [8], Some workers have suggested that silicon’s role is not biological, and is 

instead related to its ability to limit the bioavailability of toxic metals such as aluminum, 

copper and iron [3,9-11],

The solubility of silica in aqueous solution is markedly pH dependent above pH 

8.0 [12], but nearly constant across the ca. pH 5-8 range typical of groundwater and soil 

solutions — ranging from 5 ppm (8 X 10'  ̂mol U ') to 11 ppm for quartz and 100-130 

ppm for amorphous silica in neutral water at 298 K. At these concentrations, silica 

exists primarily as monosilicic acid Si(0H)4 (weakly acidic, pK^i = 9.8) and, to a lesser 

extent, disilicic acid (OH)3 SiOSi(OH) 3  [13, 14]. However, as the Si concentration 

approaches the solubility of amorphous silica, a wide variety of rapidly interchanging, 

low molecular weight oligomers appear [15, 16]. The mechanism of silicate 

condensation has been studied intensively [17].

Solid silicates are not only formed by geological processes. A wide range of
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organisms including protists, higher plants and animals [18] are known to produce 

amorphous hydrated SiO:, the second most abundant biogenic mineral after carbonate 

minerals [19]. Significant strides are being made towards unraveling the processes that 

govern the deposition of silica within organisms. The most studied species in the field 

of biosilicification (the process by which organisms capture and mineralize silica [20]) 

are diatoms, a phylum of unicellular algae that lives in marine and freshwater habitats 

[21]. They utilize silicon to create silicified cell walls (frustules), enhance 

photosynthesis and induce metabolic processes leading to the synthesis of certain proteins 

and DNA [22]. Each diatom species is characterized by a specific biosilica cell wall 

that contains regularly arranged slits or pores in the size range between 10 and 1000 nm

[23]. Biosilica morphogenesis takes place inside the diatom cell within a specialized 

membrane-bound compartment termed the silica deposition vesicle or SDV. It has been 

postulated that the SDV contains a matrix of organic macromolecules that not only 

regulate silica formation but also act as templates to mediate biosilica nanopatteming

[24].

Insight into the nature of this organic matrix has been gained through the 

characterization of certain biosilica-associated compounds extracted from different
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diatom species. These macromolecules are long-chain polyamines and polycationic 

polypeptides termed silaffins [24-27], both of which have been shown to promote 

formation of silica nanospheres from silicic acid in vitro under neutral or even slightly 

acidic conditions [25, 28] similar to those reported for the diatom SDV [29].

Silaffm-IA, a low molecular weight silaffin isolated from Cylindrotheca 

fusiformis, consists mainly of post-translationally modified lysine and serine residues. 

Each serine residue is phosphorylated, and this high level of phosphorylation is essential 

for biological activity [30]. The lysines exist in three different derivative forms: 

e-N-dimethyllysine; s-N-trimethyl-5-hydroxylysine; and lysine residues covalently linked 

to long-chain polyamines [31(b)]. These long-chain polyamines have linear chains of 

up to twenty N-methylated propylamine units that are attached to putrescine or some 

putrescine derivative [26]. Polyamines are known to affect silica formation in several 

ways [28, 31, 32]. They catalyze siloxane-bond formation and possibly act as templates 

or structure-directing agents in the SDV. Recently, a highly polyanionic 

phosphoprotein termed “native silaffm-2” (or natSil-2) was isolated from diatom biosilica 

[33]. Silaffm-2 lacks intrinsic silica formation activity, but is able to regulate the 

silica-forming activity of long-chain polyamines and silaffin-1 A.
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Long-chain polyamines have been found in all diatom species investigated. 

Silaffins also occur [25, 26], although they are not quite as ubiquitous as the polyamines 

[31]. Kroger et al. have proposed that these two groups of molecules self-assemble 

electrostatically to form the organic matrix used by diatoms to generate their porous 

biosilica patterns [33].

Silica-precipitating proteins also occur in sponges. The siliceous marine 

sponge Tethya aurantia deposits silica in needlelike spicules that support the organism 

and provide defense against predation. About 75% of the dry weight of Tethya aurantia 

is comprised of silica spicules (1-2 mm long, 30 pm in diameter), containing an axial 

central filament of protein (1-2 mm long, 2 pm in diameter) that is fully occluded within 

the silica [34]. These filaments can be isolated, purified and resolved into three very 

similar silicon-free subunits named silicatein a, P and y. Each has been shown to be 

capable of catalyzing and structurally-directing the in vitro polymerization of silica and 

silsesquioxane (RSi0 3 /2 )n polymeric networks from the corresponding alkoxide substrates 

(RSi(OEt)3 , R= OEt, Me, Ph) at ambient temperamre and neutral pH [35].

Analysis of the DNA sequence for silicatein a, which comprises about 70% of 

the mass of the filaments, revealed that this subunit is structurally related to members of
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the cathepsin L and papain family of proteases [34]. Zhou et al. [35] suggested that the 

catalytic role of silicatein a is therefore similar to that of the homologous proteases, 

which activate the hydrolysis of peptide and ester bonds under neutral conditions. They 

proposed a detailed reaction mechanism in which the serine residue with hydroxymethyl 

side chain at position 26 and the histidine residue with imidazole side chain at position 

165 are catalytically involved in the hydrolysis [35]. The macroscopic silicatein 

filaments are also thought to serve as scaffolds that organize the deposition and growth of 

the resulting silica and silsesquioxane products [35]. (For the sponge Suberites 

domuncula, Krasko et al. [36] reported that silicate influences the genes expression of the 

enzyme silicatein and collagen via the mediator myotrophin.) However, it has been 

questioned whether silicatein’s ability to hydrolyze silicon alkoxides in vitro has any 

appreciable biological significance [37, 38].

Investigations into the nature of the biosilica matrix have also been performed 

on higher plants. Silicon is mostly absorbed by plants in the form of uncharged silicic 

acid Si(0H)4, the bulk of which is deposited irreversibly as amorphous (“opaline”) silica 

phytoliths in cell walls throughout the plant. Although deemed a non-essential nutrient 

for the majority of plants, silicon uptake provides many benefits such as improvements to
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pest and pathogen resistance [39], drought and heavy-metal tolerance [40-43], structural 

stability and photosynthetic capacity [44], as well as to the overall quality and yield of 

crops [45]. Moreover, excess silicon availability does not cause severe injury to plants 

[46]. Since the benefits of silicon absorption vary from species to species and are 

usually only apparent under conditions of biotic and abiotic stress, a comprehensive view 

of silicon plant biology and its role in plant health has not yet been formulated.

Knowledge of silicon metabolism at the molecular level in higher plants even lags behind 

that in diatoms and sponges [37, 39].

Silicon absorption in higher plants is either thought to be a passive event that 

coincides with the uptake of water [47] or an active form of nutrient foraging [48, 49, 50]. 

Based on measurements of silicon content and transpiration rates. Ma et al. [46, 51, 52] 

assigned over 500 plant species into one of three categories: high silicon accumulators 

(active uptake or sequestration); intermediate silicon accumulators (passive uptake); or 

non silicon accumulators (rejective uptake). The relationship between silicon 

translocation and transpiration is complex [39], and no inference was made concerning 

the mechanism of uptake {e.g., via channel, pump or carrier).

Similarly, the mechanism of silicon deposition in plants has yet to be
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characterized. As in the case of diatoms and sponges, however, there is evidence to 

suggest that silica deposition occurs via H-bonding interactions with an organic matrix 

composed of proteinaceous macromolecules which contain hydroxylated amino acids and 

saccharides [17, 53]. Kauss et al. [54] recently reported a novel proline-rich protein 

expressed by cucumber seedlings in response to pathogen attack that catalyzes silica 

deposition at the site of attempted fungal penetration, presumably owing to the high 

density of positively-charged amino groups. The authors speculate on the general 

applicability of the mechanism in other green plants.

Only within the past few decades has it been recognized that silicon actively 

participates in the normal life processes of higher animals [55]. Connective tissues such 

as aorta, trachea, tendon, bone, cartilage and skin are unusually rich in silicon, as shown 

by studies in several species [56], thus inferring that silicon is an integral component of 

the glycosaminoglycans and collagens that contribute to the formation of connective 

tissues. Moreover, silicon-deficiency has been shown to result in the abnormal 

development of articular cartilage, connective tissues [57], skull [58] and long bone [59]. 

Carlisle et al. have suggested a mitochondrial role for silicon in the proline synthetic 

pathway [60], and that silicon regulates the activity of enzyme prolyl hydroxylase [61].
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They have also noted that the Si level of osteogenic cells is generally high, especially in 

the osteoblast which is the cell’s metabolically active state, providing additional support 

for silicon’s metabolic role in connective tissue formation [62].

These intriguing findings have stimulated much research on silicon 

bioavailability in mammals including calves [63], dogs [64] and humans [65, 66].

Silicon supplementation of postmenopausal women with osteoporosis reportedly not only 

inhibited bone resorption, it increased both the trabecular bone volume [67] and bone 

mineral density [68]. These results are supported by studies with ovariectomized rats, 

the standard animal model for postmenopausal osteoporosis, in which oral silicon 

completely abrogated the loss of bone mass [69, 70]. Powell et al. [71] recently 

demonstrated a strong correlation between dietary silicon intake and increased cortical 

bone mineral density in both men and premenopausal women. Surprisingly, this 

correlation vanishes completely in the case of postmenopausal women. These same 

researchers showed that physiological concentrations of orthosilicic acid stimulates 

collagen type I synthesis in human osteoblast-like cells and enhances osteoblastic 

differentiation [72]. TanBeeWan et al. [73] subsequently determined that the closely 

related silicone degradation product, dimethylsilanediol, enhanced both the survival and
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proliferation rate of human osteoblast-like Saos-2 cells.

1.2 Molecular Basis of Silicon Biofunctionality

i) Polyol Interactions with Aqueous Silicon

Despite advances in our understanding of the beneficial role of silicon in the 

biosphere, surprisingly little is known of the mechanism by which silicon is absorbed, 

transported, accumulated and deposited by organisms. While some workers speculated 

that inorganic silicon might be extracted and conveyed as a complex with organic 

compounds [74, 44], others were skeptical [3b] since there was no direct evidence of 

either Si-C or Si-O-C functionality occurring in nature. Only synthetic examples of 

organosilicon and organosilicate complexes were known to exist [75-78],

In aqueous solution, the only known instances of silicon directly interacting 

with organic molecules were those in which silicon is chelated by catechol [79], 

2-hydroxypyridine N-oxide [80], tropolone [81], or their respective analogues under 

alkaline conditions, yielding organosilicate complexes containing a single hexaoxosilicon 

centre. In 1999, Kinrade and coworkers [82] identified a series of stable organosilicate 

complexes that form in aqueous alkaline silicate solutions upon addition of certain

10
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aliphatic polyols (e.g., mannitol, xylitol and threitol). The silicon centres in these 

organosilicate complexes are also not tetrahedral, existing instead with either pentaoxo- 

or hexaoxo-coordination as indicated by the corresponding ^^Si NMR resonances at ca. 

-100 ppm and -140 ppm, respectively. Such hypercoordinated silicon-polyolate 

complexes only form when the binding ligand contains four or more adjacent hydroxy 

groups, with the centre pair in threo configuration. They are especially stable if the 

ligand also contains a carboxylic acid end group [83], so much so that they exist even in 

neutral solution at biologically relevant Si concentrations [84]. The 6-coordinated Si 

complexes tend to be favoured under highly alkaline conditions [82, 83]. Subsequent 

molecular orbital modeling studies [38, 85] indicated that the likely bonding sites on the 

acyclic polyols are the threo hydroxy pair, as was recently verified crystallographically 

by Benner et al. [86]. The resulting organosilicate molecules contain two or three 

5-membered chelate rings, and the dimensional configuration of the non-coordinating 

hydroxy groups greatly enhance the overall stability (in the solid state, at least) by 

forming strong hydrogen bonds with ligating alkoxo functions [86].

Certain furanoidic molecules are also capable of binding silicon hypervalently 

[87, 88]. Silicon complexation occurs with 1,4-anhydroerythritol,

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cw-l,2-dihydroxycyclopentane, ribose and with various ribonucleosides (e.g., adenosine, 

cytidine, guanosine) and ribonucleotides (including ATP and NAD+), all of which 

possess vicinal cw-diol functionality [87]. Silicon-29 NMR spectra of solutions 

containing pentaoxosilicon complexes are generally characterized by three strong signals 

between ca. -97 and -102 ppm. Detailed analysis has revealed that these resonances 

correspond to three different diastereomers of the monomeric bis(diolato)-hydroxo 

complex, [(L=)2 SiOH]“ (where L represents the cis-diol ligand), in which the ligands are 

oriented in syn.syn, anti,anti or syn,anti configuration [88, 90(a)].

Having established that aqueous silicon is readily complexed by a wide variety 

of sugars and sugar derivatives, the Kinrade group and their collaborators proceeded to 

examine whether organosilicates might play a role in biological systems. First, they 

conducted an in vivo ^^Si NMR investigation of synchronized colonies of the freshwater 

diatom Navicula pelliculosa [89]. A weak ^^Si resonance was reproducibly observed at

ca. -131.5 ppm about 6 h after the diatoms were fed ^^Si isotope, and assigned to a

transient hexacoordinated organosilicate complex. This observation represented the 

first-ever direct evidence of a hypercoordinated organosilicate complex formed during

the life cycle of an organism. Next, ^^Si NMR was employed to examine the chemical

12
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spéciation of silicon in the root exudate of wheat (Triticum aestivum L.) [50]. 

Significantly, there was no evidence of organosilicates; only monosilicic acid and 

disilicic acid were detected.

Boric acid has long been known to react with mono- and polyhydroxy 

hydrocarbons in aqueous solution to form stable mono- and polyolato-boron complexes 

not unlike those formed with aqueous silicon [90]. To date, several naturally occurring 

boroesters have been identified, including three microorganism-derived antibiotics [91], 

an extracellular signaling molecule in bacteria [92], and the plant cell wall 

oligosaccharide, rhamnogalacturonan-II or RG-II [93], which will be discussed later. In 

the present study, therefore, we looked to organoborate chemistry for clues to the 

molecular basis of silicon biofunctionality.

ii) Amino Acid Interactions with Aqueous Silicon

As discussed above, mechanisms proposed to account for the activity of 

silica-precipitating proteins in diatoms and sponges are based on direct interaction of 

their constituent amines and peptides with the silanol groups of silicic acid (or 

alkoxysilane). Although the electrostatic, hydrogen-bonding and hydrophobic influence

13
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of the individual amino acids and oligopeptides on silica formation have been 

investigated [94], no stable complex containing an amino acid bound to silicon has ever 

been reported [38, 85]. Indeed, Kinrade et al. [95] could find no evidence of aqueous 

silicon binding to any of the 20 most common amino acids in alkaline solution.

A ternary borate-alcohol-trypsin complex was recently reported forming 

spontaneously in aqueous solution (Figure 1.2.1), a finding with important implications 

for the design of selective serine protease inhibitors [96, 97]. The boron centre in the 

resulting complex is esterified by the hydroxymethyl group on serine-195 of trypsin and 

the oxygen atom of 4-aminobutanol [96]. The formation mechanism for this stable 

complex, likely involving the imidazole nitrogen on histidine-57 of trypsin, is remarkably 

similar to that proposed for the silicatein-mediated silicification process — the active

sites of silicatein a also being residues of serine and histidine (Figure 1.2.2) [35].

4 -A m m o b u ta n o l
/  ___  4 -A m in o b u ta n o l

»  "A  <

/
pH is” -CH2 CH2

Figure 1.2.1 Speculated formation mechanism of trypsin-borate-4-aminobutanol ternary 

complex (after [96]).

14
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OEl

Figure 1.2.2 The proposed mechanism for silicatein-mediated catalysis of the 
alkoxysilane polycondensation (after [35]). The transitory protein-substrate 

intermediate is stabilized as a pentavalent silicon species through a donor bond from the 
imidazole nitrogen atom.

In the present study, we investigated a corresponding silicate-aminobutanol- 

trypsin system fo r evidence o f any interaction that could support the mechanisms 

proposed to account fo r  the activity o f silica-precipitating proteins.

3,4-Dihydroxyproline (DHP) is the rarest of all amino (imino) acids. It 

contains three stereogenic centres, C2, C3, and C4, and consequently has eight possible 

stereoisomers (Figure 1.2.3). Three members of the L-series have been detected in 

nature [98]. The first to be isolated, 2,3-c/5-3,4-rrara-3,4-dihydroxy-L-proline (1), was 

obtained over 30 years ago from hydrolysates of a cell wall protein of the diatom 

Naviculapelicullosa [99]. The 2,3-/ra«5-3,4-tran5-3,4-dihydroxy-L-proline (2) was

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



isolated in 1980 from acid hydrolysates of the toxic mushroom Amanita virosa and 

identified in the virotoxin cyclic heptapeptides [100]. In 1994, the

2,3-fra«5-3,4-c/5'-3,4-dihydroxy-L-proline (3) was identified as the sixth residue in the 

repeating decapeptide sequence of Mytilus edulis foot protein 1 (Mefpl), a tremendously 

strong adhesive protein produced by the common blue marine mussel [101] and thought 

to have significant commercial applications [102]. This latter isomer is a strong 

candidate for Si-complexation, being the nitrogen analogue of furanoidic c«-diol 

molecules such as ribose. Waite and Tanzer [103] reported the isolation of Mefpl as 

early as 1981, and later on proposed amino acid sequences for the commonly repeated 

fragments [104]. In 1994, Taylor and Waite [101] unveiled a revised sequence for the 

repeating unit (Figure 1.2.4), in which the sixth residue was properly identified as 

tra«s-2,3-c/5-3,4-dihydroxyproline instead of the originally proposed 

/ra«5-3 -hydroxyproline.

In the present study, we characterized the interaction o f  aqueous silicon with 

trans-2,3-cis-3,4-dihydroxyproline and a dipeptide fragment o f  Mefpl which contains this 

amino acid.

16
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Figure 1.2.3 Naturally occurring 3,4-dihydroxyprolines.
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Figure 1.2.4 The repeating unit of decapeptide in the adhesive proteins Mefpl (after [105]).

1.3 Rhamnogalacturonan II (RG-II) and Silicon’s Influence on Plant Cell Walls

Although no evidence was found for the presence of organosilicate complexes 

in the bulk biofluids of wheat [50], the high concentration of silicon in the cell walls of 

higher plants would suggest that organosilicate species might well occur in association 

with macromolecular cell wall components. Coincidentally, most of the reported 

symptoms of Si-deficiency in plants (e.g., lodging, pathogen susceptibility, etc.) [4] could 

be readily attributed to compromised cell-wall integrity. We therefore turned our
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attention to the polysaccharides in the primary cell wall.

The primary wall, located between the middle lamella and the secondary wall, 

is composed of polysaccharides (pectin, cellulose and hemicellulose) and proteins. The 

term “pectin” encompasses a group of acidic heteropolysaccharides with distinct 

structural domains. Homogalacturonan (HGA), rhamnogalacturonan I (RG-I), and the 

substituted galacturonan referred to as rhamnogalacturonan II (RG-II) are the 

predominant pectic polysaccharides present in the primary cell walls [106]. RG-II is of 

particular interest here because it interacts with boron in vivo to form a 1:2 borate:diol 

ester (dRG-II-B; two RG-II chains joined by a single boron cross-link) and, in so doing, 

can dramatically alter the primary cell wall morphology [107].

First identified in 1978, RG-II is a structurally complex pectic polysaccharide 

containing 12 different glycosyl residues bound together by more than 20 different types 

of glycosyl linkages [108]. Some twenty years later it was discovered that most of the 

boron in plant cell walls exists in the form of dRG-II-B. The B-binding site on RG-II 

was later determined to be the OH-2 and OH-3 hydroxyls of the apiofuranosyl residue on 

side chain A [109; refer to Figure 3 in reference 93]. These findings led to the 

suggestion that boron is required by plants to cross-link cell wall pectic polysaccharides
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[109,110] and thereby regulate the mechanical and biochemical properties of the cell wall 

[93]. Fleischer et al. [111] showed that the walls of growing B-deficient Chenopodium 

album cells contain RG-II, but not the boron cross-linked dimer. Upon addition of 

boron, RG-II rapidly converted to dRG-II-B and the wall pore size simultaneously 

decreased. Similar findings have been reported for a wide variety of other plant types 

[112-114]. Moreover, some workers [115,116] noted that boron deficiency in beans 

leads to a loss of hydroxyproline-rich proteins that are bound covalently to RG-II. This 

could indicate the occurrence of some connection of RG-II to proteins that may 

contribute to the strength and integrity of the wall [116]. Additionally, the dRG-II-B 

complex has been shown to have a strong affinity for selectively chelating heavy metals 

including lead, barium and strontium [107].

Monomeric and dimeric RG-II can be isolated directly from fermented fruit 

beverages such as cider and wine by ethanol-precipitation or ultrafiltration, and then 

purified by a combination of size-exclusion and ion-exchange chromatography [117-119]. 

Wines and fruit juice may contain between 50 and 400 mg/1 of RG-II [107,119].

As early as 1992, germanium was reported to delay the symptoms of boron 

deficiency in plants and substitute for boron in suspension-cultured carrot cells [120].
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Germanate cross-linked RG-II dimer (dRG-II-Ge) forms when monomeric RG-II reacts 

with germanic acid in vitro [121]. However, germanium does not rescue the growth and 

tissue strength of boron-deficient pumpkin plants [122]; dRG-II-Ge is less stable than its 

borate cross-linked counterpart because of differences in the geometry and coordination 

number at the germanate centre [121, 122].

Given the knowledge that boron and germanium transform the structure of 

plant cell walls by cross-linking pectic polysaccharides, it seems rather surprising that the 

literature contains no suggestion that silicon might play an analogous role. Silicon is far 

more abundant than either B or Ge -  in both plant and soil -  and indeed many of the 

benefits conferred by silicon on plant growth could conceivably be linked to an increase 

in cell wall integrity. Moreover, the apiofuranosyl binding site on RG-II has vicinal 

cw-diol functionality (as in ribose) that is favorable to binding silicon.

In the present study, we carried out a three-part investigation to determine i f  

and how silicon interacts with cell wall polysaccharides: 1. We characterized silicon

interaction with apiose, the active binding site o f  RG-II. 2. We attempted extraction o f  

RG-II from red wine and searched for evidence o f its interaction with aqueous silicon.

3. We studied the influence o f Si-availability on cell wall structure in hydroponically
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grown wheat.

1.4 Silicon Uptake and Excretion in Humans

Above, we presented evidence to suggest that silicon plays an important role 

in the formation of bone and connective tissue in animals. The dietary uptake of silicon 

from fluids [123-125, 6 6 ] and solid foods [126-128, 6 6 ] has been studied extensively. 

Recently, Powell and coworkers [123, 6 6 ] characterized the kinetics of silicon uptake and 

excretion in humans following the oral intake of orthosilicic acid. They found that the 

Si concentration in blood serum peaks at ca. 1 h and that most silicon is excreted in the 

urine within 6  h [65, 6 6 ]. However, the identity of the Si-containing molecule(s) in 

human biofluids was not determined.

A final goal o f the present investigation was therefore to identify the major 

silicon-bearing molecules in human blood and urine.
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1.5 Silicon-29 NMR

Nuclear magnetic resonance spectroscopy is one of the most powerful and 

versatile tools for examining chemical substances at the molecular level. Silicon-29 

NMR is useful for investigating Si-containing molecules, but, owing to the isotope’s low 

natural isotopic abundance (4.7%) and poor receptivity (12.7% that of ‘H), it is necessary 

to employ highly concentrated solutions, numerous transient acquisitions, and/or 

materials enriched in ^^Si. Additionally, ^^Si enrichment permits detection of ̂ ^Si-^^Si 

scalar coupling which is a potent source of structural information. In aqueous solution 

rapid inter- and intra-molecular 'H-'H  chemical exchange obscures all evidence of 

'H-^^Si J-coupling involving hydroxy group protons, even down to the solution’s 

freezing point. Nonetheless, information from three bond ^^Si-O-C-'H coupling can 

often be obtained [82, 83, 87]. It is essential to acquire 'H-decoupled spectra with the 

decoupler channel gated off during the acquisition period in order to prevent nuclear 

Overhauser distortion, which is negative in the case of ̂ ^Si NMR. Finally, the 

characteristically slow longitudinal (Fi) relaxation of ̂ ®Si necessitates extremely long 

inter-pulse delays [129].

The possible chemical shift range for ^^Si NMR is about 200 ppm. For
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silicates, three spectral regions are apparent and correspond, in order of decreasing 

frequency, to species containing tetraoxosilicon (g-centres, ca. -70 to -105 ppm), 

pentaoxosilicon (P-centres; ca. -98 to -110 ppm) and hexaoxosilicon (//-centres; ca. -135 

to -143 ppm) [82, 38, 85, 90(a)].
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Chapter 2 -  Experimental

2.1 General Sample Preparation

Type-I deionized/distilled water (DDW) used throughout this study was 

purified through “macropure”, “ultrapure” and “organic free” resin cartridges (Bamstead 

E-pure) and then filtered (0.2pm). The silicon concentrations of the purified DDW and 

of the deuterated water (D2 O) used to provide a field/frequency lock were below the 

ICP-AES (Varian Vista Pro Radial) detection limit of 0.02 pg/L. All samples were 

prepared and stored in containers of low density polyethylene (LDPE), Teflon PEP or 

Teflon TEE. The only glassware used was the rotary evaporator employed for RG-II 

extraction. Plastic labware was cleaned by successively soaking in 10% nitric acid, 

10% hydrochloric acid, 0.01 M Na2 H2 EDTA and, finally, DDW. Solutions were 

transferred using non-lubricated polypropylene syringes (Sigma-Aldrich) in conjunction 

with Teflon PEP needles and LDPE pipettes. The chemical reagents employed in this 

study are listed in Table 2.1.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.1 Chemical reagents employed in this study.

Reagent Supplier / Purity
Molecular formula 

(F.W.; g/mol)

acetic acid (glacial) Anachemia / 99.7% CH3 COOH (60.05)

boric acid Sigma-Aldrich / 99.995% H3BO3 (61.83)

deuterium oxide
Sigma-Aldrich / 

99.9 atom%
D2 O (20.03)

ethanol Caledon / 95% C2 H6 O (46.07)

hydrochloric acid Caledon / 36.5-38.0% HCl (36.46)

3-phenylphenol Sigma-Aldrich / 90% C 1 2H 1 0O (170.21)

potassium hydrogen 

phthalate
Sigma-Aldrich/

99.95-100.05%
2 -(H0 2 C)C6 H4 C0 2 K

(204.23)

Sephadex^™) G-75 Amersham N/A

silicon-29 oxide 

(amorphous)

Isonics /

(a) 70 atom% ^̂ Si

(b) 98.7 atom% ^̂ Si

(c) 99.35 atom% ^̂ Si

SiOz
(a) (60.6949)
(b) (60.9631)
(c) (60.9692)

silicon tetrachloride Sigma-Aldrich / 99.998% sicu

sodium borate (crystalline) Fisher / 100.2%
Na2B4O7l0H2O

(381.37)

sodium hydroxide Sigma-Aldrich / 99.998% NaOH (40.00)

sulfuric acid F isher/95.0-98.0% H2 SO4  (98.075)
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Sodium hydroxide stock solutions were made by mixing high purity sodium 

hydroxide pellets with pre-boiled DDW, and then titrating against potassium hydrogen 

phthalate using 1% phenolphthalein indicator. Sodium silicate solutions were prepared 

by tumbling aqueous NaOH with freshly dried amorphous silica, prepared by hydrolysis 

of SiCU, at 60 °C for 3-7 days. Silicon-29 enriched silicate solutions were prepared by 

dissolving commercial ^^SiÜ2 (amorphous, but with ca. 10 %wt cristobalite) in aqueous 

NaOH at 150 °C for 24-48 h using a PTFE-lined pressure vessel.

All pH measurements were performed at 25 °C using Phydrion Microfme pH 

paper when the solution volume was < 3 mL (minimum precision ± 0.3 pH unit), or an 

Orion ROSS glass combination pH electrode calibrated at pH 4.00, 7.00 and 11.00 prior 

to each use (precision ± 0.001 pH unit). Since samples which were prepared for NMR 

analysis were deuterated (ca. 10 atom% ^H), the recorded values were actually a 

weighted combination of pH and pD (where pD = pH + 0.4 [130]) and thus included a 

small systematic error of ca. + 0.04 pH unit that was considered to be insignificant in the 

present context.
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2.2 NMR Measurement

Silicon-29 NMR spectra were acquired on Varian Inova 500 (Lakehead 

University), Bruker AMX 500 (University of Manitoba) and Varian Inova 750 (Keck 

NMR Facility, University of Illinois at Urbana-Champaign) NMR spectrometers 

operating at 99.28, 99.31 and 149.00 MHz, respectively. Glass coil supports in the 

AMX 500 probe head were replaced with Vespel SP-1 polyimide components in order to

eliminate ^^Si background signals. Chemical shifts are reported relative to

tetramethylsilane, employing the orthosilicate monomer peak, set to -70.0 ppm, as a

secondary reference. Carbon-13 and 'H NMR spectra were obtained at 125.67 and

499.72 MHz, respectively, on the Varian Inova 500 spectrometer. Attention was paid to 

avoid sample contamination by contact with glass surfaces, and all samples were 

contained in custom-made 10mm Kel-F NMR tubes (9 mm I.D.) or Teflon FEP-lined 

glass NMR tubes (8 or 4 mm I.D.). The detailed spectral parameters are provided in the 

individual figure captions.

2.3 Spéciation of Small Organosilicate Complexes

The interactions between aqueous alkaline silicate and (a) the 4-aminobutanol-
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trypsin system, (b) DHP (2,3-/ra«5-3,4-cw-3,4-dihydroxy-L-proline), (c) DHP-containing

dipeptide Ac-Tyr-DHP-NHME (ATDN), (d) D-apiose, and (e) 2,5-anhydro-D-mannitol

were examined separately under various solution conditions using '^C and ^^Si NMR

spectroscopy. Details of these organic ligands are listed in Table 2.2. Tables 2.3 and

2.4 present the experimental conditions employed in studies involving DHP and ATDN,

respectively. Addition of NaOH to samples in Tables 2.3 and 2.4 eventually resulted in

ca. 5% dilution, which was considered to be insignificant in the present context.

Table 2.2 Organic ligands employed in this study.

Reagent Supplier
Molecular structure 

(F.W.; g/mol)

4-amino-1 -butanol
Sigma-Aldrich

(98%)
H0(CHz)4NH2 (89.14)

trypsin (from porcine 

pancreas)
Sigma-Aldrich type IX-S {ca. 23800)

D-apiose Omicron (0.100 M)
HOHgC-

-O H  

-CHgOH 

OH (150.13)

HOCH,,. yCHgOH

2,5 -anhydro-D-mannitol Sigma-Aldrich
H O ' O H (164.2)
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2,3-trans-3,4-cis- 
3,4-dihydroxy-L-proline

Dr. Carol M. Taylor 
(Massey University, 

New Zealand)

CFjCOOr fiZOOHR
(26M 5)

Ac-Tyr-DHP-NHME

Dr. Carol M. Taylor 

(Massey University, 

New Zealand)

9 H 1  Y " " " '

^ X j  - O H

( 365.38)

Table 2.3 The pH and NaOH content of DHP-containing silicate samples prepared by 

dissolving 87.7 mg DHP in 0.3610 g DDW and tumbling with 10.2 mg amorphous silica 

(98.7 atom% ^^Si) at 310 K. After each successive addition of NaOH, the sample pH 

was allowed to equilibrate before conducting and ^^Si NMR analysis.*

NaOH Content (mol kg"̂ ) Sample pH (±0.3)

0 5.3

0.174 7.9

0.373 7.9

0.551 7.9

0.770 7.9

0.956 7.9

1.218 7.9

1.485 9.8

1.733 10.1

2.021 11.1
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2.238 11.7

2.589 13.3

* Amorphous silica was visible in each sample up to pH > 11.1.

Table 2.4 The pH and NaOH contents of ATDN-containing silicate samples prepared 

by dissolving 83.7 mg ATDN in 0.2910 g DDW and tumbling with 7.4 mg amorphous 

silica (98.7 atom% ^^Si) at 310 K. After each successive addition of NaOH the sample 

pH was allowed to equilibrate before conducting and ^^Si NMR analysis.*

NaOH Content (mol kg ') Sample pH (±0.3)

0 4.0

0.251 8.8

0.496 10.8

0.767 11.1

1.151 12.0

1.419 12.3

1.739 13.0

Amorphous silica was visible in each sample up to pH > 11.1.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4 Isolation and Purification of Red Wine RG-II

The following procedure is based on a RG-II purification scheme provided by 

Dr. Stefan Eberhard, Complex Carbohydrate Research Center, University of Georgia 

(2002, private communication). Several minor modifications have been made to the 

original procedure.

Two different wines were employed: Peller Estates Merlot 2002 (4 L),

produced from grapes of various international origins; and Kittling Ridge Estates Merlot 

2002 (7.5 L), produced from Ontario grapes (Grimsby Ridge, Niagara Escarpment). 

Sodium azide (0.02 g / 250 mL of wine) was added to retard the growth of bacteria.

Each 1.2 L aliquot was concentrated to 1/5̂  ̂the original volume on a rotary evaporator at 

35-40 °C. After 200 mL of wine concentrate was accumulated, 340 mL 95% cold 

ethanol (4 °C) and 2.7 mL 36-38% HCl were added quickly, and the mixture kept at 4 °C 

for 24 h. The ethanolic mixture was then transferred into four 250 mL bottles and 

centrifuged for 30 min at 9000 rpm. The temperature throughout the centrifuging 

process was maintained at 0-4 °C. The solid pellets in each bottle were collected and 

washed with a mixture of 500 mL 95% ethanol and 2.5 mL 36-38% HCl under rough 

agitation. The solid/ethanol mixture was again centrifuged and the resulting pellets
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were dissolved in 100 mL 0.2 M boric acid that was buffered at pH 3.3 ( 4 °C) with 50 

mM potassium hydrogen phthalate/HCl. After 24 h, the mixture was dialyzed against 

DDW with 6000-8000 MWCO membrane (Spectra/Por 1) at 4 °C for at least 24 h. The 

dialysate was filtered using 0.45 pm (Durapore, HVLP) membrane filters and then 

concentrated down to 10 mL on a rotary evaporator at 35-40 °C.

The resulting RG-II concentrate was further purified through a Sephadex G-75 

size exclusion chromatography (S.E.C.) column by elution with 50 mM pH 5.2 sodium 

acetate/acetic acid buffer with 0.02% sodium azide at a flow rate of 1 mL/min. The 

column eluant was collected into 120 15 mL tubes and the uronic acid content of each 

tube assayed by the m-phenylphenol method [131]. Fractions that possibly contained 

mono- or dimeric RG-II, as indicated by the uronic acid assay, were treated with 40 mL 

0.1 M HCl for 1 h to release boron from the dimeric RG-II complex, and then dialyzed 

(2000 MWCO membrane, Spectra/Por 7) for 24-48 h against DDW to remove boron and 

other salts. Boron-11 NMR spectra were acquired before and after the HCl treatment. 

The resulting boron-free sample was then lyophilized from D2 O, yielding 50-200 mg of 

silver white solid with mushroom-like texture. The product was analyzed by ES-MS 

and NMR.
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2.5 Effect of Silicon On Cell Wall Morphology of Wheat {Triticum aestivum)

Two sets of wheat plants were grown to maturity under previously described 

conditions [50, 132] at the University of California, Davis: one set in February 2004 and 

the other in June 2004. The freshly harvested plants were wrapped in tissue soaked with 

0.50 mM CaS0 4  in order to prevent cell damage by desiccation or osmosis, and couriered 

to Thunder Bay in insulated containers.

The February set consisted of two plants grown in a nutrient medium 

containing 0.020 mM silicic acid (“+Si”), and two plants that were grown in a Si-free 

medium (“-S i”). In addition, short sections of stem from each of the -S i plants were 

soaked in a solution of 0.020 mM silicic acid and 0.50 mM CaS0 4  at pH 6.0 for 30 min 

before fixation (“-S i to +Si”).

i) Paraffin Sections. Three millimeter segments from the stem of each plant 

were fixed in FAA (90 mL 70% ethanol, 5 mL glacial acetic acid, 5 mL formalin) for 

several days before washing out in 50% ethanol. These were dehydrated and embedded 

in paraffin according to Johansen [133]. Sections were cut 9 pm thick, mounted and 

stained 2 h in Fast Green FCF (0.10% in 90% ethanol), rinsed in 95% ethanol, and then 

dehydrated in changes of 100% isopropanol before clearing in xylene and mounting in

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Permount (Fisher).

ii) Plastic Sections. Additional stem segments from the February set of plants 

were processed for embedding in JB4-Plus plastic medium (Polysciences). Sections 

about 0.5 pm thick were stained 1 min in a solution of 0.5% Toluidene Blue O, 0.5 g 

borax and 100 mL distilled water, washed in water, dried and then mounted in Permount.

The paraffin and plastic sections were viewed under light microscope using a 

xlOO oil immersion lens. Cell wall thickness was measured using an ocular graticule. 

Paraffin sections were also mounted for SEM analysis. Sections 20 pm thick were 

floated on water containing two drops of glycerin albumen (Fisher) per 50 mL of distilled 

water, deposited on a SEM stub, and dried at ca. 53 °C overnight. The paraffin was 

removed by rinsing the stub with three changes of xylene and three changes of 

hexamethyldisilazane, each change lasting about 5 min. The last solution upon drying 

does not produce distorting surface tension effects. The affixed sections were 

gold-coated and examined with a JEOL 5900 LV SEM operated at 10 kV, with a spot size 

of 22 pm and a l l  mm working distance.

The June set of wheat plants consisted of two plants grown in a nutrient 

medium containing 0.020 mM silicic acid (“+Si”), two plants that were grown in a Si-free
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medium (“-S i”), and, this time, two plants that were grown Si-free but were exposed to 

the medium containing 0.020 mM silicic acid and 0.50 mM CaS0 4  for 60 min before 

harvesting (“-S i to +Si”). Paraffin embedded stem sections were prepared for SEM 

analysis using the method described above.

Cell wall thickness was measured using both optical microscopy and SEM, and 

using only cell walls that were perpendicular to the field of view. Cell wall tilt is the 

largest potential source of inaccuracy although, as shown in Figure 2.5.1, angles < 20° 

yield relatively little error. Fortunately, the tilt angle is readily apparent in the 20 pm 

sections used for SEM analysis. Optical microscopy measurements were correct to 

about ± 0.25 pm, whereas the SEM values were ±0.12 pm.

w

Tilt = 90 - a

v / w = l / s i n a  

Relative error = ( l / s i n a ) - l

Tilt (degree) 0 5 10 15 20 25 30 35 40

Relative error (%) 0 0.4 1,5 3.5 6.4 10.3 15.4 22.1 30.5

Figure 2.5.1. Relative error in cell wall thickness resulting from tilt angle.
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Representative stem, leaf and flower samples from the June plants were 

digested and analyzed by ICP-AES, employing EPA Method 3051A [ 134]. Ground, 

oven-dry tissue was combined with concentrated nitric and hydrochloric acids (trace 

metal grade, Fisher) and digested at 175 °C for 30 min in a CEM Mars 5 microwave oven 

using closed Teflon vessels (CEM XP-1500 Plus). The brown fumes in each vessel 

were cleared by addition of 1 mL 30% hydrogen peroxide (Fisher), and the resulting clear 

samples diluted to 50 mL with DDW and analyzed on a Varian Vista Pro ICAP Radial 

spectrophotometer.

2.6 Analysis of Silicon Uptake and Excretion in Humans

The following procedure was reviewed and approved by the Lakeahead 

University in accordance with the guidelines set out in the Tri-Council Policy Statement: 

Ethical Conduct fo r  Research Involving Humans [135].

A healthy, 20 year old male volunteer (1.83 m, 77 kg) with normal renal 

function (serum creatinine level of 100.0) was recruited from the Department of 

Chemistry, Lakehead University. Details of the study were explained to the volunteer 

and a written consent form signed by him prior to starting the study.
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After fasting overnight for 11 h, the subject voided his bladder and urine was 

collected for 3 h in a pre-weighed LDPE container for measurement of baseline silicon 

excretion. The subject ingested 500 mL of type-I water over the 3 h period, but 

otherwise remained fasted. Thereafter, the subject renewed his normal eating habit 

except for the complete avoidance of high silicon-containing foods (beer, bread, cereals, 

rice, bananas, string beans and raisins).

After again fasting overnight for 11 h, the subject voided his bladder and had 

10 mL blood collected from a forearm vein to provide a baseline serum silicon 

measurement. The subject then ingested 500 mL type-1 water that contained 2.87x10'^ 

mol kg’' 8102(41.5 mg; 98.7 atom% ^^Si) and 3.03^10'^ mol kg ' NaOH at pH = 7.9±0.3. 

Additional blood samples (10 mL) were collected after 0.5, 1.0, 1.5, 2.0, 3.0,4.0, 5.0 and

6.0 h. A second 10 mL blood sample was collected at the 1.5 h mark to ensure that 

there was enough sample for NMR analysis. Urine was collected in two 3 h fractions 

{i.e., 0-3 h and 3-6 h) in separate pre-weighed LDPE bottles. The subject remained 

fasted except for the ingestion of 500 mL type-I water over the last 3 h of the sampling 

period (3-6 h).

All blood samples were taken by a certified phlebotomist using sterile,
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silicon-free 10 mL polypropylene syringes and 22 G stainless steel needles (Sigma 

Aldrich). The blood was transferred to polypropylene centrifuge tubes (Nalgene), 

allowed to clot at room temperature for 1 h, and then separated by centifugation (9000 

rpm) at room temperature for 10 min. The resulting serum was transferred to LDPE 

bottles and stored at ambient temperature until analysis.

ICP-OES analysis (Jobin-Yvon JY24) was performed at St. Thomas' Hospital, 

London, UK. Serum and urine samples were diluted 1:4 and 1:1, respectively, with 

0.26% nitric acid and stored at ca. 4 °C. The Si concentration was measured at 251.611 

nm with an integration time of 1 s for serum and 0.5 s for urine at a sample flow rate of 1

mL min '. Silicon-29 NMR analysis was conducted at the University of Illinois at

Urbana-Champaign (Varian Inova 750), each sample aliquot being diluted 10% with D2 O 

to provide a field/frequency lock. Afterwards, the serum and urine samples were 

destroyed.
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Chapter 3 -  Results and Discussion

3.1 NMR examination of the 4-aminobutanol-trypsin-siIicate system

As discussed in Chapter 1, alkaline aqueous solutions containing borate, trypsin 

and 4-aminobutanol yield a stable ternary complex in which the boron centre is 

coordinated to the hydroxymethyl group on serine-195 of trypsin and the oxygen atom of 

4-aminobutanol [96, 97]. The formation mechanism for this complex is remarkably 

similar to that proposed by Zhou et al. [35] to account for silicatein’s enzymatic role in 

the hydrolysis of organosilicon substrates, the active sites of silicatein a being residues of 

serine and histidine. Because boron and silicon exhibit somewhat similar complexing 

tendencies in alkaline solution, the 4-aminobutanol-trypsin-silicate system was used as a 

model for testing the proposed silicatein-mediated silicification mechanism.

Silicon-29 NMR spectra of a sample with 0.043 mol kg'' SiOz (70.0 atom% 

^^Si), 0.21 mol kg'' NaOH, 0.22 mol kg'' 4-aminobutanol and 6.1 mmol kg'' trypsin 

contained signals from -70 to -98 ppm (with -70 ppm set to the Si(OH) 4  peak), 

corresponding only to 4-coordinated silicate oligomers. No signals were apparent 

(within the detection limit of 0.12 mmol kg'') that could be associated with organosilicate
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complexes containing 4-, 5- or 6-coordinated silicon.

The fact that silicon, unlike boron, is unable to bind with the histidine and 

serine residues of trypsin is not entirely surprising given our present understanding of 

organosilicate complexation in aqueous media. As previously discussed, aqueous boron 

is complexed by a wider variety of polyhydroxy molecules than silicon. It interacts with 

most 1,2- and 1,3-diols, and does so under acidic as well as basic conditions. Aqueous 

silicates, on the other hand, bind only to polyols with highly specific hydroxy group 

configurations [82-88]. (Silicon in fact binds covalently with many simple alcohols, but 

only to a limited extent and under extremely alkaline conditions [136].) The covalent 

interaction between silicatein and aqueous silicon proposed by Zhou et al. [35] seems 

unlikely, therefore, especially under near-neutral conditions. However, this finding by 

no means precludes the possibility that such amino acid residues play an active role in the 

hydrolysis of silicate or silicone compounds by virtue of some other type of interaction 

such as hydrogen bonding or electrostatic association [94].
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3.2 Aqueous silicon interactions with 2,3-t/"a«s-3,4-c/s-3,4-dihydroxy-L-proline 

(DHP)

Several studies have shown that furanoidic molecules possessing vicinal 

cfr-diol functionality are capable of hypercoordinating with silicon [87, 88, 90(a)]. One 

of the dominant features of the ^^Si NMR spectra of solutions containing such 

organosilicate complexes is the presence of three strong signals in the pentaoxosilicon 

region of the spectrum, between ca. -96 and -101 ppm. These three signals occur over 

a wide range of solution conditions and result from three different organosilicate species 

which are diastereomers of the monomeric 6A(diolato)-hydroxo complex, [(L=)2 SiOH]” 

(where L represents the cw-diol ligand), each with a pentacoordinated silicon centre and a 

2; 1 ligand-to-Si ratio [88, 90(a)]. The amino acid 2,3-tra«5-3,4-cfr-3,4-dihydroxy-L- 

proline (DHP) is structurally analogous to the furanoidic cfr-diols and is expected to 

show similar Si binding affinity. Here we present the results obtained from a series of 

experiments.

DHF-complexation under alkaline conditions. As shown in Figure 3.2.1 (I), 

addition of 2,3-/ra«5-3,4-cw-3,4-dihydroxy-L-proline to an alkaline silicate solution 

containing 0.443 mol kg ' SiOz and 1.545 mol kg'' NaOH resulted in the appearance of
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*J= 2.7 Hz < - > ' j  = 3.6Hz

COO"

■COO"

COO"

COO"
COO'

-96 .0 -96.5 -97.0 -97 .5 -98.0 -98.5

/ ppm

A

S(^^Si) / ppm -100-80 -90-70

Figure 3.2.1 (I) Silicon-29 NMR (99.28 MHz) spectrum of an aqueous solution (pH=12.5) 
containing 0.891 mol kg"' DHP, 0.443 mol kg"' SiO: (70 atom% ^^Si) and 1.545 mol kg"' 

NaOH, recorded at 271 K using 1100 %I2 pulses, a 60 s inter pulse delay and gated 

'H-decoupling. (II) Expansion of the highlighted region in (I). (Ill) The equivalent spectrum 

acquired without ^H-decoupling. The peak marked with * exhibits no ^^Si-'H scalar coupling 

and corresponds to non-complexed silicate species (species 18 in ref 137). This sample is 

more concentrated than those samples listed in Tables 2.3 and 2.4.
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three strong NMR signals in the pentaoxosilicon region at -96.28 (peak A), -97.38 

(peak B) and -97.92 ppm (peak C). No peaks were observed in the hexaoxosilicon 

region (-135 to -143 ppm).

None of the three pentaoxosilicon signals exhibits ^^Si-^^Si scalar J-coupling 

when solutions are enriched in ^^Si, suggesting that if the corresponding species contain 

more than one Si centre they are either magnetically equivalent or else separated by >4

bonds. Figure 3.2.1 (III) reveals that 'H-^^Si coupling splits each signal into a perfect

pentet, with J-coupling = 2.7 (peak A), 3.6 (peak B) and 4.4 Hz (peak C). Since rapid 

’H -'H  chemical exchange with water prevents detection of ̂ ^Si-O-'H coupling, the 

observed pentets must instead arise from ^^Si-O-C-'H interactions involving protons on 

the five-membered ring of DHR The 2.7 to 4.4 Hz splitting is indeed consistent with 

3-bond (^J) scalar coupling. The silicon in each complex is thus bound to two hydroxy 

group oxygens on each of two DHP rings.

The chemical shifts and relative intensities of the three pentaoxosilicon peaks 

are similar to those recorded for silicate solutions containing furanoidic vicinal cA-diol 

molecules structurally related to DHP such as 1,4-anhydroerythritol [87, 88, 90(a)]. 

Accordingly, the peaks are assigned to three diastereomers of the monomeric
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è/s(diolato)-hydroxo complex [(DHP)2 SiOH]“ shown in Figure 3.2.1 : (a) the anti,anti

complex in whieh both DHP rings are faeing away from the Si centre; (b) the anti,syn 

complex which has one ligand facing towards Si and the other facing away; and (c) the 

syn,syn complex in which both rings are oriented inwards towards silicon.

Molecular modeling calculations (MM2 energy minimization using Chem3D 

v.7.0) indicates that the Si-O-C-H dihedral angle is approximately 133.5° for the syn,syn 

complex and 98.4° for the antilanti complex. Therefore, in accordance with the Karpins 

curve for the dependence of vicinal coupling on dihedral angle [138], the syn.syn 

complex should exhibit greater V  coupling than the anti/anti eomplex. Thus, peaks A,

B and C of Figure 3.2.1 can reasonably be expected to correspond to the antilanti, 

syn,anti and syn,syn complexes, respectively. The same pattern of peak assignments 

likely holds for the pentaoxo Si eomplexes formed with furanoidic vicinal cw-diols 

[87,88; refer to Figure lb in ref 88]. However, the high resolution of V(^^Si-0-C-'H) 

coupling obtained here for the Si-DHP complexes indicates that they are much less labile 

{i.e., undergo slower intermolecular Si-Si exchange) than the complexes formed by 

cw-l,2-dihydroxycyclopentane or furanoidic cw-diols such as ribose [87,88].

Figure 3.2.2 shows the NMR spectrum of a DHP solution before and after
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the addition of sodium silicate. Peaks 6 and 7 of spectra (I) and (II) are attributable to 

the trifluoroacetate counterion used in the synthesis of DHP; these peaks were observable 

throughout the study and their relative intensities remained unchanged. The highlighted 

regions in spectrum (III) are assigned to DHP that is complexed to Si.
' 0 +H2 1
CFjCOa ,N ^̂ *COOH

7

HO QH

180 170 160 150 140 130 120 110 100 90 80 70 60 50

7
< >

n
n i l  I p ' i  iNM II [I (I II INI I tni n rt't'i'i ii tt n rrji tt i ii n i| nut iiit |i ii ii n 11| t( ii ini i[ i it ii it ti |h ii it ti t| II n in il |i i tit i ii ij ii ii ii ii i |i ii i 

180 170 160 150 140 130 120 110 100 90 80  70 60 50

m

6( C) /  ppm  70180

Figure 3.2.2 Carbon-13 NMR (125.66 MHz) spectra of the aqueous solutions containing: (I) 
0.930 mol kg"' DHP (pH=5.3); and (II) 0.891 mol kg"̂  DHP, 0.443 mol kg'^ SiO: (70 atom% 

^^Si) and 1.545 mol kg'' NaOH (pH=12.5). Spectra were recorded at 271 K using 6000 ti/2 

pulses and a 10 s inter-pulse delay. chemical shifts are recorded relative to TMS.

Spectrum (III) shows the vertical expansion of the highlighted regions in (II). Peaks are 

labelled in accordance with the corresponding molecular sites, with peaks l ’-5’ corresponding 

to the Si-DHP complexes. Sample (II) is more concentrated than sample (I).
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These assignments are consistent with those reported for Si-complexes of 

CÜ-1,2-dihydroxycyclopentane and 1,4-anhydroerythritol [87, 88]; i.e.. Si coordination 

causes ligand signals to shift 1-4 ppm up frequency, with those corresponding to the 

Si-O-C linkage itself (C3 and C4 of DHP) being the least shifted. Comparison of the 

integrated peak areas with those of the corresponding ^^Si spectrum (Figure 3.2.1) 

indicates that the concentration of Si-coordinated DHP molecules is roughly twice the 

aqueous pentaoxosilicon concentration. Approximately 9.2% of the dissolved silicon in 

this particular solution is complexed by DHP.

If we equate all activity constants to unity and [(HO)3 SiO“] to the silicate 

monomer (Q^) concentration, the equilibrium constant for the complexation reaction 

(HO)3SiO“ + 2 DHP = [(DHP=)2SiOH]- + 3 H2 O 

can be estimated as

K=  [[(DHP=)2SiOH]l / ([(H 0)3S i01  [DHP]^)

The resulting complexation constants are listed in Table 3.2.1 and, as had been indicated

by the well-resolved V(^^Si-0-C-'H) coupling, they reveal that the Si-DHP complexes

are slightly more stable than other Si-polyolate species under similar solution conditions.
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Table 3.2.1 Characterization of pentaoxosilicon DHP complexes in solution containing 

0.44 mol kg ' SiOz, 1.55 mol kg ' NaOH and 0.89 mol kg ' DHP at 271 K. (Refer to the 

spectrum and species depicted in Figure 3.2.1(H).)

Si species 

[(DHP=)2SiOH]“
5( '̂'Si)
/ppm"

V

(^"Si-O-C-'H)
/Hz

Average

Si-O-C-H
dihedral angle *

Concentration 

/mol kg '

anti,anti (a) -96.280 2.7 98.4° 0.0147 0.65

syn,anti (b) -97.382 3.6
134.3° 97.4° 

(syn) (anti)
0.0197 0.87

syn.syn (c) -97.922 4.4 133.5° 0.0062 0.27

" Silicon-29 chemical shifts are relative to TMS, using the silicate monomer peak at -70.0 

ppm as a secondary reference. * Dihedral angles of each Si-O-C-H fragment are 

estimated using ChemSD molecular modelling software (v. 7.0). Relative uncertainty of 

equilibrium constants is < 10%.

DHF-complexation under varied pH conditions. DHP is hence the first 

amino acid shown to have Si binding affinity, albeit only in alkaline solution. Our next 

step was to determine its binding affinity under pH conditions that are more biologically 

relevant.

Amorphous silica was tumbled in 0.93 mol kg'' DHP at 310 K for several
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months. Each week, after monitoring the solution chemistry by and ^^Si NMR, the

pH was raised incrementally by the addition of concentrated NaOH(aq). Figure 3.2.3

shows the resulting ^^Si NMR spectra.

pH=5,3 0 mol kg NaOH
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Figure 3.2.3(a) Silicon-29 NMR (99.28 MHz) spectra of the 0.930 mol kg ' 

2 ,3 -/ra«5 '-3 ,4 -cw-3 ,4 -dihydroxyproline solution containing 10.2 mg amorphous silica (98.7 
atom% ^^Si), 0.3610 g DDW and successively increased NaOH content (marked on each 

spectrum), recorded at 271 K using 1100-3000 t i/ 2  pulses, a 60 s inter pulse delay and gated 

'H-decoupling. Artificial line broadening = 1.0 Hz. The vertically and horizontally 

expanded pentaoxosilicon spectral region is shown to the right. (No peaks were detected 

in the hexaoxosilicon region.) Peaks marked with • correspond to pentaoxosilicon 

complexes, and exhibit ^^Si-'H scalar coupling when the decoupler is switched off.
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Figure 3.2.3(b) Continuation of figure 3.2.3(a)

The concentrated DHP was effective at buffering the reaction system, 

maintaining pH ~ 7.9-8.1 over a wide range of NaOH addition. It is noteworthy that 

only the resonances corresponding to monosilicic acid peak and the three pentaoxo 

Si-DHP complexes were observed over this pH range, and that the Si-DHP complexes 

account for as much as 52% of the dissolved silicon. Thus, DHP does indeed complex
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silicon at biologically relevant pH conditions and to a very appreciable extent.

Once the buffer capacity of the DHP was exceeded, allowing pH to increase 

above 7.9-8.1, at least four new pentaoxosilicon ^^Si resonances appeared as shown in 

Figure 3.2.3(b). Carbon-13 NMR spectra revealed a simultaneous onset of DHP

decomposition, indicating that the additional ^^Si peaks correspond to eomplexes formed

between silicon and the DHP alteration products.

Complexation by DHP-containing dipeptide. A parallel experiment was 

conducted in which amorphous silica was tumbled at 310 K with a 0.787 mol kg'' 

solution of the DHP-containing dipeptide, Ac-Tyr-DHP-NHMe (ATDN). Again, pH 

was raised at one-week intervals by the addition of concentrated sodium hydroxide.

Due to the absence of an amino or carboxyl terminus on ATDN, it exhibited none of the 

buffering effect observed for DHP. Figure 3.2.4 shows the resulting series of ̂ ^Si NMR 

spectra.
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Figure 3.2.4(a) Silicon-29 NMR (99.28 MHz) spectra of 0.787 mol kg' Ac-Tyr-DHP-NHMe
(ATDN) solution containing 7.4 mg amorphous silica (98.7 atom% ^^Si), 0.2910 g DDW and 

successively increased NaOH content (marked on each spectrum), recorded at 271 K using 

1100-3000 7i/ 2  pulses, a 60 s inter-pulse delay and gated 'H-decoupling. Artificial line 

broadening = 1.0 Hz. The vertically and horizontally expanded pentaoxosilicon spectral 

region is shown to the right. (No peaks were detected in the hexaoxosilicon region.) 

Peaks marked with • correspond to pentaoxosilicon complexes, and exhibit ^^Si-'H scalar 

coupling when the decoupler is switched off.
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Figure 3.2.4(b) Continuation of figure 3.2.4(a) at progressively higher alkalinities. The 

pentaoxosilicon and hexaoxosilicon spectral regions are vertically and horizontally 
expanded and shown to the right.

ATDN also forms pentaoxosilicon species with aqueous silicon under

near-neutral conditions, as evidenced by the presence of three pentaoxosilicon ^^Si NMR

signals at pH 8 .8 . The chemical shift and height distribution of the peaks clearly

indicate that the 2 ,3 -tran5 -3 ,4 -c/5 '-3 ,4 -dihydroxy-L-proline (DHP) residue is the active

site of Si coordination, indicating a possible means by which the adhesive protein Mefpl
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strongly binds to silicate surfaces in turbulent seawater.

Hexaoxosilicon complexes were detected in the ATDN sample at pH 12.0-12.3, 

as indicated by ^^Si peaks at ca. -140 ppm in Figure 3.2.4(b). The peaks are broad, 

indicating that the complexes undergo relatively rapid Si-Si chemical exchange with 

other solution species. Carbon-13 NMR spectra reveal progressive decomposition of 

the dipeptide as pH was raised to these levels, which would suggest that the 

hexaoxosilicon complexes might involve ATDN alteration products. Further work is 

required to characterize the decomposition of both DHP and ATDN, along with the nature 

of the resulting Si complexes.

This study provides the first ever evidence that the amino acid

2 .3 -tra«5 -3 ,4 -cM-3 ,4 -dihydroxy-L-proline, whether existing freely or within an 

oligopeptide, spontaneously binds aqueous silicon to yield stable, hypercoordinated Si 

complexes. Moreover, the Si-binding tendency of DHP is the highest of all chelating 

ligands so far investigated under biologically relevant conditions of pH and Si 

concentration [84].

It is possible that 2 ,3 -tra«5 -3 ,4 -cz5 -3 ,4 -dihydroxy-L-proline (and perhaps also

2.3-cw-3,4-cw-3,4-dihydroxy-L-proline, the other cw-3,4-dihydroxy isomer of DHP) is

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



not nearly as rare as it is now thought to be. The only known occurrence of the amino 

acid at present is in Mytilus edulis foot protein 1 (Mefipl) where, originally, it had been 

misidentified as tran^-S-hydroxyproline owing to the fact that the two amino acids 

species give nearly identical elution times on most analyzers [139]. Other logical places 

to look, therefore, include the hydroxyproline-rich structural glycoproteins found in both 

mammals (collagen is especially important [140]) and plants (speculated to be 

responsible for cross-linking pectic polysaccharides in the primary cell wall [115,116]), 

as well as the silica-precipitating proteins extracted from sponges and diatoms {e.g., 

silaffms). Silicon interactions with cz5 -3 ,4 -dihydroxy-L-proline might well account for 

the unexplained chemical role that silicon plays in all such environments.

3.3 NMR examination of D-apiose in alkaline silicate solution

Since most reported symptoms of Si-deficiency in plants (including increased 

susceptibility to lodging, fungal diseases, etc.) could conceivably be linked to diminished 

cell wall integrity, a likely place to seek evidence of organosilicate complexation in 

plants would be the cell wall. One possible binding site could be the 

hydroxyproline-rich glycoproteins mentioned above. Another is the pectic
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polysaccharide rhamnogalacturonan-II (RG-II), which has been shown to form a 1:2 

borate-RG-II diester complex in plant cell walls and, in so doing, help regulate their 

mechanical and biochemical properties [93,109,111]. Boron binds to RG-II at the 

cw-2,3-dihydroxy groups of an apiofuranosyl residue located on side-chain A of the 

polysaccharide [109]. The first step towards determining whether silicon plays a role in 

plants similar to that of boron is to establish whether it is complexed by apiofuranose as 

readily as it is by other furanoidic cw-diols such as ribose [87].

In aqueous solution, acyclic D-apiose is in equilibrium with four furanoidic 

isomers, of which three (B, C and D in Figure 3.3.1) have cw-dihydroxy functionality. 

One isomer (C) has three hydroxy groups in cis-1,2,3 configuration, thus providing not 

one but two possible Si binding sites and opening the door to the existence of a wide

variety of organosilicate complexes.

HOHjC^O- pH H O ^O . OH

.  A  E
HO OH CHO v ^ O H z C  OH

-OH

HO -C H pH  

GHzOH V
HOHzC^O C ^  ^

 HO! D K    HOHzp OH

Figure 3.3.1 Possible molecular forms of D-apiose in aqueous solution.
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We show in Figure 3.3.2(1) the ^^Si NMR spectrum of a sodium silicate solution 

to which a small amount (0.087 mol kg'') of D-apiose was added. At least 7 

pentaoxosilicon and 2 0  hexaoxosilicon resonances appear in the corresponding spectral 

regions, indicating the spontaneous formation of a great variety of organosilicate species. 

When the 'H-decoupler is switched off, every pentaoxo- and hexaoxosilicon peak is 

transformed into a poorly resolved multiplet owing to V(^^Si-0 -C-'H) coupling within 

the complexes. The rate of Si-Si exchange at 278 K is just fast enough to obscure the 

anticipated 2-5 Hz V  scalar coupling, and yet not broaden the 'H-decoupled ^^Si 

resonances. The average lifetime of each organosilicate complex is thus somewhere 

between 0.05 and 0.5 s at this temperature.

Increasing solution alkalinity strongly disfavours the formation of 

apiose-derived organosilicate species, as indicated in Figure 3.3.2. The reason is 

apparent from the corresponding '^C NMR spectra shown in Figure 3.3.3. Spectrum (I) 

is the '^C NMR spectrum of pure D-apiose dissolved in water. The absence of carbonyl 

peaks at ca. 170-180 ppm and the presence of anomeric carbon peaks at ca. 95-105 ppm 

indicate that apiose exists exclusively in its furanoidic forms (within spectral detection 

limits). When pH is raised the rate of ring opening and closing increases sharply, as
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coupled

pH = 11.0 ^H-decoupled
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Figure 3.3.2 Silicon-29 NMR (99.28 MHz) spectra of sodium silicate solution 

containing 0.087 mol kg ' D-apiose, 0.17 mol kg"' SiOz (70.0 atom% ^^Si) and (I) 0.21 

mol kg"' NaOH or (II) 0.46 mol kg"' NaOH. Expansions of the hypercoordinated 

spectral regions are also shown in the corresponding insets. PH uncertainty is ± 0.3 

units. All spectra were recorded at 278 K using 1100 %I2 pulses and a 60 s inter pulse 

delay.
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Figure 3.3.3 Carbon-13 NMR (125.66 MHz) spectra of aqueous solutions containing: (I) 
0.087 mol kg ' D-apiose; (II) 0.087 mol kg ' D-apiose and 0.16 mol kg ' NaOH; (III) 0.087 

mol kg'' D-apiose, 0.17 mol kg'' SiOi and 0.21 mol kg ' NaOH and (IV) 0.087 mol kg'' 
D-apiose, 0.17 mol kg'' SiOa and 0.46 mol kg ' NaOH. PH uncertainty is ± 0.3 units. 

Spectra were recorded at 278 K using 8000 t i/ 2  pulses and a 10 s inter-pulse delay. 

Artificial line broadening is 5.0 Hz. The broad peak at ca. 110 ppm in each spectrum is 

attributable to the Teflon PEP NMR tube liner.
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evidenced by the broad '^C resonances in spectrum (II). Additionally, new peaks appear 

in the 165-180 ppm region. Spectra (III) and (IV) correspond to the silicate-containing 

solutions represented in Figures 3.3.2(1) and (II), respectively. From comparison of 

spectra (II) and (III), it is apparent that the addition of sodium silicate causes narrowing 

of several apiofuranose resonances in the 60-85 ppm and 95-105 ppm regions, which 

would suggest that the formation of apiofuranose-Si complexes may hinder rapid 

interchange between the apiofuranose isomers and, indeed, favour the existence of certain 

isomers over others. Four sharp NMR resonances are now clearly resolved in the 

165-180 ppm region and apparently associated with three equally sharp signals at ca. 62, 

65 and 80 ppm. Spectrum (IV) shows that these seven signals dominate the 

spectrum as pH is increased, and that all peaks associated with apiofuranose have since 

disappeared. It is noteworthy that the disappearance of the apiofuranose '^C peaks in 

spectrum (IV) coincides with the disappearance of hypercoordinated ^^Si NMR peaks in 

spectrum II of Figure 3.3.2. Therefore, apiofuranose binds with aqueous silicon to give 

hypercoordinated Si complexes, but the high pH alteration products of apiofuranose 

clearly do not.

We have confirmed that the c«-2,3-dihydroxy apiofuranose residues of the
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plant cell wall polysaccharide RG-II are capable of binding Si in aqueous solution. We 

cannot identify the high pH alteration products of free apiose at this time, but it is 

important to note that the apiofuranosyl residue of RG-II would be less susceptible to 

decomposition since it is bound through glycosyl linkages to other sugars and thus unable 

to undergo facile ring-opening. Moreover, as part of this study, we determined that the 

/ra«5 -dihydroxy analogue of cw-2,3-dihydroxy apiofuranose, 2,5-anhydro-D-maimitol, is 

incapable of binding aqueous Si and thus obtained further confirmation that furanoidic 

molecules must possess c/5 -dihydroxy functionality in order to complex silicon [87]

3.4 Isolation and Purification of Red Wine RG-II

We attempted isolation of rhamonogalacturonan-II from red wine over a 

two-year period using the procedures discussed in Chapter 2, and ultimately produced 1.2 

g of a silver white solid with mushroom-like texture.

Figure 3.4.1 shows a typical uronic acid assay of boric acid-containing RG-II 

concentrate that has been eluted from a Sephedex size exclusion chromatography (SEC) 

column. The corresponding "B NMR spectra are shown in Figure 3.4.2. Uronic acid

fractions containing RG-II would be expected to yield a "B NMR peak at ca. -10 ppm
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[109b]. Fraction A from the SEC column exhibited no such signal and is thought to 

consist of a mixture of large pigment molecules. The combined fractions B and C did 

yield a *'B-diester signal at -9.70 ppm, suggesting that they correspond to the dimerie 

RG-II borate diester complex and monomeric RG-II, respectively.

Uronic Acid Assay

3.200

3.000
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.800

1.600
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F ra c tio n  Number

Fig. 3.4.1 Uronic acid assay chromatogram of boric acid-containing RG-II concentrate eluted 
at pH 5.2 from the Sephadex G-75 SEC column. Molecules elute from the column in order 

of descending weight. The fraction represented by peak A was pink in colour and did not 

yield a ” B NMR signal corresponding to borate-diester. (Refer to figure 3.4.2(H).) It was 

therefore attributed to macromolecular wine pigments. Fractions B and C are respectively 

assigned to dimeric RG-II borate diester complex and monomeric RG-II.
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Fig 3.4.2 Boron-11 NMR (160.33MHz) spectra of: (I) 0.20 M boric acid; (II) SEC

fraction A (eluant no. 14-22); (III) SEC fractions B plus C (eluant no. 29-40); and (IV) 

SEC fractions B plus C after acidification/dialysis to remove boric acid. Spectra were 

recorded at 296 K using 6000-10000 7t/ 2  pulses, 2 s inter-pulse delay and gated 

H-decoupling. The NMR peak at 0 ppm corresponds to boric acid, whereas the signal at 

-9.9 ppm is assigned to borate diester complex. The broad resonance centered at ca. -23 

ppm arises from the glass borosilicate NMR tube.

The absence of "B  NMR signals in Figure 3.4.2(IY) confirms that all the boron 

was eliminated from fractions B and C following acid hydrolysis of the dimeric RG-II 

borate diester and subsequent dialysis of the mixture. The resulting boron-free product
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was then lyophilized from D2 O. Once sufficient “RG-II product” had been collected it 

was added to a solution of sodium silicate, which was then analyzed by ^^Si NMR 

spectroscopy. At 295K, on the ^^Si NMR spectrum of the 0.314 ml solution containing 

0.125 M SiOz (98.7 atom% ^^Si), 0.128 M NaOH and 180.1 mg “RG-II”, no 

organosilicate signal representing the evidence of Si-RG-II complexation was detected. 

Electrospray-ionization and matrix-assisted laser desorption/ionization mass spectroscopy 

of the “RG-II product” revealed only a small proportion of high molecular weight 

polysaccharides, and the maximum weight was only half the 4713 KDa molar mass 

reported for monomeric RG-II [117b]. It would appear, therefore, that the RG-II 

decomposed at some point during the extraction and purification process -  as did its 

apiofuranose residues.

3.5 Effect of silicon on cell wall morphology of wheat {Triticum aestivum)

Here, we report the results of a series of experiments designed to determine 

silicon’s influence on the cell wall structure of wheat plants {Triticum aestivum).

As represented in Figure 3.5.1, a mature wheat plant stem has a single outer 

layer of epidermal cells that is covered in waxes and other secretions; next inwards are
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layers of collenchyma cells plus “inner” and “outer” layers of parenchyma cells located

on either side of the vascular bundles. The vascular bundles have an outer casing of

thick-walled sclerenchyma cells which surround the phloem tubes and their companion

cells, xylem vessels, and, at the core, large metaxylem vessels with ribbed walls. The

centre of the stem is either hollow or composed of parenchyma cells.

Transverse Section of Wheat Stem /
!

  wax

vascular' 
bundle ̂  ^

J T i f  S j outer' epiderads

epidermis

^
collenchyma

outer parenchyma
/

sclérenchyma 

phloem 

-lateral vessel 

middle vessel

Stem centre

pfotoxylem
/
/inner parenchyma

Figure 3.5.1 Schematic diagram of wheat stem 
transverse section
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In a preliminary study, summarized in Appendix I, the outer parenchyma cells 

were found to be more responsive than other cell types to the Si level of the nutrient 

medium. In addition, the wall thickness of other cell types could not be measured as 

accurately: a) The waxy coating of epidermal cells made it difficult to discern the wall

boundaries, b) Collenchyma cells did not occur in all stem segments, and wall thickness 

varied within individual cells, c) Phloem and xylem vessels were too thin for light 

microscope measurements, d) The ribbing of metaxylem cell walls led to large 

measurement uncertainties. Figure 3.5.2 shows representative SEM photographs of 

outer parenchyma cells in paraffin-embedded stem sections. It is plainly evident that 

parenchyma cell walls in the plant grown without silieon (-Si) are significantly thicker 

than those in plant grown with silieon (+Si).

Quantitative measurements of the outer parenchyma cell walls are summarized 

in Tahle 3.5.1. Regardless of the method used for tissue embedding, -S i cell walls were 

consistently 4 to 5 times thicker than +Si cell walls in parenchyma from the set of plants 

grown in February 2004. Briefly soaking the -S i stem sections in 0.020 mM silicic acid 

did not significantly have an effect on their cell wall thickness.
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Figure 3.5.2. SEM photographs of representative parenchymal cells in paraffin 

embedded stem sections prepared from +Si and -S i samples of the February set 

of mature wheat plants. Each photograph is 50 pm along an edge.

In order to test the reproducibility of the above results, a second set of plants 

was grown in June 2004. Stem sections were embedded in paraffin and the thickness of 

the parenchyma cell walls measured using SEM. The findings are summarized in Table 

3.5.1 and indicate that, for this trial, there was no difference in cell wall thickness 

between the +Si and -S i plants. Curiously, the wall thicknesses were intermediate 

between those measured for the +Si and -S i plants in the February set of plants. 

Representative samples from the June plants were digested and analyzed by ICP to 

determine whether they might have been contaminated with adventitious Si in the

nutrient medium. The results are shown in Table 3.5.2.
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Table 3.5.1. Wall thickness of outer parenchyma cells in mature wheat stems.

Plants "
Mean cell wall 

thickness * 
/pm

Ratio
-S i/± S i

Ratio

(-Si to ±Si) / ±Si

February set  ̂

(embedded in 

plastic resin)

-Si

+Si

1.58 ±0.19 

0.38 ±0.19

4.2 ±2.1 -

(-Si to 4-Si) 1.54 ±0.12 N/A 4.1 ±2.1

February set " 

(embedded in 

paraffin)

-S i

4-Si

1.48 ±0.25 

0.28 ± 0.06
5.3 ± 1.4 -

June set  ̂

(embedded in 

paraffin)

-S i

+Si

0.79 ±0.12 

0.85 ±0.19
0.93 ± 0.25 -

“ Plants were grown in medium containing 0.020 mM silicic acid (+Si), in Si-free 

medium (-Si), or in Si-free medium and soaked for 30 min in 0.020 mM silicic acid 

and 0.50 mM CaS0 4  at pH 6.0 (-Si to +Si). * Average of 5-20 measurements, listed

fully in Appendix 11.  ̂Measured using light xnicroscopy. ‘̂ Measured using SEM.
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Table 3.5,2. ICP-AES analysis of the June set of wheat samples (pg/g oven-dry weight). 

Data are given for duplieate samples. *

Stem Leaves Flower

±Si
Al <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
B 2.19 2.12 18.62. 17.81 7.05 7.10
Ca 2830.31 2939.83 15699.9 15333.6 2386.04 2343.65
Cu 2.97 2.99 8.38 9.43 2.87 2.95

46.91 48.75 140.28 138.50 44.16 46.53
K 33389.7 33045.5 29476.6 28320.1 11023.2 10704.1

Mg 927.28 973.30 2605.90 2620.55 1410.88 1411.86
Na 85.24 8&19 118.89 115.69 24.17 22.87
Si 238.60 215.28 595.53 590.90 39.91 39.03
rSi
Al 5.03 <5.0 5.81 <5.0 <5.0
B 2.30 2.07 15.16 6 . 1 1 6.25
Ca 2205.76 1796.60 8306.48 1003.10 998.27
Cu 3.17 3.03 7.36 2.71 2.58

49.88 47.41 120.27 45.60 45.63
K 43137.9 40660.4 35665.5 15355.6 15171.8

Mg 994.62 878.63 2536.00 1248.86 1227.28
Na 117.93 105.99 120.65 49.05 47.02
Si 30.30 25.58 36.32 10.28 1 1 . 6 6

-Si to 4-Si
Al < 5.0 <5.0 <5.0 <5.0 12.96 <5.0
B 2.59 2.25 17.08 < 2 . 0 6.37 6.14
Ca 3601.25 3151.31 12546.7 12235.4 1911.12 1902.84
Cu 3.82 3.21 8.74 8.73 4.08 3.78
Fe 40.14 34.34 116.17 109.91 46.09 42.23
K 50987.1 48301.8 31782.4 31160.6 17520.8 18009.1

Mg 1027.10 906.39 2409.34 2467.81 1256.16 1254.19
Na 156.14 125.90 99.16 93.09 47.44 46.91
Si 168.37 143.35 351.37 352.19 269.54 286.28

“ Plants grown in medium containing 0.020 mM silicic acid (4-Si), in Si-free medium 

(-Si), or in Si-free medium and soaked for 60 min in 0.020 mM silicic acid and 0.50 mM 

CaS0 4  (-Si to 4-Si). * Uncertainties are (pg/g): Al, 5.0; B, 0.1; Ca, 0.1; Cu, 0.02; 

Fe, 0.1; K, 5.0; Mg, 0.1; Na, 0.1; and Si, 0.5.
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The data in Table 3.5.2 reveal that the silieon content of the -S i wheat is far 

from zero. The relative silicon content in the -S i plants, expressed as a fraction of that 

in the +Si plants, is 12% for the stems, 6 % for the leaves and 28% for the seed crown. It 

would appear that the June plants were indeed contaminated by some extraneous Si 

source which might possibly account for the discrepancy between the two data sets. 

(Elemental assay was not performed on the February set of wheat plant.)

Interestingly, the relative silicon content of the “(-Si to +Si)” plants -  those that 

were only fed Si 1 h prior to harvesting -  rises to 69% for stems, 59% for leaves and an 

amazing 704% for the crowns. This would imply the existence of an extremely rapid Si 

transport process in agreement with Casey et. al. [50].

Although more work is necessary to verify the above findings, they nonetheless 

support the hypothesis that Si enhances the well-being of higher plants by improving cell 

wall integrity {i.e., decreasing wall thickness and permeability) via cross-linking 

interactions with pectic polysaccharides and/or structural glycoproteins in the primary 

cell wall. '
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3.6 Analysis of silicon uptake and excretion in humans

The kinetics of Si uptake and excretion in humans following the oral ingestion 

of orthosilicic acid was recently characterized by Powell and coworkers [65, 6 6 ]. The 

serum Si concentration was shown to peak at ca. 1 h after ingestion, with most of the 

silicon being excreted in urine within 6  h [65, 6 6 ]. The identity of the major 

Si-containing molecules in the biofluids was not determined, however.

In the present study, a 20 year old male subject drank 500 mL water that 

contained 2.87 mmol kg'' SiOz (41.5 mg; 98.7 atom% ^^Si) and 3.03 mmol kg"' NaOH at 

pH 7.9. Figure 3.6.1(1) shows that mono- and disilicic acid were the sole Si-containing 

species detected in the ingested water, within the detection limit of 1.1 mg L"' Si. (As a 

comparison. Figure 3.6.1(11) shows the ^^Si NMR spectrum of a 3.47 mmol kg"' silicic 

acid solution at pH 5.2. The ratio of monomeric to dimeric silicic acid in each solution 

is 11.5:1 and 10:1, respectively.)

The Si concentrations of the blood serum and urine samples that were collected 

from the test subject are listed in Tables 3.6.1 and 3.6.2.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



si(OH),

(OH)îSiOSi(OH)3 

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II

-68 -70 -72 -74
IT 1 i r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i

-76 -78 -80 -82 -84
T f - p - r

-86
i - r j t " T  

-88
' ' 1 ' 

-90

5(^^Si) /  p p m

S i i O H ) ,

n
............ - i____ . . ._____

(OH>jSiOSi(OH)j

...... ...... i ................
I I I I I—I I I I I I I I I I

-68 -70 -72 -74 -76 -78 -80 -82 -84
/29 c

-86 -88 -90

/  p p m

Figure 3.6.1. (I) Silicon-29 NMR (99.31 MHz) spectrum of water ingested by the test 

subject, containing 2.87 mmol kg ' SiOz (98.7 atom% ^^Si), 3.03 mmol kg"' NaOH and 

pH= 7.9 +  0. 3. (II) Silicon-29 NMR (149.00 MHz) spectrum of water that had been 

autoclaved with amorphous silica (98.7 atom% ^*Si) at 150 °C for 72 h. The resulting 

solution contained 3.47 mmol kg ' SiOz at pH= 5.2 +  0. 3. The spectra were recorded at 
298 K using 800-1000 n/2 pulses, gated 'H-decoupling and 100 s inter-pulse delay. 

Artificial line broadening = l.OHz. Spectral integration reveals that the ratios of 

monomeric to dimeric silicic acid are (I) 11.5:1 and (II) 10:1.
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Table 3.6.1. Silicon concentration of blood serum samples by ICP-OES.

Time post-ingestion 

/h
Si concentration “ 

/ Pg L"’

Weight% of total Si 

intake *

0 93.15 -

0.5 652.96 6.74

r 1328.65 14.88

1.5 1217.36 13.54

2 1207.47 13.42

3 991.43 1&82

4 574.49 5jW

5 516.45 5.10

6 437.97 4.15

“Accuracy (determined by spiking and recovery experiments) is 101.4 ± 3.7% for Si in 

serum. Precision in measurements is 107.8 ± 7.9% for Si in serum. * Values are 

calculated assuming 5.0 L blood in subject. “This serum sample was examined by ^^Si 

NMR.

7 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.6.2. Silicon concentration of urine samples by ICP-OES.

Urine collection
Si concentration “ 

/ mg L '
Weight% of total Si intake *

24 h before ^^Si ingestion 7.11 -

0  h before ^^Si ingestion 7.55 -

0-3 h after ^^Si ingestion * 70.49 36.09

3-6 h after ^^Si ingestion “ 20.04 12.59

“Accuracy (determined by spiking and recovery experiments) is 102.0 ± 5.7% for Si in 

urine. Precision in measurements is 102.7 ± 4.1% for Si in urine. *The weight of 

this collection was 238.04 g. Silicon-29 NMR was conducted on this sample. “The 

weight of this collection was 418.30 g.

As shown in Figure 3.6.2(1), the serum Si concentration peaked at one hour 

following sample ingestion and, thereafter, slowly returned towards the baseline 

concentration. Figure 3.6 .3(1) indicates that the silicon was readily eliminated in the 

urine. During the first 3 h following sample ingestion, 36.1% of the Si was excreted. 

Another 12.6% was eliminated over the next three hours. Thus, 48.7% of the total 

ingested silicon was eliminated from the body within six hours. Moreover, about 47% 

of the ingested silicon had been absorbed from the digestive tract within three hours of
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ingestion (Table 3.6.1), indicating that Si in the form of orthosilicic acid is readily 

absorbed and readily excreted. These results are entirely consistent with data reported

1600

1400
a
^  1 2 0 0

S  1000

800 Sample analysed 
by 20Si NMR

600

E 400

CO 200

I 0 1 2 3 4 5 6
Time post-ingestion / h

“1—I—r—I—r~r~T—i—[—i—i—i—i—|—r—r
-70 -80 -90 -100 -110 -120 

6 (^^SI)/ppm

r-T-i—r-T—r
-130 -140 -150 ppm

Figure 3.6.2 (I) Serum silicon concentration following ingestion of 41.5 mg Si (98.7 

atom% ^^Si) in 500 mL type-I water. (II) Silicon-29 NMR (149.00 MHz) spectrum of 

serum collected 1.5 h after Si ingestion, acquired at 298 K using 2024 tt/2 pulses, gated 

'H-decoupling and a 81 s inter-pulse delay.
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Figure 3.6.3 (I) Urine silicon concentration following ingestion of 41.5 mg Si (98.7 atom% 

^^Si) in 500 mL typc-I water. (II) Silicon-29 NMR (149.00 MHz) spectrum of urine 

collected during the 3 h period following Si ingestion, acquired at 298 K using 878 nil 

pulses, gated ^H-decoupling and a 81 s inter pulse delay.
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The serum and urine samples which were most concentrated in silicon were 

analyzed using ^*Si NMR. Figure 3.6.2(11) shows that, within the spectral detection 

limit of ca. 270 pg L“' Si, only monosilicic acid was present in the serum 1.5 h after Si 

ingestion. Figure 3.6.3(11) shows that the exclusive Si-containing species excreted in 

urine over the 3 h following Si ingestion were mono- and disilicic acid. In this case, the 

detection limit is ca. 536 pg L“' Si. Importantly, no signals corresponding to 

organosilicate species were detected in either spectrum.

These results represent the first reliable spéciation of Si-containing molecules 

in human biofluids, and demonstrate that mono- and disilicic acid are the predominant 

species that are actively absorbed and excreted. No other Si-containing molecules were 

detected. We note that similar findings were obtained for the Si-rich xylem exudate of 

wheat plants [50]. Indeed, if organosilicate species exist at all in organisms, the likely 

place to find them will be in polyol-rich environments with comparatively low water 

activity, such as plant cell walls and the extracellular matrix of connective tissues in 

mammals.
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Conclusions

The meehanism proposed by Zhou et al. [35] to explain silicatein’s interaction 

with silicon is not supported by the present findings. No interaction was observed 

between aqueous silicon and the histidine and serine residues of trypsin -  even at 

elevated pH and in the presence of 4-aminobutanol.

We report the first-ever evidence of an amino acid, 2,3-frara-3,4-cw-3,4- 

dihydroxy-L-proline (DHP), spontaneously forming stable hypercoordinated Si 

complexes in aqueous solution. Silicon is complexed by the free amino acid, as well as 

by DHP in an oligopeptide, under alkaline through to neutral pH conditions. The 

resulting organosilicates are anti, anti, anti,syn and syn,syn diastereomers of the 

monomeric 6ij(diolato)hydroxo silicon complex [(DHP)2 SiOH]“. Standard amino acid 

assays have been shown to mistake DHP for trara-3-hydroxyproline and, thus, it is 

possible that dihydroxyproline is not actually as rare as we think. The present findings 

indicate that a logical place to look for DHP would be hydroxyproline-rich 

macromolecules such as collagen and plant cell wall glycoproteins {e.g., silaffms) that are 

suspected of interacting with silicon.
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Apiofuranose also reacts with aqueous Si at high pH conditions, yielding 

monomeric 6A(diolato)hydroxo silicon species with anti, anti, anti,syn and syn,syn ligand 

configuration. This observation bolsters our hypothesis that many of the benefits 

conferred by silieon on plants are due to an increase in cell wall integrity that arises when 

silicon (acting much like boron) cross-links pectic RG-II molecules via their apiofuranose 

residues. Although we were unable to test this theory in-vitro using extracted RG-II 

from red wine, in-vivo studies conducted with hydroponically grown wheat {Triticum 

aestivum) indicate that silicon deficiency indeed causes significant (up to 400%!) 

swelling of parenchyma cell walls.

The dominant Si-containing species in human blood and urine are mono- and 

disilicic acid. No evidence was found of organosilicate complexes. Silicic acid is 

readily absorbed and excreted in humans. Serum Si concentration reaches a maximum 

level about one hour after silicic acid is orally ingested, and most of the silicon is 

excreted within 6 h.
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Future Work

A number of follow-up studies are suggested by our findings:

Characterize the alteration products resulting from the long term interaction of

2,3-7ra«5-3,4-cw-3,4-dihydroxy-L-proline (DHP) with aqueous silieon at elevated 

pH, and explore if aqueous Si might play a role in proline 

hydroxy lation/dehydroxylation reactions.

Seek evidence for the existence of DHP in hydroxyproline-rich macromolecules 

such as collagen and plant cell wall glycoproteins that are suspected of interacting 

with silicon.

Obtain 200+ mg of pure, well-characterized RG-II with which to investigate its 

interaction with aqueous silicon.

Conduct a comprehensive study of silicon’s influence on plant cell wall structure 

compared with that of boron, taking every precaution to eliminate extraneous 

sources of both elements.
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Appendix L The effect of Si-deficiency on wheat stem cell wall thickness *

Transverse Section of Wheat Stem /

Stem centre

Cell Wall Thickness (um)
wax

vascular
bundle

outer epidermis (+Si= 1.30; -Si= 1.80; -Si to +Si= 1.70) 

innçi' epidermis (+Si = O.flO; -Si = 1.10; -Si to +Si = 1.50)

coUenéhyma (+Si = 0.80; -Si = 1.50; -Si to +Si = 1.40)
j

oiËer parenchyma (+Si = 0.38; -Si = 1.58; -Si to +Si = 1.54)
/

scldrenchyma(+Si = 0.80; -Si = 1.40; -Si to +Si = 1.30) 

phloem

^lateral vessel (+Si — 2.20; -Si = 2.40; -Si to +Si = 1.60)

T~ middle vessel (+Si = 4.00; -Si = 3.60; -Si to +Si = 2.40) 

pfotoxylem (+Si = 5.00; -Si = 5.50; -Si to +Si = 4.90) 

inner parenchyma (+Si = 0.40; -Si = 0.80; -Si to +Si = 0.90)

* Wheat {Triticum aestivum) stem sections were prepared by plastic resin embedded

method. Cell wall thickness was measured under light microscope using a xlOO oil

immersion lens. Uncertainty of each measurement is 0.25 pm. The outer parenchymal

cells were noted to be the most responsive with respect to silicon deficiency among all

the other measurable cell types.
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Appendix II. Parenchyma cell wall thickness measurements -  raw data '

Plants'’ Cell wall thickness (pm) Mean value (pm)

Feb.set  ̂

(embedded 

in plastic 

resin)

-Si
1.58, 1.19, 1.58, 1.58, 1.58, 1.58, 1.58, 

1.98,1.58
1.58 ±0.19

+Si 0.26,0.20,0.26,0.59,0.59 0.38 ±0.19

-Si to +Si
1.58, 1.19, 1.58, 1.58, 1.58, 1.58, 1.58, 

1.58,1.58, 1.58

1.54 ±0.12

Feb. set  ̂

(embedded 

in paraffin)

-Si

1.19, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 

1.58, 1.58, 1.58, 1.58, 1.19, 1.19, 1.58, 

1.58,1.19, 0.79,1.58,1.58,1.98

1.48 ±0.25

+Si

0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 

0.24, 0.24, 0.24, 0.32, 0.32, 0.40, 0.40, 

0.32, 0.32, 0.24, 0.40, 0.24, 0.40

0.28 ± 0.06

June set 
(embedded 

in paraffin)
-Si

0.80, 0.80, 0.90, 0.90, 0.80, 0.50, 0.80, 

0.80

0.79 ±0.12
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1.00, 0.80, 1.10, 0.80, 0.60, 0.90, 1.00,

+Si
0.90, 0.90, 0.40, 1.00, 0.80

0.85 ±0.19

“ All data were gathered by Dr. David Chapman (Lakehead University.) Plants were 

grown in medium containing 0.020 mM silicic acid (+Si), in Si-free medium (-Si), or in 

Si-ffee medium and soaked for 30 min in 0.020 mM silicic acid and 0.50 mM CaS0 4  at 

pH 6.0 (-Si to +Si). '  Measured using light microscope. '* Measured using SEM.
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