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Abstract 

Mercury is a contaminant of global concern as it is present in all biota and ecosystems 
around the world.  Small streams are influenced by the terrestrial systems that feed them.  
I examined the presence of mercury in small stream biota, the bioaccumulation of the 
mercury in higher trophic levels and the stream characteristics, including catchment 
disturbance that are associated with differences in mercury contamination among trophic 
levels.  Sampling of periphyton, benthic invertebrates and fish occurred in 31 sites across 
6 watersheds having different forest management histories.  Mercury was present in all 
three biota types sampled with a wide range of mercury concentrations between and 
among sites and biota.  Biota mercury concentrations were highest in the smaller size 
streams (small and medium) compared to the large streams with no differences between 
the different forest management histories.  Biota mercury concentrations tended to have 
the highest association with local conditions including pH, conductivity, stream gradient 
and temperature.  Brook trout [Salvelinus fontinalis (Mitchill)] had the lowest average 
concentrations of the two fish species collected with average mercury concentrations 
50% less than dace species collected within the same stream.  While biota mercury 
concentrations have been associated with disturbance in other studies, local stream 
conditions and stream size tended to have the highest association in my study. 
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1.0 Introduction  

Mercury is a toxin of global concern as it impacts all environments and life on 

earth.  Atmospheric deposition of mercury is the primary source of mercury to terrestrial 

and aquatic systems with atmospheric mercury originating from natural and 

anthropogenic sources (Munthe et al. 1995, Pirrone et al. 2001).  The distribution of 

mercury within an area can vary widely depending on disturbances to the environment, 

atmospheric conditions, or natural sources (Bacci 1989, Pirrone et al. 2001, Stein et al. 

1996).  Disturbances to the environment can include forest fires, forest management 

practices and factory emissions which can increase the mercury present in biota or 

influence the distribution of mercury (Garcia and Carignan 1999, 2005, Pirrone et al. 

2001).  Atmospheric mercury deposition can span the globe with inter- and intra-

continental transportation possible based on winds, air-currents, temperature and 

topography (Shroeder and Munthe 1998).  Mercury is naturally variable in the 

environment based on atmospheric deposition or terrestrial and aquatic sources which can 

all increase localized mercury concentrations (Shroeder and Munthe 1998, Ullrich et al. 

2001). 

Mercury present in the environment, as a result of natural and anthropogenic 

sources, may affect the biota.  Mercury has been shown to have wide ranging effects on 

biota from reductions in populations or birth defects in amphibians to neurological 

disease and death in humans (Bank et al. 2006, McAlpine and Arake 1958).  In Minimata 

Japan, a chemical company discharged methylmercury (MeHg) waste into the ocean 

resulting in the contamination of shellfish and fish.  People consuming the shell fish and 

 

 



fish suffered from neurological disease and death (McAlpine and Araki 1958).  The 

World Health Organization (WHO) subsequently issued consumption guidelines for 

mercury contaminated fish and sea food because mercury contamination is not reduced 

by cooking (Mergler et al. 2007).  In Ontario, the Ontario Ministry of Environment 

provides fish consumption guidelines for sport fish in many lakes and Health Canada 

restricts the commercial sale of fish with levels above 0.5ppm (OMOE 2009).  The WHO 

has suggested that blood methylmercury levels of 200 µg/L or higher would cause 

neurological effects (WHO 2001).  Kosatsky and Foran (1996) suggested that effects 

could occur at much lower blood concentrations.  Research into mercury contamination is 

important due to the low concentrations of mercury necessary to cause birth defects or 

neurological damage. 

Mercury in natural systems occurs as organic and inorganic mercury which may 

be present in various physical and chemical forms. (Ullrich et al. 2001).  The vast 

majority is inorganic or elemental mercury and can constitute approximately 95% of 

atmospheric mercury (Lindqvist et al. 1991).  While the majority of mercury is inorganic, 

methylmercury (MeHg) is the biologically available form and is passed between trophic 

levels because it binds in the adipose and muscle tissues of organisms (Laporte et al. 

2002, Porvari 2003).  Methylmercury is the most toxic form to biota (Lindqvist et al. 

1991, Mergler et al. 2007, Sheuhammer et al. 2007).  The sum of organic (MeHg) and 

inorganic mercury is expressed as total mercury (THg). 
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Atmospheric mercury can travel many thousands of kilometres before being 

deposited in areas that are not connected to the point sources (Morel et al. 1998). It is 

estimated that two thirds of all atmospheric mercury is from anthropogenic (industrial) 

sources (USEPA 2004) such as coal power generation, chlor-alkali plants, or mining and 

cement production.  Coal generation has been estimated by the United Nations 

Environment Program (UNEP) to contribute 45 percent of all anthropogenic mercury 

(UNEP 2009).  Up to two thirds of all anthropogenic mercury released in the year 2000 

was from the combustion of fossil fuels (mainly coal; Pacyna et al. 2006).  In 1995 an 

estimated 2427 tonnes of mercury was released into the atmosphere from atmospheric 

sources which was an increase over the 1990 levels (Pacyna et al. 2003).  

Once mercury is transported to an area it is deposited to terrestrial environments 

through atmospheric deposition which is the primary source of mercury to terrestrial 

systems (Munthe et al. 1995). Most newly deposited atmospheric mercury is absorbed by 

soil and plant matter with little in runoff (Hintelmann et al. 2002). Mercury absorbed by 

plant matter has a high level of retention in the terrestrial environment without moving to 

the aquatic system (Boudou and Ribeyre 1997).  St. Louis et al. (2001) found litterfall 

and throughfall had mercury concentrations 2 to 3 times that of wet deposition showing 

that the forest canopy increases the mercury flux to the terrestrial area.  Litterfall is 

defined as the plant material dropped to the ground by terrestrial vegetation (leaves, twigs 

etc) while throughfall is the water that washes off the leaves.  Mason et al. (2000) showed 

that litterfall had approximately 20 percent higher mercury concentrations than the wet 
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deposition to an area.  While the mercury concentration relative to wet deposition can 

vary, it has been shown that litterfall has higher mercury level than wet deposition.   

Terrestrial mercury that is not bound to the plant material is usually in the soil and 

humic layers of terrestrial systems (Lindqvist et al. 1991).  Humic layers have high levels 

of mercury because litterfall and throughfall contribute to the humic layer by deposition 

of mercury bound to plant material (Lindqvist et al. 1991).  Soils are the site of long-term 

mercury accumulation and can be a source or sink depending on the environment in the 

area (Harris et al. 2007). Mercury that does not become part of the mercury pool can be 

volatilized back into the environment (St. Louis et al. 2001) or transported to the aquatic 

environment (Allan et al. 2001).  Soil mercury levels have been shown to directly 

influence the surface water mercury concentrations in nearby aquatic catchments 

(Åkerblom et al. 2008, Cooper and Gillespie 2001, Grigal 2002, Lindqvist et al. 1991).  

Cooper and Gillespie (2001) report soil mercury concentrations of 0.055 µg/g, which was 

over 3 times the level in lake sediments in the vicinity.   

However, surface runoff from terrestrial sources is one of the biggest additions of 

mercury to aquatic systems (Allan et al. 2001, Bishop et al. 1995, Harris et al. 2007, 

Hintelmann et al. 2002).  Bishop et al. (1995) showed that riparian zone soils and flora 

can increase the mercury concentrations of streams through litterfall. Sediments in 

aquatic systems are the major long term storage site of mercury (Harris et al. 2007) and, 

once mercury has been deposited, retention is high (Boudou and Ribeyre 1997, Mason et 

al. 2000).  
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Direct atmospheric deposition of mercury to aquatic systems occurs (Branfireun 

et al. 1996, 1998, Harris et al. 2007, Hintelmann et al. 2002, St. Louis et al. 1996), and 

can increase the mercury concentrations in the surface waters (Allan et al. 2001).  

Mercury deposited into aquatic and terrestrial systems can be redistributed to other areas 

of the ecosystem and re-volatilized into the environment.  The USEPA (2004) estimated 

that one third of all mercury in the atmosphere once deposited is re-emitted from aquatic 

or terrestrial systems.  Hintelmann et al. (2002) showed that fluxes of mercury from 

terrestrial systems occur from plants and soils.  Mercury concentrations in disturbed areas 

can continue to be high even when anthropogenic sources have stopped adding new 

mercury to the area.  Harris et al. (2007) showed that while newly deposited mercury was 

the most involved in the food web, old stored mercury can still enter into the food web.  

Reductions in mercury available to an area will quickly reduce the organismal mercury 

concentrations depending on the lifespan of the organism (large decreases within 5-10 

years); however, it will take many years for overall mercury concentrations in an area to 

show a reduction due to generational turnover of species, flushing of sediments and 

releases from the sediment mercury bank (Harris et al. 2007, Francesconi et al. 1997).  

Peatlands and wetlands can be sinks for total mercury and sources for 

methylmercury (St. Louis et al. 1996).  Peatland mercury levels are influenced by the 

vegetation they contain.  Liu et al. (2003) showed that mercury levels in wetland plant 

species were higher than that of the upland species.  Mercury atmospherically deposited 

on the wetland and absorbed from the wetland soil was believed to be one potential 

reason why wetland plants had increased mercury concentrations over upland plants (Liu 
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et al. 2003).  Wetlands differ in type, water column height and mercury concentrations.  

Wetlands can increase the mercury concentrations of fish downstream of their drainage 

(Branfireun et al. 1996, Castro et al. 2007, St. Louis et al. 1996). The concentration of 

mercury in water downstream of wetlands can be higher than expected background levels 

(Heyes et al. 2000).  During times of high water levels (flooding of wetlands) there is 

evidence of much higher levels of methylmercury compared to lower water levels 

(Paterson et al. 1998, St. Louis et al. 1996, 2004).  

Mercury methylation is the transformation of inorganic mercury to organic 

mercury (Morel et al. 1998).  Methylation of inorganic mercury requires the transferring 

of a methyl group to the metal ion, with the assistance of either a photochemical or 

microbial process (Morel et al. 1998).  Gilmour et al. (1992) showed that sulphate-

reducing bacteria (SRB) are one potential agent for mercury methylation in aquatic 

systems. A decrease in sulphate-reducing bacteria can decrease the methylation activity 

even with an abundance of inorganic mercury (Gilmour et al. 1992). While SRBs have 

been shown to methylate mercury, it is believed other microbes and organisms can also 

methylate inorganic mercury.  

Methylation rates in aquatic systems are related to several factors, including water 

temperature, pH, sediments and the level of dissolved oxygen. An increase in water 

temperature with a decrease in dissolved oxygen levels of a stream can cause increased 

methylation (Ullrich et al. 2001).  Increases in levels of fine sediments can create anoxic 

zones that have increased methylation rates compared to those of oxygenated areas 
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(Francesconi et al. 1997).  The pH of the water influences the microbial processes 

surrounding methylation rates (Kelly et al. 2003) with more acidic waters having 

increased methylation rates (Watras et al. 1995, Westcott and Kalff 1996).  

Disturbance of forested catchments, either through fire or harvesting, may 

influence the factors associated with methylation rates.  Impacts to the aquatic 

environment as a result of catchment disturbance have included higher sediment loads, 

lower dissolved oxygen (DO), higher water temperatures and increased dissolved organic 

carbon (DOC) (Davies et al. 2005, Francesconi et al. 1997, Garcia and Carignan 1999, 

Harriman et al. 2003, Hartman et al. 1996, MacDonald et al. 2003).  Increased levels of 

dissolved organic carbon in runoff may increase the amount of mercury available to be 

methylated since dissolved organic carbon is known to bind and transport mercury (Kelly 

et al. 2003).  Disturbance in the catchment increases the stream water temperature which 

can be a key factor in net mercury methylation rates in aquatic environments (MacDonald 

et al. 2003, Ullrich et al. 2001).  Increased sediment levels as a result of catchment 

disturbance can lead to lower dissolved oxygen levels in streams which may result in 

higher mercury methylation rates in the anoxic zones (Hartman et al. 1996, Ullrich et al. 

2001).  Disturbances in the catchment can impact several factors that are associated with 

mercury methylation rates and potentially increase the amount of MeHg present in the 

area. 

Catchment disturbance may result in an increase in the mercury supply to aquatic 

systems through surface runoff and increased methylation rates.  Post-harvest, the amount 
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of water in terrestrial environments can increase because of a decrease in 

evapotranspiration leading to greater infiltration and surface runoff (Bosch and Hewlett 

1982).  Increases in deep soil water storage can persist for decades until such time as 

evapotranspiration rates have recovered (Perry 1998).  Increased wet soil areas can create 

anoxic conditions with sulphate reducing bacteria (SRB) for methylation of inorganic 

mercury and can be considered a source of methylmercury to the aquatic system via 

runoff (Porvari 2003, Ullrich et al. 2001).  Porvari (2003) found that post-harvest 

silvicultural treatment on an upland catchment increased the THg and MeHg flux to a 

lake by an order of magnitude compared to the reference site.  Surface runoff from the 

catchment as a result of disturbance may increase available mercury for accumulation by 

periphyton and other biota (Branfireun et al. 1998, Desrosiers et al. 2006a).  

Several studies provide support for the hypothesis that catchment disturbances 

increase mercury in aquatic systems and increase bioaccumulation in biota.  Lakes with 

fire disturbed uplands have been shown to have increased nutrients and MeHg 

concentrations in biota (macroinvertebrates and fish) similar to those of harvested lakes 

after 2 years post disturbance (Allen et al. 2005).  In studies conducted by Garcia and 

Carignan (1999, 2000, 2005) levels of mercury in zooplankton and fish were higher in 

harvested lakes than in reference or fire impacted lakes.  Average levels of mercury in 

brook trout in the reference lakes were 0.53 µg/kg, 0.67 µg/kg in fire impacted lakes, and 

1.35 µg/kg in logged lakes. On average logged lakes had more than twice the 

concentration found in fish in the reference or fire impacted lakes (Garcia and Carignan 

2005).   
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Small streams may be more susceptible to disturbance and changes in mercury 

concentrations since they are so closely linked with their catchment.  Small streams, 

especially headwater streams, are strongly influenced by direct lateral inputs from the 

terrestrial catchment since they receive little input from upstream communities 

(Montgomery 1999, Vannote et al. 1980).  The close linkage between the aquatic and 

terrestrial environments that is present in small streams is important since disturbance 

anywhere in the catchment area of the stream will likely influence stream conditions and 

possibly biota mercury concentrations.  Disturbance in a catchment increases both the 

surface runoff from the upland and the mercury concentration (MeHg and THg) within 

that runoff (Porvari et al. 2003).  Since the flux of mercury to streams increases with 

disturbance in the catchment and small streams are so closely linked to their catchment, 

disturbance in the catchment of a stream has the potential to impact smaller streams more 

than larger aquatic systems. 

Streams have a relatively simple food web structure which can bioaccumulate 

mercury and transfer mercury among trophic levels.  The primary producer in streams is 

periphyton (algal complex with detritus and microbes) which is also largely responsible 

for the accumulation of mercury from the water into the aquatic food web (Cummins 

1974, Boudou and Ribeyre 1997).  Since diet is the primary mechanism of mercury 

bioaccumulation (uptake of mercury by biota) it is important to know what an organism 

eats (trophic level) to determine potential mercury contamination (Mason et al. 2000).  

Increases in contaminant concentrations at each trophic level by dietary uptake is known 

as biomagnification and can lead to potentially toxic concentrations in stream biota 
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(Mackay and Fraser 2000, Gobas et al. 1999, Sheuhamer et al. 2007).  Since stream 

trophic levels are linked energetically, uptake of mercury in the primary producers may 

result in dangerous levels in any consumers (Trudel and Rasmussen 2006). 

Periphyton and other primary producers are important to streams because they 

form the base of the food web (Cummins 1974).  Periphyton is also the site of mercury 

uptake from the environment (water; Boudou and Ribeyre 1997), and a potential site for 

mercury methylation processes (Desrosiers et al. 2006a, b, Planas et al. 2000).  

Concentrations of mercury in primary producers (including periphyton) can be 100 to 10 

000+ times that of the surrounding water column, and can be the single biggest input of 

mercury to higher trophic levels in aquatic sytems (Pickhardt et al. 2002, Bell and 

Scudder 2007).  Since the primary method of mercury bioaccumulation is from the diet, 

mercury concentration in the periphyton of a stream is important to the trophic levels that 

consume it.   

Since invertebrates and fish acquire the majority of their mercury from food (Hall 

et al. 1997, Mason et al. 2000, Watras et al. 1995), small changes in mercury 

concentrations in the lowest trophic level biota (periphyton) can result in rapid increases 

of mercury concentrations in invertebrate and fish tissues (Hall et al. 1997, Harris et al. 

2007).  Invertebrates generally have mercury concentrations 3 to 10 times that of the 

plant material they consume (Mason et al. 2000).  The trophic transfer of mercury is 

measured by the bioaccumulation factor (BAF) and is the difference in Hg concentrations 

between two trophic levels.  Concentrations of mercury in fish have been reported in the 
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order of 104 to 107 times that of water mercury concentrations.  Methylmercury bonds 

strongly to protein sulphhydryl groups resulting in a long half-life for elimination (around 

two years in fish; Porvari 2003).  It is this long half-life which results in transfer of MeHg 

between trophic levels, with upper trophic levels having concentrations up to 108 times 

higher than background water levels (Porvari 2003).  While periphyton accumulates 

mercury from its environment, nearly all mercury present in invertebrates and fish is from 

the diet. 

How an invertebrate feeds has an impact on the mercury concentrations it will 

have.  Scrapers are invertebrates that shear off food that adheres to surfaces especially 

periphyton while shredders are organisms consuming coarse particulate organic matter 

(CPOM) such as leaves or macrophytes (Cummins and Klug 1979).  Scrapers generally 

have very high mercury concentrations (0.05-0.2 µg/g THg; Castro et al. 2007) which 

can bioaccumulate in fish through predation since diet is the primary method of mercury 

transfer to fish.  The insect Orders Ephemeroptera, Plecoptera and Trichoptera are known 

as the EPT complex and are commonly used in benthic bio-assessments of water quality 

(Barbour et al. 1999).  The majority of taxa in the EPT complex belong in the shredder 

and scraper feeding groups (Cummins and Klug 1979) and can be considered primary 

consumers (Garcia and Carignan 2005).   

Fish species are especially vulnerable to the effects of mercury contamination 

since they generally occupy the highest trophic level in a stream and nearly all of the 

mercury in fish is MeHg accumulated from their diet (Hall et al. 1997, Watras et al. 
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1998, Mason et al. 2000, Stafford et al. 2004).  Fish like pike which are piscivorous 

generally have higher mercury concentrations than lower trophic level species like perch 

(Garcia and Carignan 2005).  Yellow perch in Wisconsin lakes have a BAF value of 

approximately 500 000 while northern pike in Sweden have a BAF in excess of 1 million 

(Boudou and Ribeyre 1997) over water mercury concentrations. Fish mercury 

concentrations have been studied in depth because of the utilization of fish as a common 

food item by humans; however, the pattern of biomagnification and the relationship 

between environmental disturbance and the mercury concentrations is still poorly 

understood in stream environments. 

Mercury contamination may occur at all levels of biota in streams and this 

contamination has been associated with neurological disease, birth defects and population 

decreases in aquatic biota and terrestrial organisms that consume them (Bank et al. 2006, 

McAlpine and Araki 1958).  It is important to understand the factors that are associated 

with mercury concentrations present in biota and if disturbance influences these factors 

(Branfireun et al. 1998, Porvari 2003). Small streams may be more susceptible to this 

disturbance due to their close association with the terrestrial catchment they drain and 

their number across the landscape. Therefore, I have the following objectives and 

hypotheses: 

1) Characterize the mercury levels in small stream biota in my study area north of 

Thunder Bay, ON. I hypothesize that mercury will be present in all trophic levels 

of small stream biota and, if mercury contamination levels are influenced by a 
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number of factors in the stream and its catchment area I expect that the levels of 

mercury present will vary among trophic levels and study sites.  

2) Examine the trophic level differences in mercury of the small stream biota of 

Northwestern Ontario.  I hypothesize that organisms at higher trophic levels will 

have higher levels of mercury, especially methylmercury, than organisms at lower 

trophic levels.  Because mercury is biomagnified and transferred to the higher 

level organisms via the food chain higher trophic level organisms I predict there 

will be significant increases in the mercury between the three trophic levels 

studied.  

3) Identify which local and catchment variables are associated with the presence and 

concentration of mercury.  I hypothesize that catchment disturbance from forest 

management practices, which influence hydrologic characteristics of the 

catchment as well as habitat characteristics (e.g. temperature and sediment 

accumulation) will be positively associated with mercury levels in stream biota, 

possibly due to increases to methylation processes and increased flux of inorganic 

mercury into the stream. 
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2.0 Methods 

2.1 Study Area and Site Selection 

The study area is located northeast of Thunder Bay, Ontario, Canada and consists 

of streams with catchment areas of between 1 and 50 km2 with the larger catchments 

draining into Lake Superior (Figure 2.1).  The sites are contained within the Thunder Bay 

Plains, and Nipigon Plains Ecoregions (Wickware and Rubec 1989).  The Thunder Bay 

Plains contains primarily diabase, greywacke and shale bedrock formations and is located 

along the north shore of Lake Superior.  The Nipigon Plains ecoregion is dominated by 

diabase bedrock (Wickware and Rubec 1989).  The climate of Thunder Bay, ON and area 

range from daily average temperatures of 17.6 ºC in July to daily averages in January of -

14.8 ºC, with an average annual precipitation of the area is 711.6 mm (Environment 

Canada 2010). 

Thirty-two study reaches were sampled within 31 separate streams (Table 2.1) 

with varying amounts of harvesting disturbance present in the catchment area. Two study 

reaches were located on the same 10 km stream because of the locations of the other 

nested streams within the catchment.   

The study area is dominated by northern Boreal forest species with forest 

management being the primary land use impact (Sims et al. 2007). Sites were selected so 

that a variety of disturbance histories and characteristics would be included in the study 

(Table 2.2).  An attempt was made to minimize variation in local and catchment scale 

characteristics among sites.  Sites required a free flowing unobstructed reach of at least 
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30 meters (up to a maximum of 50 meters).  All sites were free of direct beaver and 

mining activity.  

Study sites were located within 5 large (30-50 km2) catchments with small (1-3 

km2) and medium (5-10 km2) catchments nested within each of the large catchments 

(Figure 2.1).  Catchments were delineated using the filled Ontario Provincial 20 meter 

resolution Digital Elevation Model (DEM).  An enhanced flow direction grid was 

generated from the DEM and forced to coincide with mapped hydrographic layers using 

techniques described by Kenny and Matthews (2005). Environmetal Systems Research 

Institutes (ESRI) ARC GIS (version. 9.1) with Spatial Analyst was used to delineate 

contributing areas above each study reach.  All characteristics of the study catchments 

were quantified using ARC GIS. 
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Figure 2.1 Study catchments delineated by stream size class catchment area. 

16 

 



Table 2.1 Catchment size and number of stream reaches of each sub-catchment stream size.  

Catchment Catchment 
Size (km2) 

Number of 
1 km2 

stream 
catchments

Number of 
3 km2 

stream 
catchments

Number of 
5 km2 

stream 
catchments 

Number of 
10 km2 

stream 
catchments

Number of 
30 km2 

stream 
catchments

Number of 
50 km2 

stream 
catchments

Total 
Reaches 
Sampled 

Beck 30 5 0 2 0 1 0 8 

Walkinshaw 30 3 0 1 2 1 0 7 

Northeast 
Current 

30 1 1 1 1 1 0 5 

Mackenzie West 30 5 0 2 0 1 0 8 

Furcate 50 2 0 1 0 0 1 4 
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Table 2.2 Total number of streams of each size class broken down by the forest management history of the site (stream cut 
class). 

  

              Stream Size Class (Catchment Size) 

Forest Management Number of 
Streams 

Small         
1 and 3 km2 

Medium              
5 and 10 km2 

Large             
30 and 50 km2 

No Cut 15 9 4 2 

Low Cut (< 10% in last 10 years)  10 6 2 2 

High Cut (>30% in last 10 years) 6 2 3 1 

Total 31 17 9 5 
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2.2 Local Habitat Variables 

Local habitat variables collected between June and July 2008 included canopy 

closure, riparian width, stream flow, woody debris counts, stream gradient, percent fine 

sediment, pH, conductivity and water temperature measurements (See Appendix 1 and 2 

for a summary of local variables).  Canopy closure was measured using a concave 

densiometer (%) mounted on a tripod.  Densiometer readings were taken at the start, 

middle and end of each reach and were based on the average of readings taken while 

facing upstream, downstream, left and right.  Riparian width was measured on both sides 

of the stream at the start, midpoint and end of the reach, using meter tapes (decimetre).  

The riparian widths were measured from the highwater mark to the distinct change in 

slope or a point of distinct change from riparian wetland vegetation to upland forest.  

Stream flow was measured at 3 positions per transect, with 5 transects within every 

stream study area.  The measurements were taken at 25, 50 and 75 percent of the stream 

wetted width.  The stream width was divided into 3 or 5 equally spaced points.  Every 

flow reading was taken by a Marsh-McBirney Inc. flow meter (Flo-Mate Model 2000 

Portable Flowmeter), according to manufacturers guidelines at the 60 percent depth mark 

in the stream (m3/s).  Large woody debris (greater than 5cm diameter) was counted 

within each 5 meter interval along the length of the stream reach. The sum of all 5 meter 

intervals provided the total woody debris count for a stream reach. Stream gradient was 

measured every 5 meters looking upstream using a clinometer (Suunto, PM5-360). The 

stream gradient was measured as the percent change from downstream looking upstream. 

Substrate classification was made by measuring 5 representative substrate samples 

equally spaced along transects that were established at every meter along the length of the 
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reach. Substrate classifications were based on Wentworth (1922).  The pH (0.1), 

conductivity and the temperature (ºC) of the stream were collected using a YSI 650MDS 

multi-meter with a YSI 600QS multi-probe.  

2.3 Catchment Scale Variables 

Several catchment scale variables were measured using GIS including the 

percentage of lake, wetland, recent harvest, surface geology, and road density within the 

catchment (See Appendix 3 and 4 for a summary of catchment variables).  The percent 

wetland and percent lake refer to the percentage of the catchment that is covered by lakes 

or wetlands.  Recent harvest percent is the percentage of the catchment that has had forest 

harvesting within the last 10 years.  The road density is the total of linear meters of road 

per square kilometre of catchment (m/km2).   

Levels of forest harvesting within each catchment were assessed using Ontario 

Forest Resource Information GIS data with updates from local forest companies. Surface 

water features, lakes, wetlands, roads, harvesting and mapped streams were assessed 

from Ontario’s Natural Resources Values Information System (NRVIS) GIS database 

(OMNR 2005, 2009). Surficial geology was defined using digitized versions of 

Northwestern Ontario Engineering and Geology Terrain Study Maps (Mollard and 

Mollard 1981a, b).  

All sites were classified according to their individual harvest histories (cut class), 

stream catchment size (stream size) and catchment (nests).  There were three cut classes 

used: no cut, low cut and high cut.  No cut includes all streams with less than 1% 

harvesting in the catchment basin in the last 10 years.  Low cut streams had less than 10% 
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harvest in the last 10 years and high cut streams had more than 30% harvest in the 

catchment area of the stream within the past 10 years as of 2007.   

2.4 Biota sample collection 

2.4.1 Periphyton Collection 
Three periphyton samples per site were collected using USEPA protocol for rapid 

stream assessment (Barbour et al. 1999). Rocks or substrate were scrubbed using plastic 

scrub brushes before the samples were placed in individual plastic sample jars for 

transport to the lab. Surface area scrubbed varied between samples but was measured by 

a 7.5 cm diameter section of plastic pipe to provide a rough estimate of area sampled. All 

samples were sorted for invertebrates or debris using a dissecting microscope before 

being filtered using Watman glass fiber filters (0.7 micron pore size). All samples were 

frozen (-20°C) in de-ionized water contained in single use glass sample containers with 

water prior to analysis for mercury. 

2.4.2 Invertebrate Collection 
Three invertebrate samples were collected per site using a modified Surber 

method consisting of a 500µm mesh D-frame dipnet, Teflon scrub brush and a 30 x 30 

cm sampling square. The sampling square was placed immediately upstream of the D-net, 

which was placed in a position to collect all invertebrates and debris removed from the 

substrate upon sampling.  All rocks and substrate within the sampling square were 

scrubbed to remove aquatic macroinvertebrates and debris for collection. Samples were 

placed in individual sample containers to be sorted in the lab under a dissecting 

microscope.  All samples were sorted the day of collection to remove all Ephemeroptera, 
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Trichoptera and Plecoptera, which were placed in single use glass sample containers and 

frozen (-20°C) with water pending analysis for mercury.  

2.4.3 Fish Collection 
  All fish were collected by the Ontario Ministry of Natural Resources using a 

single pass upstream electrofishing protocol in July and August 2008. All streams had 

blocker nets at the top and bottom of the reach. A Smith–Root (model 15-B) generator 

powered backpack electrofisher was used for all fish sampling.  The number of netters (1-

4) varied depending on the size of the stream.  All fish collected were identified stream-

side, with all non-target fish weighed (grams) and measured (total length, mm) before 

being released back into the stream.  All fish kept for tissue analysis were euthanized 

using an overdose of buffered MS-222 (tricaine methanesulfonate) mixed with stream 

water, before being put on ice for transfer to the lab.  A maximum of 15 fish per site were 

collected consisting of 5 brook trout (Salvalinus fontinalis) and 10 Phoxinus dace 

[Finescale dace (Phoxinus neogaeus), Northern Redbelly dace (Phoxinus eos)].  If too 

few Phoxinus or no Phoxinus were present Black Nose Dace (Rhynicthys atratulus) were 

also collected.  

Samples were weighed using a Sartorius scale (0.0001g) and total length (mm) 

and fork length (mm) measurements were taken.  Tissue samples consisted of a dorsal 

skin-on fillet put into new individual Whirl-pak bags and frozen until analysis. See 

USEPA “Fish Sampling and Analysis Third Edition” for more details on dorsal sample 

collection (USEPA 2000). 

 



23 

 

2.5 Sample Analysis 

All samples were processed by the Lakehead University Environmental Lab. A 

0.2 - 1.5 g sample was digested with HNO3/H2SO4 [7:3 ratio] in an I-CHEM 300 40ml 

vial, under reflux conditions at 100°C for 2 hours. The digestate was treated with 0.5ml 

of 0.2N BrCl solution to achieve a complete oxidation of the sample. The digestate was 

then diluted to 40 ml with double distilled water (ddw) and allowed to sit for at least 4 

hours prior to analysis.  The total mercury (THg) was measured using a Brooks-Rand 

Model III Cold Vapour Atomic Fluorescence Spectrophotometer.  The procedures used 

are described in EPA Method 1631b "Total Mercury in Tissue, Sludge, Sediment, and 

Soil by Acid Digestion and BrCl Oxidation" (USEPA, 2001). 

2.6 Quality Assurance/Quality Control 

The Lakehead University Environmental Laboratory demonstrates competency 

through participation in the National Water Research Institute [NWRI] proficiency 

testing programs for Mercury in water.  

Protocols are followed to ensure the reliability of the results and consist of 

guidelines, procedures and practices developed and implemented to produce quality data. 

Blanks, certified standards and duplicates are used to verify the effectiveness of quality 

control procedures and to evaluate the quality of the data.  

2.7 Analyses 

 Sites (n=31) were grouped within 3 categories: the size of the stream [small 

(n=17), medium (n=9) or large (n=5)], recent disturbance history [no (n=15), low (n=10), 

high (n=6)], and the 30 or 50km2 catchment that they were in [nest (n=5)]. 
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 Mercury concentration in biota was analyzed using a full factorial ANOVA using 

SPSS 17.0.1 (SPSS Inc, Chicago, Illinois).  The factorial ANOVA was run using the 3 

categories (stream cut class, stream size class and nest) to evaluate the overall 

contribution of each category as well as interactions among categories, and variability in 

mercury concentration in the 3 biota type (periphyton, invertebrates and fish) mercury 

concentrations.  Mercury concentrations (µg/g) were log transformed.  A nested ANOVA 

was not used in this study as the unequal breakdown of the study sites into the different 

categories and some categories missing mercury concentrations would violate the 

assumptions of a nested ANOVA. 

 A paired t-test was performed using SPSS to determine if the differences in the 

fish mercury concentrations between brook trout and dace species within the 8 sites 

where both species were collected were significant. 

 A MANOVA was performed using SPSS to determine the influences of the 

different dependent variables on the among site groupings and to determine which 

variables were associated with the concentration of mercury.  Variables that were 

contributing to the variability of the groupings were added to a discriminant function 

analysis (DFA). 

 A discriminant function analysis (DFA) was run using SPSS to determine if 

mercury concentrations could be classified according to the local and catchment 

variables.  The variables run in the DFA were extracted using the MANOVA of variables 

in this study by site groupings.  The DFA is the statistical opposite of the MANOVA. 
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Redundancy analysis (RDA) was performed to determine the relative association 

between the local and regional log transformed variables and the fish, invertebrate and 

periphyton mercury concentrations using Canoco 4.5 (Biometris, Wageningen, The 

Netherlands). 
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3.0 Results 

 At each of the 31 streams sampled 3 periphyton samples, 3 invertebrate and 15 

fish samples (5 Brook Trout, 10 Dace) were collected if possible.  A total of 92 

periphyton samples was collected from the 31 sites sampled with only 2 samples from 

Beck1C.  Aquatic invertebrate samples were taken from every site, however only 89 

samples were collected in total with 3 sites (Walk 1D, Walk 10B, MW1A) unable to 

produce adequate invertebrates (enough mass for invertebrates of the PTE complex to be 

analyzed) for 3 samples per site to be analyzed.  Fish samples were collected from 24 of 

the 31 sites with brook trout sampled from 10 sites.  A total of 184 fish were collected 48 

of which were brook trout (Table 3.0.1). 



 

Table 3.0.1 Stream cut class, size class and the number of each type of biota mercury 
samples collected at each site with site code. 

 

Site 

 

Cut 
Class 

 

Size 
Class 

# of 
Periphyton 

Samples 

# of 
Invertebrate 

Samples 

# of 
Dace 

Samples
# of Brook 

Trout Samples

Beck 1A 1 1 3 3 0 0 

Beck 1B 1 1 3 3 10 0 

Beck 1C 1 1 2 3 0 0 

Beck 1D 3 1 3 3 0 0 

Beck 1E 2 1 3 3 5 0 

Beck 5A 2 2 3 3 10 5 

Beck 5B 3 2 3 3 10 0 

Beck 30A 2 3 3 3 5 2 

Walk 1A 1 1 3 3 0 5 

Walk 1C 1 1 3 3 10 0 

Walk 1D 1 1 3 1 3 3 

Walk 5A 1 2 3 3 9 0 

Walk 10A 1 2 3 3 2 5 

Walk 10B 1 2 3 2 0 5 

Walk 30A 1 3 3 3 5 5 
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Table 3.0.1 Continuation Stream cut class, size class and the number of each type of biota 
mercury samples collected at each site with site code. 

 

 

Site 

 

Cut   
Class 

 

Size   
Class 

# of 
Periphyton
Samples 

# of 
Invertebrate 

Samples 

# of 
Dace 

Samples
# of Brook 

Trout Samples

NEC 1A 3 1 3 

   

3 2 0 

NEC 3A 3 1 3 3 10 0 

NEC 5A 3 2 3 3 10 0 

NEC 
30A 

3 3 
3 3 10 0 

MW1A 1 1 3 2 0 0 

MW1B 1 1 3 3 0 0 

MW1C 2 1 3 3 0 0 

MW1D 2 1 3 3 9 0 

MW1E 2 1 3 3 0 0 

MW5A 1 2 3 3 5 0 

MW5B 2 2 3 3 1 5 

MW30A 1 3 3 3 5 5 

Fur 1A 2 1 3 3 0 0 

Fur 1B 1 1 3 3 10 0 

Fur 5A 2 2 3 3 1 0 

Fur 50A 2 3 3 3 4 8 

Totals   92 89 136 48 
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3.1 Mercury Biota Concentrations 
 

Mercury levels in periphyton were highly variable among the sites.  There was a 

significant difference (F(2,71)=7.115, p=0.002) in average periphyton mercury levels 

among the stream size classes with small streams (0.124 µg/g ± 0.232 SD) having lower 

periphyton mercury levels than medium (0.157 µg/g ± 0.318 SD) and higher than large 

streams (0.044 µg/g ± 0.077 SD; Figure 3.1.1).  Periphyton mercury levels also differed 

significantly among the catchment nests (F(4,71)=4.604, p=0.002) mainly due to high 

levels measured in the Furcate sites (0.219 µg/g ± 0.200 SD; Figure 3.1.2).  There was no 

statistically significant difference in the periphyton mercury levels among the harvest 

treatments and no interaction effects among the factors (Table 3.1.1). Mean square values 

were used to interpret the relative contribution of each term to variance explained by the 

model. 

  



 
Figure 3.1.1 Mean (+ SD) periphyton mercury concentrations (µg/g wet mass) of streams 
by stream size class.  
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Figure 3.1.2 Mean (+ SD) periphyton mercury concentrations (µg/g wet mass) for each 
sample site nest. 
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Table 3.1.1 Summary of Factorial ANOVA showing sample significance values for the 
Periphyton Mercury Concentrations (log µg/g wet mass) of the three site classification 
groups.  Interaction terms for the site classification groups are also included. 

Classification Term Mean Square F df Significance 

Size Class 3.615 7.115 2,71 0.002 

Cut Class 0.106 0.208 2,71 0.813 

Nest 2.339 4.604 4,71 0.002 

Size Class * Cut Class 0.493 0.971 2,71 0.384 

Size Class * Nest 0.712 1.418 6,71 0.220 

Cut Class * Nest 0.629 1.238 2,71 0.296 
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Invertebrate mercury concentrations (µg/g wet mass) were highly variable among 

the sites.  Small (0.168 µg/g ± 0.243 SD) and medium (0.168 µg/g ± 0.141 SD) size 

streams had the highest invertebrate mercury concentrations compared to large streams 

(0.132 µg/g ± 0.043 SD; F(2,68)=6.670, p=0.002; Figure 3.1.3).  The stream size class and 

cut classes (cut class*size class) interaction was significant when comparing invertebrate 

mercury concentrations (F(2,68)=4.787, p=0.011). In the small streams the high cut class 

had the lowest invertebrate mercury concentrations compared to the no and low cut 

classes. The no cut streams had the highest invertebrate mercury concentrations and were 

also highly variable (Figure 3.1.4).  Medium size streams show large variation with the 

low cut streams having the lowest mercury but highest variation (Figure 3.1.5). The 

Northwest Mackenzie and the Beck catchments have the highest variability in the small 

and medium size streams for invertebrate mercury concentrations (Figure 3.1.6). The 

stream cut class and nest interaction explains the largest source of variability in 

invertebrate mercury concentrations (F(2,68)=12.660, p<0.001; Table 3.1.2).  The forest 

management history or the cut history of an area is reflected with different nests 

(catchments) having a different historical cut percentage (Figure 3.1.6).



 
Figure 3.1.3 Mean (+ SD) invertebrate mercury concentrations (µg/g wet mass) for each 
stream size class.   
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Figure 3.1.4 Mean (+ SD) invertebrate mercury concentrations (µg/g wet mass) for each 
stream cut class. 
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Figure 3.1.5 Mean (+SD) invertebrate mercury concentrations (µg/g wet mass) 
categorized by stream size and cut class. 
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Table 3.1.2 Factorial ANOVA table of the invertebrate mercury concentrations (log 

µg/kg) with the site classification terms and the interaction terms.  All associated 

statistical values are reported for both classification terms and interaction terms. 

 
Interaction Term Mean Square F df Significance 

Size Class 3.890 6.670 2,68 0.002 

Cut Class 0.541 0.927 2,68 0.401 

Nest 1.215 2.083 4,68 0.093 

Size Class * Cut Class 2.792 4.787 2,68 0.011 

Size Class * Nest 1.657 1.657 6,68 0.016 

Cut Class * Nest 7.383 12.662 2,68 0.0001 

 



 
Figure 3.1.6 Mean (+SD) invertebrate mercury concentrations (µg/g wet mass) 

categorized by stream cut class and nest. 
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Fish were collected from 24 of the 31 study sites with 5 high cut class streams 

containing fish samples.  Fish mercury concentrations were higher in small streams 

(0.176 µg/g ± 0.103 SD) compared to medium streams (0.142.74 µg/g ± 0.112 SD) and 

large streams (0.092 µg/g ± 0.049; F(2,166)=6.491, p=0.002; Figure 3.1.7a).  The no cut 

streams had the highest fish mercury concentration and variability (0.156 µg/g ± 0.132 

SD) in comparison to the low cut class (0.113 µg/g ± 0.058 SD) and high cut class (0.141 

µg/g ± 0.052 SD; F(2,166)=7.025, p=0.001; Figure 3.1.7b).  North East Current contained 4 

of the 5 high cut class streams where fish were collected.  More small size class sites 

were sampled than other size classes due to the number available in the catchments 

sampled and the nest grouping.  Fish mercury concentrations were highest in the Beck 

catchment (0.172 µg/g ± 0.119 SD) with the Furcate catchment having the lowest fish 

mercury concentrations (0.109 µg/g ± 0.071µ SD; F(4,166)=4.375, p=0.002; Figure 3.1.8).  

Interactions between stream size class and nest (size class * nest) were significant 

(F(3,166)=5.779, p=0.001; Table 3.1.3) however, this does not explain as much variation in 

the fish mercury concentrations as stream cut class or stream size class alone.   

Brook trout had lower average mercury concentrations (0.085 µg/g ± 0.043 SD) 

less than dace (0.128 ± 0.06 SD; Figure 3.1.9).  Brook trout were found in 10 streams and 

may have contributed to the large variability of the fish mercury data.  Brook trout were 

not found in any of the high cut streams.  Eight study streams contained both brook trout 

(n=38) and dace (n=35) with a total of 73 fish collected from sites where both genus were 

present.  Brook trout had mercury concentrations lower (0.079 µg/g ± 0.041) than the 

dace (0.128 µg/g ± 0.058; t(1,72)=24.223, p<0.001) consistently over the sites where both 

were collected (Figure 3.1.10).



 

 
 

A 

B 

Figure 3.1.7 Mean (+ SD) fish mercury concentrations (µg/g wet mass) by A: stream size 
class and B: stream cut class. 
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Figure 3.1.8 Mean (+SD) fish mercury concentrations (µg/g wet mass) for each nest. 
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Table 3.1.3 Factorial ANOVA table of the fish mercury concentration (log µg/g) with 
relevant statistics of the three site classification terms and the interaction terms. 

 

Interaction Term Mean Square F df Significance 

Size Class 0.232 6.491 2,166 0.002 

Cut Class 0.251 7.025 2,166 0.001 

Nest 0.156 4.375 4,166 0.002 

Size Class * Nest 0.206 5.779 3,166 0.001 

 



 
 
Figure 3.1.9 Mean (+SD) fish mercury concentrations (µg/g wet mass) by taxonomic 
group (brook trout and dace).   
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Figure 3.1.10 Mean (+ SD) fish mercury concentrations (µg/g wet mass) of the 8 sites 
where both taxonomic groups were present. Light bars represent the brook trout and dark 
bars represent the dace mercury levels.  
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3.2 Trophic Level  

 Statistical analyses were not conducted to evaluate differences in mercury 

concentration in biota at different trophic levels due to large differences in the number of 

samples and samples not being collected for all categories.  Rather than violating all 

assumptions under the ANOVA only mean comparisons were attempted in this section. 

On average, invertebrate mercury concentrations (0.170 µg/g) were higher than 

the periphyton mercury concentrations (0.122 µg/g), but were also higher than fish 

mercury concentrations (0.140 µg/g; Figure 3.2.1).  The small stream size class had 

similar invertebrate and fish mercury concentrations (0.179 µg/g and 0.176 µg/g) with 

similar sample sizes (n=48 and n=58).   

The periphyton mercury concentrations, when compared among stream cut class, 

were consistently lower than the invertebrate and fish mercury concentrations (Figure 

3.2.2).  In the high cut streams there were higher mercury concentrations with the 

increase in biota trophic position from periphyton (0.044 µg/g; n=18 samples) to 

invertebrates (0.123 µg/g; n=18 samples) and fish (0.141 µg/g; n=42 samples).   

The biota mercury concentrations did not follow the hypothesized trophic level 

increases from periphyton to invertebrates to fish in all of the nests (Figure 3.2.3), 

however biota mercury concentrations followed the predicted pattern in the Beck 

catchment with periphyton at 0.149 µg/g (n=23 samples), invertebrates at 0.171 µg/g 

(n=24 samples) and fish at 0.172 µg/g (n= 47).  Other nests had similar invertebrate and 

fish mercury concentrations like the North East Current (0.147 µg/g and 0.142 µg/g) and 

the Furcate (0.105 µg/g and 0.109 µg/g) catchments respectfully.  The Furcate nest was 
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especially unique since the periphyton mercury concentrations were higher than fish and 

invertebrate mercury concentrations combined. 



 
Figure 3.2.1 Mean (+ SD) biota mercury concentrations (µg/g wet mass) by biota type. 
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Figure 3.2.2 Mean (+ SD) biota mercury concentrations (µg/g wet mass) for each cut 
class.  No cut streams are shown with open bars, low cut with light grey and high cut with 
dark grey. 
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Figure 3.2.3 Mean (± SD) biota mercury concentrations (µg/g) for each nest.  The Beck 
catchment is indicated by open bars, Walkinshaw by vertical lines, North East Current by 
a light grey, North West Mackenzie by a diamond pattern and Furcate by dark grey bars.   
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3.3 Stream Habitat 

3.3.1 Local Variables 
Local variables differed among streams in different size classes.  Results of the 

MANOVA show that only stream size class results in separation of sites by local 

variables (MANOVA, F=5.556, p < 0.001; Table 3.3.1).  Habitat characteristics did not 

differ among streams of different cut classes (F=0.653, p=0.725) or nests (F=0.724, 

p=0.669).  No statistically significant difference was present in the pH of streams when 

grouped according to cut class (7.04-7.10).   

Discriminate function analysis (DFA) showed that when sites were grouped by 

size class there was a significant separation of the groups (Wilks’ Lambda p=0.001) in 

ordination space defined by functions 1 and 2 (Table 3.3.2; Figure 3.3.1).  Size class 

explained  89.4% of the variance in discriminant function 1 scores and  10.6% of the 

variation in discriminate function 2 scores.  The separation of the sites was dominated by 

differences in pH, temperature (۫ºC), conductivity (µS/cm) and average canopy density 

(%).  Separation of the streams sizes was due to small streams having lower pH (mean 

6.8 ± 0.3 SD), conductivity (mean 66.7 µS/cm ± 26.9 SD), lower temperature (14.3 ºC ± 

1.7 SD) and a higher canopy density (75% ± 20 SD).  The smaller streams (small and 

medium size classes) were further separated from the large streams by stream gradient 

(small 4.9% ± 1.9 SD, medium 4.1% ± 2.4 SD, large 3 ± 0.5 SD) and fine sediment % 

(small 24% ± 21 SD, medium 20% ± 24 SD, large 3 ± 6 SD).  Small streams were 

classified correctly 88.2 % of the time while medium streams were classified correctly 

77.8 % of the time by just the 6 local variables that were used in the classification in the 
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 Redundancy analysis results indicated that local variables including pH, 

conductivity, canopy density and gradient had the strongest association with mercury 

concentrations (F =1.035, p=0.293; Figure 3.3.2; Table 3.3.3). Of the axes examined, a 

total of 42.2% of variation in mercury concentrations among sites was explained through 

axes 1 and 2.  When all axes are considered 68.8% of mercury concentration variances 

are explained by the 5 local variables.  Mercury concentrations had a greater association 

with stream specific variables (pH, conductivity and temperature) compared to the 

surrounding variables (gradient, canopy density).  Periphyton and fish mercury 

concentrations were more closely associated with stream pH, conductivity and 

temperature, where cooler, more acidic (lower pH) and lower conductivity streams had 

higher fish and periphyton mercury.  Invertebrate mercury was associated with the stream 

variables but seemed to be more closely related to stream gradient and canopy where 

steeper streams with higher canopy cover have higher mercury concentrations.  The 

second axis shows a separation of streams with steep gradient, narrow riparian zone and 

lower fine sediment, which are at the positive end of the axis, from streams with low 

gradient, wider riparian zone and greater percent fine sediment which fall towards the 

negative end of the axis.   
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3.3.2 Catchment Variables  
Redundancy analysis showed that catchment variables were separated on two 

gradients (F =1.310, p=0.252) with the first gradient showing that periphyton, 

invertebrate and fish mercury concentrations being positively associated with lake 

percent (Figure 3.3.3; Table 3.3.4).  The second gradient separated  streams with large 

percent wetlands, toward the positive end of the axis, from streams with large lake and 

recent cut percent at the negative end. Axes 1 and 2 explained a total of 34% of the 

variance in bioatic mercury with a total of 70.2% of variance in mercury being explained 

by all axes.  Mercury was positively associated with the percent lake and temperature 

while it was negatively associated with the percent wetland and recent cut.  
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 Table 3.3.1 MANOVA table of the 3 stream grouping variables and the contribution of 
each to explain the differences in local variables at each site. 

 

 Nest (p=0.669) Size Class 
(p=0.001) 

Cut Class 
(p=0.725) 

Variable F p F p F p 

pH 0.042 0.840 24.157 0.0001 0.040 0.842 

Conductivity (uS/cm) 0.004 0.948 7.252 0.012 0.679 0.417 

Gradient (%) 0.834 0.369 3.736 0.064 0.706 0.408 

Woody Debris 3.263 0.082 1.792 0.192 4.232 0.049 

Temperature ( ۫C) 0.079 0.781 9.529 0.005 0.043 0.836 

Riparian Width (m) 1.809 0.190 0.484 0.493 0.282 0.600 

Canopy Density (%) 3.886 0.059 13.557 0.001 0.038 0.846 

Fine Sediment (%) 0.835 0.369 3.486 0.073 1.120 0.299 
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Table 3.3.2 Standardized Canonical Discriminate Function Coefficients for the DFA of 
local variables.  

Variable Function 1 Function 2 

pH -0.661 0.264 

Conductivity (uS/cm) 0.179 0.463 

Stream Gradient (%) 0.288 -0.828 

Temperature (C۫) -0.331 -0.386 

Canopy Density (%) 0.571 1.007 

Fine Sediment 0.595 -0.242 



 

 

Figure 3.3.1 Discriminant Function Analysis (DFA) ordination plot illustrating the 
separation of the different stream size classes based on local scale habitat variables. The 
size class centroid is shown with a labeled black square.  The small stream sites are 
shown as a plus sign, medium streams by a triangle and large streams by a circle 
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Figure 3.3.2 Redundancy analysis of local scale variables and biota mercury 
concentrations (F=1.035 p=0.293, all axis). The RDA found that 68 % of all variance in 
mercury concentrations were explained by differences in local scale habitat variables 
(See Table 3.3.3 for RDA statistics). The dark lines indicate the local variables with 
vector length indicating the strength of the relationship to the axis.  The grey lines 
represent the biota mercury concentrations and the vectors indicate the strength and 
direction of the relationship to axes.
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Table 3.3.3 Summary of the Redundancy analysis for local variables (Figure 3.3.2).  The strongest correlations between 
the  RDA axes and local habitat variables, as well as the variance in biota mercury explained by the analysis and it’s 
significant, are presented.

Spatial scale Variance Explained (%) Strongest Variables Axis Correlations Significant Tests 

 All Axes Axes 1&2  1 2 All Axes First Axes 

Figure 3.3.2 pH 0.5351 0.002 
p=0.293, 
F=1.035 

p=0.163, 
F=3.905 68.8% 42.2% 

Conductivity 0.4187 -0.1494 

Gradient -0.1921 0.2148 

Temperature 0.2267 0.0823 

 Canopy Cover -0.2703 -0.0567  
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Figure 3.3.3 Redundancy analysis of catchment scale variables and biota mercury 
concentrations (F=1.31- p=0.252, all axis). The RDA found that 70.2 % of all variance in 
mercury concentrations were explained by differences in catchment scale habitat 
variables (See Table 3.3.5 for RDA statistics). The dark lines indicate the catchment 
variables with vector length and direction indicating the strength of the relationship to the 
axis.  The grey lines represent the biota mercury concentrations and the vectors indicate 
the strength and direction of the relationship to axes. 
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Table 3.3.4  Summary of the Redundancy analysis for local variables (Figure 3.3.3).  The strongest correlations 
between the  RDA axes and catchment scale variables, as well as the variance in biota mercury explained by the 
analysis and it’s significant, are presented.  

Spatial scale Variance Explained (%) Strongest Variables Axis Correlations Significant Tests 

 All Axes Axes 1&2  1 2 All Axes First Axes 

Figure 3.3.3 70.2 34 Lake % 0.3853 -0.3453 p=0.2520, F=1.310 p=0.3482, F=3.690

Wetland -0.3464 0.0471 

Recent Cut -0.2823 -0.1839

Roads -0.0741 -0.0734
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4.0 Discussion 

 Mercury concentrations in biota and the factors that influence contamination are 

of global concern.  Specific mercury concentrations in all three levels of biota 

(periphyton, invertebrates and fish) varied within and between sample sites with mercury 

concentrations in only 10 biota samples being below the detection limit (0.0004 µg/g).  

The highest biota mercury concentrations tended to be in the highest trophic level 

organisms but this pattern did not stand for all sites and samples with some periphyton 

samples having mercury levels higher than invertebrate and fish mercury concentrations.  

Several local and catchment variables were associated with the presence and 

concentrations of biota mercury concentrations including pH, water temperature (ºC), 

conductivity (µS/cm), percent lake and percent wetland.  Forest management practices 

were not associated with differences in mercury concentrations and were also not 

associated with differences in local variables.  The size of the stream seemed to have the 

greatest association between biota mercury concentrations and differences in local 

variable values. 

4.1 Biota Mercury Concentrations 

 Mercury concentrations in biota varied between and among the sites and samples 

due to associations with different local and catchment scale variables.  All samples were 

tested for total mercury (THg) with samples from only one site (MW1E) having 

concentrations below the detection limit (0.0004 µg/g).  Periphyton mercury levels in my 

study varied as much as two orders of magnitude within and among sites.  Periphyton 

mercury concentrations vary depending on the substrate they are found on, general 

stream conditions, location of the stream and species of periphyton collected (Bell and 
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Scudder 2007, Cleckner et al. 1998).  There was a high level of variability in periphyton 

mercury concentrations with high levels at the Furcate sites (0.219 µg/g) compared to the 

North West Mackenzie which averaged below 0.05 µg/g.  The Furcate sites had lower 

average conductivity, lower temperature and higher gradient than the North West 

Mackenzie sites.  Variability of the periphyton mercury concentrations spanned orders of 

magnitude; it was higher in the smaller streams (small and medium) compared to the high 

streams and while not associated with different disturbance histories it was associated 

with the area of sampling (nest). 

 The variation in the invertebrate mercury concentrations may be due to the site 

specific methylation rates or differences in the size and/or species composition collected 

at different sites.  Research by LeCraw (2009) showed different benthic invertebrates 

were present in different size streams when identified to the genus level.  Different 

invertebrate species within the same location can accumulate mercury at different rates 

resulting in different mercury concentrations among species (Anderson and Depledge 

1997, Hill et al. 1996).  Since invertebrates were only identified to the order level of 

classification, invertebrate species composition differences associated with differences in 

stream size or substrate type may account for some of the variability between site and/or 

sample invertebrate mercury concentrations.  While identification to species or even 

genus would be difficult without special knowledge and training during live picking of 

samples for mercury analysis, additional reference samples could be collected and 

preserved for identification later.  Invertebrate mercury concentrations may also be lower 

due to enhanced periphyton growth dilution or invertebrate growth dilution (larger body 

size; Brinkman 2004, Mason et al. 2000).  Invertebrate mercury concentrations varied by 
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orders of magnitude and this could be associated with the different growth conditions at 

sites (Fuller et al. 1986), different species present between sites (Anderson and Depledge 

1997, Hill et al. 1996, Jackson 1988). 

 Dace species had average mercury concentrations approximately 50% greater 

than brook trout (0.128µg/g ± 0.006 SD, 0.085 µg/g ± 0.043 SD respectively).  I assume 

that trout and dace are at the same trophic level as all fish used in my study were small, 

less than 100 mm in total length, which reduces the chances of piscivory by brook trout 

(Browne and Rasmussen 2009).  Age of the fish can be a contributing factor in the 

mercury concentrations of fish with older fish tending to have higher mercury 

concentrations (Gorski et al. 1999, 2003, Harris and Bodaly 1998).  I used backpack 

electrofishing to collect fish samples which tends to be biased towards capturing larger 

fish (Fièvet et al. 1999, Onorato et al. 1998).  When fish were processed for samples in 

the lab, larger dace were chosen because of ease of processing.  While fish were not aged 

in my study, sampling techniques may have favoured larger dace and younger brook 

trout.  Dace in this study may have been as old as about 5 years old while brook trout 

were likely 1-2 years old based on the size at capture (Scott and Crossman 1973).  Small 

brook trout were collected because they occur more commonly in all sizes of streams and 

their removal was less likely to impact the local populations than the removal of older, 

larger fish.  Increased mercury uptake from food with slow mercury eliminations from 

the body (Porvari 2003) may be associated with why the potentially older dace had higher 

mercury concentrations than similar sized (but possibly younger) brook trout.  Fish 

mercury was consistently lower in brook trout over dace with differences attributed to 

fish age. 
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 Different size streams had different local variables and differed in biota mercury 

concentrations.  The large streams in my study had catchments in all 3 cut classes and 

generally had lower mercury concentrations in all biota types.  Biota sampled in small 

and medium streams had higher mercury concentrations than those from large streams.  

Large streams had less fine sediment which has been shown to be a potential mercury 

methylation environment (Francesconi et al. 1997) and can result in different invertebrate 

communities (Cummins and Klug 1979).  Small and medium streams tended to have 

more woody debris, leaf matter and a higher canopy cover which may be associated with 

increased mercury available to the system due to litterfall increases (Munthe et al. 1995, 

St. Louis et al. 2001) or decreased dissolved oxygen due to sediments which increases 

methylation processes (Francesconi et al. 1997).  Smaller streams in my study may have 

higher biota mercury concentrations due to many variables including the higher litterfall, 

fine sediment, woody debris, and leaf matter than larger streams.  The biota mercury 

concentration differences may also be associated with differences among stream sizes in 

MeHg/THg ratios or different invertebrates composing the samples.  Stream size is 

associated with differences in local variables and can be associated with large differences 

in mercury present in biota. 

4.2 Mercury Bioaccumulation 

 Periphyton can be a potential site of mercury methylation (Desrosiers et al. 2006a, 

Mucci et al. 1995) and is an important component to the stream food web as the primary 

producer (Cleckner et al. 1998, Cummins 1974).  While MeHg is the mercury that is 

bioaccumulated in higher trophic levels (Porvari 2003), the proportion of THg that is 

MeHg in periphyton varies with the sample, site and conditions with some samples 
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having as low as 2% MeHg (Bell and Scudder 2007, Hill et al. 1996).  A number of 

aquatic macro-invertebrates feed on periphyton (Cummins and Klug 1979) including 

several species within the EPT complex analyzed in this study.  Since food is the primary 

uptake route of mercury to invertebrates (Desrosiers et al. 2006b, Mason et al. 2000) 

herbivorous invertebrates should have MeHg mercury concentrations that are higher than 

periphyton. 

 Large variances in the biota mercury concentrations were observed when 

comparing samples from different size streams.  The trophic level increases in mercury 

that were expected were not seen in the smaller streams in this study.  The biota sampled 

in large streams showed had over a 3 fold difference in mercury concentrations between 

the two lowest trophic levels.  The inconsistency in the pattern of differences between the 

base of the food chain (periphyton) and invertebrates among different stream sizes 

suggests that the pattern of mercury biomagnification may be influenced by a number of 

factors including the species present and the local and catchment scale characteristics of 

the sites.  Periphyton is the base of the stream food web but the differences in stream size, 

local variables, variable ratios of MeHg to THg and the percent of the mercury passed to 

the higher trophic levels may be why the trophic level increases that were hypothesized 

were not observed.   

 Tsui et al. (2009) showed that MeHg/THg ratios increase with catchment size 

indicating that more MeHg is present as a percent of THg in larger streams.  Porvari and 

Verta (2003) also report differences in MeHg and THg ratios in relation to catchments.  

Porvari and Verta (2003) attributed these differences to the type of catchment (mineral 

soil, mineral soil/peat, peat) but there were also differences in the sizes of the catchments 
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studied and so there may be an unreported influence of the catchment size in their 

MeHg/THg ratios as well.  Differences in trophic level mercury concentrations in my 

study were variable between the smaller streams (small and medium) and the large 

streams with differences associated with the MeHg/THg ratios and local variables. 

My study did not show the expected pattern of mercury biomagnification (fish 

Hg>invertebrate Hg>periphyton Hg).  The lack of clear biomagnification pattern may be 

due to differences associated with the stream size classes having different biota mercury 

concentrations as a result of different mercury methylation rates.  My study used THg 

testing of all samples which does not allow for the determination of the MeHg 

concentrations in biota with the lower trophic levels having different MeHg/THg ratios 

(% MeHg).  Sites with different upland and upstream conditions may also have different 

MeHg/THg ratios present in biota.   

4.3 Factors Associated with Mercury Concentrations 

 Several studies have shown that forestry management practices are associated 

with the overall biota mercury concentrations (Allen et al. 2005, Garcia and Carignan 

1999, 2005) due to changes in variables that disturbance may cause.  I originally 

hypothesized that forest management practices would have a large influence on biota 

mercury concentrations.  The analyses indicated that other variables at the local and 

catchment scale explained more variation in overall biota mercury concentrations than 

forest harvest within the catchment.  Changes to sediment load, pH, and stream 

temperature (Davies et al. 2005, Garcia and Carignan 1999, Harriman et al. 2003, 

Hartman et al. 1996) which may occur post harvest, because of changes in the hydrologic 

cycle and increased runoff (Bosch and Hewlett 1982), are commonly reported in the 
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literature.  My study showed that there is an association between pH and mercury 

concentrations in biota with smaller streams having lower pH and higher biota mercury 

concentrations.  However, there was not a significant difference in the mean pH among 

streams with different forest management histories.  Biota mercury concentrations were 

higher in cooler streams, a result that differs from the previous observations of Bodaly et 

al. (1993) and Ramlal et al. (1993).  Biota mercury concentrations were highest in 

streams with higher percent fine sediments, which is consistent with Ullrich et al. (2001).  

The higher percent fine sediments may result in higher mercury methylation rates or a 

greater release of mercury from sediments due to lower pH (Ullrich et al. 2001).  

Mercury concentrations in my study were closely associated to local stream variables 

which may vary based on the stream size or catchment disturbance. 

 Although few studies have focused on the mercury levels in periphyton following 

disturbance in streams, Hill et al. (1996) showed that post anthropogenic disturbance, 

mercury concentrations in periphyton and primary consumers were higher than in the 

undisturbed or slightly disturbed streams.  I found biota mercury concentrations had a 

stronger association with the local variables than the catchment scale variables, including 

recent forest management.  The low and no cut streams in my study had higher 

periphyton mercury concentrations with no and low cut streams present in several of the 

nests.  High cut streams were present only in the Beck and North East Current nests while 

the highest periphyton mercury concentrations was observed in the Furcate nest.  I found 

lower canopy cover at the disturbed sites which may result in increased light penetration 

and increased periphyton growth (DeNicola et al. 1992) as well as differences in 

invertebrate community structures (Fuller et al. 1986).  Higher periphyton growth levels 
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may lower the overall level of total mercury present in sites with a catchment disturbance 

because of dispersion of the mercury across more periphyton (Brinkman 2004, Pickhardt 

et al. 2002).  While disturbance may have an influence in other studies, my study showed 

that specific local variables were associated with biota mercury concentrations and that 

those variables were not impacted by disturbance. 

 Catchment disturbances were not strongly associated with local variables in my 

study but the disturbed sites did show different invertebrate mercury concentrations.  

There were significant differences in invertebrate mercury concentration among cut 

classes of streams; however, contrary to expectations disturbed sites had lower 

invertebrate mercury concentrations.  Forest management practices have been associated 

with differences in the invertebrate community structure including in the abundance of 

the EPT complex (higher % in small cut streams) and in the families making up the 

Ephemeroptera and Trichoptera orders (some orders only found in cut streams; LeCraw 

2009).  All nests were associated with different catchments and as a result, small 

differences in catchment or local variables may influence mercury available to the local 

biota.  Collective differences in local variables may influence mercury concentrations 

more than forest management practices alone. 

 More acidic waters can have higher mercury methylation rates and higher organic 

(MeHg) mercury levels (Mason et al. 2000, Watras et al. 1995; Westcott and Kalff 1996).  

The pH of study sites ranged from 6.23-8.26 and was associated with biota mercury 

concentrations more than any other local or catchment variable with the smaller (small 

and medium) streams having the lowest pH and highest biota mercury concentrations.  

Lower pH in the smaller streams may result in higher mercury methylation rates (Kelly et 
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al. 2003), increased release of mercury from sediments (Ullrich et al. 2001) and may 

partially explain why biota in the larger streams had lower mercury concentrations.  

Higher methylation rates at lower pH resulted in increased methylmercury uptake by 

higher trophic organisms (Kelly et al. 2003). 

 Higher biota mercury concentrations were also associated with lower 

conductivity.  McMurtry et al. (1989) showed that smallmouth bass mercury 

concentration had a negative relationship with the conductivity of the water. Allard and 

Stokes (1989) showed that 54% of all mercury variability could be explained through a 

negative association between the mercury concentrations of crayfish tissue and 

conductivity alone.  The streams with the highest mercury in my study were smaller 

streams that also had cooler water, lower pH, higher percent fine sediments and lower 

conductivity.  Conductivity measurements are assumed to have a positive relationship 

with total dissolved solid (TDS) measurements (McManus et al. 1992).  The total 

dissolved solids in streams may stabilize the mercury in solution by complexation or 

sorption with humic-hydrous oxide (Nevado et al. 2009).  This stabilization of the 

mercury with humic-hydrous oxide may make the mercury less available to biota to 

uptake with lower conductivity streams having more mercury available to the biota.  

While conductivity did not vary between disturbance levels in my study it did vary with 

stream size. 

 Factors associated with biota mercury concentrations such as the percent fine 

sediment of a stream vary depending on local stream conditions including stream 

gradient, woody debris and catchment disturbance.  Sediment in aquatic systems has been 

shown to be an important methylation environment releasing mercury from the sediment 
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mercury bank in lower pH environments or having a higher ratio of MeHg to THg 

(Francesconi et al. 1997; Ullrich et al. 2001).  Small and medium size streams had higher 

percent fine sediments in my study which may be a primary driver for the higher mercury 

concentrations obsereved relative to large streams.  In my study the amount of woody 

debris present was associated with stream cut classes with larger amounts of woody 

debris being present in the higher cut class streams.  The higher percent fine substrate and 

woody debris volume may be due to input from the riparian zone.  Higher levels of fine 

substrate and woody debris decrease the dissolved oxygen level of the stream and 

increase the methylation potential of the nitrogen reducing bacteria (responsible for 

mercury methylation; Ullrich et al. 2001).   

 Stream water temperatures have been shown to be influenced by disturbance in 

the catchment and to be associated with mercury methylation rates and biota mercury 

concentrations.  I found there were no differences in water temperature between any of 

the cut classes, based on average stream temperatures, in part because there was only a 

5% difference between the no and high cut stream classes.  Bodaly et al. (1993) and 

Ramlal et al. (1993) showed that the mercury concentrations and methylation rates were 

positively associated with water temperature.  Temperatures in streams have also been 

shown to be higher as a result of forest management practices (Curry et al. 2002, 

Harriman et al. 2003, Hartman et al. 1996).  The lower temperature streams in my study 

had higher biota mercury concentrations which is contrary to expectations, but this 

pattern was only observed in the smaller size streams which is most likely because of 

other local variables impacting mercury uptake in biota.  Streams with higher biota 

mercury (small and medium size classes) had lower pH, lower conductivity and higher 
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percent fine sediment which may indicate that the collective influence of these variables 

may be greater on biota mercury concentrations than just temperature.   

 Many studies have reported that wetlands influence the mercury flux in streams 

and are a potential site of methylation or source of mercury to aquatic biota.  The runoff 

as a result of forest management has been shown to increase the flux of mercury to a 

system (Porvari et al. 2003, Porvari and Verta 2003), with runoffs from uplands into 

wetlands increasing the MeHg mercury flowing through the system (Heyes et al. 2000).  

The specific type of wetland was not determined although wetland type may influence 

site specific mercury concentrations in my study.  Different types of wetlands have 

different MeHg/THg ratios and mercury fluxes to streams (Porvari and Verta 2003).  I 

selected study areas that were similar and where it was possible to electrofish so the 

wetlands may have been outside the main sample collection areas further reducing 

positive association between wetlands and biota mercury concentrations.  I calculated 

wetland percent at sites using data from the NRVIS database (OMNR 2005, 2009); while 

wetlands were observed at some sites during sample collection, the wetlands were not 

quantified on site.  Wetlands showed an association with biota mercury concentrations 

but it may be the result of a few sites having a relatively high percentage of wetlands 

compared to the majority of sites.  In my study only 10 sites that had more than 2% 

wetland in the catchment and only 1 site (Beck 1E) had more than 4% wetland in the 

catchment.  While wetlands may have had an important influence on aquatic mercury 

levels, this study was not designed to evaluate or collect the appropriate data to properly 

evaluate this influence. 
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 Catchment disturbance has been shown to influence biota mercury concentrations; 

in my study forest management practices were hypothesized to be positively associated 

with biota mercury concentrations.  While some studies have shown biota mercury 

concentration increases as a result of forest management practices and disturbances in 

lakes (Bodaly et al. 1993, Garcia and Carignan 1999, 2000), my study examined forest 

management practice impacts on biota mercury concentrations in streams.  No 

differences in biota mercury concentrations among sites with different forest management 

histories were detected in my study.  In an addition/spike experiment, mercury additions 

in the upland resulted in very small increases in mercury downstream, or in traditional 

methylating environments (Harris et al. 2007).  The lack of additional MeHg entering the 

system from upland disturbance may explain why I found no differences in the biota 

mercury concentrations among the catchments.  This apparent lack of biota mercury 

response to forest management history may be a result of mercury not making it into the 

stream, or mercury being flushed through the system without bioaccumulating.  

 In addition to no differences in biota mercury concentrations as a result of forest 

disturbance, I found no differences in variables that normally result in increased 

methylation rates across the different cut classes.  Local variables linked to forest 

disturbance and mercury methylation rates include higher sediment loads (% fine 

sediment), lower pH, and higher stream temperature (Davies et al. 2005, Garcia and 

Carignan 1999, Harriman et al. 2003, Hartman et al. 1996).  Local variables are all linked 

to changes in the catchment and in the hydrologic cycle (Bosch and Hewlett 1982) with 

the impacts of disturbance decreasing with time.  Studies on forest management practices 

and disturbances in streams typically take place close to the disturbance date and look 
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only at water mercury fluxes (Desrosiers et al. 2006a, Porvari et al. 2003, Garcia and 

Carignan 1999, 2000).  While variables were not shown to have been impacted by the 

different cut classes of streams in my study, disturbance in the catchment may still have 

been present immediately after disturbance prior to sampling. 

 A study by Buttle and Metcalfe (2000) showed initial streamflow increases post 

harvest but limited streamflow changes were noticeable after more than 5 years post-

disturbance.  Stream temperatures in a study by Quinn and Wright-Stow (2008) on 

harvested streams show a return to reference conditions after less than 8 years post 

harvest.  Furthermore, differences in stream temperature were noticeable only in highly 

disturbed catchments (48-100% harvest) after less than 3 years post disturbance (Quinn 

and Wright-Stow 2008).  The forest management histories used in my study were based 

on the past 10 years as of 2007, with sampling occurring in 2008.  The most recent 

disturbance used in my study was at least 2 years old and only 6 sites had more than 30% 

disturbance in their catchments.  Enough time since disturbance may have passed that 

conditions had returned to pre-disturbance levels in my study.  In addition, the percent of 

the catchment disturbed may not have been enough to result in stream level changes in 

local variables, methylation rates or biomagnification.  Since small streams are so closely 

linked to their catchments, a fast response to disturbance may also result in a fast 

recovery from disturbance. 

 Future studies of  the relationship between biota mercury concentrations and 

forest disturbance should identify invertebrates to the genus or family levels to better 

account for differences in invertebrate community structure among different size streams 

or in disturbed vs. undisturbed streams. Different species of invertebrates may have 
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different mercury concentrations or MeHg/THg ratios (% MeHg) with different size 

streams possibly having different invertebrate communities.  Higher taxonomic resolution 

in the identification of invertebrates would allow for a direct comparison between the 

sites and invertebrates present especially given the species differences in mercury levels 

observed in fish sampled in this study.  Lower trophic levels should also have MeHg 

testing done to more accurately measure how much mercury is available to the higher 

trophic levels since diet is the primary method of mercury biomagnification and the 

mercury present in invertebrates and fish is almost entirely from diet. 

5.0 Conclusion 

 This study examined the patterns of mercury bioaccumulation by organisms in 

small stream environments and the factors that are associated with differences in biota 

mercury concentrations.  Mercury was present in biota at all sites sampled although 

concentrations were variable within trophic levels and among sites.  Periphyton mercury 

samples ranged from below detection levels to sites having periphyton average 

concentrations of 0.219 µg/g.  Invertebrate mercury concentrations differed between sites 

with invertebrates in larger size streams having lower average mercury concentrations 

(0.043 µg/g) compared to those in small and medium streams (0.168 µg/g and 0.168 µg/g 

respectively).  Fish mercury concentrations varied between the species sampled and 

among the different sites.  Brook trout had approximately 50% lower mercury 

concentrations than dace, a difference that was consistent across all sites with both 

species present.  No brook trout were found in any of the high cut class streams so 

although biota mercury levels and local variables did not differ between cut classes of 

streams, the fish communities did differ.  Mercury biomagnification was difficult to 
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identify due to different biota mercury concentrations associated with stream size and 

similar mercury concentrations between fish and invertebrates.  Forest management 

practices have been shown in previous studies to increase biota mercury concentrations 

and impact variables like temperature or fine sediment.  The results of this study did not 

support the hypothesis that forestry management practices would impact biota mercury 

concentrations and local scale variables.  Stream size had more influence on biota 

mercury concentrations than the cut class with smaller streams having higher biota 

mercury concentrations than the large streams.  The differing stream conditions (variables 

like pH and percent fine sediment) had strong associations with biota mercury 

concentrations.  Results suggest that local conditions, which may influence both mercury 

methylation potential and the growth rate and mercury uptake of organisms, may have a 

greater influence on mercury bioaccumulation than catchment disturbance. 
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7.0 Appendix 
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Appendix 1 Bar graphs of mean values of local variables grouped by size class and 
labelled by cut class. (a) pH, (b) conductivity, (c) wood debris and (d) stream gradient. 
The open bars represent the no cut streams, light grey bars represent the low cut and dark 
grey bars represent the high cut streams. 
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Appendix 2 Bar graphs of mean local variables grouped by size class of streams and 
labelled by cut class of streams. (a) temperature, (b) riparian width, (c) percent fine 
sediment and (d) in stream canopy density. The open bars represent the no cut streams, 
light grey bars represent the low cut and dark grey bars represent the high cut streams. 
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Appendix 3 Bar graph of mean catchment variables grouped by size category and 
labelled by stream cut class.(a) percent wetland in the catchment, (b) percent lake in the 
watershed and (c) roads in the catchment m/km2. The open bars represent the no cut 
streams, light grey bars represent the low cut and dark grey bars represent the high cut 
streams.
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Appendix 4 Cut information for the sites sampled. (a) historical harvest percent in 
the catchment, (b) old harvest percent (greater than 10 years) and (c) recent cut 
percent (within the last 10 years).  The open bars represent the no cut streams, 
light grey bars represent the low cut and dark grey bars the high cut streams. 
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