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Abstract

Bush, P.G. 1999. Influence oflandscape-scale forest structure on the presence of 
pileated woodpeckers (Dryocopus pileatus) in central Ontario forests. M.Sc. F. Thesis. 
Faculty of Forestry and the Forest Environment, Lakehead University, Thunder Bay, 
Ontario, Canada, 87 pp.

Key Words: Dryocopus pileatus, pileated woodpeckers, landscape analysis, landscape 

ecology, habitat, habitat supply model.

The goal ofjny research was to investigate the influence of landscape-scale forest 

structure on the presence of pileated woodpeckers (Dryocopus pileatus) in central 

Ontario forests. Study sites were located in Algonquin Provincial Park. The presence of 

pileated woodpeckers was recorded along 5 km transect lines. The area around each 

transect line was used for landscape analysis and represented S km2. Landscape-scale 

structure analysis was conducted on the composition and configuration of pileated 

woodpecker habitat. The habitat was classified based on several methods and focused on 

the variations of the pileated woodpecker habitat supply model (PWPHSM) for central 

Ontario. To determine which of the classifications best predicted the presence of pileated 

woodpeckers, logistic regression was run on the variable “percent of land (%LAND)” for 

each classification. The landscape structure of the best classification was further 

examined to explain the presence of pileated woodpeckers by entering all landscape-level 

and class-level FRAGSTATS variables into a logistic regression procedure.

The relative densities of pileated woodpeckers in Algonquin Park averaged 0.27 breeding 

pairs per km2 (SD = 0.146 SD, range = 0.2 to 0.8). The preferred habitat classification 

was the best predictor of the pileated woodpecker presence. Total, used, and feeding 

habitats were less able to predict the presence of pileated woodpeckers. CAD (core area 

density), NC A (number of core areas), and LPI (landscape patch index) predicted pileated 

woodpecker presence better than %LAND. The final logistic regression equation using 

the CAD variable was:

Probability (presence) = 1/(1 + e ̂ ) where Y -  -1.5204 + 1.1039* (CAD)
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The equation correctly classified 71.67% of the original data (X2 = 10.4493 df = 1, p= 

0.0012). The PWPHSM used to classify preferred nesting habitat was verified as an 

adequate tool for the management of pileated woodpeckers. The ability of the core area 

variable to predict pileated woodpecker presence supports consideration of the influence 

of edge effects on this species. Forest managers are also encouraged to continue to move 

toward spatial HSA in management planning.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table of Contents

j

Library Rights Statement...................................................................................................... i

Abstract............................................................................................................................... ii

Table of Contents............................................................................................................... iv

List of Tables..................................................................................................................... vi
t

List of Figures.................................................................................................................. vii

Acknowledgements......................................................................................................... viii

1.0 Introduction....................................................................................................................1
1.1 Study Objective................................................................................................. 3

2.0 Pileated Woodpecker Ecology..................................................................................... 4
i 2.1 Introduction to the Pileated Woodpecker ........................................................ 4

2.2 Habitat Selection............................................................................................... 7
2.3 Landscape-Scale Structure Analysis ..............................................................10
2.4 Landscape-Scale Structure of Pileated Woodpecker Habitat..........................11
2.5 Wildlife Habitat Models..................................................................................14
2.6 Pileated Woodpecker Habitat Supply Model for Central Ontario...................18
2.7 Other Ontario Pileated Woodpecker Habitat Models..................................... 21

3.0 Methods....................................................................................................................... 24
3.1 Study Sites...................................................................................................... 24
3.2 Site Selection................................................................................................... 24
3.3 Pileated Woodpecker Presence/Absence Monitoring Procedures................. 26
3.4 Landscape-Scale Structure Analysis.............................................................. 29

4.0 Results......................................................................................................................... 35
4.1 Pileated Woodpecker Presence/Absence Monitoring..................................... 35
4.2 Landscape-Scale Structure Analysis ............................................................. 36

5.0 Discussion................................................................................................................... 44
5.1 Pileated Woodpecker Presence/Absence Monitoring..................................... 44
5.2 Landscape-scale Structure Analysis................................................................ 45

6.0 Conclusions................................................................................................................. 58
6.1 Recommendations.......................................................................................... 59

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



7.0 Literature Cited............................................................................................................62

8.0 Appendices..................................................................................................................69

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



List of Tables

Table 3.1 Pileated woodpecker activity weighted index.............................................. 29

Table 4.1 Pileated woodpecker responses by broad forest-type...................................36

Table 4.2 Results of logistic regression of different classifications (%LAND) in
predicting the presence of pileated woodpeckers........................................ 37

Table 4.3 Significant class-level variables (FRAGSTATS) in predicting the
presence of pileated woodpeckers...............................................................39

Table 4.4 Class-level variable (FRAGSTATS) means for present
and absent sites........................................................................................... 40

Table 4.5 Significant class-level variables (FRAGSTATS) in predicting the
presence of pileated woodpeckers in the tolerant hardwood 
study sites...................................................................................................41

Table 4.6 Results of applying the Hosmer-Lemeshow test: observed and expected
frequencies by decile.................................................................................. 42

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



List of Figures

Figure 2.1 HSI scores for the PwPr ecosite...................................................................20
j
! Figure 3.1 Map sheets selected in Algonquin Park...................................................... 25

Figure 3.2 Map sheets and study sites........................................................................... 27

Figure 3.3 Landscape-scale structure analysis...............................................................31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Acknowledgements

This project would not have taken place if not for the support and encouragement of a 

number people. I would like to express my sincere gratitude to my advisor, Dr. Peter 

Duinker. Dr. Duinker’s guidance, insight and enthusiasm made the whole graduate 

program a rewarding experience. I would also like to express gratitude for the financial 

assistance provided by Dr. Duinker through the chair in Forest Management and Policy at 

the Faculty of Forestry and the Forest Environment..

I would like to thank the members of my thesis committee, Dr, David Euler (Dean, of 

Faculty of Forestry and the Forest Environment, Lakehead University) and Dr. Brian 

Naylor (Forest Habitat Program Leader, Southcentral Sciences Section, Ontario Ministry 

of Natural Resources). Their constructive feedback and scientific input contributed to the 

success of the project. My gratitude is also extended to Dr. Graham Forbes for being the 

external examiner.

This project could not have been undertaken without the generous support o f Merilyn 

Twiss and the Southcentral Science Section, Ontario Ministry of Natural Resources, for 

providing the funding for the field data collection. I would also like to thank the 

Algonquin Forestry Authority which provided access to the digital map sheets and the 

Forest Resource Inventory database. I would also like to acknowledge Algonquin 

Provincial Park, Ontario Paries, for allowing me to conduct the research in the Park.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



A heartfelt thank you to Fr&ierik Doyon, Richard Morash, Dr. Ulf Runesson, Arnold 

Rudy, and Bob Pickard for all their assistance in combating some of the technical and 

statistical problems encountered in completion of this project. Their ongoing support and 

encouragement helped make the project a success.

To my family, I wish to express my sincere gratefulness for their continued belief in this 

project and in me. Finally, my last note of thanks is given to my wife Shannon for her 

constant love, support, encouragement, and patience.

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



1

1.0 Introduction

Forest-management activities involve decisions that alter the landscape pattern of 

ecosystems (Turner, 1989). Ecosystems that provide the environmental conditions needed 

for a wildlife species are called habitats (Thomas, 1979). The landscape structure (pattern) 

of habitats can influence wildlife populations and distributions (McGarigal and Marks, 

1994). Understanding the influence of the landscape structure of wildlife habitats is 

therefore an important part of the management of any wildlife species. With this 

understanding, forest managers can be informed how their alterations of the landscape 

structure can affect wildlife populations.

Wildlife-habitat studies have focused on three levels: the individual tree, the forest-stand 

and the landscape. Wildlife-habitat studies at the tree level focus on the species, age and 

physical condition of the trees that are used for habitat (e.g. nest trees). Forest-stand-level 

studies focus on the type of forest stands and characteristics of those stands (e.g. canopy 

closure or snag density). Landscape-scale structure studies focus on the composition and 

configuration of wildlife habitats across a broad area. Until recently, most studies on 

wildlife-habitat relationships were based on tree- and stand-level findings and principles 

(McGarigal and McComb, 1995).

Featured species are used in forest-management activities to help conserve habitat for a 

wildlife species of concern and for other species that have similar habitat requirements 

(Baker and Euler, 1989). In Ontario, the pileated woodpecker (Dryocopus pileatus) has 

been designed by the government as a featured species in management of the Great Lakes-
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St. Lawrence forests of central Ontario (Naylor et al., 1996). The pileated woodpecker
!

generally requires mature and old forest with cavity trees, snags and downed woody debris 

(Hoyt, 1957; Bull and Meslow, 1977; Renken and Wiggers, 1989; Millar, 1994; Bonar, 

1995; Kirk and Naylor, 1996). The pileated woodpecker is also a concern for forest 

managers because abandoned pileated woodpecker nest cavities provide critical habitat for
|

other wildlife species. Species that use pileated woodpecker nest cavities in central Ontario 

include: boreal owl (Aegolius funereus), screech owl (Otus asio), saw-whet owl (Aegolius 

acadicus), wood duck (Aix sponsa), common merganser (Mergus merganser), American 

kestral (Faco sparverius), common flicker (Colaptes auratus), northern flying squirrel 

(Glaucomys sabrinus) southern flying squirrel (G. volans) and American marten (Martes
I

americana) (McClelland, 1979; Millar, 1994; Kirk and Naylor, 1996).

A number of studies (Bull and Meslow, 1977; Bull et al., 1992; Renken and Wiggers,

1993; D’Eon and Watt, 1994; Bonar, 1995) have examined and defined both preferred and
i

used habitat for the pileated woodpecker. These studies have focused on the species’ tree- 

and stand-level habitat requirements. The effect of the arrangement of these habitats on the
i

presence of pileated woodpeckers is not known (Kirk and Naylor, 1996). It is hypothesized 

that in addition to tree- and stand-level requirements, landscape-scale structure also 

influences the presence of pileated woodpeckers in an area.
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1.1 Study Objective

The goal o f this research project was to determine how the landscape-scale structure of 

used and preferred habitats appeared to influence the presence of pileated woodpeckers in 

central Ontario forests. Used and preferred pileated woodpecker feeding and nesting 

habitat is defined by using the pileated woodpecker habitat supply model (PWPHSM) of 

Naylor et al. (1997).
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4

2.0 Pileated Woodpecker Ecology

2.1 Introduction to the Pileated Woodpecker

The pileated woodpecker is the largest woodpecker in North America, averaging 42 cm in 

length (Kilham, 1983). This large red-crested woodpecker is mainly black and has black 

and white stripes on the face (Farrand, 1988). The species is widely distributed throughout 

forested regions in North America from Great Slave Lake to Texas and Florida (Dance, 

1987). The pileated woodpecker is found in all Canadian provinces and territories, except 

Newfoundland and Prince Edward Island (Godfrey, 1986). In Ontario, the species favours 

forested areas south of the Hudson Bay Lowland (Kirk and Naylor, 1996). It is generally 

recognized that large tracts of mature forest are preferred (Bull, 1987; Dance, 1987; 

Renken and Wiggers, 1989; Bonar, 199S). As a resident species, the pileated woodpecker 

occupies a territory for successive years, actively defending the territory from the threat of 

intruders (Kilham, 1983; Bonar, 1995).

The pileated woodpecker has an important ecological role as a primary cavity excavator 

(Bonar, 1995). New nest cavities are excavated annually in large living or dead trees. 

Cavities have a dome-shaped entrance 10-12 cm in height and 7-10 cm in width. The 

excavated interior has a width of 18-25 cm and a depth of 60 cm (Bull et al., 1990). 

Abandoned nest cavities provide nesting and roosting sites for other cavity-using wildlife 

species (Bonar, 1995). Both the male and female participate in the excavation of the nest. 

The nest takes 3-6 weeks to complete and construction occurs between March and May 

(Bent, 1939; Kilham, 1983; Bull and Meslow, 1988; Bull et al., 1990; Bonar, 1994). Egg
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laying takes place from the end of April to late June and an average clutch consists of 2-4 

eggs (Peck and James, 1983; Bull and Meslow, 1988; Bonar, 1994). The incubation period 

lasts approximately 18 days (Hoyt, 1957). Nestlings are able to fledge after 24-28 days 

(Bull and Meslow, 1988). Young pileated woodpeckers stay with the parents for several 

months while learning to feed. They leave the parents in the fall to look for their own 

territory and a mate for the coming spring (Bull and Jackson, 1995).

There are several natural predators of the pileated woodpecker. The northern goshawk 

{Accipter gent i I is) is considered the species’ primary threat (Bull et al., 1992; Bonar, 1995; 

Kirk and Naylor, 1996). Other avian predators include the Cooper’s hawk {Accipter 

cooperi), great homed owl {Bubo virginianus), barred owl {Strix varia), and red-tailed 

hawk {Buto jamaicensis). Research in Oregon found that avian predators were responsible 

for all deaths of adult pileated woodpeckers (Bull et al., 1992). Other predators concentrate 

attacks on the eggs and nestlings, and include the raccoon {Procyon lotor), black bear 

{Ursus americanus), American marten, weasel {Mustela spp.), and black rat snakes {Elaphe 

obsoleta) (Millar, 1994; Bull and Jackson, 1995; Kirk and Naylor, 1996). With the 

exception of the black rat snake, all of these species are present in central Ontario.

Studies in North America have found breeding bird densities in the range of 0.2-4.0 pairs 

per km2. Regional differences appear to exist between eastern and western North American 

findings (Kirk and Naylor, 1996). Findings from eastern North America field studies 

reported densities in the range of 1.25-4.0 pairs per km2 (Graber et al., 1977; Welsh and 

Capen, 1992; Renken and Wiggers, 1993). However, the finding from northwestern United 

States were lower, 0.2 to 1.23 pairs per km2 (Mannan, 1984; Bull, 1987; Bull and
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Holthausen, 1993). In Ontario, Dance (1987) estimated densities to be lower than other 

eastern North American studies (0.2-1.0 pairs per km2).

Estimates of pileated woodpecker home range size vary considerably. Differences in 

sampling technique and forest type account for some of this variability. Home ranges 

appear to be larger in the conifer-dominated forests of western North America (Mellen et 

al., 1992; Bull and Holthausen, 1993). In Oregon, Bull and Holthausen (1993) found the 

average home range to be 407 ha for mated pairs (range = 321-630 ha) and Mellen et al. 

(1992) found the average to be 478 ha (range = 267-1056 ha). Bonar (pers. comm, to Kirk 

and Naylor, 1996) reported home range sizes between 500 and 3500 ha in Alberta. Smaller 

home ranges are reported in eastern North American deciduous forests (Renken and 

Wiggers, 1989). In Missouri, Renken and Wiggers (1989) found home ranges averaging 

87 ha (range = 53-160 ha). Although no radio-tracking of pileated woodpeckers has taken 

place in Ontario, the average range is estimated to be between 40 and 250 ha (James, 1984; 

Speirs, 1985; Kirk and Naylor, 1996).
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2.2 Habitat Selection

The pileated woodpecker seeks habitat that will support feeding, roosting, and nesting 

activities. Habitat characteristics at the tree- and stand-level influence habitat selection to 

varying degrees. Although pileated woodpeckers will use immature forest habitat, it is 

generally accepted that mature, dense forest types are preferred (Hoyt, 19S7; Bull and 

Meslow, 1977; Millar, 1994; Bonar, 1995; Kirk and Naylor, 1996).

The pileated woodpecker spends an enormous amount of time foraging for its primary food 

source, carpenter ants (Camponotus spp.) (Bonar, 1994). Colonies of these ants are often 

found in dead wood (snags or downed woody debris) or living trees with advanced 

heartwood decay (Kirk and Naylor, 1996). Although pileated woodpeckers do forage on a 

number of tree species, preference is shown for some tree species. In Oregon, Bull and 

Holthausen (1993) found that Douglas fir. (Pseudotsuga menziesii) and western larch (Larix 

occidentalis) were preferred, while lodgepole pine (Pinus contorta) were avoided. The 

physical properties of the tree also influenced selection. Larger snags and logs were 

foraged more actively than smaller ones, suggesting that size and height of the snag 

influenced selection (Bull and Meslow, 1977; Brawn et al., 1982; Bull and Holthausen,

1993). Studies have also shown that snags and logs with a greater degree of decay are 

preferred (Kirk and Naylor, 1996).

Stand-level characteristics also affect foraging habitat selection. Bull and Meslow (1977) 

found that denser, mixed-species forest types were more heavily used, while the open 

ponderosa pine (Pinus ponderosa) forest type was foraged to a lesser extent. Although all
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25 forest types in central Ontario showed evidence of foraging, the amount of activity was 

limited in several of these (Naylor et al., 1997). The amount of canopy closure exhibited 

by the forest type also influences the habitat selected for foraging. Although foraging can 

occur in open canopy areas including clearcuts (Bonar, 1994), denser canopies are 

preferred (Bull and Meslow, 1977). Naylor et al. (1997) found that 60% canopy closure 

supported the most active foraging.

The tree- and stand-level characteristics of nesting habitat are more restrictive than those 

required for foraging habitat (Kirk and Naylor, 1996). Pileated woodpeckers will nest in a 

number of tree species within their range (Kirk and Naylor, 1996), although preference is 

given to some species. Western larch and ponderosa pine appear to be preferred species in 

Oregon (Bull and Meslow, 1977; Bull, 1987). In Alberta (Bonar, 1994), Saskatchewan 

(Wedgewood, 1988), Manitoba (Millar, 1994) and Ontario (Peck and James, 1983), aspen 

(Populus spp.) is the preferred species. Both living and dead trees are selected for nests 

and some studies suggest that this choice is regionally based (Kirk and Naylor, 1996). The 

diameter of nesting trees is an important physical characteristic (Bull and Meslow, 1977). 

Trees need to be large enough for nest cavities (18-25 cm wide and 60 cm deep) (Millar,

1994). Some nest trees are as small as 26 cm diameter breast height (dbh), but most studies 

report an average greater than 40 cm dbh (Kirk and Naylor, 1996).

Stand-level characteristics (forest type and canopy closure) also affect nesting habitat 

selection. A number of forest types are used for nesting habitat, although certain forest- 

types are preferred at the regional level. Bull and Holthausen (1993) found that grand fir 

{Abies grandis) was the preferred forest type in northeastern Oregon. Millar (1994) found
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that deciduous forest types were the favoured nesting habitat in Manitoba. In central 

Ontario, Naylor et al. (1997) found the following forest types to be preferred: mixedwoods; 

red oak; intolerant hardwoods; white and red pine; and mixtures of intolerant and tolerant 

hardwoods. As with foraging habitat, canopy closure is also important for nesting habitat 

selection. Bull and Holthausen (1993) stated that greater than 60% canopy closure 

provided the most suitable coverage for nesting habitat.

Roost sites are additional cavities used by pileated woodpeckers within a pair’s home range 

(Bull et al., 1992). They provide protection from poor weather and predation (Bull et al., 

1992; Bonar, 1995; Kirk and Naylor, 1996). Bull et al. (1992) found that each bird used an 

average of 7 different roost sites in a 3-10 month period. These cavities occur in living or 

dead trees with a hollow internal chamber. The chambers are normally the result of decay 

and not excavation, although occasionally old nests are used for roosting (Bull et al., 1992; 

Bonar, 1994). Pileated woodpeckers have been known to excavate as many as 16 entrances 

to these hollow interiors (Bull et al., 1992). Often these entrances are within 0.5 m of each 

other (Bull et al., 1990). Multiple holes allow for easier escape from predators. The 

physical characteristics of the tree are important for selection, regardless of tree species 

(Bull et al., 1992). Stand-level characteristics are thought to be the same as those of nest 

habitat (Bull, 1987; Bonar, 1995).
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2.3 Landscape-Scale Structure Analysis

Landscape-scale structure research has evolved from the field of landscape ecology. 

Landscape ecology looks at the spatial distribution of interacting ecosystems at broad 

scales (Turner, 1989). It focuses on the structure, function and change of landscapes 

comprised of these interacting ecosystems (Forman and Gordon, 1986). It is necessary to 

understand and quantify landscape structure before studying landscape function and change 

(McGarigal and Marks, 1994). Structure refers to the spatial relationships (composition 

and configuration) between ecosystems. Function refers to interactions between the spatial 

elements of the ecosystems. Change refers to changes to structure and function of the 

landscape over time (Turner, 1989). A landscape is defined as a heterogeneous land area 

composed of an interacting mosaic of patches relevant to the phenomenon under study 

(McGarigal and Marks, 1994). Patches are unique to the investigation, are dynamic, and 

can occur at multiple scales (McGarigal and Marks, 1994). For example, different forest 

types, soil types, or land uses could represent patches in a landscape. When analyzing 

landscape structure, one studies the composition and configuration of patches.

Composition measures the presence and amount of each patch type within the landscape 

(McGarigal and Marks, 1994). Composition does not consider the placement or location of 

the patches. The main quantitative measure of composition is proportion of the landscape 

in each patch type (McGarigal and Marks, 1994). Configuration measures the physical 

distribution or special characteristics of the patches in the landscape (McGarigal and 

Marks, 1994). The physical distribution looks at the placement of patch types relative to 

other patch types (e.g. patch isolation, nearest neighbour, and patch contagion).
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Measurements of the special characteristics of patches include patch shape, mean patch 

size, and core areas. Patch shape is quantified based on the comparison of perimeter-area 

relationship of the patch to a standard shape (a square in the raster version). A core area is 

defined as area within a patch beyond a specified distance from the patch perimeter 

(McGarigal and Marks, 1994). The specified distance is referred to as the edge-width 

distance.

The software program called FRAGSTATS (McGarigal and Marks, 1994) measures the 

landscape structure by calculating values for variables that measure the composition and 

configuration of the landscape (Appendix I). The information is then organized at three 

levels: patch, class, and landscape. Patch-level analysis provides information for each 

individual patch. Class-level analysis quantifies the composition and configuration of each 

patch type. Landscape-level analysis quantifies the composition and configuration of all 

patches (regardless of class type) (McGarigal and Marks, 1994).

2.4 Landscape-Scale Structure of Pileated Woodpecker Habitat

The amount (composition) and physical distribution (configuration) of habitat (foraging, 

roosting, and nesting) may be important factors influencing the abundance of pileated 

woodpeckers across a landscape (Kirk and Naylor, 1996). Availability of water and 

wetland habitat in a landscape might also contribute to the landscape structure 

requirements.
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Bull and Holthausen (1993) and Millar (1994) made suggestions on landscape composition 

requirements of pileated woodpecker habitat. Bull and Holthausen (1993) recommended 

that 25% (91 ha) of the home range size o f364 ha should be suitable nesting habitat.

Millar (1994) recommended that in Manitoba, the minimum habitat area should be 250 ha 

and should include 40% (100 ha) of suitable nesting habitat. Robbins et al. (1989) found 

that the size of forest area significantly influences the abundance of pileated woodpeckers. 

They found that pileated woodpecker would most likely be found in continuous forest areas 

greater than 3000 ha, while the smallest forested area used was 42.2 ha.

The configuration could be important if pileated woodpeckers are an interior species or 

area-sensitive species (Kirk and Naylor, 1996). ‘The degree to which they are truly ‘area 

sensitive’ is debatable, given that they will nest in highly fragmented landscapes” (Kirk 

and Naylor, 1996, p. 18). Pileated woodpeckers have been found to nest in highly 

fragmented forest in Alberta (Bonar pers. comm, to Kirk and Naylor, 1996) and in 

fragmented agricultural landscapes in southern Ontario (Dance, 1987). McGarigal and 

McComb (1995) found that the pileated woodpeckers occupied landscapes that were more 

fragmented than landscapes that were not occupied. Kirk and Naylor (1996) conjectured 

that patch size would not ‘strongly influence’ habitat use by pileated woodpeckers in a 

relatively continuous forest. Similarly, Millar (1994) suggested that the interspersion of 

cover types would not affect the presence of pileated woodpecker in the contiguous forest 

of Manitoba.

McGarigal and McComb (1995) studied the relationship between landscape structure and 

abundance of a variety of breeding-bird species including the pileated woodpecker. They
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classified the landscape into two broad classes: conifer-large sawtimber (old growth) and 

early-seral (young growth). The conifer-large sawtimber forest was considered suitable 

nesting habitat for the pileated woodpecker while early-seral was considered unsuitable. 

They found the abundance of pileated woodpeckers to be moderately affected (0.01 l-p- 

0.092) with increased suitable habitat area (percentage of land). They also found that edge 

density of late-seral forest (conifer-large sawtimber) helped explain abundance of the 

pileated woodpeckers (McGarigal and McComb, 199S).

Some initial work on the influence of landscape-scale structure was done by Naylor et al. 

(1997). In addition to the PWPHSM (nonspatial model), Naylor et al. (1997) developed a 

spatial model. The spatial model was based on field data collected during road surveys for 

red-shouldered hawks (Buto lineatus). Volunteer observers also recorded any woodpeckers 

that responded to the red-shouldered hawk calls. Pileated woodpeckers responded at 35 

stations. These 35 stations and 35 randomly selected unused stations were used for 

development of the spatial model. The area around the stations had the nonspatial 

PWPHSM applied to the forest polygons. Habitat within concentric circles of 500 m, 750, 

m and 1000 m in radius was used in the spatial analysis. The landscape variables analyzed 

were mostly composition (area of habitat, length of roads, and patch size) variables with 

one configuration (mean distance between patches) variable (Appendix II).

The results of Naylor et al.’s (1997) spatial habitat analysis suggested that the percentages 

of nesting-preferred and nesting used habitat are the key landscape-scale influences. Only 

the nesting habitat within the 500 m radius (80 ha) influenced detection o f pileated 

woodpeckers. The influence of the percentage of nesting habitat decreased with larger
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(750 m and 1000 m radius) habitat analysis. However, at the larger habitat analysis level 

the mean distance between patches did show a difference between used and unused sites. 

The mean patch size variables did not appear to influence where the pileated woodpeckers 

were detected at any of the habitat analysis levels.

The effect of wetlands in the landscape on the presence of pileated woodpeckers is unclear 

(Hoyt, 1957; Kilham, 1959; Millar, 1994; Kirk and Naylor, 1996). In Missouri, Renken 

and Wiggers (1989) found a positive relationship between woodpecker abundance and 

amount of bottomland forest. However, there was no determination whether the use was 

because of the close spatial association of water. Selection of wetland environments may 

be coincidental as these areas produce large trees suitable for nesting (Hoyt, 1957; Conner 

et al., 1975). The nest trees within wetland areas might be preferable because of increased 

rot due to occasion flooding.

2.5 Wildlife Habitat Models

A wildlife habitat model (WHM) can be defined as a mechanism for synthesizing 

information about a species and its habitat requirements (Thomas, 1982). This definition 

leaves room for interpretation. Examining the three key words is useful in clarifying the 

definition. Wildlife refers to “all land vertebrate animals” (Thomas, 1979). Habitat can be 

defined as “the sum total of environmental conditions of a specific place occupied by a 

wildlife species or a population of such species” (Thomas, 1979). A model can be defined 

as any representation or abstraction of a system or process (Walters, 1986).
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To further complicate one’s understanding of WHMs, many researchers have used a variety 

of terms to infer WHM. In some cases the terms can be interchangeable. However, it is 

necessary to examine each of these terms to find a consistent operational definition.

The following terms fit Thomas’s (1982) definition of a WHM. A habitat supply model 

(HSM) is defined as a dynamic simulation of habitat values for a wildlife species (Greig et 

al., 1991). This type of WHM is dynamic in nature, allowing it to predict future supply of 

wildlife habitat. In the context of forest management, the term habitat supply analysis 

(HSA) is the process of using an HSM to predict the impacts of management activities on 

the supply of wildlife habitats through time (Naylor et al., 1994a). The two terms HSM 

and HSA have been used primarily in Canadian modelling. Another common term is 

Habitat Suitability Index (HSI) model. This type of model rates the value of habitat for 

wildlife with a unitless index between 0 and 1. An HSI is considered a static model 

because it only considers the value of the habitat at one point in time (Greig et al., 1991). 

All o f these terms are considered different types of WHMs.

Some terms used do not fit Thomas’s (1982) definition. The terms “wildlife models’’ and 

“wildlife modelling” have a much broader connotation. These terms usually refer to 

population, predator-prey, life-cycle, or food-chain models (Starfield and Bleloch, 1991). 

These models concentrate on natural histories of the species rather than habitat use.

The origins of WHMs can be found in early American wildlife management strategies. 

Leopold (1933) was first to suggest that wildlife populations could be managed through 

their habitat. Wildlife management focused on simple habitat surveys that measured only a
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few habitat components and were usually restricted to game species (Cooperrider et al., 

1986). The WHMs that arose from these surveys were primarily simple verbal models that 

provided a better understanding of the relationship between wildlife and habitat. An 

example of an early WHM would be “the Nashville Warbler is common in open second- 

growth deciduous woods and spruce bogs” (Robbins et al., 1966). Although descriptive, 

these qualitative models were limited.

Thomas’s (1979) work is considered by many researchers to be a “landmark work aimed at 

incorporating both broad and specific wildlife-habitat considerations into forest-landscape 

planning” (Greig et al., 1991, p.5). Thomas developed a qualitative WHM to help 

managers in forest land-use planning. The model looked at how “all terrestrial vertebrates 

relate to wildlife habitats that are described by plant communities and their successional 

stage or condition” (Thomas, 1979, p.21). Thomas suggested that “each species is adapted 

to a particular habitat and the welfare of each species can be predicted by the quantity and 

quality of available habitat” (Thomas, 1979, p.21).

The use of WHMs increased dramatically in the early 1980’s with the development of HSI 

models (Bonar and Beck, 1994). HSI models were simple equations o f a number of 

selected habitat variables that could be used in predicting the suitability of habitat for a 

wildlife species. “The model synthesizes the habitat use information into a framework 

appropriate for field application and is scaled to produce an index valued between 0.0 

(unsuitable habitat) and 1.0 (optimum habitat)" (Allen, 1983, p. iii). For example, the HSI 

model equation for the fisher (Martes pennanti) is: HSI = (V, x V2 x V3) 1/3 x V4, where V,

'
i
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is percent tree canopy, V, is average dbh of overstory trees, V3 is tree canopy diversity, and 

V4 is percent of overstory canopy comprised of deciduous species (Allen, 1983).

HSI models have also been used to represent carrying capacity, where the index of I 

represents the maximum carrying capacity for that species (Cooperrider et al., 1986). HSI 

equations have most often been applied to individual forest stands but at times have been 

applied to multiple forest stands. The US Fish and Wildlife Service produced over ISO 

HSI models (Bonar and Beck, 1994). Among these were single-species models, for 

example pileated woodpecker (Schroeder, 1983) and fisher (Allen, 1983). Some HSIs were 

developed for single species for a small specific geographic area, including: black bear in 

the Upper Great Lakes Region (Roger and Allen, 1987), and moose (AIces alces) in the 

Lake Superior Region (Allen et al., 1987). There have also been some multiple species 

models, including an HSI Model on Wildlife Species Richness in Shelterbelts (Schroeder, 

1986). Other agencies, including universities, have also generated a number of HSI 

models, pushing the total number of HSI models developed in the US to over 300 by the 

mid-1980’s (Cooperrider et al., 1986).

Development and use of WHMs in Canada for the research and management of various 

species has occurred in a number of provinces. British Columbia (Eng and McKay, 1990; 

Eng and Janz, 1990), Alberta (Kansas and Raine, 1990; Beck and Beck, 1995; Duinker, 

1995), Manitoba (Millar, 1994), New Brunswick (Sullivan, 1995), and Newfoundland 

(Knox, 1995) have been active in the development and use of WHMs. Ontario has also 

been active the development and use ofwildlife-habitat-relationship type models (D’Eon
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and Watt, 1994; Davis, 1996; Bellhouse and Naylor, 1997), and HSI models (Naylor et al., 

1992; Duinker et al., 1993, Naylor et al., 1994b; Duinker et al., 1996; Naylor et al. 1997).

2.6 Pileated Woodpecker Habitat Supply Model for Central Ontario

Extensive fieldwork in central Ontario led to the development of the Pileated Woodpecker 

Habitat Supply Model (PWPHSM). The PWPHSM was designed for use with the current 

Ontario forest inventory information and projection tools to conduct analyses of habitat 

supply for pileated woodpeckers (Naylor et al., 1997). Fieldwork leading to the model’s 

development involved collection of data from 466 vegetation sample plots. These plots 

were established during the development of the Central Ontario Forest Ecosystem 

Classification (COFEC). The system classifies the forest into 25 forest ecosites (Chambers 

et al., 1997). Evidence of pileated woodpecker activity (foraging, nesting, or roosting) was 

recorded for each site. The evidence of activity was then used along with information on 

ecosite type, stand age, and canopy closure to develop the PWPHSM.

The PWPHSM includes two major components. First, the model calculates an HSI score 

for the forest stand. Next, the forest stand is classified into one of three categories 

(unsuitable, used and preferred) for both feeding and nesting habitat based on the HSI score 

and the development stage the forest stand.

The model calculates the HSI score using a group of equations. A unique equation for each 

forest ecosite-type predicts the probability of pileated woodpecker use based on stand age

II
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and canopy closure (Naylor et al., 1997). The 25 equations were developed using logistic 

regression and have similar slopes but different intercepts (e.g. Figure 2.1).

The equation form is represented by P (Y)= eY/ l+eY where P (Y)= probability of plot 

being used and Y= intercept + 3.9691* age - 1.9764* age2+ 4.1486* cc - 3.2455* cc2 

(Naylor et al., 1997). The intercept in the model is ecosite-specific and represents the 

relative suitability of ecosites (Appendix III).

The PWPHSM uses the HSI score (P) of greater than 0.4013 as a cut-off for preferred 

habitat. The value of 0.4013 was used because 187 of the 466 plots (40.13%) had some 

evidence of activity. An HSI score of less than 0.4013 is considered to be used habitat but 

not preferred. PWPHSM than reclassifies the forest stands based on the HSI score and the 

development stage. The development stages, for which the age limits are unique for each 

forest ecosite-type, include presapling, sapling, immature, mature, and old (Appendix IV) 

(Naylor et al., 1997).
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For feeding habitat, presapling development stage is considered unsuitable for feeding 

habitat, regardless of the HSI score. All stands in the sapling development stage (quadratic 

mean dbh 2.0 - 9.5 cm) are considered used for feeding, even if the HSI is greater than 

0.4013. Stands in the mature development stage are considered to be used or preferred 

feeding habitat depending on their HSI score (Naylor et al., 1997).

For nesting habitat, stands in the presapling, sapling, and immature development stages are 

considered to be unsuitable for nesting regardless of HSI. Plots in the mature or old 

development stages are considered used or preferred for nesting depending on their HSI 

score. Only these development stages were considered used or preferred for nesting 

because stands in these classes would likely contain trees large enough for the excavation 

of nesting cavities (quadratic mean dbh at least 25 cm) (Naylor et al., 1997).

2.7 Other Ontario Pileated Woodpecker Habitat Models

D’Eon and Watt (1994) developed a qualitative WHM entitled “A Forest Habitat 

Suitability Matrix for Northeastern Ontario”. The work was a preliminary attempt to 

identify relationships between forest-dependent wildlife species and a Forest Ecosystem 

Classification (FEC) for Northeastern Ontario. A matrix was developed based on 16 FEC 

site types and five development stages of those site types. Habitat suitability for each 

wildlife species in the region is rated as either “used” habitat or “preferred” habitat. This
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suitability matrix is qualitative in nature, based on expert opinion and literature (D’Eon and 

Watt, 1994).

D’Eon and Watt (1994) suggested that pileated woodpeckers in northeastern Ontario 

preferred the following forest types, all in their old-growth development stage: hardwood, 

hardwood/moist soil, tolerant hardwoods/mixedwood, and sugar maple/yellow birch. Used 

forest types in either the mature or old-growth development stages included mixedwood/ 

aspen mix, hardwood, conifer/moist soil, and hardwoods/moist soil. D’Eon and Watt 

(1994) suggested that no forests in their initiation, regeneration, or young development 

stages were used by pileated woodpeckers. The following forest types were unsuitable at 

any development stage: black spruce, jack pine, and jack pine/black spruce.

Other matrices similar to D’Eon and Watt (1994) have been developed in central and 

northwestern Ontario for use in the provincial Strategic Forest Management Model (Naylor 

pers. comm.). The central Ontario matrix (Bellhouse and Naylor, 1997) uses the 

PWPHSM (Naylor et al., 1997) to rank forest ecosite-types. The Ontario Ministry of 

Natural Resources has also developed a software program called Ontario Wildlife Habitat 

Models (OWHAM) which includes the PWPHSM as well as other wildlife habitat models 

for moose, red-shouldered hawks, and marten.

Hounsell (1989) also developed a qualitative WHM for Ontario Hydro that looked at the 

relationships between forest birds and their habitats. Hounsell (1989) suggested that 

pileated woodpeckers in southern Ontario preferred habitat of the following forest types in
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their mature and old-growth development stages: upland hardwoods; lowland hardwoods; 

hemlock; pine; cedar-larch; upland mixed; and lowland mixed.
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3.0 Methods

3.1 Study Sites

Study sites were located in Algonquin Provincial Park (Figure 3.1) which is found within 

the Great Lakes-St. Lawrence forest of central Ontario (Rowe, 1972). The presence of 

pileated woodpeckers was recorded along S km transect lines. Sixty transect lines were 

surveyed for pileated woodpeckers. The area around each transect line was used for 

landscape analysis and represented S km2 (1 km width by 5 km length).

3.2 Site Selection

A total of 320 forest resource inventory (FRI) map sheets (each 25 km2) represent the area 

of Algonquin Park. For selection purposes, only map sheets with 80% of their area inside 

the park were used. Next, the maps were grouped into the two broad forest landscapes: 

mixedwood and tolerant hardwood. Trembling aspen (Populus tremuloides), white pine 

(Pinus strobus), red pine (P. resinosa), and white birch (Betula papyrifera) are dominant in 

mixedwood forest landscapes. The tolerant hardwood forest landscapes are dominated by 

sugar maple (Acer saccharum), yellow birch (Betula allegheniensis) and hemlock (Tsuga 

canadensis) (Chambers et al., 1997). Subsequently, the PWPHSM was applied to the FRI 

database for all map sheets. The model classified all forest stands with respect to pileated 

woodpecker habitat supply according to the PWPHSM.
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Ontario

Algonquin Park

Mixedwood
Forest

Tolerant Hardwood 
Forest_______ __

Figure 3.1 Map sheets selected in Algonquin Park.
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The total (used + preferred) nesting habitat values produced by the PWPHSM were the 

selection criteria. Map sheets with total nesting habitat between 50% and 85% were 

grouped before random selection. Total nesting habitat was grouped for selection in an 

attempt to isolate the effect of spatial pattern while attempting to control for total amount 

of habitat. Random selection was done on the map sheet numbers using a random numbers 

table. Fifteen map sheets were selected. Each map sheet was then divided into five study- 

sites 1000 m by 5000 m (Figure 3.2). The orientation of the study-sites was either north- 

south or east-west and was chosen on the basis of avoidance of the transect lines crossing 

large bodies of water.

3.3 Pileated Woodpecker Presence/Absence Monitoring Procedures

To determine the presence of pileated woodpecker, field data were collected following the 

procedures of Bull et al. (1990). The monitoring procedure involved walking line transects 

5000 m in length in the middle of the study sites. While walking along transect lines, I 

stopped every 400 m and listened and looked for pileated woodpeckers. Distance was 

determined using a hip chain (Fieldranger 6500) and direction using a compass. If a bird 

was not observed after 30 seconds, I would broadcast pileated woodpecker vocalizations 

from a tape recorder at 30-second intervals for a total of 6 minutes. A portable cassette 

player (Panasonic RQ-SW5) and 20-watt amplified speakers (Sony) were used to broadcast
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Map sheet (25 km2) 
North-South Orientation

One study site (S km1) 
around transect line

Map sheet (25 km2) 
East-West Orientation

Transect Line

Figure 3.2 Map sheets and study sites.
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vocalizations. Bull et al. (1990) report that territorial calls can be heard from 400 m to 800 

m away. The next broadcast stop was skipped if there was a previous positive response. 

Double counts of birds were avoided by: skipping a stop after a positive response; marking 

of location and direction on a map; and personal judgment. The line transects were 

surveyed between April 29 and July 10,1997. Transects were not surveyed on days of 

steady rain or days with an average wind velocity of greater than 20 km/hr. One map sheet 

(up to 5 transects) was surveyed from the tolerant hardwood forest and then one map sheet 

from the mixedwood forest. Each transect was walked only once. Sixty transect lines in 

total were surveyed. There were 30 lines from the mixedwood forest (east side of park) 

and 30 from the tolerant hardwood forest (west side of park).

When possible, a survey of pileated woodpecker foraging, roosting, or nesting activity was 

conducted at a broadcast stop. A search for evidence of activity was conducted within an 

11 metre radius (0.04 ha) around the broadcast stop. Foraging by pileated woodpeckers 

was distinguished from other species by noting holes that were at least S cm in depth 

and/or 5 cm in length (Bull et al., 1990). The frequency of the holes was also considered. 

The parameter for frequency was somewhat subjective, but the following guidelines were 

used as a reference. Low frequency was assigned to trees with up to three small holes (5 

cm long) or one large hole (> 15 cm long). Medium frequency was assigned when there 

were up to ten small holes or a few large holes. High frequency required four or more large 

holes on a tree (Naylor et al., 1997). This activity information was given a weight index 

value to emphasize higher frequency foraging as well as nests and roosts sites (Table 3.1).

i

i
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Table 3.1 Pileated woodpecker activity weighted index.
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Activity Weight Index

Foraging Low I
Foraging Medium 2
Foraging High 3
Nest tree 3
Roost tree 3

The difference in weight index of pileated woodpecker activity was analyzed between 

presence and absence transects.

The project only analyzed the presence or absence of pileated woodpeckers based on 

response to the vocalizations in study sites. There were insufficient sites with multiple 

responses for the project to compare between lower and higher density sites. The fitness of 

the individuals that responded to the broadcast vocalizations was also not analyzed.

3.4 Landscape-Scale Structure Analysis

Landscape structure analysis was conducted on the 5 km2 study sites that surrounded the 

transect lines. When analyzing landscape structure, it is important to have a sound basis 

for the classification of patches (McGarigal and Marks, 1994). The basis for classification 

in this study was pileated woodpecker habitat supply. Digital FRI maps provided the base 

polygon information and structure. The FRI maps used had been derived from air-photo 

interpretation at the scale of 1:10000 (photos taken in 1979 and 1984). Although there are 

some pitfalls in using FRI maps for landscape analysis (Doyon et al., 1997), these maps

with permission of the copyright owner. Further reproduction prohibited without permission.



30

provided adequate information on stand age, cover and composition for determining 

pileated woodpecker habitat supply. The FRI maps were assumed to be correct, although 

no information on the accuracy of the FRI database was available. The FRI database for 

Algonquin Park is in constant updating procedure (Peter VanderKraan, Algonquin Forestry 

Authority, pers. comm. 1998). The long-term cutting or logging history of study sites was 

not available for this project and was therefore not considered in the analysis. Patches of 

forest were classified into pileated woodpecker supply based solely on the FRI database 

information.

There are several ways to classify the landscape for pileated woodpecker supply, and a 

number of different pileated woodpecker habitat supply models exist (e.g. Schroeder, 1983; 

D’Eon and Watt, 1994; Millar, 1994; Bonar, 1995; Naylor et al., 1997). The habitat supply 

chosen was based on the central Ontario model (PWPHSM) by Naylor et al. (1997).

D’Eon and Watt (1994) model was modified and then used as an alternative to test against 

the PWPHSM. Both of these models are presently used in Ontario forest management 

planning and use FRI information to predict pileated woodpecker habitat supply for forest 

stands.

The habitat supply was classified based on the selected models using several means: 

PWPHSM Feeding; PWPHSM Nestingl; PWPHSM Nesting2 with a higher HSI cutoff; 

PWPHSM Nesting3 with a lower HSI cutoff; PWPHSM Nesting4 with water removed 

from the landscape; and the D’Eon and Watt Modified nesting model (Figure 3.3).
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FRI - Base patch information

COFEC- reclassified vegetation information

Habitat suitability classifications 
-PWPHSM Feeding (preferred, suitable, total) 
-PWPHSM N estingl (preferred, suitable, total) 
-PWPHSM Nesting2 (preferred and suitable)
(with higher HSI cutoff)

-PWPHSM Nesting3 (preferred and suitable)
(with lower HSI cutoff)

-PWPHSM Nesting4 (preferred, suitable, total)
(with water removed from the landscape)

-D ’Eon and Watt Modified (preferred, suitable, total)

FRAGSTATS

Logistic Regression - on composition (% LAND) 
to determine best classification

Logistic Regression - on all class-level and 
landscape-level FRAGSTATS of best classification

Figure 3.3 Landscape-scale structure analysis.
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PWPHSM Nesting2 and PWPHSM Nesting3 classifications were developed to test the 

sensitivity of the base PWPHSM Nestingl by adjusting the HSI cutoff value between used 

and preferred nesting. A higher HSI cutoff of 0.5 was used in PWPHSM Nesting2 and 

resulted in less preferred habitat. A lower HSI cutoff of 0.3 was used in PWPHSM 

Nesting3 and resulted in more preferred habitat. Removing open water from the landscape 

resulted in the PWPHSM Nesting4 classification. This classification changed only the 

unsuitable class from the base PWPHSM Nestingl. However, the overall area for each 

study site was then reduced, therefore changing the percentage of the landscape each class 

represented. An alternative nesting-habitat supply model was used to compare with the 

PWPHSM. This model was based on the D’Eon and Watt (1994) suitability matrix for the 

pileated woodpecker in northeastern Ontario. The D’Eon and Watt (1994) suitability 

matrix is more restrictive than the PWPHSM. The matrix lists fewer forest-ecosite types as 

used or preferred for the pileated woodpecker. The D’Eon and Watt Modified Nesting 

model was developed by re-coding the PWPHSM to classify the following ecosite types as 

unsuitable (0): ESI3, ES 15, ES 16, ES 30, ES 31, ES 32. There were no modifications 

made based on the development stage.

A program was developed in ARC/INFO Geographic Information System to run the six 

different classifications on all 60 study sites. First, the program reclassified digital FRI 

forest polygon information (species composition, age, and height, stocking) into COFEC 

ecosite types and serai development stages. Then, the program reclassified each polygon 

into one of three habitat classes: unsuitable, used, or preferred. The program FRAGSTATS 

(McGarigal and Marks, 1994) was then run on all reclassified landscapes to quantify the 

landscape structure. FRAGSTATS produces a number of landscape structure variables for
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both composition and configuration (Appendix I). Study sites were prepared for 

| FRAGSTATS by converting the vector files to raster files with 10 m grid cells. A 100 m
i

! edge-width distance was initially used. This distance was used in previous landscape 

structure studies (Temple, 1986; McGarigal and McComb, 1995). After one classification 

was chosen, alternative edge-width distances of 50 m and 200 m were tested. The study 

site boundary was considered a patch edge for the purpose of calculating patch size, shape 

and other metrics, even though most boundary patches would, in reality, continue beyond 

the study site boundary (McGarigal and McComb, 1995).

To determine which of the six classifications best predicted the presence of pileated 

woodpeckers, logistic regression was run on the percent of land (%LAND) for used, 

preferred and total (used + preferred) habitat of each classification. The presence/absence 

of pileated woodpeckers is the dependent variable and is recorded as either one or zero.

The %LAND (independent variable) is calculated at the class level by FRAGSTATS and 

represents the main quantitative measure of composition of habitat in each of the study 

sites. Logistic regression can be used to estimate directly the probability of an event 

occurring (SPSS Inc., 1994). Logistic regression performs better than multiple regression 

and discriminant analysis when the dependent variable can only have two values - an event 

occurring, or not occurring (SPSS Inc., 1994). Logistic regression has been used in 

wildlife habitat modelling with species absence/presence data by a number of researchers 

(e.g. Brennan et al., 1986; Smith and Connors, 1986; Pereira and Itami, 1991; Naylor et al., 

1997). The regression equation for a single independent variable is:

1
Prob (event) = ___________ ______

r0VKB,X)
1 + e

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



34

where B0and B, are coefficients estimated from the data, X is the independent variable, and 

e is the base of the natural logarithm (approximately 2.718) (SPSS Inc., 1994).

Independent variables can be evaluated on their ability to predict the dependent variable by 

examining the log-likelihood ratio and its significance. The best classification was 

determined based on the highest log-likelihood ratio (lowest significance value).

The landscape structure of the best classification was further examined to explain the
!
; presence of pileated woodpeckers (Figure 3.3). All landscape-level and class-level
i

FRAGSTATS variables were entered into forward step-wise logistic regression procedure 

(using the log likelihood method) with the F-to-enter and F-to-remove initially set at 0.10 

(SPSS Inc., 1994). Additional logistic regression was done on the data separated by broad 

forest type. A final logistic regression model is presented as a landscape-scale habitat 

model based on the analysis and biological importance of the variable.
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4.0 Results

4.1 Pileated Woodpecker Presence/Absence Monitoring

A total of 38 separate responses by pileated woodpeckers were recorded during the field 

survey from April 29 to July 11, 1997 (Appendix V). The 38 responses occurred on 28 of 

the 60 surveyed transect lines. The majority of lines (n=2l) had one response, while five 

lines had two responses, one line had three responses, and one line had four responses. The 

majority of pileated woodpeckers that responded were single birds (34), although a few 

pairs (4) did respond together. All the respondents flew close by and were either: silent 

(n=5, 13%); called (n=22, 58%); drummed (n=6; 16%); or called and drummed (n=5,

13%).

The minimum densities estimates of pileated woodpeckers in Algonquin Park can be 

calculated to be from 0.2 to 0.8 breeding pairs per km2, assuming that all single bird 

responses where part o f a breeding pair. The average density was calculated to be 0.271 (+ 

0.146 SD) (breeding pairs per km2. These reported densities should not be viewed as 

absolute densities but rather as relative estimates because bird territories did not fit entirely 

within the study sites (Renken and Wiggers, 1993). The densities reported are also relative 

because of the selection criteria used to select the map sheets. Although densities were 

calculated on the smaller study areas, the map sheet selection could have affected the 

densities reported. Map sheets were selected with total nesting habitat making up 50% to 

85% of the total area. This study could have missed some higher densities on map sheets
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with greater than 85% total nesting habitat. Lower densities could possibly exist on map 

sheet with total nesting habitat lower than 50%.

Activity information was collected at 322 plots on 22 transect lines with pileated 

woodpeckers present and 19 where they where absent (Appendix VI). Transect lines with 

pileated woodpeckers present had significantly higher index of activity (T test, p=.000278). 

The mean activity index per plot on the used transect lines was 1.2, while the average 

activity index per plot on the unused transect lines was 0.34.

The mixedwood forest had significant more study sites with pileated woodpeckers presence 

(X2 = 4.286, p = 0.038) than tolerant hardwood forest (Table 4.1).

Table 4.1 Pileated woodpecker responses by broad forest-type.

Tolerant Hardwood 
Forest

Mixedwood
Forest

Total

Present 10 18 28
Absent 20 12 32
Total 30 30 60

4.2 Landscape-Scale Structure Analysis

The areas around transect lines were used for landscape structure analysis. Landscape 

analysis attempts to predict or explain the presence/absence as determined by the field 

survey. First, the variables, “%LAND” of used, preferred and total habitat for each
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classification were entered as explanatory variables of pileated woodpecker presence into 

logistic regression (Table 4.2).

Table 4.2. Results of logistic regression of different classifications (%LAND) in
predicting the presence of pileated woodpeckers.

Classification Likelihood-ratio Significance Relationship

PWPHSM Nesting4 preferred 6.7303 0.0095 +
PWPHSM Nestingl preferred 6.0279 0.0141 +
D’Eon and Watt Nesting preferred 5.8344 0.0157 +
PWPHSM Feeding preferred 5.2959 0.0218 +
PWPHSM Feeding used 5.1065 0.0238 -

D’Eon and Watt Nesting used 4.9392 0.0268 -

PWPHSM Nestingl used 4.839 0.0278 -

PWPHSM Nesting3 preferred 4.8061 0.0284 +
PWPHSM Nesting4 used 4.712 0.03 -

PWPHSM Nesting2 preferred 3.6487 0.0561 +
PWPHSM Nesting3 used 2.9668 0.085 -

PWPHSM Nesting2 used 2.8564 0.091 -

D’Eon and Watt Nesting total 0.423 0.5154 +
PWPHSM Nesting4 total 0.25 0.6171 +
PWPHSM Nestingl total 0.2404 0.6239 +
PWPHSM Feeding total 0.0007 0.9796 +

Initial Log-Likelihood 82.9108

The PWPHSM Nesting4 was the best predictor of the pileated woodpecker presence. The 

PWPHSM Nesting4 was only different from PWPHSM Nestingl because the water was 

removed and therefore changed the percentage of land. PWPHSM Nestingl was the 

second best predictor of pileated woodpecker presence. The alternative model (D’Eon and 

Watt Nesting) also performed well in predicting pileated woodpecker presence. The 

preferred PWPHSM Feeding habitat was the next best classification. All of the 

classifications’ preferred habitats were highly significant (< 0.05) with the exception of 

PWPHSM Nesting2 (0.0561), which reduced preferred habitat because of the increased
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HSI cutoff. All of the classifications’ total habitats (used + preferred) were poor predictors
i

i of pileated woodpecker presence. All of the classifications’ used habitats had a negative
j

i  relationship and were significant. Total PWPHSM Feeding habitat was the poorest 

| predictor of pileated woodpecker presence. The %LAND of PWPHSM Nesting4 ranged 

from 0 to 93.52% for the 60 sites (Appendix VII). The mean %LAND for sites with 

pileated woodpeckers present was 49.54% and the mean for sites without pileated 

woodpeckers was 28.75%.

Having determined that PWPHSM4 Nesting was the best classification, all FRAGSTATS 

variables (from the class and landscape levels) from this classification were then entered as 

explanatory variables of pileated woodpecker presence into forward stepwise logistic 

regression. The forward stepwise logistic regression produced only one variable (CAD) 

with the initial F-to-enter and F-to-remove values. Increasing the F-to-enter and F-to- 

remove were increased to a conservative 0.5, but the model still failed to improve (i.e. no 

additional variables were added). The FRAGSTATS variables were therefore examined as 

single independent variables before they entered the forward stepwise logistic regression. 

Correlation with %LAND was also performed on all class-level variables.

A number of FRAGSTATS variables were significant in predicting the presence of pileated 

woodpeckers (Table 4.3). CAD (core area density) was the most significant variable.

with perm ission o f the copyright owner. Further reproduction prohibited without perm ission



Table 4.3 Significant class-level variables (FRAGSTATS) in predicting 
the presence of pileated woodpeckers.

Variable Log-Likelihood Ratio Significance Correlation with %LAND

CAD 9.8738 0.0017 0.7755
NCA 6.0279 0.0022 0.7787
LPI 5.8344 0.0053 0.9089
%LAND 6.7303 0.0095 1.0000
CA 6.0383 0.014 0.9945
TCAI 5.1501 0.0232 0.9375
C%LAND 4.9144 0.0266 0.9507
TCA 4.4486 0.0349 0.9487
ED 4.2258 0.0398 0.7298

Initial Log-Likelihood 82.9108

CAD, NCA (number of core areas), and LPI (landscape patch index) predicted pileated 

woodpecker presence better than %LAND. CA (class area), LPI, TCA (total core area), 

C%LAND (core area % of landscape) were all highly correlated with %LAND (0.9089- 

0.9945). NCA, CAD, and ED were moderately correlated with %LAND (0.7298-0.7787). 

All of other class-level variables were not significant (p > 0.05) in predicting pileated 

woodpecker presence(Appendix VII). There were no FRAGSTATS variables at the 

landscape-level that were significant in predicting presence (Appendix IX). The most 

meaningful landscape-level variables were PR (patch richness) (p= 0.1391), PRD (patch 

richness density) (p= 0.1468) and PD (patch density) (p= 0.2427).

CAD ranged from 0 to 2.84 per 100 ha for the 60 sites (Appendix X). The mean CAD of 

sites where pileated woodpeckers were present was 1.58 per 100 ha while the mean for 

sites without pileated woodpeckers was 0.91 per 100 ha (Table 4.4)
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Table 4.4 Class-level variable (FRAGSTATS) means for present and absent sites.

Variable Present Absent Total

CAD (#/100 ha) 1.58 0.91 1.22
NCA (#) 7.36 4.25 5.70
LPI (%) 29.63 14.82 21.73
%LAND (%) 49.54 28.75 38.45
CA(ha) ' 230.09 136.89 180.38
TCAI 29.26 18.16 23.34
C%LAND (%) 19.21 10.31 14.47
TCA (ha) 89.05 49.21 67.80
ED (m/ha) 39.82 28.32 33.69
TE (m) 18581.07 13490.94 15866.33
TA (ha) 427.32 397.07 411.19
NP (#) 7.07 5.84 6.42
PD (#/100 ha) 1.53 1.23 1.37
MPS (ha) 32.17 20.62 26.01
LSI 4.09 3.29 3.66
MSI 1.83 1.59 1.70
AWMSI 2.46 1.95 2.19
DLFD 1.11 0.97 1.03
MPFD 1.03 0.93 0.98
AWMPFD 1.05 0.95 1.00
MCA1 (ha) 12.52 7.69 9.94
MCA2 (ha) 13.21 7.50 10.17
MCAI (%) 10.10 7.60 8.76
MNN (m) 85.76 151.22 12.67
IJI (%) 30.63 47.67 39.72

Because the core-area variables showed to be significant, the sensitivity of the edge-width 

used in FRAGSTATS to calculate core was tested using alternative distances of SO m and 

200 m. When the edge-width distance was increased to 200 m, the CAD was still 

significant (p= 0.0SS4), but to a lesser degree. When the edge-width distance was
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decreased to 50 m, the CAD was no longer significant (p=0.4794). Based on this analysis, 

the edge-width distance o f 100 m was retained.

Separate logistic regression on only the tolerant-hardwood forest study sites showed similar 

results to the overall data. NCA and CAD were the two best predictors of presence of the 

PWPHSM Nesting4 preferred classification. TE, CA and LPI were also important 

variables in predicting presence (Table 4.5).

Table 4.5 Significant class-level variables (FRAGSTATS) in predicting the presence 
of pileated woodpeckers in the tolerant hardwood study sites.

Variable Log-Likelihood Ratio Significance

NCA 6.3463 0.0118
CAD 5.5470 0.0185
TE 4.3575 0.0368
ED 4.1894 0.0407
CA 3.9792 0.0461
LPI 3.3539 0.0670

Initial Log-Likelihood 38.19085

The study sites that represent the mixedwood forest type, by contrast, did not show results 

similar to the overall data. Total area (TA) was the only significant variable 

(Log-likelihood Ratio = 4.1058, p = 0.04107, starting LLR = 34.943). CAD (p = 0.3204) 

and NCA (0.5091) were not significant in predicting presence.

Logistic regression was also performed on the PWPHSM Nesting4 total habitat separately 

for mixedwood forest and tolerant hardwood sites. For the mixedwood forest sites CAD

j (Log-Likeiihood Ratio = 3.0809, p = 0.0792, starting LLR = 40.3807) and NCA (Log-

!
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Likelihood Ratio = 3.0881, p = 0.0789) showed to be the most important variables in 

predicting presence. For the tolerant hardwood sites (total habitat) no variables were 

important (i.e. p< 0.2).

The final logistic regression equation using the CAD variable was:

Probability (presence) = 1/(1 + e -00 ) where Y = - 1.5204 + 1.1039* (CAD).

The equation correctly classified 71.67 % of the original data (X2= 10.4493 df = I, p= 

0.0012). A Hosmer-Lemeshow test was also performed to assess the fit of the model 

(Table 4.6). It tests how the model performs by dividing the data into deciles and 

calculating a chi-squared statistic on the expected and observed values in the deciles 

(Hosmer and Lemeshow, 1989).

Table 4.6 Results of applying the Hosmer-Lemeshow test: observed and expected 
frequencies by decile.

Decile Obs. Yes Exp. Yes Obs. No Exp. No Total N

2 3 2.15 9 9.85 12
3 I 1.52 5 4.48 6
4 1 2.26 5 3.74 6
5 2 2.34 3 2.66 5
6 3 3.70 4 3.30 7
7 4 3.52 2 2.48 6
8 5 3.79 1 2.21 6
9 5 4.06 1 1.94 6
10 4 4.66 2 1.34 6

X * =  4.45, df=7, Significance = 0.7269

The Hosmer-Lemeshow test confirms that the model fits the data (p= 0.73) through all the 

deciles in concordance with the expected values. The p-value of 0.73 is greater than 0.05

l
I

•  i
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and therefore indicates that there is insufficient evidence for the model not fitting the data 

adequately. A pseudo R2 was calculated to be R2= 0.4012 (Nagelkerke, 1991).
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5.0 Discussion

5.1 Pileated Woodpecker Presence/Absence Monitoring

The monitoring procedures were conducted later in the season than recommended by Bull 

et al. (1990) and Bonar (pers. comm. 1996). However, I feel the responses obtained were 

normal and rejiable. Responses to the broadcast vocalizations occurred throughout the 

field survey from the end of April to the beginning of July (Appendix V). Although 

broadcasting vocalizations during the breeding season was recommended, responses were 

obtained after the breeding season because the pileated woodpecker actively defends its 

territory throughout the year (Kilham, 1983). One consequence of broadcasting later in the 

season was the high number of single bird responses. The majority of monitoring took 

place during a pairs’ nest construction, egg laying, and incubation periods. During these 

periods only one of the pair (usually the male) responded to defend the pair’s territory. 

Later during the field survey (end of June and beginning of July) after the young had 

fledged, some pairs responded together.

The monitoring procedures used to determine pileated woodpecker presence/absence 

obtained responses on 28 of the 60 transect lines. The project assumes that there is a 

correlation between the number of responses in the area and population density. The 

correlation between the activity information and the presence/absent data supports this 

assumption. Transect lines where pileated woodpeckers were present showed significantly 

more activity than the transect lines where they were absent. There was less activity on 

transect lines where no pileated woodpecker responded, although there was still some

I
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evidence. One explanation for why the birds were not present to respond may be because 

these areas are on the perimeter of a pair’s home range and not defended at this time of 

year (Mellen et al., 1992). Another explanation may be that the observed activity is the 

result of a recently deceased pileated woodpecker. A majority of the sites with high 

| activity (22 of the 26) were found on transects with pileated woodpeckers present.

j

The minimum relative density estimates of pileated woodpeckers calculated in this study 

are similar to Dance’s (1987) estimates from 0.2 to 1.0 pairs per km2. Dance’s (1987) 

estimates were based on volunteer field-observers in northern and southern Ontario. The 

relative densities reported in both of these studies are lower than other studies in eastern 

North American forests of 1.0 to 4.0 pairs per km2 (Kirk and Naylor, 1996). These lower 

density estimates may be a safer, more conservative guideline for wildlife managers to use 

in Ontario.

5.2 Landscape-Scale Structure Analysis

The PWPHSM Nesting4 preferred habitat best predicted the presence of pileated 

woodpeckers. The comparison of classifications was based on the %LAND variable for 

each habitat type. The PWPHSM Nesting4 classification was similar to the PWPHSM 

Nestingl with the exception that open water was removed. Open-water habitat (i.e. lakes) 

is thought to be unusable habitat for the pileated woodpecker because it provides no 

nesting trees or food reservoirs.
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The PWPHSM Nestingl preferred was the second best predictor of pileated woodpecker 

presence. The ability of the PWPHSM Nestingl to be a significant predictor of presence 

helps to verify that the model (unchanged) can distinguish important habitat for the pileated 

woodpecker. The actual number or sizes of preferred habitat polygons did not change 

between PWPHSM Nesting4 and Nestingl. As a result, the landscape variables that were 

not calculated as a percentage of the total area did not change. Landscape analysis results 

of these variables (e.g. NP, NCA, TE, MPS, and CA) are therefore the same for PWPHSM 

Nestingl.

The D’Eon and Watt Modified Nesting preferred habitat also proved to be an adequate 

predictor of pileated woodpecker presence. The D’Eon and Watt Modified classification 

differed from the PWPHSM Nestingl and PWPHSM Nesting4 in that some of the used or 

preferred ecosite types were reclassified as unsuitable. Even though some of the ecosites 

types were reclassified from preferred to unsuitable, the D’Eon and Watt Modified Nesting 

preferred habitat was only slightly less significant in predicting presence. This suggests 

that most of the reclassified ecosite-types (ESI3 Jack Pine-White Pine-Red Pine, ES IS 

Jack Pine, ES 16 Black Spruce-Pine, ES 30 Hemlock-Yellow Birch, ES 31 Black Spruce- 

Tamarack, ES 32 White Cedar-Black Spruce Tamarack) from the PWPHSM Nestingl may 

not be important in determining presence. Although the D’Eon and Watt Modified 

classification was developed for northeastern Ontario, a number of the forest ecosite-types 

are similar to the central Ontario, particularly in the mixedwood forest. The ability of 

D’Eon and Watt Modified Nesting preferred to be a significant predictor of presence helps 

to verify that this model can also distinguish important habitat for the pileated woodpecker.
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PWPHSM Feeding preferred habitat was also a good predictor of pileated woodpecker 

presence. The PWPHSM classified feeding habitat differently from nesting habitat based 

on the development stages of the forest stand. Feeding preferred habitat includes
i

immature, mature and old development stages, while nesting preferred habitat can only 

include mature and old development stages. The nesting preferred habitat ability to predict 

presence only slightly increased in significance (0.0218 to 0.0095) by excluding the 

immature forest.

Adjusting the HSI cutoff value did not improve the base PWPHSM Nestingl classification. 

Lowering the HSI cutoff value (PWPHSM Nesting3) performed better than increasing the 

HSI (PWPHSM Nesting2). The higher HSI cutoff value lowered the amount of preferred 

habitat by forcing some forest stands to be excluded. This means that a number of the 

forest stands that had an HSI value between 0.413 and 0.5 are still important habitat in 

predicting presence. The higher HSI cutoff value affected the ecosite types with the lower- 

value intercepts of the logistic equation model (Appendix I).

Used habitat in all of the classifications had a negative relationship with presence of 

pileated woodpeckers. As a study site’s percentage of preferred habitat increased, the 

percentage of used habitat correspondingly decreased. Therefore because of the strong 

positive relationship of presence with preferred habitat, a negative relationship was noted 

with presence and used habitat. These results suggest that used habitat, as a percentage of 

the landscape, is not a good predictor of presence.
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For all of the classifications, total (used + preferred) habitat was a poor predictor of 

pileated woodpecker presence. The poor ability of total habitat to predict pileated 

woodpecker presence may mean that either the model was weak in identifying total habitat 

or total habitat is not important in determining the presence of pileated woodpeckers. I feel 

that the latter statement is true because of the trend of all classifications’ preferred habitats 

to be a better predictor of presence than used or total habitats. Total feeding habitat 

classification.had the poorest ability to predict pileated woodpecker presence. This finding 

supports the findings of other researchers (Bull and Meslow, 1977, Millar 1994, Bonar, 

1995) that foraging habitat is not as critical as nesting habitat. The PWPHSM Nestingl 

total habitat was initially used in the selection criteria of larger (25 km2) map sheets. The 

larger map sheets selected had total habitat between 50% and 85%. The study sites (5 km2 

located within the 25 km2 map sheets) had a range of total habitat between 24% and 92%. 

Only four of the sixty study sites dropped below the initial selection criterion of 50%. 

There was a woodpecker pair present on two of those low-percentage study sites. The 

assumption that each study site had enough total habitat to support one pair was still 

maintained. However, these results showed that sufficient total habitat is not good in 

determining pileated woodpecker presence.

The inability of total habitat classifications to predict pileated woodpecker presence is an 

important finding for the management of pileated woodpeckers. Managers in the Great 

Lakes-St. Lawrence Forest Region use the PWPHSM to perform habitat supply analysis 

(Naylor et al., 1996). Findings from this project support the Strategic Forest Management 

Model (Davis, 1996) that sets management objectives to look at preferred habitat rather
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than total habitat. Managing for preferred nesting habitat would better conserve critical 

forest habitat for the pileated woodpecker.

Additional FRAGSTATS variables were examined to determine if they were better than 

%LAND in predicting pileated woodpecker presence. CAD (core area density), NCA 

(number of core areas), and LPI (largest patch index) variables were better than %LAND at 

predicting presence. CAD and NCA are essentially the same variable with CAD simply 

being the NCA per 100 ha. CAD is a better variable for comparing landscapes and for 

model development because it normalizes the value for a given area (McGarigal and 

Marks, 1994). NCA is only valuable when one is dealing with landscapes of the same size. 

CAD became a slightly better predictor when open water was removed because this led to 

differences in the sizes of study sites.

Core areas are important for forest-interior species. These species are sensitive to forest- 

edge effects of predation, competition, and brood parasitism (McGarigal and Marks, 1994). 

Temple (1986) suggested that core area can be a better predictor of habitat quality than 

patch area. The pileated woodpecker has not been clearly identified is an interior species in 

the literature and the debate continues (Kirk and Naylor, 1996). The importance of CAD 

and NCA in my results may suggest that the pileated woodpecker is sensitive to some edge 

effects. The type or degree of the edge effect is difficult to determine from this study but 

does warrant further research.

The edge-width of 100 m was better at maintaining CAD significance than SO m and 200 m 

edge-widths. The 200 m edge-width produced a CAD that was still moderately significant

I
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(p = 0.0S54) and indicates that the edge effects might extend further than 100 m. A 

circular forest polygon with a 100 m edge-width needs to be at least 3.14 ha to maintain 

any core area. Circular forest polygons with edge-widths of SO m and 200 m would need to 

at least 0.78S ha and 12.56 ha in size respectively. Adjusting edge-width affects the 

number of core areas by removing polygons smaller than these minimum required areas. 

The number of small core areas (less than 12.56 ha) that were removed by increasing the 

edge-width tp 200 appear to be important. This finding suggests that even smaller core 

areas of preferred habitat are important in the landscape configuration.

In this study there was no distinction between types of edges. The edge effects may be 

different between preferred and used, preferred and unsuitable, and preferred and water 

habitats. Because the pileated woodpecker has been viewed as an interior species, studies 

have not examined whether they respond to different edge types.

The LPI variable measures the largest patch as a percentage of the total landscape area. 

Because the LPI values are highly correlated with the %LAND values, it is difficult to 

determine the effect on patch size of habitat selection. The LPI was higher for sites where 

pileated woodpeckers were present (mean = 29.63%) than for sites where there was no 

response (mean = 14.82). If the %LAND were the same for all sites, then we could say 

that based on the higher LPI, sites with pileated woodpecker presence were less 

fragmented. However, with the high degree of correlation between the two variables, this 

statement can not be made.
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The %LAND variable, which was used to determine which classification best predicted 

presence, was the fourth most significant variable. The mean %LAND of sites where 

pileated woodpeckers were present was 49.5%, while the mean for sites without pileated 

woodpeckers was 28.75%. The mean %LAND values of sites with pileated woodpeckers 

present is consistent with Millar’s (1994) recommended 40% of a habitat area to be nesting 

habitat. Naylor et al. (1997) found that sites with pileated woodpeckers present had a mean 

of 37% preferred habitat.

The variable CA (class area) reports the total area of preferred habitat in hectares. The 

variable is highly correlated with %LAND and mostly redundant because it reports the 

actual area as compared to the percentage of area. However, the variable does provide a 

look at the real area values that are influencing the presence of pileated woodpeckers. The 

mean CA for sites with birds present was 230 ha as compared to the mean of 137 ha for the 

sites without birds. The sites without birds had enough preferred nesting habitat when 

compared with Bull and Holthausen (1993) and Millar (1994) minimum nesting habitat 

requirement areas of 91 ha and 100 ha respectively. Based on these findings, the pileated 

woodpecker might have a higher minimum nesting habitat requirement in central Ontario 

than in Oregon and Manitoba.

TCAI (total core area index), which quantifies the amount of core area as a percent of the 

total preferred area, and C%LAND (core area % of landscape) were other significant core 

area variables. The mean C%LAND for sites with pileated woodpeckers present was 

reduced from the %LAND (49.5%) to only 19.2%. TCA (total core area) is another 

significant core area variable that is mostly redundant with C%LAND. The variable does
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provide a look at the real area values for core area. The mean TCA for sites with pileated 

woodpeckers present was 89 ha while the mean for sites without pileated woodpeckers was 

49. By using the 100 m edge-width, the preferred habitat in core area is significantly 

reduced from the total preferred habitat (CA).

The ED (edge distance) was another significant landscape configuration variable. As the 

percentage o f  preferred habitat increased, so did the ED. The ED can be an indication of a 

more fragmented landscape with more-complex patch shapes. The difference in ED 

between sites where birds were present and sites with no response suggests that pileated 

woodpeckers preferred a more fragmented landscape with more complex patches.

However, this statement is difficult to confirm due to differences in %LAND. If the 

%LAND for all study sites were similar, then a statement of preference for fragmented 

forest could be made. McGarigal and McComb (1995) also found that ED was a 

significant landscape variable for the pileated woodpecker and had a similar limitation in 

that there were large differences in %LAND.

A number of other variables, even though they were not significant in predicting presence 

of pileated woodpeckers, still contribute to understanding the role of landscape-scale forest 

structure for this species. Total area (TA) for most of the study sites was similar (range = 

299.7-499.91 ha). All study sites started out as 500 km2 and then with the PWPHSM 

Nesting4 had the open water removed. The TA was a poor predictor of pileated 

woodpecker presence. This result supports the statement that pileated woodpeckers are 

selective in terms of habitat and also shows that composition and configuration of the 

forest are more important than total area of the forest.
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The number of patches (NP) and patch density (PD) of preferred habitat were poor 

predictors of pileated woodpecker presence. At the landscape level, NP and PD were also 

poor predictors of presence. The fact that NP and PD were not significant and CAD and 

NCA were further suggests that pileated woodpeckers are influenced by edge effects and 

not just the number of patches of preferred habitat in a landscape.

The mean patch size (MPS) was only marginally significant (p = 0.079) in predicting 

pileated woodpecker presence. The influence of MPS in this study is difficult to interpret 

due to its relatively high correlation (0.808) with %LAND. This supports Kirk and 

Naylor’s (1996) suggestion “that patch size does not strongly influence habitat use in a 

continuous forest”. Naylor et al. (1997) also found that MPS of preferred habitat was not 

significant in determining pileated woodpecker presence.

The landscape shape index (LSI) shows that the shape of the patches of preferred habitat is 

moderately more complex for sites with pileated woodpeckers. The LSI compares the 

perimeter/area ratio to a standard shape (square for raster data). Although this variable is 

moderately significant (p = 0.069), it is not meaningful because the borders of the study 

sites were not true ecological edges (McGarigal and Marks, 1994). If the boundaries o f the 

study sites would had followed the forest stand boundaries, then the results for LPI would 

possibly have been meaningful.

No landscape-level FRAGSTATS variables were significant in predicting PWP presence. 

This finding suggests that the landscape patterns of patches (not considering the patch
i
i
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types, unsuitable, used or preferred) are similar between used and unused sites. If there 

were significant landscape level variables, it would have been more difficult to determine 

the influence of the class-level variables. The patch richness (PR) was the most important 

landscape-level variable (LLR = 2.1875, sig. = 0.1391). PR measures how many types of 

patches (unsuitable, used, or preferred) are in each landscape. The mean PR measured 

higher for sites without pileated woodpeckers (2.69) than for sites with pileated 

woodpeckers (2.50).

Broad forest types appeared to influence the presence of pileated woodpeckers. The 

number of sites with birds present was greater in mixedwood forests than in the tolerant
i

hardwood forests. The two highest relative densities (ER3-0.8 pairs per km2 and DV2-0.6
i

pairs per km2) were found in the mixedwood forest. When the study areas were examined 

separately for landscape-scale structure influence, some differences from the overall 

findings were noted. CAD, NCA, ED, and LPI were still important in the tolerant 

hardwood forest. However, in the mixedwood forest these variables of preferred habitat
i

were no longer significant. TA of preferred habitat was the only significant variable in the
I

mixedwood forest. CAD was an important variable in the mixed forest sites when total
I

nesting habitat was examined.

j

The difference in the influence of landscape structure between the two broad forest types 

can partly be explained by the difference in the amount o f preferred nesting habitat. The 

mixedwood forest sites had significantly more preferred habitat (mean = 64%, SD = 

18.8%) than tolerant hardwood forest sites (mean = 12%, SD = 13.5%). The configuration 

variables (CAD, NCA, ED, and LPI) seemed to be more important when there were
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smaller amounts of preferred habitat. In the mixedwood forest only the total area of land 

(unsuitable, used, and preferred) influenced pileated woodpecker presence. There appears 

to be a threshold after which the influence of the configuration of preferred habitat 

decreases. Andren (1994) suggested that total area of suitable habitat is of greater 

importance than spatial arrangements for landscape with greater than 30 % suitable habitat, 

thus supporting the theory of a threshold.

The final logistic equation used to predict presence -

Probability (presence) = 1/(1 + e ^  where Y = - 1.5204 + 1.1039* (CAD) — performed 

well across all study sites. Therefore, the logistic regression equation provides a good 

spatial habitat model that incorporates the important landscape-scale configuration 

requirements. Although there is some difference in the landscape-scale influence between 

the two broad forest types, I did not feel it was warranted to create two separate spatial 

models. For both landscapes, core areas and preferred habitat had some importance. Also, 

forest and wildlife management at the landscape-scale in Ontario generally occurs across 

both broad forest types.

Forest managers can use the spatial model in two different methods to predict the 

probability of pileated woodpecker presence. One method is to apply the spatial model to 

individual areas to assess a probability of pileated woodpecker presence. These individual 

areas should be restricted to areas approximately 5 km2. A second method is to apply the 

spatial model to larger landscapes by analyzing individual habitat assessment units of 5 

km2. First, the PWPHSM would be run on the forest landscape, assigning the habitat 

supply classes to forest polygons. The next step would involve a movable habitat
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assessment unit or window across the landscape (Duinker, 1986). This technique would 

involve overlaying a, say, S km2 window (2240 m X 2240 m) on the map of habitat supply 

classes created by using the PWPHSM. All of the preferred habitat would then be selected. 

The logistic regression equation (spatial model) would be applied to the preferred habitat in 

the 5 km2 window. If the probability were greater than or equal to 0.5, then all the forest 

stands would be flagged to retain the original habitat supply category (unsuitable, used, or 

preferred). If thehabitat window has a probability less than 0.5, then all stands will not be 

flagged for conversion to the unsuitable category. There could be a 50 % overlap of these 

windows in both X and Y directions. The flagged stands would retain that notation if a 

second overlay has a probability less than 0.5. Forest stands not flagged would be assigned 

an unsuitable classification. The habitat window would move across the entire landscape 

until all areas have been analyzed.

The spatial model allows the important landscape-scale influences to be incorporated into 

the analysis of supply of pileated woodpecker habitat. Forest managers in central Ontario 

can assess how possible forest management strategies could affect pileated woodpecker 

habitat using the results of application of the model. In addition to the tree- and stand-level 

management strategies outlined by Naylor et al. (1996), this landscape-scale management 

is important for the conservation of pileated woodpecker habitat.

The scope of this research project was restricted in several ways. First, the study looked at 

the landscape-scale forest structure for sites of 5 km2. There might be important landscape- 

scale forest structure considerations at smaller and larger scales. Secondly, the study relied 

on the base FRI map information. The accuracy of the FRI information used in Algonquin
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Park has not been documented. Some errors in stand boundaries, stand age, and tree 

species may be present on the FRI maps. The FRI information was used because it is the 

same information used by forest managers across central Ontario and it is practical and 

affordable for this type of landscape-scale habitat work. Finally, the study assessed only 

the influence of landscape-scale structure on the presence of pileated woodpeckers and not 

influence of landscape-scale structure on the density of pileated woodpecker or fitness of 

those individuals: The study did not have enough sites with higher densities to statistically 

compare with the lower density sites. These limitations should be considered when 

interpreting the results of this study.
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6.0 Conclusions

This study demonstrated that landscape-scale forest structure has an important influence on 

the presence of pileated woodpecker. Preferred nesting habitat was clearly identified as the 

best habitat for predicting the presence. The composition (%LAND) and configuration 

(CAD) of the preferred habitat were the most important landscape-scale structure measures 

of the habitat. The PWPHSM used to classify preferred nesting habitat was verified as a 

good tool for the management of pileated woodpecker habitat. The PWPHSM can be 

improved for landscape analysis when comparing percentage of habitat available between 

areas by removing the open water from the landscape.

Total, used, and feeding habitats were less able to predict the presence of pileated 

woodpeckers. This is an important consideration for management of this species in Great 

Lakes-St. Lawrence forests of central Ontario. The study demonstrates that although these 

sites are utilized, they are unreliable in predicting pileated woodpecker presence.

Edge effects appear to have a greater influence on pileated woodpecker presence than 

previous research has suggested (Millar, 1994; Kirk and Naylor, 1996). The ability of the 

core area variables to predict pileated woodpecker presence supports consideration of the 

influence of such effects. Based on sensitivity analysis of the edge-width, the edge effects 

are on the order of 100 m. Although this study was unable to identify the type and 

magnitude of the edge effects, they do merit further investigation.
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The difference in the influence of landscape structure between the two forest-types 

suggests that the landscape configuration is more important with low percentages of 

preferred nesting habitat. Further research could focus on better defining the threshold 

where landscape configuration becomes more important. Forest managers could then pay 

close attention to landscape configuration when managing landscapes with lower 

percentages of preferred habitat.

6.1 Recommendations

The PWPHSM should continue to be used by forest managers in central Ontario. When 

landscape analysis is comparing percentage of habitat available, it is recommended that 

water be removed from the landscape. Forest managers are also encouraged to continue to 

move toward spatial HSA in management planning. It is also recommended that HSA for 

pileated woodpecker is applied to preferred nesting habitat rather than on used or total 

nesting habitat.

In Ontario, detailed information on the home ranges of pileated woodpeckers is needed for 

management of this species to be effective. Extensive radio-tracking surveys (e.g. Bull and 

Holthausen, 1993) need to be conducted to determine home range sizes and patterns. 

Landscape-scale analysis of habitat within the home range areas could help further explain 

the importance of landscape-scale forest structure.
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Population monitoring of pileated woodpecker populations is also recommended in central 

Ontario. A monitoring program of populations of this species could use field methods 

similar to this study. Monitoring across central Ontario would be best undertaken by 

broadcasting vocalizations from a vehicle using secondary and tertiary roads. Broadcast 

stops every 400 m (as used in this survey) would be recommended. The population 

monitoring could be conducted beyond the breeding season into July. Information on 

pileated woodpecker locations and populations collected during a red-shoulder hawk 

survey (Naylor et al., 1997) or the Breeding Bird Surveys can provide good supplementary 

data. Separate pileated woodpecker surveys are recommended to build a larger, more- 

detailed data set.

At both the tree- and stand-Ievels, there is a good understanding of foraging and nesting 

requirements of the pileated woodpecker. However, there is a need for more research on 

roosting characteristics at tree- and stand-levels. The landscape-level relationship between 

roosting and nesting habitats also needs to be examined.

The effects of selection and shelterwood harvesting on pileated woodpecker are not fully 

known. Both of these silviculture techniques are practiced in Algonquin Park. Selection 

harvesting is thought to have less of an effect (Wedeles and Van Damme, 1995; Kirk and 

Naylor, 1996). However, there is no understanding how these silviculture systems may 

influence pileated woodpecker populations at the landscape level.

This research project demonstrates that landscape-scale forest structure can be important 

for the conservation of pileated woodpecker habitat. The methods used in this landscape-
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scale analysis can be applied to other birds or mammals where the influences of landscape- 

scale forest structure could be important. Thomas (1986) stated: “Models are merely the 

means to an end. They are not the end in and of themselves.” We must view this pileated 

woodpecker spatial model as a tool to help assist in making better decisions for the 

conservation of this species. This study serves as preliminary understanding of the 

influence of landscape-scale forest structure on the pileated woodpecker and as a guide to 

future landscape-scale analysis.
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Appendix I: Landscape structure variables calculated by FRAGSTATS.

Scale Acronym Metric (units)

Area metrics

Class
Class
Class/landscape
Class/landscape

CA
%LAND
TA
LPI

Class area (ha)
Percent of landscape (%) 
Total landscape area (ha) 
Largest patch index (%)

Patch density, patch size and variability metrics

Class/landscape
Class/landscape
Class/landscape
Class/landscape
Class/landscape

NP
PD
MPS
PSSD
PSCV

Number o f patches (#)
Patch density (#/100 ha)
Mean patch size (ha)
Patch size standard deviation (ha) 
Patch size coefficient of variation (%)

Edge metrics

Class/landscape
Class/landscape
Class/landscape
Class/landscape
Class/landscape
Class/landscape

TE
ED
CWED
TECI
MECI
AWMECI

Total edge (m)
Edge density (m/ha)
Contrast-weighted edge density (m/ha)
Total edge contrast index (%)
Mean edge contrast index (%)
Area-weighted mean edge contrast index (%)

Shape metrics

Class/landscape
Class/landscape
Class/landscape
Class/landscape
Class/landscape
Class/landscape

LSI
MSI
AWMSI
DLFD
MPFD
AWMPFD

Landscape shape index
Mean shape index
Area-weighted mean shape index
Double log fractal dimension
Mean patch fractal dimension
Area-weighted mean patch fractal dimension

I
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Appendix I: Landscape structure variables calculated by FRAGSTATS
(Continued).

71

Scale Acronym Metric (units)

Core area metrics

Class C%LAND Core area percent of landscape (%)
Class/landscape TCA Total core area (ha)
Class/landscape NCA Number of cores areas (#)
Class/landscape CAD Core area density (#/100 ha)
Class/landscape MCA1 Mean core are per patch (ha)
Class/landscape MCA2 Mean area per disjunct core (ha)
Class/landscape TCAI Total core area index (%)
Class/landscape MCAI Mean core area index (%)

Nearest-neighbor metrics

Class/landscape MNN Mean nearest-neighbor distance (m)
Class/landscape MPI Mean proximity index

Diversity metrics

Landscape SHDI Shannon’s diversity index
Landscape SIDI Simpson’s diversity index
Landscape MSIDI Modified Simpson’s diversity index
Landscape PR Patch richness (#)
Landscape PRD Patch richness density (#/100 ha)
Landscape RPR Relative patch richness (%)
Landscape SHEI Shannon’s evenness index
Landscape SIEI Simpson’s evenness index
Landscape MSIEI Modified Simpson’s evenness index

Contagion and interspersion metrics

Class/landscape IJI Interspersion and juxtaposition index (%)
Landscape CONTAG Contagion index (%)

McGarigal and Marks (1994)
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Appendix II: Variables used by Naylor et al. (1997) in spatial analysis of pileated 
woodpecker habitat.

Variables

Area of preferred nesting habitat (ha)
Area of all nesting habitat (ha)
Area of preferred feeding habitat (ha)
Area of all feeding habitat (ha)
Nesting units (sum of HSI score for nesting multiplied by the area of the polygon) 
Feeding units (sum of HSI score for feeding multiplied by the area of the polygon) 
Area of forest (ha)
Area of open water (ha)
Area of wetlands (ha)
Area of barren rock (ha)
Area of gravel pits (ha)
Area of agricultural land (ha)
Length of paved, all weather-roads (m)
Length of seasonal roads (m)
Length of rivers and streams (m)
Mean size of patches of preferred nesting habitat 
Mean size of patches of nesting habitat 
Mean size of preferred feeding habitat 
Mean size of feeding habitat
Mean distance between patches of preferred nesting habitat 
Mean distance between patches of nesting habitat 
Mean distance between patches of preferred feeding habitat 
Mean distance between patches of feeding habitat
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Appendix III: Ecosite-specific intercepts for the PWPHSM model.

Ecosite type Intercept

E S 11 (White Pine-Red Pine) -2.1955
E S I2 (Red Pine) -3.3000
ESI 3 (Jack Pine-White Pine-Red Pine) -3.3000
E S I4 (White Pine-Largetooth Aspen-Red Oak) -2.2764
ES1S (Jack Pine) -4.1233
E S I6 (Black Spruce-Pine) -3.3000
E S I7 (Polar-White Birch) -2.7594
E S I8 (Poplar-White Birch-White Spruce-Balsam Fir) -3.3000
E S I9 (Poplar-Jack Pine-White Spruce-Black Spruce) -2.4746
ES20 (White Pine-Red Pine-White Spruce-White Birch- -3.3000
Trembling Aspen)
ES21 (White cedar-White Pine-White Birch-White Spruce) -3.3000
ES22 (White Cedar-Other Conifer) -3.3000
ES23 (Red oak-Hardwood) -3.3000
ES24 (Sugar Maple-Red Oak-Basswood) -3.6465
ES2S (Sugar Maple-Beech-Red Oak) -3.9308
ES26 (Sugar Maple-Basswood) -3.8963
ES27 (Sugar Maple-White Bircb-Poplar-White Pine) -3.3000
ES28 (Sugar Maple-Hemlock-Yellow Birch) -3.7098
ES29 (Sugar Maple-Yellow Birch) -4.2640
ES30 (Hemlock-Yellow Birch) -3.8965
ES31 (Black Spruce-Tamarack) -4.5929
ES32 (White Cedar-Black Spruce-Tamarack) -3.6842
ES33 (White Cedar-Other Conifer) -3.3000
ES34 (White Cedar-Lowland Hardwoods) -3.3000
ES3S (Lowland Hardwoods) -3.7342

Naylor et al. (1997)
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Appendix IV: Development stages for COFEC ecosite type.

Ecosite type Presapling Sapling Immature Mature and 
Old

ES11 0-14 15-24 25-64 65+
ES12 0-9 10-24 25-59 60+-
ES13 0-14 15-29 30-69 70+
ES14 0-14 15-24 25-59 60+
ES15 0-9 10-24 25-89 90+
ES16 0-19 20-39 40-89 90+
ES17 0-14 15-34 35-69 70+
ES18 0-14 15-29 30-64 65+
ES19 0-9 10-24 25-64 65+
ES20 0-19 20-29 30-59 60+
ES21 0-19 20-34 35-69 70+
ES22 0-14 15-29 30-84 85+
ES23 0-14 15-24 25-54 55+
ES24 0-19 20-34 35-69 70+
ES25 0-14 15-29 30-59 60+
ES26 0-19 20-34 35-64 65+
ES27 0-14 15-29 30-64 65+
ES28 0-19 20-34 35-69 70+
ES29 0-19 20-34 35-69 70+
ES30 0-19 20-34 35-69 70+
ES31 0-24 25-59 60+
ES32 0-24 25-49 50-119 120+
ES33 0-14 15-29 30-84 85+
ES34 0-14 15-29 30-64 65+

Naylor et al. (1997)
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Appendix V: Pileated woodpecker response locations

Transect Map sheet Date Forest-type UTM o f Stand Working
________ and number____________ of_transect_______Broadcast stop_______# Group

NM1 NM 17 7000 50500 29-Apr Tolerant hardwoods 17 701950 5050950 1705 Mh

E 04 EO 17 7100 50950 07-May Mixedwoods 17 714500 5099800 3496 Po

E 02 EO 17 7100 50950 09-May Mixedwoods 17 711480 5099810 1279 Po

E 05 EO ' 17 7100 50950 13-May Mixedwoods 17 714480 5096820 4164 Po

E 03 EO 17 7100 50950 08-May Mixedwoods 17 712700 5098953 3083 Po

ER3 ER 17 7250 50950 14-May Mixedwoods 17 725985 5097500 5974 B

ER3 ER 17 7250 50950 14-May Mixedwoods 17 726970 5097540 Wetland

ER3 ER 17 7250 50950 14-May Mixedwoods 17 727450 5097500 7580 Po

ER3 ER 17 7250 50950 14-May Mixedwoods 17 728000 5097500 8074 Pj

ER2 ER 17 7250 50950 14-May Mixedwoods 17 726640 5096400 6765 Po

ER1 ER 17 7250 50950 20-May Mixedwoods 17 726600 5095450 6555 Po

ER4 ER 17 7250 50950 26-May Mixedwoods 17 728840 5098420 8784 Or

KE1 KE 17 6600 50650 27-May Tolerant hardwoods 17 662860 5065380 3256 Mh

KE1 KE 17 6600 50650 27-May Tolerant hardwoods 17 660270 5065530 355 Mh

NL1 NL 17 6950 50500 04-Jun Tolerant hardwoods 17 695550 5053640 5536 Mh

NL2 NL 17 6950 50500 04-Jun Tolerant hardwoods 17 696650 5050950 6811 Mh

ED3 ED 17 6550 50950 06-Jun Tolerant hardwoods 17 658960 5097600 8774 By

DW1 DW 18 2800 51000 10-Jun Mixedwoods 18 282660 5100520 2507 Pw

DW2 DW 18 2800 51000 10-Jun Mixedwoods 18 281960 5101450 1912 Pw

DW3 DW 18 2800 51000 09-Jun Mixedwoods 18 283250 5102400 3223 Pw

DW4 DW 18 2800 51000 11-Jun Mixedwoods 18 284430 5103350 4641 Or

DL1 DL 17 6950 51000 12-Jun Tolerant hardwoods 17 695500 5103090 5331 Mh
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Appendix V: Pileated woodpecker response locations (Continued).

Transect Map sheet Date Forest-type UTM of Stand Working
________and number____________ of_transect_______Broadcast stop_______# Group

DL3 DL 17 6950 51000 30-Jun Tolerant hardwoods 17 697530 5101400 7613 Pw

DL3 DL 17 6950 51000 30-Jun Tolerant hardwoods 17 697500 5102700 7425 B

FX1 FX 18 2850 50900 17-Jun Mixedwoods 18 285520 5094120 5443 Po

FX3 FX. 18 2850 50900 17-Jun Mixedwoods 18 287240 5094860 Wetland

DV1 DV 18 2750 51000 19-Jun Mixedwoods 18 277040 5101504 7111 Pw

DV1 DV 18 2750 51000 19-Jun Mixedwoods 18 276100 5101500 Wetland

DV1 DV 18 2750 51000 19-Jun Mixedwoods 18 279048 5101502 9313 Pw

DV4 DV 18 2750 51000 19-Jun Mixedwoods 18 278460 5103220 8532 Pw

DV4 DV 18 2750 51000 19-Jun Mixedwoods 18 279460 5103130 8532 Pw

S04 SO 17 7100 50250 27-Jun Tolerant hardwoods 17 710700 5028580 882 Po

S04 SO 17 7100 50250 26-Jun Tolerant hardwoods 17 711950 5028600 1985 Mh

S03 SO 17 7100 50250 25-Jun Tolerant hardwoods 17 713200 5027300 3275 Bw

GR3 GR 17 7250 50850 01-Jut Mixedwoods 17 727500 5085820 7555 Po

GR3 GR 17 7250 50850 01-Jul Mixedwoods 17 727500 5087100 7570 Po

FY3 FY 18 2900 50900 07-Jul Mixedwoods 18 292480 5093950 2444 Pw

OJ1 OJ 17 6850 50450 11-Jul Tolerant hardwoods 17 685680 5046635 5668 Mh

(Collected in Algonquin Provincial Park, Ontario by Peter Bush and Andrew Rees, April 
29-July 11,1997)_________________________________________________________

I
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Appendix VI: Activity information collected on surveyed transects lines.

77

Transect PWP
0/1

#of
Pairs

# o f
Plots

Activity Weighted
Index

Index per 
Plot

dll 1 1 4 1 high, 1 low 4 1.000
dl2 0 0 8 3 low 3 0.375
dl3 1 2 10 1 medium 1 low 3 0.300
dl4 0 0 12 1 high, 1 Medium, 3 low 8 0.667
dw3 1 1 7 3 medium 6 0.857
dw4 1 1 11 1 high, 4 low 7 0.636
dw5 0 0 11 1 high, 3 medium, 1 low 10 0.909
eo1 .0 0 6 1 medium, 2 low 3 0.500
eo2 1 1 6 1 medium 2 0.333
eo3 1 1 4 1 nest 3 0.750
eo4 1 1 3 1 nest, 1 medium, 5 low 10 3.333
eo5 1 1 7 3 medium, 3 low 9 1.286
er1 1 1 8 1 high, 4 medium, 2 low 13 1.625
er2 1 1 4 1 low 1 0.250
er3 1 4 8 4 high, 4 medium, 5 low 25 3.125
er4 1 1 9 nest, 1 high, 3 medium 12 1.333
er5 0 0 8 1 high, 1 medium, 4 low 9 1.125
fx1 1 1 8 1 medium, 1 low 3 0.375
fx2 0 0 6 1 low 1 0.167
fx4 0 0 9 0 0.000
fy1 0 0 9 1 high, 1 low 4 0.444
fy2 0 0 11 1 medium 2 0.182
fy3 1 1 9 1 roost, 1 high, 1 medium, 1 low 9 1.000
fy4 0 0 9 0 0.000
gr3 1 2 10 2 medium, 7 low 9 0.900
gr4 0 0 8 2 medium 4 0.500
jd1 0 0 6 0 0.000
jd2 0 0 7 1 medium 2 0.286
ke1 1 2 8 1 roost, 2 low 5 0.625
ke2 0 0 9 2 low 2 0.222
ke3 0 0 5 0 0.000
ke4 0 0 4 1 low 1 0.250
nil 1 1 10 1 high, 1 low 4 0.400
nl2 1 1 7 nest, 1high, 3 medium, 2 low 14 2.000
nl5 0 0 11 1 medium, 3 low 5 0.455
nm1 1 1 6 1 high, 4 medium, 4 low 15 2.500
Oj1 1 1 9 1 high, 4 medium 11 1.222
oj2 0 0 11 1 low 1 0.091
so3 1 1 6 1 medium, 2 low 4 0.667
so4 1 2 10 1 nest, 1 roost, 2 high, 3 medium 18 1.800
soS 0 0 8 1 medium, 1 low 3 0.375

I
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Appendix VII: Each classification’s habitat composition (%LAND) for all
60 study sites.

Transect PWP
0/1

PWPHSM 
Nesting 1 
Used Preferred Total

D’Eon and Watt Modified 
Nesting 

Used Preferred Total

d!1 1 21.50 54.62 76.12 54.62 20.47 75.09
dl2 0 37.37 22.12 59.49 13.55 36.92 50.47
dl3 1 28.26 41.23 69.49 37.99 28.26 66.25
dl4 -0 18.29 39.43 57.72 39.43 18.29 57.72
dv1 1 40.03 0.00 40.03 0.00 40.03 40.03
dv2 0 52.69 0.00 52.69 0.00 52.69 52.69
dv3 0 70.97 0.00 70.97 0.00 70.97 70.97
dv4 1 83.38 0.00 83.38 0.00 83.38 83.38
dw1 1 66.86 0.00 66.86 0.00 66.86 66.86
dw2 1 78.77 0.00 78.77 0.00 78.77 78.77
dw3 1 79.13 0.00 79.13 0.00 79.13 79.13
dw4 1 87.74 2.09 89.83 2.09 87.74 89.83
dw5 0 74.21 12.31 86.52 12.31 74.21 86.52
ed1 0 0.00 29.21 29.21 27.61 0.00 27.61
ed2 0 0.00 54.78 54.78 45.91 0.00 45.91
ed3 1 0.31 67.10 67.41 50.22 0.31 50.53
ed4 0 0.72 87.43 88.15 84.39 0.00 84.39
ed5 0 1.02 35.46 36.48 26.80 0.00 26.80
eo1 0 30.09 0.00 30.09 0.00 30.09 30.09
eo2 1 23.98 0.05 24.03 0.05 23.98 24.03
eo3 1 34.49 0.71 35.20 0.71 34.39 35.10
eo4 1 47.26 0.00 47.26 0.00 39.77 39.77
eo5 1 53.54 0.00 53.54 0.00 50.12 50.12
er1 1 53.49 0.00 53.49 0.00 53.49 53.49
er2 1 52.46 0.00 52.46 0.00 52.46 52.46
er3 1 56.03 0.00 56.03 0.00 51.56 51.56
er4 1 73.52 2.41 75.93 2.41 73.45 75.86
er5 0 74.85 1.23 76.08 1.23 74.85 76.08
fx1 1 70.75 0.00 70.75 0.00 63.22 63.22
fx2 0 79.35 0.00 79.35 0.00 74.76 74.76
fx3 1 54.04 0.56 54.60 0.56 54.04 54.60
fx4 0 41.69 3.49 45.18 3.49 41.69 45.18
fxS 0 42.02 0.10 42.12 0.10 42.02 42.12
fyt 0 44.89 4.62 49.51 4.62 44.89 49.51
fy2 0 71.19 0.00 71.19 0.00 70.51 70.51
fy3 1 75.13 0.00 75.13 0.00 74.19 74.19
fy4 0 65.78 1.29 67.07 1.29 65.78 67.07
gr3 1 90.46 1.78 92.24 1.78 90.46 92.24
gr4 0 71.73 1.29 73.02 1.29 69.25 70.54
jd1 0 2.63 71.17 73.80 68.91 2.63 71.54
jd2 0 5.86 65.34 71.20 61.37 5.86 67.23
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Appendix VII: Each classification’s habitat composition (%LAND) for all
60 study sites (Continued).

Transect PWP
0/1

PWPHSM 
Nesting 1 
Used Preferred Total

D’Eon and Watt Modified 
Nesting 

Used Preferred Total

ke1 1 0.00 74.83 74.83 69.49 0.00 69.49
ke2 0 0.94 71.25 72.19 67.92 0.00 67.92
ke3 0 0.00 55.27 55.27 48.63 0.00 48.63
ke4 0 0.00 51.22 51.22 50.88 0.00 50.88
nil • 1 27.48 43.85 71.33 43.85 27.48 71.33
nl2 1 14.22 54.03 68.25 50.66 14.22 64.88
nl3 0 0.00 67.43 67.43 57.69 0.00 57.69
nl4 0 21.60 35.74 57.34 32.40 21.60 54.00
nl5 0 16.61 39.46 56.07 36.40 16.61 53.01
nm1 1 16.84 13.23 30.07 13.23 16.84 30.07
nm2 0 20.95 25.83 46.78 25.83 20.95 46.78
nm3 0 11.05 46.08 57.13 44.37 10.24 54.61
nm4 0 0.49 73.55 74.04 68.59 0.49 69.08
nm5 0 6.53 73.85 80.38 63.74 6.53 70.27
Oj1 1 0.00 74.47 74.47 63.10 0.00 63.10
oj2 0 3.26 81.46 84.72 76.47 3.26 79.73
so3 1 26.84 39.08 65.92 37.81 26.84 64.65
so4 1 31.40 35.18 66.58 30.46 31.40 61.86
so5 0 9.33 56.90 66.23 50.85 9.33 60.18
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Appendix VII: Each classification’s habitat composition (%LAND) for all
60 study sites (Continued).

Transect PWP
0/1

PWPHSM
Nesting2
Used Preferred Total

PWPHSM
Nesting3

Used Preferred Total

dll 1 51.05 27.88 78.93 76.88 2.05 78.93
dl2 0 13.53 45.95 59.48 38.14 21.34 59.48
dl3 1 37.99 31.51 69.50 53.74 15.75 69.49
dl4 0 39.43 18.29 57.72 51.83 5.88 57.71
dv1 *1 0.00 40.03 40.03 25.41 14.61 40.02
dv2 0 0.00 52.69 52.69 32.13 20.55 52.68
dv3 0 0.00 70.97 70.97 35.44 35.53 70.97
dv4 1 0.00 83.38 83.38 16.20 67.18 83.38
dw1 1 0.00 66.86 66.86 2.97 63.89 66.86
dw2 1 0.00 78.77 78.77 37.04 41.73 78.77
dw3 1 0.00 79.13 79.13 31.22 47.91 79.13
dw4 1 2.09 87.74 89.83 10.38 79.44 89.82
dw5 0 12.31 74.21 66.52 37.57 48.94 86.51
ed1 0 28.57 0.64 29.21 29.21 0.00 29.21
ed2 0 47.05 7.73 54.78 54.78 0.00 54.78
ed3 1 60.38 7.03 67.41 67.41 0.00 67.41
ed4 0 60.36 27.79 88.15 88.15 0.00 88.15
ed5 0 29.14 7.35 36.49 36.49 0.00 36.49
eo1 0 0.00 30.09 30.09 12.08 18.01 30.09
eo2 1 0.00 24.03 24.03 15.15 8.87 24.02
eo3 1 0.00 35.20 35.20 9.54 25.66 35.20
eo4 1 0.00 47.26 47.26 21.90 25.37 47.27
eo5 1 0.00 53.54 53.54 25.45 28.09 53.54
er1 1 0.00 53.49 53.49 28.60 24.88 53.48
er2 1 0.00 52.46 52.46 33.63 18.84 52.47
er3 1 0.00 56.03 56.03 28.67 27.36 56.03
er4 1 2.41 73.52 75.93 28.08 47.84 75.92
erS 0 1.23 74.85 76.08 23.93 52.14 76.07
fx1 1 0.00 70.75 70.75 25.88 44.87 70.75
fx2 0 0.00 79.35 79.35 41.58 37.77 79.35
fx3 1 0.56 54.04 54.60 16.17 38.43 54.60
fx4 0 3.49 41.69 45.18 16.05 29.12 45.17
fx5 0 0.00 42.12 42.12 18.27 23.85 42.12
fyt 0 0.00 49.51 49.51 25.35 24.15 49.50
fy2 0 0.00 71.19 71.19 22.24 48.95 71.19
fy3 1 0.00 75.13 75.13 28.32 46.81 75.13
fy4 0 0.00 67.07 67.07 27.31 39.76 67.07
gr3 1 0.00 92.24 92.24 40.72 51.51 92.23
gr4 0 0.00 73.02 73.02 33.08 39.93 73.01
jd1 0 66.55 7.25 73.80 73.80 0.00 73.80
Jd2 0 59.41 11.79 71.20 71.20 0.00 71.20
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Appendix VII: Each classification’s habitat composition (%LAND) for all
60 study sites (Continued).

Transect PWP
0/1

PWPHSM
Nesting2
Used Preferred Total

PWPHSM
Nesting3

Used Preferred Total

ke1 1 69.91 4.99 74.90 74.83 0.00 74.83
ke2 0 71.25 0.94 72.19 71.25 0.94 72.19
ke3 0 50.61 4.80 55.41 55.27 0.00 55.27
ke4 0 50.89 0.35 51.24 51.22 0.00 51.22
nil 1 40.10 31.23 71.33 71.12 0.21 71.33
nl2 1 44.46 23.79 68.25 68.25 0.00 68.25
nl3 0 48.03 19.40 67.43 67.43 0.00 67.43
nl4 0 15.57 41.77 57.34 50.70 6.64 57.34
nl5 0 12.89 43.18 56.07 42.72 13.35 56.07
nm1 1 12.49 17.58 30.07 23.95 6.12 30.07
nm2 0 23.05 23.73 46.78 39.96 6.82 46.78
nm3 0 30.36 26.77 57.13 50.71 6.42 57.13
nm4 0 35.02 51.26 86.28 86.27 0.01 86.28
nm5 0 43.88 36.50 80.38 79.38 1.00 80.38
Oj1 1 72.61 1.86 74.47 74.47 0.00 74.47
oj2 0 75.16 9.57 84.73 84.72 0.00 84.72
so3 1 20.90 45.01 65.91 53.07 12.85 65.92
S04 1 24.32 42.26 66.58 58.82 7.76 66.58
so5 0 25.34 40.89 66.23 66.15 0.07 66.22
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Appendix VII: Each classification’s habitat composition (%LAND) for all 60
study sites (Continued).

Transect PWP
0/1

PWPHSM
Nesting4
Used Preferred Total

PWPHSM
Feeding
Used Preferred Total

dll 1 61.10 24.05 85.15 54.62 24.31 78.93
dl2 0 30.40 51.35 81.75 22.12 41.76 63.88
dl3 1 47.10 32.28 79.38 41.23 37.01 78.24
dl4 a 40.70 18.88 59.58 46.62 38.18 84.80
dv1 1 0.00 40.54 40.54 31.00 44.07 75.07
dv2 0 0.00 53.76 53.76 10.43 54.41 64.84
dv3 0 0.00 71.36 71.36 1.96 71.65 73.61
dv4 1 0.00 93.52 93.52 0.00 83.38 83.38
dw1 1 0.00 67.67 67.67 13.03 71.89 84.92
dw2 1 0.00 81.62 81.62 1.45 84.48 85.93
dw3 1 0.00 88.61 88.61 0.00 83.02 83.02
dw4 1 2.16 90.66 92.82 2.09 87.74 89.83
dwS 0 12.99 78.33 91.32 12.31 74.21 86.52
ed1 0 41.27 0.00 41.27 29.49 0.00 29.49
ed2 0 91.38 0.00 91.38 54.78 0.00 54.78
ed3 1 90.74 0.42 91.16 67.10 0.31 67.41
ed4 0 92.27 0.76 93.03 89.21 2.61 91.82
ed5 0 48.99 1.41 50.40 35.96 17.87 53.83
eo1 0 0.00 30.54 30.54 1.65 30.09 31.74
eo2 1 0.05 27.02 27.07 0.44 23.98 24.42
eo3 1 0.74 35.91 36.65 0.71 34.49 35.20
eo4 1 0.00 49.46 49.46 0.00 47.26 47.26
eoS 1 0.00 55.72 55.72 1.46 53.54 55.00
er1 1 0.00 70.68 70.68 13.13 54.76 67.89
er2 1 0.00 62.72 62.72 9.47 55.36 64.83
er3 1 0.00 66.17 66.17 13.64 56.03 69.67
er4 1 2.60 79.49 82.09 15.59 73.52 89.11
erS 0 1.30 79.16 80.46 18.05 75.38 93.43
fx1 1 0.00 72.80 72.80 0.00 75.95 75.95
fx2 0 0.00 80.21 80.21 0.00 79.79 79.79
fx3 1 0.59 56.75 57.34 2.09 56.12 58.21
fx4 0 3.50 41.90 45.40 6.89 54.06 60.95
fx5 0 0.10 42.89 42.99 9.73 44.48 54.21
fyi 0 4.86 47.22 52.08 9.26 47.53 56.79
fy2 0 0.00 71.65 71.65 3.10 73.60 76.70
fy3 1 0.00 75.77 75.77 0.00 75.13 75.13
fy4 0 1.41 71.76 73.17 3.85 65.78 69.63
gr3 1 1.81 91.95 93.76 2.74 92.26 95.00
gr4 0 1.31 72.77 74.08 7.95 73.77 81.72
jd1 0 71.98 2.66 74.64 71.69 8.94 80.63
Jd2 0 65.81 5.91 71.72 71.15 5.86 77.01
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Appendix VII: Each classification’s habitat composition (%LAND) for all
60 study sites (Continued).

Transect PWP
0/1

PWPHSM
Nesting4
Used Preferred Total

PWPHSM
Feeding
Used Preferred Total

ke1 1 82.65 0.00 82.65 74.96 0.00 74.96
ke2 0 71.55 0.94 72.49 75.77 1.99 77.76
ke3 0 56.86 0.00 56.86 65.20 8.30 73.50
ke4 0 66.95 0.00 66.95 54.98 9.13 64.11
nil *1 48.99 30.70 79.69 46.99 27.48 74.47
nl2 1 63.96 16.84 80.80 56.06 18.72 74.78
nl3 0 80.40 0.00 80.40 68.73 8.03 76.76
nl4 0 37.00 22.36 59.36 43.41 37.23 80.64
nl5 0 42.31 17.81 60.12 49.90 32.42 82.32
nm1 1 13.69 17.42 31.11 13.23 68.33 81.56
nm2 0 27.27 22.11 49.38 25.96 51.84 77.82
nm3 0 52.57 12.61 65.18 48.72 34.59 83.31
nm4 0 80.80 0.54 81.34 73.55 12.73 86.28
nm5 0 75.39 6.67 82.06 74.16 13.78 87.94
Oj1 1 85.41 0.00 85.41 74.47 0.93 75.40
oj2 0 87.19 3.49 90.68 81.46 3.26 84.72
so3 1 39.43 27.07 66.50 41.34 40.72 82.06
so4 1 35.65 31.99 67.84 40.95 43.35 84.30
so5 0 66.73 10.94 77.67 67.23 10.35 77.58
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Appendix VIII: Class-level variables (FRAGSTATS) in predicting the presence 
of pileated woodpeckers.

Variable Log Likelihood-ratio Significance Correlation with 
with %LAND

CAD 9.8738 0.0017 0.7755
NCA 9.3964 0.0022 0.7787
LPI 7.7820 0.0053 0.9089
%LAND 6.7303 0.0095 1.0000
CA 6.0383 0.0140 0.9945
TCAI 5.1501 0.0232 0.9375
C%LAND 4.9144 0.0266 0.9507
TCA 4.4486 0.0349 0.9487
ED 4.2258 0.0398 0.7298
AWMSI 3.8057 0.0511 0.5075
TE 3.5288 0.0603 0.7171
LSI 3.3037 0.0691 0.7187
MPS 3.0845 0.0790 0.8077
IJI 2.6538 0.1033 0.4217
MCA1 2.0035 0.1569 0.7894
MNN 1.8798 0.1704 0.2424
MSI 1.7458 0.1864 0.4526
MCA2 1.7347 0.1878 0.6119
PD 1.5855 0.2080 0.5594
MCAI 1.5275 0.2165 0.8298
AWMPFD 1.2778 0.2583 0.4562
NP 1.2030 0.2727 0.5522
DLFD 1.1404 0.2856 0.4920
MPFD 1.1173 0.2905 0.4459
TA 0.5825 0.4453 0.4695
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Appendix IX: Landscape-level variables (FRAGSTATS) in predicting the presence 
of pileated woodpeckers.

Variable Log-Likelihood-ratio Significance

PR 2.1875 0.1391
PRD 2.1048 0.1468
PD 1.3649 0.2427
NP 0.9759 0.3232
MSI 0.9365 0.3332
LPI 0.8715 0.3505
SHDI 0.862 0.3532
SIDI 0.7167 0.3972
IJI 0.706 0.4008
MSIDI 0.506 0.4769
MPFD 0.4997 0.4796
DFLD 0.4807 0.4881
ED 0.3707 0.5426
TE 0.363 0.5468
TCA 0.283 0.5948
TCAI 0.2053 0.6504
MPS 0.1711 0.6791
MCA2 0.1465 0.7019
MCAI 0.1288 0.7197
LSI 0.1275 0.721
SIEI 0.0882 0.7665
AWMSI 0.057 0.8112
MCAI 0.015 0.9025
TA 0.0121 0.9126
MNN 0.0097 0.9216
CONTAG 0.0089 0.9247
MSIEI 0.0006 0.981
NCA 0.0004 0.9831
AWMPFD 0 0.9952
CAD 0 0.9983
SHEI 0 0.9987
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Appendix X: Selected class-level FRAGSTATS for 60 study sites.

Transect PWP CA TA %LAND LPI NP ED C%LAND TCA NCA CAD

dv4 1 417 446 94 49 11 39 38 168 11 2.5
gr3 1 452 492 92 59 7 34 50 245 9 1.8
dw4 1 439 484 91 86 6 36 50 243 9 1.9
dw3 1 396 447 89 43 10 33 37 166 9 2.0
dw2 1 394 483 82 62 4 52 30 147 11 2.3
fx2 0 397 495 80 28 6 55 38 188 6 1.2
er4 1 368 462 79 73 5 25 49 229 2 0.4
er5 - 0 374 473 79 42 5 32 44 208 4 0.9
dw5 0 371 474 78 41 3 45 37 176 7 1.5
fy3 1 376 496 76 35 8 61 31 155 11 2.2
fx1 1 354 486 73 37 11 67 23 113 13 2.7
gr4 0 359 493 73 45 9 61 27 134 13 2.6
fy4 0 329 458 72 30 11 58 26 119 13 2.8
fy2 0 356 497 72 36 13 68 26 129 8 1.6
dv3 0 355 497 71 58 9 60 33 164 7 1.4
er1 1 267 378 71 47 8 35 37 140 7 1.9
dw1 1 334 494 68 33 7 52 27 134 10 2.0
er3 1 280 423 66 45 11 49 30 125 8 1.9
er2 1 262 418 63 28 7 45 23 98 8 1.9
fx3 1 273 486 56 25 14 65 16 79 10 2.1
eo5 1 268 480 56 26 7 50 22 105 9 1.9
dv2 0 263 490 54 36 18 73 16 80 7 1.4
dl2 0 187 364 51 30 4 40 20 73 8 2.2
eo4 1 236 478 49 22 8 42 19 91 8 1.7
fyi 0 224 475 47 11 18 61 11 50 9 1.9
fx5 0 210 490 43 18 12 43 14 67 7 1.4
fx4 0 208 497 42 20 10 42 13 67 9 1.8
dv1 1 200 494 41 11 12 63 9 45 9 1.8
eo3 1 172 480 36 20 11 40 11 55 5 1.0
dl3 1 141 438 32 32 4 33 9 38 7 1.6
so4 1 157 491 32 17 9 42 9 43 7 1.4
nil 1 137 448 31 21 5 61 3 13 7 1.6
eo1 0 150 493 31 13 7 25 10 49 5 1.0
so3 1 134 496 27 10 6 42 4 20 7 1.4
eo2 1 120 444 27 18 7 41 4 18 5 1.1
dll 1 108 447 24 12 4 37 3 16 7 1.6
nl4 0 108 483 22 9 6 31 6 27 5 1.0
nm2 0 105 474 22 5 10 53 0 2 7 1.5
dl4 0 91 484 19 18 3 22 5 23 3 0.6
nl5 0 83 466 18 11 5 31 2 10 4 0.9
nm1 1 84 483 17 8 10 37 0 2 10 2.1
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Appendix X: Selected class-level FRAGSTATS for 60 study sites (Continued).

Transect PWP CA TA %LAND LPI NP ED C%LAND TCA NCA CAD

nl2 1 71 422 17 10 5 32 2 7 7 1.7
nm3 0 55 438 13 4 8 27 0 1 5 1.1
so5 0 47 426 11 3 8 18 1 3 3 0.7
nm5 0 33 490 7 3 5 12 1 3 2 0.4
jd2 0 29 496 6 3 4 19 0 1 1 0.2
oj2 0 16 467 3 3 4 10 0 0 2 0.4
jd1 0 13 494 3 2 3 9 0 0 0 0.0
ed5 - 0 5 362 1 1 1 3 0 0 1 0.3
ke2 0 5 500 1 1 1 4 0 0 0 0.0
ed4 0 4 474 1 1 1 1 0 0 0 0.0
nm4 0 2 455 1 1 3 2 0 0 0 0.0
ed3 1 2 370 0 0 1 1 0 0 0 0.0
ed1 0 0 354 0 0 0 0 0 0 0 0.0
ed2 0 0 300 0 0 0 0 0 0 0 0.0
ke1 1 0 455 0 0 0 0 0 0 0 0.0
ke3 0 0 489 0 0 0 0 0 0 0 0.0
ke4 0 0 384 0 0 0 0 0 0 0 0.0
nl3 0 0 419 0 0 0 0 0 0 0 0.0
Oj1 1 0 436 0 0 0 0 0 0 0 0.0

Note: Sorted on %LAND
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